Science.gov

Sample records for abundant genetic variation

  1. Genetics of single-cell protein abundance variation in large yeast populations

    NASA Astrophysics Data System (ADS)

    Albert, Frank W.; Treusch, Sebastian; Shockley, Arthur H.; Bloom, Joshua S.; Kruglyak, Leonid

    2014-02-01

    Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in `hotspots' that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell

  2. Genetics of single-cell protein abundance variation in large yeast populations

    PubMed Central

    Albert, Frank W.; Treusch, Sebastian; Shockley, Arthur H.; Bloom, Joshua S.; Kruglyak, Leonid

    2014-01-01

    Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or multiple genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL) 1. Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power 2–6. Consequently, many eQTL are likely missed, especially those with smaller effects 7. Further, most studies use mRNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics 8–13 reported surprising differences between eQTL and protein QTL (pQTL) for the same genes 9,10, but these studies have been even more limited in scope. Here, we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyes cerevisiae. We measure single-cell protein abundance through the use of green-fluorescent-protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high vs. low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci cluster at hotspot locations that influence multiple proteins—in some cases, more than half of those examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell physiology between yeast strains. PMID:24402228

  3. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways.

    PubMed

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P; Poulin, Gino B; Kammenga, Jan E; Hengartner, Michael O

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  4. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  5. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    PubMed Central

    Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  6. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  7. Coronal Abundances and Their Variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1996-01-01

    This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.

  8. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft x-ray spectra from the Flat Crystal Spectrometer (FCS) on the Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred during the first ten months of the contract, 15 Jun. 1993 to 15 Apr. 1994.

  9. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  10. Genetic Variation and Atherosclerosis

    PubMed Central

    Biros, Erik; Karan, Mirko; Golledge, Jonathan

    2008-01-01

    A family history of atherosclerosis is independently associated with an increased incidence of cardiovascular events. The genetic factors underlying the importance of inheritance in atherosclerosis are starting to be understood. Genetic variation, such as mutations or common polymorphisms has been shown to be involved in modulation of a range of risk factors, such as plasma lipoprotein levels, inflammation and vascular calcification. This review presents examples of present studies of the role of genetic polymorphism in atherosclerosis. PMID:19424482

  11. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D. (Technical Monitor); Kashyap, Vinay

    2005-01-01

    The PI of this project was Jeff Scargle of NASA/Ames. Co-I's were Alma Connors of Eureka Scientific/Wellesley, and myself. Part of the work was subcontracted to Eureka Scientific via SAO, with Vinay Kashyap as PI. This project was originally assigned grant number NCC2-1206, and was later changed to NCC2-1350 for administrative reasons. The goal of the project was to obtain, derive, and develop statistical and data analysis tools that would be of use in the analyses of high-resolution, high-sensitivity data that are becoming available with new instruments. This is envisioned as a cross-disciplinary effort with a number of "collaborators" including some at SA0 (Aneta Siemiginowska, Peter Freeman) and at the Harvard Statistics department (David van Dyk, Rostislav Protassov, Xiao-li Meng, Epaminondas Sourlas, et al). We have developed a new tool to reliably measure the metallicities of thermal plasma. It is unfeasible to obtain high-resolution grating spectra for most stars, and one must make the best possible determination based on lower-resolution, CCD-type spectra. It has been noticed that most analyses of such spectra have resulted in measured metallicities that were significantly lower than when compared with analyses of high- resolution grating data where available (see, e.g., Brickhouse et al., 2000, ApJ 530,387). Such results have led to the proposal of the existence of so-called Metal Abundance Deficient, or "MAD" stars (e.g., Drake, J.J., 1996, Cool Stars 9, ASP Conf.Ser. 109, 203). We however find that much of these analyses may be systematically underestimating the metallicities, and using a newly developed method to correctly treat the low-counts regime at the high-energy tail of the stellar spectra (van Dyk et al. 2001, ApJ 548,224), have found that the metallicities of these stars are generally comparable to their photospheric values. The results were reported at the AAS (Sourlas, Yu, van Dyk, Kashyap, and Drake, 2000, BAAS 196, v32, #54.02), and at the

  12. Stardust Abundance Variations among Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Walker, Robert M.

    2009-01-01

    Presolar grain abundances reflect the degree of processing primitive materials have experienced. This is evidenced by the wide range of silicate stardust abundances among primitive meteorites (10 to 300 ppm) [1], attributable to parent body hydrothermal processing. Stardust abundance variations are also pronounced in anhydrous interplanetary dust particles (CPIDPs), that have not experienced parent body processing (300 to > 10,000 ppm) [2-4]. The large range in stardust abundances among CP IDPs thus reflect nebular processing. Here we present results of a systematic search for stardust among cluster CP IDPs. Our goals are to establish mineralogical trends among IDPs with different stardust abundances. This may shed light into the nature of isotopically normal presolar grains (GEMS grains?; 5) if their abundances vary similarly to that of isotopically exotic stardust grains.

  13. Genetic diversity in aspen and its relation to arthropod abundance.

    PubMed

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  14. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  15. Abundance variations in the solar wind

    NASA Astrophysics Data System (ADS)

    von Steiger, R.; Schweingruber, R. F. Wimmer; Geiss, J.; Gloeckler, G.

    1995-07-01

    The solar wind (SW) allows us to probe the solar material in situ, particularly its composition, without the need to fly a spacecraft to inhospitably small heliocentric distances. However, it turns out that this plasma source is biased with respect to the photosphere. Elements with a low first ionization potential (FIP) are overabundant by a factor of 3-5 relative to high-FIP elements in the slow SW, but only by a factor of 1.5-2 in the fast streams emanating from coronal holes. It is thus important to have a good understanding of this FIP fractionation effect, which operates between the photosphere and the corona. Such a theory may improve on our understanding of the solar atmosphere and SW acceleration. We present SW measurements, concentrating on results of the SWICS mass spectrometer on Ulysses, which is currently sampling the SW on a highly inclined orbit. IN 1992/93, Ulysses was traversing a recurrent high-speed stream once per solar rotation, alternating with slow SW, providing a unique opportunity to compare these two SW types. We find a strongly positive correlation for low- to high-FIP element ratios (such as Mg/O) with coronal temperature, which in turn is anticorrelated with the SW speed. The correlation of these three parameters -- one chromospheric, one coronal, and one from the SW -- points at a common cause for their variations, and provides a challenge to theorists to model these three domains in an unified approach. Further, abundance variations found in the SW from coronal streamers and in coronal mass ejections are presented and discussed. Finally, we address the question of abundance variations within the fast streams, looking for abundance gradients with heliographic latitude.

  16. Elemental Abundance Variations in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Sheeley, N. R., Jr.

    1996-09-01

    Skylab solar images in the transition region lines of neon, magnesium, and calcium have been used to trace elemental abundance variations in sunspots and the quiet Sun. Sunspots are invariably accompanied by spikelike features, enriched in elements of low first ionization potential (FIP) such as magnesium and calcium, and extending outward from the penumbras. Material with the normal, unenriched, photospheric-like composition is sometimes seen over the umbra, but it is only seen in the presence of very bright chromospheric emission associated with flares or emerging flux. The salt-and-pepper fields of the quiet Sun give rise to small-scale structures, enhanced in the lines of both helium and neon, and having the "photospheric" composition. However, enrichments of low-Fl P elements are sometimes found at unipolar flux concentrations in coronal holes, and occasionally they have very large enrichment factors. These observations suggest that the composition depends on whether the plasma is coronal or not and that the fractionation process is somehow related to the production of coronal material.

  17. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.

    PubMed

    Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P

    2015-09-01

    Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances.

  18. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    PubMed Central

    Paaby, Annalise B.; Gibson, Greg

    2016-01-01

    Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits. PMID:27304973

  19. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  20. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.

    PubMed

    Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P

    2015-09-01

    Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances. PMID:25693632

  1. The Origin of Element Abundance Variations in Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2016-08-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio [A/Q] of the ions. Since the Q-values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element-abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller magnetic reconnections, "nanojets", produce suprathermal seed ions, thus averaging over varying abundances, while an impulsive SEP event only samples one local region of abundance variations. Evidence for a reference He/O-abundance ratio of 91, rather than 57, is also found for the hotter plasma. However, while this is similar to the solar-wind abundance of He/O, the solar-wind abundances otherwise provide an unacceptably poor reference for the SEP-abundance enhancements, generating extremely large errors.

  2. Inferring recent historic abundance from current genetic diversity.

    PubMed

    Palsbøll, Per J; Zachariah Peery, M; Olsen, Morten T; Beissinger, Steven R; Bérubé, Martine

    2013-01-01

    Recent historic abundance is an elusive parameter of great importance for conserving endangered species and understanding the pre-anthropogenic state of the biosphere. The number of studies that have used population genetic theory to estimate recent historic abundance from contemporary levels of genetic diversity has grown rapidly over the last two decades. Such assessments often yield unexpectedly large estimates of historic abundance. We review the underlying theory and common practices of estimating recent historic abundance from contemporary genetic diversity, and critically evaluate the potential issues at various estimation steps. A general issue of mismatched spatio-temporal scales between the estimation itself and the objective of the estimation emerged from our assessment; genetic diversity-based estimates of recent historic abundance represent long-term averages, whereas the objective typically is an estimate of recent abundance for a specific population. Currently, the most promising approach to estimate the difference between recent historic and contemporary abundance requires that genetic data be collected from samples of similar spatial and temporal duration. Novel genome-enabled inference methods may be able to utilize additional information of dense genome-wide distributions of markers, such as of identity-by-descent tracts, to infer recent historic abundance from contemporary samples only. PMID:23181682

  3. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution). PMID:27273322

  4. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).

  5. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    one telescope, and were analyzed in a uniform manner, to eliminate potential sources of significant systematic error. In keeping with present theoretical models of the deep mixing process, red giants in low-metallicity globular clusters undergo more rapid carbon depletion, and therefore more efficient deep mixing, than their high-metallicity counterparts. The fourth chapter investigates the apparent disappearance of abundance bimodality at low overall metallicity by determining carbon abundances along the full red giant branch of the globular cluster M53. I find that the mild variation of CN bandstrength observed is consistent with a mildly bimodal distribution in carbon abundance, in agreement with previous work on the subject. However, this result raises the question of whether all low- metallicity clusters should have only mild star-to-star abundance variations, or whether M53 is unusual in this regard. I discuss previous investigations into this same question using other low-metallicity globular clusters, and conclude that M53 may have milder abundance variations than the well-studied clusters M92 and M15. The fifth chapter describes a study of CN bandstrength behavior in high- metallicity star clusters. While abundance bimodality, observed from a bimodal CN bandstrength distribution and anticorrelated CN and CH bandstrengths, is universal among Galactic globular clusters, it is not observed in Galactic open clusters. It is also unobserved among stars in the general halo field, an observation which places strong constraints on the process which produces the abundance bimodality. I find that the high-metallicity disk globular clusters NGC 6356 and NGC 6528 show clear CN bimodality, indicating that they are more similar to other (low-metallicity) globular clusters than to the old open clusters NGC 188, NGC 2158, and NGC 7789. The final chapter summarizes the questions addressed and the conclusions reached in the various projects described in this dissertation

  6. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  7. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    PubMed

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology. PMID:25740334

  8. Sex reduces genetic variation: a multidisciplinary review.

    PubMed

    Gorelick, Root; Heng, Henry H Q

    2011-04-01

    For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex.

  9. Genetic variation and its maintenance

    SciTech Connect

    Roberts, D.F.; De Stefano, G.F.

    1986-01-01

    This book contains several papers divided among three sections. The section titles are: Genetic Diversity--Its Dimensions; Genetic Diversity--Its Origin and Maintenance; and Genetic Diversity--Applications and Problems of Complex Characters.

  10. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales.

    PubMed

    Baker, C S; Perry, A; Bannister, J L; Weinrich, M T; Abernethy, R B; Calambokidis, J; Lien, J; Lambertsen, R H; Ramírez, J U; Vasquez, O

    1993-09-01

    Hunting during the last 200 years reduced many populations of mysticete whales to near extinction. To evaluate potential genetic bottlenecks in these exploited populations, we examined mitochondrial DNA control region sequences from 90 individual humpback whales (Megaptera novaeangliae) representing six subpopulations in three ocean basins. Comparisons of relative nucleotide and nucleotype diversity reveal an abundance of genetic variation in all but one of the oceanic subpopulations. Phylogenetic reconstruction of nucleotypes and analysis of maternal gene flow show that current genetic variation is not due to postexploitation migration between oceans but is a relic of past population variability. Calibration of the rate of control region evolution across three families of whales suggests that existing humpback whale lineages are of ancient origin. Preservation of preexploitation variation in humpback whales may be attributed to their long life-span and overlapping generations and to an effective, though perhaps not timely, international prohibition against hunting. PMID:8367488

  11. Helium abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Mccomas, D.J.; Goldstein, B.E.

    1995-06-01

    The abundance of helium in the solar wind averages approximately 4% but has been observed to vary by more than two orders of magnitude from 0.1 to 30%. Physical processes responsible for this variability are still not clearly understood. Previous work has shown a correlation between low He abundance and coronal streamer plasma and between high He abundance and coronal mass ejections (CMEs). The authors now have out-of-ecliptic data on helium in the solar wind from the plasma experiment aboard Ulysses. Tentative results show that the average high-latitude helium concentration is comparable to the in-ecliptic value for the present phase of the solar cycle, that excursions of the hour-averaged abundance very seldom fall outside the range 2.5 to 6.5%, and that there seems to be very little abundance enhancement associated with CMEs encountered at latitudes greater than 30 deg as opposed to the situation commonly encountered with in-ecliptic CMEs. In addition, preliminary observations of a single CME by both ISEE (in-ecliptic) and Ulysses (out-of-ecliptic) show a considerable He enhancement at ISEE with little or no perturbation of the average value at Ulysses` location. This paper will first present new results from the Ulysses mission up to the time of the meeting on the average abundance of helium in the solar wind as a function of spacecraft position, and will then focus on the out-of-ecliptic results including latitudinal abundance variations and observations of abundance enhancements (or lack thereof) in high-latitude CMEs.

  12. Generating potassium abundance variations in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    An intriguing aspect of chondritic meteorites is that they are complementary: while their separate components have wildly varying abundances, bulk chondrites have nearly solar composition. This implies that the nearly solar reservoirs in which chondrites were born were in turn assembled from sub-reservoirs of differing compositions that birthed the different components. We focus on explaining the potassium abundance variations between chondrules even within a single chondrite, while maintaining the observed CI 41K to 39K ratios. This requires physically separating potassium and chondrules while the temperature is high enough for K to be in the gas phase. We examine several mechanisms which could drive the dust through gas and show that to do so locally would have required long (sub-orbital to many orbits) time scales; with shortest potassium depletion time-scales occurring in a scenario where chondrules formed high above the mid-plane and settled out of the evaporated potassium. While orbital time-scales are at odds with laboratory chondrule cooling rate estimates, any other model for the origin for the potassium abundance variation has to wrestle with the severe logistical difficulty of generating a plethora of correlated reservoirs which varied strongly in their potassium abundances, but not in their potassium isotope ratios.

  13. Genetic variation in natural honeybee populations, Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  14. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  15. Genetic Variations in Vesicoureteral Reflux Sequelae

    PubMed Central

    Hains, David S.; Schwaderer, Andrew L.

    2016-01-01

    Urinary tract infections (UTI) are a common condition in children. Vesicoureteral reflux (VUR) represents a common associated condition with childhood UTI. UTI susceptibility appears to have a genetic component based on family and UTI cohort studies. Targeted analysis of innate immune system genetic variations indicate that these variations are important in UTI susceptibility. In this overview, we discuss how current cohorts and genetic strategies can be implemented to discover new susceptibility loci in patients with UTI. PMID:26848692

  16. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    PubMed

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  17. Light-element abundance variations in globular clusters

    NASA Astrophysics Data System (ADS)

    Martell, S. L.

    2011-06-01

    Star-to-star variations in abundances of the light elements carbon, nitrogen, oxygen, and sodium have been observed in stars of all evolutionary phases in all Galactic globular clusters that have been thoroughly studied. The data available for studying this phenomenon, and the hypotheses as to its origin, have both co-evolved with observing technology; once high-resolution spectra were available even for main-sequence stars in globular clusters, scenarios involving multiple closely spaced stellar generations enriched by feedback from moderate- and high-mass stars began to gain traction in the literature. This paper briefly reviews the observational history of globular cluster abundance inhomogeneities, discusses the presently favored models of their origin, and considers several aspects of this problem that require further study. Highlight talk Astronomische Gesellschaft 2010

  18. Stochastic variation of transcript abundance in C57BL/6J mice

    PubMed Central

    2011-01-01

    Background Transcripts can exhibit significant variation in tissue samples from inbred laboratory mice. We have designed and carried out a microarray experiment to examine transcript variation across samples from adipose, heart, kidney, and liver tissues of C57BL/6J mice and to partition variation into within-mouse and between-mouse components. Within-mouse variance captures variation due to heterogeneity of gene expression within tissues, RNA-extraction, and array processing. Between-mouse variance reflects differences in transcript abundance between genetically identical mice. Results The nature and extent of transcript variation differs across tissues. Adipose has the largest total variance and the largest within-mouse variance. Liver has the smallest total variance, but it has the most between-mouse variance. Genes with high variability can be classified into groups with correlated patterns of expression that are enriched for specific biological functions. Variation between mice is associated with circadian rhythm, growth hormone signaling, immune response, androgen regulation, lipid metabolism, and the extracellular matrix. Genes showing correlated patterns of within-mouse variation are also associated with biological functions that largely reflect heterogeneity of cell types within tissues. Conclusions Genetically identical mice can experience different individual outcomes for medically important traits. Variation in gene expression observed between genetically identical mice can identify functional classes of genes that are likely to vary in the absence of experimental perturbations, can inform experimental design decisions, and provides a baseline for the interpretation of gene expression data in interventional studies. The extent of transcript variation among genetically identical mice underscores the importance of stochastic and micro-environmental factors and their phenotypic consequences. PMID:21450099

  19. Extensive genetic variation in somatic human tissues.

    PubMed

    O'Huallachain, Maeve; Karczewski, Konrad J; Weissman, Sherman M; Urban, Alexander Eckehart; Snyder, Michael P

    2012-10-30

    Genetic variation between individuals has been extensively investigated, but differences between tissues within individuals are far less understood. It is commonly assumed that all healthy cells that arise from the same zygote possess the same genomic content, with a few known exceptions in the immune system and germ line. However, a growing body of evidence shows that genomic variation exists between differentiated tissues. We investigated the scope of somatic genomic variation between tissues within humans. Analysis of copy number variation by high-resolution array-comparative genomic hybridization in diverse tissues from six unrelated subjects reveals a significant number of intraindividual genomic changes between tissues. Many (79%) of these events affect genes. Our results have important consequences for understanding normal genetic and phenotypic variation within individuals, and they have significant implications for both the etiology of genetic diseases such as cancer and for immortalized cell lines that might be used in research and therapeutics.

  20. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Phillips, J.L.; McComas, D.J.; Feldman, W.C.; Goldstein, B.E.

    1995-09-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present an overview of the solar wind speed and the variability in helium abundance, [He] data on [He] in six high latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly. In contrast to the high [He] that is commonly associated with CMEs observed in the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad region of low [He] around the crossing time. We discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for the entire convective zone of the Sun.

  1. Networks of spatial genetic variation across species

    PubMed Central

    Fortuna, Miguel A.; Albaladejo, Rafael G.; Fernández, Laura; Aparicio, Abelardo; Bascompte, Jordi

    2009-01-01

    Spatial patterns of genetic variation provide information central to many ecological, evolutionary, and conservation questions. This spatial variability has traditionally been analyzed through summary statistics between pairs of populations, therefore missing the simultaneous influence of all populations. More recently, a network approach has been advocated to overcome these limitations. This network approach has been applied to a few cases limited to a single species at a time. The question remains whether similar patterns of spatial genetic variation and similar functional roles for specific patches are obtained for different species. Here we study the networks of genetic variation of four Mediterranean woody plant species inhabiting the same habitat patches in a highly fragmented forest mosaic in Southern Spain. Three of the four species show a similar pattern of genetic variation with well-defined modules or groups of patches holding genetically similar populations. These modules can be thought of as the long-sought-after, evolutionarily significant units or management units. The importance of each patch for the cohesion of the entire network, though, is quite different across species. This variation creates a tremendous challenge for the prioritization of patches to conserve the genetic variation of multispecies assemblages. PMID:19861546

  2. Light-element abundance variations in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  3. Geographic variation in cowbird distribution, abundance, and parasitism

    USGS Publications Warehouse

    Morrison, M.L.; Hahn, D.C.; George, T. Luke; Dobkin, David S.

    2002-01-01

    We evaluated geographical patterns in the abundance and distribution of Brown-headed Cowbirds (Molothrus ater), and in the frequency of cowbird parasitism, across North America in relation to habitat fragmentation. We found no distinctive parasitism patterns at the national or even regional scales, but the species is most abundant in the Great Plains, the heart of their original range, and least common in the southeastern U.S. This situation is dynamic, because both the Brown-headed and two other cowbird species are actively expanding their ranges in the southern U.S. We focused almost entirely in this paper on the Brown-headed Cowbird, because it is the only endemic North American cowbird, its distribution is much wider, and it has been much more intensively studied. We determined that landscape is the most meaningful unit of scale for comparing cowbird parasitism patterns as, for example, in comparisons of northeastern and central hardwood forests within agricultural matrices, and suburbanized areas versus western coniferous forests. We concluded that cowbird parasitism patterns were broadly similar within all landscapes. Even comparisons between prominently dissimilar landscapes, such as hardwoods in agriculture and suburbia versus coniferous forest, display a striking similarity in the responses of cowbirds. Our review clearly indicated that proximity of feeding areas is the key factor influencing presence and parasitism patterns within the landscape. We considered intensity of landscape fragmentation from forest-dominated landscapes altered in a forest management context to fragmentation characterized by mixed suburbanization or agricultural development. Our review consistently identified an inverse relationship between extent of forest cover across the landscape and cowbird presence. Invariably, the variation seen in parasitism frequencies within a region was at least partially explained as a response to changes in forest cover. The most salient geographic

  4. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.

    1996-07-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present here an overview of the solar wind speed and the variability in helium abundance, [He], for the entire mission to date, data on [He] in six high-latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high-latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high (average speed around 760 km/s) with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly around an average value of {approximately}4.3{percent}. In contrast to the high [He] that is often associated with CMEs observed near the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content from average values. Reasons for this difference between high and low latitude CME observations are not yet understood. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad ({plus_minus}3day) period of low [He] around the crossing time. We briefly discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for all regions of the sun lying above the helium ionization zone. {copyright} {ital 1996 American Institute of Physics.}

  5. Genetic variation in prehistoric Sardinia.

    PubMed

    Caramelli, David; Vernesi, Cristiano; Sanna, Simona; Sampietro, Lourdes; Lari, Martina; Castrì, Loredana; Vona, Giuseppe; Floris, Rosalba; Francalacci, Paolo; Tykot, Robert; Casoli, Antonella; Bertranpetit, Jaume; Lalueza-Fox, Carles; Bertorelle, Giorgio; Barbujani, Guido

    2007-11-01

    We sampled teeth from 53 ancient Sardinian (Nuragic) individuals who lived in the Late Bronze Age and Iron Age, between 3,430 and 2,700 years ago. After eliminating the samples that, in preliminary biochemical tests, did not show a high probability to yield reproducible results, we obtained 23 sequences of the mitochondrial DNA control region, which were associated to haplogroups by comparison with a dataset of modern sequences. The Nuragic samples show a remarkably low genetic diversity, comparable to that observed in ancient Iberians, but much lower than among the Etruscans. Most of these sequences have exact matches in two modern Sardinian populations, supporting a clear genealogical continuity from the Late Bronze Age up to current times. The Nuragic populations appear to be part of a large and geographically unstructured cluster of modern European populations, thus making it difficult to infer their evolutionary relationships. However, the low levels of genetic diversity, both within and among ancient samples, as opposed to the sharp differences among modern Sardinian samples, support the hypothesis of the expansion of a small group of maternally related individuals, and of comparatively recent differentiation of the Sardinian gene pools.

  6. Community Engagement about Genetic Variation Research

    PubMed Central

    Christensen, Kurt D.; Metosky, Susan; Rudofsky, Gayle; Deignan, Kathleen P.; Martinez, Hulda; Johnson-Moore, Penelope; Citrin, Toby

    2012-01-01

    Abstract The aim of this article is to describe the methods and effectiveness of the Public Engagement in Genetic Variation and Haplotype Mapping Issues (PEGV) Project, which engaged a community in policy discussion about genetic variation research. The project implemented a 6-stage community engagement model in New Rochelle, New York. First, researchers recruited community partners. Second, the project team created community oversight. Third, focus groups discussed concerns generated by genetic variation research. Fourth, community dialogue sessions addressed focus group findings and developed policy recommendations. Fifth, a conference was held to present these policy recommendations and to provide a forum for HapMap (haplotype mapping) researchers to dialogue directly with residents. Finally, findings were disseminated via presentations and papers to the participants and to the wider community beyond. The project generated a list of proposed guidelines for genetic variation research that addressed the concerns of New Rochelle residents. Project team members expressed satisfaction with the engagement model overall but expressed concerns about how well community groups were utilized and what segment of the community actually engaged in the project. The PEGV Project represents a model for researchers to engage the general public in policy development about genetic research. There are benefits of such a process beyond the desired genetic research. (Population Health Management 2012;15:78–89) PMID:21815821

  7. Local and latitudinal variation in abundance: the mechanisms shaping the distribution of an ecosystem engineer.

    PubMed

    Crutsinger, Gregory M; Gonzalez, Angélica L; Crawford, Kerri M; Sanders, Nathan J

    2013-01-01

    Ecological processes that determine the abundance of species within ecological communities vary across space and time. These scale-dependent processes are especially important when they affect key members of a community, such as ecosystem engineers that create shelter and food resources for other species. Yet, few studies have examined the suite of processes that shape the abundance of ecosystem engineers. Here, we evaluated the relative influence of temporal variation, local processes, and latitude on the abundance of an engineering insect-a rosette-galling midge, Rhopalomyia solidaginis (Diptera: Cecidomyiidae). Over a period of 3-5 years, we studied the density and size of galls across a suite of local experiments that manipulated genetic variation, soil nutrient availability, and the removal of other insects from the host plant, Solidago altissima (tall goldenrod). We also surveyed gall density within a single growing season across a 2,300 km latitudinal transect of goldenrod populations in the eastern United States. At the local scale, we found that host-plant genotypic variation was the best predictor of rosette gall density and size within a single year. We found that the removal of other insect herbivores resulted in an increase in gall density and size. The amendment of soil nutrients for four years had no effect on gall density, but galls were smaller in carbon-added plots compared to control and nitrogen additions. Finally, we observed that gall density varied several fold across years. At the biogeographic scale, we observed that the density of rosette gallers peaked at mid-latitudes. Using meta-analytic approaches, we found that the effect size of time, followed by host-plant genetic variation and latitude were the best predictors of gall density. Taken together, our study provides a unique comparison of multiple factors across different spatial and temporal scales that govern engineering insect herbivore density.

  8. Local and latitudinal variation in abundance: the mechanisms shaping the distribution of an ecosystem engineer

    PubMed Central

    Gonzalez, Angélica L.; Crawford, Kerri M.; Sanders, Nathan J.

    2013-01-01

    Ecological processes that determine the abundance of species within ecological communities vary across space and time. These scale-dependent processes are especially important when they affect key members of a community, such as ecosystem engineers that create shelter and food resources for other species. Yet, few studies have examined the suite of processes that shape the abundance of ecosystem engineers. Here, we evaluated the relative influence of temporal variation, local processes, and latitude on the abundance of an engineering insect—a rosette-galling midge, Rhopalomyia solidaginis (Diptera: Cecidomyiidae). Over a period of 3–5 years, we studied the density and size of galls across a suite of local experiments that manipulated genetic variation, soil nutrient availability, and the removal of other insects from the host plant, Solidago altissima (tall goldenrod). We also surveyed gall density within a single growing season across a 2,300 km latitudinal transect of goldenrod populations in the eastern United States. At the local scale, we found that host-plant genotypic variation was the best predictor of rosette gall density and size within a single year. We found that the removal of other insect herbivores resulted in an increase in gall density and size. The amendment of soil nutrients for four years had no effect on gall density, but galls were smaller in carbon-added plots compared to control and nitrogen additions. Finally, we observed that gall density varied several fold across years. At the biogeographic scale, we observed that the density of rosette gallers peaked at mid-latitudes. Using meta-analytic approaches, we found that the effect size of time, followed by host-plant genetic variation and latitude were the best predictors of gall density. Taken together, our study provides a unique comparison of multiple factors across different spatial and temporal scales that govern engineering insect herbivore density. PMID:23862102

  9. Local and latitudinal variation in abundance: the mechanisms shaping the distribution of an ecosystem engineer.

    PubMed

    Crutsinger, Gregory M; Gonzalez, Angélica L; Crawford, Kerri M; Sanders, Nathan J

    2013-01-01

    Ecological processes that determine the abundance of species within ecological communities vary across space and time. These scale-dependent processes are especially important when they affect key members of a community, such as ecosystem engineers that create shelter and food resources for other species. Yet, few studies have examined the suite of processes that shape the abundance of ecosystem engineers. Here, we evaluated the relative influence of temporal variation, local processes, and latitude on the abundance of an engineering insect-a rosette-galling midge, Rhopalomyia solidaginis (Diptera: Cecidomyiidae). Over a period of 3-5 years, we studied the density and size of galls across a suite of local experiments that manipulated genetic variation, soil nutrient availability, and the removal of other insects from the host plant, Solidago altissima (tall goldenrod). We also surveyed gall density within a single growing season across a 2,300 km latitudinal transect of goldenrod populations in the eastern United States. At the local scale, we found that host-plant genotypic variation was the best predictor of rosette gall density and size within a single year. We found that the removal of other insect herbivores resulted in an increase in gall density and size. The amendment of soil nutrients for four years had no effect on gall density, but galls were smaller in carbon-added plots compared to control and nitrogen additions. Finally, we observed that gall density varied several fold across years. At the biogeographic scale, we observed that the density of rosette gallers peaked at mid-latitudes. Using meta-analytic approaches, we found that the effect size of time, followed by host-plant genetic variation and latitude were the best predictors of gall density. Taken together, our study provides a unique comparison of multiple factors across different spatial and temporal scales that govern engineering insect herbivore density. PMID:23862102

  10. A global reference for human genetic variation.

    PubMed

    Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Garrison, Erik P; Kang, Hyun Min; Korbel, Jan O; Marchini, Jonathan L; McCarthy, Shane; McVean, Gil A; Abecasis, Gonçalo R

    2015-10-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  11. A global reference for human genetic variation.

    PubMed

    Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Garrison, Erik P; Kang, Hyun Min; Korbel, Jan O; Marchini, Jonathan L; McCarthy, Shane; McVean, Gil A; Abecasis, Gonçalo R

    2015-10-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

  12. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  13. The population genetics of structural variation

    PubMed Central

    Conrad, Donald F; Hurles, Matthew E

    2009-01-01

    Population genetics is central to our understanding of human variation, and by linking medical and evolutionary themes, it enables us to understand the origins and impacts of our genomic differences. Despite current limitations in our knowledge of the locations, sizes and mutational origins of structural variants, our characterization of their population genetics is developing apace, bringing new insights into recent human adaptation, genome biology and disease. We summarize recent dramatic advances, describe the diverse mutational origins of chromosomal rearrangements and argue that their complexity necessitates a re-evaluation of existing population genetic methods. PMID:17597779

  14. Genetic variation in cultivated Rheum tanguticum populations

    PubMed Central

    Hu, Yanping; Xie, Xiaolong; Wang, Li; Zhang, Huaigang; Yang, Jian; Li, Yi

    2014-01-01

    To examine whether cultivation reduced genetic variation in the important Chinese medicinal plant Rheum tanguticum, the levels and distribution of genetic variation were investigated using ISSR markers. Fifty-eight R. tanguticum individuals from five cultivated populations were studied. Thirteen primers were used and a total of 320 DNA bands were scored. High levels of genetic diversity were detected in cultivated R. tanguticum (PPB = 82.19, H = 0.2498, HB = 0.3231, I = 0.3812) and could be explained by the outcrossing system, as well as long-lived and human-mediated seed exchanges. Analysis of molecular variance (AMOVA) showed that more genetic variation was found within populations (76.1%) than among them (23.9%). This was supported by the coefficient of gene differentiation (Gst = 0.2742) and Bayesian analysis (θB = 0.1963). The Mantel test revealed no significant correlation between genetic and geographic distances among populations (r = 0.1176, p = 0.3686). UPGMA showed that the five cultivated populations were separated into three clusters, which was in good accordance with the results provided by the Bayesian software STRUCTURE (K = 3). A short domestication history and no artificial selection may be an effective way of maintaining and conserving the gene pools of wild R. tanguticum. PMID:25249777

  15. Abundance and genetic damage of barn swallows from Fukushima.

    PubMed

    Bonisoli-Alquati, A; Koyama, K; Tedeschi, D J; Kitamura, W; Sukuzi, H; Ostermiller, S; Arai, E; Møller, A P; Mousseau, T A

    2015-01-01

    A number of studies have assessed or modeled the distribution of the radionuclides released by the accident at the Fukushima-Daiichi Nuclear Power Plant (FDNPP). Few studies however have investigated its consequences for the local biota. We tested whether exposure of barn swallow (Hirundo rustica) nestlings to low dose ionizing radiation increased genetic damage to their peripheral erythrocytes. We estimated external radiation exposure by using thermoluminescent dosimeters, and by measuring radioactivity of the nest material. We then assessed DNA damage by means of the neutral comet assay. In addition, we conducted standard point-count censuses of barn swallows across environmental radiation levels, and estimated their abundance and local age ratio. Radioactivity of nest samples was in the range 479-143,349 Bq kg(-1), while external exposure varied between 0.15 and 4.9 mGy. Exposure to radioactive contamination did not correlate with higher genetic damage in nestlings. However, at higher levels of radioactive contamination the number of barn swallows declined and the fraction of juveniles decreased, indicating lower survival and lower reproduction and/or fledging rate. Thus, genetic damage to nestlings does not explain the decline of barn swallows in contaminated areas, and a proximate mechanism for the demographic effects documented here remains to be clarified. PMID:25838205

  16. Relating Human Genetic Variation to Variation in Drug Responses

    PubMed Central

    Madian, Ashraf G.; Wheeler, Heather E.; Jones, Richard Baker; Dolan, M. Eileen

    2012-01-01

    Although sequencing a single human genome was a monumental effort a decade ago, more than one thousand genomes have now been sequenced. The task ahead lies in transforming this information into personalized treatment strategies that are tailored to the unique genetics of each individual. One important aspect of personalized medicine is patient-to-patient variation in drug response. Pharmacogenomics addresses this issue by seeking to identify genetic contributors to human variation in drug efficacy and toxicity. Here, we present a summary of the current status of this field, which has evolved from studies of single candidate genes to comprehensive genome-wide analyses. Additionally, we discuss the major challenges in translating this knowledge into a systems-level understanding of drug physiology with the ultimate goal of developing more effective personalized clinical treatment strategies. PMID:22840197

  17. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  18. Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    PubMed

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-11-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.

  19. Assessing the robustness of networks of spatial genetic variation.

    PubMed

    Albert, Eva M; Fortuna, Miguel A; Godoy, José A; Bascompte, Jordi

    2013-05-01

    Habitat transformation is one of the leading drivers of biodiversity loss. The ecological effects of this transformation have mainly been addressed at the demographic level, for example, finding extinction thresholds. However, interpopulation genetic variability and the subsequent potential for adaptation can be eroded before effects are noticed on species abundances. To what degree this is the case has been difficult to evaluate, partly because of the lack of both spatially extended genetic data and an appropriate framework to map and analyse such data. Here, we extend recent work on the analysis of networks of spatial genetic variation to address the robustness of these networks in the face of perturbations. We illustrate the potential of this framework using the case study of an amphibian metapopulation. Our results show that while the disappearance of some spatial sites barely changes the modular structure of the genetic network, other sites have a much stronger effect. Interestingly, these consequences can not be anticipated using topological, static measures. Mapping these networks of spatial genetic variation will allow identifying significant evolutionary units and how they vanish, merge and reorganise following perturbations.

  20. Genetic Variation Associated with Hypersensitivity to Mercury

    PubMed Central

    Austin, David William; Spolding, Briana; Gondalia, Shakuntla; Shandley, Kerrie; Palombo, Enzo A.; Knowles, Simon; Walder, Ken

    2014-01-01

    Objectives: Very little is known about mechanisms of idiosyncratic sensitivity to the damaging effects of mercury (Hg); however, there is likely a genetic component. The aim of the present study was to search for genetic variation in genes thought to be involved in Hg metabolism and transport in a group of individuals identified as having elevated Hg sensitivity compared to a normal control group. Materials and Methods: Survivors of pink disease (PD; infantile acrodynia) are a population of clinically identifiable individuals who are Hg sensitive. In the present study, single nucleotide polymorphisms in genes thought to be involved in Hg transport and metabolism were compared across two groups: (i) PD survivors (n = 25); and (ii) age- and sex-matched healthy controls (n = 25). Results: Analyses revealed significant differences between groups in genotype frequencies for rs662 in the gene encoding paraoxanase 1 (PON1) and rs1801131 in the gene encoding methylenetetrahydrofolate reductase (MTHFR). Conclusions: We have identified two genetic polymorphisms associated with increased sensitivity to Hg. Genetic variation in MTHFR and PON1 significantly differentiated a group formerly diagnosed with PD (a condition of Hg hypersensitivity) with age- and gender-matched healthy controls. PMID:25948960

  1. Elemental abundances variations in plume and interplume regions

    NASA Astrophysics Data System (ADS)

    Guennou, Chloé; Savin, Daniel; Hahn, Michael

    2016-07-01

    Plumes are relatively bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Extensive coronal measurements show abundances anomalies in the solar corona, in which elements with a low first ionization potential (FIP) < 10 eV are enhanced relative to the high FIP elements. Remote sensing spectroscopic measurements show that interplume regions have a photospheric composition. In contrast, the elemental composition of plume material is still unclear, previous spectroscopic measurements have reached contradictory results as to whether the elemental abundances in plumes are the same as or different from interplume regions. In this work, we measured the FIP bias, i.e. the ratio of coronal to photospheric abundances, in both interplumes and plumes using Hinode/Extreme Ultraviolet Imaging Spectrometer (EIS) data. Using spectral line intensities and Differential Emission Measure analysis, we assess the chemical composition of plumes and interplumes over an ~24 hour period in March, 2007. We find that some plumes do show different elemental abundances relative to interplumes. Moreover, the abundance anomaly in plumes is time dependent. If previous studies observed plumes at different stages in their evolution, this time dependence may explain the lack of consistency among previous results. Our work on plume and interplume elemental composition may also enable in situ measurements to answer the longstanding question of whether plumes contribute to the fast solar wind, which originates from coronal holes.

  2. Cryptic genetic variation and paraphyly in ravens.

    PubMed Central

    Omland, K E; Tarr, C L; Boarma, W I; Marzluff, J M; Fleischer, R C

    2000-01-01

    Widespread species that are morphologically uniform may be likely to harbour cryptic genetic variation. Common ravens (Corvus corax) have an extensive range covering nearly the entire Northern Hemisphere, but show little discrete phenotypic variation. We obtained tissue samples from throughout much of this range and collected mitochondrial sequence and nuclear microsatellite data. Our study revealed a deep genetic break between ravens from the western United States and ravens from throughout the rest of the world. These two groups, the 'California clade' and the 'Holarctic clade' are well supported and over 4% divergent in mitochondrial coding sequence. Microsatellites also reveal significant differentiation between these two groups. Ravens from Minnesota, Maine and Alaska are more similar to ravens from Asia and Europe than they are to ravens from California. The two clades come in contact over a huge area of the western United States, with mixtures of the two mitochondrial groups present in Washington, Idaho and California. In addition, the restricted range Chihuahuan raven (Corvus cryptoleucus) of the south-west United States and Mexico is genetically nested within the paraphyletic common raven. Our findings suggest that the common raven may have formerly consisted of two allopatric groups that may be in the process of remerging. PMID:11197122

  3. Genetic variation in healthy oldest-old.

    PubMed

    Halaschek-Wiener, Julius; Amirabbasi-Beik, Mahsa; Monfared, Nasim; Pieczyk, Markus; Sailer, Christian; Kollar, Anita; Thomas, Ruth; Agalaridis, Georgios; Yamada, So; Oliveira, Lisa; Collins, Jennifer A; Meneilly, Graydon; Marra, Marco A; Madden, Kenneth M; Le, Nhu D; Connors, Joseph M; Brooks-Wilson, Angela R

    2009-01-01

    Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old'), to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3), metabolism (IGF1R, APOB, SCD), autophagy (BECN1, FRAP1), stem cell activation (NOTCH1, DLL1), tumor suppression (TP53, CDKN2A, ING1), DNA methylation (TRDMT1, DNMT3A, DNMT3B) Progeria syndromes (LMNA, ZMPSTE24, KL) and stress response (CRYAB, HSPB2). We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs) and 87 insertion or deletions; 41% (385) were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs. PMID:19680556

  4. Cryptic genetic variation, evolution's hidden substrate

    PubMed Central

    Paaby, Annalise B.; Rockman, Matthew V.

