Science.gov

Sample records for abundant hydroxyl groups

  1. Column abundance measurements of atmospheric hydroxyl at 45 deg S

    NASA Technical Reports Server (NTRS)

    Wood, S. W.; Keep, D. J.; Burnett, C. R.; Burnett, E. B.

    1994-01-01

    The first Southern Hemisphere measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been obtained at Lauder, New Zealand (45 deg S) with a PEPSIOS instrument measuring the absorption of sunlight at 308 nm. The variation of column OH with solar zenith angle is similar to that measured at other sites. However average annual abundances of OH are about 20% higher than those found by similar measurements at 40 deg N. Minimum OH abundances about 10% less than average levels at 40 deg N, are observed during austral spring. The OH abundance abruptly increases by 30% in early summer and remains at the elevated level until late the following winter.

  2. Chemoselective Hydroxyl Group Transformation: An Elusive Target‡

    PubMed Central

    Trader, Darci J.; Carlson, Erin E.

    2012-01-01

    The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described. PMID:22695722

  3. Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis

    PubMed Central

    Wu, Chung-Yi; Tu, Kuan-Ju; Deng, Jin-Pei; Lo, Yu-Shiu; Wu, Chien-Hou

    2017-01-01

    The benefits of increasing the number of surface hydroxyls on TiO2 nanoparticles (NPs) are known for environmental and energy applications; however, the roles of the hydroxyl groups have not been characterized and distinguished. Herein, TiO2 NPs with abundant surface hydroxyl groups were prepared using commercial titanium dioxide (ST-01) powder pretreated with alkaline hydrogen peroxide. Through this simple treatment, the pure anatase phase was retained with an average crystallite size of 5 nm and the surface hydroxyl group density was enhanced to 12.0 OH/nm2, estimated by thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Especially, this treatment increased the amounts of terminal hydroxyls five- to six-fold, which could raise the isoelectric point and the positive charges on the TiO2 surface in water. The photocatalytic efficiency of the obtained TiO2 NPs was investigated by the photodegradation of sulforhodamine B under visible light irradiation as a function of TiO2 content, pH of solution, and initial dye concentration. The high surface hydroxyl group density of TiO2 NPs can not only enhance water-dispersibility but also promote dye sensitization by generating more hydroxyl radicals. PMID:28772926

  4. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  5. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups.

    PubMed

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-08

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  6. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  7. Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite

    SciTech Connect

    Sihvonen, Sarah K.; Murphy, Kelly A.; Washton, Nancy M.

    Mineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use 19F magic angle spinning nuclear magnetic resonance spectroscopy and a probemore » molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.« less

  8. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study

    NASA Astrophysics Data System (ADS)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2017-09-01

    Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.

  9. Influence of hydroxyl groups on the biological properties of cationic polymethacrylates as gene vectors.

    PubMed

    Ma, Ming; Li, Feng; Yuan, Zhe-fan; Zhuo, Ren-xi

    2010-07-01

    In this study poly(aminoethyl methacrylate) (PAEMA), poly(3-amino-2-hydroxypropyl methacrylate) (PAHPMA), poly(2-(2-aminoethylamino)ethyl methacrylate) (PAEAEMA) and poly(3-(2-aminoethylamino) 2-hydroxypropyl methacrylate) (PAEAHPMA) were synthesized using atom transfer radical polymerization to evaluate the effect of hydroxyl groups on the relative properties of cationic polymeric gene vectors. The results of heparin displacement assays showed that PAHPMA possessed a stronger binding capacity than PAEMA. PAHPMA/DNA complexes and PAEAHPMA/DNA complexes had lower zeta potentials than those of PAEMA and PAEAEMA. MTT assay results indicated that PAHPMA and PAEAHPMA exhibited obviously lower cytotoxicities than PAEMA and PAEAEMA. Subsequently, in vitro gene transfection studies in 293T cells without serum showed that PAHPMA exhibited a lower transfection efficiency than PAEMA and PAEAHPMA/DNA complexes possessed a similar transfection efficiency to PAEAEMA/DNA complexes. Moreover, PAHPMA and PAEAHPMA retained similar transfection efficiencies in DMEM with 10% serum, but PAEMA and PAEAEMA showed slightly lower transfection efficiencies than in the absence of serum. The reason for these phenomena might be attributed to the introduction of hydroxyl groups into PAHPMA and PAEAHPMA, i.e. the existence of hydroxyl groups might increase the binding capacity to DNA and at the same time decrease the surface charge of the polymer/DNA complexes due to the formation of hydrogen bonds between the polymers and DNA. Therefore, a lower zeta potential and stronger binding ability may result in a lower gene transfection efficiency. This effect of hydroxyl groups decreased with increasing amino group density on the polymer. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone

    PubMed Central

    Chuang, Ting-Yun; Cheng, An-Jie; Chen, I-Ting; Lan, Tien-Yun; Huang, I-Hsuan; Shiau, Chung-Wai; Hsu, Chia-Lin; Liu, Ya-Wen; Chang, Zee-Fen; Tseng, Ping-Hui; Kuo, Jean-Cheng

    2017-01-01

    The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity. PMID:28537905

  11. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme.

    PubMed Central

    Fu, D J; McLaughlin, L W

    1992-01-01

    Eight modified ribozymes of 19 residues have been prepared with individual purine amino or hydroxyl groups excised. The modified ribozymes were chemically synthesized with the substitution of a single 2'-deoxyadenosine, 2'-deoxyguanosine, inosine, or purine riboside for residues G10, A11, G13, or A14. Five of the modified ribozymes cleaved the 24-mer substrate with little change in rate as monitored by simple first-order kinetics. However, deletion of the 2-amino group at G10 (replacement with inosine) or deletion of either of the 2'-hydroxyls at G10 or G13 (replacement with 2'-deoxyguanosine) resulted in ribozymes with a drastic decrease in cleavage efficiency. Increasing the concentration of the Mg2+ cofactor from 10 mM to 50 mM significantly enhanced cleavage efficiency by these three derivatives. Steady-state kinetic assays for these three ribozymes indicated that the modifications result in both an increase in Km and a decrease in kcat. These results suggest that the exocyclic amino group at-G10 and the hydroxyls at G10 and G13 are important both for ribozyme-substrate binding and for the Mg(2+)-catalyzed cleavage reaction. PMID:1570323

  12. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  13. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  14. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.

    PubMed

    Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn

    2014-11-01

    Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial

  15. Xylosylation of Phenolic Hydroxyl Groups of the Monomeric Lignin Model Compounds 4-Methylguaiacol and Vanillyl Alcohol by Coriolus versicolor

    PubMed Central

    Kondo, Ryuichiro; Yamagami, Hikari; Sakai, Kokki

    1993-01-01

    When 4-methylguaiacol (MeG), a phenolic lignin model compound, was added to a culture that was inoculated with Coriolus versicolor, it was bioconverted into 2-methoxy-4-methylphenyl β-d-xyloside (MeG-Xyl). The phenolic hydroxyl group of vanillyl alcohol was much more extensively xylosylated than the alcoholic hydroxyl group. When a mixture of MeG and commercial UDP-xylose was incubated with cell extracts of mycelia, transformation of UDP-xylose into MeG-Xyl was observed. This result suggested that UDP-xylosyltransferase was involved in the xylosylation of phenolic hydroxyl groups of lignin model compounds. PMID:16348869

  16. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  17. Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications.

    PubMed Central

    Williams, D M; Pieken, W A; Eckstein, F

    1992-01-01

    The importance of the 2'-hydroxyl group of several guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. Five ribozymes in which single guanosine residues were substituted with 2'-amino-, 2'-fluoro-, or 2'-deoxyguanosine were chemically synthesized. The comparison of the catalytic activity of the three 2' modifications at a specific position allows conclusions about the functional role of the parent 2'-hydroxyl group. Substitutions of nonconserved nucleotides within the ribozyme caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, when either of the guanosines within the single-stranded loop between stem I and stem II of the ribozyme was replaced by 2'-deoxyguanosine or 2'-fluoro-2'-deoxyguanosine, the catalytic activities of the resulting ribozymes were reduced by factors of at least 150. The catalytic activities of the corresponding ribozymes containing 2'-amino-2'-deoxyguanosine substitutions at these positions, however, were both reduced by factors of 15. These effects resulted from decreases in the respective kcat values, whereas variations in the Km values were comparatively small. A different pattern of reactivity of the three 2' modifications was observed at the guanosine immediately 3' to stem II of the ribozyme. Whereas both 2'-deoxyguanosine and 2'-amino-2'-deoxyguanosine at this position showed catalytic activity similar to that of the unmodified ribozyme, the activity of the corresponding 2'-fluoro-2'-deoxyguanosine-containing ribozyme was reduced by a factor of 15. The implications of these substitution-specific reactivities on the functional role of the native 2'-hydroxyl groups are discussed. Images PMID:1736306

  18. The 4′-Hydroxyl Group of Resveratrol Is Functionally Important for Direct Activation of PPARα

    PubMed Central

    Takizawa, Yoshie; Nakata, Rieko; Fukuhara, Kiyoshi; Yamashita, Hiroshi; Kubodera, Hideo; Inoue, Hiroyasu

    2015-01-01

    Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα). Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP) in vivo indicate that the 4′-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 μM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE) and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 μM) than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 μM), both of which has only 4′-hydroxyl group, indicating that this 4′-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 μM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo. PMID:25798826

  19. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  20. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  1. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    PubMed

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  2. Comparison of Polyurethanes with Polyhydroxyurethanes: Effect of the Hydroxyl Group on Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Leitsch, Emily K.; Lombardo, Vince M.; Scheidt, Karl A.; Torkelson, John M.

    2014-03-01

    Polyurethanes (PUs) are commonly synthesized by rapid step-growth polymerization through the reaction of a multifunctional alcohol with a polyisocyanate. PUs can be prepared at ambient conditions utilizing a variety of starting material molecular weights and backbones, resulting in highly tunable thermal and physical properties. The urethane linkages as well as the nanophase separated morphology attainable in PU materials lead to desirable properties including elastomeric character and adhesion. The isocyanate-based monomers used in the synthesis of traditional PUs have come under increasing regulatory pressure and thus inspired the investigation of alternative routes for the formation of PU materials. We examine an alternative route to synthesize PU- the reaction of five-membered cyclic carbonate with amines. This reaction results in the formation of a urethane linkage with an adjacent alcohol group. The effects of this hydroxyl group on the thermal and mechanical properties of the resulting polymer are investigated and compared with an analogous traditional PU system.

  3. Electronic Structure Calculations of Ammonia Adsorption on Graphene and Graphene Oxide with Epoxide and Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Khaneja, Mamta; Jeyaprakash, B. G.

    2017-10-01

    Ammonia adsorption on graphene (G) and graphene oxide (GO) was investigated through density functional theory calculations. In the GO system, the obtained binding energy, band gap, charge transfer and electronic structure revealed that the epoxide (GO-O) and hydroxyl groups (GO-OH) in GO enhance the NH3 adsorption, which leads to the chemisorption of NH3 on GO. The dissociation of NH3 to NH2 and formation of OH was also observed when the O and H atoms were separated at 0.985 Å, 1.019 Å, 1.035 Å, and 1.044 Å for various GO systems. The maximum charge transfer value was found to be 0.054 |e| with the binding energy of 1.143 eV for GO with a single epoxide (GO-1O) group. The charge transfer from NH3 to G or GO and the bond formation in this study agree with the reported experimental results.

  4. A facile preparation of TiO2/ACF with Csbnd Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal

    NASA Astrophysics Data System (ADS)

    Liu, R. F.; Li, W. B.; Peng, A. Y.

    2018-01-01

    The quantum yields and efficiency(ACF) was prepared via a modified deposition-precipitation method to facilitate its photon absorption and of photogenerated charge carriers have been the major issues for photocatalysis on titania catalyst. The TiO2/ACF catalyst with anatase TiO2 uniformly dispersed on activated carbon fibers electron transfer, thus improve the quantum yields and efficiency of the photogenerated electrons and holes. XPS analysis on the catalyst demonstrates the existence of Ti3+ and Ti2+ species, Csbnd Ti bond and abundant hydroxyls, which are also proved by UV-vis DRS and TG-DSC analysis. It is believed that the acid environment in preparation plays an essential role in the formation of Csbnd Ti bond and surface hydroxyls, which can be tuned by changing hydrothermal synthesis time. The Csbnd Ti bond can improve the electron transfer in the catalyst and the substantial surface hydroxyls lead to high absorption for UV lines and enhanced adsorption of water and formaldehyde, resulting in more active OH free radicals and the outstanding photocatalytic activity of TiO2/ACF, which is much higher than the titania powder for photocatalytic removal of low concentration formaldehyde. The essential role of surface hydroxyls for photocatalytic activity was confirmed surpassing that of chemical bond between carbon and titanium in TiO2-carbon composite for the first time.

  5. Photoactivatable Rhodamine Spiroamides and Diazoketones Decorated with "Universal Hydrophilizer" or Hydroxyl Groups.

    PubMed

    Roubinet, Benoit; Bischoff, Matthias; Nizamov, Shamil; Yan, Sergey; Geisler, Claudia; Stoldt, Stefan; Mitronova, Gyuzel Y; Belov, Vladimir N; Bossi, Mariano L; Hell, Stefan W

    2018-05-11

    Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor superresolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-L-alanyl - beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The superresolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N,N,N',N'-tetramethyl rhodamine.

  6. 2-Pyridinyl Thermolabile Groups as General Protectants for Hydroxyl, Phosphate, and Carboxyl Functions.

    PubMed

    Brzezinska, Jolanta; Witkowska, Agnieszka; Kaczyński, Tomasz P; Krygier, Dominika; Ratajczak, Tomasz; Chmielewski, Marcin K

    2017-03-02

    Application of 2-pyridinyl thermolabile protecting groups (2-PyTPGs) for protection of hydroxyl, phosphate, and carboxyl functions is presented in this unit. Their characteristic feature is a unique removal process following the intramolecular cyclization mechanism and induced only by temperature rise. Deprotection rate of 2-PyTPGs is dependent on certain parameters, such as solvent (aqueous or non-aqueous medium), pH values, and electron distribution in a pyridine ring. The presented approach pertains not only to protecting groups but also to an advanced system of controlling certain properties of 2-pyridinyl derivatives. We improved the "chemical switch" method, allowing us to regulate the protecting group stability by inversing the electron distribution in 2-PyTPG. Together with pH values manipulation, this allows us to regulate the protecting group stability. Moreover, phosphite cyclization to oxazaphospholidine provides a very stable but easily reversible tool for phosphate protection/modifications. For all TPGs we confirmed their utility in a system of protecting groups. This concept can contribute to designing the general protecting group that could be useful in bioorganic chemistry. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  8. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  9. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  10. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  11. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  12. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  13. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  14. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  15. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  16. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  17. Lead and uranium group abundances in cosmic rays

    NASA Technical Reports Server (NTRS)

    Yadav, J. S.; Perelygin, V. P.

    1985-01-01

    The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.

  18. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio (< {{S}}/{{N}}> ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  19. Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    PubMed Central

    Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.

    2003-01-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549

  20. SPECTROSCOPIC ABUNDANCES AND MEMBERSHIP IN THE WOLF 630 MOVING GROUP

    SciTech Connect

    Bubar, Eric J.; King, Jeremy R., E-mail: ebubar@gmail.co, E-mail: jking2@ces.clemson.ed

    The concept of kinematic assemblages evolving from dispersed stellar clusters has remained contentious since Eggen's initial formulation of moving groups in the 1960s. With high-quality parallaxes from the Hipparcos space astrometry mission, distance measurements for thousands of nearby, seemingly isolated stars are currently available. With these distances, a high-resolution spectroscopic abundance analysis can be brought to bear on the alleged members of these moving groups. If a structure is a relic of an open cluster, the members can be expected to be monolithic in age and abundance in as much as homogeneity is observed in young open clusters. In thismore » work, we have examined 34 putative members of the proposed Wolf 630 moving group using high-resolution stellar spectroscopy. The stars of the sample have been chemically tagged to determine abundance homogeneity and confirm the existence of a homogeneous subsample of 19 stars. Fitting the homogeneous subsample with Yale-Yonsei isochrones yields a single evolutionary sequence of {approx}2.7 {+-} 0.5 Gyr. It is concluded that this 19 star subsample of the Wolf 630 moving group sample of 34 stars could represent a dispersed cluster with an ([Fe/H]) = -0.01 {+-} 0.02 and an age of 2.7 {+-} 0.5 Gyr. In addition, chemical abundances of Na and Al in giants are examined for indications of enhancements as observed in field giants of old open clusters; overexcitation/ionization effects are explored in the cooler dwarfs of the sample; and oxygen is derived from the infrared triplet and the forbidden line at {lambda}6300.« less

  1. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts

    PubMed Central

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    Aim: To evaluate the structure–activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Materials & methods: Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Results & conclusion: Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system. PMID:26107486

  2. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts.

    PubMed

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    To evaluate the structure-activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system.

  3. The size of the hydroxyl group and its contribution to the affinity of atropine for muscarine-sensitive acetylcholine receptors.

    PubMed Central

    Barlow, R. B.; Ramtoola, S.

    1980-01-01

    1 From measurements of the affinity constants of hydratropyltropine and its methiodide for muscarine-sensitive acetylcholine receptors in the guinea-pig ileum, the increment in log K for the hydroxyl group in atropine is 2.06 and in the methiodide it is 2.16. These effects are slightly bigger than any so far recorded with these receptors. 2 The estimate of the increment in apparent molal volume for the hydroxyl group is 1.1 cm3/mol in atropine and 1.0 cm3/mol in the methobromide. 3 The large effect of the group on affinity may be linked to its small apparent size in water as suggested in the previous paper. PMID:7470742

  4. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).

    PubMed

    Zhang, J S; Stanforth, R S; Pehkonen, S O

    2007-02-01

    Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but

  5. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study.

    PubMed

    Feliks, Mikolaj; Ullmann, G Matthias

    2012-06-21

    A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis.

  6. Elucidation of hydroxyl groups-antioxidant relationship in mono- and dihydroxyflavones based on O-H bond dissociation enthalpies.

    PubMed

    Treesuwan, Witcha; Suramitr, Songwut; Hannongbua, Supa

    2015-06-01

    Radical scavenging potential is the key to anti-oxidation of hydroxyflavones which generally found in fruits and vegetables. The objective of this work was to investigate the influence of hydroxyl group on the O-H bond dissociation enthalpies (BDE) from a series of mono- and dihydroxyflavones. Calculation at the B3LYP/6-31G(d,p) level reveals the important roles of an additional one hydroxyl group to boost the BDE of hydroxyflavones that were a stabilization of the generated radicals through attractive H-bond interactions, an ortho- and para-dihydroxyl effect, and a presence of the 3-OH in dihydroxyflavones. On the other hand, the meta-dihydroxyl effect and range-hydroxyl effect especially associated with the either 5-OH or 8-OH promoted greater BDE. Results did not only confirm that dihydroxyflavones had lower BDE than monohydroxyflavones but also suggest the selective potent hydroxyflavone molecules that are the 6'-hydroxyflavone (for monohydroxyflavone) and the 5',6'-, 7,8- and 3',4'-dihydroxyflavone which the corresponding radical preferable generated at C6'-O•, C8-O• and C4'-O•, respectively. Electron distribution was limited only over the two connected rings of hydroxyflavones while the expansion distribution into C-ring could be enhanced if the radical was formed especially for the 2',3'- and 5',6'dihydroxyflavone radicals. The delocalized bonds were strengthened after radical was generated. However the 5-O• in 5,6-dihydroxyflavone and the 3-O• in 3,6'-dihydroxyflavone increased the bond order at C4-O11 which might interrupt the conjugated delocalized bonds at the keto group.

  7. Environmental distribution, abundance and activity of the Miscellaneous Crenarchaeotal Group

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Biddle, J.; Teske, A.

    2011-12-01

    Many marine sedimentary microbes have only been identified by 16S rRNA sequences. Consequently, little is known about the types of metabolism, activity levels, or relative abundance of these groups in marine sediments. We found that one of these uncultured groups, called the Miscellaneous Crenarchaeotal Group (MCG), dominated clone libraries made from reverse transcribed 16S rRNA, and 454 pyrosequenced 16S rRNA genes, in the White Oak River estuary. Primers suitable for quantitative PCR were developed for MCG and used to show that 16S rRNA DNA copy numbers from MCG account for nearly all the archaeal 16S rRNA genes present. RT-qPCR shows much less MCG rRNA than total archaeal rRNA, but comparisons of different primers for each group suggest bias in the RNA-based work relative to the DNA-based work. There is no evidence of a population shift with depth below the sulfate-methane transition zone, suggesting that the metabolism of MCG may not be tied to sulfur or methane cycles. We classified 2,771 new sequences within the SSU Silva 106 database that, along with the classified sequences in the Silva database was used to make an MCG database of 4,646 sequences that allowed us to increase the named subgroups of MCG from 7 to 19. Percent terrestrial sequences in each subgroup is positively correlated with percent of the marine sequences that are nearshore, suggesting that membership in the different subgroups is not random, but dictated by environmental selective pressures. Given their high phylogenetic diversity, ubiquitous distribution in anoxic environments, and high DNA copy number relative to total archaea, members of MCG are most likely anaerobic heterotrophs who are integral to the post-depositional marine carbon cycle.

  8. Enhanced electrical properties in solution-processed InGaZnO thin-film transistors by viable hydroxyl group transfer process

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk

    2018-05-01

    We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).

  9. [Simple method for precognition of drug interaction between oral iron and phenolic hydroxyl group-containing drugs].

    PubMed

    Sunagane, Nobuyoshi; Yoshinobu, Etsuko; Murayama, Nobuko; Terawaki, Yasufumi; Kamimura, Naoki; Uruno, Tsutomu

    2005-02-01

    In the present study, we devised a simple method for detecting the drug interaction between oral iron preparations and phenolic hydroxyl group-containing drugs, using the coloring reaction as indicator, due to the formation of complexes or chelates. In the method, oral iron preparations and test drugs in amounts as much as single dose for adults were added to 10 ml of purified water to make sample suspensions for testing. Thirty minutes after mixing an oral iron suspension and a test drug suspension, the change of color in the mixture was observed macroscopically and graded as 0 to 3, with a marked color change judged as grade 3 and no color change as grade 0. Screening of 14 test drugs commonly used orally was carried out. When using sodium ferrous citrate preparations as oral iron, 5 were classified as grade 3, 2 as grade 2, 4 as grade 1, and 3 as grade 0, respectively. To verify usefulness of the method, the interactions suggested by screening were pharmacokinetically assessed by measuring serum concentrations of the drug in mice. When a levodopa or droxidopa preparation, judged as grade 3 in screening, was concomitantly administered with an iron preparation, a significant reduction in bioavailability of the test drug was observed, indicating possible drug interaction between the test drug and oral iron. Combined administration of an acetaminophen preparation, judged as grade 1, and oral iron preparation showed no influence on the bioavailability of the test drug, implying no detectable interactions between them. In conclusion, the simple method devised in the present study is useful for precognition of drug interactions between oral iron preparations and phenolic hydroxyl group-containing drugs, and the drugs with a higher grade in screening may induce drug interactions with oral iron.

  10. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    PubMed

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  11. Induced amphotropic and thermotropic ionic liquid crystallinity in phosphonium halides: "lubrication" by hydroxyl groups.

    PubMed

    Ma, Kefeng; Somashekhar, B S; Gowda, G A Nagana; Khetrapal, C L; Weiss, Richard G

    2008-03-18

    The influence of covalently attaching hydroxymethylene to the methyl groups of methyl-tri-n-alkylphosphonium halides (where the alkyl chains are decyl, tetradecyl, or octadecyl and the halide is chloride or bromide) or adding methanol as a solute to the salts on their solid, liquid-crystalline (smectic A2), and isotropic phases has been investigated using a variety of experimental techniques. These structural and compositional changes are found to induce liquid crystallinity in some cases and to enhance the temperature range and lower the onset temperature of the liquid-crystalline phases in some others. The results are interpreted in terms of the lengths of the three n-alkyl chains attached to the phosphorus cation, the nature of the halide anion, the influence of H-bonding interactions at the head group regions of the layered phases, and other solvent-solute interactions. The fact that at least 1 molar equiv of methanol must be added to effect complete (isothermal) conversion of a solid methyl-tri-n-alkylphosphonium salt to a liquid crystal demonstrates a direct and strong association between individual methanol molecules and the phosphonium salts. Possible applications of such systems are suggested.

  12. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  13. Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups.

    PubMed

    Liu, Dong; Yu, Wenbin; Deng, Liangliang; Yuan, Weiwei; Ma, Lingya; Yuan, Peng; Du, Peixin; He, Hongping

    2016-01-01

    The structural incorporation of aluminium (Al) into diatomite is investigated by preparing several Al-diatomite composites by loading an Al precursor, hydroxyl aluminum polymer (Al13), onto the surface of diatomite and heating at various temperatures. The results indicate that Al was incorporated and implanted into the structure of diatomite by the condensation reaction of the hydroxyl groups of Al13 and diatomite, and the Si-O-Al(OH) groups were formed during the condensation reaction. Al incorporation by the condensation reaction of hydroxyl groups of Al13 with single silanols of diatomite occurred more readily than that with geminal silanols. The Al incorporation increased solid acidity of diatomite after Al incorporation. The acidity improvement was various for different types of acid sites, depending on the preparation temperature of the Al-incorporated diatomite. Both Brønsted and Lewis acid sites increased greatly after heating at 250 and 350 °C, but only L acid sites significantly improved after heating at 500 °C. These results demonstrate that the structural incorporation of Al(3+) ions into diatomite can occur by the condensation reaction of the hydroxyl groups of the Al precursors and diatomite. Moreover, the rich solid acid sites of Al-incorporated diatomite show its promising application as a solid acid catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.

    PubMed

    Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro; Kawanami, Hajime

    2017-12-14

    The hydroxyl groups of a 2,2'-bipyridine (bpy) ligand near the metal center activated the catalytic performance of the Ir complex for the dehydrogenation of formic acid at high pressure. The position of the hydroxyl groups on the ligand affected the catalytic durability for the high-pressure H 2 generation through the decomposition of formic acid. The Ir complex with a bipyridine ligand functionalized with para-hydroxyl groups shows a good durability with a constant catalytic activity during the reaction even under high-pressure conditions, whereas deactivation was observed for an Ir complex with a bipyridine ligand with ortho-hydroxyl groups (2). In the presence of high-pressure H 2 , complex 2 decomposed into the ligand and an Ir trihydride complex through the isomerization of the bpy ligand. This work provides the development of a durable catalyst for the high-pressure H 2 production from formic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    PubMed

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the

  16. The Abundances of the Fe Group Elements in AV 304, an Abundance Standard in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Lanz, Thierry; Bouret, Jean-Claude; Proffitt, Charles R.; Adelman, Saul J.; Hubeny, Ivan

    2018-06-01

    AV 304 is a B0.5 IV field star in the Small Magellanic Cloud with ultra-sharp spectral lines that has emerged as an abundance standard. We have combined recent spectroscopic observations from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope with archival data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and ESO’s VLT/UVES to determine the abundances of the Fe group elements (Ti, V, Cr, Mn, Fe, Co, & Ni). The analysis was carried through using the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. The COS observations were secured with the G130M, G160M, G185M, and G225M gratings. Combined with the FUSE data, we have achieved spectral coverage in the UV from 950 to 2400 A. Measurable lines from the Fe group, except for a very few multiplets of Fe II, III are not observed in optical spectra. The following stellar parameters were found: Teff = 27500±500 K, log g = 3.7±0.1 cm/s2, Vturb= 1±1 km/s, and v sin i = 8 ±2 km/s. The Fe abundance appears to be only slightly lower than the mean depletion in the SMC, but the other Fe group elements are underabundant by 0.3 dex or more. This study confirmed the low abundance of nitrogen (-1.25 dex relative to the solar value) that was reported by Peters & Adelman (ASP Conf. Series, 348, p. 136, 2006). Whereas the light elements are delivered to the ISM by core-collapse supernovae (CCSNe), the Fe group elements are believed to come mostly from low/intermediate mass binaries containing white dwarfs that undergo SNe Ia explosions. A single SNe Ia can deliver 0.5 solar masses of pure Fe (and maybe Mn) to the ISM compared with about 0.07 solar masses from a CCSNe. It appears that there is very little processed material from its interior in the atmosphere of AV 304 and that the star did not form from an interstellar cloud that was enriched by material from earlier supernova activity. Support from STScI grants HST-GO-14081.002 and HST-GO-13346.022, and USC’s Women in Science and Engineering (WiSE) program is

  17. Dehydration and Stabilization of a Reactive Tertiary Hydroxyl Group in Solid Oral Dosage Forms of BMS-779788.

    PubMed

    Adams, Monica L; Sharma, Vijayata; Gokhale, Madhushree; Huang, Yande; Stefanski, Kevin; Su, Ching; Hussain, Munir A

    2016-04-01

    BMS-779788 contains a reactive tertiary hydroxyl attached to a weakly basic imidazole ring. Propensity of the carbinol toward dehydration to yield the corresponding alkene, BMS-779788-ALK, was evaluated. Elevated levels of BMS-779788-ALK were observed in excipient compatibility samples. Stability studies revealed that BMS-779788 degrades to BMS-779788-ALK in capsules and tablets prepared by both dry and wet granulation processes. An acid-catalyzed dehydration mechanism, in which the heterocyclic core contributes resonance stability to the cationic intermediate via charge transfer to the imidazole ring, was proposed. Therefore, neutralization via a buffered (pH 7.0) granulating solution was used to mitigate dehydration. Solution studies revealed degradation of BMS-779788 to BMS-779788-ALK over the pH range of 1-7.5. Reversibility was confirmed by initiating reactions with BMS-779788-ALK over the same pH range. Accordingly, a simple reversible scheme can be used to describe reactions initiated with either BMS-779788 or BMS-779788-ALK. To eliminate potential for charge delocalization across the heterocycle and probe the degradation mechanism, the imidazole ring of BMS-779788 was methylated (BMS-779788-Me). The propensity for acid-catalyzed dehydration was then evaluated. The acid stability of BMS-779788-Me confirmed that the heterocyclic core contributes to reactivity liability of the tertiary hydroxyl. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Relationships Among Chondrite Groups as Inferred from Presolar-Grain Abundances

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Meshik, A. P.; Hohenberg, C. M.; Smith, J. B.

    2002-01-01

    Presolar-grain abundances show that C chondrites consist of two quite distinct groups, those containing primitive material, and those consisting of processed material. Ordinary chondrites are intermediate in many properties between these groups. Additional information is contained in the original extended abstract.

  19. Accounting for imperfect detection of groups and individuals when estimating abundance.

    PubMed

    Clement, Matthew J; Converse, Sarah J; Royle, J Andrew

    2017-09-01

    If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data

  20. Accounting for imperfect detection of groups and individuals when estimating abundance

    USGS Publications Warehouse

    Clement, Matthew J.; Converse, Sarah J.; Royle, J. Andrew

    2017-01-01

    If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data

  1. The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.

    1993-01-01

    We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.

  2. Variation in Optoelectronic Properties of Azo Dye-Sensitized TiO 2 Semiconductor Interfaces with Different Adsorption Anchors: Carboxylate, Sulfonate, Hydroxyl and Pyridyl Groups

    SciTech Connect

    Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng

    2014-05-28

    The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 clustermore » model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.« less

  3. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  4. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    PubMed

    Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  5. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were

  6. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE PAGES

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; ...

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO 2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO 2-x(111) at varying Ce³⁺ concentrations (CeO 1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria.more » Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  7. The Abundances of the Iron Group Elements in Early B Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Peters, C.

    FUSE observations of four sharp-lined early B main-sequence band stars in the Magellanic Clouds will be carried through to determine the abundances of the heavy elements, especially those of the Fe group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV1) near 1130 A that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 A in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, ground-based studies do not yield this information because measurable lines from these species, except for a few Fe III lines, are found only in the UV spectral region. The abundances of heavy elements provide information on the production of such elements in previous generations of stars. From FUSE data obtained in Cycle 3 we are determining the abundances of the Fe group elements in two sharp-lined early B stars in the SMC (AV 304, a field star, and NGC346-637, a star in a mini-starburst cluster). This project will allow one to compare the abundances in AV 304 and NGC346-637 with those in the LMC and other regions in the SMC and look for asymmetry in heavy element production in the Magellanic Clouds.

  8. Catalytic Hydroxylation of Polyethylenes

    PubMed Central

    2017-01-01

    Polyolefins account for 60% of global plastic consumption, but many potential applications of polyolefins require that their properties, such as compatibility with polar polymers, adhesion, gas permeability, and surface wetting, be improved. A strategy to overcome these deficiencies would involve the introduction of polar functionalities onto the polymer chain. Here, we describe the Ni-catalyzed hydroxylation of polyethylenes (LDPE, HDPE, and LLDPE) in the presence of mCPBA as an oxidant. Studies with cycloalkanes and pure, long-chain alkanes were conducted to assess precisely the selectivity of the reaction and the degree to which potential C–C bond cleavage of a radical intermediate occurs. Among the nickel catalysts we tested, [Ni(Me4Phen)3](BPh4)2 (Me4Phen = 3,4,7,8,-tetramethyl-1,10-phenanthroline) reacted with the highest turnover number (TON) for hydroxylation of cyclohexane and the highest selectivity for the formation of cyclohexanol over cyclohexanone (TON, 5560; cyclohexanol/(cyclohexanone + ε-caprolactone) ratio, 10.5). The oxidation of n-octadecane occurred at the secondary C–H bonds with 15.5:1 selectivity for formation of an alcohol over a ketone and 660 TON. Consistent with these data, the hydroxylation of various polyethylene materials by the combination of [Ni(Me4Phen)3](BPh4)2 and mCPBA led to the introduction of 2.0 to 5.5 functional groups (alcohol, ketone, alkyl chloride) per 100 monomer units with up to 88% selectivity for formation of alcohols over ketones or chloride. In contrast to more classical radical functionalizations of polyethylene, this catalytic process occurred without significant modification of the molecular weight of the polymer that would result from chain cleavage or cross-linking. Thus, the resulting materials are new compositions in which hydroxyl groups are located along the main chain of commercial, high molecular weight LDPE, HDPE, and LLDPE materials. These hydroxylated polyethylenes have improved wetting

  9. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  10. The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate

    NASA Astrophysics Data System (ADS)

    Yaghoubi, H.; Dayerizadeh, A.; Han, S.; Mulaj, M.; Gao, W.; Li, X.; Muschol, M.; Ma, S.; Takshi, A.

    2013-12-01

    TiO2 is a prototypical transition metal oxide with physicochemical properties that can be modified more readily through sol-gel synthesis than through other techniques. Herein, we report on the change in the density of the hydroxyl groups on the surface of synthesized surfactant-free TiO2 nanoparticles in water due to varying the pH (7.3, 8.3, 9.3 and 10.3) of the peroxotitanium complex, i.e. the amorphous sol, prior to refluxing. This resulted in colloidal solutions with differing crystallinity, nanoparticle size, optical indirect bandgaps and photocatalytic activity. It was shown that increasing the density of hydroxyl groups on TiO2 particles coupled with low-temperature annealing (90 °C) induced an anatase to rutile transformation. Increasing the pH of the peroxotitanium complex interrupted the formation of anatase phase in crystalline sol, as evidenced by intensity increases of the Raman bands at ˜822 (Ti-O-H) and 906 cm-1 (vibrational Ti-O-H) and an intensity decrease of the band at 150 cm-1 (anatase photonic Eg). Films prepared from higher pH suspensions showed lower roughness. The reaction rate constants for photo-induced self-cleaning activity of TiO2 films prepared from colloidal solutions at pH 7.3, 8.3, 9.3 and 10.3 were estimated at 0.017 s-1, 0.014 s-1, 0.007 s-1 and 0.006 s-1, respectively.

  11. Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.

    2015-07-01

    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.

  12. Ammonia IRMS-TPD measurements and DFT calculation on acidic hydroxyl groups in CHA-type zeolites.

    PubMed

    Suzuki, Katsuki; Sastre, German; Katada, Naonobu; Niwa, Miki

    2007-12-07

    Brønsted acidity of H-chabazite (CHA) zeolites (Si : Al(2) = 4.2) was investigated by means of ammonia infrared-mass spectrometry/temperature-programmed desorption (IRMS-TPD) methods and density functional calculations. Four IR bands were observed at 3644, 3616, 3575 and 3538 cm(-1), and they were ascribable to the acidic OH groups on four nonequivalent oxygen sites in the CHA structure. The absorption band at 3538 cm(-1) was attributed to the O(4)H in the 6-membered ring (MR), and ammonia adsorption energy (DeltaU) of this OH group was the lowest among the 4 kinds of OH groups. The other 3 bands were assigned to the acidic OH groups in 8MR. It was observed that the DeltaU in 8 and 6MR were 131 (+/-3) and 101 kJ mol(-1), respectively. On the other hand, the density functional theory (DFT) calculations within periodic boundary conditions yielded the adsorption energies on these OH groups in 8 and 6MR to be ca. 130 and 110 kJ mol(-1), respectively, in good agreement with the experimentally-observed values.

  13. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work.

    PubMed

    Büttner, Lea; Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2014-06-04

    A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.

  14. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.

    PubMed

    Villota, N; Jm, Lomas; Lm, Camarero

    2017-01-01

    This paper deals with the changes of turbidity that are generated in aqueous solutions of phenol when they are oxidized by using different Fenton technologies. Results revealed that if the Fenton reaction was promoted with UV light, the turbidity that was generated in the water doubled. Alternatively, the use of ultrasonic waves produced an increase in turbidity which initially proceeded slowly, reaching intensities eight times higher than in the conventional Fenton treatment. As well, the turbidity showed a high dependence on pH. It is therefore essential to control acidity throughout the reaction. The maximum turbidity was generated when operating at pH = 2.0, and it slowly decreased with increasing to a value of pH = 3.0, at which the turbidity was the lowest. This result was a consequence of the presence of ferric ions in solution. At pH values greater than 3.5, the turbidity increased almost linearly until at pH = 5.0 reached its maximum intensity. In this range, ferrous ions may generate an additional contribution of radicals that promote the degradation of the phenol species that produce turbidity. Turbidity was enhanced at ratios R = 4.0 mol H 2 O 2 /mol C 6 H 6 O. This value corresponds to the stoichiometric ratio that leads to the production of turbidity-precursor species. Therefore, muconic acid would be a species that generate high turbidity in solution according to its isomerism. Also, the results revealed that the turbidity is not a parameter to which species contribute additively since interactions may occur among species that would enhance their individual contributions to it. Analyzing the oxidation of phenol degradation intermediates, the results showed that meta-substituted compounds (resorcinol) generate high turbidity in the wastewater. The presence of polar molecules, such as muconic acid, would provide the structural features that are necessary for resorcinol to act as a clip between two carboxylic groups, thus establishing

  15. Life strategies of a ubiquitous and abundant subsurface archaeal group Bathyarchaeota

    NASA Astrophysics Data System (ADS)

    He, Y.; Li, M.; Perumal, V.; Feng, X.; Sievert, S. M.; Wang, F.

    2015-12-01

    Archaea belonging to the Miscellaneous Crenarchaeota Group (MCG, "Candidatus Bathyarchaeota") are widespread and abundant in the deep biosphere, yet their life strategies and ecological roles remain elusive. Metagenomic sequencing of a sample enriched in Bathyarchaeota (up to 74%) that originated from Guaymas Basin deep-sea vent sediments revealed 6 partial to nearly completed Bathyarchaeota genomic bins. ranging ~900kb-3.3Mb. The Bathyarchaeota bin size ranged from approximately 0.9 to 3.3 Mb, with coverage ranging from approximately 10× to 28×. The phylogeny based on 110 concatenated conserved archaeal single copy genes confirmed the placement of Bathyarchaeota into a novel archaeal phylum. Genes encoding for enzymes involved in the degradation of organic polymers such as protein, cellulose, chitin, and aromatic compounds, were identified. In addition, genes encoding glycolysis/gluconeogenesis, beta-oxidation pathways and the tricarboxylic acid cycle (except citrate synthase) were present in all genomic bins highlighting the heterotrophic life style of Bathyarchaeota. The presence of a wide variety of transporters of organic compounds further supports the versatile heterotrophic metabolism of Bathyarchaeota. This study highlights the life strategies of a ubiquitous and abundant subsurface archaeal group that thrives under energy-limited conditions, and expands the metabolic potentials of Archaea that play important roles in carbon cycling in marine sediments.

  16. A normal abundance of faint satellites in the fossil group NGC 6482

    NASA Astrophysics Data System (ADS)

    Lieder, S.; Mieske, S.; Sánchez-Janssen, R.; Hilker, M.; Lisker, T.; Tanaka, M.

    2013-11-01

    A fossil group is considered the end product in a galaxy group's evolution. It is a massive central galaxy that dominates the luminosity budget of the group, and is the outcome of efficient merging between intermediate-luminosity members. Little is known, however, about the faint satellite systems of fossil groups. Here we present a Subaru/Suprime-Cam wide-field, deep imaging study in the B - and R -bands of the nearest fossil group NGC 6482 (Mtot ~ 4 × 1012M⊙), covering the virial radius out to 310 kpc. We performed detailed completeness estimations and selected group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to MR ~ -10.5 mag is detected, making this study the deepest of a fossil group to now. We investigate the photometric scaling relations, the color-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The color-magnitude relation is comparable to that of nearby galaxy clusters, and it exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope α = -1.32 ± 0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites. Appendix A is available in electronic form at http://www.aanda.orgThe reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A76

  17. Testing surrogacy assumptions: can threatened and endangered plants be grouped by biological similarity and abundances?

    PubMed

    Che-Castaldo, Judy P; Neel, Maile C

    2012-01-01

    There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species.

  18. Testing Surrogacy Assumptions: Can Threatened and Endangered Plants Be Grouped by Biological Similarity and Abundances?

    PubMed Central

    Che-Castaldo, Judy P.; Neel, Maile C.

    2012-01-01

    There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species. PMID:23240051

  19. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.

    PubMed

    Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger

    2015-10-12

    The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.

  20. Differential Abundance of Microbial Functional Groups along the Elevation Gradient from the Coast to the Luquillo Mountains

    EPA Science Inventory

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradi...

  1. DNA Binding Hydroxyl Radical Probes.

    PubMed

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  2. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles

    NASA Astrophysics Data System (ADS)

    Grayson, James W.; Evoy, Erin; Song, Mijung; Chu, Yangxi; Maclean, Adrian; Nguyen, Allena; Upshur, Mary Alice; Ebrahimi, Marzieh; Chan, Chak K.; Geiger, Franz M.; Thomson, Regan J.; Bertram, Allan K.

    2017-07-01

    The viscosities of three polyols and three saccharides, all in the non-crystalline state, have been studied. Two of the polyols (2-methyl-1,4-butanediol and 1,2,3-butanetriol) were studied under dry conditions, the third (1,2,3,4-butanetetrol) was studied as a function of relative humidity (RH), including under dry conditions, and the saccharides (glucose, raffinose, and maltohexaose) were studied as a function of RH. The mean viscosities of the polyols under dry conditions range from 1.5 × 10-1 to 3.7 × 101 Pa s, with the highest viscosity being that of the tetrol. Using a combination of data determined experimentally here and literature data for alkanes, alcohols, and polyols with a C3 to C6 carbon backbone, we show (1) there is a near-linear relationship between log10 (viscosity) and the number of hydroxyl groups in the molecule, (2) that on average the addition of one OH group increases the viscosity by a factor of approximately 22 to 45, (3) the sensitivity of viscosity to the addition of one OH group is not a strong function of the number of OH functional groups already present in the molecule up to three OH groups, and (4) higher sensitivities are observed when the molecule has more than three OH groups. Viscosities reported here for 1,2,3,4-butanetetrol particles are lower than previously reported measurements using aerosol optical tweezers, and additional studies are required to resolve these discrepancies. For saccharide particles at 30 % RH, viscosity increases by approximately 2-5 orders of magnitude as molar mass increases from 180 to 342 g mol-1, and at 80 % RH, viscosity increases by approximately 4-5 orders of magnitude as molar mass increases from 180 to 991 g mol-1. These results suggest oligomerization of highly oxidized compounds in atmospheric secondary organic aerosol (SOA) could lead to large increases in viscosity, and may be at least partially responsible for the high viscosities observed in some SOA. Finally, two quantitative structure

  3. What Factors Control Platinum-Group Element (PGE) Abundances in Basalts From the Ontong Java Plateau?

    NASA Astrophysics Data System (ADS)

    Chazey, W. J.; Neal, C. R.

    2002-12-01

    Eleven samples encompassing four sites drilled by Ocean Drilling Program Leg 192 to the Ontong Java Plateau (OJP) were analyzed for major, trace and platinum-group (PGEs: Ir, Ru, Rh, Pt, and Pd) elements. Based on major and trace element chemistry, these are divided into two groups: a primitive group, which was newly discovered on Leg 192, and Kwaimbaita-type basalts, which are ubiquitous on the OJP (cf. Tejada et al., 2002, J. Pet. 43:449). The primitive group is relatively enriched in MgO, Ni, and Cr and relatively depleted in incompatible elements compared to the Kwaimbaita-type basalts. Petrography indicates that the fractionating phases during emplacement of both types of basalts were olivine and Cr-spinel +/- plagioclase +/- cpx. Normalized PGE profiles are fractionated, but exhibit a flattening between Ru and Ir and occasionally an enrichment in Ir. It has been shown that chromite can preferentially incorporate Os and Ru (Kd ?150) over Ir (Kd ?100), which may account for the Ir and Ru systematics. We do not consider sulfide to be a factor in fractionating the PGEs because it is either absent or present as a trace phase in these basalts and the OJP basalts are sulfur undersaturated (Michael and Cornell, 1996, EOS 77:714). Additionally, the primitive samples from the OJP also have Cu/Pd ratios (4500-8000) that are roughly similar to primitive mantle (7300), and have a generally flat transition from Pd to Y on a primitive mantle-normalized plot. It is unlikely that these samples reached sulfur saturation. The Kwaimbaita-type basalts have slightly elevated Cu/Pd ratios (9000-14000). While there are subtle differences between the PGE profiles of basalts from the Leg 192 drill cores compared to OJP basalts from subaerial outcrops in the Solomon Islands (e.g., the former have general lower Pt/Rh and higher Rh/Ru ratios), it is apparent that silicate and oxide phases are controlling the PGE profiles and abundances. For example, the six samples analyzed from Site

  4. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex.

  5. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors.

    PubMed

    Huang, Xuan; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-04-21

    In this work, a series of porous carbon materials with hierarchical porosities have been synthesized via a template carbonization method, in which cheap CaCO3 serves as a template and glucose as a carbon precursor. During the carbonization process, CO2 produced by the decomposition of the CaCO3 template can act as an internal activating agent, significantly improving microporosity and mesoporosity. All the carbon materials obtained by regulating the ratio of glucose to CaCO3 exhibit the amorphous features with a low graphitization degree. Among them, the carbon-1 : 2 sample shows a high BET surface area of up to 818.5 m(2) g(-1) and a large total pore volume of 1.78 cm(3) g(-1) as well as a specific capacitance of 107.0 F g(-1) at 1 A g(-1). In addition, a series of hydroquinone (HQ), p-aminophenol (PAP) and p-nitrophenol (PNP) as novel redox additives that can produce pseudo-capacitances have been added into the KOH electrolyte for promoting the total capacitive performances via redox reactions at the electrode-electrolyte interface. As expected, a 2.5-fold increase in the galvanostatic capacitance of 240.0 F g(-1) in the HQ-0.5 electrolyte occurs, compared with the conventional KOH electrolyte. Similarly, the PAP-0.5 electrolyte and the PNP-0.5 electrolyte also show a high specific capacitance of 184.0 F g(-1) at 2 A g(-1) (156.6 F g(-1) at 3 A g(-1)) and 153.0 F g(-1) at 3 A g(-1), respectively. Additionally, the three kinds of electrolytes exhibit excellent cyclic stability. The remarkable improvement of supercapacitors is attributed to the quick reversible Faradaic reactions of amine and hydroxyl groups adhering to the phenyl rings, which largely accelerates electron migration and brings additional pseudocapacitive contribution for carbon-based supercapacitors.

  6. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups

    PubMed Central

    Thomas, J.A

    2005-01-01

    Conservative estimates suggest that 50–90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1–100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10–30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies

  7. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.

    PubMed

    Thomas, J A

    2005-02-28

    Conservative estimates suggest that 50-90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1-100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10-30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies, bumblebees

  8. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming

    PubMed Central

    Semenova, Tatiana A.; Morgado, Luis N.; Welker, Jeffrey M.

    2016-01-01

    We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show that even within functional groups, the direction and extent of response to warming tend to be species-specific and we recommend that studies on fungal communities and their roles in nutrient cycling take into account species-level responses. PMID:27881760

  9. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Our Galaxy

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan; Adelman, Saul Joseph

    2015-08-01

    The abundances of the Fe-peak elements (Ti, V, Cr, Mn, Fe, Co, and Ni) are of interest as they are important for assessing opacities for stellar evolution calculations, confirming theoretical calculations of explosive nucleosynthesis, and inferring the past history of supernova activity in a galaxy. FUSE FUV spectra of early B stars in the LMC and SMC and HST/STIS FUV/NUV spectra of nearby B stars in our galaxy are analyzed with the Hubeny/Lanz programs TLUSTY/SYNSPEC to determine abundance for the Fe group elements and produce a map of these abundances in the Magellanic Clouds (MC) and Magellanic Bridge (MB). Except for four weak multiplets of Fe III there are no measurable lines from the Fe group in the optical region. The Fe group species found in the FUV spectra of early B stars are primarily in the second stage of ionization. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. Analysis of the galactic B stars provides a good assessment of the reliability of the atomic parameters that are used for the MC calculations. Twenty-two early B stars in the MC and MB and five in our galaxy were analyzed. In general the Fe group abundances range from solar to slightly below solar in our region of the galaxy. But in the MCs the abundances of V, Cr, and Fe tend to be significantly lower than the mean metal abundances for the galaxy. Maps of the Fe group abundances and their variations in the LMC and SMC, tracers of recent enrichment of the ISM from supernova activity, are shown. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  10. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Adelman, Saul J.