    2016-01-01

    Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309

  5. Statistics of selectively neutral genetic variation

    NASA Astrophysics Data System (ADS)

    Eriksson, A.; Haubold, B.; Mehlig, B.

    2002-04-01

    Random models of evolution are instrumental in extracting rates of microscopic evolutionary mechanisms from empirical observations on genetic variation in genome sequences. In this context it is necessary to know the statistical properties of empirical observables (such as the local homozygosity, for instance). Previous work relies on numerical results or assumes Gaussian approximations for the corresponding distributions. In this paper we give an analytical derivation of the statistical properties of the local homozygosity and other empirical observables assuming selective neutrality. We find that such distributions can be very non-Gaussian.

  6. Ancient genetic variation in one of the world's rarest seabirds.

    PubMed

    Lawrence, H A; Scofield, R P; Crockett, D E; Millar, C D; Lambert, D M

    2008-12-01

    The Chatham Island Taiko (Tchaik, Pterodroma magentae) is one of the world's rarest seabirds. In the past there were millions of breeding pairs of Taiko and it was the most abundant burrowing petrel on Chatham Island. The present population consists of just 120-150 birds, including only 8-15 breeding pairs. Surprisingly high genetic variation was revealed by DNA sequencing of almost every known adult Taiko (N=90). Given the massive population decline, genetic variation may have been even larger in the past. Therefore, we investigated past genetic diversity by sequencing regions of the mitochondrial cytochrome b gene in 44 ancient Taiko bones. We identified a total of 12 haplotypes in Taiko. Eight haplotypes were revealed in the ancient DNA: four were unique to the bones and four corresponded to those found in the modern Taiko population. Surprisingly, despite the critically endangered status of the Taiko, no significant reduction in mitochondrial DNA haplotype diversity was observed between ancient samples (N=44) and modern adult Taiko (N=90). The modern population may have however lost four haplotypes present in the ancient populations. PMID:19018271

  7. Genetic variability of respiratory complex abundance, organization, and activity in mouse brain

    PubMed Central

    Buck, Kari J.; Walter, Nicole A.R.; Denmark, Deaunne L.

    2013-01-01

    Mitochondrial dysfunction is implicated in the etiology and pathogenesis of numerous human disorders involving tissues with high energy demand. Murine models are widely used to elucidate genetic determinants of phenotypes relevant to human disease, with recent studies of C57BL/6J (B6), DBA/2J (D2) and B6xD2 populations implicating naturally occurring genetic variation in mitochondrial function/dysfunction. Using blue native polyacrylamide gel electrophoresis, immunoblots, and in-gel activity analyses of complexes I, II, IV and V, our studies are the first to assess abundance, organization, and catalytic activity of mitochondrial respiratory complexes and supercomplexes in mouse brain. Remarkable strain differences in supercomplex assembly and associated activity are evident, without differences in individual complexes I, II, III, or IV. Supercomplexes I1III2IV2-3 exhibit robust complex III immunoreactivity and complex I and IV activities in D2, but with little detected in B6 for I1III2IV2, and I1III2IV3 is not detected in B6. I1III2IV1 and I1III2 are abundant and catalytically active in both strains, but significantly more so in B6. Furthermore, while supercomplex III2IV1 is abundant in D2, none is detected in B6. In aggregate, these results indicate a shift toward more highly assembled supercomplexes in D2. Respiratory supercomplexes are thought to increase electron flow efficiency and individual complex stability, and to reduce electron leak and generation of reactive oxygen species. Our results provide a framework to begin assessing the role of respiratory complex suprastructure in genetic vulnerability and treatment for a wide variety of mitochondrial-related disorders. PMID:24164700

  8. Influence of dietary specialization and resource availability on geographical variation in abundance of butterflyfish

    PubMed Central

    Lawton, Rebecca J; Pratchett, Morgan S

    2012-01-01

    Empirical evidence indicates that both niche breadth and resource availability are key drivers of a species’ local abundance patterns. However, most studies have considered the influence of either niche breath or resource availability in isolation, while it is the interactive effects that are likely to influence local abundance. We examined geographic variation in the feeding ecology and distribution of coral-feeding butterflyfish to determine the influence of dietary specialization and dietary resource availability on their local abundance. Dietary composition and abundance of five butterflyfish and coral dietary resource availability were determined at 45 sites across five locations (Lizard Island and Heron Island, Great Barrier Reef; Kimbe Bay, Papua New Guinea; Noumea, New Caledonia; and Moorea, French Polynesia). Multiple regression models using variables representative of total dietary resource availability, availability of specific dietary resources, and interspecific competition were used to determine the best predictors of local abundance across all sites and locations for each species. Factors influencing local abundance varied between butterflyfish with specialized and generalized diets. Dietary resource availability had the strongest influence on the abundance of Chaetodon trifascialis—the most specialized species. Local abundance of C. trifascialis was best predicted by availability of the Acropora corals that it preferentially feeds on. In contrast, abundance of generalist butterflyfish was poorly described by variation in availability of specific resources. Rather, indices of total dietary resource availability best predicted their abundance. Overall, multiple regression models only explained a small proportion of the variation in local abundance for all five species. Despite their relatively specialized diets, dietary resource availability has limited influence on the local abundance of butterflyfish. Only the most specialized species appear to

  9. Intraspecific genetic variation and competition interact to influence niche expansion

    PubMed Central

    Agashe, Deepa; Bolnick, Daniel I.

    2010-01-01

    Theory and empirical evidence show that intraspecific competition can drive selection favouring the use of novel resources (i.e. niche expansion). The evolutionary response to such selection depends on genetic variation for resource use. However, while genetic variation might facilitate niche expansion, genetically diverse groups may also experience weaker competition, reducing density-dependent selection on resource use. Therefore, genetic variation for fitness on different resources could directly facilitate, or indirectly retard, niche expansion. To test these alternatives, we factorially manipulated both the degree of genetic variation and population density in flour beetles (Tribolium castaneum) exposed to both novel and familiar food resources. Using stable carbon isotope analysis, we measured temporal change and individual variation in beetle diet across eight generations. Intraspecific competition and genetic variation acted on different components of niche evolution: competition facilitated niche expansion, while genetic variation increased individual variation in niche use. In addition, genetic variation and competition together facilitated niche expansion, but all these impacts were temporally variable. Thus, we show that the interaction between genetic variation and competition can also determine niche evolution at different time scales. PMID:20462902

  10. Genetic diversity is positively associated with fine-scale momentary abundance of an invasive ant

    PubMed Central

    Gruber, Monica A M; Hoffmann, Benjamin D; Ritchie, Peter A; Lester, Philip J

    2012-01-01

    Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co-operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions. PMID:23139870

  11. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  12. Multi-trophic consequences of plant genetic variation in sex and growth.

    PubMed

    Abdala-Roberts, Luis; Pratt, Jessica D; Pratt, Riley; Schreck, Tadj K; Hanna, Victoria; Mooney, Kailen A

    2016-03-01

    There is growing evidence for the influence of plant intraspecific variation on associated multi-trophic communities, but the traits driving such effects are largely unknown. We conducted a field experiment with selected genetic lines of the dioecious shrub Baceharis salicifolia to investigate the effects of plant growth rate (two-fold variation) and gender (males vs. females of the same growth rate) on above- and belowground insect and fungal associates. We documented variation in associate density to test for effects occurring through plant-based habitat quality (controlling for effects of plant size) as well as variation in associate abundance to test for effects occurring through both habitat quality and abundance (including effects of plant size). Whereas the dietary specialist aphid Uroleucon macaolai was unaffected by plant sex and growth rate, the generalist aphid Aphis gossypii and its tending ants (Linepithema humile) had higher abundances and densities on male (vs. female) plants, suggesting males provide greater habitat quality. In contrast, Aphis and ant abundance and density were unaffected by plant growth rate, while Aphis parasitoids were unaffected by either plant sex or growth rate. Arbuscular mycorrhizal fungi had higher abundance and density (both marginally significant) on females (vs. males), suggesting females provide greater habitat quality, but lower abundances (marginally significant) and higher densities on slow- (vs. fast-) growing genotypes, suggesting slow-growing genotypes provided lower resource abundance but greater habitat quality. Overall, plant sex and growth rate effects on associates acted independently (i.e., no interactive effects), and these effects were of a greater magnitude than those coming from other axes of plant genetic variation. These findings thus demonstrate that plant genetic effects on associated communities may be driven by a small number of trait-specific mechanisms. PMID:27197400

  13. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    SciTech Connect

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  14. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  15. Genetic variation amongst biotypes of Dactylopius tomentosus.

    PubMed

    Mathenge, Catherine W; Riegler, Markus; Beattie, G Andrew C; Spooner-Hart, Robert N; Holford, Paul

    2015-03-01

    The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host-affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host-use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well-resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α-Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect-specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host-specific biotypes of the scale. PMID:24619863

  16. Human genetic variation database, a reference database of genetic variations in the Japanese population

    PubMed Central

    Higasa, Koichiro; Miyake, Noriko; Yoshimura, Jun; Okamura, Kohji; Niihori, Tetsuya; Saitsu, Hirotomo; Doi, Koichiro; Shimizu, Masakazu; Nakabayashi, Kazuhiko; Aoki, Yoko; Tsurusaki, Yoshinori; Morishita, Shinichi; Kawaguchi, Takahisa; Migita, Osuke; Nakayama, Keiko; Nakashima, Mitsuko; Mitsui, Jun; Narahara, Maiko; Hayashi, Keiko; Funayama, Ryo; Yamaguchi, Daisuke; Ishiura, Hiroyuki; Ko, Wen-Ya; Hata, Kenichiro; Nagashima, Takeshi; Yamada, Ryo; Matsubara, Yoichi; Umezawa, Akihiro; Tsuji, Shoji; Matsumoto, Naomichi; Matsuda, Fumihiko

    2016-01-01

    Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/. PMID:26911352

  17. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1990-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu, Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population of null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The role of SOD levels in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. During the first seven months of funding we have completed a number of experiments and are proceeding with many others. We have made progress along all the research lines anticipated for the first year of this grant, as summarized in the following pages.

  18. Genetic variation and geographic distribution of megalocytiviruses.

    PubMed

    Song, Jun-Young; Kitamura, Shin-Ichi; Jung, Sung-Ju; Miyadai, Toshiaki; Tanaka, Shinji; Fukuda, Yutaka; Kim, Seok-Ryel; Oh, Myung-Joo

    2008-02-01

    Viruses belonging to the genus Megalocytivirus in the family Iridoviridae have caused mass mortalities in marine and freshwater fish in Asian countries. In this study, partial major capsid protein (MCP) gene of seven Japanese and six Korean megalocytiviruses was sequenced and compared with the known megalocytiviruses to evaluate genetic variation and geographic distribution of the viruses. Comparison of MCP gene nucleotide sequences revealed sequence identity of 92.8% or greater among these 48 isolates. A phylogenetic tree clearly revealed three clusters: genotype I including nine Japanese isolates, thirteen Korean isolates, one Chinese isolates, one Thailand isolate and one South China Sea isolate; genotype II including five freshwater fish isolates in Southeast Asian countries and Australia; and the remaining genotype III mainly consisted of flatfish isolate in Korea and China. This suggests that viruses belonging to the genotype I widely distribute among various fish species in many Asian countries. Conversely, the epidemic viruses belonged to genotype II and III are may be still locally spreading and constrained in their prevalence to the limited host fish species, i.e., genotype II viruses mainly distribute in Southeast Asian countries, whereas genotype III viruses distribute in flatfish species in Korea and China.

  19. Spatial Variations of Chemical Abundances in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor; Chanover, Nancy J.; Molter, Edward; Serigano, Joseph; Cordiner, Martin; Charnley, Steven B.; Teanby, Nicholas A.; Irwin, Patrick

    2016-10-01

    Complex organic molecules in Titan's atmosphere - formed through the dissociation of N2 and CH4 - exhibit latitudinal variations in abundance as observed by Cassini. Chemical species including hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - may show spatial abundance variations as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes of ~0.3'' allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk. We present abundance profiles obtained from public ALMA data taken in 2014, as Titan transitioned into northern summer. Abundance profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. These retrievals were performed using spatial temperature profiles obtained by modeling strong CO lines from datasets taken in similar times with comparable resolution. We compare the abundance variations of chemical species to measurements made using Cassini data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  20. Ploidy Variation and Genetic Diversity in Dichroa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent evidence suggests a close genetic relationship between Hydrangea macrophylla and D. febrifuga, which supports previous morphological and DNA sequence data. This relationship was confirmed by the production of fertile intergeneric hybrids. Here we characterize the genetic diversity of availab...

  1. Microsatellite analysis of genetic variation in black bear populations.

    PubMed

    Paetkau, D; Strobeck, C

    1994-10-01

    Measuring levels of genetic variation is an important aspect of conservation genetics. The informativeness of such measurements is related to the variability of the genetic markers used; a particular concern in species, such as bears, which are characterized by low levels of genetic variation resulting from low population densities and small effective population sizes. We describe the development of microsatellite analysis in bears and its use in assessing interpopulation differences in genetic variation in black bears from three Canadian National Parks. These markers are highly variable and allowed identification of dramatic differences in both distribution and amount of variation between populations. Low levels of variation were observed in a population from the Island of Newfoundland. The significance of interpopulation differences in variability was tested using a likelihood ratio test of estimates of theta = 4Ne mu.

  2. Poster 12: Nitrile and Hydrocarbon Spatial Abundance Variations in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor A.; Molter, Edward; Serigano, Joseph; Cordiner, Martin A.; Charnley, Steven B.; Teanby, Nick; Chanover, Nancy

    2016-06-01

    Many minor constituents of Titan's atmosphere exhibit latitudinal variations in abundance as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle [1,2]. Species with observed spatial abundance variations include hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - as found by Cassini [3,4]. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk [5]. Abundance profiles in Titan's lower/middle atmosphere are retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code [6]. We present continuous abundance profiles for various species in Titan's atmosphere obtained from ALMA data in 2014. These species show polar abundance enhancements which can be compared to studies using Cassini data [7]. Measurements in the mesosphere will constrain molecular photochemical and dynamical models, while temporal variations inform our knowledge of chemical lifetimes for the large inventory of organic species produced in Titan's atmosphere. The synthesis of the ALMA and Cassini datasets thus allow us to observe the important changes in production and circulation of numerous trace components of Titan's atmosphere, which are attributed to Titan's seasons.

  3. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, we investigated the distribution of the low abundant proteins that are involved in soybean seed development in four wild and twelve cultivated soybean genotypes. We found proteomic variation of these proteins within and...

  4. Discovery of secular variations in the atmospheric abundances of magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Bailey, J. D.; Landstreet, J. D.; Bagnulo, S.

    2014-01-01

    Context. The stars of the middle main sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres. The presence of chemical peculiarities reveal the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. At present, little is known about the time evolution of these anomalous abundances, nor about the role that diffusion may play in maintaining them, during the main sequence lifetime of such a star. Aims: We want to establish whether abundance peculiarities change as stars evolve on the main sequence, and provide observational constraints to diffusion theory. Methods: We have performed spectral analysis of 15 magnetic Bp stars that are members of open clusters (and thus have well-known ages), with masses between about 3 and 4 M⊙. For each star, we measured the abundances of He, O, Mg, Si, Ti, Cr, Fe, Pr and Nd. Results: We have discovered the systematic time evolution of trace elements through the main-sequence lifetime of magnetic chemically peculiar stars as their atmospheres cool and evolve towards lower gravity. During the main sequence lifetime, we observe clear and systematic variations in the atmospheric abundances of He, Ti, Cr, Fe, Pr and Nd. For all these elements, except He, the atmospheric abundances decrease with age. The abundances of Fe-peak elements converge towards solar values, while the rare-earth elements converge towards values at least 100 times more abundant than in the Sun. Helium is always underabundant compared to the Sun, evolving from about 1% up to 10% of the solar He abundance. We have attempted to interpret the observed abundance variations in the context of radiatively driven diffusion theory, which appears to provide a framework to understand some, but not all, of the anomalous abundance levels and variations that we observe. Based in part

  5. Symmetric and asymmetric planetary nebulae and the time variation of the radial abundance gradients

    NASA Astrophysics Data System (ADS)

    Maciel, W.; Costa, R. D. D.

    2014-04-01

    Planetary nebulae (PN) are excellent laboratories to study the chemical evolution of their host galaxies, especially concerning the radial abundance gradients and their time and spatial variations. Current chemical evolution models predict either some steepening or flattening of the abundance gradients with time, and PN can be useful in order to provide observational constraints on this issue. It is generally believed that asymmetrical nebulae, especially bipolars, are formed by younger, more massive progenitor stars, while symmetrical nebulae, such as the round and elliptical objects, are formed by older, less massive stars. As a consequence, if the abundance gradients change with time, some differences are expected between the gradients measured in symmetrical and asymmetrical nebulae. We have considered a large sample of well-studied galactic PN for which accurate abundances of O, S, Ne, and Ar are known, and for which a reliable morphological classification can be made. Average abundances and radial gradients of the ratios O/H, S/H, Ne/H and Ar/H were then determined for the main morphological classes, comprising B, E, R, and P nebulae. It is found that the average abundances of the younger objects are larger than those of the older nebulae, as expected on chemical evolution grounds, but the derived gradients are essentially the same within the uncertainties. It can then be concluded that the radial abundance gradients have not changed appreciably since the older progenitor stars were born, approximately 4 to 5 Gyr ago.

  6. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  7. The genetics of canine skull shape variation.

    PubMed

    Schoenebeck, Jeffrey J; Ostrander, Elaine A

    2013-02-01

    A dog's craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds.

  8. Propagation of genetic variation in gene regulatory networks

    PubMed Central

    Plahte, Erik; Gjuvsland, Arne B.; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network’s feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation. PMID:23997378

  9. Propagation of genetic variation in gene regulatory networks.

    PubMed

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  10. Adaptive genetic variation and heart disease risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Obesity, dyslipidemia and cardiovascular disease are complex and determined by both genetic and environmental factors and their interrelationships. Many associations from genome-wide association studies (GWAS) and candidate gene approaches have described a multitude of polymorphis...

  11. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts

    USGS Publications Warehouse

    Dorazio, Robert M.; Martin, Juulien; Edwards, Holly H.

    2013-01-01

    The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.

  12. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts.

    PubMed

    Dorazio, Robert M; Martin, Julien; Edwards, Holly H

    2013-07-01

    The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability. PMID:23951707

  13. Spatial variation in parasite abundance: evidence of geographical population structuring in southern garfish Hyporhamphus melanochir.

    PubMed

    Hutson, K S; Brock, E L; Steer, M A

    2011-01-01

    Southern garfish Hyporhamphus melanochir were examined for metazoan parasites from nine sites in three regions (Spencer Gulf, Gulf St Vincent and northern Kangaroo Island) in South Australia to document parasite assemblages, identify candidate species suitable for use as biological tags and investigate spatial variation in parasite abundance. Four ectoparasite and 10 endoparasite species were identified representing Cestoda, Trematoda, Monogenea, Nematoda, Acanthocephala, Copepoda and Isopoda. Lernaeenicus hemirhamphi, Micracanthorhynchina hemirhamphi, Mothocya halei and Philometra sp. were suggested for 'permanent' biological markers. Multivariate discriminant function analysis showed that most sites could be distinguished based on differences in parasite abundance. Four endoparasites (Conohelmins sp., Hysterothylacium sp., M. hemirhamphi and Philometra sp.) were most important for site characterization. Limited spatial variation in permanent endoparasite abundance among localities in northern Spencer Gulf provided evidence for a distinct northern Spencer Gulf population with little interregional mixing. In contrast, considerable spatial variation in permanent endoparasite abundance between localities sampled off Kangaroo Island implied limited local movement and suggested H. melanochir may comprise a metapopulation structure. These results largely align with recent evidence from otolith chemistry that indicates fine-scale geographical population structuring in South Australian waters. PMID:21235553

  14. Variation in Plant Traits Explains Global Biogeographic Variation in the Abundance of Major Forest Functional Types

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Contrasting leaf types (needle vs. broadleaf) with different lifespans (annual vs. perennial) represent different adaptive strategies of plants under different environmental conditions. Previous studies explained adaptive advantages of different strategies using empirical models but cannot adequately explain the co-dominance of multiple plant functional types (PFTs) as observed in many parts of the world. Here we used a process-based model to explore whether observed inter- and intra-PFT variation in key plant traits can explain global biogeographic variation in co-dominance of major forest functional types. Using a parameter screening method, we identified the four most important plant traits for simulating annual net primary production (NPP) using the Australian Community Atmosphere-Biosphere-Land Exchange model (CABLE). Using ensemble CABLE simulations, we estimated the fraction of global land cover attributed to each PFT by comparing the simulated NPP for all three PFTs at each land point, globally. Our results were consistent with land area cover fractions of major forest types estimated from remote sensing data products; i.e., evergreen needle-leaf forests dominate in boreal regions, evergreen broadleaf forests dominate in tropical regions, and deciduous broadleaf forests are distributed widely across a broad range of environmental conditions. More importantly our approach successfully explained a paradox that has puzzled ecologists for over a century: why evergreen leaf types dominate in both boreal and tropical regions. We conclude that variation in and co-variation between key plant traits can explain significant fractions of global biogeographic variation of three major forest types, and should be taken into account when simulating global vegetation dynamics.

  15. Molecular Darwinism: the contingency of spontaneous genetic variation.

    PubMed

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  16. Temporal variation in bird and resource abundance across an elevational gradient in Hawaii

    USGS Publications Warehouse

    Hart, Patrick J.; Woodworth, Bethany L.; Camp, Richard J.; Turner, Kathryn; McClure, Katherine; Goodall, Katherine; Henneman, Carlene; Spiegel, Caleb; Lebrun, Jaymi; Tweed, Erik; Samuel, Michael

    2011-01-01

    We documented patterns of nectar availability and nectarivorous bird abundance over ~3 years at nine study sites across an 1,800-m elevational gradient on Hawaii Island to investigate the relationship between resource variation and bird abundance. Flower density (flowers ha-1) and nectar energy content were measured across the gradient for the monodominant 'Ōhi'a (Metrosideros polymorpha). Four nectarivorous bird species were captured monthly in mist nets and surveyed quarterly with point-transect distance sampling at each site to examine patterns of density and relative abundance. Flowering peaks were associated with season but not rainfall or elevation. Bird densities peaked in the winter and spring of each year at high elevations, but patterns were less clear at middle and low elevations. Variability in bird abundance was generally best modeled as a function of elevation, season, and flower density, but the strength of the latter effect varied with species. The low elevations had the greatest density of flowers but contained far fewer individuals of the two most strongly nectarivorous species. There is little evidence of large-scale altitudinal movement of birds in response to 'Ōhi'a flowering peaks. The loose relationship between nectar and bird abundance may be explained by a number of potential mechanisms, including (1) demographic constraints to movement; (2) nonlimiting nectar resources; and (3) the presence of an "ecological trap," whereby birds are attracted by the high resource abundance of, but suffer increased mortality at, middle and low elevations as a result of disease.

  17. Genetic variation and the de novo assembly of human genomes

    PubMed Central

    Chaisson, Mark J. P.; Wilson, Richard K.; Eichler, Evan E.

    2016-01-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  18. Explaining additional genetic variation in complex traits

    PubMed Central

    Robinson, Matthew R.; Wray, Naomi R.; Visscher, Peter M.

    2015-01-01

    Genome-wide association studies (GWAS) have provided valuable insights into the genetic basis of complex traits, discovering >6000 variants associated with >500 quantitative traits and common complex diseases in humans. The associations identified so far represent only a fraction of those which influence phenotype, as there are likely to be very many variants across the entire frequency spectrum, each of which influences multiple traits, with only a small average contribution to the phenotypic variance. This presents a considerable challenge to further dissection of the remaining unexplained genetic variance within populations, which limits our ability to predict disease risk, identify new drug targets, improve and maintain food sources, and understand natural diversity. This challenge will be met within the current framework through larger sample size, better phenotyping including recording of non-genetic risk factors, focused study designs, and an integration of multiple sources of phenotypic and genetic information. The current evidence supports the application of quantitative genetic approaches, and we argue that one should retain simpler theories until simplicity can be traded for greater explanatory power. PMID:24629526

  19. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  20. Genetic Variation Shapes Protein Networks Mainly through Non-transcriptional Mechanisms

    PubMed Central

    Foss, Eric J.; Radulovic, Dragan; Shaffer, Scott A.; Goodlett, David R.; Kruglyak, Leonid; Bedalov, Antonio

    2011-01-01

    Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts. PMID:21909241

  1. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the pacific ocean.

    PubMed

    Ritchie, Anna E; Johnson, Zackary I

    2012-04-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.

  2. Heredity vs. Environment: The Effects of Genetic Variation with Age

    ERIC Educational Resources Information Center

    Gourlay, N.

    1978-01-01

    Major problems in the field are presented through a brief review of Burt's work and a critical account of the Hawaiian and British schools of biometrical genetics. The merits and demerits of Christopher Jencks' study are also discussed. There follows an account of the principle of genetic variation with age, a new concept to the…

  3. Genetic variation in the east Midlands.

    PubMed

    Mastana, S S; Sokol, R J

    1998-01-01

    According to history, the population of the British Isles derives its genepool from a succession of invaders and immigrants. The settlement pattern of these invaders gave rise to a patchwork of genepools, shown in previous genetic surveys. Specimens from 1117 blood donors of regionally subdivided East Midlands (Derbyshire, Nottinghamshire and Leicestershire) were analysed for 18 conventional genetic systems (blood groups, serum proteins and red cell enzymes), according to place of residence. Significant differences exist among the five geographically defined sub-populations, and it is argued that these are derived from the historical settlement of continental European populations in the region, especially the Danes and the Vikings.

  4. The contribution of additive genetic variation to personality variation: heritability of personality.

    PubMed

    Dochtermann, Ned A; Schwab, Tori; Sih, Andrew

    2015-01-01

    Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified.

  5. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  6. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    PubMed

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  7. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    PubMed

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized.

  8. Individualistic sensitivities and exposure to climate change explain variation in species’ distribution and abundance changes

    PubMed Central

    Palmer, Georgina; Hill, Jane K.; Brereton, Tom M.; Brooks, David R.; Chapman, Jason W.; Fox, Richard; Oliver, Tom H.; Thomas, Chris D.

    2015-01-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  9. The remarkably unremarkable global abundance variations of the magnetic Bp star HD 133652

    NASA Astrophysics Data System (ADS)

    Bailey, J. D.; Landstreet, J. D.

    2015-08-01

    Context. In recent years, significant effort has been made to understand how the magnetic field strengths and atmospheric chemical abundances of Ap/Bp stars evolve during their main sequence lifetime by identifying a large number of Ap/Bp stars with accurately known ages. As a next step, these stars should be studied individually and in detail to offer further insight into the physics of how such main sequence stars evolve. Aims: We have obtained high resolution spectra using the ESPaDOnS spectropolarimeter and FEROS spectrograph of the chemically peculiar, magnetic Bp star HD 133652. Using these data, we present a simple magnetic field model and abundance determinations of He, O, Mg, Si, Ti, Cr, Fe, Pr, and Nd. Methods: Abundance analysis was performed using zeeman.f, a spectral synthesis program that includes the effects of magnetic fields on line formation. The magnetic field structure is approximated as a simple, co-linear multipole expansion that reproduces the observed variations of the line-of-sight magnetic field with phase. The abundance distribution of each element was modelled using a uniform abundance in each of the two magnetic hemispheres. Results: Using the new magnetic field measurements, we were able to refine the rotation period of HD 133652 to P = 2.30405 ± 0.00002 d. The abundance analysis reveals that the elements modelled (except He, O and Mg) are overabundant compared to the Sun; however most elements studied do not show substantial differences in the large-scale mean abundances between the two magnetic hemispheres. The individual line profiles are very complex and clearly indicate the presence of significant small-scale abundance variations on the stellar surface. Conclusions: These data are adequate to perform a useful investigation of the magnetic field structure and abundance distribution over the stellar surface. HD 133652 is now one of a growing list of hotter Bp stars of known age for which this type of analysis has been performed

  10. A model for monitoring of Hsp90-buffered genetic variations

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    Genetic material of terrestrial organisms can be considerably injured by cosmic rays and UV-radiation in the space environment. Organisms onboard are also exposed to the entire complex of negative physical factors which can generate genetic variations and affect morphogenesis. However, species phenotypes must be robust to genetic variation, requiring "buffering" systems to ensure normal development. The molecular chaperone Hsp90 can serve as such "a buffer". It is important in the maturation and conformational regulation of a diverse set of signal transducers. The requirement of many principal regulatory proteins for Hsp90 renders entire metabolic pathways sensitive to impairment of its function. So inhibition of Hsp90 function can open cryptic genetic variations and produce morphological changes. In this paper, we present a model for monitoring of cryptic Hsp90-buffered genetic variations arising during exposure to space and spaceflight factors. This model has been developed with Arabidopsis thaliana seeds gathered in natural habitats with high anthropogenic pressure and wild type (Col-0) seeds subjected to negative influences (UV, heavy metals) experimentally. The phenotypic traits of early seedlings grown under reduction of Hsp90 activity were characterized to estimate Hsp90-buffered genetic variations. Geldanamycin was used as an inhibitor of Hsp90 function.

  11. Multiple capacitors for natural genetic variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2013-03-01

    Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation.

  12. Modal abundances of pyroxene, olivine, and mesostasis in nakhlites: Heterogeneity, variation, and implications for nakhlite emplacement

    NASA Astrophysics Data System (ADS)

    Corrigan, Catherine M.; Velbel, Michael A.; Vicenzi, Edward P.

    2015-09-01

    Nakhlites, clinopyroxenite meteorites from Mars, share common crystallization and ejection ages, suggesting that they might have been ejected from the same place on Mars by the same ejection event (impact) and are different samples of the same thick volcanic flow unit or shallow sill. Mean modal abundances and abundance ranges of pyroxene, olivine, and mesostasis vary widely among different thin-sections of an individual nakhlite. Lithologic heterogeneity is the main factor contributing to the observed modal-abundance variations measured in thin-sections prepared from different fragments of the same stone. Two groups of nakhlites are distinguished from one another by which major constituent varies the least and the abundance of that constituent. The group consisting of Nakhla, Lafayette, Governador Valadares, and the Yamato nakhlite pairing group is characterized by low modal mesostasis and pyroxene-olivine covariance, whereas the group consisting of the Miller Range nakhlite pairing group and Northwest Africa 5790 is characterized by low modal olivine and pyroxene-mesostasis covariance. These two groups sample the slowest-cooled interior portion and the chilled margin, respectively, of the nakhlite emplacement body as presently understood, and appear to be also related to recently proposed nakhlite groups independently established using compositional rather than petrographic observations. Phenocryst modal abundances vary with inferred depth in the nakhlite igneous body in a manner consistent with solidification of the nakhlite stack from dynamically sorted phenocryst-rich magmatic crystal-liquid mush.

  13. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance

    PubMed Central

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-01-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components. PMID:26120428

  14. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance.

    PubMed

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-06-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components. PMID:26120428

  15. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance.

    PubMed

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-06-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components.

  16. Genetic architecture of natural variation in visual senescence in Drosophila

    PubMed Central

    Carbone, Mary Anna; Yamamoto, Akihiko; Huang, Wen; Lyman, Rachel A.; Meadors, Tess Brune; Yamamoto, Ryoan; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2016-01-01

    Senescence, i.e., functional decline with age, is a major determinant of health span in a rapidly aging population, but the genetic basis of interindividual variation in senescence remains largely unknown. Visual decline and age-related eye disorders are common manifestations of senescence, but disentangling age-dependent visual decline in human populations is challenging due to inability to control genetic background and variation in histories of environmental exposures. We assessed the genetic basis of natural variation in visual senescence by measuring age-dependent decline in phototaxis using Drosophila melanogaster as a genetic model system. We quantified phototaxis at 1, 2, and 4 wk of age in the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and found an average decline in phototaxis with age. We observed significant genetic variation for phototaxis at each age and significant genetic variation in senescence of phototaxis that is only partly correlated with phototaxis. Genome-wide association analyses in the DGRP and a DGRP-derived outbred, advanced intercross population identified candidate genes and genetic networks associated with eye and nervous system development and function, including seven genes with human orthologs previously associated with eye diseases. Ninety percent of candidate genes were functionally validated with targeted RNAi-mediated suppression of gene expression. Absence of candidate genes previously implicated with longevity indicates physiological systems may undergo senescence independent of organismal life span. Furthermore, we show that genes that shape early developmental processes also contribute to senescence, demonstrating that senescence is part of a genetic continuum that acts throughout the life span. PMID:27791033

  17. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem

    PubMed Central

    Rudman, Seth M.; Rodriguez-Cabal, Mariano A.; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W.; Crutsinger, Gregory M.

    2015-01-01

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004

  18. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.

    PubMed

    Rudman, Seth M; Rodriguez-Cabal, Mariano A; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W; Crutsinger, Gregory M

    2015-08-01

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004

  19. Child externalizing behavior problems linked to genetic and non-genetic variation in dental caries.

    PubMed

    Lorber, Michael F; Smith Slep, Amy M; Heyman, Richard E; Bretz, Walter A

    2014-01-01

    The association of environmental and genetic variation in caries with child externalizing behavior problems (inattention, hyperactivity, impulsivity, and defiance) was studied in a sample of 239 pairs of 3- to 8-year-old impoverished Brazilian twins. It was hypothesized that externalizing problems would show a stronger positive association with environmental than genetic variation in caries. Univariate twin models were estimated to parse variation in caries into three components: additive genetic (A), shared environment (C) and non-shared environment/error (E). Age-adjusted associations between externalizing problems and each variance component were tested. Contrary to the hypothesis, modest but very consistent negative associations were found between externalizing problems and both genetic and environmental variation in caries. Mutans streptococci and sweetness preference did not explain the negative associations of caries and externalizing problems. Externalizing problems in non-medicated children were associated with less dental decay that could be explained by both genetic and environmental factors.

  20. Child externalizing behavior problems linked to genetic and non-genetic variation in dental caries.

    PubMed

    Lorber, Michael F; Smith Slep, Amy M; Heyman, Richard E; Bretz, Walter A

    2014-01-01

    The association of environmental and genetic variation in caries with child externalizing behavior problems (inattention, hyperactivity, impulsivity, and defiance) was studied in a sample of 239 pairs of 3- to 8-year-old impoverished Brazilian twins. It was hypothesized that externalizing problems would show a stronger positive association with environmental than genetic variation in caries. Univariate twin models were estimated to parse variation in caries into three components: additive genetic (A), shared environment (C) and non-shared environment/error (E). Age-adjusted associations between externalizing problems and each variance component were tested. Contrary to the hypothesis, modest but very consistent negative associations were found between externalizing problems and both genetic and environmental variation in caries. Mutans streptococci and sweetness preference did not explain the negative associations of caries and externalizing problems. Externalizing problems in non-medicated children were associated with less dental decay that could be explained by both genetic and environmental factors. PMID:24852763

  1. Genetic variation in niche construction: implications for development and evolutionary genetics.

    PubMed

    Saltz, Julia B; Nuzhdin, Sergey V

    2014-01-01

    Niche construction occurs when the traits of an organism influence the environment that it experiences. Research has focused on niche-constructing traits that are fixed within populations or species. However, evidence increasingly demonstrates that niche-constructing traits vary among genotypes within populations. Here, we consider the potential implications of genetic variation in niche construction for evolutionary genetics. Specifically, genetic variation in niche-constructing traits creates a correlation between genotype and environment. Because the environment influences which genes and genetic interactions underlie trait variation, genetic variation in niche construction can alter inferences about the heritability, pleiotropy, and epistasis of traits that are phenotypically plastic. The effects of niche construction on these key evolutionary parameters further suggest novel ways by which niche construction can influence evolution.

  2. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior

    PubMed Central

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892

  3. Evolutionary response when selection and genetic variation covary across environments.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. PMID:27531600

  4. Seasonal and interannual variations in coccolithophore abundance off Terceira Island, Azores (Central North Atlantic)

    NASA Astrophysics Data System (ADS)

    Narciso, Áurea; Gallo, Francesca; Valente, André; Cachão, Mário; Cros, Lluïsa; Azevedo, Eduardo B.; e Ramos, Joana Barcelos

    2016-04-01

    In order to characterize the natural coccolithophore community occurring offshore Azores and to determine their annual and interannual patterns, monthly samples were collected, from September 2010 to December 2014, in the photic zone off Terceira Island. The present study revealed a clear seasonal distribution and a considerable interannual variability of the living coccolithophore community. The highest coccolithophore abundances were observed during spring and winter months, especially due to the smaller species Emiliania huxleyi and Gephyrocapsa ericsonii. In fact, the highest biomass period was registered during April 2011, associated with enhanced abundance of the overcalcified morphotype of E. huxleyi, which was possibly influenced by subpolar waters and subsequent upwelling conditions. The highest abundances of Gephyrocapsa muellerae were recorded during June 2011 and 2014, indicating that this species characterizes the transition between the period of maximum productivity and the subsequent smoother environmental conditions, the first and the later stages of the phytoplankton succession described by Margalef, respectively. During summer to early fall, a gradual decrease of the overall coccolithophore abundance was observed, while the species richness (Margalef diversity index) increased. A subtropical coccolithophore assemblage mainly composed by Umbellosphaera tenuis, Syracosphaera spp., Discosphaera tubifera, Rhabdosphaera clavigera and Coronosphaera mediterranea indicated the presence of surface warmer waters accompanied by reduced mixing and low nutrients concentration. During late fall to winter, the coccolithophore abundance increased again with a concomitant reduction in species diversity. This is potentially linked to low sea surface temperatures, moderate nutrients concentration and surface mixed layer deepening. During 2011, colder and productive waters led to an increase in the total coccolithophore abundances. On contrary, during 2012

  5. Fast variations of helium abundance in the solar wind and their consequences

    NASA Astrophysics Data System (ADS)

    Durovcova, Tereza; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Cagas, Petr

    2016-07-01

    The relative abundance of helium in the solar wind results from the physical processes ongoing at the Sun surface and this fact leads to the generally accepted interpretation of He density jumps observed on large (minutes to hours) scales as remnants of the structure of solar wind coronal sources. However, an analysis of the data from the BMSW instrument (the Spektr-R spacecraft) shows that the He content can rapidly vary over short time scales. Comparing measurements of several spacecraft operating the interplanetary space (Themis and Spektr-R around the Earth, and Wind in the L1 point), we present a study of fast variations of the He abundance under different solar wind conditions that supports the idea that a majority of these variations on short timescales (3-30 s) are generated by in-transit turbulence that is probably driven by the speed difference between the ion species. This turbulence contributes to the solar wind heating and leads to a positive correlation of the proton temperature with the He abundance.

  6. Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster.

    PubMed

    Wei, Kevin H-C; Grenier, Jennifer K; Barbash, Daniel A; Clark, Andrew G

    2014-12-30

    Tandemly repeating satellite DNA elements in heterochromatin occupy a substantial portion of many eukaryotic genomes. Although often characterized as genomic parasites deleterious to the host, they also can be crucial for essential processes such as chromosome segregation. Adding to their interest, satellite DNA elements evolve at high rates; among Drosophila, closely related species often differ drastically in both the types and abundances of satellite repeats. However, due to technical challenges, the evolutionary mechanisms driving this rapid turnover remain unclear. Here we characterize natural variation in simple-sequence repeats of 2-10 bp from inbred Drosophila melanogaster lines derived from multiple populations, using a method we developed called k-Seek that analyzes unassembled Illumina sequence reads. In addition to quantifying all previously described satellite repeats, we identified many novel repeats of low to medium abundance. Many of the repeats show population differentiation, including two that are present in only some populations. Interestingly, the population structure inferred from overall satellite quantities does not recapitulate the expected population relationships based on the demographic history of D. melanogaster. We also find that some satellites of similar sequence composition are correlated across lines, revealing concerted evolution. Moreover, correlated satellites tend to be interspersed with each other, further suggesting that concerted change is partially driven by higher order structure. Surprisingly, we identified negative correlations among some satellites, suggesting antagonistic interactions. Our study demonstrates that current genome assemblies vastly underestimate the complexity, abundance, and variation of highly repetitive satellite DNA and presents approaches to understand their rapid evolutionary divergence.

  7. Variations in lead isotopic abundances in Sprague-Dawley rat tissues: possible reason of formation.

    PubMed

    Liu, Duojian; Wu, Jing; Ouyang, Li; Wang, Jingyu

    2014-01-01

    It has been reported in previous research that the lead isotopic composition of blood, urine and feces samples statistically differed from the given lead sources in Sprague-Dawley (SD) rats. However, the reason for this phenomenon is still unclear. An animal experiment was performed to investigate the lead isotope fractionation in diverse biological samples (i.e., lungs, liver, kidneys, bone) and to explore the possible reasons. SD rats were intratracheally instilled with lead acetate at the concentrations of 0, 0.02, 0.2, and 2 mg/kg body weight. Biological samples were collected for lead isotope analysis using an inductively coupled plasma mass spectrometry (ICP-MS). Significant differences are observed in lead isotope abundances among the diverse biological samples. The lead isotope abundances ((206)Pb, (207)Pb and (208)Pb) in diverse biological samples show different degrees and directions of departure from the given lead source. The results suggest that differences in enrichment or depletion capacity for each lead isotope in the various tissues might lead to the variation in lead isotopic abundances in tissues. Moreover, a nonlinear relationship between the blood lead level and the lead isotope abundances in liver and bone is observed. When the whole-blood level is higher than 50 ng/mL, the lead isotopic compositions of biological samples tend to be the same. Thus, the data support the speculation of a fractionation functional threshold.

  8. Variations in Lead Isotopic Abundances in Sprague-Dawley Rat Tissues: Possible Reason of Formation

    PubMed Central

    Liu, Duojian; Wu, Jing; Ouyang, Li; Wang, Jingyu

    2014-01-01

    It has been reported in previous research that the lead isotopic composition of blood, urine and feces samples statistically differed from the given lead sources in Sprague-Dawley (SD) rats. However, the reason for this phenomenon is still unclear. An animal experiment was performed to investigate the lead isotope fractionation in diverse biological samples (i.e., lungs, liver, kidneys, bone) and to explore the possible reasons. SD rats were intratracheally instilled with lead acetate at the concentrations of 0, 0.02, 0.2, and 2 mg/kg body weight. Biological samples were collected for lead isotope analysis using an inductively coupled plasma mass spectrometry (ICP-MS). Significant differences are observed in lead isotope abundances among the diverse biological samples. The lead isotope abundances (206Pb, 207Pb and 208Pb) in diverse biological samples show different degrees and directions of departure from the given lead source. The results suggest that differences in enrichment or depletion capacity for each lead isotope in the various tissues might lead to the variation in lead isotopic abundances in tissues. Moreover, a nonlinear relationship between the blood lead level and the lead isotope abundances in liver and bone is observed. When the whole-blood level is higher than 50 ng/mL, the lead isotopic compositions of biological samples tend to be the same. Thus, the data support the speculation of a fractionation functional threshold. PMID:24587048

  9. Genetic architecture of regulatory variation in Arabidopsis thaliana.

    PubMed

    Zhang, Xu; Cal, Andrew J; Borevitz, Justin O

    2011-05-01

    Studying the genetic regulation of expression variation is a key method to dissect complex phenotypic traits. To examine the genetic architecture of regulatory variation in Arabidopsis thaliana, we performed genome-wide association (GWA) mapping of gene expression in an F(1) hybrid diversity panel. At a genome-wide false discovery rate (FDR) of 0.2, an associated single nucleotide polymorphism (SNP) explains >38% of trait variation. In comparison with SNPs that are distant from the genes to which they were associated, locally associated SNPs are preferentially found in regions with extended linkage disequilibrium (LD) and have distinct population frequencies of the derived alleles (where Arabidopsis lyrata has the ancestral allele), suggesting that different selective forces are acting. Locally associated SNPs tend to have additive inheritance, whereas distantly associated SNPs are primarily dominant. In contrast to results from mapping of expression quantitative trait loci (eQTL) in linkage studies, we observe extensive allelic heterogeneity for local regulatory loci in our diversity panel. By association mapping of allele-specific expression (ASE), we detect a significant enrichment for cis-acting variation in local regulatory variation. In addition to gene expression variation, association mapping of splicing variation reveals both local and distant genetic regulation for intron and exon level traits. Finally, we identify candidate genes for 59 diverse phenotypic traits that were mapped to eQTL. PMID:21467266

  10. Genetic architecture of regulatory variation in Arabidopsis thaliana.

    PubMed

    Zhang, Xu; Cal, Andrew J; Borevitz, Justin O

    2011-05-01

    Studying the genetic regulation of expression variation is a key method to dissect complex phenotypic traits. To examine the genetic architecture of regulatory variation in Arabidopsis thaliana, we performed genome-wide association (GWA) mapping of gene expression in an F(1) hybrid diversity panel. At a genome-wide false discovery rate (FDR) of 0.2, an associated single nucleotide polymorphism (SNP) explains >38% of trait variation. In comparison with SNPs that are distant from the genes to which they were associated, locally associated SNPs are preferentially found in regions with extended linkage disequilibrium (LD) and have distinct population frequencies of the derived alleles (where Arabidopsis lyrata has the ancestral allele), suggesting that different selective forces are acting. Locally associated SNPs tend to have additive inheritance, whereas distantly associated SNPs are primarily dominant. In contrast to results from mapping of expression quantitative trait loci (eQTL) in linkage studies, we observe extensive allelic heterogeneity for local regulatory loci in our diversity panel. By association mapping of allele-specific expression (ASE), we detect a significant enrichment for cis-acting variation in local regulatory variation. In addition to gene expression variation, association mapping of splicing variation reveals both local and distant genetic regulation for intron and exon level traits. Finally, we identify candidate genes for 59 diverse phenotypic traits that were mapped to eQTL.

  11. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR.

    PubMed

    Soler, Marçal; Serra, Olga; Molinas, Marisa; García-Berthou, Emili; Caritat, Antònia; Figueras, Mercè

    2008-05-01

    The molecular processes underlying cork biosynthesis and differentiation are mostly unknown. Recently, a list of candidate genes for cork biosynthesis and regulation was made available opening new possibilities for molecular studies in cork oak (Quercus suber L.). Based on this list, we analyzed the seasonal variation in mRNA abundance in cork tissue of selected genes by real time reverse-transcriptase polymerase chain reaction (RT-PCR). Relative transcript abundance was evaluated by principal component analysis and genes were clustered in several functional subgroups. Structural genes of suberin pathways such as CYP86A1, GPAT and HCBT, and regulatory genes of the NAM and WRKY families showed highest transcript accumulation in June, a crucial month for cork development. Other cork structural genes, such as FAT and F5H, were significantly correlated with temperature and relative humidity. The stress genes HSP17.4 and ANN were strongly positively correlated to temperature, in accord with their protective role.

  12. Influences of genetic variation on fetal hemoglobin.

    PubMed

    He, Yunyan; Lin, Weixiong; Luo, Jianming

    2011-11-01

    Fetal hemoglobin (HbF) plays a dominant role in ameliorating morbidity and mortality of hemoglobinopathies. The authors performed a replicated study following the genome-wide association study (GWAS) guidelines to identify the genetic mechanics that influence HbF. The authors recruited and phenotyped 312 unrelated β-thalassemia subjects. Single-nucleotide polymorphism (SNP) analysis was performed by using polymerase chain reaction (PCR)/restriction enzymes. Four independent regions of interest were identified: HBS1L-MYB intergenic region, BCL11A locus, β-globin gene cluster, and the CSNK2A1 gene. There were 10 SNPs associated with HbF levels. In addition, haplotypes of HBS1L-MYB and BCL11A were identified and showed association with HbF production. Three independent regions, including HBS1L-MYB intergenic region, BCL11A locus, and β-globin gene cluster, were associated with HbF levels. This study can significantly improve the GWAS findings in Chinese cohorts and is useful for further research in the field of common predictors of the erythropoiesis.

  13. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  14. GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations

    PubMed Central

    Paila, Umadevi; Chapman, Brad A.; Kirchner, Rory; Quinlan, Aaron R.

    2013-01-01

    Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI's utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics. PMID:23874191

  15. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix

    NASA Astrophysics Data System (ADS)

    Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.

    2012-06-01

    In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.

  16. Genetics of the dentofacial variation in human malocclusion.

    PubMed

    Moreno Uribe, L M; Miller, S F

    2015-04-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes.

  17. Molecular identification and genetic variation of varieties of Styphnolobium japonicum (Fabaceae) using SRAP markers.

    PubMed

    Sun, R X; Zhang, C H; Zheng, Y Q; Zong, Y C; Yu, X D; Huang, P

    2016-01-01

    Thirty-four Styphnolobium japonicum varieties were analyzed using sequence-related amplified polymorphism (SRAP) markers, to investigate genetic variation and test the effectiveness of SRAP markers in DNA fingerprint establishment. Twelve primer pairs were selected from 120 primer combinations for their reproducibility and high polymorphism. We found a total of 430 amplified fragments, of which 415 fragments were considered polymorphic with an average of 34.58 polymorphic fragments for each primer combination. The percentage of polymorphic fragments was 96.60%, and four primer pairs showed 100% polymorphism. Moreover, simple matched coefficients ranged between 0.68 and 0.89, with an average of 0.785, indicating that the genetic variation among varieties was relatively low. This could be because of the narrow genetic basis of the selected breeding material. Based on the similarity coefficient value of 0.76, the varieties were divided into four major groups. In addition, abundant and clear SRAP fingerprints were obtained and could be used to establish DNA fingerprints. In the DNA fingerprints, each variety had its unique pattern that could be easily distinguished from others. The results demonstrated that 34 varieties of S. japonicum had a relatively narrow genetic variation. Hence, a broadening of the genetic basis of breeding material is necessary. We conclude that establishment of DNA fingerprint is feasible by means of SRAP markers. PMID:27173318

  18. Heritability and genetic basis of protein level variation in an outbred population

    PubMed Central

    Liu, Yi-Chun; Tekkedil, Manu M.; Steinmetz, Lars M.; Caudy, Amy A.; Fraser, Andrew G.

    2014-01-01

    The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population’s average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance. PMID:24823668

  19. Genetic Variation of Bordetella pertussis in Austria.

    PubMed

    Wagner, Birgit; Melzer, Helen; Freymüller, Georg; Stumvoll, Sabine; Rendi-Wagner, Pamela; Paulke-Korinek, Maria; Repa, Andreas; Mooi, Frits R; Kollaritsch, Herwig; Mittermayer, Helmut; Kessler, Harald H; Stanek, Gerold; Steinborn, Ralf; Duchêne, Michael; Wiedermann, Ursula

    2015-01-01

    In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  20. Genetic Variation of Bordetella pertussis in Austria.

    PubMed

    Wagner, Birgit; Melzer, Helen; Freymüller, Georg; Stumvoll, Sabine; Rendi-Wagner, Pamela; Paulke-Korinek, Maria; Repa, Andreas; Mooi, Frits R; Kollaritsch, Herwig; Mittermayer, Helmut; Kessler, Harald H; Stanek, Gerold; Steinborn, Ralf; Duchêne, Michael; Wiedermann, Ursula

    2015-01-01

    In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed. PMID

  1. The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic.

    PubMed

    Robinson, Barry G; Franke, Alastair; Derocher, Andrew E

    2014-01-01

    Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between weather, spring snow

  2. The Influence of Weather and Lemmings on Spatiotemporal Variation in the Abundance of Multiple Avian Guilds in the Arctic

    PubMed Central

    Robinson, Barry G.; Franke, Alastair; Derocher, Andrew E.

    2014-01-01

    Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010–2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between weather, spring snow

  3. The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic.

    PubMed

    Robinson, Barry G; Franke, Alastair; Derocher, Andrew E

    2014-01-01

    Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between weather, spring snow

  4. Effects of genetic drift and gene flow on the selective maintenance of genetic variation.

    PubMed

    Star, Bastiaan; Spencer, Hamish G

    2013-05-01

    Explanations for the genetic variation ubiquitous in natural populations are often classified by the population-genetic processes they emphasize: natural selection or mutation and genetic drift. Here we investigate models that incorporate all three processes in a spatially structured population, using what we call a construction approach, simulating finite populations under selection that are bombarded with a steady stream of novel mutations. As expected, the amount of genetic variation compared to previous models that ignored the stochastic effects of drift was reduced, especially for smaller populations and when spatial structure was most profound. By contrast, however, for higher levels of gene flow and larger population sizes, the amount of genetic variation found after many generations was greater than that in simulations without drift. This increased amount of genetic variation is due to the introduction of slightly deleterious alleles by genetic drift and this process is more efficient when migration load is higher. The incorporation of genetic drift also selects for fitness sets that exhibit allele-frequency equilibria with larger domains of attraction: they are "more stable." Moreover, the finiteness of populations strongly influences levels of local adaptation, selection strength, and the proportion of allele-frequency vectors that can be distinguished from the neutral expectation.

  5. Androgens and doping tests: genetic variation and pit-falls

    PubMed Central

    Rane, Anders; Ekström, Lena

    2012-01-01

    The large variation in disposition known for most drugs is also true for anabolic androgenic steroids. Genetic factors are probably the single most important cause of this variation. Further, there are reasons to believe that there is a corresponding variation in efficacy of doping agents. Doped individuals employ a large variety of doping strategies in respect of choice of substance, dose, dose interval, duration of treatment and use of other drugs for enforcement of effects or correction of side effects. Metabolic steps up-stream and down-stream of testosterone are genetically variable and contribute substantially to the variation in disposition of testosterone, the most common doping agent in sports and in society. Large inter- and intra-ethnic variation in testosterone glucuronidation and excretion is described as well as the pit-falls in evaluation of testosterone doping test results. The hydrolysis and bioactivation of testosterone enanthate is also genetically variable yielding a 2–3 fold variation in excretion rate and serum concentration, thereby implicating a substantial variation in ‘efficacy’ of testosterone. Given this situation it is logical to adopt the new findings in the doping control programme. The population based cut-off level for the testosterone : epitestosterone ratio should be replaced by a Bayesian interpretation of consecutive tests in the same individual. When combined with the above genetic information the sensitivity of the test is considerably improved. The combination of the three approaches should reduce the rate of falsely negative or positive results and the number of expensive follow-up tests, stipulated by the World Anti-Doping Agency. PMID:22506612

  6. Variation in predator species abundance can cause variable selection pressure on warning signaling prey

    PubMed Central

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-01-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  7. Permanence or change? The meaning of genetic variation

    PubMed Central

    Salzano, Francisco M.

    2000-01-01

    Selected aspects of the evolutionary process and more specifically of the genetic variation are considered, with an emphasis in studies performed by my group. One key aspect of evolution seems to be the concomitant occurrence of dichotomic, contradictory (dialect) processes. Genetic variation is structured, and the dynamics of change at one level is not necessarily paralleled by that in another. The pathogenesis-related protein superfamily can be cited as an example in which permanence (the maintenance of certain key genetic features) coexists with change (modifications that led to different functions in different classes of organisms). Relationships between structure and function are exemplified by studies with hemoglobin Porto Alegre. The genetic structure of tribal populations may differ in important aspects from that of industrialized societies. Evolutionary histories also may differ when considered through the investigation of patrilineal or matrilineal lineages. Global evaluations taking into consideration all of these aspects are needed if we really want to understand the meaning of genetic variation. PMID:10805790

  8. Gene Expression and Genetic Variation in Human Atria

    PubMed Central

    Lin, Honghuang; Dolmatova, Elena V.; Morley, Michael P.; Lunetta, Kathryn L.; McManus, David D.; Magnani, Jared W.; Margulies, Kenneth B.; Hakonarson, Hakon; del Monte, Federica; Benjamin, Emelia J.; Cappola, Thomas P.; Ellinor, Patrick T.

    2013-01-01

    Background The human left and right atria have different susceptibilities to develop atrial fibrillation (AF). However, the molecular events related to structural and functional changes that enhance AF susceptibility are still poorly understood. Objective To characterize gene expression and genetic variation in human atria. Methods We studied the gene expression profiles and genetic variations in 53 left atrial and 52 right atrial tissue samples collected from the Myocardial Applied Genomics Network (MAGNet) repository. The tissues were collected from heart failure patients undergoing transplantation and from unused organ donor hearts with normal ventricular function. Gene expression was profiled using the Affymetrix GeneChip Human Genome U133A Array. Genetic variation was profiled using the Affymetrix Genome-Wide Human SNP Array 6.0. Results We found that 109 genes were differentially expressed between left and right atrial tissues. A total of 187 and 259 significant cis-associations between transcript levels and genetic variants were identified in left and right atrial tissues, respectively. We also found that a SNP at a known AF locus, rs3740293, was associated with the expression of MYOZ1 in both left and right atrial tissues. Conclusion We found a distinct transcriptional profile between the right and left atrium, and extensive cis-associations between atrial transcripts and common genetic variants. Our results implicate MYOZ1 as the causative gene at the chromosome 10q22 locus for AF. PMID:24177373

  9. ON THE ORIGIN OF THE SLOW SPEED SOLAR WIND: HELIUM ABUNDANCE VARIATIONS

    SciTech Connect

    Rakowski, Cara E.; Laming, J. Martin

    2012-07-20

    The first ionization potential (FIP) effect is the by now well-known enhancement in abundance over photospheric values of Fe and other elements with FIP below about 10 eV observed in the solar corona and slow speed solar wind. In our model, this fractionation is achieved by means of the ponderomotive force, arising as Alfven waves propagate through or reflect from steep density gradients in the solar chromosphere. This is also the region where low FIP elements are ionized, and high FIP elements are largely neutral leading to the fractionation as ions interact with the waves but neutrals do not. Helium, the element with the highest FIP and consequently the last to remain neutral as one moves upward, can be depleted in such models. Here, we investigate this depletion for varying loop lengths and magnetic field strengths. Variations in this depletion arise as the concentration of the ponderomotive force at the top of the chromosphere varies in response to Alfven wave frequency with respect to the resonant frequency of the overlying coronal loop, the magnetic field, and possibly also the loop length. We find that stronger depletions of He are obtained for weaker magnetic field, at frequencies close to or just above the loop resonance. These results may have relevance to observed variations of the slow wind solar He abundance with wind speed, with slower slow speed solar wind having a stronger depletion of He.

  10. The Evolution of Human Genetic and Phenotypic Variation in Africa

    PubMed Central

    Campbell, Michael C.

    2010-01-01

    Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations. PMID:20178763

  11. Regional-scale variation in size and abundance of the bivalve Varicorbula (Middle Miocene, Central Paratethys)

    NASA Astrophysics Data System (ADS)

    Fuksi, Tomáš; Tomašových, Adam; Rušin, Luboš

    2016-04-01

    Varicorbula gibba (Olivi, 1792) is a geologically long-ranging and ecologically generalistic bivalve species that appears in the Oligocene and persists to present, occurring in the tropical and northern temperate Eastern Atlantic and in the Mediterranean. Although it is one of the most frequent species in the benthic communities in the Paratethys during the Middle Miocene, spatial variation in its abundance, size, and shape is poorly known. Using bulk samples sieved with 1 mm mesh size, we investigate size and abundance variation of this taxon in molluscan communities in two basins in the Middle Miocene (Serravalian) sediments of the Central Paratethys. Bulk samples are derived from boreholes from the western (Vienna Basin) and eastern (Danube Basin) margins of the Malé Karpaty Mountains (Slovakia). We find that this taxon shows significant regional-scale differences in size distribution between the Vienna and Danube basins. In subtidal muds in the northern parts of the Vienna Basin, it achieves very high proportional community-level abundance and its median shell width ranges between 6-10 mm. In contrast, in muddy sands on the northeastern margin of the Danube Basin, community composition is more even and median width ranges just between 3-4 mm. The higher sandy content and lower sedimentation rates (as evidenced by higher taphonomic damage, with higher proportion of bored specimens, in the Danube Basin) imply that the size can partly positively correlate with nutrient supply. Morphometric analyses indicate that height and width of individuals of this taxon undergo significant allometry and that smaller-sized individuals in the Danube Basin have a smaller width/height ratio, suggesting that some shape differences between the two basins are unrelated to size differences.

  12. Cryptic genetic variation and body size evolution in threespine stickleback.

    PubMed

    McGuigan, Katrina; Nishimura, Nicole; Currey, Mark; Hurwit, Dan; Cresko, William A

    2011-04-01

    The role of environment as a selective agent is well-established. Environment might also influence evolution by altering the expression of genetic variation associated with phenotypes under selection. Far less is known about this phenomenon, particularly its contribution to evolution in novel environments. We investigated how environment affected the evolvability of body size in the threespine stickleback (Gasterosteus aculeatus). Gasterosteus aculeatus is well suited to addressing this question due to the rapid evolution of smaller size in the numerous freshwater populations established following the colonization of new freshwater habitats by an oceanic ancestor. The repeated, rapid evolution of size following colonization contrasts with the general observation of low phenotypic variation in oceanic stickleback. We reared an oceanic population of stickleback under high and low salinity conditions, mimicking a key component of the ancestral environment, and freshwater colonization, respectively. There was low genetic variation for body size under high salinity, but this variance increased significantly when fish were reared under low salinity. We therefore conclude that oceanic populations harbor the standing genetic variation necessary for the evolution of body size, but that this variation only becomes available to selection upon colonization of a new habitat.

  13. Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis.

    PubMed

    Sanchez-Bermejo, Eduardo; Zhu, Wangsheng; Tasset, Celine; Eimer, Hannes; Sureshkumar, Sridevi; Singh, Rupali; Sundaramoorthi, Vignesh; Colling, Luana; Balasubramanian, Sureshkumar

    2015-09-01

    Wild strains of Arabidopsis (Arabidopsis thaliana) exhibit extensive natural variation in a wide variety of traits, including response to environmental changes. Ambient temperature is one of the major external factors that modulates plant growth and development. Here, we analyze the genetic architecture of natural variation in thermal responses of Arabidopsis. Exploiting wild accessions and recombinant inbred lines, we reveal extensive phenotypic variation in response to ambient temperature in distinct developmental traits such as hypocotyl elongation, root elongation, and flowering time. We show that variation in thermal response differs between traits, suggesting that the individual phenotypes do not capture all the variation associated with thermal response. Genome-wide association studies and quantitative trait locus analyses reveal that multiple rare alleles contribute to the genetic architecture of variation in thermal response. We identify at least 20 genomic regions that are associated with variation in thermal response. Further characterizations of temperature sensitivity quantitative trait loci that are shared between traits reveal a role for the blue-light receptor CRYPTOCHROME2 (CRY2) in thermosensory growth responses. We show the accession Cape Verde Islands is less sensitive to changes in ambient temperature, and through transgenic analysis, we demonstrate that allelic variation at CRY2 underlies this temperature insensitivity across several traits. Transgenic analyses suggest that the allelic effects of CRY2 on thermal response are dependent on genetic background suggestive of the presence of modifiers. In addition, our results indicate that complex light and temperature interactions, in a background-dependent manner, govern growth responses in Arabidopsis. PMID:26195568

  14. The plankton community in Norwegian coastal waters—abundance, composition, spatial distribution and diel variation

    NASA Astrophysics Data System (ADS)

    Bratbak, Gunnar; Jacquet, Stéphan; Larsen, Aud; Pettersson, Lasse H.; Sazhin, Andrey F.; Thyrhaug, Runar

    2011-09-01

    The purpose of the present study was to explore the composition and variation of the pico-, nano- and micro-plankton communities in Norwegian coastal waters and Skagerrak, and the co-occurrence of bacteria and viruses. Samples were collected along three cruise transects from Jæren, Lista and Oksøy on the south coast of Norway and into the North Sea and Skagerrak. We also followed a drifting buoy for 55 h in Skagerrak in order to observe diel variations. Satellite ocean color images (SeaWiFS) of the chlorophyll a (chl a) distribution compared favorably to in situ measurements in open waters, while closer to the shore remote sensing chl a data was overestimated compared to the in situ data. Using light microscopy, we identified 49 micro- and 15 nanoplankton sized phototrophic forms as well as 40 micro- and 12 nanoplankton sized heterotrophic forms. The only picoeukaryote (0.2-2.0 μm) we identified was Resultor micron (Pedinophyceae ). Along the transects a significant variation in the distribution and abundance of different plankton forms were observed, with Synechococcus spp and autotrophic picoeukaryotes as the most notable examples. There was no correlation between viruses and chl a, but between viruses and bacteria, and between viruses and some of the phytoplankton groups, especially the picoeukaryotes. Moreover, there was a negative correlation between nutrients and small viruses (Low Fluorescent Viruses) but a positive correlation between nutrients and large viruses (High Fluorescent Viruses). The abundance of autotrophic picoplankton, bacteria and viruses showed a diel variation in surface waters with higher values around noon and late at night and lower values in the evening. Synechococcus spp were found at 20 m depth 25-45 nautical miles from shore apparently forming a bloom that stretched out for more than 100 nautical miles from Skagerrak and up the south west coast of Norway. The different methods used for assessing abundance, distribution and

  15. Genetic integration of molar cusp size variation in baboons

    PubMed Central

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T.; Fletcher, Zachary; Mahaney, Michael C.; Hlusko, Leslea J.

    2010-01-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the non-occluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. PMID:20034010

  16. Genetic variation and the evolution of epigenetic regulation.

    PubMed

    Furrow, Robert E; Feldman, Marcus W

    2014-03-01

    Epigenetic variation has been observed in a range of organisms, leading to questions of the adaptive significance of this variation. In this study, we present a model to explore the ecological and genetic conditions that select for epigenetic regulation. We find that the rate of temporal environmental change is a key factor controlling the features of this evolution. When the environment fluctuates rapidly between states with different phenotypic optima, epigenetic regulation may evolve but we expect to observe low transgenerational inheritance of epigenetic states, whereas when this fluctuation occurs over longer time scales, regulation may evolve to generate epigenetic states that are inherited faithfully for many generations. In all cases, the underlying genetic variation at the epigenetically regulated locus is a crucial factor determining the range of conditions that allow for evolution of epigenetic mechanisms.

  17. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    PubMed Central

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  18. Patterns of nuclear genetic variation in the poecilogonous polychaete Streblospio benedicti.

    PubMed

    Rockman, Matthew V

    2012-07-01

    The evolution of marine larvae is replete with transitions in trophic mode, but little is known about how, at the genetic level, these transitions are achieved. Basic parameters, including the number of underlying loci, their molecular characteristics, and the population-genetic processes that drive transitions remain unknown. Streblospio benedicti, an abundant benthic polychaete with heritable poecilogony, provides a unique genetically tractable system for addressing these issues. Individuals of S. benedicti vary in diverse aspects of development. Some females produce small, planktotrophic larvae, whereas others produce large, yolky larvae capable of settling without feeding. Here, I present estimates of basic features of nuclear genetic variation in S. benedicti to lay the foundations for subsequent efforts to understand the genetic basis of poecilogony. Sequence of ∼20 kb of random nuclear DNA indicates that the nucleotide composition, at 62.1% A + T, is typical of lophotrochozoan genomes. Population-genetic data, acquired by sequencing two loci (∼2500 bp) in multiple animals of each developmental morph, indicate that the morphs exhibit very little differentiation at random loci. Nucleotide heterozygosity (θπ) is ∼0.5-1% per site, and linkage disequilibrium decays within a few kilobases (ρ  ∼ 3 × 10(-3) per site). These data suggest that genetic mapping by association will require a high density of markers, but linkage mapping and identification of regions of elevated inter-morph differentiation hold great promise. PMID:22659203

  19. Inter Individual Variations of the Fish Skin Microbiota: Host Genetics Basis of Mutualism?

    PubMed Central

    Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas

    2014-01-01

    The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens. PMID:25068850

  20. Functional characterization of genetic enzyme variations in human lipoxygenases☆

    PubMed Central

    Horn, Thomas; Reddy Kakularam, Kumar; Anton, Monika; Richter, Constanze; Reddanna, Pallu; Kuhn, Hartmut

    2013-01-01

    Mammalian lipoxygenases play a role in normal cell development and differentiation but they have also been implicated in the pathogenesis of cardiovascular, hyperproliferative and neurodegenerative diseases. As lipid peroxidizing enzymes they are involved in the regulation of cellular redox homeostasis since they produce lipid hydroperoxides, which serve as an efficient source for free radicals. There are various epidemiological correlation studies relating naturally occurring variations in the six human lipoxygenase genes (SNPs or rare mutations) to the frequency for various diseases in these individuals, but for most of the described variations no functional data are available. Employing a combined bioinformatical and enzymological strategy, which included structural modeling and experimental site-directed mutagenesis, we systematically explored the structural and functional consequences of non-synonymous genetic variations in four different human lipoxygenase genes (ALOX5, ALOX12, ALOX15, and ALOX15B) that have been identified in the human 1000 genome project. Due to a lack of a functional expression system we resigned to analyze the functionality of genetic variations in the hALOX12B and hALOXE3 gene. We found that most of the frequent non-synonymous coding SNPs are located at the enzyme surface and hardly alter the enzyme functionality. In contrast, genetic variations which affect functional important amino acid residues or lead to truncated enzyme variations (nonsense mutations) are usually rare with a global allele frequency<0.1%. This data suggest that there appears to be an evolutionary pressure on the coding regions of the lipoxygenase genes preventing the accumulation of loss-of-function variations in the human population. PMID:24282679

  1. Characterization of the genetic variation present in CYP3A4 in three South African populations.

    PubMed

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5'-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4(*)12, CYP3A4(*)15, and the reportedly functional CYP3A4(*)1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations. PMID:23423246

  2. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-01

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  3. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae

    PubMed Central

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515

  4. Genetic and Environmental Contributions to Variation in Baboon Cranial Morphology

    PubMed Central

    Roseman, Charles C.; Willmore, Katherine E.; Rogers, Jeffrey; Hildebolt, Charles; Sadler, Brooke E.; Richtsmeier, Joan T.; Cheverud, James M.

    2011-01-01

    The development, function, and integration of morphological characteristics are all hypothesized to influence the utility of traits for phylogenetic reconstruction by affecting the way in which morphological characteristics evolve. We use a baboon model to test the hypotheses about phenotypic and quantitative genetic variation of traits in the cranium that bear on a phenotype’s propensity to evolve. We test the hypotheses that: 1) individual traits in different functionally and developmentally defined regions of the cranium are differentially environmentally, genetically, and phenotypically variable; 2) genetic covariance with other traits constrains traits in one region of the cranium more than those in others; 3) and regions of the cranium subject to different levels of mechanical strain differ in the magnitude of variation in individual traits. We find that the levels of environmental and genetic variation in individual traits are randomly distributed across regions of the cranium rather than being structured by developmental origin or degree of exposure to strain. Individual traits in the cranial vault tend to be more constrained by covariance with other traits than those in other regions. Traits in regions subject to high degrees of strain during mastication are not any more variable at any level than other traits. If these results are generalizable to other populations, they indicate that there is no reason to suppose that individual traits from any one part of the cranium are intrinsically less useful for reconstructing patterns of evolution than those from any other part. PMID:20623673

  5. Use of genetic variation as biomarkers for Alzheimer's disease.

    PubMed

    Reitz, Christiane; Mayeux, Richard

    2009-10-01

    Late-onset Alzheimer's disease (LOAD) is the most common cause of late-onset dementia in western societies. Despite remarkable achievements in human genetics throughout the years, in particular technological advances in gene mapping and in statistical methods that relate genetic variants to disease, to date only a small proportion of the genetic contribution to LOAD can be explained leaving several remaining genetic risk factors to be identified. A possible explanation for the difficulty in gene identification is that LOAD is a multifactorial complex disorder with both genetic and environmental components. Multiple genes with small effects each ("quantitative trait loci"[QTLs]) are likely to contribute to the quantitative traits associated with the disease, such as memory performance, amyloid/tau pathology, or hippocampal atrophy. The motivation for identifying the genetics of LOAD is clear. Not only could it shed light on disease pathogenesis, but it may also provide potential targets for effective treatment, screening, and prevention. Here, we review the usefulness of genetic variation as diagnostic tools and biomarkers in LOAD and discuss the potentials and difficulties researchers face in designing appropriate studies for gene discovery.

  6. Developmental and Genetic Origins of Murine Long Bone Length Variation

    PubMed Central

    Sanger, Thomas J.; Norgard, Elizabeth A.; Pletscher, L. Susan; Bevilacqua, Michael; Brooks, Victoria R.; Sandell, Linda M.; Cheverud, James M.

    2011-01-01

    If we wish to understand whether development influences the rate or direction of morphological evolution, we must first understand the developmental bases of morphological variation within species. However, quantitative variation in adult morphology is the product of molecular and cellular processes unfolding from embryonic development through juvenile growth to maturity. The Atchley-Hall model provides a useful framework for dissecting complex morphologies into their component parts as a way of determining which developmental processes contribute to variation in adult form. We have examined differences in postnatal allometry and the patterns of genetic correlation between age-specific traits for 10 recombinant inbred strains of mice generated from an intercross of LG/J and SM/J. Long bone length is closely tied to body size, but variation in adult morphology is more closely tied to differences in growth rate between 3 and 5 weeks of age. These analyses show that variation generated during early development is overridden by variation generated later in life. To more precisely determine the cellular processes generating this variation we then examined the cellular dynamics of long bone growth plates at the time of maximum elongation rate differences in the parent strains. Our analyses revealed that variation in long bone length is the result of faster elongation rates of the LG/J stain. The developmental bases for these differences in growth rate involve the rate of cell division and chondrocyte hypertrophy in the growth plate. PMID:21328530

  7. Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions

    PubMed Central

    Zan, Yanjun; Shen, Xia; Forsberg, Simon K. G.; Carlborg, Örjan

    2016-01-01

    An increased knowledge of the genetic regulation of expression in Arabidopsis thaliana is likely to provide important insights about the basis of the plant’s extensive phenotypic variation. Here, we reanalyzed two publicly available datasets with genome-wide data on genetic and transcript variation in large collections of natural A. thaliana accessions. Transcripts from more than half of all genes were detected in the leaves of all accessions, and from nearly all annotated genes in at least one accession. Thousands of genes had high transcript levels in some accessions, but no transcripts at all in others, and this pattern was correlated with the genome-wide genotype. In total, 2669 eQTL were mapped in the largest population, and 717 of them were replicated in the other population. A total of 646 cis-eQTL-regulated genes that lacked detectable transcripts in some accessions was found, and for 159 of these we identified one, or several, common structural variants in the populations that were shown to be likely contributors to the lack of detectable RNA transcripts for these genes. This study thus provides new insights into the overall genetic regulation of global gene expression diversity in the leaf of natural A. thaliana accessions. Further, it also shows that strong cis-acting polymorphisms, many of which are likely to be structural variations, make important contributions to the transcriptional variation in the worldwide A. thaliana population. PMID:27226169

  8. Genetic variation in biomass traits among 20 diverse rice varieties.

    PubMed

    Jahn, Courtney E; Mckay, John K; Mauleon, Ramil; Stephens, Janice; McNally, Kenneth L; Bush, Daniel R; Leung, Hei; Leach, Jan E

    2011-01-01

    Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops.

  9. Human genetic variation: new challenges and opportunities for doping control.

    PubMed

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices. PMID:22681541

  10. Genetic variation in the endangered Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher(Empidonax trailii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breedings sites of the Southwestern Willow Flycatcher(290 individuals) using 38 amplified fragment length polymorphisms(AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites( Mantel's r = 0.0705, P < 0.0005; 0 = 0.0816, 95% CI = 0.0608 to 0.1034; a??sr = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation maybe the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  11. Ecological genetics of range size variation in Boechera spp. (Brassicaceae).

    PubMed

    Lovell, John T; McKay, John K

    2015-11-01

    Many taxonomic groups contain both rare and widespread species, which indicates that range size can evolve quickly. Many studies have compared molecular genetic diversity, plasticity, or phenotypic traits between rare and widespread species; however, a suite of genetic attributes that unites rare species remains elusive. Here, using two rare and two widespread Boechera (Brassicaceae) species, we conduct a simultaneous comparison of quantitative trait diversity, genetic diversity, and population structure among species with highly divergent range sizes. Consistent with previous studies, we do not find strong associations between range size and within-population genetic diversity. In contrast, we find that both the degree of phenotypic plasticity and quantitative trait structure (Q ST) were positively correlated with range size. We also found higher F ST: Q ST ratios in rare species, indicative of either a greater response to stabilizing selection or a lack of additive genetic variation. While widespread species occupy more ecological and climactic space and have diverged at both traits and markers, rare species display constrained levels of population differentiation and phenotypic plasticity. Combined, our results provide evidence for a specialization-generalization trade-off across three orders of magnitude of range size variation in the ecological model genus, Boechera. PMID:26640674

  12. Human genetic variation: new challenges and opportunities for doping control.

    PubMed

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  13. Additive and nonadditive genetic variation in avian personality traits.

    PubMed

    van Oers, K; Drent, P J; de Jong, G; van Noordwijk, A J

    2004-11-01

    Individuals of all vertebrate species differ consistently in their reactions to mildly stressful challenges. These typical reactions, described as personalities or coping strategies, have a clear genetic basis, but the structure of their inheritance in natural populations is almost unknown. We carried out a quantitative genetic analysis of two personality traits (exploration and boldness) and the combination of these two traits (early exploratory behaviour). This study was carried out on the lines resulting from a two-directional artificial selection experiment on early exploratory behaviour (EEB) of great tits (Parus major) originating from a wild population. In analyses using the original lines, reciprocal F(1) and reciprocal first backcross generations, additive, dominance, maternal effects ands sex-dependent expression of exploration, boldness and EEB were estimated. Both additive and dominant genetic effects were important determinants of phenotypic variation in exploratory behaviour and boldness. However, no sex-dependent expression was observed in either of these personality traits. These results are discussed with respect to the maintenance of genetic variation in personality traits, and the expected genetic structure of other behavioural and life history traits in general.

  14. Hidden genetic nature of epigenetic natural variation in plants.

    PubMed

    Pecinka, Ales; Abdelsamad, Ahmed; Vu, Giang T H

    2013-11-01

    Transcriptional gene silencing (TGS) is an epigenetic mechanism that suppresses the activity of repetitive DNA elements via accumulation of repressive chromatin marks. We discuss natural variation in TGS, with a particular focus on cases that affect the function of protein-coding genes and lead to developmental or physiological changes. Comparison of the examples described has revealed that most natural variation is associated with genetic determinants, such as gene rearrangements, inverted repeats, and transposon insertions that triggered TGS. Recent technical advances have enabled the study of epigenetic natural variation at a whole-genome scale and revealed patterns of inter- and intraspecific epigenetic variation. Future studies exploring non-model species may reveal species-specific evolutionary adaptations at the level of chromatin configuration.

  15. Neutral theory predicts the relative abundance and diversity of genetic elements in a broad array of eukaryotic genomes.

    PubMed

    Serra, François; Becher, Verónica; Dopazo, Hernán

    2013-01-01

    It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. PMID:23798991

  16. Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes

    PubMed Central

    Serra, François; Becher, Verónica; Dopazo, Hernán

    2013-01-01

    It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or “species” of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or “species” populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. PMID:23798991

  17. Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation

    PubMed Central

    Flori, Laurence; Gao, Yu; Laloë, Denis; Lemonnier, Gaëtan; Leplat, Jean-Jacques; Teillaud, Angélique; Cossalter, Anne-Marie; Laffitte, Joëlle; Pinton, Philippe; de Vaureix, Christiane; Bouffaud, Marcel; Mercat, Marie-José; Lefèvre, François; Oswald, Isabelle P.; Bidanel, Jean-Pierre; Rogel-Gaillard, Claire

    2011-01-01

    Background Increasing robustness via improvement of resistance to pathogens is a major selection objective in livestock breeding. As resistance traits are difficult or impossible to measure directly, potential indirect criteria are measures of immune traits (ITs). Our underlying hypothesis is that levels of ITs with no focus on specific pathogens define an individual's immunocompetence and thus predict response to pathogens in general. Since variation in ITs depends on genetic, environmental and probably epigenetic factors, our aim was to estimate the relative importance of genetics. In this report, we present a large genetic survey of innate and adaptive ITs in pig families bred in the same environment. Methodology/Principal Findings Fifty four ITs were studied on 443 Large White pigs vaccinated against Mycoplasma hyopneumoniae and analyzed by combining a principal component analysis (PCA) and genetic parameter estimation. ITs include specific and non specific antibodies, seric inflammatory proteins, cell subsets by hemogram and flow cytometry, ex vivo production of cytokines (IFNα, TNFα, IL6, IL8, IL12, IFNγ, IL2, IL4, IL10), phagocytosis and lymphocyte proliferation. While six ITs had heritabilities that were weak or not significantly different from zero, 18 and 30 ITs had moderate (0.10.4) heritability values, respectively. Phenotypic and genetic correlations between ITs were weak except for a few traits that mostly include cell subsets. PCA revealed no cluster of innate or adaptive ITs. Conclusions/Significance Our results demonstrate that variation in many innate and adaptive ITs is genetically controlled in swine, as already reported for a smaller number of traits by other laboratories. A limited redundancy of the traits was also observed confirming the high degree of complementarity between innate and adaptive ITs. Our data provide a genetic framework for choosing ITs to be included as selection criteria in multitrait selection

  18. Light-element Abundance Variations at Low Metallicity: The Globular Cluster NGC 5466

    NASA Astrophysics Data System (ADS)

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.; Bond, Howard E.