    2016-01-01

    The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.

  11. Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.

    2014-01-01

    Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.

  12. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  13. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  14. Differential abundance of microbial functional groups along the elevation gradient from the coast to the Luquillo Mountains

    Treesearch

    Sharon A. Cantrell; D. Jean Lodge; Carlos A. Cruz; Luis M. García; Jose R. Pérez-Jiménez; Marirosa Molina

    2013-01-01

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradient in eastern Puerto Rico. Previous studies within the Luquillo Mountains showed that...

  15. The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are relatively more common in more massive haloes

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Viola, Massimo; Bremer, Malcolm N.; Brough, Sarah; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Klaes, Dominik; Kuijken, Konrad; McGee, Sean; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Taylor, Edward N.; Valentijn, Edwin

    2017-11-01

    In recent years, many studies have reported substantial populations of large galaxies with low surface brightness in local galaxy clusters. Various theories that aim to explain the presence of such ultra-diffuse galaxies (UDGs) have since been proposed. A key question that will help to distinguish between models is whether UDGs have counterparts in host haloes with lower masses, and if so, what their abundance as a function of halo mass is. We here extend our previous study of UDGs in galaxy clusters to galaxy groups. We measure the abundance of UDGs in 325 spectroscopically selected groups from the Galaxy And Mass Assembly (GAMA) survey. We make use of the overlapping imaging from the ESO Kilo-Degree Survey (KiDS), from which we can identify galaxies with mean surface brightnesses within their effective radii down to 25.5 mag arcsec-2 in the r band. We are able to measure a significant overdensity of UDGs (with sizes reff ≥ 1.5 kpc) in galaxy groups down to M200 = 1012 M⊙, a regime where approximately only one in ten groups contains a UDG that we can detect. We combine measurements of the abundance of UDGs in haloes that cover three orders of magnitude in halo mass, finding that their numbers scale quite steeply with halo mass: NUDG(R < R200) ∝ M2001.11±0.07. To better interpret this, we also measure the mass-richness relation for brighter galaxies down to Mr* + 2.5 in the same GAMA groups, and find a much shallower relation of NBright(R < R200) ∝ M2000.78±0.05. This shows that compared to bright galaxies, UDGs are relatively more abundant in massive clusters than in groups. We discuss the implications, but it is still unclear whether this difference is related to a higher destruction rate of UDGs in groups or if massive haloes have a positive effect on UDG formation.

  16. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] < -1.5 are all α-enhanced at about the same level as Milky Way GCs. Their Na abundances are also generally enhanced relative to Milky Way halo stars, suggesting that these extragalactic GCs resemble their Milky Way counterparts in containing large numbers of Na-rich stars. For [Fe/H] > -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] < -2.0 account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack

  17. The Abundances of the Fe Group Elements in Three Early B Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Peters, G. J.; Adelman, S. J.

    2005-12-01

    The photospheric abundances of V, Cr, and Fe have been determined for three sharp-lined early B stars in the Large Magellanic Cloud using FUV spectra obtained from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Kurucz LTE model atmosphere/spectrum synthesis codes ATLAS9/SYNTHE. The program stars include NGC1818/D1, NGC2004/B15, and NGC2004/B30 (star designations are from Robertson 1974, A&AS, 15, 261). The calculations were carried through with model parameters close to those adopted by Korn et al. (2000, A&A, 353, 655). Values of Teff, log g, ξ T, and v sin I are 25000/4.0/0/30, 20000/3.1/6/25, and 23500/3.3/14/30 for NGC1818/D1, NGC2004/B15, and NGC2004/B30, respectively. The abundances quoted below are in sequence for the latter stars. The vanadium abundances, [V/H], determined from V III λ λ 1150,1152 (UV 2), are -0.6, -0.9, and -0.9 dex. Cr was determined from Cr III λ λ 1118,1136. Values of -0.5, -0.8, and -0.7 dex were found. Uncertainties in the V and Cr abundances are ˜0.3 dex. The Fe abundance is primarily from 7 lines of Fe III (UV 1) in the region λ λ 1122-32. Values are -0.8±0.3, ˜-1.1, and -0.4±0.3. Since there is no evidence for N enhancement in the program stars ([N/H] ˜ -0.9, -1.0, and -0.6 from the N III doublet at 1183,1184 Å) the photospheric abundances have probably not been altered by mixing of processed material from the star's interior and the derived abundances represent pristine values for the two young clusters in the LMC. It should be noted that the N and Fe abundances derived for NGC1818/D1 are about 0.5 dex lower than those determined by Korn et al. from much weaker optical lines. We will discuss possible reasons for the discrepancy. The generally low abundances for the Fe group elements in these young cluster B stars imply that supernova activity has been minimal in the regions of the LMC in which the stars were formed. GJP appreciates support from NASA grant NAG5-13212.

  18. Platinum group element abundances in the upper continental crust revisited - New constraints from analyses of Chinese loess

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Hu, Zhaochu; Gao, Shan; Campbell, Ian H.; Gong, Hujun

    2012-09-01

    Platinum group element (PGE) abundances in the upper continental crust (UCC) are poorly constrained with published values varying by up to an order of magnitude. We evaluated the validity of using loess to estimate PGE abundances in the UCC by measuring these elements in seven Chinese loess samples using a precise method that combines NiS fire assay with isotope dilution. Major and trace elements of the Chinese loess show a typical upper crustal composition and PGE abundances are consistent with literature data on Chinese loess, except for Ru, which is a factor of 10 lowe than published values. We suggest that the high Ru data and RuN/IrN values of Chinese loess reported by Peucker-Ehrenbrink and Jahn (2001) (Geochem. Geophys. Geosys.2, 2001GC000172) are an analytical artifact, rather than a true geochemical characteristic of loess because likely sources of loess are not significantly enriched in Ru and transport and deposition processes cannot preferentially enrich Ru in loess. The effect of eolian fractionation on PGE abundances in loess appears to be limited because Chinese loess from different locations shows similar PGE patterns and concentrations. This conclusion is supported by strong positive correlations between the PGE (except for Pt) and other compatible elements such as Fe2O3, Ni, Cr, Co. Using a compilation of PGE data for loess from China, Argentina and Europe, including our data but excluding one sample with an anomalously high Pt content, we propose average PGE abundances for global loess of Ir = 0.022 ppb (ng/g), Ru = 0.030 ppb, Rh = 0.018 ppb, Pt = 0.599 ppb, and Pd = 0.526 ppb, and suggest that these are the best current estimates for the PGE abundances of the UCC.

  19. Nucleosynthesis of intermediate mass stars: inferences from the observed abundances in photoionized nebulae of the Local Group

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Cavichia, O.

    2018-01-01

    Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) to compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) to compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) to investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, especially for oxygen and neon, which places constraints on the amount of these elements that can be produced by intermediate mass stars.

  20. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees.

    PubMed

    Samant, Suvidha; Huo, Tian; Dawson, Jeffrey O; Hahn, Dittmar

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) was used to assess the abundance and relative distribution of host infection groups of the root-nodule forming, nitrogen-fixing actinomycete Frankia in four soils with similar physicochemical characteristics, two of which were vegetated with a host plant, Alnus glutinosa, and two with a non-host plant, Betula nigra. Analyses of DAPI-stained cells at three locations, i.e., at a distance of less than 1 m (near stem), 2.5 m (middle crown), and 3-5 m (crown edge) from the stems of both tree species revealed no statistically significant differences in abundance. Frankiae generally accounted for 0.01 to 0.04 % of these cells, with values between 4 and 36 × 10(5) cells (g soil)(-1). In three out of four soils, abundance of frankiae was significantly higher at locations "near stem" and/or "middle crown" compared to "crown edge," while numbers at these locations were not different in the fourth soil. Frankiae of the Alnus host infection group were dominant in all samples accounting for about 75 % and more of the cells, with no obvious differences with distance to stem. In three of the soils, all of these cells were represented by strain Ag45/Mut15. In the fourth soil that was vegetated with older A. glutinosa trees, about half of these cells belonged to a different subgroup represented by strain ArI3. In all soils, the remaining cells belonged to the Elaeagnus host infection group represented by strain EAN1pec. Casuarina-infective frankiae were not found. Abundance and relative distribution of Frankia host infection groups were similar in soils under the host plant A. glutinosa and the non-host plant B. nigra. Results did thus not reveal any specific effects of plant species on soil Frankia populations.

  1. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi

    2015-05-13

    Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.

  2. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiao, Wupeng; Wang, Lei; Laws, Edward; Xie, Yuyuan; Chen, Jixin; Liu, Xin; Chen, Bingzhang; Huang, Bangqin

    2018-03-01

    A basic albeit elusive goal of ocean science is to predict the structure of biological communities from the multitude of environmental conditions they experience. Estimates of the realized niche-based traits (realized traits) of phytoplankton species or functional groups in temperate seas have shown that response traits can help reveal the mechanisms responsible for structuring phytoplankton communities, but such approaches have not been tested in tropical and subtropical marginal seas. Here, we used decadal-scale studies of pigment-based phytoplankton groups and environmental conditions in the South China Sea to test whether realized traits could explain the biogeographic patterns of phytoplankton variability. We estimated the mean and breadth of the phytoplankton realized niches based on responses of the group-specific phytoplankton composition to key environmental factors, and we showed that variations of major phytoplankton groups in this system can be explained by different adaptive trade-offs to constraints imposed by temperature, irradiance, and nutrient concentrations. Differences in the patterns of trade-offs clearly separated the dominant groups from one another and generated four sets of realized traits that mirrored the observed biogeographic distribution patterns. The phytoplankton realized niches and their associated traits that we characterized in the present study could help to predict responses of phytoplankton to changes in environmental conditions in the South China Sea and could be incorporated into global biogeochemical models to anticipate shifts in community structure under future climate scenarios.

  3. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J. S.; Zhang, Y.-Y.; Akamatsu, H.; Gu, L.; Kosec, P.; Mao, J.; Pinto, C.; Reiprich, T. H.; Sanders, J. S.; Simionescu, A.; Werner, N.

    2017-07-01

    The hot intra-cluster medium (ICM) permeating galaxy clusters and groups is not pristine, as it has been continuously enriched by metals synthesised in Type Ia (SNIa) and core-collapse (SNcc) supernovae since the major epoch of star formation (z ≃ 2-3). The cluster/group enrichment history and mechanisms responsible for releasing and mixing the metals can be probed via the radial distribution of SNIa and SNcc products within the ICM. In this paper, we use deep XMM-Newton/EPIC observations from a sample of 44 nearby cool-core galaxy clusters, groups, and ellipticals (CHEERS) to constrain the average radial O, Mg, Si, S, Ar, Ca, Fe, and Ni abundance profiles. The radial distributions of all these elements, averaged over a large sample for the first time, represent the best constrained profiles available currently. Specific attention is devoted to a proper modelling of the EPIC spectral components, and to other systematic uncertainties that may affect our results. We find an overall decrease of the Fe abundance with radius out to 0.9 r500 and 0.6 r500 for clusters and groups, respectively, in good agreement with predictions from the most recent hydrodynamical simulations. The average radial profiles of all the other elements (X) are also centrally peaked and, when rescaled to their average central X/Fe ratios, follow well the Fe profile out to at least 0.5 r500. As predicted by recent simulations, we find that the relative contribution of SNIa (SNcc) to the total ICM enrichment is consistent with being uniform at all radii, both for clusters and groups using two sets of SNIa and SNcc yield models that reproduce the X/Fe abundance pattern in the core well. In addition to implying that the central metal peak is balanced between SNIa and SNcc, our results suggest that the enriching SNIa and SNcc products must share the same origin and that the delay between the bulk of the SNIa and SNcc explosions must be shorter than the timescale necessary to diffuse out the metals

  4. Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature

    NASA Astrophysics Data System (ADS)

    Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi

    2018-06-01

    Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.

  5. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.

    PubMed

    Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A

    2015-09-01

    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins.

    PubMed

    Warner, Alden H; Guo, Zhi-hao; Moshi, Sandra; Hudson, John W; Kozarova, Anna

    2016-01-01

    Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally

  7. Hydroxylated PBDEs induce developmental arrest in zebrafish

    SciTech Connect

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was notmore » observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.« less

  8. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle.

    PubMed

    Jensen, Sigmund; Fortunato, Sofia A V; Hoffmann, Friederike; Hoem, Solveig; Rapp, Hans Tore; Øvreås, Lise; Torsvik, Vigdis L

    2017-04-01

    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.

  9. Composition and abundance of zooplankton groups from a coral reef lagoon in Puerto Morelos, Quintana Roo, Mexico, during an annual cycle.

    PubMed

    Alvarez-Cadena, José N; Ordóñez-López, Uriel; Almaral-Mendivil, Alma Rosa; Uicab-Sabido, Amira

    2009-09-01

    Zooplankton sampling was carried out monthly from January to December 1990 at station A near the coastline, and station B near the reef barrier, in a tropical coral reef lagoon in the Mexican Caribbean Sea. Samplings were made at midnight, near surface, with a conical net (mouth 0.40 m, mesh 330 microm) for 10 min. Salinity varied from 35.1 to 36.3 psu and temperature from 26.3 to 30.2 degrees C. The Bray-Curtis test applied to these results has defined two seasons: the dry season from November to May, and the wet season from June to October. A total of 37 zooplankton groups were found. Copepods were the most abundant contributing 49.0% of the total capture with Acartia espinata, Calanopia americana and Farranula gracilis as the most numerous. In the total zooplankton, however, cirripeds captured in only 15 samples of 24 were second in abundance (20.9%). Decapods, present all year-round and more abundant during the wet season, were third and contributed 19.2%. The rest of the groups were scarce and only amphipods (2.4%) and larvaceans (2.0%) were relatively abundant. The abundance of captured organisms correlated with the abiotic factors measured, thus, in the dry season, abundance was lower (mean 7.3 orgs/m3), while in the wet season the mean catch was 36.8 orgs/m3.

  10. Richness and abundance of the cardini group of Drosophila (Diptera, Drosophilidae) in the Caatinga and Atlantic Forest biomes in northeastern Brazil.

    PubMed

    Rohde, Cláudia; Silva, Diva Maria Izabel O; Oliveira, Geórgia F; Monteiro, Liv S; Montes, Martín A; Garcia, Ana Cristina L

    2014-12-01

    Brazil has a high diversity of flies of the genus Drosophila, and part of this richness is represented by the cardini group. We analyzed the fluctuations in the richness and abundance of this group, in environments that had never previously been studied in the northeastern region of Brazil. Among the 28,204 drosophilids sampled, 1,294 belonged to the cardini group and were represented by D. polymorpha, D. cardini, D. neocardini and D. cardinoides. Occurrences of D. neocardini and D. cardinoides were registered for the first time in the Caatinga. In this biome, D. cardini stood out as having the highest abundance, and D. polymorpha was not observed. In the coastal Atlantic Forest, D. cardini was not registered, but D. polymorpha was found in all the localities investigated. Mangrove swamps were the environment with the lowest abundance and richness of the cardini group. The High-altitude Forest presented the highest richness of this group. We suggest that the high abundance of D. polymorpha in the High-altitude Forest and in the coastal Atlantic Forest may be a reflection of the historical relationship between these two environments.

  11. Richness and abundance of the cardini group of Drosophila (Diptera, Drosophilidae) in the Caatinga and Atlantic Forest biomes in northeastern Brazil.

    PubMed

    Rohde, Cláudia; Silva, Diva Maria Izabel O; Oliveira, Geórgia F; Monteiro, Liv S; Montes, Martín A; Garcia, Ana Cristina L

    2014-11-11

    Brazil has a high diversity of flies of the genus Drosophila, and part of this richness is represented by the cardini group. We analyzed the fluctuations in the richness and abundance of this group, in environments that had never previously been studied in the northeastern region of Brazil. Among the 28,204 drosophilids sampled, 1,294 belonged to the cardini group and were represented by D. polymorpha, D. cardini, D. neocardini and D. cardinoides. Occurrences of D. neocardini and D. cardinoides were registered for the first time in the Caatinga. In this biome, D. cardini stood out as having the highest abundance, and D. polymorpha was not observed. In the coastal Atlantic Forest, D. cardini was not registered, but D. polymorpha was found in all the localities investigated. Mangrove swamps were the environment with the lowest abundance and richness of the cardini group. The High-altitude Forest presented the highest richness of this group. We suggest that the high abundance of D. polymorpha in the High-altitude Forest and in the coastal Atlantic Forest may be a reflection of the historical relationship between these two environments.

  12. Platinum Group Element (PGE) Abundances in Lava Flows Generated by the Hawaiian Plume: Insights into Plume Evolution

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Neal, C. R.

    2003-12-01

    Picritic and high-MgO (7.7-24 wt.%) basalt samples from Detroit (/sim81-76 Ma) and Koko (/sim48 Ma) Seamounts along the ESC have been analyzed for PGEs (Ru, Rh, Pd, Ir, and Pt) allowing an examination of how the PGEs in lavas from the Hawaiian plume have changed over time. Major and trace element (including the PGEs) concentrations were quantified by ICP methods at the University of Notre Dame. See Ely et al. (1999, Chem. Geol. 157:219) for the PGE analytical method. Bennett et al. (2000) analyzed Hawaiian picrites and found PGE abundances slightly greater than average MORB and comparable to the low-PGE basaltic komatiites. These authors modeled the PGE abundances of these picrites by using variable amounts of residual sulfide during melting, such that Koolau (low PGE contents) formed from a relatively sulfide-rich source and Loihi (high PGEs) from a sulfide-poor source. Our PGE data from Detroit Seamount show slightly higher PGE abundances than Loihi and Kilauea, suggesting these picrites formed from a source lacking residual sulfide. These results suggest that, if the model of Bennett et al. (2000) is correct, the dilution of plume lava with MORB source, as hypothesized on the basis of depleted isotope ratios and lower trace element abundances than modern Hawaii (Keller et al., 2000, Nature 405:603; Kinman & Neal, 2002, Eos 83:F1282; Regelous et al., 2003, JPet 44:113), was not the controlling factor in PGE abundances. However, since MORB PGE concentrations are not substantially different than low-PGE Hawaiian picrites, incorporation of MORB material within the Hawaiian plume at Detroit Seamount would not have drastically reduced the PGE abundances. Koko Seamount has relatively high PGE concentrations (/sim3-12 times greater than those from Detroit lavas). This may be the result of a lack of residual sulfide facilitated by higher degrees of partial melting. Although our initial data are consistent with variable degrees of partial melting and/or source

  13. The Pattern of Change in the Abundances of Specific Bacterioplankton Groups Is Consistent across Different Nutrient-Enriched Habitats in Crete

    PubMed Central

    Fodelianakis, Stilianos; Papageorgiou, Nafsika; Pitta, Paraskevi; Kasapidis, Panagiotis; Karakassis, Ioannis

    2014-01-01

    A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies. PMID:24747897

  14. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.

    PubMed

    Marquês, Joaquim Trigo; Susana Marinho, H; de Almeida, Rodrigo Freire Martins

    2018-05-07

    This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature, with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as they can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants. Copyright © 2017. Published by Elsevier Ltd.

  15. Studies on the Selectivity Between Nickel-Catalyzed 1,2-Cis-2-Amino Glycosylation of Hydroxyl Groups of Thioglycoside Acceptors with C(2)-Substituted Benzylidene N-Phenyl Trifluoroacetimidates and Intermolecular Aglycon Transfer of the Sulfide Group

    PubMed Central

    Yu, Fei; Nguyen, Hien M.

    2012-01-01

    The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors. PMID:22838405

  16. Hydrogen-bond rich ionic liquids with hydroxyl cationic tails

    NASA Astrophysics Data System (ADS)

    Deng, Li; Shi, Rui; Wang, Yanting; Ou-Yang, Zhong-Can

    2013-02-01

    To investigate if the amphiphilic feature exhibited in ionic liquids (ILs) with nonpolar cationic tails still exists in ILs with polar tails, by performing molecular dynamics simulations for 1-(8-hydroxyoctyl)-3-methyl-imidazolium nitrate (COH) and 1-octyl-3-methyl-imidazolium nitrate (C8), we found that, in COH, cationic tail groups can no longer aggregate to form separated nonpolar tail domains, instead hydroxyl groups form a rich number of hydrogen bonds with other groups, indicating that the hydroxyl substituent changes the IL system from an amphiphilic liquid to a polar liquid. Due to the large amount of hydrogen bonds, COH has slower dynamics than C8.

  17. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome

    PubMed Central

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium, Paenibacillus, and Trabusiella. Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings. PMID:28663753

  18. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome.

    PubMed

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium , Paenibacillus , and Trabusiella . Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings.

  19. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    PubMed Central

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  20. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  1. Prolyl hydroxylation in elastin is not random.

    PubMed

    Schmelzer, Christian E H; Nagel, Marcus B M; Dziomba, Szymon; Merkher, Yulia; Sivan, Sarit S; Heinz, Andrea

    2016-10-01

    This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. It was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied. The results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues. The study for the first time shows that prolyl hydroxylation is highly regulated in elastin. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecular design and synthesis of functional photothermopolymers from hydroxyl benzoic acids

    NASA Astrophysics Data System (ADS)

    Tong, Xiao; Gu, Jiangnan; Wang, Liyuan; Zou, Yingquan; Yu, Shangxian

    2000-06-01

    The most applicable hydroxyl benzoic acid monomers were optimized to synthesize the thermolysis-decarboxylation polymers according to the relative results of TG analysis of hydroxyl benzoic acids, their 13C-NMR spectra analyses and their quantum chemistry calculation with AB-INITIO method. On the basis of the empirical rule -- M/A value rule, while phenols with high M/A value and hydroxyl benzoic acids were both cocondensed with formaldehyde at proper ratio, the novolak resin with carboxyl groups used as a thermal imaging material could be obtained. In the presence of an acid catalyst, such as oxalic acid, a hydroxyl benzoic acid could be additionally polymerized with divinyl benzene (DVB) to synthesize another kind of polymer with not only carboxyl groups but also phenolic hydroxyl groups. The thermal imaging mechanisms of these polymers with carboxyl groups were discussed in the paper.

  3. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  4. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  5. 21 CFR 172.814 - Hydroxylated lecithin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.814 Hydroxylated lecithin. The food additive hydroxylated lecithin may be safely used as an emulsifier in foods in accordance with the following conditions: (a) The additive is...

  6. Quantification of hydroxyl radical produced during phacoemulsification.

    PubMed

    Gardner, Jonathan M; Aust, Steven D

    2009-12-01

    To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.

  7. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  8. Conformation of a Group 2 Late Embryogenesis Abundant Protein from Soybean. Evidence of Poly (l-Proline)-type II Structure1

    PubMed Central

    Soulages, Jose L.; Kim, Kangmin; Arrese, Estela L.; Walters, Christina; Cushman, John C.

    2003-01-01

    Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (l-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (l-proline)-type II-like helical conformation at 12°C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80°C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt α-helical structure and to interact with phospholipid bilayers through amphipathic α-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation, ionic, or osmotic

  9. Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups

    PubMed Central

    Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

    2013-01-01

    Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687

  10. A Group 6 Late Embryogenesis Abundant Protein from Common Bean Is a Disordered Protein with Extended Helical Structure and Oligomer-forming Properties*

    PubMed Central

    Rivera-Najera, Lucero Y.; Saab-Rincón, Gloria; Battaglia, Marina; Amero, Carlos; Pulido, Nancy O.; García-Hernández, Enrique; Solórzano, Rosa M.; Reyes, José L.; Covarrubias, Alejandra A.

    2014-01-01

    Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association. PMID:25271167

  11. Variations of the relative abundances of He, (C,N,O) and Fe-group nuclei in solar cosmic rays and their relationship to solar particle acceleration

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Biswas, S.; Fichtel, C. E.; Pellerin, C. J.; Reames, D. V.

    1973-01-01

    Measurements of the flux of helium nuclei in the 24 January 1971 event and of helium and (C,N,O) nuclei in the 1 September 1971 event are combined with previous measurements to obtain the relative abundances of helium, (C,N,O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C,N,O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C,N,O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.

  12. HETEROGENOUS PHOTOREACTION OF FORMALDEHYDE WITH HYDROXYL RADICALS

    EPA Science Inventory

    Atmospheric heterogeneous photoreactions occur between formaldehyde and hydroxyl radicals to produce formic acid. hese photoreactions not only occur in clouds, but also in other tropospheric hydrometeors such as precipitation and dew droplets. xperiments were performed by irradia...

  13. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  14. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  15. Steroid and sterol 7-hydroxylation: ancient pathways.

    PubMed

    Lathe, Richard

    2002-11-01

    B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.

  16. Detection of hydroxyl radicals by D-phenylalanine hydroxylation: a specific assay for hydroxyl radical generation in biological systems.