    2010-10-01

    We present low-resolution (R sime850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s-1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function "bump" on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  20. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar.

    PubMed

    Belchior, Ceres; Sendoya, Sebastián F; Del-Claro, Kleber

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010-2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722

  1. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar

    PubMed Central

    Belchior, Ceres; Sendoya, Sebastián F.

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010–2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722

  2. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  3. Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests

    PubMed Central

    Marzinelli, Ezequiel M.; Williams, Stefan B.; Babcock, Russell C.; Barrett, Neville S.; Johnson, Craig R.; Jordan, Alan; Kendrick, Gary A.; Pizarro, Oscar R.; Smale, Dan A.; Steinberg, Peter D.

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  4. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  5. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  6. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    PubMed Central

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  7. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE PAGES

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  8. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    SciTech Connect

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  9. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  10. Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe.

    PubMed

    Bylebyl, Kathrin; Poschlod, Peter; Reisch, Christoph

    2008-07-01

    In Germany, Eryngium campestre is restricted to dry habitats along the rivers Rhine and Elbe and to a few areas in Central Germany. This distribution pattern is usually regarded as a typical pattern of postglacial immigration. In the present study, we investigated whether these two geographically distinct distribution areas are genetically differentiated and whether conclusions can be drawn regarding colonization history. To analyse the phylogeographic structure of E. campestre in Central Europe, 278 individuals from 29 populations within Germany and from further reference populations within Europe were analysed. We applied amplified fragment length polymorphisms to examine their genetic relatedness. Our analyses revealed three groups: a Mediterranean group additionally including two Rhine populations; a Rhine-Main group which further includes the westernmost population from the central German dry area; and one group which includes all eastern populations. Our results show that the two geographically distinct areas are genetically differentiated. As genetic diversity within the Elbe populations is very low, we conclude that this area, which was strongly affected through the late glacial maximum, was colonized relatively recently. High genetic diversity in the Rhine populations indicates a contact zone where lineages of different origin met. This would imply that today's patterns of genetic variation were caused through glacial range contractions and expansions. The present study is one of the first studies that deal with the postglacial distribution pattern of a dry grassland plant species in Central Europe and the results suggest that a survival of E. campestre at least during the Dryas cold stage might be possible.

  11. Universal probe amplification: multiplex screening technologies for genetic variations.

    PubMed

    Park, Jung Hun; Park, Ki Soo; Lee, Kyungmee; Jang, Hyowon; Park, Hyun Gyu

    2015-01-01

    In order to achieve multiplex screening of genetic variations, multiplex amplification of target genomic DNA is necessary. Universal amplification technology meets this requirement by simultaneously amplifying a number of different regions within the target genomic DNA using a single pair of universal primers and thus eliminating the limitations associated with the use of multiple pairs of primers. We comprehensively review universal probe amplification and its use with multiplex technologies for the identification of the most representative genetic variation, i. e. single nucleotide polymorphisms. The progress and key issues relating to universal probe amplification are discussed and the representative technologies are summarized with an emphasis on their application for the identification of susceptibility to human diseases.

  12. The African Genome Variation Project shapes medical genetics in Africa

    PubMed Central

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  13. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    PubMed

    Andreassen, Ole A; Desikan, Rahul S; Wang, Yunpeng; Thompson, Wesley K; Schork, Andrew J; Zuber, Verena; Doncheva, Nadezhda T; Ellinghaus, Eva; Albrecht, Mario; Mattingsdal, Morten; Franke, Andre; Lie, Benedicte A; Mills, Ian G; Mills, Ian; Aukrust, Pål; McEvoy, Linda K; Djurovic, Srdjan; Karlsen, Tom H; Dale, Anders M

    2015-01-01

    Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS) to investigate shared single nucleotide polymorphisms (SNPs) between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals), applying new False Discovery Rate (FDR) methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG), low density lipoproteins (LDL), high density lipoproteins (HDL)] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis). We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88), LDL (n = 87) and HDL (n = 52). Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2) and intestinal host-microbe interactions (e.g. ATG16L1). We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents. PMID:25853426

  14. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    PubMed

    Andreassen, Ole A; Desikan, Rahul S; Wang, Yunpeng; Thompson, Wesley K; Schork, Andrew J; Zuber, Verena; Doncheva, Nadezhda T; Ellinghaus, Eva; Albrecht, Mario; Mattingsdal, Morten; Franke, Andre; Lie, Benedicte A; Mills, Ian G; Mills, Ian; Aukrust, Pål; McEvoy, Linda K; Djurovic, Srdjan; Karlsen, Tom H; Dale, Anders M

    2015-01-01

    Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS) to investigate shared single nucleotide polymorphisms (SNPs) between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals), applying new False Discovery Rate (FDR) methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG), low density lipoproteins (LDL), high density lipoproteins (HDL)] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis). We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88), LDL (n = 87) and HDL (n = 52). Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2) and intestinal host-microbe interactions (e.g. ATG16L1). We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  15. Genetic Variation of Echinococcus canadensis (G7) in Mexico

    PubMed Central

    Rodriguez-Prado, Ulises; Jimenez-Gonzalez, Diego Emiliano; Avila, Guillermina; Gonzalez, Armando E.; Martinez-Flores, Williams Arony; Mondragon de la Peña, Carmen; Hernandez-Castro, Rigoberto; Romero-Valdovinos, Mirza; Flisser, Ana; Martinez-Hernandez, Fernando; Maravilla, Pablo; Martinez-Maya, Jose Juan

    2014-01-01

    We evaluated the genetic variation of Echinococcus G7 strain in larval and adult stages using a fragment of the mitochondrial cox1 gen. Viscera of pigs, bovines, and sheep and fecal samples of dogs were inspected for cystic and canine echinococcosis, respectively; only pigs had hydatid cysts. Bayesian inferences grouped the sequences in an E. canadensis G7 cluster, suggesting that, in Mexico, this strain might be mainly present. Additionally, the population genetic and network analysis showed that E. canadensis in Mexico is very diverse and has probably been introduced several times from different sources. Finally, a scarce genetic differentiation between G6 (camel strain) and G7 (pig strain) populations was identified. PMID:25266350

  16. The effect of epistasis on sexually antagonistic genetic variation

    PubMed Central

    Arnqvist, Göran; Vellnow, Nikolas; Rowe, Locke

    2014-01-01

    There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence. PMID:24870040

  17. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. PMID:24433213

  18. Genetic Architectures of Quantitative Variation in RNA Editing Pathways.

    PubMed

    Gu, Tongjun; Gatti, Daniel M; Srivastava, Anuj; Snyder, Elizabeth M; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L; Dotu, Ivan; Chuang, Jeffrey H; Keller, Mark P; Attie, Alan D; Braun, Robert E; Churchill, Gary A

    2016-02-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.

  19. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems.

  20. Spectroscopic Variation of Water Ice Abundance Across Mimas and Tethys' Surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Paul

    2014-11-01

    We present results from our ongoing work mapping the variation of the main water ice absorption bands across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). Mimas and Tethys are Enceladus’ orbital neighbours, lying inside and outside Enceladus’ orbit respectively. It is therefore likely that Mimas and Tethys surfaces interact with icy particles from the E-ring, resulting in a spectral, color modification. For all pixels in the selected VIMS cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak, whose value relates to grain size. To characterize the global variation of water-ice band depths across Mimas and Tethys, we divided the surface into a 1°x1° grid and then averaged the band depths and peak values inside each square cell. The most prominent feature on Mimas surface is the crater Herschel with a diameter of 130 km, one-third of the satellite's one. Mimas has the most uniform surface among Saturn's principal satellites, with its trailing side just 10% brighter and redder than the leading one. The uniformity of Mimas extends on spectral appearance too. The 1.52 and 2.02 μm H2O-ice absorption bands are ˜10% deeper on trailing hemisphere.On Tethys' leading hemisphere a 400 km in diameter crater, Odysseus, is present. Its dimension represents ˜40% of Tethys diameter.For both moons we find that large geologic features, such as the Odysseus and Herschel impact basin, do not correlate with water ice’s abundance variation.For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas the selected dataset covers just the leading hemisphere and a portion of the trailing side. From the analysis, the two hemispheres appear to be quite similar in water ice abundance, the trailing

  1. [Variations of fish species diversity, faunal assemblage, and abundances in Daya Bay in 1980-2007].

    PubMed

    Wang, Xue-hui; Du, Fi-yan; Qiu, Yong-song; Li, Chun-hou; Sun, Dian-rong; Jia, Xiao-ping

    2010-09-01

    Based on the 2004-2005 otter trawl survey data and the 1980-2007 relevant historical records, this paper analyzed the variations of fish species composition, faunal assemblage, diversity indices, dominant species, and abundance in Daya Bay. In the 2004-2005 trawl survey, a total of 107 fish species were recorded, belonging to 50 families and 13 orders, among which, meso-demersal fish were predominant, with 48 species recorded, and followed by pelagic and demersal fishes, with 37 and 21 species, respectively. The fishes in the Bay belonged to tropical and subtropical fauna, with the dominance of warm water fishes (97 species) and warm-temperate water fishes (10 species). The diversity index was the highest in summer (3.82), followed by in winter (3.37) and autumn (3.00), and the lowest in spring (2.40). The seasonal variation of Pielou evenness index mimicked that of diversity index. In 1980-2007, the characteristics of fish community in the Bay changed obviously. The species number reduced from 157 species in the 1980s to 110 species in the 1990s and to 107 species in 2004-2005, and the dominant species shifted from the high-value fishes such as hairtail and pomfret in the 1980s to low-value fishes such as sardine fish, anchovy, and juvenile porgy. A non-linear regression model composed of inter-annual trend and seasonal cycle was used to simulate the changes of fish stock density in 1980-1999 and 1990-2007, and the results indicated that in the two periods, the fish stock density in the Bay all showed a decreasing trend, but the decrement was larger in 1990-2007 than in 1980-1999. The seasonal variation of the stock density in 1980-1999 was relatively small, with an amplitude being 0.099, while that in 1990-2007 was relatively larger, with the amplitude being 0.420, illustrating that the fish abundance in the Bay had a larger seasonal fluctuation in 1990-2007.

  2. Patterns of molecular genetic variation among cat breeds.

    PubMed

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  3. A simple genetic architecture underlies morphological variation in dogs.

    PubMed

    Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A

    2010-08-10

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  4. Defining the consequences of genetic variation on a proteome-wide scale.

    PubMed

    Chick, Joel M; Munger, Steven C; Simecek, Petr; Huttlin, Edward L; Choi, Kwangbom; Gatti, Daniel M; Raghupathy, Narayanan; Svenson, Karen L; Churchill, Gary A; Gygi, Steven P

    2016-06-23

    Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein-protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice. PMID:27309819

  5. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  6. Genetic Variation in Drug Transporters in Ethnic Populations

    PubMed Central

    Cropp, Cheryl D.; Yee, Sook Wah; Giacomini, Kathleen M.

    2009-01-01

    Drug-metabolizing enzymes and membrane transporters work in concert to play crucial roles in drug absorption, distribution, and elimination. It is well recognized that genetic variation in drug-metabolizing enzymes contributes substantially to interindividual differences in drug response. With the notable exceptions of CYP1A1 and CYP2E1, genes encoding cytochrome P450s, which are involved in the metabolism of >80% of all drugs used in clinical practice, are highly polymorphic.1 Interethnic variation in the distribution and frequency of occurrence of variant alleles in drug-metabolizing enzymes is known to alter the rate of drug metabolism in vivo, resulting in interethnic variation in drug disposition and response. PMID:18528433

  7. Detailed chemical abundances in NGC 5824: another metal-poor globular cluster with internal heavy element abundance variations

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Mateo, Mario; Bailey, John I.; Spencer, Meghin; Crane, Jeffrey D.; Shectman, Stephen A.

    2016-01-01

    We present radial velocities, stellar parameters, and detailed abundances of 39 elements derived from high-resolution spectroscopic observations of red giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe 26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two stars using the Magellan Inamori Kyocera Echelle spectrograph. We derive a mean metallicity of [Fe/H] = -1.94 ± 0.02 (statistical) ±0.10 (systematic). The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement with previous work and does not exceed the expected observational errors. Previous work suggested an internal metallicity spread only when fainter samples of stars were considered, so we cannot exclude the possibility of an intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and anticorrelated with [Na/Fe] and [Al/Fe]. There is no evidence for internal dispersion among the other α- or Fe-group abundance ratios. 25 of the 26 stars exhibit a n-capture enrichment pattern dominated by r-process nucleosynthesis (<[Eu/Fe]> = +0.11 ± 0.12; <[Ba/Eu]> = -0.66 ± 0.05). Only one star shows evidence of substantial s-process enhancement ([Ba/Fe] = +0.56 ± 0.12; [Ba/Eu] = +0.38 ± 0.14), but this star does not exhibit other characteristics associated with s-process enhancement via mass transfer from a binary companion. The Pb and other heavy elements produced by the s-process suggest a time-scale of no more than a few hundred Myr for star formation and chemical enrichment, like the complex globular clusters M2, M22, and NGC 5286.

  8. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.).

    PubMed

    Robinson, Kathryn M; Ingvarsson, Pär K; Jansson, Stefan; Albrectsen, Benedicte R

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  9. Variations in Abundance Enhancements in Impulsive Solar Energetic-Particle Events and Related CMEs and Flares

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.; Cliver, Edward W.; Kahler, Stephen W.

    2014-12-01

    We study event-to-event variations in the abundance enhancements of the elements He through Pb for Fe-rich impulsive solar energetic-particle (SEP) events, and their relationship with properties of associated coronal mass ejections (CMEs) and solar flares. Using a least-squares procedure we fit the power-law enhancement of element abundances as a function of their mass-to-charge ratio A/ Q to determine both the power and the coronal temperature (which determines Q) in each of 111 impulsive SEP events identified previously. Individual SEP events with the steepest element enhancements, e.g. ˜ ( A/ Q)6, tend to be smaller, lower-fluence events with steeper energy spectra that are associated with B- and C-class X-ray flares, with cooler (˜ 2.5 MK) coronal plasma, and with narrow (< 100∘), slower (< 700 km s-1) CMEs. On the other hand, higher-fluence SEP events have flatter energy spectra, less-dramatic heavy-element enhancements, e.g. ˜ ( A/ Q)3, and come from somewhat hotter coronal plasma (˜ 3.2 MK) associated with C-, M-, and even X-class X-ray flares and with wider CMEs. Enhancements in 3He/4He are uncorrelated with those in heavy elements. However, events with 3He/4He≥0.1 are even more strongly associated with narrow, slow CMEs, with cooler coronal plasma, and with B- and C-class X-ray flares than are other Fe-rich impulsive SEP events with smaller enhancements of 3He.

  10. Comparative RNA sequencing reveals substantial genetic variation in endangered primates

    PubMed Central

    Perry, George H.; Melsted, Páll; Marioni, John C.; Wang, Ying; Bainer, Russell; Pickrell, Joseph K.; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success. PMID:22207615

  11. Abundant contribution of short tandem repeats to gene expression variation in humans

    PubMed Central

    Gymrek, Melissa; Willems, Thomas; Guilmatre, Audrey; Zeng, Haoyang; Markus, Barak; Georgiev, Stoyan; Daly, Mark J.; Price, Alkes L.; Pritchard, Jonathan; Sharp, Andrew

    2016-01-01

    The contribution of repetitive elements to quantitative human traits is largely unknown. Here, we report a genome-wide survey of the contribution of Short Tandem Repeats (STRs), one of the most polymorphic and abundant repeat classes, to gene expression in humans. Our survey identified 2,060 significant expression STRs (eSTRs). These eSTRs were replicable in orthogonal populations and expression assays. We used variance partitioning to disentangle the contribution of eSTRs from linked SNPs and indels and found that eSTRs contribute 10%–15% of the cis-heritability mediated by all common variants. Further functional genomic analyses showed that eSTRs are enriched in conserved regions, co-localize with regulatory elements, and can modulate certain histone modifications. By analyzing known GWAS hits and searching for new associations in 1,685 deeply-phenotyped whole-genomes, we found that eSTRs are enriched in various clinically-relevant conditions. These results highlight the contribution of short tandem repeats to the genetic architecture of quantitative human traits. PMID:26642241

  12. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    PubMed

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use. PMID:23278123

  13. Genetic variation in domestic reindeer and wild caribou in Alaska

    USGS Publications Warehouse

    Cronin, M.; Renecker, L.; Pierson, B. J.; Patton, J.C.

    1995-01-01

    Reindeer were introduced into Alaska 100 years ago and have been maintained as semidomestic livestock. They have had contact with wild caribou herds, including deliberate cross-breeding and mixing in the wild. Reindeer have considerable potential as a domestic animal for meat or velvet antler production, and wild caribou are important to subsistence and sport hunters. Our objective was to quantify the genetic relationships of reindeer and caribou in Alaska. We identified allelic variation among five herds of wild caribou and three herds of reindeer with DNA sequencing and restriction enzymes for three loci: a DQA locus of the major histocompatibility complex (Rata-DQA1), k-casein and the D-loop of mitochondrial DNA. These loci are of interest because of their potential influence on domestic animal performance and the fitness of wild populations. There is considerable genetic variation in reindeer and caribou for all three loci, including five, three and six alleles for DQA, k-casein and D-loop respectively. Most alleles occur in both reindeer and caribou, which may be the result of recent common ancestry or genetic introgression in either direction. However, allele frequencies differ considerably between reindeer and caribou, which suggests that gene flow has been limited.

  14. Genetic variation in uncontrolled childhood asthma despite ICS treatment.

    PubMed

    Leusink, M; Vijverberg, S J H; Koenderman, L; Raaijmakers, J A M; de Jongste, J C; Sterk, P J; Duiverman, E J; Onland-Moret, N C; Postma, D S; de Boer, A; de Bakker, P I W; Koppelman, G H; Maitland-van der Zee, A H

    2016-04-01

    Genetic variation may partly explain asthma treatment response heterogeneity. We aimed to identify common and rare genetic variants associated with asthma that was not well controlled despite inhaled corticosteroid (ICS) treatment. Data of 110 children was collected in the Children Asthma Therapy Optimal trial. Associations of genetic variation with measures of lung function (FEV1%pred), airway hyperresponsiveness (AHR) to methacholine (Mch PD20) and treatment response outcomes were analyzed using the exome chip. The 17q12-21 locus (containing ORMDL3 and GSMDB) previously associated with childhood asthma was investigated separately. Single-nucleotide polymorphisms (SNPs) in the 17q12-21 locus were found nominally associated with the outcomes. The strongest association in this region was found for rs72821893 in KRT25 with FEV1%pred (P=3.75*10(-5)), Mch PD20 (P=0.00095) and Mch PD20-based treatment outcome (P=0.006). No novel single SNPs or burden tests were significantly associated with the outcomes. The 17q12-21 region was associated with FEV1%pred and AHR, and additionally with ICS treatment response.

  15. Rapid establishment of genetic incompatibility through natural epigenetic variation.

    PubMed

    Durand, Stéphanie; Bouché, Nicolas; Perez Strand, Elsa; Loudet, Olivier; Camilleri, Christine

    2012-02-21

    Epigenetic variation is currently being investigated with the aim of deciphering its importance in both adaptation and evolution [1]. In plants, epimutations can underlie heritable phenotypic diversity [2-4], and epigenetic mechanisms might contribute to reproductive barriers between [5] or within species [6]. The extent of epigenetic variation begins to be appreciated in Arabidopsis [7], but the origin of natural epialleles and their impact in the wild remain largely unknown. Here we show that a genetic incompatibility among Arabidopsis thaliana strains is related to the epigenetic control of a pair of duplicate genes involved in fitness: a transposition event results in a rearranged paralogous structure that causes DNA methylation and transcriptional silencing of the other copy. We further show that this natural, strain-specific epiallele is stable over numerous generations even after removal of the duplicated, rearranged gene copy through crosses. Finally, we provide evidence that the rearranged gene copy triggers de novo DNA methylation and silencing of the unlinked native gene by RNA-directed DNA methylation. Our findings suggest an important role of naturally occurring epialleles originating from structural variation in rapidly establishing genetic incompatibilities following gene duplication events.

  16. The African Genome Variation Project shapes medical genetics in Africa.

    PubMed

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  17. The African Genome Variation Project shapes medical genetics in Africa

    NASA Astrophysics Data System (ADS)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  18. Genetic mapping of adaptive wing size variation in Drosophila simulans.

    PubMed

    Lee, S F; Rako, L; Hoffmann, A A

    2011-07-01

    Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions. PMID:21157499

  19. The role of mutation in genetic copy number variation

    NASA Astrophysics Data System (ADS)

    Clark, B. K.; Weidner, Jacob; Wabick, Kevin

    2010-03-01

    Until very recently, the standard model of DNA included two genes for each trait. This dated model has given way to a model that includes copies of some genes well in excess of the canonical two. Copy number variations in the human genome play critical roles in causing or aggravating a number of syndromes and diseases while providing increased resistance to others. We explore the role of mutation, crossover, inversion, and reproduction in determining copy number variations in a numerical simulation of a population. The numerical model consists of a population of individuals, where each individual is represented by a single strand of DNA with the same number of genes. Each gene is initially assigned to one of two traits. Fitness of the individual is determined by the two most fit genes for trait one, and trait two genetic material is treated as a reservoir of junk DNA. After a sufficient number of generations, during which the genetic distribution is allowed to reach a steady-state, the mean number of genes per trait and the copy number variation are recorded. Here, we focus on the role of mutation and compare simulation results to theory.

  20. Genetic Variation in Nacobbus aberrans: An Approach toward Taxonomic Resolution.

    PubMed

    Ibrahim, S K; Baldwin, J G; Roberts, P A; Hyman, B C

    1997-09-01

    Biochemical and molecular analyses of genetic variation were evaluated to address the taxonomic status of Nacobbus aberrans. Isolates from Mexico, Peru, and Argentina, cultured on tomato in the greenhouse, were analyzed with respect to isozyme and DNA marker variation. Although acid phosphatase and malate dehydrogenase revealed distinct profiles for each isolate, non-specific esterases revealed possible affinities between the Peruvian isolates and between the isolates from Mexico and Peru. Two of l 0 RAPD primers revealed affinities suggested by esterase profiles. RFLP analysis of the rDNA repeating unit with six restriction enzymes revealed identical cleavage patterns between the Peru isolates and a distinct profile shared by isolates from Mexico and Argentina. Nucleotide sequence analysis of the 5.8S rRNA coding region revealed differences among the four isolates at eight of 157 positions; sequences of the Peruvian isolates differed from each other at only one position, whereas the Mexican and Argentine isolates were identical and could be distinguished from the Peruvian isolates. A distance matrix from unweighted pairwise comparisons of the 5.8S rDNA revealed apparent elevated intraspecific divergence in N. aberrans comparable to intergeneric divergence between Heterodera and Globodera. Analysis of additional N. aberrans isolates from throughout the distribution range should help determine the full extent of intraspecific genetic variation that underlies the phenotypic and morphologic diversity of the genus.

  1. Fatty acid metabolism: Implications for diet, genetic variation, and disease

    PubMed Central

    Suburu, Janel; Gu, Zhennan; Chen, Haiqin; Chen, Wei; Zhang, Hao; Chen, Yong Q.

    2014-01-01

    Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases. PMID:24511462

  2. Spatial Genetic Structure of the Abundant and Widespread Peatmoss Sphagnum magellanicum Brid.

    PubMed Central

    Kyrkjeeide, Magni Olsen; Hassel, Kristian; Flatberg, Kjell Ivar; Shaw, A. Jonathan; Yousefi, Narjes; Stenøien, Hans K.

    2016-01-01

    Spore-producing organisms have small dispersal units enabling them to become widespread across continents. However, barriers to gene flow and cryptic speciation may exist. The common, haploid peatmoss Sphagnum magellanicum occurs in both the Northern and Southern hemisphere, and is commonly used as a model in studies of peatland ecology and peatmoss physiology. Even though it will likely act as a rich source in functional genomics studies in years to come, surprisingly little is known about levels of genetic variability and structuring in this species. Here, we assess for the first time how genetic variation in S. magellanicum is spatially structured across its full distribution range (Northern Hemisphere and South America). The morphologically similar species S. alaskense was included for comparison. In total, 195 plants were genotyped at 15 microsatellite loci. Sequences from two plastid loci (trnG and trnL) were obtained from 30 samples. Our results show that S. alaskense and almost all plants of S. magellanicum in the northern Pacific area are diploids and share the same gene pool. Haploid plants occur in South America, Europe, eastern North America, western North America, and southern Asia, and five genetically differentiated groups with different distribution ranges were found. Our results indicate that S. magellanicum consists of several distinct genetic groups, seemingly with little or no gene flow among them. Noteworthy, the geographical separation of diploids and haploids is strikingly similar to patterns found within other haploid Sphagnum species spanning the Northern Hemisphere. Our results confirm a genetic division between the Beringian and the Atlantic that seems to be a general pattern in Sphagnum taxa. The pattern of strong genetic population structuring throughout the distribution range of morphologically similar plants need to be considered in future functional genomic studies of S. magellanicum. PMID:26859563

  3. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  4. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  5. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  6. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  7. Global genetic variations predict brain response to faces.

    PubMed

    Dickie, Erin W; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-08-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  8. Global genetic variations predict brain response to faces.

    PubMed

    Dickie, Erin W; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-08-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  9. Global Genetic Variations Predict Brain Response to Faces

    PubMed Central

    Dickie, Erin W.; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N.; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  10. Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity.

    PubMed

    Prabhakar, Pranay; Zhang, Hua; Chen, De; Faber, James E

    2015-01-01

    The presence of a native collateral circulation in tissues lessens injury in occlusive vascular diseases. However, differences in genetic background cause wide variation in collateral number and diameter in mice, resulting in large variation in protection. Indirect estimates of collateral perfusion suggest that wide variation also exists in humans. Unfortunately, methods used to obtain these estimates are invasive and not widely available. We sought to determine whether differences in genetic background in mice result in variation in branch patterning of the retinal arterial circulation, and whether these differences predict strain-dependent differences in pial collateral extent and severity of ischemic stroke. Retinal patterning metrics, collateral extent, and infarct volume were obtained for 10 strains known to differ widely in collateral extent. Multivariate regression was conducted, and model performance was assessed using K-fold cross-validation. Twenty-one metrics varied with strain (p<0.01). Ten metrics (e.g., bifurcation angle, lacunarity, optimality) predicted collateral number and diameter across seven regression models, with the best model closely predicting (p<0.0001) number (±1.2-3.4 collaterals, K-fold R2=0.83-0.98), diameter (±1.2-1.9 μm, R2=0.73-0.88), and infarct volume (±5.1 mm3, R2=0.85-0.87). An analogous set of the most predictive metrics, obtained for the middle cerebral artery (MCA) tree in a subset of the above strains, also predicted (p<0.0001) collateral number (±3.3 collaterals, K-fold R2=0.78) and diameter (±1.6 μm, R2=0.86). Thus, differences in arterial branch patterning in the retina and the MCA trees are specified by genetic background and predict variation in collateral extent and stroke severity. If also true in human, and since genetic variation in cerebral collaterals extends to other tissues at least in mice, a similar "retinal predictor index" could serve as a non- or minimally invasive biomarker for collateral extent in

  11. Oxytocin Receptor Genetic Variation Promotes Human Trust Behavior

    PubMed Central

    Krueger, Frank; Parasuraman, Raja; Iyengar, Vijeth; Thornburg, Matthew; Weel, Jaap; Lin, Mingkuan; Clarke, Ellen; McCabe, Kevin; Lipsky, Robert H.

    2012-01-01

    Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR) gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A)/guanine (G) transition (rs53576) has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students (n = 108) with the administration of a trust game experiment. Our results show that a common occurring genetic variation (rs53576) in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG) showed higher trust behavior than individuals with A allele carriers (AA/AG). Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors. PMID:22347177

  12. Genetic mapping of variation in spatial learning in the mouse.

    PubMed

    Steinberger, Daniela; Reynolds, David S; Ferris, Pushpindar; Lincoln, Rachael; Datta, Susmita; Stanley, Joanna; Paterson, Andrea; Dawson, Gerard R; Flint, Jonathan

    2003-03-15

    Inbred strains of mice are known to differ in their performance in the Morris water maze task, a test of spatial discrimination and place navigation in rodents, but the genetic basis of individual variation in spatial learning is unknown. We have mapped genetic effects that contribute to the difference between two strains, DBA/2 and C57BL6/J, using an F2 intercross and methods to detect quantitative trait loci (QTL). We found two QTL, one on chromosome 4 and one on chromosome 12, that influence behavior in the probe trial of the water maze (genome-wide significance p = 0.017 and 0.015, respectively). By including tests of avoidance conditioning and behavior in a novel environment, we show that the QTL on chromosomes 4 and 12 specifically influence variation in spatial learning. QTL that influence differences in fearful behavior (on chromosomes 1, 3, 7, 15, and 19) operate while mice are trained in the water maze apparatus. PMID:12657702

  13. Variation in the peacock's train shows a genetic component.

    PubMed

    Petrie, Marion; Cotgreave, Peter; Pike, Thomas W

    2009-01-01

    Female peafowl (Pavo cristatus) show a strong mating preference for males with elaborate trains. This, however, poses something of a paradox because intense directional selection should erode genetic variation in the males' trains, so that females will no longer benefit by discriminating among males on the basis of these traits. This situation is known as the 'lek paradox', and leads to the theoretical expectation of low heritability in the peacock's train. We used two independent breeding experiments, involving a total of 42 sires and 86 of their male offspring, to estimate the narrow sense heritabilities of male ornaments and other morphometric traits. Contrary to expectation, we found significant levels of heritability in a trait known to be used by females during mate choice (train length), while no significant heritabilities were evident for other, non-fitness related morphological traits (tarsus length, body weight or spur length). This study adds to the building body of evidence that high levels of additive genetic variance can exist in secondary sexual traits under directional selection, but further emphasizes the main problem of what maintains this variation.

  14. Genetic Variation in Virulence among Chalkbrood Strains Infecting Honeybees

    PubMed Central

    Vojvodic, Svjetlana; Jensen, Annette B.; Markussen, Bo; Eilenberg, Jørgen; Boomsma, Jacobus J.

    2011-01-01

    Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12–14% mortality while those from the other clade induced 71–92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies. PMID:21966406

  15. Variation in the peacock's train shows a genetic component.

    PubMed

    Petrie, Marion; Cotgreave, Peter; Pike, Thomas W

    2009-01-01

    Female peafowl (Pavo cristatus) show a strong mating preference for males with elaborate trains. This, however, poses something of a paradox because intense directional selection should erode genetic variation in the males' trains, so that females will no longer benefit by discriminating among males on the basis of these traits. This situation is known as the 'lek paradox', and leads to the theoretical expectation of low heritability in the peacock's train. We used two independent breeding experiments, involving a total of 42 sires and 86 of their male offspring, to estimate the narrow sense heritabilities of male ornaments and other morphometric traits. Contrary to expectation, we found significant levels of heritability in a trait known to be used by females during mate choice (train length), while no significant heritabilities were evident for other, non-fitness related morphological traits (tarsus length, body weight or spur length). This study adds to the building body of evidence that high levels of additive genetic variance can exist in secondary sexual traits under directional selection, but further emphasizes the main problem of what maintains this variation. PMID:17922297

  16. Seasonal variations in zooplankton abundances in the Iturbide reservoir (Isidro Fabela, State of Mexico, Mexico).

    PubMed

    Sarma, S S S; Osnaya-Espinosa, Lidia Rosario; Aguilar-Acosta, Claudia Romina; Nandini, S

    2011-07-01

    This studywas undertaken to quantify the seasonal variations of zooplankton (rotifers, cladocerans and copepods) and selected physico-chemical variables (temperature, pH, conductivity, Secchi disc transparency, dissolved oxygen, ammonia, nitrate and phosphate concentrations) in the Iturbide dam. Monthly zooplankton samples (50 l filtered through 50 microm mesh, in duplicates from each of the 4 stations) were collected from February 2008 to January 2009. Simultaneously physico-chemical variables were measured. The zooplankton samples were fixed in 4% formalin in the field. In general, the temperature ranged from 9 to 16 degrees C, rarely exceeding 20 degrees C. Secchi transparency was nearly 100% since the reservoir was shallow (< 2 m) even during the rainy seasons. Dissolved oxygen was generally high, 13-18 mg l(-1). Nitrate levels (10 to 170 microg l(-1)) were low while phosphates were relatively high (9 to 35 microg l(-1)). The Iturbide reservoir was dominated by rotifer species. We encountered in all, 55 taxa of rotifers, 9 cladocerans and 2 copepods. The rotifer families Trichocercidae and Notommatidae had the highest number of species (7 each) followed by Colurellidae and Lecanidae (6 and 5 species, respectively). Trichocerca elongata, Ascomorpha ovalis, K. americana, K. cochlearis, Lepadella patella and Pompholyx sulcata were the dominant rotifers during the study period. On an annual average, rotifer density ranged between 50-200 ind.(-1). Among crustaceans Chydorus brevilabris and Macrothrix triserialis were most abundant. The maximal density of these cladocerans was about 50 ind. l(-1). Copepods were much lower in numbers (< 20 ind. l(-1)). In general the density of zooplankton was higher during summer months (April to July) than during winter. Shannon-Wiener diversity index varied from 1.0 to 4.3 depending on the site and the sampling period. Based on the data of Secchi transparency and nutrient concentrations, the Iturbide reservoir appeared to be

  17. Abundance Variations and Flows in Plage Regions Observed with CDS/SOHO

    NASA Astrophysics Data System (ADS)

    Rank, G.; Bagalá, L. G.; Czaykowska, A.; Haerendel, G.

    1999-10-01

    We present results from CDS/SOHO observations of the spotless active region NOAA-8208, obtained on 28th April 1998 near disk center. MDI images show a bipolar magnetic configuration. The regions of enhanced He I emission correspond to the areas with strong magnetic flux and also with bright plage areas seen in Ca II and H-alpha images. A high correlation is found between intensity maps of the transition region lines He I (logTmax = 4.3), O III (logTmax = 5.0), and O V (logTmax = 5.4). The line-of-sight velocities of He I reveal a strong downflow in the plage areas. Further, the line-of-sight velocities of He I, O III, and O V are well correlated, showing that the downflow pattern exists up to temperatures of about 0.25 MK. At higher temperatures (Mg VIII at logTmax = 5.8) this flow is not detected, suggesting that material streams into the plage region from sideways in the high transition region. Maps of the electron density in the transition region have been constructed from several line ratios yielding densities of about 9.0 cm-3 in the plage regions, about dex 0.5 cm-3 higher compared to the surrounding. To study the spatial variation of the first ionization potential (FIP) effect, the abundance ratio has been mapped for the ion ratio MgVI/NeVI. The ratio is highly variable on spatial scales down to a few arcsec from photospheric values to enhancements of a factor of 10. The strongest FIP enhancements are not correlated with transition region line emission, but are found outside of the plage regions. Some areas of strong FIP enhancement appear stretched and elongated, suggesting that the material is confined in loop-like structures.

  18. Evaluation of genetic variation among wild rice populations in Cambodia

    PubMed Central

    Orn, Chhourn; Shishido, Rieko; Akimoto, Masahiro; Ishikawa, Ryo; Htun, Than Myint; Nonomura, Ken-Ichi; Koide, Yohei; Sarom, Men; Vang, Seng; Sophany, Sakhan; Makara, Ouk; Ishii, Takashige

    2015-01-01

    A total of 448 samples in five natural populations of wild rice (Oryza rufipogon) were collected in Cambodia. They were examined using 12 SSR and two chloroplast markers to evaluate the degree of variation among populations and the genetic structure within populations. In the two annual populations, the number of plants with homozygous alleles at all 12 SSR loci were high (66.3% and 79.5%), suggesting that these plants propagate mainly through self-pollination. In the three perennial populations, no individuals had all homozygous genotypes, but redundant genotypes resulted from clonal propagation were observed. Percentages of the redundant genotypes were highly varied (3.6%, 29.2% and 86.0%). This may be due to the different stable levels of environmental conditions. As for chloroplast genome, most of the wild plants showed the same chloroplast types as most Indica-type cultivars have. However, plants with different chloroplast types were maintained, even in the same population. In tropical Asian countries, many wild rice populations were observed under similar ecological conditions examined in this study. Therefore, the present results concerning population structure will be important to further elucidate genetic features of wild rice, and will also give strong clues to utilize and conserve wild natural genetic resources. PMID:26719746

  19. Clinically Relevant Genetic Variations in Drug Metabolizing Enzymes

    PubMed Central

    Pinto, Navin; Dolan, M. Eileen

    2011-01-01

    In the field of pharmacogenetics, we currently have a few markers to guide physicians as to the best course of therapy for patients. For the most part, these genetic variants are within a drug metabolizing enzyme that has a large effect on the degree or rate at which a drug is converted to its metabolites. For many drugs, response and toxicity are multi-genic traits and understanding relationships between a patient's genetic variation in drug metabolizing enzymes and the efficacy and/or toxicity of a medication offers the potential to optimize therapies. This review will focus on variants in drug metabolizing enzymes with predictable and relatively large impacts on drug efficacy and/or toxicity; some of these drug/gene variant pairs have impacted drug labels by the United States Food and Drug Administration. The challenges in identifying genetic markers and implementing clinical changes based on known markers will be discussed. In addition, the impact of next generation sequencing in identifying rare variants will be addressed. PMID:21453273

  20. Genetic variation modifies risk for neurodegeneration based on biomarker status

    PubMed Central

    Hohman, Timothy J.; Koran, Mary Ellen I.; Thornton-Wells, Tricia A.

    2014-01-01

    Background: While a great deal of work has gone into understanding the relationship between Cerebrospinal fluid (CSF) biomarkers, brain atrophy, and disease progression, less work has attempted to investigate how genetic variation modifies these relationships. The goal of this study was two-fold. First, we sought to identify high-risk vs. low-risk individuals based on their CSF tau and Aβ load and characterize these individuals with regard to brain atrophy in an AD-relevant region of interest. Next, we sought to identify genetic variants that modified the relationship between biomarker classification and neurodegeneration. Methods: Participants were categorized based on established cut-points for biomarker positivity. Mixed model regression was used to quantify longitudinal change in the left inferior lateral ventricle. Interaction analyses between single nucleotide polymorphisms (SNPs) and biomarker group status were performed using a genome wide association study (GWAS) approach. Correction for multiple comparisons was performed using the Bonferroni procedure. Results: One intergenic SNP (rs4866650) and one SNP within the SPTLC1 gene (rs7849530) modified the association between amyloid positivity and neurodegeneration. A transcript variant of WDR11-AS1 gene (rs12261764) modified the association between tau positivity and neurodegeneration. These effects were consistent across the two sub-datasets and explained approximately 3% of variance in ventricular dilation. One additional SNP (rs6887649) modified the association between amyloid positivity and baseline ventricular volume, but was not observed consistently across the sub-datasets. Conclusions: Genetic variation modifies the association between AD biomarkers and neurodegeneration. Genes that regulate the molecular response in the brain to oxidative stress may be particularly relevant to neural vulnerability to the damaging effects of amyloid-β. PMID:25140149

  1. Two-Point Observations of High- and Low-Frequency Variations of Helium Abundance in the Solar Win

    NASA Astrophysics Data System (ADS)

    Safrankova, J.; Cagas, P.; Nemecek, Z.; Prech, L.; Zastenker, G. N.; Riazantseva, M.

    2014-12-01

    Variations of the abundance of heavy species observed in the solar wind are usually attributed to spacecraft encounters with streams emanating from different places and altitudes in the source region and their further evolution is considered as being negligible. These conclusions are based on an analysis of highly averaged data and much less attention was devoted to variations on the time scale of seconds. The BMSW instrument onboard the Spektr-R spacecraft provides a high-time resolution data of the helium and proton fluxes and proton velocity, density, and temperature that suitable for investigations of rapid variations. The paper compares measurements in two points (Spektr-R and Wind) and focuses on the changes of helium abundance on this middle scale and on their correlations with variations of other parameters. We have found that only a low-frequency part of He abundance variations can be attributed to changes of the source region, whereas a significant portion of them could be generated by in-transit turbulence that is probably driven by the speed difference between the ion species.

  2. Impact of natural genetic variation on gene expression dynamics.

    PubMed

    Ackermann, Marit; Sikora-Wohlfeld, Weronika; Beyer, Andreas

    2013-06-01

    DNA sequence variation causes changes in gene expression, which in turn has profound effects on cellular states. These variations affect tissue development and may ultimately lead to pathological phenotypes. A genetic locus containing a sequence variation that affects gene expression is called an "expression quantitative trait locus" (eQTL). Whereas the impact of cellular context on expression levels in general is well established, a lot less is known about the cell-state specificity of eQTL. Previous studies differed with respect to how "dynamic eQTL" were defined. Here, we propose a unified framework distinguishing static, conditional and dynamic eQTL and suggest strategies for mapping these eQTL classes. Further, we introduce a new approach to simultaneously infer eQTL from different cell types. By using murine mRNA expression data from four stages of hematopoiesis and 14 related cellular traits, we demonstrate that static, conditional and dynamic eQTL, although derived from the same expression data, represent functionally distinct types of eQTL. While static eQTL affect generic cellular processes, non-static eQTL are more often involved in hematopoiesis and immune response. Our analysis revealed substantial effects of individual genetic variation on cell type-specific expression regulation. Among a total number of 3,941 eQTL we detected 2,729 static eQTL, 1,187 eQTL were conditionally active in one or several cell types, and 70 eQTL affected expression changes during cell type transitions. We also found evidence for feedback control mechanisms reverting the effect of an eQTL specifically in certain cell types. Loci correlated with hematological traits were enriched for conditional eQTL, thus, demonstrating the importance of conditional eQTL for understanding molecular mechanisms underlying physiological trait variation. The classification proposed here has the potential to streamline and unify future analysis of conditional and dynamic eQTL as well as many

  3. Genetic variation in natural populations of Populus tremuloide

    SciTech Connect

    Cheliak, W.M.

    1980-01-01

    Vegetative reproduction results in a mosaic of clones throughout the extensive natural range of this species. An electrophoretic survey of 26 loci in 222 trees from seven natural populations in Alberta demonstrated great variability. Average observed population heterozygosity was 0.52 with an average of 2.3 alleles per locus; 84% of the loci were polymorphic. A model (for a finite population with neutral alleles) was developed to investigate the effects of partial vegetative reproduction on the amount of variation in a population. Results of the survey conformed to those predicted by the model for a population with a rate of sexual establishment greater than 1/N, where N is the population size. The model states that under these conditions, vegetative reproduction has no effect on the population. Therefore, the high level of observed variation is not an artifact of the mode of natural reproduction. These results support conclusions about high population variability based on phenotypic measurements and also suggest a genetic basis for this variation, rather than simply phenotypic plasticity.

  4. VARIATION IN JUVENILE COHO SALMON SUMMER ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    Varying habitat conditions found across a stream network during the summer months may limit the abundance of salmonids such as coho (Oncorhynchus kisutch). We examined the abundance of juvenile coho salmon across a stream network in an Oregon coast range basin from 2002 through ...

  5. GENETIC ASSOCIATION ANALYSIS OF COPY NUMBER VARIATION (CNVs) IN HUMAN DISEASE PATHOGENESIS

    PubMed Central

    Ionita-Laza, Iuliana; Rogers, Angela J.; Lange, Christoph; Raby, Benjamin A.; Lee, Charles

    2009-01-01

    Structural genetic variation, including copy number variation (CNV), constitutes a substantial fraction of total genetic variability and the importance of structural genetic variants in modulating human disease is increasingly being recognized. Early successes in identifying disease-associated CNVs via a candidate gene approach mandate that future disease association studies need to include structural genetic variation. Such analyses should not rely on previously developed methodologies that were designed to evaluate single nucleotide polymorphisms (SNPs). Instead, development of novel technical, statistical, and epidemiologic methods will be necessary to optimally capture this newly-appreciated form of genetic variation in a meaningful manner. PMID:18822366

  6. Genetic variation, climate models and the ecological genetics of Larix occidentalis

    SciTech Connect

    Rehfeldt, G.E.

    1995-12-31

    Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance, need to be separated by about 500 m in elevation before genetic differentiation can be expected.

  7. Spatio-temporal variations in the diversity and abundance of commercially important Decapoda and Stomatopoda in subtropical Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, Karen K. Y.; Ng, Jasmine S. S.; Leung, Kenneth M. Y.

    2007-05-01

    In subtropical Hong Kong, western waters (WW) are strongly influenced by the freshwater input from the Pearl River estuary, especially during summer monsoon, whereas eastern waters (EW) are predominantly influenced by oceanic currents throughout the year. Such hydrographical differences may lead to spatio-temporal differences in biodiversity of benthic communities. This study investigated the diversity and abundance of commercially important decapods and stomatopods in EW (i.e. Tolo Harbour and Channel) and WW (i.e. Tuen Mun and Lantau Island) of Hong Kong using monthly trawl surveys (August 2003-May 2005). In total, 22 decapod and nine stomatopod species were recorded. The penaeid Metapenaeopsis sp. and stomatopod Oratosquillina interrupta were the most abundant and dominant crustaceans in EW and WW, respectively. Both univariate and multivariate analyses showed that WW supported significantly higher abundance, biomass and diversity of crustaceans than EW, although there were significant between-site and within-site variations in community structure. Higher abundance and biomass of crustaceans were recorded in summer than winter. Such spatio-temporal variations could be explained by differences in the hydrography, environmental conditions and anthropogenic impacts between the two areas. Temporal patterns in the abundance-biomass comparison curves and negative W-statistics suggest that the communities have been highly disturbed in both areas, probably due to anthropogenic activities such as bottom trawling and marine pollution.

  8. Genetic and Environmental Variation in Lung Function Drives Subsequent Variation in Aging of Fluid Intelligence

    PubMed Central

    Reynolds, Chandra A.; Emery, Charles F.; Pedersen, Nancy L.

    2013-01-01

    Longitudinal studies document an association of pulmonary function with cognitive function in middle-aged and older adults. Previous analyses have identified a genetic contribution to the relationship between pulmonary function with fluid intelligence. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for pulmonary function and fluid intelligence. Longitudinal data from the Swedish Adoption/Twin Study of Aging were available from 808 twins ranging in age from 50 to 88 years at the first wave. Participants completed up to six assessments covering a 19-year period. Measures at each assessment included spatial and speed factors and pulmonary function. Model-fitting indicated that genetic variance for FEV1 was a leading indicator of variation in age changes for spatial and speed factors. Thus, these data indicate a genetic component to the directional relationship from decreased pulmonary function to decreased function of fluid intelligence. PMID:23760789

  9. Genetic and environmental variation in lung function drives subsequent variation in aging of fluid intelligence.

    PubMed

    Finkel, Deborah; Reynolds, Chandra A; Emery, Charles F; Pedersen, Nancy L

    2013-07-01

    Longitudinal studies document an association of pulmonary function with cognitive function in middle-aged and older adults. Previous analyses have identified a genetic contribution to the relationship between pulmonary function with fluid intelligence. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for pulmonary function and fluid intelligence. Longitudinal data from the Swedish Adoption/Twin Study of Aging were available from 808 twins ranging in age from 50 to 88 years at the first wave. Participants completed up to six assessments covering a 19-year period. Measures at each assessment included spatial and speed factors and pulmonary function. Model-fitting indicated that genetic variance for FEV1 was a leading indicator of variation in age changes for spatial and speed factors. Thus, these data indicate a genetic component to the directional relationship from decreased pulmonary function to decreased function of fluid intelligence.

  10. Genetic Sorting of Subordinate Species in Grassland Modulated by Intraspecific Variation in Dominant Species

    PubMed Central

    Gustafson, Danny J.; Major, Charles; Jones, Dewitt; Synovec, John; Baer, Sara G.; Gibson, David J.

    2014-01-01

    Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans) and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium), during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes) seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species. PMID:24637462

  11. Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Kliebenstein, Daniel J

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

  12. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  13. Diversity and abundance of mosquitoes (Diptera:Culicidae) in an urban park: larval habitats and temporal variation.

    PubMed

    Medeiros-Sousa, Antônio R; Ceretti-Júnior, Walter; de Carvalho, Gabriela C; Nardi, Marcello S; Araujo, Alessandra B; Vendrami, Daniel P; Marrelli, Mauro T

    2015-10-01

    Urban parks are areas designated for human recreation but also serve as shelter and refuge for populations of several species of native fauna, both migratory and introduced. In Brazil, the effect of annual climate variations on Aedes aegypti and dengue epidemics in large cities like São Paulo is well known, but little is known about how such variations can affect the diversity of mosquito vectors in urban parks and the risk of disease transmission by these vectors. This study investigates the influence of larval habitats and seasonal factors on the diversity and abundance of Culicidae fauna in Anhanguera Park, one of the largest remaining green areas in the city of São Paulo. Species composition and richness and larval habitats were identified. Seasonality (cold-dry and hot-rainy periods) and year were considered as explanatory variables and the models selection approach was developed to investigate the relationship of these variables with mosquito diversity and abundance. A total of 11,036 specimens from 57 taxa distributed in 13 genera were collected. Culex nigripalpus, Cx. quinquefasciatus and Aedes albopictus were the most abundant species. Bamboo internodes and artificial breeding sites showed higher abundance, while ponds and puddles showed greater richness. Significant relationships were observed between abundance and seasonality, with a notable increase in the mosquitos abundance in the warm-rainy periods. The Shannon and Berger-Parker indices were related with interaction between seasonality and year, however separately these predictors showed no relationship with ones. The increased abundance of mosquitoes in warm-rainy months and the fact that some of the species are epidemiologically important increase not only the risk of pathogen transmission to people who frequent urban parks but also the nuisance represented by insect bites. The findings of this study highlight the importance of knowledge of culicid ecology in green areas in urban environments.

  14. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    PubMed

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. PMID:27265357

  15. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    PubMed

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis.

  16. Iron and s-elements abundance variations in NGC 5286: comparison with `anomalous' globular clusters and Milky Way satellites

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Milone, A. P.; Karakas, A. I.; Casagrande, L.; Yong, D.; Shingles, L.; Da Costa, G.; Norris, J. E.; Stetson, P. B.; Lind, K.; Asplund, M.; Collet, R.; Jerjen, H.; Sbordone, L.; Aparicio, A.; Cassisi, S.

    2015-06-01

    We present a high-resolution spectroscopic analysis of 62 red giants in the Milky Way globular cluster (GC) NGC 5286. We have determined abundances of representative light proton-capture, α, Fe-peak and neutron-capture element groups, and combined them with photometry of multiple sequences observed along the colour-magnitude diagram. Our principal results are: (i) a broad, bimodal distribution in s-process element abundance ratios, with two main groups, the s-poor and s-rich groups; (ii) substantial star-to-star Fe variations, with the s-rich stars having higher Fe, e.g. < [Fe/H]> _{s-rich}} - < [Fe/H]> _{s-poor}} ˜ 0.2 dex; and (iii) the presence of O-Na-Al (anti)correlations in both stellar groups. We have defined a new photometric index, cBVI = (B - V) - (V - I), to maximize the separation in the colour-magnitude diagram between the two stellar groups with different Fe and s-element content, and this index is not significantly affected by variations in light elements (such as the O-Na anticorrelation). The variations in the overall metallicity present in NGC 5286 add this object to the class of anomalous GCs. Furthermore, the chemical abundance pattern of NGC 5286 resembles that observed in some of the anomalous GCs, e.g. M 22, NGC 1851, M 2, and the more extreme ω Centauri, that also show internal variations in s-elements, and in light elements within stars with different Fe and s-elements content. In view of the common variations in s-elements, we propose the term s-Fe-anomalous GCs to describe this sub-class of objects. The similarities in chemical abundance ratios between these objects strongly suggest similar formation and evolution histories, possibly associated with an origin in tidally disrupted dwarf satellites.

  17. The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster

    PubMed Central

    Svetec, Nicolas; Cridland, Julie M.; Zhao, Li; Begun, David J.

    2016-01-01

    Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations. PMID:26950216

  18. The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster.

    PubMed

    Svetec, Nicolas; Cridland, Julie M; Zhao, Li; Begun, David J

    2016-03-01

    Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations. PMID:26950216

  19. Population genetic variation in gene expression is associated withphenotypic variation in Saccharomyces cerevisiae

    SciTech Connect

    Fay, Justin C.; McCullough, Heather L.; Sniegowski, Paul D.; Eisen, Michael B.

    2004-02-25

    The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. Results: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes,20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. Conclusions: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.

  20. Investigation of Genetic Variation Underlying Central Obesity amongst South Asians

    PubMed Central

    Scott, William R.; Zhang, Weihua; Loh, Marie; Tan, Sian-Tsung; Lehne, Benjamin; Afzal, Uzma; Peralta, Juan; Saxena, Richa; Ralhan, Sarju; Wander, Gurpreet S.; Bozaoglu, Kiymet; Sanghera, Dharambir K.; Elliott, Paul; Scott, James; Chambers, John C.; Kooner, Jaspal S.

    2016-01-01

    South Asians are 1/4 of the world’s population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10−6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans. PMID:27195708

  1. Short communication: Genetic variation of riboflavin content in bovine milk.

    PubMed

    Poulsen, Nina A; Rybicka, Iga; Larsen, Lotte B; Buitenhuis, Albert J; Larsen, Mette K

    2015-05-01

    Riboflavin (vitamin B2) is an essential water-soluble vitamin; elderly people and adolescents in particular can have poor riboflavin status. In Western diets, milk and dairy products are primary sources of riboflavin, but little is known about the natural variation within and among bovine breeds, and how genetic and environmental factors can affect the riboflavin content in milk. As a part of the Danish-Swedish Milk Genomics Initiative, the aim of the study was to quantify milk riboflavin content using reverse-phase HPLC in 2 major Danish dairy breeds. The results showed substantial interbreed differences in milk riboflavin content. Milk from Danish Jersey cows contained significantly higher levels of riboflavin (1.93mg/L of milk) than milk from Danish Holstein cows (1.40mg/L of milk). Furthermore, genetic analyses revealed high heritabilities in both breeds (0.52 for Danish Holstein and 0.31 for Danish Jersey). A genomic association study found 35 significant single nucleotide polymorphisms (false discovery rate<0.10) to be associated with riboflavin content in milk in Jersey cows (all on BTA14 and BTA17), and 511 significant single nucleotide polymorphisms in Holstein cows spread over 25 different autosomes with BTA13 and BTA14 having the most promising quantitative trait loci. The best candidate gene found within the identified quantitative trait loci was SLC52A3, a riboflavin transporter gene, which was among the significant markers on BTA13 in Holstein cows.

  2. Patterns of genetic variation within and between Gibbon species.

    PubMed

    Kim, Sung K; Carbone, Lucia; Becquet, Celine; Mootnick, Alan R; Li, David Jiang; de Jong, Pieter J; Wall, Jeffrey D

    2011-08-01

    Gibbons are small, arboreal, highly endangered apes that are understudied compared with other hominoids. At present, there are four recognized genera and approximately 17 species, all likely to have diverged from each other within the last 5-6 My. Although the gibbon phylogeny has been investigated using various approaches (i.e., vocalization, morphology, mitochondrial DNA, karyotype, etc.), the precise taxonomic relationships are still highly debated. Here, we present the first survey of nuclear sequence variation within and between gibbon species with the goal of estimating basic population genetic parameters. We gathered ~60 kb of sequence data from a panel of 19 gibbons representing nine species and all four genera. We observe high levels of nucleotide diversity within species, indicative of large historical population sizes. In addition, we find low levels of genetic differentiation between species within a genus comparable to what has been estimated for human populations. This is likely due to ongoing or episodic gene flow between species, and we estimate a migration rate between Nomascus leucogenys and N. gabriellae of roughly one migrant every two generations. Together, our findings suggest that gibbons have had a complex demographic history involving hybridization or mixing between diverged populations.

  3. Genetic specificity of a plant–insect food web: Implications for linking genetic variation to network complexity

    PubMed Central

    Barbour, Matthew A.; Fortuna, Miguel A.; Bascompte, Jordi; Nicholson, Joshua R.; Julkunen-Tiitto, Riitta; Jules, Erik S.; Crutsinger, Gregory M.

    2016-01-01

    Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence. PMID:26858398

  4. Genetic specificity of a plant-insect food web: Implications for linking genetic variation to network complexity.

    PubMed

    Barbour, Matthew A; Fortuna, Miguel A; Bascompte, Jordi; Nicholson, Joshua R; Julkunen-Tiitto, Riitta; Jules, Erik S; Crutsinger, Gregory M

    2016-02-23

    Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence.

  5. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).

    PubMed

    Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K

    2012-03-01

    Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e)  < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. PMID:22320891

  6. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).

    PubMed

    Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K

    2012-03-01

    Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e)  < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.

  7. Genetic variation and relationships among Turkish water buffalo populations.

    PubMed

    Gargani, M; Pariset, L; Soysal, M I; Ozkan, E; Valentini, A

    2010-02-01

    The genetic variation and relationships among six Turkish water buffalo populations, typical of different regions, were assessed using a set of 26 heterologous (bovine) microsatellite markers. Between seven and 17 different alleles were identified per microsatellite in a total of 254 alleles. The average number of alleles across all loci in all the analysed populations was found to be 12.57. The expected mean heterozygosity (H(e)) per population ranged between 0.5 and 0.58. Significant departures from Hardy-Weinberg equilibrium were observed for 44 locus-population combinations. Population differentiation was analysed by estimation of the F(st) index (values ranging from 0.053 to 0.123) among populations. A principal component analysis of variation revealed the Merzifon population to show the highest differentiation compared with the others. In addition, some individuals of the Danamandira population appeared clearly separated, while the Afyon, Coskun, Pazar and Thural populations represented a single cluster. The assignment of individuals to their source populations, performed using the Bayesian clustering approach implemented in the structure 2.2 software, supports a high differentiation of Merzifon and Danamandira populations. The results of this study are useful for the development of conservation strategies for the Turkish buffalo.

  8. Novel genetic capacitors and potentiators for the natural genetic variation of sensory bristles and their trait specificity in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2015-11-01

    Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist.

  9. Associations between genetic variations in the FURIN gene and hypertension

    PubMed Central

    2010-01-01

    Background Hypertension is a complex disease influenced by multiple genetic and environmental factors. The Kazakh ethnic group is characterized by a relatively high prevalence of hypertension. Previous research indicates that the FURIN gene may play a pivotal role in the renin-angiotensin system and maintaining the sodium-electrolyte balance. Because these systems influence blood pressure regulation, we considered FURIN as a candidate gene for hypertension. The purpose of this study was to systematically investigate the association between genetic variations in the FURIN gene and essential hypertension in a Xinjiang Kazakh population. Methods We sequenced all exons and the promoter regions of the FURIN gene in 94 hypertensive individuals to identify genetic variations associated with the disorder. Genotyping was performed using the TaqMan polymerase chain reaction method for four representative common single nucleotide polymorphisms (SNPs, -7315C > T, 1970C > G, 5604C > G, 6262C > T) in 934 Kazakh Chinese people. One SNP (1970C > G) was replicated in 1,219 Uygur Chinese people. Results Nine novel and seven known single nucleotide polymorphisms were identified in the FURIN gene. The results suggest that 1970C > G was associated with a hypertension phenotype in Kazakh Chinese (additive model, P = 0.091; dominant model, P = 0.031, allele model, P = 0.030), and after adjustment with logistic regression analysis, ORs were 1.451 (95%CI 1.106-1.905, P = 0.008) and 1.496 (95% 1.103-2.028, P = 0.01) in additive and dominant models, respectively. In addition, the association between 1970C > G and hypertension was replicated in Uygur subjects (additive model, P = 0.042; dominant model, P = 0.102; allele model, P = 0.027) after adjustment in additive and dominant models, ORs were 1.327 (95% 1.07-1.646), P = 0.01 and 1.307 (95%CI 1.015-1.681, P = 0.038), respectively. G allele carriers exhibited significant lower urinary Na+ excretion rate than non-carriers in the Kazakh

  10. Population Genetics of Euphydryas Butterflies. I. Genetic Variation and the Neutrality Hypothesis

    PubMed Central

    McKechnie, Stephen W.; Ehrlich, Paul R.; White, Raymond R.

    1975-01-01

    Twenty-one populations of the checkerspot butterfly, Euphydryas editha, and ten populations of Euphydryas chalcedona were sampled for genetic variation at eight polymorphic enzyme loci. Both species possessed loci that were highly variable from population to population and loci that were virtually identical across all populations sampled. Our data indicate that the neutrality hypothesis is untenable for the loci studied, and therefore selection is indicated as the major factor responsible for producing these patterns. Thorough ecological work allowed gene flow to be ruled out (in almost all instances) as a factor maintaining similar gene frequencies across populations. The Lewontin-Krakauer test indicated magnitudes of heterogeneity among standardized variances of gene frequencies inconsistent with the neutrality hypothesis. The question of whether or not to correct this statistic for sample size is discussed. Observed equitability of gene frequencies of multiple allelic loci was found to be greater than that predicted under the neutrality hypothesis. Genetic differentiation presisting through two generations was found between the one pair of populations known to exchange significant numbers of individuals per generation. Two matrices of genetic distance between populations, based on the eight loci sampled, were found to be significantly correlated with a matrix of environmental distance, based on measures of fourteen environmental parameters. Correlations between gene frequencies and environmental parameters, results of multiple regression analysis, and results of principle component analysis showed strong patterns of association and of "explained" variation. The correlation analyses suggest which factors might be further investigated as proximate selective agents. PMID:1205135

  11. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population

    DOE PAGES

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; et al

    2014-06-27

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 x 3 Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yieldmore » was shared. A genome-wide association study for lignin abundance and sugar yield of the 282- member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. Finally, these results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.« less

  12. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population

    SciTech Connect

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.; Mosier, Nathan S.; Springer, Nathan M.; Thimmapuram, Jyothi; Weil, Clifford F.; McCann, Maureen C.; Carpita, Nicholas C.

    2014-06-27

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 x 3 Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282- member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. Finally, these results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.

  13. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population.

    PubMed

    Penning, Bryan W; Sykes, Robert W; Babcock, Nicholas C; Dugard, Christopher K; Held, Michael A; Klimek, John F; Shreve, Jacob T; Fowler, Matthew; Ziebell, Angela; Davis, Mark F; Decker, Stephen R; Turner, Geoffrey B; Mosier, Nathan S; Springer, Nathan M; Thimmapuram, Jyothi; Weil, Clifford F; McCann, Maureen C; Carpita, Nicholas C

    2014-06-27

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.

  14. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population1[W][OPEN

    PubMed Central

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.; Mosier, Nathan S.; Springer, Nathan M.; Thimmapuram, Jyothi; Weil, Clifford F.; McCann, Maureen C.; Carpita, Nicholas C.

    2014-01-01

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. PMID:24972714

  15. Genetic variation in male effects on female reproduction and the genetic covariance between the sexes.

    PubMed

    Czesak, Mary Ellen; Fox, Charles W

    2003-06-01

    Males of many insect species increase the fecundity and/or egg size of their mates through the amount or composition of their nuptial gifts or ejaculate. The genetic bases of such male effects on fecundity or egg size are generally unknown, and thus their ability to evolve remains speculative. Likewise, the genetic relationship between male and female investment into reproduction in dioecious species, which is expected to be positive if effects on fecundity are controlled by at least some of the same genes in males and females, is also unknown. Males of the seed beetle Stator limbatus contribute large ejaculates to females during mating, and the amount of donated ejaculate is positively correlated with male body mass. Females mated to large males lay more eggs in their lifetime than females mated to small males. We describe an experiment in which we quantify genetic variation in the number of eggs sired by males (mated to a single female) and found that a significant proportion of the phenotypic variance in the number of eggs sired by males was explained by their genotype. Additionally, the number of eggs sired by a male was highly positively genetically correlated with his body mass. The between-sex genetic correlation, that is, the genetic correlation between the number of eggs sired by males and the number of eggs laid by females, was highly positive when eggs were laid on Acacia greggii seeds. This indicates that males that sire many eggs have sisters that lay many eggs. Thus, some of the genes that control male ejaculate size (or some other fecundity-enhancing factor) when expressed in males appear to control fecundity when expressed in females. We found no significant interaction between male and female genotype on fecundity.

  16. Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria).

    PubMed

    Schauer, Michael; Jiang, Jing; Hahn, Martin W

    2006-07-01

    The spatial and temporal variation of SOL cluster bacteria was assessed in oligomesotrophic Lake Mondsee and adjacent lakes by fluorescence in situ hybridization over two annual cycles. The filamentous SOL bacteria were present in Lake Mondsee throughout the study period, and the seasonal dynamics of the SOL community were remarkably similar with respect to both abundance and composition in the two consecutive years. Only two of the three SOL subclusters were detected in Lake Mondsee and four connected lakes. These two populations significantly differed in size distribution and demonstrated pronounced but recurrent differences in seasonality and length of period of appearance in Lake Mondsee. Extensive sampling of the lakes in September 2003 revealed low horizontal variation in the composition of the SOL community within Lake Mondsee but marked variations with depth. Between connected habitats pronounced differences in the composition and abundance of the SOL community were detected. The interaction of SOL bacteria with bacterivorous protists, mesozooplankton, and phytoplankton was investigated in order to reveal variables controlling the structure and dynamics of SOL communities. No strong indication for a bottom-up influence of phytoplankton was found, while the estimated community grazing rates of mesozooplankton on SOL bacteria indicated a top-down control of SOL abundance during mesozooplankton peaks in spring and early autumn. Furthermore, species-specific differences in grazing of mesozooplankton on SOL bacteria were observed. In general, the overall composition of SOL communities was controlled by abiotic factors (water chemistry), while their dynamics seemed to be controlled by abiotic and biotic interactions.

  17. Variations of picoplankton abundances during blooms in the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Zhao, Li; Zhang, Wuchang; Sun, Jun; Huang, Lingfeng; Li, Jia; Zhai, Hongchang; Liu, Sumei; Xiao, Tian

    2016-02-01

    The picoplankton distribution in the East China Sea was investigated during bloom events occurred in spring (June) and summer (August) 2011. In spring, there was no significant difference in picoplankton abundances between areas where bloom conditions were or were not established. In the bloom area, Synechococcus, picoeukaryotes and heterotrophic prokaryotes exhibited at only some stations that abundances were higher than those within the non-bloom area. In summer, the abundances of Synechococcus and picoeukaryotes were significantly higher inside the bloom area than outside. Among the picoplankton components, heterotrophic prokaryotes represented the highest carbon biomass. Factors that most influenced picoplankton distribution under bloom conditions in the East China Sea varied with season. In spring, ciliates and salinity tended to be the main factors, whereas in summer, this role was played by temperature and chlorophyll a concentration.

  18. Genetics and vaccine efficacy: host genetic variation affecting Marek's disease vaccine efficacy in White Leghorn chickens.

    PubMed

    Chang, S; Dunn, J R; Heidari, M; Lee, L F; Song, J; Ernst, C W; Ding, Z; Bacon, L D; Zhang, H

    2010-10-01

    Marek's disease (MD) is a T-cell lymphoma disease of domestic chickens induced by MD virus (MDV), a naturally oncogenic and highly contagious cell-associated α-herpesvirus. Earlier reports have shown that the MHC haplotype as well as non-MHC genes are responsible for genetic resistance to MD. The MHC was also shown to affect efficiency of vaccine response. Using specific-pathogen-free chickens from a series of 19 recombinant congenic strains and their 2 progenitor lines (lines 6(3) and 7(2)), vaccine challenge experiments were conducted to examine the effect of host genetic variation on vaccine efficacy. The 21 inbred lines of White Leghorns share the same B*2 MHC haplotype and the genome of each recombinant congenic strain differs by a random 1/8 sample of the susceptible donor line (7(2)) genome. Chickens from each of the lines were divided into 2 groups. One was vaccinated with turkey herpesvirus strain FC126 at the day of hatch and the other was treated as a nonvaccinated control. Chickens of both groups were inoculated with a very virulent plus strain of MDV on the fifth day posthatch. Analyses of the MD data showed that the genetic line significantly influenced MD incidence and days of survival post-MDV infection after vaccination of chickens (P<0.01). The protective indices against MD varied greatly among the lines with a range of 0 up to 84%. This is the first evidence that non-MHC host genetic variation significantly affects MD vaccine efficacy in chickens in a designed prospective study.

  19. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  20. Mine, Yours, Ours? Sharing Data on Human Genetic Variation

    PubMed Central

    Montinaro, Francesco; Capocasa, Marco; Sanna, Emanuele; Bisol, Giovanni Destro

    2012-01-01

    The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9%) was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%). The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6%) suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing. PMID:22679483

  1. Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide

    PubMed Central

    Chen, Alyce A.; Gheit, Tarik; Franceschi, Silvia

    2015-01-01

    ABSTRACT Human papillomavirus 18 (HPV18) is the second most carcinogenic HPV type, after HPV16, and it accounts for approximately 12% of squamous cell carcinoma (SCC) as well as 37% of adenocarcinoma (ADC) of the cervix worldwide. We aimed to evaluate the worldwide diversity and carcinogenicity of HPV18 genetic variants by sequencing the entire long control region (LCR) and the E6 open reading frame of 711 HPV18-positive cervical samples from 39 countries, taking advantage of the International Agency for Research on Cancer biobank. A total of 209 unique HPV18 sequence variants were identified that formed three phylogenetic lineages (A, B, and C). A and B lineages each divided into four sublineages, including a newly identified candidate B4 sublineage. The distribution of lineages varied by geographical region, with B and C lineages found principally in Africa. HPV18 (sub)lineages were compared between 453 cancer cases and 236 controls, as well as between 81 ADC and 160 matched SCC cases. In region-stratified analyses, there were no significant differences in the distribution of HPV18 variant lineages between cervical cancer cases and controls or between ADC and SCC. In conclusion, our findings do not support the role of HPV18 (sub)lineages for discriminating cancer risk or explaining why HPV18 is more strongly linked with ADC than SCC. IMPORTANCE This is the largest and most geographically/ethnically diverse study of the genetic variation of HPV18 to date, providing a comprehensive reference for phylogenetic classification of HPV18 sublineages for epidemiological and biological studies. PMID:26269181

  2. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases?

    PubMed Central

    Flood, Pádraic J.; Yin, Lan; Herdean, Andrei; Harbinson, Jeremy; Aarts, Mark G. M.; Spetea, Cornelia

    2014-01-01

    Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments. PMID:24591726

  3. Natural selection and genetic variation for female resistance to harm from males.

    PubMed

    Linder, J E; Rice, W R

    2005-05-01

    The sexual conflict hypothesis predicts that males evolve traits that exploit the higher parental investment of females, which generates selection for females to counter-evolve resistance. In Drosophila melanogaster it is now established that males harm females and that there is genetic variation among males for the degree of this harm. Genetic variation among females for resistance to harm from males, and the corresponding strength of selection on this variation, however, have not been quantified previously. Here we carryout a genome-wide screen for female resistance to harm from males. We estimate that the cost of interactions with males depresses lifetime fecundity of females by 15% (95% CI: 8.2-22.0), that genetic variation for female resistance constitutes 17% of total genetic variation for female adult fitness, and that propensity to remate in response to persistent male courtship is a major factor contributing to genetic variation for female resistance.

  4. Moose body mass variation revisited: disentangling effects of environmental conditions and genetics.

    PubMed

    Herfindal, Ivar; Haanes, Hallvard; Solberg, Erling J; Røed, Knut H; Høgda, Kjell Arild; Sæther, Bernt-Erik

    2014-02-01

    Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.

  5. Landscape Level Variation in Tick Abundance Relative to Seasonal Migration in Red Deer

    PubMed Central

    Qviller, Lars; Risnes-Olsen, Nina; Bærum, Kim Magnus; Meisingset, Erling L.; Loe, Leif Egil; Ytrehus, Bjørnar; Viljugrein, Hildegunn; Mysterud, Atle

    2013-01-01

    Partial migration is common among northern ungulates, typically involving an altitudinal movement for seasonally migratory individuals. The main driving force behind migration is the benefit of an extended period of access to newly emerged, high quality forage along the green up gradient with increasing altitude; termed the forage maturation hypothesis. Any other limiting factor spatially correlated with this gradient may provide extra benefits or costs to migration, without necessarily being the cause of it. A common ectoparasite on cervids in Europe is the sheep tick (Ixodes ricinus), but it has not been tested whether migration may lead to the spatial separation from these parasites and thus potentially provide an additional benefit to migration. Further, if there is questing of ticks in winter ranges in May before spring migration, deer migration may also play a role for the distribution of ticks. We quantified the abundance of questing sheep tick within winter and summer home ranges of migratory (n = 42) and resident red deer (Cervus elaphus) individuals (n = 32) in two populations in May and August 2009–2012. Consistent with predictions, there was markedly lower abundance of questing ticks in the summer areas of migrating red deer (0.6/20 m2), both when compared to the annual home range of resident deer (4.9/20 m2) and the winter home ranges of migrants (5.8/20 m2). The reduced abundances within summer home ranges of migrants were explained by lower abundance of ticks with increasing altitude and distance from the coast. The lower abundance of ticks in summer home ranges of migratory deer does not imply that ticks are the main driver of migration (being most likely the benefits expected from forage maturation), but it suggests that ticks may add to the value of migration in some ecosystems and that it may act to spread ticks long distances in the landscape. PMID:23951125

  6. Haptoglobin polymorphism and schizophrenia: genetic variation on chromosome 16.

    PubMed

    Maes, M; Delanghe, J; Bocchio Chiavetto, L; Bignotti, S; Tura, G B; Pioli, R; Zanardini, R; Altamura, C A

    2001-10-10

    Recently, it was shown that schizophrenia is accompanied by an activation of the inflammatory response system with signs of an acute phase response, such as increased plasma haptoglobin (Hp) concentrations. Hp is characterized by a molecular variation with three known phenotypes, i.e. Hp 1-1, Hp 2-1 and Hp 2-2. The aim of the present study was to examine Hp phenotypic and genotypic frequencies in schizophrenic patients. Hp phenotyping was carried out in 98 Northwestern Italian schizophrenic patients and the phenotypic and genotypic distributions were compared with the distributions established in the Northwestern Italian population. Plasma Hp concentrations were determined by means of a laser nephelometric method. The allele frequency of the Hp phenotypes in schizophrenia, i.e. Hp 1-1 (9.2%), Hp 2-1 (38.8%) and Hp 2-2 (52.0%), was significantly different from that in the Northwestern Italian population, i.e. Hp 1-1 (17.0%), Hp 2-1 (51.3%) and Hp 2-2 (38.5%). The frequency of the Hp-2 gene was significantly higher in schizophrenic patients (71.7%) as compared with the observed frequency in the Northwestern Italian population (62.5%). The alterations in Hp phenotypic and genotypic distribution were more pronounced in the schizo-affective, disorganized, undifferentiated and residual schizophrenic patients than in paranoid schizophrenic patients. More than a third (35.7%) of the schizophrenic patients showed plasma Hp concentrations which were higher than the upper limits of normality. Schizophrenia is accompanied by an altered distribution of the Hp phenotypes and genotypes, suggesting that genetic variation on chromosome 16 may be associated with schizophrenia.

  7. The genomic signature of parallel adaptation from shared genetic variation.

    PubMed

    Roesti, Marius; Gavrilets, Sergey; Hendry, Andrew P; Salzburger, Walter; Berner, Daniel

    2014-08-01

    Parallel adaptation is common and may often occur from shared genetic variation, but the genomic consequences of this process remain poorly understood. We first use individual-based simulations to demonstrate that comparisons between populations adapted in parallel to similar environments from shared variation reveal a characteristic genomic signature around a selected locus: a low-divergence valley centred at the locus and flanked by twin peaks of high divergence. This signature is initiated by the hitchhiking of haplotype tracts differing between derived populations in the broader neighbourhood of the selected locus (driving the high-divergence twin peaks) and shared haplotype tracts in the tight neighbourhood of the locus (driving the low-divergence valley). This initial hitchhiking signature is reinforced over time because the selected locus acts as a barrier to gene flow from the source to the derived populations, thus promoting divergence by drift in its close neighbourhood. We next empirically confirm the peak-valley-peak signature by combining targeted and RAD sequence data at three candidate adaptation genes in multiple marine (source) and freshwater (derived) populations of threespine stickleback. Finally, we use a genome-wide screen for the peak-valley-peak signature to discover additional genome regions involved in parallel marine-freshwater divergence. Our findings offer a new explanation for heterogeneous genomic divergence and thus challenge the standard view that peaks in population divergence harbour divergently selected loci and that low-divergence regions result from balancing selection or localized introgression. We anticipate that genome scans for peak-valley-peak divergence signatures will promote the discovery of adaptation genes in other organisms. PMID:24635356

  8. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses.

    PubMed

    Warshan, Denis; Bay, Guillaume; Nahar, Nurun; Wardle, David A; Nilsson, Marie-Charlotte; Rasmussen, Ulla

    2016-09-01

    Dinitrogen (N2)-fixation by cyanobacteria living in symbiosis with pleurocarpous feather mosses (for example, Pleurozium schreberi and Hylocomium splendens) represents the main pathway of biological N input into N-depleted boreal forests. Little is known about the role of the cyanobacterial community in contributing to the observed temporal variability of N2-fixation. Using specific nifH primers targeting four major cyanobacterial clusters and quantitative PCR, we investigated how community composition, abundance and nifH expression varied by moss species and over the growing seasons. We evaluated N2-fixation rates across nine forest sites in June and September and explored the abundance and nifH expression of individual cyanobacterial clusters when N2-fixation is highest. Our results showed temporal and host-dependent variations of cyanobacterial community composition, nifH gene abundance and expression. N2-fixation was higher in September than June for both moss species, explained by higher nifH gene expression of individual clusters rather than higher nifH gene abundance or differences in cyanobacterial community composition. In most cases, 'Stigonema cluster' made up less than 29% of the total cyanobacterial community, but accounted for the majority of nifH gene expression (82-94% of total nifH expression), irrespective of sampling date or moss species. Stepwise multiple regressions showed temporal variations in N2-fixation being greatly explained by variations in nifH expression of the 'Stigonema cluster'. These results suggest that Stigonema is potentially the most influential N2-fixer in symbiosis with boreal forest feather mosses. PMID:26918665

  9. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses

    PubMed Central

    Warshan, Denis; Bay, Guillaume; Nahar, Nurun; Wardle, David A; Nilsson, Marie-Charlotte; Rasmussen, Ulla

    2016-01-01

    Dinitrogen (N2)-fixation by cyanobacteria living in symbiosis with pleurocarpous feather mosses (for example, Pleurozium schreberi and Hylocomium splendens) represents the main pathway of biological N input into N-depleted boreal forests. Little is known about the role of the cyanobacterial community in contributing to the observed temporal variability of N2-fixation. Using specific nifH primers targeting four major cyanobacterial clusters and quantitative PCR, we investigated how community composition, abundance and nifH expression varied by moss species and over the growing seasons. We evaluated N2-fixation rates across nine forest sites in June and September and explored the abundance and nifH expression of individual cyanobacterial clusters when N2-fixation is highest. Our results showed temporal and host-dependent variations of cyanobacterial community composition, nifH gene abundance and expression. N2-fixation was higher in September than June for both moss species, explained by higher nifH gene expression of individual clusters rather than higher nifH gene abundance or differences in cyanobacterial community composition. In most cases, ‘Stigonema cluster' made up less than 29% of the total cyanobacterial community, but accounted for the majority of nifH gene expression (82–94% of total nifH expression), irrespective of sampling date or moss species. Stepwise multiple regressions showed temporal variations in N2-fixation being greatly explained by variations in nifH expression of the ‘Stigonema cluster'. These results suggest that Stigonema is potentially the most influential N2-fixer in symbiosis with boreal forest feather mosses. PMID:26918665

  10. Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus

    PubMed Central

    2013-01-01

    Background Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification. Results Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups. In more accurate analyses of P. notatum accessions, the genetic variation that was evaluated used thirty simple sequence repeat (SSR) loci and revealed seven distinct genetic groups and a correspondence of these groups to the three botanical varieties of the species (P. notatum var. notatum, P. notatum var. saurae and P. notatum var. latiflorum). Conclusions The molecular genetic approach employed in this study was able to distinguish many of the different taxa examined, except for species that belong to the Plicatula group, which has historically been recognized as a highly complex group. Our molecular genetic approach represents a

  11. Minifish shows high genetic variation in mtDNA size.

    PubMed

    Chen, X-W; Li, Q-L; Hu, X-J; Yuan, Y-M; Wen, M; Peng, L-Y; Liu, S-J; Hong, Y-H

    2014-01-01

    The genus Paedocypris is a newly described taxon of minifish species that are characterized by extensive chromosome evolution and one of the smallest known vertebrate nuclear genomes. Paedocypris features a tiny adult size, a short generation time, low fecundity and fragmented tropical habitats, which are factors that favor rapid speciation. Most recently, we have revealed that P. progenetica (Pp), the type species of the genus Paedocypris, has an unusual mtDNA bearing - within its D-loop - a tandem array of a 34-bp repeat sequence called the minifish repeat, which shows compromised replication efficiency in vitro. Here we report that Pp exhibits high genetic variation in mtDNA size. The efficiency of D-loop amplification was found to depend upon primers. Interestingly, Pp individuals of one and the same population differed drastically in mtDNA size resulting from varying copy numbers of the minifish repeat. We conclude that minifish has a high mutation rate and perhaps represents a rapidly evolving taxon of vertebrates.