    PubMed

    Biondi, R; Xia, Y; Rossi, R; Paolocci, N; Ambrosio, G; Zweier, J L

    2001-03-01

    Hydroxylation of l-phenylalanine (Phe) by hydroxyl radical (*OH) yields 4-, 3-, and 2-hydroxyl-Phe (para-, meta-, and ortho-tyrosine, respectively). Phe derivative measurements have been employed to detect *OH formation in cells and tissues, however, the specificity of this assay is limited since Phe derivatives also arise from intracellular Phe hydroxylase. d-Phe, the d-type enantiomer, is not hydroxylated by Phe hydroxylase. We evaluate whether d-Phe reacts with *OH as well as l-Phe, providing a more reliable probe for *OH generation in biological systems. With *OH generated by a Fenton reaction or xanthine oxidase, d- and l-Phe equally gave rise to p, m, o-tyr and this could be prevented by *OH scavengers. Resting human neutrophils (PMNs) markedly converted l-Phe to p-tyr, through non-oxidant-mediated reactions, whereas d-Phe was unaffected. In contrast, when PMNs were stimulated in the presence of redox cycling iron the *OH formed resulted in more significant rise of p-tyr from d-Phe (9.4-fold) than l-Phe (3.6-fold) due to the significant background formation of p-tyr from l-Phe. Together, these data indicated that d- and l-Phe were equally hydroxylated by *OH. Using d-Phe instead of l-Phe can eliminate the formation of Phe derivatives from Phe hydroxylase and achieve more specific, sensitive measurement of *OH in biological systems.

  17. Salt permeation and exclusion in hydroxylated and functionalized silica pores.

    PubMed

    Leung, Kevin; Rempe, Susan B; Lorenz, Christian D

    2006-03-10

    We use combined ab initio molecular dynamics (AIMD), grand canonical Monte Carlo, and molecular dynamics techniques to study the effect of pore surface chemistry and confinement on the permeation of salt into silica nanopore arrays filled with water. AIMD shows that 11.6 A diameter hydroxylated silica pores are relatively stable in water, whereas amine groups on functionalized pore surfaces abstract silanol protons, turning into NH3+. Free energy calculations using an ab initio parametrized force field show that the hydroxylated pores strongly attract Na+ and repel Cl- ions. Pores lined with NH3+ have the reverse surface charge polarity. Finally, studies of ions in carbon nanotubes suggest that hydration of Cl- is more strongly frustrated by pure confinement effects than Na+.

  18. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells.

    PubMed

    Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M

    2002-05-28

    Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.

  19. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    SciTech Connect

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less

  20. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  1. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Wu, D. Q.; He, H. P.; Lin, Z. Y.

    2004-04-01

    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and Brønsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica.

  2. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting

    PubMed Central

    Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868

  3. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    PubMed

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  4. Binding of pyrimidin-2-one ribonucleoside by cytidine deaminase as the transition-state analogue 3,4-dihydrouridine and the contribution of the 4-hydroxyl group to its binding affinity.

    PubMed

    Frick, L; Yang, C; Marquez, V E; Wolfenden, R

    1989-11-28

    Cytidine deaminase, purified to homogeneity from constitutive mutants of Escherichia coli, was found to bind the competitive inhibitors pyrimidin-2-one ribonucleoside (apparent Ki = 3.6 x 10(-7) M) and 5-fluoropyrimidin-2-one ribonucleoside (apparent Ki = 3.5 x 10(-8) M). Enzyme binding resulted in a change of the lambda max of pyrimidin-2-one ribonucleoside from 303 nm for the free species to 239 nm for the bound species. The value for the bound species was identical with that of an oxygen adduct formed by combination of hydroxide ion with 1,3-dimethyl-2-oxopyrimidinium (239 nm), but lower than that of a sulfur adduct formed by combination of the thiolate anion of N-acetylcysteamine with 1,3-dimethyl-2-oxopyrimidinium (259 nm). The results suggest that pyrimidin-2-one ribonucleoside is bound by cytidine deaminase as an oxygen adduct, probably the covalent hydrate 3,4-dihydrouridine, rather than intact or as an adduct involving a thiol group of the enzyme. In dilute solution at 25 degrees C, the equilibrium constant for formation of a single diastereomer of 3,4-dihydrouridine from pyrimidin-2-one ribonucleoside was estimated as approximately 4.7 x 10(-6), from equilibria of dissociation of water, protonation of 1-methylpyrimidin-2-one, and combination of the 1,3-dimethylpyrimidinium cation with the hydroxide ion.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.

    PubMed

    Fenoll, L G; Rodríguez-López, J N; Varón, R; García-Ruiz, P A; García-Cánovas, F; Tudela, J

    2000-04-01

    The relationship between the structure and activity of meta- and para-hydroxylated monophenols was studied during their tyrosinase-catalysed hydroxylation and the rate-limiting steps of the reaction mechanism were identified. The para-hydroxylated substrates permit us to study the effect of a substituent (R) in the carbon-1 position (C-1) of the benzene ring on the nucleophilic attack step, while the meta group permits a similar study of the effect on the electrophilic attack step. Substrates with a -OCH3 group on C-1, as p-hydroxyanisol (4HA) and m-hydroxyanisol (3HA), or with a -CH2OH group, as p-hydroxybenzylalcohol (4HBA) and m-hydroxybenzylalcohol (3HBA), were used because the effect of the substituent (R) size was assumed to be similar. However, the electron-donating effect of the -OCH3 group means that the carbon-4 position (C-4) is favoured for nucleophilic attack (para-hydroxylated substrates) or for electrophilic attack (meta-hydroxylated substrates). The electron-attracting effect of the -CH2OH group has the opposite effect, hindering nucleophilic (para) or electrophilic (meta) attack of C-4. The experimental data point to differences between the maximum steady-state rate (V(M)Max) of the different substrates, the value of this parameter depends on the nucleophilic and electrophilic attack. However, differences are greatest in the Michaelis constants (K(M)m), with the meta-hydroxylated substrates having very large values. The catalytic efficiency k(M)cat/K(M)m is much greater for thepara-hydroxylated substrates although it varies greatly between one substrate and the other. However, it varies much less in the meta-hydroxylated substrates since this parameter describes the power of the nucleophilic attack, which is weaker in the meta OH. The large increase in the K(M)m of the meta-hydroxylated substrates might suggest that the phenolic OH takes part in substrate binding. Since this is a weaker nucleophil than the para-hydroxylated substrates, the binding

  6. Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa).

    PubMed

    Buckles, Laura K; Villanueva, Laura; Weijers, Johan W H; Verschuren, Dirk; Damsté, Jaap S Sinninghe

    2013-09-01

    Stratified lakes are important reservoirs of microbial diversity and provide habitats for niche differentiation of Archaea. In this study, we used a lipid biomarker/DNA-based approach to reveal the diversity and abundance of Archaea in the water column of Lake Challa (East Africa). Concentrations of intact polar lipid (IPL) crenarchaeol, a specific biomarker of Thaumarchaeota, were enhanced (1 ng l(-1) ) at the oxycline/nitrocline. The predominance of the more labile IPL hexose-phosphohexose crenarchaeol indicated the presence of an actively living community of Thaumarchaeota. Archaeal 16S rRNA clone libraries revealed the presence of thaumarchaeotal groups 1.1a and 1.1b at and above the oxycline. In the anoxic deep water, amoA gene abundance was an order of magnitude lower than at the oxycline and high abundance (∼90 ng l(-1) ) of an IPL with the acyclic glycerol dialkyl glycerol tetraether (GDGT-0) was evident. The predominance of archaeal 16S rRNA sequences affiliated to the uncultured crenarchaeota groups 1.2 and miscellaneous crenarchaeotic group (MCG) points to an origin of GDGT-0 from uncultured crenarchaeota. This study demonstrates the importance of thermal stratification and nutrient availability in the distribution of archaeal groups in lakes, which is relevant to constrain and validate temperature proxies based on archaeal GDGTs (i.e. TEX86 ). © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. The genetic control of phenformin 4-hydroxylation.

    PubMed Central

    Shah, R R; Evans, D A; Oates, N S; Idle, J R; Smith, R L

    1985-01-01

    Previously published results of phenformin 4-hydroxylation in 195 unrelated white British volunteers and 87 family members of 27 randomly selected probands have been subjected to genetic analysis. The results clearly show that about 9% of this population has a genetically determined defect in carrying out this oxidation reaction. The character for the defect is inherited in a Mendelian autosomal recessive fashion. The polymorphism shows a substantial degree of dominance. PMID:4078865

  8. Some reactions of the hydroxyl adduct of adenine

    SciTech Connect

    Vanhemmen, J.J.

    1975-01-01

    The chemical reactions of purine derivatives resulting from pulse radiolysis were studied. Some reactions of the hydroxyl adduct of adenine are described and one of these reactions was compared with similar reactions of hydroxyl adducts of other purine derivatives. Evidence is given that in various purines opening of the imidazole ring is due to unimolecular rearrangements of the hydroxyl adducts. (GRA)

  9. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  10. Investigating Hydroxyl at Asteroid 951 Gaspra

    NASA Astrophysics Data System (ADS)

    Granahan, James C.

    2015-11-01

    Recent investigations [Granahan, 2011; 2014] of Galileo Near Infrared Mapping Spectrometer (NIMS) observations of asteroid 951 Gaspra have detected an infrared absorption feature near 2.8 micrometers. These were detected in NIMS data acquired by the Galileo spacecraft on October 29, 1991 at wavelengths ranging from 0.7 - 5.2 micrometers [Carlson et al., 1992]. This abstract presents a summary of the investigation to identify the material creating the 2.8 micrometer spectral absorption feature. The current best match for the observed 951 Gaspra feature is the phyllosilicate bound hydroxyl signature present in a thermally desiccated QUE 99038 carbonaceous chondrite as measured by Takir et al. [2013].The 951 Gaspra absorption feature has been compared to a variety of hydroxyl bearing signatures. Many phyllosilicates, hydroxyl bearing minerals, have absorption minima at different positions (2.7 or 2.85 micrometers). It also differs from similar absorptions in a potential R chondrite analog, LAP 04840. The spectra LAP 04840 has a 2.7 micrometer feature due to biotite and a 2.9 micrometer feature due to adsorbed water [Klima et al., 2007]. 2.8 micrometer absorption minima have been found for adsorbed hydroxyl on the Moon [McCord et al., 2011] and various carbonaceous chondrites [Calvin and King, 1997; Takir et al., 2013]. The best match, with a minimum Euclidean distance difference to the 951 Gaspra feature, is found in the spectrum of QUE 99038 [Takir et al., 2013]. This spectrum is the product of an infrared measurement of a sample that had its adsorbed water baked off and removed in a vacuum chamber. The remaining hydroxyl in the sample belongs to a mixture of phyllosilicates dominated by the presence of cronstedtite.References: Calvin, W. M., and T. V. King (1997), Met. Planet. Sci., 32, 693-702. Carlson, R. W., et al. (1992), Bull. American Astro. Soc., 24, 932. Granahan, J. C. (2011), Icarus, 213, 265-272. Granahan, J. C. (2014), 45th LPSC, #1092. Klima, R., C. et

  11. Exploring the reaction channels between arsine and the hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.

    2017-10-01

    The aim of this study was to present the reaction mechanism channels between arsine (AsH3) and hydroxyl (OH) which was evaluated at CCSD(T)/CBS//CCSD/cc-pVTZ level. One potential channel is the hydrogen abstraction pathway (R1), leading to AsH2 and H2O products, which occurs due to the formation of an entrance complex (AsH3OH) followed by a 1,2-hydrogen shift pathway (involving the proton transfer from the arsine group to hydroxyls, with one leading to the products). Additional channels are accessed via H-elimination pathways of the entrance complexes, forming arsinous acid (AsH2OH; R2) and arsine oxide (AsH3O; R3). In this respect, R2 is the only exoergic route of the three exit channels, representing the major branching ratio at 200-1000 K and, after 2000 K, R1 increases gradually becoming the major route of this reaction. In contrast, even at 4000 K, R3 is a highly unfeasible pathway. Therefore, the information predicted here provides new insights into the neutral-neutral chemical reaction dynamics regarding the Group V hydrides. On the other side, the R2 pathway may have some potential to solve the arsine oxidation puzzle as a possible primary pathway to the arsenic-oxygen species formation.

  12. Hydroxyl radical mediated DNA base modification by manmade mineral fibres.

    PubMed Central

    Leanderson, P; Söderkvist, P; Tagesson, C

    1989-01-01

    Manmade mineral fibres (MMMFs) were examined for their ability to hydroxylate 2-deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OH-dG), a reaction that is mediated by hydroxyl radicals. It appeared that (1) catalase and the hydroxyl radical scavengers, dimethylsulphoxide and sodium benzoate, inhibited the hydroxylation, whereas Fe2+ and H2O2 potentiated it; (2) pretreatment of MMMFs with the iron chelator, deferoxamine, or with extensive heat (200-400 degrees C), attenuated the hydroxylation; (3) the hydroxylation obtained by various MMMFs varied considerably; (4) there was no apparent correlation between the hydroxylation and the surface area of different MMMFs, although increasing the surface area of a fibre by crushing it increased its hydroxylating capacity; and (5) there was good correlation between the hydroxylation of dG residues in DNA and the hydroxylation of pure dG in solution for the 16 different MMMFs investigated. These findings indicate that MMMFs cause a hydroxyl radical mediated DNA base modification in vitro and that there is considerable variation in the reactivity of different fibre species. The DNA modifying ability seems to depend on physical or chemical characteristics, or both, of the fibre. PMID:2765416

  13. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    PubMed

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  14. Stellar Oxygen Abundances

    NASA Astrophysics Data System (ADS)

    King, Jeremy

    1994-04-01

    . [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and the beginning of star formation in the disk. It is noted that the slope of the [O/Fe] versus [Fe/H] relation for [Fe/H] >/= -1 depends on the statistical regression utilized. Hence, alleged "observed" [O/H] - age relations, which do not use truly observed O abundances (but, rather, adopt O abundances based on Fe abundances), should be regarded with caution. Systematic effects on O abundances derived from the 6300A [O I] and 7774A O I lines are considered next. While our Solar observations confirm the disagreement between the observed 7774A O I equivalent widths and LTE model calculations at low microns, we stress that Solar O abundance determinations made from flux spectra are in very good agreement with the meteoritic value. We find the 6300A [O I] equivalent width value appears to be uncertain for the Sun. Given this uncertainty, the inability of authors to reproduce each others' 6300A O abundances, and the results of recent quasi-two-stream calculations, we do not believe it can be readily claimed (as is usually done) that these abundances are more reliable than those derived from the 7774A O I triplet. In a sample of relatively metal-rich F and G dwarfs, we find no systematic difference between the 6300 and 7774A O abundances for Teff abundances are also determined for 8 open clusters or moving groups. A very clear relation between cluster age and O abundance is seen; this is in stark contrast to the lack of any relation between age and Fe abundance in the same clusters. Hence, despite possible a priori objections, O abundances may prove to be a superior chronometer (as others have suggested) in the study of Galactic chemical evolution. Somewhat surprisingly, our our [O/Fe] ratios appear to be larger for the

  15. Kinetics of surface processes for Mo(CO){sub 6} on partially dehydroxylated alumina and hydroxylated alumina. Observation of Mo(CO){sub 5}(ads)

    SciTech Connect

    Reddy, K.P.; Brown, T.L.

    1995-03-15

    The adsorption of Mo(CO){sub 6} on partially dehydroxylated alumina (PDA) and hydroxylated alumina (HA) has been studied using IR and UV-vis spectroscopy. The results from these experiments suggest that the initially physisorbed Mo(CO){sub 6} coordinates to two distinct Lewis acid sites on the surface of PDA, one much more abundant than the other, with an apparent single rate constant 2.3 x 10{sup {minus}3} s{sup {minus}1} at 298 K. The Mo(CO){sub 6}(ads) in turn loses CO reversibly, with an apparent single rate constant 1.8 x 10{sup {minus}4} s{sup {minus}1} at 298 K to form Mo(CO){sub 5}(ads). Upon removal of gas phasemore » CO released in the first step, Mo(CO){sub 5}(ads) loses two additional COs to form Mo(CO){sub 3}(ads). Alternatively, on HA physisorbed Mo(CO){sub 6} undergoes nucleophilic attack by hydroxyl groups, which results in cis-labilization of a carbonyl group, leading in turn to the formation of Mo(CO){sub 5}(L), where L is a surface hydroxyl. The Mo(CO){sub 5}(L) so formed loses additional carbonyls to form a lower subcarbonyl. The decarbonylation process appears to be faster than on PDA. The experimental data indicate that there are no Al{sup 31} exposed on HA. All the observed decarbonylation processes are reversible under CO at room temperature on both HA and PDA. The addition of CO{sub 2} to the subcarbonyl on HA results in the formation of a bicarbonate, with displacement of the subcarbonyls. 24 refs., 11 figs., 1 tab.« less

  16. Hydroxylation of organic polymer surface: method and application.

    PubMed

    Yang, Peng; Yang, Wantai

    2014-03-26

    It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl

  17. Abundance and reactivity of dibenzodioxocins in softwood lignin.

    PubMed

    Argyropoulos, Dimitris S; Jurasek, Lubo; Kristofová, Lívia; Xia, Zhicheng; Sun, Yujun; Palus, Ernest

    2002-02-13

    To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.

  18. Mechanisms of Innovation Diffusion under Information Abundance and Information Scarcity--On the Contribution of Social Networks in Group vs. Individual Extension Approaches in Semi-Arid Kenya

    ERIC Educational Resources Information Center

    Darr, Dietrich; Pretzsch, Jurgen

    2008-01-01

    Purpose: The objective of this paper is to assess the effectiveness of innovation diffusion under group-oriented and individual-oriented extension. Current theoretical notions of innovation diffusion in social networks shall be briefly reviewed, and the concepts of "search" and "innovation" vis-a-vis "transfer" and…

  19. Chemical Abundances of Planetary Nebulae in the Substructures of M31. II. The Extended Sample and a Comparison Study with the Outer-disk Group

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Zhang, Yong; Liu, Xiaowei; Morisset, Christophe; Karakas, Amanda I.; Miller Bertolami, Marcelo M.; Yuan, Haibo; Cabrera-Lavers, Antonio

    2018-01-01

    We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (<2 M ⊙) stars, as analyzed with the most up-to-date post-AGB evolutionary models, and their main-sequence ages are mostly ∼2–5 Gyr. Compared to the underlying, smooth, metal-poor halo of M31, our targets are uniformly metal rich ([O/H] ≳ ‑0.4), and seem to resemble the younger population in the stream. We thus speculate that our halo PNe formed in the Giant Stream’s progenitor through extended star formation. Alternatively, they might have formed from the same metal-rich gas as did the outer-disk PNe but were displaced into their present locations as a result of galactic interactions. These interpretations are, although speculative, qualitatively in line with the current picture, as inferred from previous wide-field photometric surveys, that M31's halo is the result of complex interactions and merger processes. The behavior of the N/O of the combined sample of the outer-disk and our halo/substructure PNe signifies that hot bottom burning might actually occur at <3 M ⊙ but careful assessment is needed. Based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of Instituto de Astrofísica de Canarias, in the island of La Palma. The observations presented in this paper are associated with GTC programs #GTC66-16A and #GTC25-16B.

  20. Global tropospheric hydroxyl distribution, budget and reactivity

    NASA Astrophysics Data System (ADS)

    Lelieveld, Jos; Gromov, Sergey; Pozzer, Andrea; Taraborrelli, Domenico

    2016-10-01

    The self-cleaning or oxidation capacity of the atmosphere is principally controlled by hydroxyl (OH) radicals in the troposphere. Hydroxyl has primary (P) and secondary (S) sources, the former mainly through the photodissociation of ozone, the latter through OH recycling in radical reaction chains. We used the recent Mainz Organics Mechanism (MOM) to advance volatile organic carbon (VOC) chemistry in the general circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry) and show that S is larger than previously assumed. By including emissions of a large number of primary VOC, and accounting for their complete breakdown and intermediate products, MOM is mass-conserving and calculates substantially higher OH reactivity from VOC oxidation compared to predecessor models. Whereas previously P and S were found to be of similar magnitude, the present work indicates that S may be twice as large, mostly due to OH recycling in the free troposphere. Further, we find that nighttime OH formation may be significant in the polluted subtropical boundary layer in summer. With a mean OH recycling probability of about 67 %, global OH is buffered and not sensitive to perturbations by natural or anthropogenic emission changes. Complementary primary and secondary OH formation mechanisms in pristine and polluted environments in the continental and marine troposphere, connected through long-range transport of O3, can maintain stable global OH levels.

  1. Abundance of Jackfruit ( Artocarpus heterophyllus) Affects Group Characteristics and Use of Space by Golden-Headed Lion Tamarins ( Leontopithecus chrysomelas) in Cabruca Agroforest

    NASA Astrophysics Data System (ADS)

    Oliveira, Leonardo C.; Neves, Leonardo G.; Raboy, Becky E.; Dietz, James M.

    2011-08-01

    Cabruca is an agroforest of cacao trees shaded by native forest trees. It is the predominant vegetation type throughout eastern part of the range of the golden-headed lion tamarins, Leontopithecus chrysomelas, an endangered primate endemic to Atlantic Forest. Understanding how lion tamarins use this agroforest is a conservation priority. To address this question, we documented the diet, home range size, group sizes and composition, density, number of litters and body condition of lion tamarins living in cabruca, and other habitats. Jackfruit, Artocarpus heterophyllus, was the most used species used by lion tamarins in cabruca and was widely available and used throughout the year. In cabruca, home range size was the smallest (22-28 ha) and density of lion tamarins was the highest (1.7 ind/ha) reported for the species. Group size averaged 7.4 individuals and was not significantly different among the vegetation types. In cabruca, groups produced one or two litters a year, and all litters were twins. Adult males in cabruca were significantly heavier than males in primary forest. Our study is the first to demonstrate that breeding groups of golden-headed lion tamarins can survive and reproduce entirely within cabruca agroforest. Jackfruit proved to be a keystone resource for lion tamarins in cabruca, and bromeliads were important as an animal prey foraging microhabitat. In cases where cabruca contains concentrated resources, such as jackfruit and bromeliads, lion tamarins may not only survive and reproduce but may fare better than in other forest types, at least for body condition and reproduction.

  2. Abundance of jackfruit (Artocarpus heterophyllus) affects group characteristics and use of space by golden-headed lion tamarins (Leontopithecus chrysomelas) in Cabruca agroforest.

    PubMed

    Oliveira, Leonardo C; Neves, Leonardo G; Raboy, Becky E; Dietz, James M

    2011-08-01

    Cabruca is an agroforest of cacao trees shaded by native forest trees. It is the predominant vegetation type throughout eastern part of the range of the golden-headed lion tamarins, Leontopithecus chrysomelas, an endangered primate endemic to Atlantic Forest. Understanding how lion tamarins use this agroforest is a conservation priority. To address this question, we documented the diet, home range size, group sizes and composition, density, number of litters and body condition of lion tamarins living in cabruca, and other habitats. Jackfruit, Artocarpus heterophyllus, was the most used species used by lion tamarins in cabruca and was widely available and used throughout the year. In cabruca, home range size was the smallest (22-28 ha) and density of lion tamarins was the highest (1.7 ind/ha) reported for the species. Group size averaged 7.4 individuals and was not significantly different among the vegetation types. In cabruca, groups produced one or two litters a year, and all litters were twins. Adult males in cabruca were significantly heavier than males in primary forest. Our study is the first to demonstrate that breeding groups of golden-headed lion tamarins can survive and reproduce entirely within cabruca agroforest. Jackfruit proved to be a keystone resource for lion tamarins in cabruca, and bromeliads were important as an animal prey foraging microhabitat. In cases where cabruca contains concentrated resources, such as jackfruit and bromeliads, lion tamarins may not only survive and reproduce but may fare better than in other forest types, at least for body condition and reproduction.

  3. Hydroxyl orientations in cellobiose and other polyhydroxy compounds – modeling versus experiment

    USDA-ARS?s Scientific Manuscript database

    Theoretical and experimental gas-phase studies of carbohydrates show that their hydroxyl groups are located in homodromic partial rings that resemble cooperative hydrogen bonds, albeit with long H…O distances and small O-H…O angles. On the other hand, anecdotal experience with disaccharide crystal ...

  4. Ab initio molecular dynamics of the reactivity of vitamin C toward hydroxyl and HO₂/O⁻₂ radicals.

    PubMed

    Lespade, Laure

    2017-11-21

    Vitamin C is one of the most abundant exogenous antioxidants in the cell, and it is of the utmost importance to elucidate its mechanism of action against radicals. In this study, the reactivity of vitamin C toward OH and [Formula: see text] radicals in aqueous medium was analyzed by ab initio molecular dynamics using CPMD code. The simulations led to results similar to those of static studies or experiments for the pair of [Formula: see text] radicals but bring new insights for the reactivity with hydroxyl radical: the reaction takes place before the formation of an adduct and consists of two steps: first an electron is transferred to hydroxyl radical and then the ascorbyl radical loses a proton. Graphical Abstract Reactivity of vitamin C toward hydroxyl and [Formula: see text] radicals.

  5. Hydroxyl radical generation by photosystem II.

    PubMed

    Pospísil, Pavel; Arató, András; Krieger-Liszkay, Anja; Rutherford, A William

    2004-06-01

    The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH

  6. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  7. Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl

    NASA Astrophysics Data System (ADS)

    Kim, Suyeon; Yi, Yu; Hong, Ik-Seon; Sohn, Jongdae

    2018-03-01

    Moon mineralogy mapper (M3)'s work proved that the moon is not completely dry but has some hydroxyl/water. M3's data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using M3 data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.