  12. Variations in the HCN/HNC abundance ratio in the Orion molecular cloud.

    PubMed

    Goldsmith, P F; Irvine, W M; Hjalmarson, A; Elldér, J

    1986-11-01

    We have used observations of the rare isotopes of HCN and HNC to determine the relative abundance of these two chemical isomers along the central ridge of the Orion molecular cloud. The abundance ratio [HCN]/[HNC] decreases by more than an order of magnitude from the relatively warm plateau and hot core sources toward the KL nebula to the colder, more quiescent clouds to the north and south. Even in the cooler regions, however, the ratio is an order of magnitude larger than that found in previous investigations of cold dark clouds. We determine the kinetic temperature in the regions we have studied from new observations of methylacetylene (CH3CCH), together with other recent estimates of the gas temperature near KL. The results suggest that the warmer portions of the cloud are dominated by different chemical pathways than those in the general interstellar cloud material.

  13. Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses.

    PubMed

    Sexton, Jason P; Hufford, Matthew B; Bateman, Ashley C; Lowry, David B; Meimberg, Harald; Strauss, Sharon Y; Rice, Kevin J

    2016-02-01

    Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation-based climate range. Contrary to expectations, within-population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation-driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high- and low-elevation range limits and were inconsistent with two common centre-edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre-edge dynamics, is an important range-wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.

  14. Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses.

    PubMed

    Sexton, Jason P; Hufford, Matthew B; Bateman, Ashley C; Lowry, David B; Meimberg, Harald; Strauss, Sharon Y; Rice, Kevin J

    2016-02-01

    Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation-based climate range. Contrary to expectations, within-population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation-driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high- and low-elevation range limits and were inconsistent with two common centre-edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre-edge dynamics, is an important range-wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed. PMID:26756973

  15. Spatio-temporal variations of aquatic weeds abundance and coverage in Lake Chivero, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Shekede, M. D.; Kusangaya, S.; Schmidt, K.

    Information on the spatial distribution of aquatic weeds is required for understanding the evolution of weed invasion and propagation rates. Such information is also vital for identifying affected areas and relating weed abundance to probable changes in environmental conditions and human actions including management practices within the lake and its catchment. Information on aquatic weed distribution also assists in evaluating the effectiveness of control measures and management actions. In Zimbabwe, Lake Chivero has been characterised by aquatic weed proliferation since the 1970s. Field surveys done between December 2005 and March 2006 showed concentrations of 1.2 mg/l and 0.3 mg/l up from 0.3 mg/l and 0.03 mg/l in 2001 for phosphates and nitrates respectively. Proliferation of aquatic weeds will continue unless nutrient loadings to this lake are reduced. The aim of this paper was to assess the feasibility of mapping the spatial extent and abundance of aquatic weeds in Lake Chivero, Zimbabwe using Landsat images. Landsat images of 1976, 1989 and 2000 were used to calculate the normalised difference vegetation index (NDVI) which was used for estimating the spatial extent of aquatic weeds and weed biomass. Field data and actual biomass measurements were obtained between December 2005 and March 2006 by harvesting weeds from the lake. This was subsequently related to NDVI and used to estimate the abundance of the different weed species. The results indicate that the weed coverage in Lake Chivero declined from 42% in 1976, 36% in 1989 to 22% in 2000. The research also demonstrated that Typha capensis has more biomass, 11.1kg per square metre, than any other weed type and hence higher abundance in all the years. It was concluded that remote sensing is an invaluable asset for detection of invasions, assessment of infestation levels, monitoring rate of spread, and determining the efficacy of weed mitigation measures.

  16. Water abundance variations around high-mass protostars: HIFI observations of the DR21 region

    NASA Astrophysics Data System (ADS)

    van der Tak, F. F. S.; Marseille, M. G.; Herpin, F.; Wyrowski, F.; Baudry, A.; Bontemps, S.; Braine, J.; Doty, S.; Frieswijk, W.; Melnick, G.; Shipman, R.; van Dishoeck, E. F.; Benz, A. O.; Caselli, P.; Hogerheijde, M.; Johnstone, D.; Liseau, R.; Bachiller, R.; Benedettini, M.; Bergin, E.; Bjerkeli, P.; Blake, G.; Bruderer, S.; Cernicharo, J.; Codella, C.; Daniel, F.; di Giorgio, A. M.; Dominik, C.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J.; de Graauw, Th.; Helmich, F.; Herczeg, G.; Jørgensen, J.; Kristensen, L.; Larsson, B.; Lis, D.; McCoey, C.; Neufeld, D.; Nisini, B.; Olberg, M.; Parise, B.; Pearson, J.; Plume, R.; Risacher, C.; Santiago, J.; Saraceno, P.; Tafalla, M.; van Kempen, T.; Visser, R.; Wampfler, S.; Yıldız, U.; Ravera, L.; Roelfsema, P.; Siebertz, O.; Teyssier, D.

    2010-07-01

    Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims: We study the distribution of dust continuum and H2O and 13CO line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H ii region. Methods: Herschel-HIFI spectra near 1100 GHz show narrow 13CO 10-9 emission and H2O 111-000 absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results: The dust continuum emission is extended over 36” FWHM, while the 13CO and H2O lines are confined to ≈24” or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of ~2×10-10 for H2O and ~8×10-7 for 13CO in the dense core, and higher H2O abundances of ~4×10-9 in the foreground cloud and ~7×10-7 in the outflow. Conclusions: The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. Quantitative Analysis of Age Specific Variation in the Abundance of Human Female Parotid Salivary Proteins

    PubMed Central

    Ambatipudi, Kiran S.; Lu, Bingwen; Hagen, Fred K; Melvin, James E.; Yates, John R.

    2010-01-01

    Summary Human saliva is a protein-rich, easily accessible source of potential local and systemic biomarkers to monitor changes that occur under pathological conditions; however little is known about the changes in abundance associated with normal aging. In this study, we performed a comprehensive proteomic profiling of pooled saliva collected from the parotid glands of healthy female subjects, divided into two age groups 1 and 2 (20–30 and 55–65 years old, respectively). Hydrophobic charge interaction chromatography was used to separate high from low abundant proteins prior to characterization of the parotid saliva using multidimensional protein identification technology (MudPIT). Collectively, 532 proteins were identified in the two age groups. Of these proteins, 266 were identified exclusively in one age group, while 266 proteins were common to both groups. The majority of the proteins identified in the two age groups belonged to the defense and immune response category. Of note, several defense related proteins (e.g. lysozyme, lactoferrin and histatin-1) were significantly more abundant in group 2 as determined by G-test. Selected representative mass spectrometric findings were validated by western blot analysis. Our study reports the first quantitative analysis of differentially regulated proteins in ductal saliva collected from young and older female subjects. This study supports the use of high-throughput proteomics as a robust discovery tool. Such results provide a foundation for future studies to identify specific salivary proteins which may be linked to age-related diseases specific to women. PMID:19764810

  18. Genetic variation in BEACON influences quantitative variation in metabolic syndrome-related phenotypes.

    PubMed

    Jowett, Jeremy B; Elliott, Kate S; Curran, Joanne E; Hunt, Nicola; Walder, Ken R; Collier, Greg R; Zimmet, Paul Z; Blangero, John

    2004-09-01

    The BEACON gene (also known as UBL5) was identified as differentially expressed between lean and obese Psammomys obesus, a polygenic animal model of obesity, type 2 diabetes, and dyslipidemia. The human homologue of BEACON is located on chromosome 19p, a region likely to contain genes affecting metabolic syndrome-related quantitative traits as established by linkage studies. To assess whether the human BEACON gene may be involved in influencing these traits, we exhaustively analyzed the complete gene for genetic variation in 40 unrelated individuals and identified four variants (three novel). The two more common variants were tested for association with a number of quantitative metabolic syndrome-related traits in two large cohorts of unrelated individuals. Significant associations were found between these variants and fat mass (P = 0.026), percentage of fat (P = 0.001), and waist-to-hip ratio (P = 0.031). The same variants were also associated with total cholesterol (P = 0.024), LDL cholesterol (P = 0.019), triglycerides (P = 0.006), and postglucose load insulin levels (P = 0.018). Multivariate analysis of these correlated phenotypes also yielded a highly significant association (P = 0.0004), suggesting that BEACON may influence phenotypic variation in metabolic syndrome-related traits.

  19. Spatiotemporal variation in C4-grass abundance during the early to middle Miocene in Spain

    NASA Astrophysics Data System (ADS)

    Urban, M. A.; Nelson, D. M.; Jimenez-Moreno, G.; Hu, F.

    2014-12-01

    Carbon-isotope analyses on a variety of substrates (e.g., leaf waxes, teeth, carbonates) suggest a pronounced increase in C4 plant biomass during the late Miocene and early Pliocene in many regions of the world. This spread of C4-dominated grasslands is thought to have occurred at the expense of C3-dominated grasslands. However, the earlier history of C4 grasses is uncertain, primarily because of difficulty assessing the presence and abundance of C4 grasses when they are relatively rare on the landscape. We measure d13C of individual grass pollen grains using SPIRAL (Single Pollen Isotope Ratio AnaLysis) to distinguish the relative abundance of C3 and C4 grasses during the early to middle Miocene in Spain. We analyzed a total of 3251 pollen grains isolated from 7 samples from Andalucia A1 (10-13.5 Ma), 7 samples from Gor (13-15 Ma) and 24 sediment samples from (Rubielos de Mora, (16-22 Ma). Palynological data indicate that grasses were not a significant component (5-20% of total terrestrial pollen) of the regional vegetation, which was composed of herbs, shrubs, and thermophilous (e.g., Taxodiaceae, Engelhardia) and mesothermic (Quercus, Carya) trees. Based on our SPIRAL data, 21-72% of the grasses were C4, with the older northern site (Rubielos de Mora) having lower C4-grass abundance (average of 39%) than the younger and more southern sites (average of 62%). Paleoclimate reconstructions suggest that the region was mainly subtropical (warm and semi-arid/highly seasonal) at that time, and pollen spectra suggest that the regional vegetation was similar to that found today in northern Africa where C4 grasses dominate. Our pollen-isotope results imply an increase in C4-grass abundance through time, and/or a north-south climatic gradient, with wetter and less seasonal conditions that were less favorable to C4 grasses in the north. Overall, these results suggest that C4 grasses were relatively abundant in southwestern Europe during the early and middle Miocene, prior to

  20. The influence of mitonuclear genetic variation on personality in seed beetles

    PubMed Central

    Løvlie, Hanne; Immonen, Elina; Gustavsson, Emil; Kazancioğlu, Erem; Arnqvist, Göran

    2014-01-01

    There is a growing awareness of the influence of mitochondrial genetic variation on life-history phenotypes, particularly via epistatic interactions with nuclear genes. Owing to their direct effect on traits such as metabolic and growth rates, mitonuclear interactions may also affect variation in behavioural types or personalities (i.e. behavioural variation that is consistent within individuals, but differs among individuals). However, this possibility is largely unexplored. We used mitonuclear introgression lines, where three mitochondrial genomes were introgressed into three nuclear genetic backgrounds, to disentangle genetic effects on behavioural variation in a seed beetle. We found within-individual consistency in a suite of activity-related behaviours, providing evidence for variation in personality. Composite measures of overall activity of individuals in behavioural assays were influenced by both nuclear genetic variation and by the interaction between nuclear and mitochondrial genomes. More importantly, the degree of expression of behavioural and life-history phenotypes was correlated and mitonuclear genetic variation affected expression of these concerted phenotypes. These results show that mitonuclear genetic variation affects both behavioural and life-history traits, and they provide novel insights into the maintenance of genetic variation in behaviour and personality. PMID:25320161

  1. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).

    PubMed

    Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor

    2010-09-01

    The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.

  2. Folk beliefs about genetic variation predict avoidance of biracial individuals

    PubMed Central

    Kang, Sonia K.; Plaks, Jason E.; Remedios, Jessica D.

    2015-01-01

    People give widely varying estimates for the amount of genetic overlap that exists between humans. While some laypeople believe that humans are highly genetically similar to one another, others believe that humans share very little genetic overlap. These studies examine how beliefs about genetic overlap affect neural and evaluative reactions to racially-ambiguous and biracial targets. In Study 1, we found that lower genetic overlap estimates predicted a stronger neural avoidance response to biracial compared to monoracial targets. In Study 2, we found that lower genetic overlap estimates predicted longer response times to classify biracial (vs. monoracial) faces into racial categories. In Study 3, we manipulated genetic overlap beliefs and found that participants in the low overlap condition explicitly rated biracial targets more negatively than those in the high overlap condition. Taken together, these data suggest that genetic overlap beliefs influence perceivers’ processing fluency and evaluation of biracial and racially-ambiguous individuals. PMID:25904875

  3. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  4. Size-sex variation in survival rates and abundance of pig frogs, Rana grylio, in northern Florida wetlands

    USGS Publications Warehouse

    Wood, K.V.; Nichols, J.D.; Percival, H.F.; Hines, J.E.

    1998-01-01

    During 1991-1993, we conducted capture-recapture studies on pig frogs, Rana grylio, in seven study locations in northcentral Florida. Resulting data were used to test hypotheses about variation in survival probability over different size-sex classes of pig frogs. We developed multistate capture-recapture models for the resulting data and used them to estimate survival rates and frog abundance. Tests provided strong evidence of survival differences among size-sex classes, with adult females showing the highest survival probabilities. Adult males and juvenile frogs had lower survival rates that were similar to each other. Adult females were more abundant than adult males in most locations at most sampling occasions. We recommended probabilistic capture-recapture models in general, and multistate models in particular, for robust estimation of demographic parameters in amphibian populations.

  5. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  6. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.

  7. Performing monkeys of Bangladesh: characterizing their source and genetic variation.

    PubMed

    Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa; Engel, Gregory A; Akhtar, Sharmin; Kanthaswamy, Sree; Smith, David Glenn

    2016-04-01

    The acquisition and training of monkeys to perform is a centuries-old tradition in South Asia, resulting in a large number of rhesus macaques kept in captivity for this purpose. The performing monkeys are reportedly collected from free-ranging populations, and may escape from their owners or may be released into other populations. In order to determine whether this tradition involving the acquisition and movement of animals has influenced the population structure of free-ranging rhesus macaques in Bangladesh, we first characterized the source of these monkeys. Biological samples from 65 performing macaques collected between January 2010 and August 2013 were analyzed for genetic variation using 716 base pairs of mitochondrial DNA. Performing monkey sequences were compared with those of free-ranging rhesus macaque populations in Bangladesh, India and Myanmar. Forty-five haplotypes with 116 (16 %) polymorphic nucleotide sites were detected among the performing monkeys. As for the free-ranging rhesus population, most of the substitutions (89 %) were transitions, and no indels (insertion/deletion) were observed. The estimate of the mean number of pair-wise differences for the performing monkey population was 10.1264 ± 4.686, compared to 14.076 ± 6.363 for the free-ranging population. Fifteen free-ranging rhesus macaque populations were identified as the source of performing monkeys in Bangladesh; several of these populations were from areas where active provisioning has resulted in a large number of macaques. The collection of performing monkeys from India was also evident. PMID:26758818

  8. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NASA Astrophysics Data System (ADS)

    Smekens, Marret J.; van Tienderen, Peter H.

    2001-08-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions. Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.

  9. Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila melanogaster.

    PubMed

    Gilligan, Dean M; Briscoe, David A; Frankham, Richard

    2005-02-01

    Quantitative genetic variation, the main determinant of the ability to evolve, is expected to be lost in small populations, but there are limited data on the effect, and controversy as to whether it is similar to that for near neutral molecular variation. Genetic variation for abdominal and sternopleural bristle numbers and allozyme heterozygosity were estimated in 23 populations of Drosophila melanogaster maintained at effective population sizes of 25, 50, 100, 250 or 500 for 50 generations, as well as in 19 highly inbred populations and the wild outbred base population. Highly significant negative regressions of proportion of initial genetic variation retained on inbreeding due to finite population size were observed for both quantitative characters (b = -0.67 +/- 0.14 and -0.58 +/- 0.11) and allozyme heterozygosity (b = -0.79 +/- 0.10), and the regression coefficients did not differ significantly. Thus, quantitative genetic variation is being lost at a similar rate to molecular genetic variation. However, genetic variation for all traits was lost at rates significantly slower than predicted by neutral theory, most likely due to associative overdominance. Positive, but relatively low correlations were found among the different measures of genetic variation, but their low magnitudes were attributed to large sampling errors, rather than differences in the underlying processes of loss.

  10. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  11. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water.

    PubMed

    Cui, Henglin; Yang, Kun; Pagaling, Eulyn; Yan, Tao

    2013-06-01

    Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand. PMID:23563940

  12. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail.

    PubMed

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals' genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals' genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  13. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  14. Phenotypic and Genetic Variations in Obligate Parthenogenetic Populations of Eriosoma lanigerum Hausmann (Hemiptera: Aphididae).

    PubMed

    Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S

    2015-12-01

    The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e =  .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology.

  15. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio.

    PubMed

    Ercole, Enrico; Adamo, Martino; Rodda, Michele; Gebauer, Gerhard; Girlanda, Mariangela; Perotto, Silvia

    2015-02-01

    Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time.

  16. Variation in abundance and composition of methane-metabolizing microorganisms from the lower Pearl River to the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.

    2015-12-01

    Methane is a significant greenhouse gas, which is regulated by microbial processes in surficial environments. However, the population dynamics of methanogens and methanotrophs in a particular environment has not been well studied. In this project, the variation of methanogens and methanotrophs in the sediment of the Pearl River estuary and coastal South China Sea was examined along a salinity gradient (A:0.8‰; B: 18.1‰; C: 23.9‰: D: 31‰)over a period of one year. Quantitative PCR showed that the variation in archaeal and bacterial 16S rRNA gene abundance at site A in the lower Pearl River (from 3.6×103 to 2.6×105 copies/L for archaea and from 1.2×105 to 2.6×106 copies/L for bacteria) is larger than that in at site D in the coastal South China Sea (from 3.5×104 to 2.9×105 copies/L for archaea and from 8.8×105 to 3.2×106 copies/L for bacteria). High throughput sequencing showed that methanogens and methanotrophs were abundant in the sediment of lower Pearl River and decreased sharply with the increasing salinity. Our results indicate that active methane metabolism is favored in the freshwater environment.

  17. Effects of founding genetic variation on adaptation to a novel resource.

    PubMed

    Agashe, Deepa; Falk, Jay J; Bolnick, Daniel I

    2011-09-01

    Population genetic theory predicts that adaptation in novel environments is enhanced by genetic variation for fitness. However, theory also predicts that under strong selection, demographic stochasticity can drive populations to extinction before they can adapt. We exposed wheat-adapted populations of the flour beetle (Tribolium castaneum) to a novel suboptimal corn resource, to test the effects of founding genetic variation on population decline and subsequent extinction or adaptation. As previously reported, genetically diverse populations were less likely to go extinct. Here, we show that among surviving populations, genetically diverse groups recovered faster after the initial population decline. Within two years, surviving populations significantly increased their fitness on corn via increased fecundity, increased egg survival, faster larval development, and higher rate of egg cannibalism. However, founding genetic variation only enhanced the increase in fecundity, despite existing genetic variation-and apparent lack of trade-offs-for egg survival and larval development time. Thus, during adaptation to novel habitats the positive impact of genetic variation may be restricted to only a few traits, although change in many life-history traits may be necessary to avoid extinction. Despite severe initial maladaptation and low population size, genetic diversity can thus overcome the predicted high extinction risk in new habitats. PMID:21884051

  18. Spatio-temporal variation in male white-tailed deer harvest rates in Pennsylvania: Implications for estimating abundance

    USGS Publications Warehouse

    Norton, Andrew S.; Diefenbach, Duane R.; Wallingford, Bret D.; Rosenberry, Christopher S.

    2012-01-01

    The performance of 2 popular methods that use age-at-harvest data to estimate abundance of white-tailed deer is contingent on assumptions about variation in estimates of subadult (1.5 yr old) and adult (≥2.5 yr old) male harvest rates. Auxiliary data (e.g., estimates of survival or harvest rates from radiocollared animals) can be used to relax some assumptions, but unless these population parameters exhibit limited temporal or spatial variation, these auxiliary data may not improve accuracy. Unfortunately maintaining sufficient sample sizes of radiocollared deer for parameter estimation in every wildlife management unit (WMU) is not feasible for most state agencies. We monitored the fates of 397 subadult and 225 adult male white-tailed deer across 4 WMUs from 2002 to 2008 using radio telemetry. We investigated spatial and temporal variation in harvest rates and investigated covariates related to the patterns observed. We found that most variation in harvest rates was explained spatially and that adult harvest rates (0.36–0.69) were more variable among study areas than subadult harvest rates (0.26–0.42). We found that hunter effort during the archery and firearms season best explained variation in harvest rates of adult males among WMUs, whereas hunter effort during only the firearms season best explained harvest rates for subadult males. From a population estimation perspective, it is advantageous that most variation was spatial and explained by a readily obtained covariate (hunter effort). However, harvest rates may vary if hunting regulations or hunter behavior change, requiring additional field studies to obtain accurate estimates of harvest rates. 

  19. Annual variation in the distribution, abundance, and habitat response of the palila (Loxioides bailleui)

    USGS Publications Warehouse

    Scott, J.M.; Mountainspring, S.; van Riper, Charles; Kepler, C.B.; Jacobi, J.D.; Burr, T.A.; Giffen, J.G.

    1984-01-01

    We studied the distribution, population size, and habitat response of the Palila (Loxioides bailleui) during the 1980-1984 nonbreeding seasons to infer factors that limit the population and to develop management strategies. Distribution was fairly constant from year to year. Palila were confined to the subalpine woodland on Mauna Kea on the island of Hawaii, occurred between 2,000 and 2,850 m elevation, and reached highest densities on the southwests lopes. The population showed large annual fluctuations from 6,400 birds in 1981 to 2,000 in 1984. The width of woodland was the most important variable in determining habitat response. Palila were more common in areas with greater crown cover, taller trees, and a higher proportion of native plants in the understory. Annual variation in Palila density within a habitat reflected variation in levels of their staple food, mamane pods. The main limiting factors of the population appeared to be the availability of good habitat and levels of their staple food. Palila had strongly depressed densities in the Pohakuloa flats area. This low density could not be explained by gross habitat features or food levels. Site tenacity, thermal stress, disturbance, and disease were hypothesized explanations. Our study indicated that the most effective management strategies would be the removal of feral ungulates and certain noxious plants from Palila habitat and the extension of the woodland zone to areas now intensively grazed

  20. The Variation of Hydrocarbon Abundances with Latitude and Season in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Moses, J. I.; Greathouse, T. K.

    2005-01-01

    We have developed a realistic, time-variable, one-dimensional, seasonal model for stratospheric photochemistry on Saturn using the Caltech/ JPL KINETICS code [1,2,3]. The model accounts for variations in ultraviolet flux due to orbital position, solar-cycle variations, and ring-shadowing effects. The results for two Saturnian years, starting at Ls = 0 in 1950 and running until the upcoming northern vernal equinox in 2009, are presented for numerous latitudes. The same two model years are run over and over again until the model convergences to make sure that high-altitude effects have had a chance to propagate down through the atmosphere. We use the SOLAR2000 model [4,5], in combination with the spectra presented in [6], to predict the ultraviolet flux at any wavelength and any point in time during the simulation. Saturn's orbital position during the simulation was taken from the ephemeris calculator at http://ssd.jpl.nasa.gov/horizons.html [7]. The photochemical model is derived from "Model C" of [8] and uses a hydrocarbon reaction list that has been extensively updated from that presented in [3].

  1. Analysis of Genetic Variation in Brevipalpus yothersi (Acari: Tenuipalpidae) Populations from Four Species of Citrus Host Plants

    PubMed Central

    Salinas-Vargas, Delfina; Santillán-Galicia, Ma. Teresa; Guzmán-Franco, Ariel W.; Hernández-López, Antonio; Ortega-Arenas, Laura D.; Mora-Aguilera, Gustavo

    2016-01-01

    We studied species diversity and genetic variation among populations of Brevipalpus mites from four species of citrus host plants. We sampled mites on orange, lime, grapefruit and mandarin trees from orchards at six localities distributed in the five most important citrus producing states in Mexico. Genetic variation among citrus host plants and localities were assessed by analysis of nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). Both Brevipalpus yothersi and B. californicus were found at these sites, and B. yothersi was the most abundant species found on all citrus species and in all localities sampled. B. californicus was found mainly on orange and mandarin and only in two of the states sampled. AMOVA and haplotype network analyses revealed no correlation between B. yothersi genetic population structure and geographical origin or citrus host plant species. Considering that a previous study reported greater genetic diversity in B. yothersi populations from Brazil than we observed in Mexico, we discuss the possibility that the Mexican populations may have originated in the southern region of America. PMID:27736923

  2. Differential genetic variation of chickens and MD vaccine protective efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine protective efficacy is determined by multiple factors including host genetics, the type of vaccine, vaccine dosage, the virulence and dose of challenging viruses, and the interval between vaccination and viral challenge. Studies on human immune responses to vaccinations suggest host genetic...

  3. SOLAR CYCLE ABUNDANCE VARIATIONS IN COROTATING INTERACTION REGIONS: EVIDENCE FOR A SUPRATHERMAL ION SEED POPULATION

    SciTech Connect

    Mason, G. M.; Desai, M. I.; Li, G.

    2012-04-01

    We have surveyed the heavy ion composition of corotating interaction regions (CIRs) over the recent solar minimum and combined this with our earlier survey to cover the 1998-2011 period encompassing a full solar cycle and onset of the new cycle. We find that the solar minimum CIR intensities and spectral forms are similar to those in active periods, indicating that the basic acceleration mechanism does not vary with solar activity for energies below a few MeV nucleon{sup -1}. However, the heavy ion abundances show a clear correlation with sunspot number, where heavy ions are more enhanced during active periods. Over the mass range He-Fe, the enhancement is organized by a power law in Q/M with exponent -1.9, with Fe/O varying by a factor of {approx}6. During solar minimum CIR Fe/O was {approx}0.05, well below the corresponding solar wind ratio. Previous studies have shown that rare ions (He{sup +}, {sup 3}He) enhanced in CIRs come from the suprathermal ion pool. The observations presented here extend this evidence, indicating that in addition to rare He{sup +} and {sup 3}He the CIR major heavy ion species are accelerated out of the suprathermal ion pool, not the bulk solar wind.

  4. The Abundance Scatter in M33 from H II Regions: Is There Any Evidence for Azimuthal Metallicity Variations?

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2011-04-01

    Optical spectra of 25 H II regions in the inner 2 kpc of the M33 disk have been obtained with the Gemini Multi-Object Spectrograph at the Gemini North telescope. The oxygen abundance gradient measured from the detection of the [O III] λ4363 auroral line displays a scatter of approximately 0.06 dex, a much smaller value than recently reported by Rosolowsky & Simon in this galaxy. The analysis of the abundances for a large sample of H II regions derived from the R 23 strong-line indicator confirms that the scatter is small over the full disk of M33, consistent with the measuring uncertainties, and comparable to what is observed in other spiral galaxies. No evidence is therefore found for significant azimuthal variations in the present-day metallicity of the interstellar medium in this galaxy on spatial scales from ~100 pc to a few kpc. A considerable fraction of M33 H II regions with auroral line detections show spectral features revealing sources of hard ionizing radiation (such as He II emission and large [Ne III], [O III] line fluxes). Since R 23 is shown to severely underestimate the oxygen abundances in such cases, care must be taken in chemical abundance studies of extragalactic H II regions based on this strong-line indicator. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  5. The genetic basis of natural variation in mushroom body size in Drosophila melanogaster

    PubMed Central

    Zwarts, Liesbeth; Vanden Broeck, Lies; Cappuyns, Elisa; Ayroles, Julien F.; Magwire, Michael M.; Vulsteke, Veerle; Clements, Jason; Mackay, Trudy F. C.; Callaerts, Patrick

    2015-01-01

    Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology. We identify 139 genes and 39 transcription factors and confirm effects on development and adult plasticity. We show correlations between morphology and aggression, sleep and lifespan. We propose that natural variation in adult brain size is controlled by interaction of the environment with gene networks controlling development and plasticity. PMID:26656654

  6. Variation in the Abundance of Neotropical Bees in an Unpredictable Seasonal Environment.

    PubMed

    Knoll, F R N

    2016-04-01

    This study provides information on the number of orchid bees based on a long-term monitoring study in an antropized savanna region in Southeastern Brazil. Sampling was carried out using chemical lures, and 77 samples were monthly collected to assess the number of individuals as well as the annual and seasonal species fluctuation. The number of species varied significantly among years but not among months, and there was a positive correlation between the number of species and the number of individuals in each sample. Monthly number counts revealed a seasonal pattern for Eulaema nigrita Lepeletier and Exaerete smaragdina Perty, which were more numerous during humid months but peaked in December, January, and February. Different species of Euglossa presented a significant variation in number among years, but not among months, with no pattern along the years. The community and the populations studied were less stable when compared to those of well-preserved habitats of equatorial forests. The El Niño phenomenon of 1997/98 did not result in negative effects in the populations studied; on the contrary, there was a peak in the number of E. nigrita. The amplitude in the yearly variation of the male orchid bee population reflects the evolutionary history of species living in unpredictable seasonal weather that led to the development of particular adaptive traits designed to deal with environmental uncertainties. This study suggests that the plasticity of the life cycle may explain population stability and provide greater resilience to severe climate change events in the future. PMID:26597968

  7. Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2015-01-01

    Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried to provide a formal framework for the description of the adaptive process. Of these, two complementary modeling approaches have emerged: While so-called adaptive-walk models consider adaptation from the successive fixation of de novo mutations only, quantitative genetic models assume that adaptation proceeds exclusively from preexisting standing genetic variation. The latter approach, however, has focused on short-term evolution of population means and variances rather than on the statistical properties of adaptive substitutions. Our aim is to combine these two approaches by describing the ecological and genetic factors that determine the genetic basis of adaptation from standing genetic variation in terms of the effect-size distribution of individual alleles. Specifically, we consider the evolution of a quantitative trait to a gradually changing environment. By means of analytical approximations, we derive the distribution of adaptive substitutions from standing genetic variation, that is, the distribution of the phenotypic effects of those alleles from the standing variation that become fixed during adaptation. Our results are checked against individual-based simulations. We find that, compared to adaptation from de novo mutations, (i) adaptation from standing variation proceeds by the fixation of more alleles of small effect and (ii) populations that adapt from standing genetic variation can traverse larger distances in phenotype space and, thus, have a higher potential for adaptation if the rate of environmental change is fast rather than slow. PMID:26038348

  8. Analysis of genetic variation and potential applications in genome-scale metabolic modeling.

    PubMed

    Cardoso, João G R; Andersen, Mikael Rørdam; Herrgård, Markus J; Sonnenschein, Nikolaus

    2015-01-01

    Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.

  9. Analysis of Genetic Variation and Potential Applications in Genome-Scale Metabolic Modeling

    PubMed Central

    Cardoso, João G. R.; Andersen, Mikael Rørdam; Herrgård, Markus J.; Sonnenschein, Nikolaus

    2015-01-01

    Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes. PMID:25763369

  10. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The choice of populations for quantitative genetics experiments impacts inferences about genetic architecture and prospective selection gains. Plant breeding and quantitative genetics studies are often conducted in one or a few among many possible biparental families. Trait genotypic variation withi...

  11. GENETIC VARIATION FOR COPPER RESISTANCE IN FATHEAD MINNOW TOXICITY TESTS

    EPA Science Inventory

    Unexplained variation in the results of aquatic organism toxicity tests is a consistently observed and troubling phenomenon. Possible sources of variation include differences in condition or nutritional status of the population prior to the test, as well as age, density and hand...

  12. Human Neutral Genetic Variation and Forensic STR Data

    PubMed Central

    Silva, Nuno M.; Pereira, Luísa; Poloni, Estella S.; Currat, Mathias

    2012-01-01

    The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations. PMID:23185401

  13. Response to environmental change: genetic variation and fitness in Drosophila buzzatii following temperature stress.

    PubMed

    Krebs, R A; Loeschcke, V

    1994-01-01

    Drosophila buzzatii typically may encounter high temperatures in nature, and this species is genetically variable for resistance to stress, both within and among populations. Fitness of survivors to stress, however, was reduced, and observed as a reduction in male fertility and female fecundity. With time following exposure to severe stress, reproductive capacity improved, but lifetime offspring production still was reduced significantly. This effect would greatly reduce a population's recovery from small size, which could occur following exposure to some man-made or environmental extreme. Although the results presented here were obtained for effects of heat stress, such consequences likely apply to a wide range of natural and man-made environmental stresses, including heavy metal toxicity or other pollutants. Low levels of these pollutants may not cause an observable effect on populations, even if some individuals are killed or offspring production is decreased. If genetic variation for resistance is present, higher tolerance may evolve. However, if concentrations are permitted to rise too far, some stress threshold may be reached, as observed for thermal stress, causing mass die-off or sterility and, possibly, local extinction. Understanding the effects of stress is important when preparing programs for the conservation of species. Organisms generally do not become extinct when resources are abundant and the climate benign, but unfortunately, no guarantee can be made that environmental conditions in any locality will remain stable over a long time. Consequently, a high possibility of exposure to an extreme stress in an area would greatly reduce its usefulness as a reserve. Likewise, when choosing organisms for reintroduction, stress resistance of the chosen individuals and high levels of genetic variation within a population would be valuable. The organisms placed there must be able to change. Analysis of stress resistance (at non-lethal levels) among either

  14. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies.

    PubMed

    Coe, T S; Hamilton, P B; Griffiths, A M; Hodgson, D J; Wahab, M A; Tyler, C R

    2009-01-01

    There is substantial evidence that genetic variation, at both the level of the individual and population, has a significant effect on behaviour, fitness and response to toxicants. Using DNA microsatellites, we examined the genetic variation in samples of several commonly used laboratory strains of zebrafish, Danio rerio, a model species in toxicological studies. We compared the genetic variation to that found in a sample of wild fish from Bangladesh. Our findings show that the wild fish were significantly more variable than the laboratory strains for several measures of genetic variability, including allelic richness and expected heterozygosity. This lack of variation should be given due consideration for any study which attempts to extrapolate the results of ecotoxicological laboratory tests to wild populations.

  15. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  16. Genetic Variation of Major Histocompatibility Complex and Microsatellite Loci: A Comparison in Bighorn Sheep

    PubMed Central

    Boyce, W. M.; Hedrick, P. W.; Muggli-Cockett, N. E.; Kalinowski, S.; Penedo, MCT.; Ramey-II, R. R.

    1997-01-01

    Examining and comparing genetic variation for major histocompatibility complex (MHC) and microsatellite (MS) loci in the same individuals provides an opportunity to understand the forces influencing genetic variation. We examined five MHC and three MS loci in 235 bighorn sheep (Ovis canadensis) from 14 populations and found that both types of loci were highly variable and were in Hardy-Weinberg proportions. Mean F(ST) values for both markers were very similar and MHC and MS genetic variability was predominantly distributed within rather than among populations. However, analyses of genetic distances and tree topologies revealed different spatial patterns of variation for the two types of loci. Collectively, these results indicated that neutral forces substantially influenced MS and MHC variation, and they provided limited evidence for selection acting on the MHC. PMID:9071595

  17. Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations.

    PubMed

    Degtjarenko, Polina; Marmor, Liis; Tõrra, Tiiu; Lerch, Michèle; Saag, Andres; Randlane, Tiina; Scheidegger, Christoph

    2016-10-01

    Very little is known whether and how air pollution impacts genetic diversity of lichenized fungi that are well-known indicators of environmental quality. We studied the genetic variation of eight Usnea subfloridana populations in Pinus sylvestris-dominated boreal forest stands in southern Estonia, Northern Europe; four of these populations were exposed to long-term dust pollution released from unpaved road. The mean bark pH of lichen phorophyte differed considerably between polluted and unpolluted forest stands. We genotyped 274 Usnea thalli using nine specific fungal microsatellite markers. Genetic variation measures were calculated and compared between populations from different habitats. Allelic richness, Shannon's information index, and genetic diversity of lichen populations were significantly higher in unpolluted forest sites than in polluted forest sites. We conclude that environmental disturbances caused by alkaline dust pollution had negative impact on the genetic variation of U. subfloridana, a common species of lichenized fungi. PMID:27647234

  18. Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Seo, Young Il; Yoon, Sang Cheol; Kim, Suam

    2004-05-01

    Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970-75) and after (1978-84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.

  19. A joint history of the nature of genetic variation and the nature of schizophrenia.

    PubMed

    Kendler, K S

    2015-02-01

    This essay traces the history of concepts of genetic variation and schizophrenia from Darwin and Mendel to the present. For Darwin, the important form of genetic variation for evolution is continuous in nature and small in effect. Biometricians led by Pearson agreed and developed statistical genetic approaches utilizing trait correlations in relatives. Mendel studied discontinuous traits and subsequent Mendelians, led by Bateson, assumed that important genetic variation was large in effect producing discontinuous phenotypes. Although biometricians studied 'insanity', schizophrenia genetics under Kraepelin and Rüdin utilized Mendelian approaches congruent with their anatomical-clinical disease model of dementia praecox. Fisher showed, assuming many genes of small effect, Mendelian and Biometrical models were consilient. Echoing prior conflicts, psychiatric genetics since then has utilized both biometrical models, largely in twins, and Mendelian models, based on advancing molecular techniques. In 1968, Gottesman proposed a polygenic model for schizophrenia based on a threshold version of Fisher's theory. Since then, rigorous studies of the schizophrenia spectrum suggest that genetic risk for schizophrenia is more likely continuous than categorical. The last 5 years has seen increasingly convincing evidence from genome-wide association study (GWAS) and sequencing that genetic risk for schizophrenia is largely polygenic, and congruent with Fisher's and Gottesman's models. The gap between biometrical and molecular Mendelian models for schizophrenia has largely closed. The efforts to ground a categorical biomedical model of schizophrenia in Mendelian genetics have failed. The genetic risk for schizophrenia is widely distributed in human populations so that we all carry some degree of risk.

  20. A potential risk assessment of a dengue outbreak in north central Texas, USA. (Part 1 of 2): Abundance and temporal variation of dengue vectors.

    PubMed

    Lee, Joon-Hak; Stahl, Matt; Sawlis, Scott; Suzuki, Sumi; Lee, Jib Ho

    2009-06-01

    In response to three imported dengue cases in north central Texas as well as increased case numbers in Texas and adjoining Mexican states in 2005, the authors assessed the potential risk of a dengue outbreak in north central Texas by investigating abundance and temporal variation of dengue vectors in 2006. Dengue vector abundance was monitored from 54 sites in Dallas County, Texas, from June to November 2006, using oviposition traps. Both dengue vectors--the yellow fever mosquito, Aedes aegypti, and the Asian tiger mosquito, Aedes albopictus--were present. Of the two, Ae. albopictus was more abundant and its abundance appeared to be positively affected by temperature and precipitation. Potential risk of a dengue outbreak was predicted based on the abundance and temporal variation of dengue vectors and a long-term trend of breeding season precipitation and warmer winter temperatures.

  1. Genetic variation among agamid lizards of the trapelus agiliscomplex in the caspian-aral basin

    SciTech Connect

    Macey, J. Robert; Ananjeva, Natalia B.

    2004-05-19

    Allozyme variation is examined in eight populations of Trapelus from the Caspian-Aral Basin of the former USSR. Thirty-one loci (15 variable) exhibit remarkably low levels of genetic variation with only a Nei's genetic distance of 0.117 across 2500 km. An isolated population on the European side of the Caspian Sea is found to phenetically cluster inside the Asian populations examined, suggesting that it should not be considered taxonomically distinct.

  2. Variations in the abundance and structural diversity of microbes forming biofilms in a thermally stressed coral reef system.

    PubMed

    Mahmoud, Huda

    2015-11-30

    Little information is known about biofilm formation in the thermally stressed coral reef systems north of the Arabian Gulf. The current study investigates the abundance and diversity of marine microbes involved in biofilm formation and their succession over a period of 14 weeks (May-August 2007) at temperatures exceeding 32 °C. The results showed variations in microbial numbers and the development of more stable biofilm communities as the biofilms aged. The culture-dependent technique and microscopic examination of the developed biofilms showed the dominance of key species known for their role in precipitating CaCO3 such as Vibrio and in facilitating coral larvae settlement and metamorphosis such as Pseudoalteromonas, Bacillariophyceae and Rhodophyceae. The results revealed biofilm formations with microbial diversities that have the potential to support the larval settlement and metamorphism of marine organisms and to consolidate and stabilize biofilms via the process of calcification in the thermally stressed coral reef system considered herein.

  3. Variations in the abundance and structural diversity of microbes forming biofilms in a thermally stressed coral reef system.