  8. Identification of a novel hydroxylated metabolite of 2,2′,3,5′,6-pentachlorobiphenyl formed in whole poplar plants

    PubMed Central

    Ma, Cunxian; Zhai, Guangshu; Wu, Huimin; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Schnoor, Jerald L

    2015-01-01

    Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants consisting of 209 congeners. Oxidation of several PCB congeners to hydroxylated PCBs (OH-PCBs) in whole poplar plants has been reported before. Moreover, 2,2′,3,5′,6-pentachlorobiphenyl (PCB95), as a chiral congener, has been previously shown to be atropselectively taken up and transformed in whole poplar plants. The objective of this study was to determine if PCB95 is atropselectively metabolized to OH-PCBs in whole poplar plants. Two hydroxylated PCB95s were detected by high performance liquid chromatography-mass spectrometry in the roots of whole poplar plants exposed to racemic PCB95 for 30 days. The major metabolite was confirmed to be 4′-hydroxy-2,2′,3,5′,6-pentachlorobiphenyl (4′-OH-PCB95) by gas chromatography-mass spectrometry (GC-MS) using an authentic reference standard. Enantioselective analysis showed that 4′-OH-PCB95 was formed atropselectively, with the atropisomer eluting second on the Nucleodex β-PM column (E2-4′-OH-PCB95) being slightly more abundant in the roots of whole poplar plants. Therefore, PCB95 can at least be metabolized into 4′-OH-PCB95 and another unknown hydroxylated PCB95 (as a minor metabolite) in whole poplar plants. Both atropisomers of 4′-OH-PCB95 are formed, but E2-4′-OH-PCB95 has greater atropisomeric enrichment in the roots of whole poplar plants. A comparison with mammalian biotransformation studies indicates a distinctively different metabolite profile of OH-PCB95 metabolites in whole poplar plants. Our observations suggest that biotransformation of chiral PCBs to OH-PCBs by plants may represent an important source of enantiomerically enriched OH-PCBs in the environment. PMID:26676542

  9. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  10. Platinum-group element abundances and Re-Os isotopic systematics of the upper continental crust through time: Evidence from glacial diamictites

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Walker, Richard J.; Rudnick, Roberta L.; Gao, Shan; Gaschnig, Richard M.; Puchtel, Igor S.; Tang, Ming; Hu, Zhao-Chu

    2016-10-01

    The fine-grained matrix of glacial diamictites, deposited periodically by continental ice sheets over much of Earth history, provides insights into the average composition and chemical evolution of the upper continental crust (UCC) (Gaschnig et al., 2016, and references therein). The concentrations of platinum-group elements (PGEs, including Os, Ir, Ru, Pt and Pd) and the geochemically related Re, as well as 187Re/188Os and 187Os/188Os ratios, are reported here for globally-distributed glacial diamictites that were deposited during the Mesoarchean, Paleoproterozoic, Neoproterozoic and Paleozoic eras. The medians and averages of PGE concentrations of these diamictite composites decrease from the Mesoarchean to the Neoproterozoic, mimicking decreases in the concentrations of first-row transition elements (Sc, V, Cr, Co and Ni). By contrast, Re concentrations are highly variable with no discernable trend, owing to its high solubility. Assuming these diamictites are representative of average UCC through time, the new data are fully consistent with the previous inference that the Archean UCC contained a greater proportion of mafic-ultramafic rocks relative to younger UCC. Linear regressions of PGEs versus Cr and Ni concentrations in all the diamictite composites from the four time periods are used to estimate the following concentrations of the PGEs in the present-day UCC: 0.059 ± 0.016 ng/g Os, 0.036 ± 0.008 ng/g Ir, 0.079 ± 0.026 ng/g Ru, 0.80 ± 0.22 ng/g Pt and 0.80 ± 0.26 ng/g Pd (2σ of 10,000 bootstrapping regression results). These PGE estimates are slightly higher than the estimates obtained from loess samples. We suggest this probably results from loess preferentially sampling younger UCC rocks that have lower PGE concentrations, or PGEs being fractionated during loess formation. A Re concentration of 0.25 ± 0.12 ng/g (2σ) is obtained from a regression of Re versus Mo. From this, time-integrated 187Re/188Os and 187Os/188Os ratios for the UCC are

  11. New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders.

    PubMed

    Bressy, Christine; Ngo, Van Giang; Ziarelli, Fabio; Margaillan, André

    2012-02-14

    Functionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.e., 3-(trimethoxysilyl)propylmethacrylate (MPS). Fourier transform infrared (FTIR) and solid-state (13)C and (29)Si nuclear magnetic resonance (NMR) spectroscopic investigations demonstrated that the silane coupling agent was fully hydrolyzed and linked to the hydroxyl groups already present on the particle surface through covalent and hydrogen bonds. Due to a basic catalyzed condensation of MPS with water, a siloxane layer was shown to be anchored to the nanoparticles through mono- and tridentate structures. Quantitative investigations were performed by thermogravimetric (TGA) and elemental analyses. The amount of silane linked to ZnO particles was shown to be affected by the amount of isolated hydroxyl groups available to react on the particle surface. For as-prepared ZnO nanoparticles, the number of isolated and available hydroxyl groups per square nanometer was up to 3 times higher than the one found on commercially available ZnO nanoparticles, leading to higher amounts of polymerizable silane agent linked to the surface. The MPS molecules were shown to be mainly oriented perpendicular to the oxide surface for all the as-prepared ZnO nanoparticles, whereas a parallel orientation was found for the preheated commercially ZnO nanopowders. In addition, ZnO nanoparticles were shown to be hydrophobized by the MPS treatment with water contact angles higher than 60°.

  12. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  13. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  14. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study

    PubMed Central

    McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190

  15. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  16. Hydroxyl Emission in the Westbrook Nebula

    NASA Astrophysics Data System (ADS)

    Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca

    2016-06-01

    CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.

  17. Hydroxyl radical mediated degradation of phenylarsonic acid.

    PubMed

    Xu, Tielian; Kamat, Prashant V; Joshi, Sachin; Mebel, Alexander M; Cai, Yong; O'Shea, Kevin E

    2007-08-16

    Phenyl-substituted arsonic acids have been widely used as feed additives in the poultry industry. While very few studies have been reported on the environmental impact of these compounds, they have been introduced into the environment through land application of poultry litter in large quantities (about 10(6) kg/year). Phenylarsonic acid (PA) was used as a model for problematic arsonic acids. Dilute aqueous solutions of PA were subjected to gamma radiolysis under hydroxyl radical generating conditions, which showed rapid degradation of PA. Product studies indicate addition of (.)OH to the phenyl ring forms the corresponding phenols as the primary products. Arsenite, H3As(III)O3, and arsenate, H3As(V)O4, were also identified as products. The optimized structures and relative calculated energies (using GAUSSIAN 98, the B3LYP/6-31G(d) method) of the various transient intermediates are consistent with the product studies. Pulse radiolysis was used to determine the rate constants of PA with (.)OH (k = 3.2 x 10(9) M(-1) s(-1)) and SO4(.-) (k = 1.0 x 10(9) M(-1) s(-1)). PA reacts slower toward O(.-) (k = 1.9 x 10(7) M(-1) s(-1)) and N3(.) (no detectable transient), due to the lower oxidation potential of these two radicals. Our results indicate advanced oxidative processes employing (.)OH and SO4(.-) can be effective for the remediation of phenyl-substituted arsonic acids.

  18. Hydroxyl free radical production during torsional phacoemulsification.

    PubMed

    Aust, Steven D; Hebdon, Thomas; Humbert, Jordan; Dimalanta, Ramon

    2010-12-01

    To quantitate free radical generation during phacoemulsification using an ultrasonic phacoemulsification device that includes a torsional mode and evaluate tip designs specific to the torsional mode. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were performed using the Infiniti Vision System and OZil handpiece. Hydroxyl radical concentrations in the aspirated irrigation solution during torsional phacoemulsification were quantitated as nanomolar malondialdehyde (nM MDA) and determined spectrophotometrically using the deoxyribose assay. The mean free radical production during phacoemulsification with torsional modality at 100% amplitude was 30.1 nM MDA ± 5.1 (SD) using a 0.9 mm 45-degree Kelman tapered ABS tip. With other tip designs intended for use with the torsional modality, free radical production was further reduced when fitted with the 0.9 mm 45-degree Kelman mini-flared ABS tip (13.2 ± 5.6 nM MDA) or the 0.9 mm 45-degree OZil-12 mini-flared ABS tip (14.3 ± 6.7 nM MDA). Although the measurements resulting from the use of the latter 2 tips were not statistically significantly different (P ≈ .25), they were different from those of the tapered tip (P<.0001). The MDA concentration in the aspirated irrigation solution using the torsional modality was approximately one half that reported for the handpiece's longitudinal modality in a previous study using the same bent-tip design (Kelman tapered, P<.0001). The level of MDA was further reduced approximately one half with torsional-specific tips. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  20. Low-temperature chemistry between water and hydroxyl radicals: H/D isotopic effects

    NASA Astrophysics Data System (ADS)

    Lamberts, T.; Fedoseev, G.; Puletti, F.; Ioppolo, S.; Cuppen, H. M.; Linnartz, H.

    2016-01-01

    Sets of systematic laboratory experiments are presented - combining Ultra High Vacuum cryogenic and plasma-line deposition techniques - that allow us to compare H/D isotopic effects in the reaction of H2O (D2O) ice with the hydroxyl radical OD (OH). The latter is known to play a key role as intermediate species in the solid-state formation of water on icy grains in space. The main finding of our work is that the reaction H2O + OD → OH + HDO occurs and that this may affect the HDO/H2O abundances in space. The opposite reaction D2O + OH → OD + HDO is much less effective, and also given the lower D2O abundances in space not expected to be of astronomical relevance. The experimental results are extended to the other four possible reactions between hydroxyl and water isotopes and are subsequently used as input for Kinetic Monte Carlo simulations. This way we interpret our findings in an astronomical context, qualitatively testing the influence of the reaction rates.

  1. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  2. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    SciTech Connect

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical currentmore » throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.« less

  3. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.

    PubMed

    Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-10-01

    Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.

  4. Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals

    PubMed Central

    Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-01-01

    Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334

  5. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    SciTech Connect

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemicalmore » shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate

  6. Observations and Analysis of Atmospheric Hydroxyl

    NASA Technical Reports Server (NTRS)

    Minschwaner, Ken R.

    1996-01-01

    Ground-based measurements of sunlight absorption at the OH P(sub 1)(l) resonance line at 308 nm have been made on a continuous basis at Fritz Peak, Colorado. The derived OH vertical column abundances show the persistence of a new seasonal regime which began in 1991. The fall minimum has been consistently depressed about 10-15% below the 1980-1990 average fall values. While the initial onset of depressed fall abundances occurred a few months after the Pinatubo eruption, there has been no fall OH recovery correlating with decreased amounts of volcanic aerosol found since spring 1993. The Colorado data also continues to exhibit an AM-PM asymmetry which varies seasonally, approximately in phase with local total ozone. These observations were presented at the Front Range AGU meeting in February 1996 and were published in Geophysical Research Letters in July 1996 (preprint enclosed). An update through the fall of 1996, when morning abundances were found to be extremely low, was presented at the Fall 1996 AGU meeting (abstract attached). A PEPSIOS instrument of identical design is currently operational and has been used since April 1996 for OH column measurements at New Mexico Tech, Socorro, NM. Title for both instruments was transferred from Florida Atlantic University to New Mexico Tech in February of 1996. Comparative measurements from the two instruments for April-July 1996 indicate small differences in OH column abundances, with New Mexico (34 deg N) abundances about 10% above Colorado (40 deg N) values for comparable solar zenith angles. A more detailed comparison will require at least one full year of data from both locations. New Mexico measurements were obtained on June 10, 1996, concurrently with a balloon launch of the NASA STRAT mission from Fort Sumner, New Mexico. We hope to make use of STRAT measurements H2O, CH4, and O3 which are particularly relevant to OH photochemistry. Additional work at New Mexico Tech involves a comparison of P(sub 1)(1) and Q(sub 1

  7. Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis.

    PubMed

    Matros, Andrea; Peshev, Darin; Peukert, Manuela; Mock, Hans-Peter; Van den Ende, Wim

    2015-06-01

    Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Detection and scavenging of hydroxyl radical via D-phenylalanine hydroxylation in human fluids.

    PubMed

    Biondi, Roberto; Brancorsini, Stefano; Poli, Giulia; Egidi, Maria Giulia; Capodicasa, Enrico; Bottiglieri, Livio; Gerli, Sandro; Brillo, Eleonora; Renzo, Gian Carlo Di; Cretoiu, Dragos; Micu, Romeo; Suciu, Nicolae

    2018-05-01

    Hydroxyl radical (.OH) is highly reactive, and therefore very short-lived. Finding new means to accurately detect .OH, and testing the ability of known .OH scavengers to neutralize them in human biological fluids would leverage our ability to more effectively counter oxidative (.OH) stress-mediated damage in human diseases. To achieve this, we pursued the evaluation of secondary products resulting from .OH attack, using a detection system based on Fenton reaction-mediated D-phenylalanine (D-Phe) hydroxylation. This reaction in turn generates o-tyrosine (o-tyr), m-tyrosine (m-tyr) and p-tyrosine (p-tyr). Here, these isomers were separated by HPLC, equipped with fluorescence detectors due to the natural fluorescence of these hydrotyrosines. By extension, we found that, adding radical scavengers competed with D-Phe on .OH attack, thus allowing to determine the .OH quenching capacity of a given compound expressed as inhibition ratio percent (IR%). Using a kinetic approach, we then tested the .OH scavenging capacity (OHSC) of well-known antioxidant molecules. In a test tube, N,N'-dimethylthiourea (DMTU) was the most efficient scavenger as compared to Trolox and N-Acethyl-L-cysteine, with NAC being the less effective. OHSC assay was then applied to biological fluid samples as seminal plasma, human serum from normal subjects and patients undergoing hemodialysis (HD), colostrum and human breast milk from mothers that received daily doses of 30g of chocolate (70% cocoa) during pregnancy. We found that a daily administration of dark chocolate during pregnancy almost doubled OHSC levels in breast milk (1.88 ± 0.12 times, p < 0.01). Furthermore, HD treatment determined a significant reduction of serum OHSC concentration (54.63 ± 2.82%, p < 0.001). Our results provide evidence that Fenton reaction-mediated D-Phe hydroxylation is a suitable method for routine and non-invasive evaluation of .OH detection and its scavenging in human biological fluids. Copyright © 2018 The

  9. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.

    PubMed

    Moorhouse, C P; Halliwell, B; Grootveld, M; Gutteridge, J M

    1985-12-13

    Co(II) ions react with hydrogen peroxide under physiological conditions to form a 'reactive species' that can hydroxylate aromatic compounds (phenol and salicylate) and degrade deoxyribose to thiobarbituric-acid-reactive material. Catalase decreases the formation of this species but superoxide dismutase or low concentrations of ascorbic acid have little effect. EDTA, present in excess over the Co(II), can accelerate deoxyribose degradation and aromatic hydroxylation. In the presence of EDTA, deoxyribose degradation by the reactive species is inhibited competitively by scavengers of the hydroxyl radical (.OH), their effectiveness being related to their second-order rate constants for reaction with .OH. In the absence of EDTA the scavengers inhibit only at much higher concentrations and their order of effectiveness is changed. It is suggested that, in the presence of EDTA, hydroxyl radical is formed 'in free solution' and attacks deoxyribose or an aromatic molecule. In the absence of EDTA, .OH radical is formed in a 'site-specific' manner and is difficult to intercept by .OH scavengers. The relationship of these results to the proposed 'crypto .OH' radical is discussed.

  10. Mechanism and kinetics of the atmospheric degradation of 2-formylcinnamaldehyde with O3 and hydroxyl OH radicals - a theoretical study

    NASA Astrophysics Data System (ADS)

    Thangamani, D.; Shankar, R.; Vijayakumar, S.; Kolandaivel, P.

    2016-10-01

    In the present investigation, the reaction mechanism and kinetics of 2-formylcinnamaldehyde (2-FC) with O3 and hydroxyl OH radicals were studied. The reaction of 2-FC with O3 radical are initiated by the formation of primary ozonide, whereas the reaction of 2-FC with the hydroxyl OH radical are initiated by two different ways: (1). H-atom abstraction by hydroxyl OH radical from the -CHO and -CH = CHCHO group of 2-FC (2). Hydroxyl OH addition to the -CH = CHCHO group to the ring-opened 2-FC. These reactions lead to the formation of an alkyl radical. The reaction pathways corresponding to the reactions between 2-FC with O3 and hydroxyl OH radicals have been analysed using density functionals of B3LYP and M06-2X level of methods with the 6-31+G(d,p) basis set. Single-point energy calculations for the most favourable reactive species are determined by B3LYP/6-311++G(d,p) and CCSD(T)/6-31+G(d,p) levels of theory. From the obtained results, the hydroxyl OH addition at C8 position of 2-FC are most favourable than the C9 position of 2-FC. The subsequent reactions of the alkyl radicals, formed from the hydroxyl OH addition at C8 position, are analysed in detail. The individual and overall rate constant for the most favourable reactions are calculated by canonical variational transition theory with small-curvature tunnelling corrections over the temperature range of 278-350 K. The calculated theoretical rate constants are in good agreement with the available experimental data. The Arrhenius plot of the rate constants with the temperature are fitted and the atmospheric lifetimes of the 2-FC with hydroxyl OH radical reaction in the troposphere calculate for the first time, which can be applied to the study on the atmospheric implications. The condensed Fukui function has been verified for the most favourable reaction sites. This study can be regarded as an attempt to investigate the O3-initiated and hydroxyl OH-initiated reaction mechanisms of 2-FC in the atmosphere.

  11. Sunspots, Starspots, and Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry P.

    2017-08-01

    The composition of plasma in solar and stellar atmospheres is not fixed, but varies from feature to feature. These variations are organized by the First Ionization Potential (FIP) of the element. Solar measurements often indicate that low FIP elements (< 10eV, such as Fe, Si, Mg) are enriched by factors of 3-4 in the corona relative to high FIP elements (>10 eV, such as C, N, O, Ar, He) compared to abundances in the photosphere. Stellar observations have also shown similar enrichments. An inverse FIP effect, where the low FIP elements are depleted, has been observed in stellar coronae of stars believed to have large starspots in their photospheres. The abundances are important for determining radiative loss rates in models, tracing the origin of the slow solar wind, and for understanding wave propagation in the chromosphere and corona. Recently, inverse FIP effects have been discovered in the Sun (Doschek, Warren, & Feldman 2015, ApJ, 808, L7) from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The inverse FIP regions seem always to be near sunspots and cover only a very small area (characteristic length = a few arcseconds). However, in pursuing the search for inverse FIP regions, we have found that in some sunspot groups the coronal abundance at a temperature of 3-4 MK can be near photospheric over much larger areas of the sun near the sunspots (e.g., 6,000 arcsec2). Also, sometimes the abundances at 3-4 MK are in between coronal and photospheric values. This can occur in small areas of an active region. It is predicted (Laming 2015, Sol. Phys., 12, 2) that the FIP effect should be highly variable in the corona. Several examples of coronal abundance variations are presented. Our work indicates that a comprehensive re-investigation of solar abundances is highly desirable. This work is supported by a NASA Hinode grant.

  12. ipso-Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate Sulfonamide Antibiotics

    PubMed Central

    Ricken, Benjamin; Cichocka, Danuta; Parisi, Martina; Lenz, Markus; Wyss, Dominik; Martínez-Lavanchy, Paula M.; Müller, Jochen A.; Shahgaldian, Patrick; Tulli, Ludovico G.; Kohler, Hans-Peter E.; Kolvenbach, Boris A.

    2013-01-01

    Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us. PMID:23835177

  13. Solar abundance of silicon

    SciTech Connect

    Holweger, H.

    1973-07-01

    An analysis of 19 photospheric Si I lines whose oscillator strengths have recently been detertmined by Garz (1973) leads to a solar abundance of silicon, log epsilon /sub Si/ = 7.65 plus or minus 0.07, on the scale where log epsilon /sub H/ = 12. Together with the sodium abundance determained earlier by the same method, a solar abundance ratio /sup epsilon /Na//sup epsilon /Si = 0.045 ( plus or minus 10%) results. Within the error limits this a grees wtth the meteoritic ratio found in carbonaceous chondrites. Results concerning line-broadening by hydrogen are discussed. (auth)

  14. [Effect of the steroid molecule structure on the direction of its hydroxylation by the fungus Curvularia lunata].

    PubMed

    Andriushina, V A; Iaderets, V V; Stytsenko, T S; Druzhinina, A V; Voĭshvillo, N E

    2013-01-01

    The main and side products of hydroxylation by the C. lunata VKPM F-981 mycelium of fourteen delta(4)-3-ketosteroids of the estrane, androstane, and pregnane series and six of their delta(5)-3beta-hydroxy analogues were identified by H1 PMR spectroscopy and comparison with standard samples. The obtained experimental data are considered in terms of the triangular model of the enzyme-substrate interaction. The dependence of the direction of hydroxylation of steroid molecules and the orientation of hydroxy groups on the structure of the initial substrate was revealed.

  15. Diffusion of hydroxyl ions from calcium hydroxide and Aloe vera pastes.

    PubMed

    Batista, Victor Eduardo de Souza; Olian, Douglas Dáquila; Mori, Graziela Garrido

    2014-01-01

    This study evaluated the diffusion through the dentinal tubules of hydroxyl ions from different calcium hydroxide (CH) pastes containing Aloe vera. Sixty single-rooted bovine teeth were used. The tooth crowns were removed, the root canals were instrumented and the specimens were assigned to 4 groups (n=15) according to the intracanal medication: Group CH/S - CH powder and saline paste; Group CH/P - CH powder and propylene glycol paste; Group CH/A - calcium hydroxide powder and Aloe vera gel paste; Group CH/A/P - CH powder, Aloe vera powder and propylene glycol paste. After placement of the root canal dressings, the teeth were sealed coronally and apically with a two-step epoxy adhesive. The teeth were placed in identified flasks containing deionized water and stored in an oven with 100% humidity at 37 °C. After 3 h, 24 h, 72 h, 7 days, 15 days and 30 days, the deionized water in the flasks was collected and its pH was measured by a pH meter. The obtained data were subjected to statistical analysis at a significance level of 5%. The results demonstrated that all pastes provided diffusion of hydroxyl ions through the dentinal tubules. The combination of Aloe vera and CH (group CH/A) provided a constant release of calcium ions. Group CH/A/P showed the highest pH at 24 and 72 h. In conclusion, the experimental pastes containing Aloe vera were able to enable the diffusion of hydroxyl ions through the dentinal tubules.

  16. Probing Competitive and Co-operative Hydroxyl and Ammonium Hydrogen-Bonding Directed Epoxidations.

    PubMed

    Brambilla, Marta; Brennan, Méabh B; Csatayová, Kristína; Davies, Stephen G; Fletcher, Ai M; Kennett, Alice M R; Lee, James A; Roberts, Paul M; Russell, Angela J; Thomson, James E

    2017-10-06

    The diastereoselectivities and rates of epoxidation (upon treatment with Cl 3 CCO 2 H then m-CPBA) of a range of cis- and trans-4-aminocycloalk-2-en-1-ol derivatives (containing five-, six-, and seven-membered rings) have been investigated. In all cases where the two potential directing groups can promote epoxidation on opposite faces of the ring scaffold, evidence of competitive epoxidation pathways, promoted by hydrogen-bonding to either the in situ formed ammonium moiety or the hydroxyl group, was observed. In contrast to the relative directing group abilities already established for the six-membered ring system (NHBn ≫ OH > NBn 2 ), an N,N-dibenzylammonium moiety appeared more proficient than a hydroxyl group at directing the stereochemical course of the epoxidation reaction in a five- or seven-membered system. In the former case, this was rationalized by the drive to minimize torsional strain in the transition state being coupled with assistance from hydrogen-bonding to the ammonium moiety. In the latter case, this was ascribed to the steric bulk of the ammonium moiety disfavoring conformations in which hydrogen-bonding to the hydroxyl group results in direction of the epoxidation to the syn face. In cases where the two potential directing groups can promote epoxidation on the same face of the ring scaffold, an enhancement of epoxidation diastereoselectivity was not observed, while introduction of a second, allylic heteroatom to the substrate results in diminishment of the rate of epoxidation in all cases. Presumably, reduction of the nucleophilicity of the olefin by the second, inductively electron-withdrawing heteroatom is the dominant factor, and any assistance to the epoxidation reaction by the potential to form hydrogen-bonds to two directing groups rather than one is clearly unable to overwhelm it.

  17. Estimating abundance: Chapter 27

    USGS Publications Warehouse

    Royle, J. Andrew

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  18. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTEmore » analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.« less

  19. Hydroxyl Ion Diffusion through Radicular Dentine When Calcium Hydroxide Is Used under Different Conditions

    PubMed Central

    Cai, Michael; Castro Salgado, Jacqueline

    2018-01-01

    Calcium hydroxide’s anti-bacterial action relies on high pH. The aim here was to investigate hydroxyl ion diffusion through dentine under different conditions. Teeth were divided into control (n = 4) and four experimental groups (n = 10): Group 1—no medicament; Group 2—Calmix; Group 3—Calmix/Ledermix; Group 4—Calasept Plus/Ledermix; Group 5—Pulpdent/smear layer. Deep (inner dentine) and shallow (outer dentine) cavities were cut into each root. pH was measured in these cavities for 12 weeks. The inner and outer dentine pH in Group 2 was significantly higher than all groups. Inner dentine pH in Group 3 was slightly higher than that in Group 4 initially but subsequently comparable. After Day 2, Group 5 had significantly lower pH than Groups 3 and 4. The outer dentine pH in Group 3 started higher than that in Groups 4 and 5, but by Day 28 the difference was insignificant. The time for the inner dentine to reach maximum pH was one week for Group 2 and four weeks for Groups 3 and 4. The time for the outer dentine to reach maximum pH was eight weeks for all experimental groups. Mixing different Ca(OH)2 formulations with Ledermix gave similar hydroxyl ion release but pH and total diffusion was lower than Ca(OH)2 alone. The smear layer inhibited diffusion. PMID:29342093

  20. Rodlike Supramolecular Nanoassemblies of Degradable Poly(Aspartic Acid) Derivatives and Hydroxyl-Rich Polycations for Effective Delivery of Versatile Tumor-Suppressive ncRNAs.

    PubMed

    Song, Hai-Qing; Pan, Wenting; Li, Rui-Quan; Yu, Bingran; Liu, Wenjuan; Yang, Ming; Xu, Fu-Jian

    2018-03-01

    The delivery of tumor-suppressive noncoding RNAs (ncRNAs) including short ncRNAs (i.e., miRNAs) and long ncRNAs (lncRNAs) is put forward to treat tumors. In this work, novel rodlike supramolecular nanoassemblies (CNC @CB[8] @ PGEA) of degradable poly(aspartic acid) (PAsp) derivatives-grafted cellulose nanocrystals (CNCs) and hydroxyl-rich polycations (ethanolamine-functionalized poly(glycidyl methacrylate), PGEA) are proposed via typical cucurbit[8]uril (CB[8])-based host-guest interactions for delivery of different ncRNAs to treat hepatocellular carcinoma (HCC). Spindly CNCs, one kind of natural polysaccharide nanoparticles, possess good biocompatibility and unique physico-chemical properties. PGEA with abundant hydroxyl groups is one promising gene carrier with low cytotoxicity. PAsp can benefit the disassembly and degradability of nanoassemblies within cells. CNC @ CB[8]@PGEA combines the different unique properties of CNC, PGEA, and PAsp. CNC @ CB[8] @ PGEA effectively complexes the expression constructs of miR-101 (plasmid pc3.0-miR-101) and lncRNA MEG3 (plasmid pc3.0-MEG3). CNC @ CB[8] @ PGEA produces much better transfection performances than PGEA-containing assembly units. In addition, the codelivery system of CNC @ CB[8] @ PGEA/(pc3.0-MEG3+pc3.0-miR-101) nanocomplexes demonstrates better efficacy in suppressing HCC than CNC @ CB[8] @ PGEA/pc3.0-MEG3 or CNC @ CB[8] @ PGEA/pc3.0-miR-101 nanocomplexes alone. Such rodlike supramolecular nanoassemblies will provide a promising means to produce efficient delivery vectors of versatile tumor-suppressive nucleic acids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    PubMed Central

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  2. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  3. Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.

    PubMed

    Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang

    2017-04-01

    In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.

  4. Detection of adsorbed water and hydroxyl on the Moon.

    PubMed

    Clark, Roger N

    2009-10-23

    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  5. Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations

    NASA Technical Reports Server (NTRS)

    Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.

    1986-01-01

    The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.

  6. Steroid hydroxylation by basidiomycete peroxygenases: a combined experimental and computational study.

    PubMed

    Babot, Esteban D; Del Río, José C; Cañellas, Marina; Sancho, Ferran; Lucas, Fátima; Guallar, Víctor; Kalum, Lisbeth; Lund, Henrik; Gröbe, Glenn; Scheibner, Katrin; Ullrich, René; Hofrichter, Martin; Martínez, Angel T; Gutiérrez, Ana

    2015-06-15

    The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106-118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Steroid Hydroxylation by Basidiomycete Peroxygenases: a Combined Experimental and Computational Study

    PubMed Central

    Babot, Esteban D.; del Río, José C.; Cañellas, Marina; Sancho, Ferran; Lucas, Fátima; Guallar, Víctor; Kalum, Lisbeth; Lund, Henrik; Gröbe, Glenn; Scheibner, Katrin; Ullrich, René; Hofrichter, Martin; Martínez, Angel T.

    2015-01-01

    The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106–118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed. PMID:25862224

  8. Promotional effect of surface hydroxyls on electrochemical reduction of CO 2 over SnO x/Sn electrode

    DOE PAGES

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; ...

    2016-01-16

    In this study, tin oxide (SnO x) formation on tin-based electrode surfaces during CO 2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnO x in CO 2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnO x. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H 2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface.more » CO 2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO 3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H 2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H 2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO 2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnO x monolayer on the electrode under the operating conditions promotes CO 2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  9. Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans.

    PubMed

    Parshikov, Igor A; Muraleedharan, Kannoth M; Miriyala, Bruhaspathy; Avery, Mitchell A; Williamson, John S

    2004-09-01

    The microbial metabolism of 10-deoxoartemisinin (1), a derivative of the antimalarial drug artemisinin, was investigated. Various strains of fungi were investigated for their ability to transform 1. Of these microorganisms, only Cunninghamella elegans was capable of transforming 1 to 5beta-hydroxy-10-deoxoartemisinin (2), 4alpha-hydroxy-1,10-deoxoartemisinin (3), and 7beta-hydroxy-10-deoxoartemisinin (4). The metabolites 2 and 4 retained an intact peroxide group and are therefore useful scaffolds for synthetic modification in the search for new antimalarial agents.

  10. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  11. Lysine hydroxylation of collagen in a fibroblast cell culture system

    NASA Technical Reports Server (NTRS)

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  12. Hydroxylation of Benzene via CH Activation Using Bimetallic ...

    EPA Pesticide Factsheets

    A photoactive bimetallic CuAg@g-C3N4 catalyst system has been designed and synthesized by impregnating copper and silver nanoparticles over the graphitic carbon nitride surface. Its application has been demonstrated in the hydroxylation of benzene under visible light. Prepared for submission to American Chemical Society (ACS) journal, ACS Sustainable Chemistry & Engineering.

  13. Sulfur Dioxide Capture by Heterogeneous Oxidation on Hydroxylated Manganese Dioxide.

    PubMed

    Wu, Haodong; Cai, Weimin; Long, Mingce; Wang, Hairui; Wang, Zhiping; Chen, Chen; Hu, Xiaofang; Yu, Xiaojuan

    2016-06-07

    Here we demonstrate that sulfur dioxide (SO2) is efficiently captured via heterogeneous oxidation into sulfate on the surface of hydroxylated manganese dioxide (MnO2). Lab-scale activity tests in a fluidized bed reactor showed that the removal efficiency for a simulated flue gas containing 5000 mg·Nm(-3) SO2 could reach nearly 100% with a GHSV (gas hourly space velocity) of 10000 h(-1). The mechanism was investigated using a combination of experimental characterizations and theoretical calculations. It was found that formation of surface bound sulfate proceeds via association of SO2 with terminal hydroxyls. Both H2O and O2 are essential for the generation of reactive terminal hydroxyls, and the indirect role of O2 in heterogeneous SO2 oxidation at low temperature was also revealed. We propose that the high reactivity of terminal hydroxyls is attributed to the proper surface configuration of MnO2 to adsorb water with degenerate energies for associative and dissociative states, and maintain rapid proton dynamics. Viability analyses suggest that the desulfurization method that is based on such a direct oxidation reaction at the gas/solid interface represents a promising approach for SO2 capture.

  14. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  15. Methemoglobinemia Hemotoxicity of Some Antimalarial 8-Aminoquinoline Analogues and Their Hydroxylated Derivatives: Density Functional Theory Computation of Ionization Potentials.

    PubMed

    Ding, Yuanqing; Liu, Haining; Tekwani, Babu L; Nanayakkara, N P Dhammika; Khan, Ikhlas A; Walker, Larry A; Doerksen, Robert J

    2016-07-18

    The administration of primaquine (PQ), an essential drug for the treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose an electron) of the metabolites generated by antimalarial 8-aminoquinoline (8-AQ) drugs like PQ has been believed to be correlated in part to this methemoglobinemia hemotoxicity: the lower the IP of an 8-AQ derivative, the higher the concentration of methemoglobin generated. In this work, demethoxylated primaquine (AQ02) was employed as a model, by intensive computation at the B3LYP-SCRF(PCM)/6-311++G**//B3LYP/6-31G** level in water, to study the effects of hydroxylation at various positions on the ionization potential. Compared to the parent AQ02, the IPs of AQ02's metabolites hydroxylated at N1', C5, and C7 were lower by 61, 30, and 19 kJ/mol, respectively, while differences in the IP relative to PQ were small for hydroxylation at all other positions. The C6 position, at which the IP of the hydroxylated metabolite was greater than that of AQ02, by 2 kJ/mol, was found to be unique. Several literature and proposed 8-AQ analogues were studied to evaluate substituent effects on their potential to generate methemoglobin, with the finding that hydroxylations at N1' and C5 contribute the most to the potential hemotoxicity of PQ-based antimalarials, whereas hydroxylation at C7 has little effect. Phenoxylation at C5 in PQ-based 8-AQs can block the hydroxylation at C5 and reduce the potential for methemoglobin generation, while -CF3 and chlorines attached to the phenolic ring can further reduce the risk. The H-shift at N1' during the cationization of hydroxylated metabolites of 8-AQs sharply decreased their IPs, but this effect can be significantly reduced by the introduction of an electron-withdrawing group to the quinoline core. The results and this approach may be

  16. Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran, and Methoxyfuran.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W

    2017-06-15

    Reaction pathways are influenced by thermochemical properties, species stability, and chemical kinetics. Understanding these factors allows for an understanding of the reaction paths and formation of intermediate species. Enthalpies of formation (ΔH f,298 ° ), entropies (S 298 ° ), heat capacities (C p (T)), oxygen-hydrogen (O-H), oxygen-oxygen (O-O), and (R-O) bond dissociation energies (BDEs) are reported for hydroxyl and hydroperoxide substituted furan, methylfuran, and methoxyfuran species. Standard enthalpies of formation for parent and radical species have been determined using density functional theory B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), and M06-2X/6-31G(d,p) along with higher-level CBS-QB3 and CBS-APNO composite methods. Isodesmic work reactions were employed to improve accuracy by canceling error and show consistency between the levels of theory. Corresponding O-H and O-O BDEs are determined and compared to other similar structures. The stability of the furan moiety coupled with the double-bond-forming capability of the oxygen moiety results in a number of bond energies significantly lower than one might have expected. Substituted hydroperoxides are calculated to have ROO-H BDEs between 86.9 and 94.2 kcal mol -1 , and their RO-OH BDEs show a large 49 kcal mol -1 range of -2.3-46.8 kcal mol -1 . Substituted alcohols also show a wide 48 kcal mol -1 range with RO-H BDEs, ranging from 59.3 to 106.9 kcal mol -1 . Bond lengths of parent and radical species are presented to highlight potential bonds of interest leading to furan ring opening. Group additivity is discussed, and groups for substituted furan, methylfuran, and methoxyfuran species are derived. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the S 298 ° and C p (T) values.

  17. Unraveling the impact of hydroxylation on interactions of bile acid cationic lipids with model membranes by in-depth calorimetry studies.

    PubMed

    Singh, Manish; Bajaj, Avinash

    2014-09-28

    We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.

  18. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.

    PubMed

    Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N

    2003-12-10

    The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.

  19. Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues.

    PubMed

    Homan, Erica P; Lietman, Caressa; Grafe, Ingo; Lennington, Jennifer; Morello, Roy; Napierala, Dobrawa; Jiang, Ming-Ming; Munivez, Elda M; Dawson, Brian; Bertin, Terry K; Chen, Yuqing; Lua, Rhonald; Lichtarge, Olivier; Hicks, John; Weis, Mary Ann; Eyre, David; Lee, Brendan H L

    2014-01-01

    Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A) ). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity

  20. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    SciTech Connect

    Gill, Lance; Beste, Ariana; Chen, Banghao

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra

  1. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE PAGES

    Gill, Lance; Beste, Ariana; Chen, Banghao; ...

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra

  2. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety.

    PubMed

    Soukup, Ondrej; Dolezal, Rafael; Malinak, David; Marek, Jan; Salajkova, Sarka; Pasdiorova, Marketa; Honegr, Jan; Korabecny, Jan; Nachtigal, Petr; Nachon, Florian; Jun, Daniel; Kuca, Kamil

    2016-02-15

    In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  5. Twilight Intensity Variation of the Infrared Hydroxyl Airglow

    NASA Technical Reports Server (NTRS)

    Lowe, R. P.; Gilbert, K. L.; Niciejewski, R. J.

    1984-01-01

    The vibration rotation bands of the hydroxyl radical are the strongest features in the night airglow and are exceeded in intensity in the dayglow only by the infrared atmospheric bands of oxygen. The variation of intensity during evening twilight is discussed. Using a ground-based Fourier Transform Spectrometer (FTS), hydroxyl intensity measurements as early as 3 deg solar depression were made. Models of the twilight behavior show that this should be sufficient to provide measurement of the main portion of the twilight intensity change. The instrument was equipped with a liquid nitrogen-cooled germanium detector whose high sensitivity combined with the efficiency of the FTS technique permits spectra of the region 1.1 to 1.6 microns at high signal-to-noise to be obtained in two minutes. The use of a polarizer at the entrance aperture of the instrument reduces the intensity of scattered sunlight by a factor of at least ten for zenith observations.

  6. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities.

    PubMed

    Tehrani, Rouzbeh; Van Aken, Benoit

    2014-05-01

    Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence about the widespread dispersion of OH-PCBs in various compartments of the ecosystem has accumulated, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are, today, increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment.

  7. Novel denture-cleaning system based on hydroxyl radical disinfection.

    PubMed

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  8. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  9. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  10. Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680.

    PubMed

    Roh, Changhyun; Seo, Su-Hyun; Choi, Kwon-Young; Cha, Minho; Pandey, Bishnu Prasad; Kim, June-Hyung; Park, Jun-Seong; Kim, Duck Hee; Chang, Ih Seop; Kim, Byung-Gee

    2009-07-01

    Screening of bacterial whole cells was performed for regioselective hydroxylation of daidzein and genistein. Among the strains examined, Streptomyces avermitilis MA-4680 showed high ortho-dihydroxylation activity to produce 3',4',7-trihydroxyisoflavone and 3',4',5,7-tetrahydroxyisoflavone from daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone), respectively. Using 100 mg cells (wet wt.) and 1% (v/v) Triton X100 in 1 ml of total reaction volume, where 100 microl of the substrate solution (0.5 mM in 10% (v/v) mixed solvent of DMSO:MeOH = 3:7) was added to 900 microl of potassium phosphate buffer (100 mM, pH 7.2), a 16% molar conversion yield of 3',4',7-trihydroxyisoflavone was obtained from 0.5 mM daidzein after 24 h of reaction time at 28 degrees C and 200 rpm. Ketoconazole significantly (ca. 90%) inhibited the ortho-hydroxylation activity of daidzein, suggesting that cytochrome P450 enzymes putatively play roles in regiospecific daidzein hydroxylation. The analysis of the reaction products was determined by gas chromatography/mass spectrometry (GC/MS) and (1)H NMR.

  11. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  12. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    PubMed

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  13. Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics.

    PubMed

    Zhao, Shuang; Luo, Xian; Li, Liang

    2016-11-01

    . The majority of detected metabolites were those containing hydroxyl groups. This technique opens a new avenue for the detailed characterization of the hydroxyl submetabolome in metabolomics research.

  14. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?

    PubMed

    de Visser, Sam P; Tahsini, Laleh; Nam, Wonwoo

    2009-01-01

    The catalytic activity of high-valent iron-oxo active species of heme enzymes is known to be dependent on the nature of the axial ligand trans to the iron-oxo group. In a similar fashion, experimental studies on iron-oxo porphyrin biomimetic systems have shown a significant axial ligand effect on ethylbenzene hydroxylation, with an axial acetonitrile ligand leading to phenyl hydroxylation products and an axial chloride anion giving predominantly benzyl hydroxylation products. To elucidate the fundamental factors that distinguish this regioselectivity reversal in iron-oxo porphyrin catalysis, we have performed a series of density functional theory calculations on the hydroxylation of ethylbenzene by [Fe(IV)=O(Por(+.))L] (Por = porphyrin; L = NCCH(3) or Cl(-)), which affords 1-phenylethanol and p-ethylphenol products. The calculations confirm the experimentally determined product distributions. Furthermore, a detailed analysis of the electronic differences between the two oxidants shows that their reversed regioselectivity is a result of differences in orbital interactions between the axial ligand and iron-oxo porphyrin system. In particular, three high-lying orbitals (pi*(xz), pi*(yz) and a(2u)), which are singly occupied in the reactant complex, are stabilised with an anionic ligand such as Cl(-), which leads to enhanced HOMO-LUMO energy gaps. As a consequence, reactions leading to cationic intermediates through the two-electron reduction of the metal centre are disfavoured. The aliphatic hydroxylation mechanism, in contrast, is a radical process in which only one electron is transferred in the rate-determining transition state, which means that the effect of the axial ligand on this mechanism is much smaller.

  15. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers

    PubMed Central

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-01-01

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836

  16. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    PubMed

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  17. Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.

    2017-05-01

    The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.

  18. Surface structure and stability of partially hydroxylated silica surfaces

    DOE PAGES

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    2017-04-04

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  19. Determining the local origin of hydroxyl radical generation during phacoemulsification.

    PubMed

    Aust, Steven D; Terry, Scott; Hebdon, Thomas; Gunderson, Broc; Terry, Michael; Dimalanta, Ramon

    2011-06-01

    To determine the local origin of hydroxyl radicals during phacoemulsification using an ultrasonic phacoemulsification device that includes longitudinal and torsional modalities. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were conducted using the Infiniti Vision System and Ozil handpiece. Hydroxyl radical concentrations during longitudinal and torsional phacoemulsification were quantitated as malondialdehyde (MDA) determined spectrophotometrically using the deoxyribose assay. The difference between the total concentration found in the aspirated solution at steady-state concentrations and the pre-aspirate levels deductively determined the concentration of MDA formed along the interior of the sonicating tip. The time to reach 50% of steady state as a function of reaction vessel volume was determined. The mean maximum for torsional ultrasound at 100% amplitude was 7.70 nM ± 0.38 (SD), 91.1% of which was generated outside the tip. During longitudinal ultrasound at 100% power, MDA concentration in the aspirated solution was 29.5 ± 0.3 nM, 71.6% of which was generated outside the tip. The time (seconds) to reach 50% of maximum for longitudinal ultrasound using 5 mL, 10 mL, and 20 mL reaction vessels was 12.6 ± 1.5, 21.0 ± 1.5, and 25.3 ± 3.4, respectively. Although a significantly greater proportion of the hydroxyl radicals generated during ultrasound modality were formed outside the phaco tip (91.1% torsional; 71.6% longitudinal), torsional ultrasound generated only about one-fourth the amount of MDA as longitudinal ultrasound in total and about one-third that generated outside the tip (7.02 nM versus 21.1 nM). No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting

    PubMed Central

    Kiselar, Janna G.; Chance, Mark R.

    2010-01-01

    Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposures of proteins to a “white” x-ray beam for milliseconds provide sufficient oxidative modifications to surface amino acid side chains that can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular sub-domains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal to noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis driven

  1. Synthesis and evaluation of hydroxylated polyamine analogues as antiproliferatives.

    PubMed

    Bergeron, R J; Müller, R; Huang, G; McManis, J S; Algee, S E; Yao, H; Weimar, W R; Wiegand, J

    2001-07-19

    A new means of accessing N(1)-cyclopropylmethyl-N(11)-ethylnorspermine (CPMENSPM) and the first synthesis of (2R,10S)-N(1)-cyclopropylmethyl-2,10-dihydroxy-N(11)-ethylnorspermine [(2R,10S)-(HO)(2)CPMENSPM] are described. Both of these polyamine analogues are shown to be more active against L1210 murine leukemia cell growth than either N(1),N(11)-diethylnorspermine (DENSPM) or (2R,10R)-N(1),N(11)-diethyl-2,10-dihydroxynorspermine [(2R,10R)-(HO)(2)DENSPM] after 96 h of treatment; the activity was comparable to that of (2S,10S)-N(1),N(11)-diethyl-2,10-dihydroxynorspermine [(2S,10S)-(HO)(2)DENSPM] at 96 h. Both cyclopropyl compounds reduced putrescine and spermidine pools, but less effectively than did DENSPM and its derivatives. Only CPMENSPM, and not (2R,10S)-(HO)(2)CPMENSPM, lowered spermine pools. As with DENSPM and (2R,10R)-(HO)(2)DENSPM, both cyclopropyl analogues diminished ornithine decarboxylase and S-adenosylmethionine decarboxylase activity. Unlike the hydroxylated DENSPM compounds, both cyclopropyl norspermines substantially upregulated spermidine/spermine N(1)-acetyltransferase. The most interesting effect of hydroxylating CPMENSPM is the profound reduction in toxicity compared with that of the parent drug. The same phenomenon had been observed for the DENSPM/(2R,10R)-(HO)(2)DENSPM pair. Thus, hydroxylation of norspermine analogues appears to be a way to maintain the compounds' antiproliferative activity while reducing their toxicity.

  2. Photon stimulated desorption from oxidized Al(110). [Surface hydroxyls

    SciTech Connect

    Johnson, E.D.; Garrett, R.F.; Knotek, M.L.

    1987-01-01

    We have studied oxide films on Al(110) by photon stimulated desorption (PSD) on the Bell Labs U4 PGM at the National Synchrotron Light Source. Utilizing a time of flight technique we have obtained ion energy distribution (IED) and relative ion yield (RIY) data at the Al 2p and O 1s edges for oxides prepared at various temperatures. These initial studies suggest that different sites for the surface hydroxyls exist, that they can be selectively prepared, and examined by PSD. 15 refs., 9 figs.

  3. A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores

    PubMed Central

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-01-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix. PMID:27194462

  4. Ordered hydroxyls on Ca 3Ru 2O 7(001)

    SciTech Connect

    Halwidl, Daniel; Mayr-Schmölzer, Wernfried; Fobes, David

    As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is necessary to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca 3Ru 2O 7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH) ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygenmore » atom, O surf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.« less

  5. Hydroxyl Radical Modification of Collagen Type II Increases Its Arthritogenicity and Immunogenicity

    PubMed Central

    Shahab, Uzma; Ahmad, Saheem; Moinuddin; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif

    2012-01-01

    Background The oxidation of proteins by endogenously generated free radicals causes structural modifications in the molecules that lead to generation of neo-antigenic epitopes that have implications in various autoimmune disorders, including rheumatoid arthritis (RA). Collagen induced arthritis (CIA) in rodents (rats and mice) is an accepted experimental model for RA. Methodology/Principal Findings Hydroxyl radicals were generated by the Fenton reaction. Collagen type II (CII) was modified by •OH radical (CII-OH) and analysed by ultraviolet-visible (UV-VIS), fluorescence and circular dichroism (CD) spectroscopy. The immunogenicity of native and modified CII was checked in female Lewis rats and specificity of the induced antibodies was ascertained by enzyme linked immunosorbent assay (ELISA). The extent of CIA was evaluated by visual inspection. We also estimated the oxidative and inflammatory markers in the sera of immunized rats. A slight change in the triple helical structure of CII as well as fragmentation was observed after hydroxyl radical modification. The modified CII was found to be highly arthritogenic and immunogenic as compared to the native form. The CII-OH immunized rats exhibited increased oxidative stress and inflammation as compared to the CII immunized rats in the control group. Conclusions/Significance Neo-antigenic epitopes were generated on •OH modified CII which rendered it highly immunogenic and arthritogenic as compared to the unmodified form. Since the rodent CIA model shares many features with human RA, these results illuminate the role of free radicals in human RA. PMID:22319617

  6. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants’ teeth against herbivores

    NASA Astrophysics Data System (ADS)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-05-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.

  7. Ordered hydroxyls on Ca 3Ru 2O 7(001)

    DOE PAGES

    Halwidl, Daniel; Mayr-Schmölzer, Wernfried; Fobes, David; ...

    2017-06-20

    As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is necessary to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca 3Ru 2O 7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH) ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygenmore » atom, O surf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.« less

  8. Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo.

    PubMed

    Chen, Chiu-Lan; Chi, Chin-Wen; Liu, Tsung-Yun

    2002-02-01

    Chewing areca quid (AQ) has been implicated as a major risk factor for the development of oral squamous-cell carcinoma (OSCC). Recent studies have suggested that AQ-generated reactive oxygen species (ROS) is one of the contributing factors for oral carcinogenesis. However, the AQ used in Taiwan is different from that used in other countries. This study is designed to test whether ROS are generated and the consequent effects in locally prepared AQ in vivo. We measured the hydroxyl radical formation, as represented by the presence of o- and m-tyrosine in saliva from volunteers who chewed AQ containing 20 mg phenylalanine. Their saliva contained significantly higher amounts (p < .05) of o- and m-tyrosine as compared to the controls. In addition, chewing AQ containing Piper betle inflorescence generated higher amounts of m-tyrosine, but not o-tyrosine, in saliva than did chewing AQ containing betel leaf. We further tested the oxidative DNA damaging effect of the reconstituted AQ, as evidenced by the elevation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels, in hamster buccal pouch. Following daily painting for 14 d, the 8-OH-dG level in hamster buccal pouch is significantly elevated (p < .05) in the AQ-treated group versus the controls. These findings demonstrate that ROS, such as hydroxyl radical, are formed in the human oral cavity during AQ chewing, and chewing such prepared AQ might cause oxidative DNA damage to the surrounding tissues.