    PubMed

    Mahmoud, Huda

    2015-11-30

    Little information is known about biofilm formation in the thermally stressed coral reef systems north of the Arabian Gulf. The current study investigates the abundance and diversity of marine microbes involved in biofilm formation and their succession over a period of 14 weeks (May-August 2007) at temperatures exceeding 32 °C. The results showed variations in microbial numbers and the development of more stable biofilm communities as the biofilms aged. The culture-dependent technique and microscopic examination of the developed biofilms showed the dominance of key species known for their role in precipitating CaCO3 such as Vibrio and in facilitating coral larvae settlement and metamorphosis such as Pseudoalteromonas, Bacillariophyceae and Rhodophyceae. The results revealed biofilm formations with microbial diversities that have the potential to support the larval settlement and metamorphism of marine organisms and to consolidate and stabilize biofilms via the process of calcification in the thermally stressed coral reef system considered herein. PMID:26494248

  4. Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Street-Perrott, F. A.; Metcalfe, S. E.; Brenner, M.; Moreland, M.; Freeman, K. H.

    2001-08-01

    Although C4 plant expansions have been recognized in the late Miocene, identification of the underlying causes is complicated by the uncertainties associated with estimates of ancient precipitation, temperature, and partial pressure of atmospheric carbon dioxide (PCO2). Here we report the carbon isotopic compositions of leaf wax n-alkanes in lake sediment cores from two sites in Mesoamerica that have experienced contrasting moisture variations since the last glacial maximum. Opposite isotopic trends obtained from these two sites indicate that regional climate exerts a strong control on the relative abundance of C3 and C4 plants and that in the absence of favorable moisture and temperature conditions, low PCO2 alone is insufficient to drive an expansion of C4 plants.

  5. Genetic variation among wild and cultivated populations of the Chinese medicinal plant Coptis chinensis (Ranunculaceae).

    PubMed

    Shi, W; Yang, C-F; Chen, J-M; Guo, Y-H

    2008-07-01

    To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.

  6. Geographic patterns in the reproductive ecology of Agave lechuguilla (Agavaceae) in the Chihuahuan desert. II. Genetic variation, differentiation, and inbreeding estimates.

    PubMed

    Silva-Montellano, Arturo; Eguiarte, Luis E

    2003-05-01

    Plants with natural variation in their floral traits and reproductive ecology are ideal subjects for analyzing the effects of natural selection and other evolutionary forces on genetic structure of natural populations. Agave lechuguilla shows latitudinal changes in floral morphology, color, and nectar production along its distribution through north-central Mexico. Both the type and abundance of its pollinators also change with latitude. Using starch electrophoresis, we examined the levels and patterns of variation of 13 polymorphic allozyme loci in 11 populations of A. lechuguilla. The overall level of genetic variability was high (H(e) = 0.394), but the levels of genetic variation had no geographic pattern. However, the southern populations exhibited an excess of heterozygotes in relation to expectations for Hardy-Weinberg equilibrium, whereas the northern populations had an excess of homozygotes. Total differentiation among populations was low (θ = 0.083), although gene flow estimates (Nm) varied among groups of populations: southern populations had the lowest levels of genetic differentiation, suggesting high levels of gene flow; northern populations had greater levels of genetic differentiation (θ = 0.115), suggesting low gene flow among them. The patterns and inferences of the genetic structure of the population at the molecular level is consistent with variation in floral traits and pollinator visitation rates across the range of the species. PMID:21659165

  7. Geographic patterns in the reproductive ecology of Agave lechuguilla (Agavaceae) in the Chihuahuan desert. II. Genetic variation, differentiation, and inbreeding estimates.

    PubMed

    Silva-Montellano, Arturo; Eguiarte, Luis E

    2003-05-01

    Plants with natural variation in their floral traits and reproductive ecology are ideal subjects for analyzing the effects of natural selection and other evolutionary forces on genetic structure of natural populations. Agave lechuguilla shows latitudinal changes in floral morphology, color, and nectar production along its distribution through north-central Mexico. Both the type and abundance of its pollinators also change with latitude. Using starch electrophoresis, we examined the levels and patterns of variation of 13 polymorphic allozyme loci in 11 populations of A. lechuguilla. The overall level of genetic variability was high (H(e) = 0.394), but the levels of genetic variation had no geographic pattern. However, the southern populations exhibited an excess of heterozygotes in relation to expectations for Hardy-Weinberg equilibrium, whereas the northern populations had an excess of homozygotes. Total differentiation among populations was low (θ = 0.083), although gene flow estimates (Nm) varied among groups of populations: southern populations had the lowest levels of genetic differentiation, suggesting high levels of gene flow; northern populations had greater levels of genetic differentiation (θ = 0.115), suggesting low gene flow among them. The patterns and inferences of the genetic structure of the population at the molecular level is consistent with variation in floral traits and pollinator visitation rates across the range of the species.

  8. Transgenerational genetic effects on phenotypic variation and disease risk.

    PubMed

    Nadeau, Joseph H

    2009-10-15

    Traditionally, we understand that individual phenotypes result primarily from inherited genetic variants together with environmental exposures. However, many studies showed that a remarkable variety of factors including environmental agents, parental behaviors, maternal physiology, xenobiotics, nutritional supplements and others lead to epigenetic changes that can be transmitted to subsequent generations without continued exposure. Recent discoveries show transgenerational epistasis and transgenerational genetic effects where genetic factors in one generation affect phenotypes in subsequent generation without inheritance of the genetic variant in the parents. Together these discoveries implicate a key signaling pathway, chromatin remodeling, methylation, RNA editing and microRNA biology. This exceptional mode of inheritance complicates the search for disease genes and represents perhaps an adaptation to transmit useful gene expression profiles from one generation to the next. In this review, I present evidence for these transgenerational genetic effects, identify their common features, propose a heuristic model to guide the search for mechanisms, discuss the implications, and pose questions whose answers will begin to reveal the underlying mechanisms.

  9. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  10. Genetic variations and associated pathophysiology in the management of epilepsy

    PubMed Central

    Mulley, John C; Dibbens, Leanne M

    2011-01-01

    The genomic era has enabled the application of molecular tools to the solution of many of the genetic epilepsies, with and without comorbidities. Massively parallel sequencing has recently reinvigorated gene discovery for the monogenic epilepsies. Recurrent and novel copy number variants have given much-needed impetus to the advancement of our understanding of epilepsies with complex inheritance. Superimposed upon that is the phenotypic blurring by presumed genetic modifiers scattering the effects of the primary mutation. The genotype-first approach has uncovered associated syndrome constellations, of which epilepsy is only one of the syndromes. As the molecular genetic basis for the epilepsies unravels, it will increasingly influence the classification and diagnosis of the epilepsies. The ultimate goal of the molecular revolution has to be the design of treatment protocols based on genetic profiles, and cracking the 30% of epilepsies refractory to current medications, but that still lies well into the future. The current focus is on the scientific basis for epilepsy. Understanding its genetic causes and biophysical mechanisms is where we are currently positioned: prizing the causes of epilepsy “out of the shadows” and exposing its underlying mechanisms beyond even the ion-channels. PMID:23776372

  11. Reduced genetic variation and the success of an invasive species

    PubMed Central

    Tsutsui, Neil D.; Suarez, Andrew V.; Holway, David A.; Case, Ted J.

    2000-01-01

    Despite the severe ecological and economic damage caused by introduced species, factors that allow invaders to become successful often remain elusive. Of invasive taxa, ants are among the most widespread and harmful. Highly invasive ants are often unicolonial, forming supercolonies in which workers and queens mix freely among physically separate nests. By reducing costs associated with territoriality, unicolonial species can attain high worker densities, allowing them to achieve interspecific dominance. Here we examine the behavior and population genetics of the invasive Argentine ant (Linepithema humile) in its native and introduced ranges, and we provide a mechanism to explain its success as an invader. Using microsatellite markers, we show that a population bottleneck has reduced the genetic diversity of introduced populations. This loss is associated with reduced intraspecific aggression among spatially separate nests, and leads to the formation of interspecifically dominant supercolonies. In contrast, native populations are more genetically variable and exhibit pronounced intraspecific aggression. Although reductions in genetic diversity are generally considered detrimental, these findings provide an example of how a genetic bottleneck can lead to widespread ecological success. In addition, these results provide insights into the origin and evolution of unicoloniality, which is often considered a challenge to kin selection theory. PMID:10811892

  12. Genetic variation and population structure in native Americans.

    PubMed

    Wang, Sijia; Lewis, Cecil M; Jakobsson, Mattias; Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-11-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  13. Variation in Volatile and Ore Metal Abundances Along the New Zealand Volcanic Arc as Recorded by Minerals and Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Rowe, M. C.; Iveson, A. A.; Norling, B.; Chambefort, I. S.; Webster, J. D.

    2015-12-01

    Volatile and ore metals within magmas record a wide variety of magmatic processes in the Earth's shallow upper crust. These elements have previously been linked to volatile degassing or exsolution and such processes as eruption triggering and the formation of magmatic ore deposits. However, it is unknown why different volcanoes, or different eruptions of the same volcano, record such wide-ranging geochemical behaviour. More fundamental questions related to the source of these metals also remain unanswered, such as what role (if any) does subduction play in controlling metal fluctuations. In an effort to ascertain the sources of volatile and ore metal variation in intermediate-silicic magmas, this study attempts to take a more comprehensive look at the causes of volatile and ore metal variation in arc magmas as a function of composition and location within a single arc system. This study focuses on the New Zealand arc system, stretching from Mt Taranaki to White Island, examining volatile and trace metals (including Li, Cu, As, Mo, Sb, Sn, W, and Tl) from varying phenocryst phases and melt inclusions. Melt inclusion compositions range from basaltic (51 wt% SiO2) to high-Si rhyolite (81 wt% SiO2), however are predominantly andesitic to dacitic. Sulfur and Cl melt compositions are also highly variable, with concentrations from below detection limit up to ~2000 ppm S and 5300 ppm Cl. Trace metal abundances were determined for all major phenocryst phases, including plagioclase, clinopyroxene, orthopyroxene, and amphibole and biotite where available. Comparing trace metal abundances of phenocrysts and inclusions to both glass and crystal major element/volatile compositions allows for a systematic comparison of volcanoes along the arc. Lithium and Cu are the only two trace metals above detection limit in all analysed phases, however, Cu variations are highly variable compared to other ore metals. New experimental crystallisation runs with hydrous dacite also allow us to

  14. [Cancer pharmacogenetics: study of genetically determined variations on cancer susceptibility due to xenobiotic exposure].

    PubMed

    Quiñones, Luis; Lee, Kuen; Varela F, Nelson; Escala, Mario; García, Karen; Godoy, Loreto; Castro, Andrés; Soto, Jorge; Saavedra, Iván; Cáceres, Dante

    2006-04-01

    Pharmacogenetics is the study of genetically determined variations in the response to drugs and toxic agents, and their implications on disease. Recently, the discipline has acquired great relevancy due to the development of non-invasive molecular techniques that identify genetic variants in human beings. There is also a need to explain the individual differences in susceptibility to drug actions and disease risk. Genetic variants can modify the magnitude of a pharmacologic effect, toxicity threshold, secondary effects and drug interactions. There are approximately thirty families of drug-metabolizing enzymes with genetic variants that cause functional alterations and variations in pharmacologic activity. We summarize the general knowledge about genetic variants of biotransformation enzymes, their relationship with cancer risk and the role of ethnicity. Cancer pharmacogenetics is another promising and exciting research area that will explain why people with an almost identical group of genes, have a different susceptibility to cancer, whose etiology has genetic and environmental components.

  15. Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed

    SciTech Connect

    Garten Jr, Charles T

    1993-10-01

    Spatial patterns in natural {sup 15}N abundance ({sup o}{sup 15}N) in soil, soil solutions, and non-N{sub 2}-fixing plants were studied in the deciduous forest on Walker Branch Watershed near Oak Ridge, Tennessee. This study was undertaken to test the hypothesis that foliar {sup o}{sup 15}N values are related to the availability of inorganic nitrogen in mineral soil. Soils collected in or near valley bottoms on the watershed had higher levels of net nitrogen mineralization and net nitrification potential than those sampled from ridges and slopes. More positive foliar {sup o}{sup 15}N values occurred in valley bottoms, which, relative to other positions on the watershed, were characterized by greater availability of soil nitrogen and lower C-to-N ratios in the O{sub i}-horizon, in the surface mineral soil, and in autumn leaf fall. Although leaf nitrogen concentrations changed significantly over the course of the growing season, there was little seasonal variation in foliar {sup o}{sup 15}N values. A hypothesis about the relative importance of different sources of nitrogen to the forest and how nitrogen cycling varies with topography in this nitrogen-deficient ecosystem was derived, in part, from spatial patterns in natural {sup 15}N abundance. There appear to be two processes affecting the topographic patterns in foliar {sup 15}N abundance on this watershed: (1) greater uptake from isotopically heavy pools of inorganic soil nitrogen by plants in valley bottoms, and (2) uptake of isotopically light ammonium-N in atmospheric deposition by plants on ridges and slopes (where the availability of inorganic soil nitrogen to plant roots is more limited). Results from this study indicate that foliar {sup o}{sup 15}N values are positively correlated with net nitrification potential in surface soil.

  16. Variation in foliar [sup 15]N abundance and the availability of soil nitrogen on Walker Branch Watershed

    SciTech Connect

    Garten, C.T. Jr. )

    1993-10-01

    Spatial patterns in natural [sup 15]N abundance ([sigma][sup 15]N) in soil, soil solutions, and non-N[sub 2]-fixing plants were studied in the deciduous forest on Walker Branch Watershed near Oak Ridge, Tennessee. This study was undertaken to test the hypothesis that foliar [sigma][sup 15]N values are related to the availability of inorganic nitrogen in mineral soil. Soils collected in or near valley bottoms on the watershed had higher levels of net nitrogen mineralization and net nitrification potential than those sampled from ridges and slopes. More positive foliar [sigma][sup 15]N values occurred in valley bottoms, which, relative to other positions on the watershed, were characterized by greater availability of soil nitrogen and lower C-to-N ratios in the O[sub 1]-horizon, in the surface mineral soil, and in autumn leaf fall. Although leaf nitrogen concentrations changed significantly over the course of the growing season, there was little seasonal variation in foliar [sigma][sup 15]N values. A hypothesis about the relative importance of different sources of nitrogen to the forest and how nitrogen cycling varies with topography in this nitrogen-deficient ecosystem was derived, in part, from spatial patterns in natural [sup 15]N abundance. There appear to be two processes affecting the topographic patterns in foliar [sup 15]N abundance on this watershed: (1) greater uptake from isotopically heavy pools of inorganic soil nitrogen by plants in valley bottoms, and (2) uptake of isotopically light ammonium-N in atmospheric deposition by plants on ridges and slopes (where the availability of inorganic soil nitrogen to plant roots is more limited). Results from this study indicate that foliar [sigma][sup 15]N values are positively correlated with net nitrification potential in surface soil. 34 refs., 13 figs., 8 tabs.

  17. Conservation Genetics of the Philippine Tarsier: Cryptic Genetic Variation Restructures Conservation Priorities for an Island Archipelago Primate

    PubMed Central

    Brown, Rafe M.; Weghorst, Jennifer A.; Olson, Karen V.; Duya, Mariano R. M.; Barley, Anthony J.; Duya, Melizar V.; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A.; Dominy, Nathaniel J.; Ong, Perry S.; Moritz, Gillian L.; Luczon, Adrian; Diesmos, Mae Lowe L.; Diesmos, Arvin C.; Siler, Cameron D.

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier. PMID:25136854

  18. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    PubMed

    Brown, Rafe M; Weghorst, Jennifer A; Olson, Karen V; Duya, Mariano R M; Barley, Anthony J; Duya, Melizar V; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A; Dominy, Nathaniel J; Ong, Perry S; Moritz, Gillian L; Luczon, Adrian; Diesmos, Mae Lowe L; Diesmos, Arvin C; Siler, Cameron D

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier. PMID:25136854

  19. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    PubMed

    Brown, Rafe M; Weghorst, Jennifer A; Olson, Karen V; Duya, Mariano R M; Barley, Anthony J; Duya, Melizar V; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A; Dominy, Nathaniel J; Ong, Perry S; Moritz, Gillian L; Luczon, Adrian; Diesmos, Mae Lowe L; Diesmos, Arvin C; Siler, Cameron D

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.

  20. Seasonal variation in abundance, diel vertical migration and body size of pelagic tunicate Salpa fusiformis in the Southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Yongqin; Sun, Song; Zhang, Guangtao

    2012-01-01

    Mass occurrence of Salpa fusiformis was observed in the Southern Yellow Sea in May and June 2007. In order to investigate its population recruitment and environmental adaptation, temporal variation of abundance, diel vertical migration (DVM) and length frequency distribution of both aggregate and solitary forms were studied with samples collected from eight months during September 2006 to August 2007. S. fusiformis presented in six months other than September and October 2006, and average abundance of aggregate and solitary forms peaked in June and May, respectively. In December, aggregate forms were absent in the bottom layer and performed irregular DVM from surface to 50 m depth, while solitary forms was too scarce to perform diel vertical distribution analysis. Both aggregate and solitary forms presented reverse DVM in May and June. They migrated upwards during daytime and concentrated in surface layer at sunset. The bimodal distribution of aggregate forms was found in April and the average size was largest in this month. In other months, the smaller aggregate forms (1-5 mm) dominated in populations except for May, when the modal size ranged from 2 to 8 mm. The average size of solitary forms was largest in December, followed by April. The skewed nomal distribution of solitary forms was found in May and June, with the modal size of 2-7 mm and 5-13 mm, respectively.

  1. Behavioral responses of Cao Vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi, China.

    PubMed

    Fan, Peng-Fei; Fei, Han-Lan; Ma, Chang-Yong

    2012-07-01

    The Cao Vit gibbon is a critically endangered species with only about 110 individuals remaining in a degraded karst forest along the China-Vietnam border. Behavioral data from this site are particularly useful in understanding gibbon behavioral adaptations to different sets of ecological conditions and will contribute to the conservation of the species. We studied seasonal variation in the time budget and diet of the Cao Vit gibbon in response to variation in food availability and ambient temperature by observing two groups for 1,379 hr between January and December 2009. We used 5-min scan samples to record the activity of gibbons. Both ambient temperature and food availability varied from month to month. Gibbon groups increased resting time and huddled together in sleeping places in cold months. Gibbons spent more time feeding on fruit when fruit was more abundant suggesting that fruit was their preferred food. Alternatively, leaf eating was negatively correlated with leaf availability which suggested that leaves may be used as a fallback food. Gibbons increased their diet diversity when they ate more leaves. This might be a strategy to cope with toxins or digestion inhibitor accumulation associated with feeding from a limited number of leaf species. Individuals consumed more buds when Broussonetia papyrifera produced buds in March and April. During this period, they decreased traveling time and engaged in less frequent social interactions. Gibbons spent more time searching for and feeding on invertebrates during June and October. However, we did not collect data on invertebrate abundance and therefore cannot determine the relationship between invertebrate feeding and availability. We conclude that flexibility in consuming diverse food types and food species, and in responding to the availability of preferred foods, has enabled the Cao Vit gibbon to survive in a degraded karst forest habitat.

  2. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    SciTech Connect

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

  3. Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variation was quantified at 29 polymorphic microsatellite DNA loci in nine herds of plains bison (Bison bison bison), three herds of wood bison (B. b. athabascae), fourteen breeds of taurine cattle (Bos taurus taurus), and two breeds of indicine cattle (Bos taurus indicus). Genetic distances...

  4. Genetic variation in bison (bison bison) subspecies and cattle (Bos taurus) breeds and subspecies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variation was quantified at 29 polymorphic microsatellite DNA loci in nine herds of plains bison (Bison bison bison), three herds of wood bison (B.b. athabascae), fourteen breeds of taurine cattle (Bos Taurus Taurus), and two breeds of indicine cattle (Bos Taurus indicus). Genetic distances,...

  5. Genetic variation in historical and modern apple cultivars compared to wild relatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant domestication is generally modeled as a scenario wherein strong artificial selection is applied to a small subset of the population of a wild species. The result is that the domesticated species exhibits a genome-wide reduction in genetic variation, referred to as a genetic bottleneck. This ...

  6. Framework for interpretation of genetic variations in pancreatitis patients

    PubMed Central

    Whitcomb, David C.

    2012-01-01

    Chronic pancreatitis (CP) is defined by irreversible damage to the pancreas as a result of inflammation-driven pancreatic tissue destruction and fibrosis occurring over many years. The disorder is complex, with multiple etiologies leading to the same tissue pathology, and unpredictable clinical courses with variable pain, exocrine and endocrine organ dysfunction, and cancer. Underlying genetic variants are central CP susceptibility and progression. Three genes, with Mendelian genetic biology (PRSS1, CFTR, and SPINK1) have been recognized for over a decade, and little progress has been made since then. Furthermore, application of high-throughput genetic techniques, including genome-wide association studies (GWAS) and next generation sequencing (NGS) will provide a large volume of new genetic variants that are associated with CP, but with small independent effect that are impossible to apply in the clinic. The problem of interpretation is using the old framework of the germ theory of disease to understand complex genetic disorders. To understand these variants and translate them into clinically useful information requires a new framework based on modeling and simulation of physiological processes with or without genetic, metabolic and environmental variables considered at the cellular and organ levels, with integration of the immune system, nervous system, tissue injury and repair system, and DNA repair system. The North American Pancreatitis Study 2 (NAPS2) study was designed to capture this type of date and construct a time line to understand and later predict rates of disease progression from the initial symptom to end-stage disease. This effort is needed to target the etiology of pancreatic dysfunction beginning at the first signs of disease and thereby prevent the development of irreversible damage and the complications of CP. The need for a new framework and the rational for implementing it into clinical practice are described. PMID:23230421

  7. Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering.

    PubMed

    Wang, Lei; Fang, Mingjian; Hu, Yanping; Yang, Yuxin; Yang, Mingming; Chen, Yulin

    2014-07-01

    The count and diffusion of Lactobacilli species in the different gastrointestinal tract (GI) regions of broilers were investigated by quantitative real-time polymerase chain reaction, and the probiotic characteristics of six L. reuteri species isolated from broilers' GI tract were also investigated to obtain the potential target for genetic engineering. Lactobacilli had the highest diversity in the crop and the lowest one in the cecum. Compared with the lower GI tract, more Lactobacilli were found in the upper GI tract. Lactobacillus reuteri, L. johnsonii, L. acidophilus, L. crispatus, L. salivarius, and L. aviarius were the predominant Lactobacillus species and present throughout the GI tract of chickens. Lactobacillus reuteri was the most abundant Lactobacillus species. Lactobacillus reuteri XC1 had good probiotic characteristics that would be a potential and desirable target for genetic engineering. PMID:24850302

  8. Variation and Genetic Structure in Platanus mexicana (Platanaceae) along Riparian Altitudinal Gradient

    PubMed Central

    Galván-Hernández, Dulce M.; Lozada-García, J. Armando; Flores-Estévez, Norma; Galindo-González, Jorge; Vázquez-Torres, S. Mario

    2015-01-01

    Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State) grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l.) using ten inter-simple sequence repeats (ISSR) markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42) and polymorphism reached the top value at the middle altitude (% p = 88.57). Analysis of molecular variance (AMOVA) and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA) dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems. PMID:25607732

  9. Bovine Genetic Diversity Revealed By mtDNA Sequence Variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial DNA single nucleotide polymorphism (SNP) data were used to determine genetic distance, nucleotide diversity, construction of haplotypes, estimation of information contents, and phylogenic relationships in bovine HapMap breeds. The Bovine International HapMap panel consists of 720 anima...

  10. Genomic exploitation of genetic variation for crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants produce food, fiber, and fuel that are essential to human civilization and mainstays of economic prosperity. Our society continues to cultivate and improve the crop plants for better quality and productivity with sustainable environments. The process of crop genetic improvement has bee...

  11. Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail.

    PubMed

    Trussell, G C; Etter, R J

    2001-01-01

    Temporal and spatial patterns of phenotypic variation have traditionally been thought to reflect genetic differentiation produced by natural selection. Recently, however, there has been growing interest in how natural selection may shape the genetics of phenotypic plasticity to produce patterns of geographic variation and phenotypic evolution. Because the covariance between genetic and environmental influences can modulate the expression of phenotypic variation, a complete understanding of geographic variation requires determining whether these influences covary in the same (cogradient variation) or in opposing (countergradient variation) directions. We focus on marine snails from rocky intertidal shores as an ideal system to explore how genetic and plastic influences contribute to geographic and historical patterns of phenotypic variation. Phenotypic plasticity in response to predator cues, wave action, and water temperature appear to exert a strong influence on small and large-scale morphological variation in marine snails. In particular, plasticity in snail shell thickness: (i) may contribute to phenotypic evolution, (ii) appears to have evolved across small and large spatial scales, and (iii) may be driven by life history trade-offs tied to architectural constraints imposed by the shell. The plasticity exhibited by these snails represents an important adaptive strategy to the pronounced heterogeneity of the intertidal zone and undoubtedly has played a key role in their evolution.

  12. Population-genetic properties of differentiated copy number variations in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Besides single nucleotide polymorphism (SNP), copy number variation (CNV) which comprise insertions, deletions and duplications of genomic sequence, is a new informative type of genetic variations. CNVs have been shown to be both common in mammals and important for understanding relationship between...

  13. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  14. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  15. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans

    PubMed Central

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  16. Microgeographic population structure of green swordail fish: genetic differentiation despite abundant migration.

    PubMed

    Tatarenkov, A; Healey, C I M; Avise, J C

    2010-01-01

    Swordtails (Xiphophorus; Poeciliidae) have figured prominently in research on fish mating behaviours, sexual selection, and carcinogenesis, but their population structures and dispersal patterns have been relatively neglected. Using nine microsatellite loci, we estimated genetic differentiation in Xiphophorus helleri within and between adjacent streams in Belize. The genetic data were complemented by a tagging study of movement within one stream. In the absence of physical dispersal barriers (waterfalls), population structure followed an isolation by distance (IBD) pattern. Genetic differentiation (F(ST) up to 0.07) was significant between and within creeks, despite high dispersal in the latter as judged by the tagging data. Such heterogeneity apparently was a result of genetic drift in local demes, due to small population sizes and highly skewed paternity. The IBD pattern was interrupted by waterfalls, boosting F(ST) above 0.30 between adjacent samples across these barriers. Overall, our results are helpful in understanding the interplay of evolutionary forces and population dynamics in a small fish living in a changeable habitat. PMID:20015140

  17. Microgeographic population structure of green swordail fish: genetic differentiation despite abundant migration.

    PubMed

    Tatarenkov, A; Healey, C I M; Avise, J C

    2010-01-01

    Swordtails (Xiphophorus; Poeciliidae) have figured prominently in research on fish mating behaviours, sexual selection, and carcinogenesis, but their population structures and dispersal patterns have been relatively neglected. Using nine microsatellite loci, we estimated genetic differentiation in Xiphophorus helleri within and between adjacent streams in Belize. The genetic data were complemented by a tagging study of movement within one stream. In the absence of physical dispersal barriers (waterfalls), population structure followed an isolation by distance (IBD) pattern. Genetic differentiation (F(ST) up to 0.07) was significant between and within creeks, despite high dispersal in the latter as judged by the tagging data. Such heterogeneity apparently was a result of genetic drift in local demes, due to small population sizes and highly skewed paternity. The IBD pattern was interrupted by waterfalls, boosting F(ST) above 0.30 between adjacent samples across these barriers. Overall, our results are helpful in understanding the interplay of evolutionary forces and population dynamics in a small fish living in a changeable habitat.

  18. Response of a gall wasp community to genetic variation in the host plant Quercus crispula: a test using half-sib families

    NASA Astrophysics Data System (ADS)

    Ito, Masato; Ozaki, Kenichi

    2005-02-01

    The structure of a herbivore community may change consistently along the genetic cline of a host plant, change at particular points along the cline, or respond independently of the cline. To reveal such relationships between a gall wasp community and genetic variation in the host plant Quercus crispula, we examined patterns in the species richness and abundance of gall wasps along a genetic cline of the host plant, using 12 half-sib families from six different regions. The genetic relationships among the half-sib families of Q. crispula were quantified on the basis of leaf morphology, which represented a morphological cline from leaves typical of Q. crispula to leaves resembling another oak species, Q. dentata. The morphological cline could be regarded as a genetic cline caused by a history of hybridization with Q. dentata. The mean numbers of gall types varied among the half-sib families, but did not show a consistent increase or decrease along the genetic cline. This pattern could be explained by the fact that responses to host plant variation differed among the gall wasp species. The half-sib families were classified into three groups based on an ordination analysis of the species composition of the gall wasp community that to some extent also reflected the genetic cline of Q. crispula. This suggests that the species composition of gall wasps changed intermittently along the genetic cline, rather than gradually and consistently along the cline.

  19. The spread of apomixis and its effect on resident genetic variation.

    PubMed

    Adolfsson, S; Bengtsson, B O

    2007-09-01

    In a simulation model we investigated how much of the initial genetic variation that is retained in a population after a dominant mutation has brought apomixis to fixation in it. A marker allele associated with the apomixis mutation is generally retained after the fixation of apomixis, particularly if the two alleles are closely linked. The spread of asexuality, however, normally leads to almost no loss of genetic variation, neither with respect to cytotypes nor with respect to genotypes. This holds for large populations and apomixis mutants with strong pollen production. In smaller populations, and with apomicts with reduced pollen production, the outcome is more variable, ranging from no genetic variation retained to only weakly reduced variability compared with the initial state. These results help explain the high genetic variability in many apomicts. They also imply that natural selection will have many genotypes to act on even after the spread of apomixis.

  20. Hidden Genetic Variation in LCA9‐Associated Congenital Blindness Explained by 5′UTR Mutations and Copy‐Number Variations of NMNAT1

    PubMed Central

    Coppieters, Frauke; Todeschini, Anne Laure; Fujimaki, Takuro; Baert, Annelot; De Bruyne, Marieke; Van Cauwenbergh, Caroline; Verdin, Hannah; Bauwens, Miriam; Ongenaert, Maté; Kondo, Mineo; Meire, Françoise; Murakami, Akira; Veitia, Reiner A.; Leroy, Bart P.

    2015-01-01

    ABSTRACT Leber congenital amaurosis (LCA) is a severe autosomal‐recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9‐associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5′UTR variant, c.‐70A>T. Moreover, an adjacent 5′UTR variant, c.‐69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5′UTR variants resulted in decreased NMNAT1 mRNA abundance in patients’ lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE‐1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu‐rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1‐associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat‐mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness. PMID:26316326

  1. Genet Variation of Ectomycorrhizal Suillus granulatus Fruiting Bodies in Pinus strobus Stands.

    PubMed

    Lee, Hwa-Yong; Koo, Chang-Duck

    2016-03-01

    The genets of Suillus granulatus in a Pinus strobus stand (13 m × 60 m) were identified using random amplified polymorphic DNA molecular markers and the DNA of mushrooms that fruited for two years, and variations in genet size and distribution were analyzed. From a total of 116 mushrooms, 73 genets were identified and were grouped into three locations. The genets of mushrooms in close proximity differed from each other. The genet sizes varied at any of the three locations. The lengths of the identified genets in the pine stand ranged from 0.09 to 2.90 m. The average number of mushrooms per genet was 1.2 to 2.3, and the percentage of genets that were represented by a single mushroom was 44% to 94%. This variation in the genets of mushrooms in close proximity suggests that the ectomycorrhizal mycelial bodies of S. granulatus propagated sexually by fusing haploid spores derived from the mushrooms gills with below-ground mycelia. Therefore, it is necessary further to investigate the formation of new genets through spores in ectomycorrhizal fungal colonies. PMID:27103849

  2. Genet Variation of Ectomycorrhizal Suillus granulatus Fruiting Bodies in Pinus strobus Stands

    PubMed Central

    Lee, Hwa-Yong

    2016-01-01

    The genets of Suillus granulatus in a Pinus strobus stand (13 m × 60 m) were identified using random amplified polymorphic DNA molecular markers and the DNA of mushrooms that fruited for two years, and variations in genet size and distribution were analyzed. From a total of 116 mushrooms, 73 genets were identified and were grouped into three locations. The genets of mushrooms in close proximity differed from each other. The genet sizes varied at any of the three locations. The lengths of the identified genets in the pine stand ranged from 0.09 to 2.90 m. The average number of mushrooms per genet was 1.2 to 2.3, and the percentage of genets that were represented by a single mushroom was 44% to 94%. This variation in the genets of mushrooms in close proximity suggests that the ectomycorrhizal mycelial bodies of S. granulatus propagated sexually by fusing haploid spores derived from the mushrooms gills with below-ground mycelia. Therefore, it is necessary further to investigate the formation of new genets through spores in ectomycorrhizal fungal colonies. PMID:27103849

  3. Macrogeographic genetic variation in broad-snouted caiman (Caiman latirostris).

    PubMed

    Villela, Priscilla Marqui Schmidt; Coutinho, Luiz Lehmann; Piña, Carlos Ignacio; Verdade, Luciano M

    2008-12-01

    Broad-snouted caiman's (Caiman latirostris) geographic distribution comprises one of the widest latitudinal ranges among all crocodilians. In this study we analyzed the relationship between geographic distance (along the species latitudinal range) and genetic differentiation using DNA microsatellite loci developed for C. latirostris and Alligator mississippiensis. The results suggest that there is a consistent relationship between geographic distance and genetic differentiation; however, other biogeographical factors seem to be relevant. The Atlantic Chain (Serra do Mar) seems to be an effective geographic barrier, as well as the relatively narrow (< or =1.5 km) sea channel between Cardoso Island and the continent. In addition, coastal populations seem to have been well connected in recent geological time (Pleistocene 16,000 years ago) all along the eastern Brazilian coast. Further studies should focus on the São Francisco River drainage, which is still poorly known for this species. PMID:18661469

  4. DNA methylation mediates genetic variation for adaptive transgenerational plasticity.

    PubMed

    Herman, Jacob J; Sultan, Sonia E

    2016-09-14

    Environmental stresses experienced by individual parents can influence offspring phenotypes in ways that enhance survival under similar conditions. Although such adaptive transgenerational plasticity is well documented, its transmission mechanisms are generally unknown. One possible mechanism is environmentally induced DNA methylation changes. We tested this hypothesis in the annual plant Polygonum persicaria, a species known to express adaptive transgenerational plasticity in response to parental drought stress. Replicate plants of 12 genetic lines (sampled from natural populations) were grown in dry versus moist soil. Their offspring were exposed to the demethylating agent zebularine or to control conditions during germination and then grown in dry soil. Under control germination conditions, the offspring of drought-stressed parents grew longer root systems and attained greater biomass compared with offspring of well-watered parents of the same genetic lines. Demethylation removed these adaptive developmental effects of parental drought, but did not significantly alter phenotypic expression in offspring of well-watered parents. The effect of demethylation on the expression of the parental drought effect varied among genetic lines. Differential seed provisioning did not contribute to the effect of parental drought on offspring phenotypes. These results demonstrate that DNA methylation can mediate adaptive, genotype-specific effects of parental stress on offspring phenotypes. PMID:27629032

  5. Intracolonial genetic variation affects reproductive skew and colony productivity during colony foundation in a parthenogenetic termite

    PubMed Central

    2014-01-01

    Background In insect societies, intracolonial genetic variation is predicted to affect both colony efficiency and reproductive skew. However, because the effects of genetic variation on these two colony characteristics have been tested independently, it remains unclear whether they are affected by genetic variation independently or in a related manner. Here we test the effect of genetic variation on colony efficiency and reproductive skew in a rhinotermitid termite, Reticulitermes speratus, a species in which female-female pairs can facultatively found colonies. We established colonies using two types of female-female pairs: colonies founded by sisters (i.e., sister-pair colonies) and those founded by females from different colonies (i.e., unrelated-pair colonies). Colony growth and reproductive skew were then compared between the two types of incipient colonies. Results At 15 months after colony foundation, unrelated-pair colonies were larger than sister-pair colonies, although the caste ratio between workers and nymphs, which were alternatively differentiated from young larvae, did not differ significantly. Microsatellite DNA analyses of both founders and their parthenogenetically produced offspring indicated that, in both sister-pair and unrelated-pair colonies, there was no significant skew in the production of eggs, larvae, workers and soldiers. Nymph production, however, was significantly more skewed in the sister-pair colonies than in unrelated-pair colonies. Because nymphs can develop into winged adults (alates) or nymphoid reproductives, they have a higher chance of direct reproduction than workers in this species. Conclusions Our results support the idea that higher genetic variation among colony members could provide an increase in colony productivity, as shown in hymenopteran social insects. Moreover, this study suggests that low genetic variation (high relatedness) between founding females increases reproductive skew via one female preferentially

  6. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    PubMed Central

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  7. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    USGS Publications Warehouse

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  8. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    USGS Publications Warehouse

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already

  9. Genetics of focal segmental glomerulosclerosis and HIV-associated collapsing glomerulopathy: the role of MYH9 genetic variation

    PubMed Central

    Winkler, Cheryl A.; Nelson, George; Oleksyk, Taras K.; Nava, M. Berenice; Kopp, Jeffrey B.

    2010-01-01

    Until recently knowledge of genetic causes of glomerular disease was limited to certain rare or uncommon inherited diseases, and to a genes, either rare or with small effect, identified in candidate gene studies. These genetic factors accounted for only a very small fraction of kidney disease. However, the striking differences in frequency of many forms of kidney disease between African Americans and European Americans, which could not be completely explained by cultural or economic factors, pointed to a large unidentified genetic influence. Since FSGS and HIV-associated collapsing glomerulopathy (HVAN) have striking racial disparities, we performed an admixture mapping study to identify contributing genetic factors. Admixture mapping identified genetic variants in the non-muscle myosin gene MYH9 as having an extreme influence on both FSGS and HIVAN, with odds ratios from 4 to 8 and attributable fractions of 70–100%. Previously identified, rare inherited MYH9 disorders point to a mechanism by which MYH9 variation disrupts the actin-myosin filaments responsible for maintaining the structure of podocytes, the cells that provide one of three filtration barriers in the glomeruli. MYH9 variation has a smaller but still highly significant effect on non-diabetic kidney disease, and a weaker but significant effect on diabetic kidney disease; it is unclear whether underlying cryptic FSGS is responsible for the MYH9 association with these diseases. The strong predicted power of MYH9 variation for disease indicates a clear role for genetic testing for these variants in personalized medicine, for assessment of genetic risk, and potentially for diagnosis. PMID:20347641

  10. Efficient genotype compression and analysis of large genetic variation datasets

    PubMed Central

    Layer, Ryan M.; Kindlon, Neil; Karczewski, Konrad J.; Quinlan, Aaron R.

    2015-01-01

    Genotype Query Tools (GQT) is a new indexing strategy that expedites analyses of genome variation datasets in VCF format based on sample genotypes, phenotypes and relationships. GQT’s compressed genotype index minimizes decompression for analysis, and performance relative to existing methods improves with cohort size. We show substantial (up to 443 fold) performance gains over existing methods and demonstrate GQT’s utility for exploring massive datasets involving thousands to millions of genomes. PMID:26550772

  11. Association between OPN genetic variations and nephrolithiasis risk

    PubMed Central

    Xiao, Xu; Dong, Zhenjia; Ye, Xianqing; Yan, Yao; Chen, Xuehua; Pan, Qin; Xie, Yongfeng; Xie, Jie; Wang, Qiangdong; Yuan, Qinbo

    2016-01-01

    Osteopontin (OPN) has an important role in urolithiasis. However, few studies have explored the association between OPN genetic variants and urolithiasis risk. In the present study, three single-nucleotide polymorphisms (SNPs) (rs28357094, rs11439060 and rs11730582) located on the promoter of OPN were genotyped in a total of 480 individuals, including 230 nephrolithiasis patients and 250 matched healthy controls, and the associations between these SNPs and nephrolithiasis risk in different genetic models was assessed. No significant differences were identified in the genotype and allele frequencies of OPN rs28357094 or rs11730582 (P=0.805 for rs28357094; P=0.577 for rs11730582, respectively). However, carriers with the OPN rs11439060 insertion (ins) types (ins/deletion and ins/ins) were overrepresented in urolithiasis patients compared with the controls [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.08–2.22]. In the stratified analysis, the increased risk was more evident among younger subjects (adjusted OR, 1.68; 95% CI, 1.01–2.81), females (2.15; 1.14–4.08), overweight subjects (1.80; 1.07–3.05), normotensive subjects (2.48; 1.02–6.00), abnormal blood sugar subjects (1.58; 1.08–2.30), smokers (1.63; 1.02–2.60), and ever-drinkers (1.98; 1.10–3.60).. These findings revealed that the OPN rs11439060 polymorphism may act as genetic biomarker for the detection of high-risk nephrolithiasis patients. PMID:27602211

  12. Association between OPN genetic variations and nephrolithiasis risk

    PubMed Central

    Xiao, Xu; Dong, Zhenjia; Ye, Xianqing; Yan, Yao; Chen, Xuehua; Pan, Qin; Xie, Yongfeng; Xie, Jie; Wang, Qiangdong; Yuan, Qinbo

    2016-01-01

    Osteopontin (OPN) has an important role in urolithiasis. However, few studies have explored the association between OPN genetic variants and urolithiasis risk. In the present study, three single-nucleotide polymorphisms (SNPs) (rs28357094, rs11439060 and rs11730582) located on the promoter of OPN were genotyped in a total of 480 individuals, including 230 nephrolithiasis patients and 250 matched healthy controls, and the associations between these SNPs and nephrolithiasis risk in different genetic models was assessed. No significant differences were identified in the genotype and allele frequencies of OPN rs28357094 or rs11730582 (P=0.805 for rs28357094; P=0.577 for rs11730582, respectively). However, carriers with the OPN rs11439060 insertion (ins) types (ins/deletion and ins/ins) were overrepresented in urolithiasis patients compared with the controls [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.08–2.22]. In the stratified analysis, the increased risk was more evident among younger subjects (adjusted OR, 1.68; 95% CI, 1.01–2.81), females (2.15; 1.14–4.08), overweight subjects (1.80; 1.07–3.05), normotensive subjects (2.48; 1.02–6.00), abnormal blood sugar subjects (1.58; 1.08–2.30), smokers (1.63; 1.02–2.60), and ever-drinkers (1.98; 1.10–3.60).. These findings revealed that the OPN rs11439060 polymorphism may act as genetic biomarker for the detection of high-risk nephrolithiasis patients.