  9. Improved Stability of Proline-Derived Direct Thrombin Inhibitors through Hydroxyl to Heterocycle Replacement.

    PubMed

    Chobanian, Harry R; Pio, Barbara; Guo, Yan; Shen, Hong; Huffman, Mark A; Madeira, Maria; Salituro, Gino; Terebetski, Jenna L; Ormes, James; Jochnowitz, Nina; Hoos, Lizbeth; Zhou, Yuchen; Lewis, Dale; Hawes, Brian; Mitnaul, Lyndon; O'Neill, Kim; Ellsworth, Kenneth; Wang, Liangsu; Biftu, Tesfaye; Duffy, Joseph L

    2015-05-14

    Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

  10. Clustering in the stellar abundance space

    NASA Astrophysics Data System (ADS)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  11. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  12. Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds.

    PubMed

    Baschieri, Andrea; Pulvirenti, Luana; Muccilli, Vera; Amorati, Riccardo; Tringali, Corrado

    2017-07-26

    Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (k inh ) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the k inh value, being 2.4 × 10 5 M -1 s -1 and 3.3 × 10 5 M -1 s -1 for the mono and the dihydroxy derivatives respectively (k inh of magnolol is 6.1 × 10 4 M -1 s -1 ). The di-methoxylated derivative is less reactive than magnolol (k inh = 1.1 × 10 4 M -1 s -1 ), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 10 4 M -1 s -1 ). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.

  13. Twilight of Abundance

    NASA Astrophysics Data System (ADS)

    Archibald, David

    2014-03-01

    Baby boomers enjoyed the most benign period in human history: fifty years of relative peace, cheap energy, plentiful grain supply, and a warming climate due to the highest solar activity for 8,000 years. The party is over - prepare for the twilight of abundance. David Archibald reveals the grim future the world faces on its current trajectory: massive fuel shortages, the bloodiest warfare in human history, a global starvation crisis, and a rapidly cooling planet. Archibald combines pioneering science with keen economic knowledge to predict the global disasters that could destroy civilization as we know it - disasters that are waiting just around the corner. But there's good news, too: We can have a good future if we prepare for it. Advanced, civilized countries can have a permanently high standard of living if they choose to invest in the technologies that will get them there. Archibald, a climate scientist as well as an inventor and a financial specialist, explains which scientific breakthroughs can save civilization in the coming crisis - if we can cut through the special interest opposition to these innovations and allow free markets to flourish.

  14. Hydroxylated Polychlorinated Biphenyls in the Environment: Sources, Fate, and Toxicities

    PubMed Central

    Tehrani, Rouzbeh; Van Aken, Benoit

    2013-01-01

    Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence has accumulated about the widespread dispersion of OH-PCBs in various compartments of the ecosystem, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are today increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment. PMID:23636595

  15. Formation of Hydroxylamine from Ammonia and Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Zins, Emilie-Laure

    2014-06-01

    In the interstellar medium, as well as in icy comets, ammonia may be a crucial species in the first step toward the formation of amino-acids and other prebiotic molecules such as hydroxylamine (NH2OH). It is worth to notice that the NH3/H2 ratio in the ISM is 3 10-5 compared the H2O/H2 one which is only 7 10-5. Using either electron-UV irradiations of water-ammonia ices or successive hydrogenation of solid nitric oxide, laboratory experiments have already shown the feasibility of reactions that may take place on the surface of ice grains in molecular clouds, and may lead to the formation of this precursor. Herein is proposed a new reaction pathway involving ammonia and hydroxyl radicals generated in a microwave discharge. Experimental studies, at 3 and 10 K, in solid phase as well as in neon matrix have shown that this reaction proceed via a hydrogen abstraction, leading to the formation of NH2 radical, that further recombine with hydroxyl radical to form hydroxylamine, under non-energetic conditions.

  16. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity.

    PubMed

    Kolet, Swati P; Haldar, Saikat; Niloferjahan, Siddiqui; Thulasiram, Hirekodathakallu V

    2014-07-01

    Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation.

    PubMed

    Rose, K; Allan, A; Gauldie, S; Stapleton, G; Dobbie, L; Dott, K; Martin, C; Wang, L; Hedlund, E; Seckl, J R; Gustafsson, J A; Lathe, R

    2001-06-29

    The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.

  18. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  19. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    SciTech Connect

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli

    Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, formingmore » a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance

  20. A Fast and Effective Pyridine-Free Method for the Determination of Hydroxyl Value of Hydroxyl-Terminated Polybutadiene and Other Hydroxy Compounds

    NASA Astrophysics Data System (ADS)

    Alex, Ancy Smitha; Kumar, Vijendra; Sekkar, V.; Bandyopadhyay, G. G.

    2017-07-01

    Hydroxyl-terminated polybutadiene (HTPB) is the workhorse propellant binder for launch vehicle and missile applications. Accurate determination of the hydroxyl value (OHV) of HTPB is crucial for tailoring the ultimate mechanical and ballistic properties of the propellant derived. This article describes a fast and effective methodology free of pyridine based on acetic anhydride, N-methyl imidazole, and toluene for the determination of OHV of nonpolar polymers like HTPB and other hydroxyl compounds. This method gives accurate and reproducible results comparable to standard methods and is superior to existing methods in terms of user friendliness, efficiency, and time requirement.

  1. Iridium-catalyzed Arene ortho-Silylation by Formal Hydroxyl-directed C-H Activation

    PubMed Central

    Simmons, Eric M.; Hartwig, John F.

    2010-01-01

    A strategy for the ortho-silylation of aryl ketone, benzaldehyde and benzyl alcohol derivatives has been developed in which a hydroxyl group formally serves as the directing element for Ir-catalyzed arene C-H bond activation. One-pot generation of a (hydrido)silyl ether from the carbonyl compound or alcohol is followed by dehydrogenative cyclization at 80–100 °C in the presence of norbornene as hydrogen acceptor and the combination of 1 mol % [Ir(cod)OMe]2 and 1,10-phenanthroline as catalyst to form benzoxasiloles. The synthetic utility of the benzoxasilole products is demonstrated by conversion to phenol or biaryl derivatives by Tamao-Fleming oxidation or Hiyama cross-coupling. Both of these transformations of the C-H silylation products exploit the Si-O bond in the system and proceed by activation of the silyl moiety with hydroxide, rather than fluoride. PMID:21077625

  2. Indirect Estimation of Tropospheric and Stratospheric Hydroxyl Radical Concentration

    NASA Astrophysics Data System (ADS)

    Li, M.; Williams, J.

    2017-12-01

    Hydroxyl radical (OH) react with many gasous compounds in the atmosphere and is regarded as the cleanser of our atmosphere and affect human health, air quality and climate. Mean age of air, which means the average transit time since an air parcel is emitted from earth surface until sampled, is derived from SF6 based on aircraft observations in mid-latitude UTLS region. The domain loss of methyl chloride and methane is the removal by OH, thus using pseudo first order reaction the OH concentration is calculated against mean age. A tropospheric mean OH concentration is calculated in the range of (4 8)*10^5 molecules cm-3 and a stratospheric mean OH concentration is around (3 5)*10^5 molecules cm-3.

  3. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    PubMed Central

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  4. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Schoonen, Martin A.

    2017-06-01

    The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and

  5. Oxygen abundances in halo stars

    NASA Astrophysics Data System (ADS)

    Bessell, Michael S.; Sutherland, Ralph S.; Ruan, Kui

    1991-12-01

    The present study determines the oxygen abundance for a sample of metal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A and the permitted high-excitation far-red O I triple. The oxygen abundances determined from the low-excitation OH lines are up to 0.55 dex lower than those measured from the high-excitation O I lines. The abundances for the far-red O I triplet lines agree with those rederived from Abia and Rebolo (1989), and the abundances from the OH lines in dwarfs and giants are in agreement with the rederived O abundances of Barbuy (1988) and others from the forbidden resonance O I line. Because the chi = 0.1.7 eV OH lines are formed in the same layers as the majority of Fe, Ti, and other neutral metal lines used for abundance analyses, it is argued that the OH lines and the forbidden O I line yield the true oxygen abundances relative to the metals.

  6. Effects of B group vitamins on reactions of various alpha-hydroxyl-containing organic radicals.

    PubMed

    Lagutin, P Yu; Shadyro, O I

    2005-08-15

    Effects of vitamins B1, B2, B6, and pyridoxal phosphate (PPh) on final product formation in radiolysis of aqueous solutions of ethanol, ethylene glycol, alpha-methylglycoside, and maltose were studied. It has been found that vitamin B2 and PPh effectively oxidize R*CHOH species, while suppressing their recombination and fragmentation reactions, thereby increasing the yields of the respective oxidation products. Vitamins B1 and B2 are capable of reducing alcohol radicals to the respective initial molecules, decreasing the yields of the radical transformation products.

  7. Exploring the relative reactivities of the hydroxyl groups of monosaccharides by molecular modeling and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Box, V. G. S.; Evans-Lora, T.

    2000-01-01

    The molecular modeling program STR3DI.EXE, and its molecular mechanics module, QVBMM, were used to simulate, and evaluate, the stereo-electronic effects in the mono-alkoxides of the 4,6- O-ethylideneglycopyranosides of allose, mannose, galactose and glucose. This study has confirmed the ability of these molecular modeling tools to predict the regiochemistry and reactivity of these sugar derivatives, and holds considerable implications for unraveling the chemistry of the rare monosaccharides.

  8. On-Going Laboratory Efforts to Quantitatively Address Clay Abundance on Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2012-01-01

    Data obtained at visible and near-infrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al-OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. In order to constrain the abundances of these phyllosilicates spectral analyses of mixtures are needed. We report on our on-going effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/hydroxylated silicates with each other and with two analogs for other martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al- rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 µm. As the second phase of our effort we used scanning electron microscopy imaging and x-ray diffraction to characterize the grain size distribution, and structural nature, respectively, of the mixtures. Visible and near-infrared reflectance spectra of the 63-90 micrometers grain size of the mixture samples are shown in Figure 1. We discuss the results of our measurements of these mixtures.

  9. Hydroxyl Impurities Enhance Radiative Transfer in the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.

    2002-12-01

    Modelling radiative heat transfer is essential to geodynamics because the increase of the diffusive radiative thermal conductivity (krdf) with temperature promotes stability through feedback (Dubuffet et al., 2002, Nonlinear Proc. Geophys., 9: 1-13). Measuring krdf is virtually impossible, and therefore krdf is calculated from spectroscopic measurements. Previous efforts show that Fe2+ impurities in olivine engender radiative transfer when luminous emissions of "hot" grains are absorbed by slightly cooler nearest-neighbor grains. Hydroxyl impurities provide a similar mechanism of emission/absorption. Hydroxyl is important to radiative transfer because (1) OH absorptions are located in the transparent gap between the lattice modes and the Fe2+ transitions (2) small amounts of OH produce intense absorptions, (3) the specific frequencies enable transfer at lower temperatures than is possible with Fe transitions, i.e. even in the cold interiors of slabs, and (4) OH is preferentially located in mineral phases such as garnet and wadsleyite, whereas Fe contents are distributed more or less uniformly. The effect of changing OH concentration on krdf is explored using forsteritic olivine to represent mantle material. Polarized (absorption and reflection) spectroscopic measurements from 77 to 623 K show that the changes in frequency, width, and intensity of the OH bands are small, and that peak area is constant. This allows the effect of OH to be treated independently of temperature. However, OH content and grain size (d) cannot be separated, because the strength of the emissions within a self-emitting medium depends on d. For d = 3 mm, concentrations below 200 H/10{6) Si atoms contribute negligibly to radiative transfer. With low OH contents krdf increases, whereas above ca 1000 H /106 Si, krdf is inverse with concentration. The maxima for krdf depends on d and OH content. Kimberlite samples suggest that the upper mantle has evolved to towards conditions which maximize krdf

  10. Efficient Production of Hydroxylated Human-Like Collagen Via the Co-Expression of Three Key Genes in Escherichia coli Origami (DE3).

    PubMed

    Tang, Yunping; Yang, Xiuliang; Hang, Baojian; Li, Jiangtao; Huang, Lei; Huang, Feng; Xu, Zhinan

    2016-04-01

    Mature collagen is abundant in human bodies and very valuable for a range of industrial and medical applications. The biosynthesis of mature collagen requires post-translational modifications to increase the stability of collagen triple helix structure. By co-expressing the human-like collagen (HLC) gene with human prolyl 4-hydroxylase (P4H) and D-arabinono-1, 4-lactone oxidase (ALO) in Escherichia coli, we have constructed a prokaryotic expression system to produce the hydroxylated HLC. Then, five different media, as well as the induction conditions were investigated with regard to the soluble expression of such protein. The results indicated that the highest soluble expression level of target HLC obtained in shaking flasks was 49.55 ± 0.36 mg/L, when recombinant cells were grew in MBL medium and induced by 0.1 mM IPTG at the middle stage of exponential growth phase. By adopting the glucose feeding strategy, the expression level of target HLC can be improved up to 260 mg/L in a 10 L bench-top fermentor. Further, HPLC analyses revealed that more than 10 % of proline residues in purified HLC were successfully hydroxylated. The present work has provided a solid base for the large-scale production of hydroxylated HLC in E. coli.

  11. Stereoselectivity of the arene epoxide pathway of mephenytoin hydroxylation in man.

    PubMed

    Küpfer, A; Lawson, J; Branch, R A

    1984-02-01

    Stereoselective metabolism of mephenytoin has been investigated in four normal subjects by comparing urinary recoveries of hydroxylated metabolites after administration of racemic RS-mephenytoin (1.4 mmol/day) and R-mephenytoin (0.7 mmol/day) on separate occasions. Gas chromatography-mass spectrometry was employed to measure the urinary recovery of 3-methyl-5-(4-hydroxyphenyl)-5-ethylhydantoin (4-OH-M) and mephenytoin catechol, methylcatechol, and dihydrodiol metabolites. Following a single oral dose of racemic mephenytoin, 4-OH-M, mephenytoin catechol, and methylcatechol metabolites were identified in urine mainly as conjugates, whereas the dihydrodiol metabolite was recovered mainly in its unconjugated form. Urinary elimination of each metabolite was similar on days 1 and 10 of chronic racemic mephenytoin administration. Following R-mephenytoin administration, urinary recoveries of hydroxylated metabolites were five to 10 times smaller than after administration of the racemic drug. This implies substrate-stereoselective hydroxylation of the S-enantiomer of mephenytoin. In one subject with a genetic deficiency of aromatic mephenytoin hydroxylation deficiency, the excretion of each hydroxylated mephenytoin metabolite after RS-mephenytoin administration was decreased to 5-15% of the values found in the four extensively hydroxylating study volunteers. The impaired formation of hydroxylated mephenytoin metabolites in genetic hydroxylation deficiency, in conjunction with stereoselective hydroxylation of S-mephenytoin via an extensive NIH shift in normal man, is consistent with the hypothesis that the formation of the S-mephenytoin arene oxide is under genetic control and represents the initial enzymatic reaction of stereoselective aromatic mephenytoin hydroxylation. The formation of this potentially reactive metabolite of S-mephenytoin may have implications in mephenytoin-induced toxicity.

  12. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  13. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion

  14. Production of hydroxyl radical by redox active flavonoids

    SciTech Connect

    Kalyanaraman, B.; Hodnick, W.F.; Pardini, R.S.

    1986-05-01

    The authors have previously shown that flavonoids autoxidize and generate superoxide (O/sub 2//sup -/) and hydrogen peroxide (H/sub 2/O/sub 2/), suggesting that hydroxyl radical (OH) could be formed via the metal-ion catalyzed Haber-Weiss reaction. In the presence of ethylenediamine tetraacetic acid (EDTA) and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), myricetin, quercetagetin and quercetin gave an ESR signal for the DMPO-OH spin adduct, and the DMPO-Eto adduct in the presence of excess ethanol, indicating the production of free OH. The addition of FeCl/sub 3/ to the reaction mixture resulted in a dramatic increase in the DMPO-OH signal. Without chelator (EDTA) there was no signal andmore » the presence of diethylenetriamine-pentaacetic acid (DETAPAC) greatly diminished the signal. The presence of superoxide dismutase (SOD) had no effect on the signal while catalase completely abrogated the signal. The addition of Fe (III)-EDTA to flavonoid solutions under anaerobic conditions produced time dependent auxochromic shifts in their absorption spectra and resulted in the reduction of Fe (III) to Fe (II). These data suggest that the flavonoids autoxidize to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/ by dismutation and in the presence of Fe (III)-EDTA the flavonoid can directly reduce the Fe (III) to Fe (II) resulting in the production of OH through Fenton chemistry.« less

  15. Non-hydroxyl radical mediated photochemical processes for dye degradation.

    PubMed

    Liu, Xitong; Song, Xiaojie; Zhang, Shujuan; Wang, Mengshu; Pan, Bingcai

    2014-04-28

    Using solar energy for the decontamination of wastewater is a promising solution to the water-energy nexus. Current advanced oxidation processes have an unsatisfactory efficiency in the treatment of dye wastewater due to the non-selectivity of hydroxyl radicals. More efficient photochemical approaches for dye degradation are highly needed. Three diketones, biacetyl, acetylacetone, and acetonylacetone, were proven to be potent activators for the photodecoloration of azo, triarylmethane and anthraquinone dyes. The photodegradation kinetics of Acid Orange 7 in the UV/diketone processes was much faster than that in the UV/H2O2 system. Photo-induced energy and electron transfer were possible mechanisms for dye degradation in the diketone systems. Adducts of dye and acetylacetone were identified, indicating a unique dye degradation route through adduct formation and decomposition. Unlike acting only as the target substrate of ˙OH in advanced oxidation processes, the dyes played vital roles in the UV/diketone processes. The findings here provide new insights for designing more efficient technologies for environmental remediation, based on diketone photochemistry.

  16. Vacuum ultraviolet photoionization cross section of the hydroxyl radical.

    PubMed

    Dodson, Leah G; Savee, John D; Gozem, Samer; Shen, Linhan; Krylov, Anna I; Taatjes, Craig A; Osborn, David L; Okumura, Mitchio

    2018-05-14

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O( 1 D) + H 2 O in a flow reactor in He at 8 Torr. The initial O( 1 D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O( 3 P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O( 3 P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O( 3 P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

  17. Vacuum ultraviolet photoionization cross section of the hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Dodson, Leah G.; Savee, John D.; Gozem, Samer; Shen, Linhan; Krylov, Anna I.; Taatjes, Craig A.; Osborn, David L.; Okumura, Mitchio

    2018-05-01

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O(1D) + H2O in a flow reactor in He at 8 Torr. The initial O(1D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O(3P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O(3P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O(3P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

  18. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.

  19. Hydroxylation of D-phenylalanine as a novel approach to detect hydroxyl radicals: application to cardiac pathophysiology.

    PubMed

    Biondi, Roberto; Ambrosio, Giuseppe; Liebgott, Tibaud; Cardounel, Arturo J; Bettini, Marco; Tritto, Isabella; Zweier, Jay L

    2006-07-15

    Research in the pathophysiology of ischemia/reperfusion or redox signaling is hindered by lack of simple methodology to measure short-lived oxygen radicals. In the presence of hydroxyl radical ((*)OH), d-phenylalanine (d-Phe) yields para-, meta- and ortho-tyrosine. We have previously demonstrated that d-Phe can accurately detect (*)OH formation in chemical, enzymatic and cellular systems by simple HPLC methodology [Anal Biochem 290:138;2001]. In the present study, we tested whether d-Phe hydroxylation can be used to detect (*)OH formation in intact organs. Rat hearts were perfused with buffer containing 5 mM d-Phe and subjected to 30 min of total global ischemia at 37 degrees C followed by 45 min of reperfusion. Quantitative analysis of the three hydroxytyrosine isomers was achieved by HPLC-based electrochemical detection of cardiac venous effluent, with the analytical cells operating in the oxidative mode. The detection limit of this assay was <10 fmol. Under baseline conditions, hydroxytyrosine release from the heart was very low ( congruent with0.8 nmol/min/g). However, a prominent tyrosine burst occurred immediately upon post-ischemic reflow. In cardiac effluent collected 40 s into reperfusion, the hydroxytyrosine concentration was more than 40 times greater than at baseline; hydroxytyrosine concentration then progressively declined, to return to pre-ischemic values by 5 min of reperfusion. In parallel experiments, formation of hydroxytyrosines was markedly reduced in hearts reperfused in the presence of the (*)OH scavenger mannitol. Inclusion of 5 mm d-Phe in the perfusion medium altered neither basal cardiac function nor coronary vascular tone, but it enhanced recovery of myocardial function during post-ischemic reperfusion, consistent with direct reaction with (*)OH. Our results demonstrate that d-Phe is a sensitive method for detection of (*)OH generation in the heart. Since d-Phe is not a substrate for endogenous enzymes, it can be exploited as a reliable

  20. Synthetic tripodal receptors for carbohydrates. Pyrrole, a hydrogen bonding partner for saccharidic hydroxyls.

    PubMed

    Francesconi, Oscar; Gentili, Matteo; Roelens, Stefano

    2012-09-07

    The carbohydrate recognition properties of synthetic tripodal receptors relying on H-bonding interactions have highlighted the crucial role played by the functional groups matching saccharidic hydroxyls. Herein, pyrrole and pyridine, which emerged as two of the most effective H-bonding groups, were quantitatively compared through their isostructural substitution within the architecture of a shape-persistent bicyclic cage receptor. NMR and ITC binding studies gave for the pyrrolic receptor a 20-fold larger affinity toward octyl-β-d-glucopyranoside in CDCl(3), demonstrating the superior recognition properties of pyrrole under conditions in which differences would depend on the intrinsic binding ability of the two groups. The three-dimensional structures of the two glucoside complexes in solution were elucidated by combined NMR and molecular mechanics computational techniques, showing that the origin of the stability difference between the two closely similar complex structures resides in the ability of pyrrole to establish shorter/stronger H-bonds with the glucosidic ligand compared to pyridine.

  1. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China.

    PubMed

    Ma, Shengtao; Ren, Guofa; Zeng, Xiangying; Yu, Zhiqiang; Sheng, Guoying; Fu, Jiamo

    2017-05-05

    A number of studies have reported on the exposure of e-waste dismantling workers to significantly high concentrations of halogenated organic pollutants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers. Such exposure can have adverse health effects. However, little information on the metabolites of these contaminants exists. In this study, we investigated PCBs levels and their hydroxylated metabolites (OH-PCB) in the serum of e-waste workers in Taizhou in eastern China. Our results indicate elevated PCB and OH-PCB levels in the serum of the workers, with medians of 443.7 and 133.9 ng/g lw, respectively. Tri- to hexachlorinated PCB congeners were the dominant homologue groups in all of the samples. 4-OH-CB107 was the predominant homologue among the hydroxylated metabolites, accounting for 88.9% of the total OH-PCB concentrations. While dietary sources (e.g., fish) appear to be an important route for PCB accumulation in non-occupational exposure groups, exposure via ingestion of house dust and inhalation of pollutants derived from the recycling of PCB-containing e-wastes may primarily contribute to the high body burden observed in the occupational groups. Since we found concentrations of metabolites higher than those of their parent compounds, further studies need to pay more attention to their bioaccumulation and toxicity.

  2. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

    PubMed

    Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

    2008-07-01

    Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

  3. Abundances in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  4. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure.

    PubMed

    Henderson, Peter A; Magurran, Anne E

    2010-05-22

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.

  5. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388

  6. Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil.

    PubMed

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B; Juhler, René K; Aamand, Jens

    2005-12-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N'-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N'-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N'-methylurea, which is the product resulting from combined N demethylation and hydroxylation.

  7. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural Soil

    PubMed Central

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B.; Juhler, René K.; Aamand, Jens

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N′,N′-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N′-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N′-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′-methylurea, which is the product resulting from combined N demethylation and hydroxylation. PMID:16332769

  8. Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals.