  13. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  14. A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes

    PubMed Central

    Bergström, Anders; Simpson, Jared T.; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N.; Moses, Alan M.; Louis, Edward J.; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-01-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies. PMID:24425782

  15. Human Papillomavirus 45 Genetic Variation and Cervical Cancer Risk Worldwide

    PubMed Central

    Chen, Alyce A.; Heideman, Daniëlle A. M.; Boon, Debby; Gheit, Tarik; Snijders, Peter J. F.; Tommasino, Massimo; Franceschi, Silvia

    2014-01-01

    ABSTRACT Human papillomavirus 45 (HPV45) is a member of the HPV18-related alpha-7 species and accounts for approximately 5% of all cervical cancer cases worldwide. This study evaluated the genetic diversity of HPV45 and the association of HPV45 variants with the risk of cervical cancer by sequencing the entire E6 and E7 open reading frames of 300 HPV45-positive cervical samples from 36 countries. A total of 43 HPV45 sequence variants were identified that formed 5 phylogenetic sublineages, A1, A2, A3, B1, and B2, the distribution of which varied by geographical region. Among 192 cases of cervical cancer and 101 controls, the B2 sublineage was significantly overrepresented in cervical cancer, both overall and in Africa and Europe separately. We show that the sequence analysis of E6 and E7 allows the classification of HPV45 variants and that the risk of cervical cancer may differ by HPV45 variant sublineage. IMPORTANCE This work describes the largest study to date of human papillomavirus 45 (HPV45)-positive cervical samples and provides a comprehensive reference for phylogenetic classification for use in epidemiological studies of the carcinogenicity of HPV45 genetic variants, particularly as our findings suggest that the B2 sublineage of HPV45 is associated with a higher risk of cervical cancer. PMID:24501412

  16. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    PubMed Central

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  17. Impact of restricted marital practices on genetic variation in an endogamous Gujarati group.

    PubMed

    Pemberton, Trevor J; Li, Fang-Yuan; Hanson, Erin K; Mehta, Niyati U; Choi, Sunju; Ballantyne, Jack; Belmont, John W; Rosenberg, Noah A; Tyler-Smith, Chris; Patel, Pragna I

    2012-09-01

    Recent studies have examined the influence on patterns of human genetic variation of a variety of cultural practices. In India, centuries-old marriage customs have introduced extensive social structuring into the contemporary population, potentially with significant consequences for genetic variation. Social stratification in India is evident as social classes that are defined by endogamous groups known as castes. Within a caste, there exist endogamous groups known as gols (marriage circles), each of which comprises a small number of exogamous gotra (lineages). Thus, while consanguinity is strictly avoided and some randomness in mate selection occurs within the gol, gene flow is limited with groups outside the gol. Gujarati Patels practice this form of "exogamic endogamy." We have analyzed genetic variation in one such group of Gujarati Patels, the Chha Gaam Patels (CGP), who comprise individuals from six villages. Population structure analysis of 1,200 autosomal loci offers support for the existence of distinctive multilocus genotypes in the CGP with respect to both non-Gujaratis and other Gujaratis, and indicates that CGP individuals are genetically very similar. Analysis of Y-chromosomal and mitochondrial haplotypes provides support for both patrilocal and patrilineal practices within the gol, and a low-level of female gene flow into the gol. Our study illustrates how the practice of gol endogamy has introduced fine-scale genetic structure into the population of India, and contributes more generally to an understanding of the way in which marriage practices affect patterns of genetic variation.

  18. Impact of restricted marital practices on genetic variation in an endogamous Gujarati group

    PubMed Central

    Pemberton, Trevor J.; Li, Fang-Yuan; Hanson, Erin K.; Mehta, Niyati U.; Choi, Sunju; Ballantyne, Jack; Belmont, John W.; Rosenberg, Noah A.; Tyler-Smith, Chris; Patel, Pragna I.

    2012-01-01

    Recent studies have examined the influence on patterns of human genetic variation of a variety of cultural practices. In India, centuries-old marriage customs have introduced extensive social structuring into the contemporary population, potentially with significant consequences for genetic variation. Social stratification in India is evident as social classes that are defined by endogamous groups known as castes. Within a caste, there exist endogamous groups known as gols (marriage circles), each of which comprises a small number of exogamous gotra (lineages). Thus, while consanguinity is strictly avoided and some randomness in mate selection occurs within the gol, gene flow is limited with populations outside the gol. Gujarati Patels practice this form of “exogamic endogamy.” We have analyzed genetic variation in one such group of Gujarati Patels, the Chha Gaam Patels (CGP), who comprise individuals from six villages. Population structure analysis of 1,200 autosomal loci offers support for the existence of distinctive multilocus genotypes in the CGP with respect to both non-Gujaratis and other Gujaratis, and indicates that CGP individuals are genetically very similar. Analysis of Y-chromosomal and mitochondrial haplotypes provides support for both patrilocal and patrilineal practices within the gol, and a low-level of female gene flow into the gol. Our study illustrates how the practice of gol endogamy has introduced fine-scale genetic structure into the population of India, and contributes more generally to an understanding of the way in which marriage practices affect patterns of genetic variation. PMID:22729696

  19. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. PMID:26207947

  20. The dimensionality of genetic variation for wing shape in Drosophila melanogaster.

    PubMed

    Mezey, Jason G; Houle, David

    2005-05-01

    Absolute constraints are limitations on genetic variation that preclude evolutionary change in some aspect of the phenotype. Absolute constraints may reflect complete absence of variation, lack of genetic variation that extends the range of phenotypes beyond some limit, or lack of additive genetic variation. This last type of absolute constraint is bidirectional, because the mean cannot evolve to be larger or smaller. Most traits do possess genetic variation, so bidirectional absolute constraints are most likely to be detected in a multivariate context, where they would reflect combinations of traits, or dimensions in phenotype space that cannot evolve. A bidirectional absolute constraint will cause the additive genetic covariance matrix (G) to have a rank less than the number of traits studied. In this study, we estimate the rank of the G-matrix for 20 aspects of wing shape in Drosophila melanogaster. Our best estimates of matrix rank are 20 in both sexes. Lower 95% confidence intervals of rank are 17 for females and 18 for males. We therefore find little evidence of bidirectional absolute constraints. We discuss the importance of this result for resolving the relative roles of selection and drift processes versus constraints in the evolution of wing shape in Drosophila.

  1. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.

    PubMed

    Cortez, Michael H

    2016-09-01

    Evolution can alter the stability and dynamics of ecological communities; for example, prey evolution can drive cyclic dynamics in predator-prey systems that are not possible in the absence of evolution. However, it is unclear how the magnitude of additive genetic variation in the evolving species mediates those effects. In this study, I explore how the magnitude of prey additive genetic variation determines what effects prey evolution has on the dynamics and stability of predator-prey systems. I use linear stability analysis to decompose the stability of a general eco-evolutionary predator-prey model into components representing the stabilities of the ecological and evolutionary subsystems as well as the interactions between those subsystems. My results show that with low genetic variation, the cyclic dynamics and stability of the system are determined by the ecological subsystem. With increased genetic variation, disruptive selection always destabilizes stable communities, stabilizing selection can stabilize or destabilize communities, and prey evolution can alter predator-prey phase lags. Stability changes occur approximately when the magnitude of genetic variation balances the (in)stabilities of the ecological and evolutionary subsystems. I discuss the connections between my stability results and prior results from the theory of adaptive dynamics.

  2. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.

    PubMed

    Cortez, Michael H

    2016-09-01

    Evolution can alter the stability and dynamics of ecological communities; for example, prey evolution can drive cyclic dynamics in predator-prey systems that are not possible in the absence of evolution. However, it is unclear how the magnitude of additive genetic variation in the evolving species mediates those effects. In this study, I explore how the magnitude of prey additive genetic variation determines what effects prey evolution has on the dynamics and stability of predator-prey systems. I use linear stability analysis to decompose the stability of a general eco-evolutionary predator-prey model into components representing the stabilities of the ecological and evolutionary subsystems as well as the interactions between those subsystems. My results show that with low genetic variation, the cyclic dynamics and stability of the system are determined by the ecological subsystem. With increased genetic variation, disruptive selection always destabilizes stable communities, stabilizing selection can stabilize or destabilize communities, and prey evolution can alter predator-prey phase lags. Stability changes occur approximately when the magnitude of genetic variation balances the (in)stabilities of the ecological and evolutionary subsystems. I discuss the connections between my stability results and prior results from the theory of adaptive dynamics. PMID:27501090

  3. The Genetics of Blood Pressure and Hypertension: the role of rare variation

    PubMed Central

    Doris, Peter A.

    2013-01-01

    Summary The role of heredity in influencing blood pressure and risk of hypertension is well recognized. However, progress in identifying specific genetic variation that contributes to heritability is very limited. This is in spite of completion of the human genome sequence, the development of extraordinary amounts of information about genome sequence variation and the investigation of blood pressure inheritance in linkage analysis, candidate gene studies and, most recently genome-wide association studies. This paper considers the progress of this research and the obstacles that have been encountered. This work has made clear that the genetic architecture of blood pressure regulation in the population is not likely to be shaped by commonly occurring genetic variation in a discrete set of blood pressure-influencing genes. Rather heritability may be accounted for by rare variation that has its biggest impact within pedigrees rather than on the population at large. Rare variants in a wide range of genes are likely to be the focus of high blood pressure genetics for the next several years and the emerging strategies that can be applied to uncover this genetic variation and the problems that must confronted are considered. PMID:21129164

  4. Genetic variation and spread pattern of invasive Conyza sumatrensis around China’s Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Ren, Ming-Xun; Li, Xiao-Qiong; Ding, Jian-Qing

    2010-11-01

    Genetic diversity and structure within and between 17 populations of invasive Conyza sumatrensis (Asteraceae) around the world's biggest hydroelectric dam (Three Gorges Dam (TGD) on the Yangtze River in China) and nearby localities were surveyed using inter-simple sequence repeat (ISSR) markers to determine the spread pattern of this invader in TGD and nearby regions. A total of 434 individuals were analysed, for which 15 ISSR primers amplified 81 bands, with 54 (66.7%) being polymorphic. The percentage of polymorphic loci within a population ranged from 31% to 58%, Nei's gene diversity was 0.385 ± 0.056, and mean Shannon's Index was 0.5815 ± 0.0833, indicating a high genetic variation in this self-fertile plant. Mass seed production and multiple introductions associated with dam construction and local development were thought to be responsible for the high level of genetic variation. Analysis of Molecular Variance revealed 36.5% of genetic variation residing within populations, 35.0% among populations within regions, and 28.5% among the three regions: TGD, upper reaches of TGD, and lower reaches of TGD. Most populations were genetically related to their nearest neighbors, while gene flow (mainly via seed movement) across TGD existed. Long-distance dispersal of seeds and pollen such as by water current, wind and human transportation could explain the low level of geographic structure of genetic variation. The highest genetic variation was found in a population in TGD, and most populations from TGD showed closer genetic relationship to the lower reaches population, which indicated that C. sumatrensis at TGD has likely experienced multiple introductions mainly from lower reaches, which is near the area of primary introduction (southern China) of C. sumatrensis.

  5. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly.

    PubMed

    Takahashi, Yuma; Suyama, Yoshihisa; Matsuki, Yu; Funayama, Ryo; Nakayama, Keiko; Kawata, Masakado

    2016-09-01

    What limits a species' distribution in the absence of physical barriers? Genetic load due to asymmetric gene flow and the absence of genetic variation due to lack of gene flow are hypothesized to constrain adaptation to novel environments in marginal populations, preventing range expansion. Here, we examined the genetic structure and geographic variation in morphological traits in two damselflies (Ischnura asiatica and I. senegalensis) along a latitudinal gradient in Japan, which is the distribution centre of I. asiatica and the northern limit of I. senegalensis. Genomewide genetic analyses found a loss of genetic diversity at the edge of distribution in I. senegalensis but consistently high diversity in I. asiatica. Gene flow was asymmetric in a south-north direction in both species. Although body size and wing loading showed decreasing latitudinal clines (smaller in north) in I. asiatica in Japan, increasing latitudinal clines (larger in north) in these phenotypic markers were observed in I. senegalensis, particularly near the northern boundary, which coincided well with the location where genetic diversity began a sharp decline. In ectothermic animals, increasing latitudinal cline in these traits was suggested to be established when they failed to adapt to thermal gradient. Therefore, our findings support the possibility that a lack of genetic variation rather than geneflow swamping is responsible for the constraint of adaptation at the margin of geographic distribution.

  6. Variation in signal-preference genetic correlations in Enchenopa treehoppers (Hemiptera: Membracidae).

    PubMed

    Fowler-Finn, Kasey D; Kilmer, Joseph T; Hallett, Allysa C; Rodríguez, Rafael L

    2015-07-01

    Fisherian selection is a within-population process that promotes signal-preference coevolution and speciation due to signal-preference genetic correlations. The importance of the contribution of Fisherian selection to speciation depends in part on the answer to two outstanding questions: What explains differences in the strength of signal-preference genetic correlations? And, how does the magnitude of within-species signal-preference covariation compare to species differences in signals and preferences? To address these questions, we tested for signal-preference genetic correlations in two members of the Enchenopa binotata complex, a clade of plant-feeding insects wherein speciation involves the colonization of novel host plants and signal-preference divergence. We used a full-sibling, split-family rearing experiment to estimate genetic correlations and to analyze the underlying patterns of variation in signals and preferences. Genetic correlations were weak or zero, but exploration of the underlying patterns of variation in signals and preferences revealed some full-sib families that varied by as much as 50% of the distance between similar species in the E. binotata complex. This result was stronger in the species that showed greater amounts of genetic variation in signals and preferences. We argue that some forms of weak signal-preference genetic correlation may have important evolutionary consequences.

  7. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes.

    PubMed

    Vitaliano, S N; Soares, H S; Minervino, A H H; Santos, A L Q; Werther, K; Marvulo, M F V; Siqueira, D B; Pena, H F J; Soares, R M; Su, C; Gennari, S M

    2014-12-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as "primary samples", were genotyped by PCR-restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite. PMID:25426424

  8. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes

    PubMed Central

    Vitaliano, S.N.; Soares, H.S.; Minervino, A.H.H.; Santos, A.L.Q.; Werther, K.; Marvulo, M.F.V.; Siqueira, D.B.; Pena, H.F.J.; Soares, R.M.; Su, C.; Gennari, S.M.

    2014-01-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as “primary samples”, were genotyped by PCR–restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite. PMID:25426424

  9. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  10. Sources and seasonal variation of coliform bacteria abundance in groundwater around the slopes of Mount Meru, Arusha, Tanzania.

    PubMed

    Elisante, Eliapenda; Muzuka, Alfred N N

    2016-07-01

    The quality of the groundwater along the slopes of Mount Meru, Tanzania, is poorly understood. Water access and sanitation practices may pose health risks to communities. This study was undertaken to assess the sources, abundance and seasonal variation of coliform bacteria in groundwater and factors contributing to such variations along slopes of Mount Meru, Tanzania. Water samples collected from 67 randomly selected water sources (springs, shallow wells which ranged from 4 to 35 m deep and Boreholes above 40 m deep) during dry and wet seasons were analysed for total coliform (TC), faecal coliform (FC), Escherichia coli (E. coli) and faecal streptococci (FS), using the membrane filtration method. The fraction of springs and shallow wells contaminated was generally higher compared to the fraction of boreholes. The highest TC, FC, E. coli and FS counts were significantly higher (p < 0.05) during the wet than the dry season owing to rising of water table and leaching during rainy season. Water sources that were located within 10 m of pit latrines had the highest coliform counts relative to those located beyond 10 m. Similarly, the highest coliform counts were observed in all shallow wells that (i) had low well head above the ground, (ii) were not covered, (iii) had casing materials which were not concrete and (iv) utilised traditional pumping (bucket/pulley) systems. This was due to contaminated storm water access, inoculation of microbes by exposed buckets and inefficiency of the casing material. Furthermore, the counts decreased with depths of boreholes and shallow wells during the two seasons probably due to retention and die-off. It is recommended that groundwater in this area be treated against coliform contamination prior to utilisation as portable water. PMID:27270483

  11. Sources and seasonal variation of coliform bacteria abundance in groundwater around the slopes of Mount Meru, Arusha, Tanzania.

    PubMed

    Elisante, Eliapenda; Muzuka, Alfred N N

    2016-07-01

    The quality of the groundwater along the slopes of Mount Meru, Tanzania, is poorly understood. Water access and sanitation practices may pose health risks to communities. This study was undertaken to assess the sources, abundance and seasonal variation of coliform bacteria in groundwater and factors contributing to such variations along slopes of Mount Meru, Tanzania. Water samples collected from 67 randomly selected water sources (springs, shallow wells which ranged from 4 to 35 m deep and Boreholes above 40 m deep) during dry and wet seasons were analysed for total coliform (TC), faecal coliform (FC), Escherichia coli (E. coli) and faecal streptococci (FS), using the membrane filtration method. The fraction of springs and shallow wells contaminated was generally higher compared to the fraction of boreholes. The highest TC, FC, E. coli and FS counts were significantly higher (p < 0.05) during the wet than the dry season owing to rising of water table and leaching during rainy season. Water sources that were located within 10 m of pit latrines had the highest coliform counts relative to those located beyond 10 m. Similarly, the highest coliform counts were observed in all shallow wells that (i) had low well head above the ground, (ii) were not covered, (iii) had casing materials which were not concrete and (iv) utilised traditional pumping (bucket/pulley) systems. This was due to contaminated storm water access, inoculation of microbes by exposed buckets and inefficiency of the casing material. Furthermore, the counts decreased with depths of boreholes and shallow wells during the two seasons probably due to retention and die-off. It is recommended that groundwater in this area be treated against coliform contamination prior to utilisation as portable water.

  12. Temporal genetic variation of Fasciola hepatica from sheep in Galicia (NW Spain).

    PubMed

    Vázquez-Prieto, Severo; Vilas, Román; Ubeira, Florencio M; Paniagua, Esperanza

    2015-04-30

    We found low genetic differentiation between two temporal samples of Fasciola hepatica (2006 and 2008) collected from nine sheep of the same flock that shared the same pasture for at least 2 years. However, each sample, represented by four and five infrapopulations respectively, showed strong heterozygote deficits regarding Hardy-Weinberg expectations and a high degree of genetic structure at infrapopulation level. This is an unexpected result since genetic drift should increase temporal variation among years. Our findings are most likely explained by the fact that the parasite can survive many years in the definitive host. Temporal gene flow favored by high longevity probably increases levels of genetic variability of the population but could also contribute to the observed heterozygote deficits within temporal samples and infrapopulations if it favors the Wahlund effect. Despite the homogenizing effect of gene flow, the high genetic divergence observed between infrapopulations is most likely a consequence of strong genetic drift associated to the complexity of the life cycle.

  13. Age-Specific Variation in Immune Response in Drosophila melanogaster Has a Genetic Basis

    PubMed Central

    Felix, Tashauna M.; Hughes, Kimberly A.; Stone, Eric A.; Drnevich, Jenny M.; Leips, Jeff

    2012-01-01

    Immunosenescence, the age-related decline in immune system function, is a general hallmark of aging. While much is known about the cellular and physiological changes that accompany immunosenescence, we know little about the genetic influences on this phenomenon. In this study we combined age-specific measurements of bacterial clearance ability following infection with whole-genome measurements of the transcriptional response to infection and wounding to identify genes that contribute to the natural variation in immunosenescence, using Drosophila melanogaster as a model system. Twenty inbred lines derived from nature were measured for their ability to clear an Escherichia coli infection at 1 and 4 weeks of age. We used microarrays to simultaneously determine genome-wide expression profiles in infected and wounded flies at each age for 12 of these lines. Lines exhibited significant genetically based variation in bacterial clearance at both ages; however, the genetic basis of this variation changed dramatically with age. Variation in gene expression was significantly correlated with bacterial clearance ability only in the older age group. At 4 weeks of age variation in the expression of 247 genes following infection was associated with genetic variation in bacterial clearance. Functional annotation analyses implicate genes involved in energy metabolism including those in the insulin signaling/TOR pathway as having significant associations with bacterial clearance in older individuals. Given the evolutionary conservation of the genes involved in energy metabolism, our results could have important implications for understanding immunosenescence in other organisms, including humans. PMID:22554890

  14. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.

    PubMed

    Gu, Junfei; Yin, Xinyou; Stomph, Tjeerd-Jan; Struik, Paul C

    2014-01-01

    Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22-29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase)-limited photosynthesis but also from electron transport-limited photosynthesis; as a result, photosynthetic rates could be improved for both light-saturated and light-limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ-plasm, especially the variation in parameters determining light-limited photosynthesis.

  15. Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity

    PubMed Central

    Veeramah, Krishna R; Tönjes, Anke; Kovacs, Peter; Gross, Arnd; Wegmann, Daniel; Geary, Patrick; Gasperikova, Daniela; Klimes, Iwar; Scholz, Markus; Novembre, John; Stumvoll, Michael

    2011-01-01

    Population isolates have long been of interest to genetic epidemiologists because of their potential to increase power to detect disease-causing genetic variants. The Sorbs of Germany are considered as cultural and linguistic isolates and have recently been the focus of disease association mapping efforts. They are thought to have settled in their present location in eastern Germany after a westward migration from a largely Slavic-speaking territory during the Middle Ages. To examine Sorbian genetic diversity within the context of other European populations, we analyzed genotype data for over 30 000 autosomal single-nucleotide polymorphisms from over 200 Sorbs individuals. We compare the Sorbs with other European individuals, including samples from population isolates. Despite their geographical proximity to German speakers, the Sorbs showed greatest genetic similarity to Polish and Czech individuals, consistent with the linguistic proximity of Sorbian to other West Slavic languages. The Sorbs also showed evidence of subtle levels of genetic isolation in comparison with samples from non-isolated European populations. The level of genetic isolation was less than that observed for the Sardinians and French Basque, who were clear outliers on multiple measures of isolation. The finding of the Sorbs as only a minor genetic isolate demonstrates the need to genetically characterize putative population isolates, as they possess a wide range of levels of isolation because of their different demographic histories. PMID:21559053

  16. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  17. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster.

    PubMed

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  18. Genetic Variation in the Expression of ADH in DROSOPHILA MELANOGASTER

    PubMed Central

    Maroni, G.; Laurie-Ahlberg, C. C.; Adams, D. A.; Wilton, A. N.

    1982-01-01

    Several chromosomes derived from natural populations have been identified that affect the expression of alcohol dehydrogenase (ADH). Second chromosomes, which also carry the structural gene Adh, show a great deal of polymorphism of genetic elements that determine how much enzyme protein accumulates. The level of enzyme was measured in third instar larvae, 6-to-8-day-old males and in larval fat bodies and alimentary canals. In general, activities in the different organs and stages are highly correlated with one another. One line was found, however, in which the ADH level in the fat body is more than twice the level one would expect on the basis of the activity in alimentary canal. We have also found evidence of third-chromosome elements that affect the level of ADH. PMID:6816669

  19. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    SciTech Connect

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  20. Genetic effects on sleep/wake variation of seizures

    PubMed Central

    Winawer, Melodie R.; Shih, Jerry; Beck, Erin S.; Hunter, Jessica E.; Epstein, Michael P.

    2016-01-01

    Summary Objective There is a complex bidirectional relationship between sleep and epilepsy. Sleep/wake timing of seizures has been investigated for several individual seizure types and syndromes, but few large-scale studies of the timing of seizures exist in people with varied epilepsy types. In addition, the genetic contributions to seizure timing have not been well studied. Methods Sleep/wake timing of seizures was determined for 1,395 subjects in 546 families enrolled in the Epilepsy Phenome/Genome Project (EPGP). We examined seizure timing among subjects with different epilepsy types, seizure types, epilepsy syndromes, and localization. We also examined the familial aggregation of sleep/wake occurrence of seizures. Results Seizures in nonacquired focal epilepsy (NAFE) were more likely to occur during sleep than seizures in generalized epilepsy (GE), for both convulsive (odds ratio [OR] 5.2, 95% confidence interval [CI] 3.59–7.52) and nonconvulsive seizures (OR 4.2, 95% CI 2.48–7.21). Seizures occurring within 1 h of awakening were more likely to occur in patients with GE than with NAFE for both convulsive (OR 2.3, 95% CI 1.54– 3.39) and nonconvulsive (OR 1.7, 95% CI 1.04–2.66) seizures. Frontal onset seizures were more likely than temporal onset seizures to occur during sleep. Sleep/wake timing of seizures in first-degree relatives predicted timing of seizures in the proband. Significance We found that sleep/wake timing of seizures is associated with both epilepsy syndrome and seizure type. In addition, we provide the first evidence for a genetic contribution to sleep/wake timing of seizures in a large group of individuals with common epilepsy syndromes. PMID:26948972

  1. Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Bame, S. J.

    1982-01-01

    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS.

  2. A joint history of the nature of genetic variation and the nature of schizophrenia.

    PubMed

    Kendler, K S

    2015-02-01

    This essay traces the history of concepts of genetic variation and schizophrenia from Darwin and Mendel to the present. For Darwin, the important form of genetic variation for evolution is continuous in nature and small in effect. Biometricians led by Pearson agreed and developed statistical genetic approaches utilizing trait correlations in relatives. Mendel studied discontinuous traits and subsequent Mendelians, led by Bateson, assumed that important genetic variation was large in effect producing discontinuous phenotypes. Although biometricians studied 'insanity', schizophrenia genetics under Kraepelin and Rüdin utilized Mendelian approaches congruent with their anatomical-clinical disease model of dementia praecox. Fisher showed, assuming many genes of small effect, Mendelian and Biometrical models were consilient. Echoing prior conflicts, psychiatric genetics since then has utilized both biometrical models, largely in twins, and Mendelian models, based on advancing molecular techniques. In 1968, Gottesman proposed a polygenic model for schizophrenia based on a threshold version of Fisher's theory. Since then, rigorous studies of the schizophrenia spectrum suggest that genetic risk for schizophrenia is more likely continuous than categorical. The last 5 years has seen increasingly convincing evidence from genome-wide association study (GWAS) and sequencing that genetic risk for schizophrenia is largely polygenic, and congruent with Fisher's and Gottesman's models. The gap between biometrical and molecular Mendelian models for schizophrenia has largely closed. The efforts to ground a categorical biomedical model of schizophrenia in Mendelian genetics have failed. The genetic risk for schizophrenia is widely distributed in human populations so that we all carry some degree of risk. PMID:25134695

  3. New genetic regulators question relevance of abundant yolk protein production in C. elegans

    PubMed Central

    Rompay, Liesbeth Van; Borghgraef, Charline; Beets, Isabel; Caers, Jelle; Temmerman, Liesbet

    2015-01-01

    Vitellogenesis or maternal yolk formation is considered critical to the reproduction of egg-laying animals. In invertebrates, however, most of its regulatory genes are still unknown. Via a combined mapping and whole-genome sequencing strategy, we performed a forward genetic screen to isolate novel regulators of yolk production in the nematode model system Caenorhabditis elegans. In addition to isolating new alleles of rab-35, rab-10 and M04F3.2, we identified five mutant alleles corresponding to three novel regulatory genes potently suppressing the expression of a GFP-based yolk reporter. We confirmed that mutations in vrp-1, ceh-60 and lrp-2 disrupt endogenous yolk protein synthesis at the transcriptional and translational level. In contrast to current beliefs, our discovered set of mutants with strongly reduced yolk proteins did not show serious reproduction defects. This raises questions as to whether yolk proteins per se are needed for ultimate reproductive success. PMID:26553710

  4. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons.

    PubMed

    Wu, Shaw-Wen; Lindberg, Jonathan E M; Peters, James H

    2016-05-01

    Primary vagal afferent neurons express a multitude of thermosensitive ion channels. Within this family of ion channels, the heat-sensitive capsaicin receptor (TRPV1) greatly influences vagal afferent signaling by determining the threshold for action-potential initiation at the peripheral endings, while controlling temperature-sensitive forms of glutamate release at central vagal terminals. Genetic deletion of TRPV1 does not completely eliminate these temperature-dependent effects, suggesting involvement of additional thermosensitive ion channels. The warm-sensitive, calcium-permeable, ion channel TRPV3 is commonly expressed with TRPV1; however, the extent to which TRPV3 is found in vagal afferent neurons is unknown. Here, we begin to characterize the genetic and functional expression of TRPV3 in vagal afferent neurons using molecular biology (RT-PCR and RT-quantitative PCR) in whole nodose and isolated neurons and fluorescent calcium imaging on primary cultures of nodose ganglia neurons. We confirmed low-level TRPV3 expression in vagal afferent neurons and observed direct activation with putative TRPV3 agonists eugenol, ethyl vanillin (EVA), and farnesyl pyrophosphate (FPP). Agonist activation stimulated neurons also containing TRPV1 and was blocked by ruthenium red. FPP sensitivity overlapped with EVA and eugenol but represented the smallest percentage of vagal afferent neurons, and it was the only agonist that did not stimulate neurons from TRPV3(-/-1) mice, suggesting FPP has the highest selectivity. Further, FPP was predictive of enhanced responses to capsaicin, EVA, and eugenol in rats. From our results, we conclude TRPV3 is expressed in a discrete subpopulation of vagal afferent neurons and may contribute to vagal afferent signaling either directly or in combination with TRPV1. PMID:26843581

  5. Studies of Genetic Variation of Essential Oil and Alkaloid Content in Boldo (Peumus boldus).

    PubMed

    Vogel, H; Razmilic, I; Muñoz, M; Doll, U; Martin, J S

    1999-02-01

    Boldo is a tree or shrub with medicinal properties native to Chile. The leaves contain alkaloids and essential oils. Variation of total alkaloid concentration, of the alkaloid boldine, and essential oil components were studied in different populations from northern, central, and southern parts of its geographic range and in their progenies (half-sib families). Total alkaloid concentration showed genetic variation between progenies of the central population but not between populations. Boldine content found in concentrations of 0.007 to 0.009% did not differ significantly between populations. Principal components of the essential oil were determined genetically, with highest values for ascaridole in the population of the north and for P-cymene in the south. Between half-sib families genetic variation was found in the central and northern populations for these components. The high heritability coefficients found indicate considerable potential for successful selection of individuals for these characters. PMID:17260243

  6. Genetic variation in V gene of class II Newcastle disease virus.

    PubMed

    Hao, Huafang; Chen, Shengli; Liu, Peng; Ren, Shanhui; Gao, Xiaolong; Wang, Yanping; Wang, Xinglong; Zhang, Shuxia; Yang, Zengqi

    2016-01-01

    The genetic variation and molecular evolution of the V gene of the class II Newcastle disease virus (NDV) isolates with genotypes I-XVIII were determined using bioinformatics. Results indicated that low homology existed in different genotype viruses, whereas high homology often for the same genotypes, exception may be existed within genotypes I, V, VI, and XII. Sequence analysis showed that the genetic variation of V protein was consistent with virus genotype, and specific signatures on the V protein for nine genotypes were identified. Phylogenetic analysis demonstrated that the phylogenetic trees were highly consistent between the V and F genes, with slight discrepancies in the sub-genotypes. Evolutionary rate analyses based on V and F genes revealed the evolution rates varied in genotypes. These data indicate that the genetic variation of V protein is genotype-related and will help in elucidating the molecular evolution of NDV.

  7. Genetic and epigenetic variation in the lineage specification of regulatory T cells.

    PubMed

    Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y

    2015-10-28

    Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease.

  8. Spontaneous mutations and the origin and maintenance of quantitative genetic variation

    PubMed Central

    Huang, Wen; Lyman, Richard F; Lyman, Rachel A; Carbone, Mary Anna; Harbison, Susan T; Magwire, Michael M; Mackay, Trudy FC

    2016-01-01

    Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation. DOI: http://dx.doi.org/10.7554/eLife.14625.001 PMID:27213517

  9. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    PubMed

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. PMID:24621402

  10. Genetic variation in homocysteine metabolism, cognition, and white matter lesions.

    PubMed

    de Lau, Lonneke M L; van Meurs, Joyce B J; Uitterlinden, André G; Smith, A David; Refsum, Helga; Johnston, Carole; Breteler, Monique M B

    2010-11-01

    Several studies have shown an association between homocysteine concentration and cognitive performance or cerebral white matter lesions. However, variations in genes encoding for enzymes and other proteins that play a role in homocysteine metabolism have hardly been evaluated in relation to these outcome measures. In the population-based Rotterdam Scan Study, we examined the association of seven polymorphisms of genes involved in homocysteine metabolism (MTHFR 677C>T, MTHFR 1298A>C, RFC 80G>A, TC 776C>G, MTR 2756A>G, MTRR 66A>G, and CBS 844ins68) with plasma total homocysteine, cognitive performance, and cerebral white matter lesions among 1011 non-demented elderly participants. Of all the studied polymorphisms, only MTHFR 677C>T was associated with homocysteine concentration. No significant relationship was observed for any of the polymorphisms with cognitive performance or severity of cerebral white matter lesions.

  11. Genetic variation in the free-living amoeba Naegleria fowleri.

    PubMed

    Pélandakis, M; De Jonckheere, J F; Pernin, P

    1998-08-01

    In this study, 30 strains of the pathogenic free-living amoeba Naegleria fowleri were investigated by using the randomly amplified polymorphic DNA (RAPD) method. The present study confirmed our previous finding that RAPD variation is not correlated with geographical origin. In particular, Mexican strains belong to the variant previously detected in Asia, Europe, and the United States. In France, surprisingly, strains from Cattenom gave RAPD patterns identical to those of the Japanese strains. In addition, all of these strains, together with an additional French strain from Chooz, exhibited similarities to South Pacific strains. The results also confirmed the presence of numerous variants in Europe, whereas only two variants were detected in the United States. The two variants found in the United States were different from the South Pacific variants. These findings do not support the previous hypothesis concerning the origin and modes of dispersal of N. fowleri.

  12. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation.

    PubMed

    Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang

    2016-07-19

    DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183

  13. Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout

    USGS Publications Warehouse

    Wofford, John E.B.; Gresswell, Robert E.; Banks, M.A.

    2005-01-01

    Because human land use activities often result in increased fragmentation of aquatic and terrestrial habitats, a better understanding of the effects of fragmentation on the genetic heterogeneity of animal populations may be useful for effective management. We used eight microsatellites to examine the genetic structure of coastal cutthroat trout (Oncorhynchus clarki clarki) in Camp Creek, an isolated headwater stream in western Oregon. Our objectives were to determine if coastal cutthroat trout were genetically structured within streams and to assess the effects of natural and anthropogenic barriers on coastal cutthroat trout genetic variation. Fish sampling occurred at 10 locations, and allele frequencies differed significantly among all sampling sections. Dispersal barriers strongly influenced coastal cutthroat trout genetic structure and were associated with reduced genetic diversity and increased genetic differentiation. Results indicate that Camp Creek coastal cutthroat trout exist as many small, partially independent populations that are strongly affected by genetic drift. In headwater streams, barriers to movement can result in genetic and demographic isolation leading to reduced coastal cutthroat trout genetic diversity, and potentially compromising long-term population persistence. When habitat fragmentation eliminates gene flow among small populations, similar results may occur in other species.

  14. Genetic and environmental variation in bovine milk infrared spectra.

    PubMed

    Wang, Qiuyu; Hulzebosch, Alex; Bovenhuis, Henk

    2016-08-01

    Fourier transform infrared (FTIR) spectroscopy is widely used to determine milk composition. In this study, 1,060 milk infrared wavenumbers ranging from 925 to 5,008cm(-1) of 1,748 Holstein Friesian cows on 371 herds in the Netherlands were available. The extent to which infrared wavenumbers are affected by genetic and environmental factors was investigated. Inter-herd heritabilities of 1,060 infrared wavenumbers ranged from 0 to 0.63, indicating that the genetic background of infrared wavenumbers differs considerably. The majority of the wavenumbers have moderate to high inter-herd heritabilities ranging from 0.20 to 0.60. The diacylglycerol O-acyltransferase 1 (DGAT1), stearoyl-CoA desaturase (SCD1), κ-casein (CSN3), and β-lactoglobulin (LGB) polymorphisms are known to have a large effect on milk composition, and therefore we studied the effects of these polymorphisms on infrared wavenumbers. The DGAT1 polymorphism had highly significant effects on many wavenumbers. In contrast, the SCD1 polymorphism did not significantly affect any of the wavenumbers. The SCD1 is known to have a strong effect on the content of C10:1, C12:1, C14:1, and C16:1 fatty acids. Therefore, these results suggest that FTIR spectra contain little direct information on these monounsaturated fatty acids. The CSN3 and LGB polymorphisms had significant effects on a few wavenumbers. Differences between herds explained 10 to 25% of the total variance for most wavenumbers. This suggests that the wavenumbers of milk FTIR spectra are indicative for differences in feeding and management between herds. The wavenumbers between 1,619 and 1,674cm(-1) and between 3,073 and 3,667cm(-1) are strongly influenced by water absorption and usually excluded when setting up prediction equations. However, we found that some of the wavenumbers in the water absorption region are affected by the DGAT1 polymorphism and lactation stage. This suggests that these wavenumbers contain useful information regarding milk

  15. Interpretation of patterns of genetic variation in endemic plant species of oceanic islands

    PubMed Central

    Stuessy, Tod F; Takayama, Koji; López-Sepúlveda, Patricio; Crawford, Daniel J

    2014-01-01

    Oceanic islands offer special opportunities for understanding the patterns and processes of evolution. The availability of molecular markers in recent decades has enhanced these opportunities, facilitating the use of population genetics to reveal divergence and speciation in island systems. A common pattern seen in taxa on oceanic islands is a decreased level of genetic variation within and among populations, and the founder effect has often been invoked to explain this observation. Founder effects have a major impact on immigrant populations, but, over millions of years, the original genetic signature will normally be erased as a result of mutation, recombination, drift and selection. Therefore, the types and degrees of genetic modifications that occur must often be caused by other factors, which should be considered when explaining the patterns of genetic variation. The age of the island is extremely important because oceanic islands subside on their submarine plates over time. Erosion caused by wind, rain and wave action combine to grind down soft volcanic substrates. These geomorphological events can have a dramatic impact on population number and size, and hence levels of genetic diversity. The mode of speciation is also of significance. With anagenesis, genetic variation accumulates through time, whereas, with cladogenenesis, the gene pool splits into populations of adaptively radiating species. Breeding systems, population sizes and generation times are also important, as is hybridization between closely related taxa. Human disturbance has affected plant population number and size through the harvesting of forests and the introduction of invasive plants and animals. Therefore, the explanation of the observed levels of genetic variation in species of oceanic islands requires the consideration of many interconnected physical, biological and anthropomorphic factors. PMID:26074627

  16. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    PubMed Central

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  17. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    PubMed

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  18. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

    PubMed Central

    Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.

    2016-01-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832

  19. MetaRanker 2.0: a web server for prioritization of genetic variation data.

    PubMed

    Pers, Tune H; Dworzyński, Piotr; Thomas, Cecilia Engel; Lage, Kasper; Brunak, Søren

    2013-07-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein-protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0.

  20. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    PubMed

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.

  1. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    PubMed

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains. PMID:22567089

  2. Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype

    PubMed Central

    Kunin, William E.; Vergeer, Philippine; Kenta, Tanaka; Davey, Matthew P.; Burke, Terry; Ian Woodward, F.; Quick, Paul; Mannarelli, Maria-Elena; Watson-Haigh, Nathan S.; Butlin, Roger

    2009-01-01

    Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent. PMID:19324821

  3. Genetic, molecular and physiological basis of