    PubMed

    Aharoni, Noa; Mamane, Hadas; Biran, Dvora; Lakretz, Anat; Ron, Eliora Z

    2018-05-01

    Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H 2 O 2 ) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H 2 O 2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H 2 O 2 as compared to UV or H 2 O 2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  10. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid

    PubMed Central

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-01-01

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188

  11. CYP2E1 hydroxylation of aniline involves negative cooperativity.

    PubMed

    Hartman, Jessica H; Knott, Katie; Miller, Grover P

    2014-02-01

    CYP2E1 plays a role in the metabolic activation and elimination of aniline, yet there are conflicting reports on its mechanism of action, and hence relevance, in aniline metabolism. Based on our work with similar compounds, we hypothesized that aniline binds two CYP2E1 sites during metabolism resulting in cooperative reaction kinetics and tested this hypothesis through rigorous in vitro studies. The kinetic profile for recombinant CYP2E1 demonstrated significant negative cooperativity based on a fit of data to the Hill equation (n=0.56). Mechanistically, the data were best explained through a two-binding site cooperative model in which aniline binds with high affinity (K(s)=30 μM) followed by a second weaker binding event (K(ss)=1100 uM) resulting in a threefold increase in the oxidation rate. Binding sites for aniline were confirmed by inhibition studies with 4-methylpyrazole. Inhibitor phenotyping experiments with human liver microsomes validated the central role for CYP2E1 in aniline hydroxylation and indicated minor roles for CYP2A6 and CYP2C9. Importantly, inhibition of minor metabolic pathways resulted in a kinetic profile for microsomal CYP2E1 that replicated the preferred mechanism and parameters observed with the recombinant enzyme. Scaled modeling of in vitro CYP2E1 metabolism of aniline to in vivo clearance, especially at low aniline levels, led to significant deviations from the traditional model based on non-cooperative, Michaelis-Menten kinetics. These findings provide a critical mechanistic perspective on the potential importance of CYP2E1 in the metabolic activation and elimination of aniline as well as the first experimental evidence of a negatively cooperative metabolic reaction catalyzed by CYP2E1. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. [Spectral diagnosis of hydroxyl radical in multiphase pulsed discharge system].

    PubMed

    Wang, Hui-juan; Li, Jie; Quan, Xie; Wu, Yan; Li, Guo-feng

    2007-12-01

    A gas-liquid hybrid pulsed discharge system with a multi-needle-to-plate electrode geometry was used in the present study. A multiphase (gas-liquid-solid) pulsed discharge system was then formed by adding glasses beads immobilized with TiO2 photocatalyst into the discharge system. In the present paper, ultraviolet light produced during the pulsed discharge process was used as the lamp-house to induce the photocatalytic activity of the TiO2 photocatalyst. The synergistic effect of pulsed discharge and TiO2 photocatalysis was reviewed by the spectral diagnosis of hydroxyl radical ( *OH) in the pulsed discharge system. The obtained results showed that the emission spectrum of *OH could be observed at 306 nm (A2Sigma+-->X2II), 309 mn (A2Sigma+ (v' = 0) --> X2II (v" = 0)) and 313 nm (A2Sigma+ (v' = 1) --> X2II (v" = 1) transition). The relative emission intensity of *OH at 313 nm in the discharge system was the strongest among the three characteristic spectra. The relative emission intensity of *OH at 313 nm was stronger by adding TiO2 photocatalyst into the pulsed discharge system than that in the sole pulsed discharge system. In the case of experiments that changing the gas bubbling varieties and initial solution pH values, the results revealed that the relative emission intensity of *OH at 313 nm in the synergistic system was stronger when Ar was used as bubbling gas compared with that when air and oxygen were bubbled into the reaction system. Furthermore, the acidic solution system was favorable for producing more *OH, and therefore the corresponding emission intensity of *OH at 313 nm was stronger than that in the neutral and basic solution.

  13. Ocular biocompatibility evaluation of hydroxyl-functionalized graphene.

    PubMed

    Lin, Mimi; Zou, Ruitao; Shi, Haiyan; Yu, Shanshan; Li, Xiaojian; Guo, Rui; Yan, Lu; Li, Guoxing; Liu, Yong; Dai, Liming

    2015-05-01

    We have presented our recent efforts on genotoxicity and intraocular biocompatibility of hydroxylated graphene (G-OH) prepared by ball milling. We have previously demonstrated that the as-synthesized G-OH could be considered as an excellent alternative for graphene oxide which had been applied widely. Following our last report on G-OH, we carried out detailed studies on genotoxicity and in vivo biocompatibility of G-OH in this work. Less than 5% enhanced caspase-3 level was observed for cells exposed to more than 50 μg/mL G-OH over 72 h, suggesting G-OH caused cell apoptosis was slight. The G-OH induced DNA damage was also found to be mild since expression of p53 and ROS regeneration level was quite low even at high concentration of G-OH over a long time. Cell viability was found to be higher than 90% with 50 μg/mL G-OH and 80% with 100 μg/mL G-OH using flow cytometry. Comet results suggested that less than 5% tail could be found with 100 μg/mL G-OH. TEM results confirmed that G-OH could penetrate into and out of the cytoplasm by means of endocytosis and exocytosis without causing damage on cell membranes. In vivo biocompatibility of G-OH was studied by intravitreal injection of G-OH into rabbits. The ocular fundus photography results showed that G-OH could be diffused in the vitreous body gradually without any damage caused. Injection of G-OH had caused few damages on eyesight related functions such as intraocular pressure, electroretinogram and histological structures of the retina. Copyright © 2015. Published by Elsevier B.V.

  14. Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.

    PubMed

    Hao, Yumeng; Bohon, Jen; Hulscher, Ryan; Rappé, Mollie C; Gupta, Sayan; Adilakshmi, Tadepalli; Woodson, Sarah A

    2018-06-01

    RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  15. Interstellar abundances - Gas and dust

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1974-01-01

    Data on abundances of interstellar atoms, ions and molecules in front of zeta Oph are assembled and analyzed. The gas-phase abundances of at least 11 heavy elements are significantly lower, relative to hydrogen, than in the solar system. The abundance deficiencies of certain elements correlate with the temperatures derived theoretically for particle condensation in stellar atmospheres or nebulae, suggesting that these elements have condensed into dust grains near stars. There is evidence that other elements have accreted onto such grains after their arrival in interstellar space. The extinction spectrum of zeta Oph can be explained qualitatively and, to a degree, quantitatively by dust grains composed of silicates, graphite, silicon carbide, and iron, with mantles composed of complex molecules of H, C, N, and O. This composition is consistent with the observed gas-phase deficiencies.

  16. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  17. Coronal Abundances and Their Variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1996-01-01

    This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.

  18. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  19. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    NASA Astrophysics Data System (ADS)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  20. Determination of hydroxylated fatty acids from the biopolymer of tomato cutin and their fate during incubation in soil.

    PubMed

    Hauff, Simone; Chefetz, Benny; Shechter, Michal; Vetter, Walter

    2010-01-01

    The plant cuticle is a thin, predominantly lipid layer that covers all primary aerial surfaces of vascular plants. The monomeric building blocks of the cutin biopolymer are mainly ω-hydroxy fatty acids. Analysis of ω-hydroxy fatty acids from cutin isolated from tomato fruits at different stages of decomposition in soil. Different derivatives and mass spectrometric techniques were used for peak identification and evaluation. Preparation of purified cutin involving dewaxing and HCl treatment. Incubation of purified cutin for 20 months in soil. Pentafluorobenzoyl derivatives were used for GC/MS operated in the electron capture negative ion (ECNI) mode and trimethylsilyl ethers for GC/MS operated in the electron ionisation (EI) mode for analysis of ω-hydroxy fatty acids. Six ω-hydroxy fatty acids were detected in the purified cutin, three of which were identified as degradation products of 9,16-dihydroxyhexadecanoic acid as a consequence of the HCl treatment involved in the purification step. Incubation of the isolated cutin in soil was accompanied with decrease in concentration of all hydroxyl fatty acids. We produced evidence that the HCl treatment only affected free hydroxyl groups and thus could be used for proportioning free and bound OH-groups on cutin fatty acids. The method enabled a direct quantification of the ω-hydroxy fatty acids throughout the incubation phase. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 1×1

    SciTech Connect

    Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek

    2015-01-15

    The reaction of NO with hydroxylated rutile TiO2(110)-1×1 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.3×1013 NH3/cm2 at a NO dose of 5×1013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formedmore » in the absence of surface hydroxyls (HOb’s) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HOb’s on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .« less

  2. Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O

    NASA Astrophysics Data System (ADS)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-01

    Hydroxyl radicals are often called the “detergent” of the atmosphere because they control the atmosphere’s capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  3. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    PubMed

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  4. Density functional study of the adsorption of aspirin on the hydroxylated (0 0 1) α-quartz surface

    NASA Astrophysics Data System (ADS)

    Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C.

    2009-08-01

    In this study the adsorption geometry of aspirin molecule on a hydroxylated (0 0 1) α-quartz surface has been investigated using DFT calculations. The optimized adsorption geometry indicates that both, adsorbed molecule and substrate are strongly deformed. Strong hydrogen bonding between aspirin and surface hydroxyls, leads to the breaking of the original hydroxyl-hydroxyl hydrogen bonds (Hydrogenbridges) on the surface. In this case new hydrogen bonds on the hydroxylated (0 0 1) α-quartz surface appear which significantly differ from those at the clean surface. The 1.11 eV adsorption energy reveals that the interaction of aspirin with α-quartz is an exothermic chemical interaction.

  5. Stereoselective and regiospecific hydroxylation of ketamine and norketamine.

    PubMed

    Desta, Zeruesenay; Moaddel, Ruin; Ogburn, Evan T; Xu, Cong; Ramamoorthy, Anuradha; Venkata, Swarajya Lakshmi Vattem; Sanghvi, Mitesh; Goldberg, Michael E; Torjman, Marc C; Wainer, Irving W

    2012-11-01

    The objective was to determine the cytochrome P450s (CYPs) responsible for the stereoselective and regiospecific hydroxylation of ketamine [(R,S)-Ket] to diastereomeric hydroxyketamines, (2S,6S;2R,6R)-HK (5a) and (2S,6R;2R,6S)-HK (5b) and norketamine [(R,S)-norKet] to hydroxynorketamines, (2S,6S;2R,6R)-HNK (4a), (2S,6R;2R,6S)-HNK (4b), (2S,5S;2R,5R)-HNK (4c), (2S,4S;2R,4R)-HNK (4d), (2S,4R;2R,4S)-HNK (4e), (2S,5R;2R,5S)-HNK (4f). The enantiomers of Ket and norKet were incubated with characterized human liver microsomes (HLMs) and expressed CYPs. Metabolites were identified and quantified using LC/MS/MS and apparent kinetic constants estimated using single-site Michaelis-Menten, Hill or substrate inhibition equation. 5a was predominantly formed from (S)-Ket by CYP2A6 and N-demethylated to 4a by CYP2B6. 5b was formed from (R)- and (S)-Ket by CYP3A4/3A5 and N-demethylated to 4b by multiple enzymes. norKet incubation produced 4a, 4c and 4f and minor amounts of 4d and 4e. CYP2A6 and CYP2B6 were the major enzymes responsible for the formation of 4a, 4d and 4f, and CYP3A4/3A5 for the formation of 4e. The 4b metabolite was not detected in the norKet incubates. 5a and 4b were detected in plasma samples from patients receiving (R,S)-Ket, indicating that 5a and 5b are significant Ket metabolites. Large variations in HNK concentrations were observed suggesting that pharmacogenetics and/or metabolic drug interactions may play a role in therapeutic response.

  6. Abundance ratios in dwarf elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 < Mr < -16.0. We analyse their absorption line-strength indices by means of index-index diagrams and scaling relations and use the stellar population models to interpret them. We present ages, metallicities, and abundance ratios obtained from these dEs within an aperture size of Re/8. We calculate [Na/Fe] from NaD, [Ca/Fe] from Ca4227, and [Mg/Fe] from Mgb. We find that [Na/Fe] is underabundant with respect to solar, whereas [Mg/Fe] is around solar. This is exactly opposite to what is found for giant ellipticals, but follows the trend with metallicity found previously for the Fornax dwarf NGC 1396. We discuss possible formation scenarios that can result in such elemental abundance patterns, and we speculate that dEs have disc-like star formation history (SFH) favouring them to originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  7. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  8. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  9. 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls.

    PubMed

    Dettori, Maria Antonietta; Fabbri, Davide; Pisano, Marina; Rozzo, Carla; Palmieri, Giuseppe; Dess, Alessandro; Dallocchio, Roberto; Delogu, Giovanna

    2015-02-01

    A small collection of eugenol- and curcumin-analog hydroxylated biphenyls was prepared by straightforward methods starting from natural 4-substituted-2-methoxyphenols and their antitumoral activity was evaluated in vitro . Two curcumin-biphenyl derivatives showed interesting growth inhibitory activities on different malignant melanoma cell lines with IC 50 ranging from 13 to 1 µM. Preliminary molecular modeling studies were carried out to evaluate conformations and dihedral angles suitable for antiproliferative activity in hydroxylated biphenyls bearing a side aliphatic chain.

  10. Riccardin C derivatives as anti-MRSA agents: structure-activity relationship of a series of hydroxylated bis(bibenzyl)s.

    PubMed

    Sawada, Hiromi; Okazaki, Miki; Morita, Daichi; Kuroda, Teruo; Matsuno, Kenji; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2012-12-15

    Members of a series of macrocyclic bis(bibenzyl) riccardin-class derivatives were found to exhibit antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Structure-activity relationship (SAR) studies were conducted, focusing on the number and position of the hydroxyl groups. The minimum essential structure for anti-MRSA activity was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates

    NASA Astrophysics Data System (ADS)

    Panasci, Adele F.; McAlpin, J. Gregory; Ohlin, C. André; Christensen, Shauna; Fettinger, James C.; Britt, R. David; Rustad, James R.; Casey, William H.

    2012-02-01

    Mineral oxides differ from aqueous ions in that the bound water molecules are usually attached to different metal centers, or vicinal, and thus separated from one another. In contrast, for most monomeric ions used to establish kinetic reactivity trends, such as octahedral aquo ions (e.g., Al(H 2O) 63+), the bound waters are closely packed, or geminal. Because of this structural difference, the existing literature about ligand substitution in monomer ions may be a poor guide to the reactions of geochemical interest. To understand how coordination of the reactive functional groups might affect the rates of simple water-exchange reactions, we synthesized two structurally similar Rh(III) complexes, [Rh(phen) 2(H 2O) 2] 3+ [ 1] and [Rh(phen) 2(H 2O)Cl] 2+ [ 2] where (phen) = 1,10-phenanthroline. Complex [ 1] has two adjacent, geminal, bound waters in the inner-coordination sphere and [ 2] has a single bound water adjacent to a bound chloride ion. We employed Rh(III) as a trivalent metal rather than a more geochemically relevant metal like Fe(III) or Al(III) to slow the rate of reaction, which makes possible measurement of the rates of isotopic substitution by simple mass spectrometry. We prepared isotopically pure versions of the molecules, dissolved them into isotopically dissimilar water, and measured the rates of exchange from the extents of 18O and 16O exchange at the bound waters. The pH dependency of rates differ enormously between the two complexes. Pseudo-first-order rate coefficients at 298 K for water exchanges from the fully protonated molecules are close: k0298 = 5 × 10 -8(±0.5 × 10 -8) s -1 for [ 1] and k0298 = 2.5 × 10 -9(±1 × 10 -9) for [ 2]. Enthalpy and entropy activation parameters (Δ H‡ and Δ S‡) were measured to be 119(±3) kJ mol -1, and 14(±1) J mol -1 K -1, respectively for [ 1]. The corresponding parameters for the mono-aquo complex, [ 2], are 132(±3) kJ mol -1 and 41.5(±2) J mol -1 K -1. Rates increase by many orders of magnitude

  12. Structure and Dynamics of Water/Methanol Mixtures at Hydroxylated Silica Interfaces Relevant to Chromatography.

    PubMed

    Gupta, Prashant Kumar; Meuwly, Markus

    2016-09-19

    The spectroscopy and dynamics of water/methanol (MeOH) mixtures at hydroxylated silica surfaces is investigated from atomistic simulations. The particular focus is on how the structural dynamics of MeOH changes when comparing surface-bound and MeOH in the bulk. From analyzing the frequency frequency correlation functions it is found that the dynamics on the picosecond time scale differs by almost a factor of two. While the relaxation time is 2.0 ps for MeOH in the bulk solvent it is considerably slowed-down to 3.5 ps for surface-bound MeOH. Surface-adsorbed MeOH molecules reside there for several nanoseconds and their H-bonds are strongly oriented towards the surface-OH groups. These results are of particular relevance for chromatographic systems where the solvent may play a central role in their function. The present simulations suggest that surface-sensitive spectroscopic techniques should be useful in better characterizing such heterogeneous systems and provide detailed insight into solvent dynamics and structure relevant in chromatographic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers.

    PubMed

    Rodrigues, Sofia N; Gonçalves, Inês C; Martins, M C L; Barbosa, Mário A; Ratner, Buddy D

    2006-11-01

    The effect of surface wettability on fibrinogen adsorption, platelet adhesion and platelet activation was investigated using self-assembled monolayers (SAMs) containing different ratios of longer chain methyl- and shorter chain hydroxyl-terminated alkanethiols (C15CH3 vs. C11OH) on gold. Protein adsorption studies were performed using radiolabeled human fibrinogen (HFG). Platelet adhesion and activation studies with and without pre-adsorbed fibrinogen, albumin and plasma were assessed using scanning electron microscopy (SEM) and a glutaraldehyde-induced fluorescence technique (GIFT). Results demonstrated a linear decrease of HFG adsorption with the increase of OH groups on the monolayer (increase of the hydrophilicity). Platelet adhesion and activation also decrease with increase of hydrophilicity of surface. Concerning SAMs pre-immersed in proteins, fibrinogen adsorption was related with high platelet adhesion and activation. The passivant effect of albumin on platelet adhesion and activation was only demonstrated on SAMs contained C11OH. When all the blood proteins are present (plasma) platelet adhesion was almost absent on SAMs with 65% and 100% C11OH. This could be explained by the higher albumin affinity of the SAMs with 65% C11OH and the lower total protein adsorption associated with SAMs with 100% C11OH.

  14. Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity

    NASA Astrophysics Data System (ADS)

    Zou, Shenqiang; Zhu, Xiaofang; Zhang, Lirong; Guo, Fan; Zhang, Miaomiao; Tan, Youwen; Gong, Aihua; Fang, Zhengzou; Ju, Huixiang; Wu, Chaoyang; Du, Fengyi

    2018-03-01

    Cerium oxide nanoparticles recently have received extensive attention in biomedical applications due to their excellent anti-oxidation performance. In this study, a simple, mild, and green approach was developed to synthesize cerium-doped carbonaceous nanoparticles (Ce-doped CNPs) using bio-mineralization of bull serum albumin (BSA) as precursor. The resultant Ce-doped CNPs exhibited uniform and ultrasmall morphology with an average size of 14.7 nm. XPS and FTIR results revealed the presence of hydrophilic group on the surface of Ce-doped CNPs, which resulted in excellent dispersity in water. The CCK-8 assay demonstrated that Ce-doped CNPs possessed favorable biocompatibility and negligible cytotoxicity. Using H2O2-induced reactive oxygen species (ROS) as model, Ce-doped CNPs showed highly hydroxyl radical scavenging capability. Furthermore, flow cytometry and live-dead staining results indicated that Ce-doped CNPs protected cells from H2O2-induced damage in a dose-dependent effect, which provided a direct evidence for anti-oxidative performance. These findings suggest that Ce-doped CNPs as novel ROS scavengers may provide a potential therapeutic prospect in treating diseases associated with oxidative stress.

  15. Growth and Electrophysiological Properties of Rat Embryonic Cardiomyocytes on Hydroxyl- and Carboxyl-Modified Surfaces

    PubMed Central

    NATARAJAN, ANUPAMA; CHUN, CHANGJU; HICKMAN, JAMES J.; MOLNAR, PETER

    2010-01-01

    Biodegradable scaffolds such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) are commonly used materials in tissue engineering. The chemical composition of these scaffolds changes during degradation which provides a changing environment for the seeded cells. In this study we have developed a simple and relatively high-throughput method in order to test the physiological effects of this varying chemical environment on rat embryonic cardiac myocytes. In order to model the different degradation stages of the scaffold, glass coverslips were functionalized with 11-mercaptoundecanoic acid (MUA) and 11-mercapto-1-undecanol (MUL) as carboxyl- and hydroxyl-group presenting surfaces and also with trimethoxysilylpropyldiethylenetriamine (DETA) and (3-aminopropyl)triethoxysilane (APTES) as controls. Embryonic cardiac myocytes formed beating islands on all tested surfaces but the number of attached cells and beating patches was significantly lower on MUL compared to any of the other functionalized surfaces. Moreover, whole cell patch clamp experiments showed that the average length of action potentials generated by the beating cardiac myocytes were significantly longer on MUL compared to the other surfaces. Our results, using our simple test system, are in agreement with earlier observations that utilized the complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. PMID:18854125

  16. Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach.

    PubMed

    Xiao, Ruiyang; Gao, Lingwei; Wei, Zongsu; Spinney, Richard; Luo, Shuang; Wang, Donghong; Dionysiou, Dionysios D; Tang, Chong-Jian; Yang, Weichun

    2017-12-01

    Advanced oxidation processes (AOPs) based on formation of free radicals at ambient temperature and pressure are effective for treating endocrine disrupting chemicals (EDCs) in waters. In this study, we systematically investigated the degradation kinetics of bisphenol A (BPA), a representative EDC by hydroxyl radical (OH) with a combination of experimental and theoretical approaches. The second-order rate constant (k) of BPA with OH was experimentally determined to be 7.2 ± 0.34 × 10 9  M -1  s -1 at pH 7.55. We also calculated the thermodynamic and kinetic behaviors for the bimolecular reactions by density functional theory (DFT) using the M05-2X method with 6-311++G** basis set and solvation model based on density (SMD). The results revealed that H-abstraction on the phenol group is the most favorable pathway for OH. The theoretical k value corrected by the Collins-Kimball approach was determined to be 1.03 × 10 10  M -1  s -1 , which is in reasonable agreement with the experimental observation. These results are of fundamental and practical importance in understanding the chemical interactions between OH and BPA, and aid further AOPs design in treating EDCs during wastewater treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Steroid 11-Alpha-Hydroxylation by the Fungi Aspergillus nidulans and Aspergillus ochraceus.

    PubMed

    Ríos, Lidia Ortega-de Los; Luengo, José M; Fernández-Cañón, José M

    2017-01-01

    Steroids are a group of natural compounds derived from the cyclopentane-perhydro-phenantrene nucleus that have a great interest for the pharmaceutical industries as a consequence of their physiological effects. Among their functions are anti-inflammatory, immunosuppressive, or contraceptive activities. Nowadays, microbial transformation of steroid precursors is winning relevance opposite to the chemical synthesis, since it allows for decreasing time, expenses, and environmental pollution. Pharmaceutical industry tends to use cholesterol and phytosterols as starting materials due to their low cost. Aspergillus ochraceus and Aspergillus nidulans, a fungus whose biochemistry and genetics are well known, have been chosen because of their capacity of 11-α-hydroxylation over some steroids which confers on them their anti-inflammatory properties. We have cloned the genes encoding the 11-α-hydroxylase enzymatic activities with the aim to introduce them in other microorganisms, such as Mycobacterium smegmatis, used in the industry to split the side chain of phytosterols, and thus creating recombinant microorganisms able to generate useful steroids from cheap precursors in just one-step fermentation.

  18. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    SciTech Connect

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  19. Element abundances at high redshift

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Welty, D. E.; York, D. G.

    1989-01-01

    Abundances of Si(+), S(+), Cr(+), Mn(+), Fe(_), and Zn(+) are considered for two absorption-line systems in the spectrum of the QSO PKS 0528 - 250. Zinc and sulfur are underabundant, relative to H, by a factor of 10 compared to their solar and Galactic interstellar abundances. The silicon-, chromium-, iron-, and nickel-to-hydrogen ratios are less than the solar values and comparable to the local interstellar ratios. A straightforward interpretation is that nucleosynthesis in these high-redshift systems has led to only about one-tenth as much heavy production as in the gas clouds around the sun, and that the amount of the observed underabundances attributable to grain depletion is small. The dust-to-gas ratio in these clouds is less than 8 percent of the Galactic value.

  20. Abundance of nitrogen in QSOs

    SciTech Connect

    Shields, G.A.

    1976-03-01

    Models of photoionized QSO emission-line regions show that measurements of O iii/N iv/C iv or N iii/C iii can yield the C/N/O ratios to an accuracy of a factor 2 or better. The N iii/C iii intensity ratios observed for the QSO PKS 1756+237 (z=1.72) implies a N/C abundance ratio 5 times larger than the solar value. This is comparable with the nitrogen overabundance in the nuclei of nearby galaxies, and it points to advanced chemical evolution in this QSO, with Zapproximately-greater-thanZ/sub sun/. Such a large abundance of nitrogen appears to be exceptional; composite spectra indicate that most QSOs havemore » (N/O) approximately one-fourth to one-half the solar value. (AIP)« less

  1. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  2. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical

  3. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-02-01

    The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.

  4. Origin of Coverage Dependence in Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged Coadsorbed Hydroxyls

    SciTech Connect

    Wang, Zhitao; Henderson, Michael A.; Lyubinetsky, Igor

    2015-09-30

    The influence of reactant coverage on photochemical activity was explored using scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We observed diminished reactivity of carboxylate species (trimethyl acetate, TMA) on TiO2(110) as a function of increasing coverage. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HOb) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HOb groups was obtained by the observation that HOb species originated from H2O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry.more » Though HOb’s are photoinactive on TiO2(110) under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces.« less

  5. Molybdoenzyme That Catalyzes the Anaerobic Hydroxylation of a Tertiary Carbon Atom in the Side Chain of Cholesterol*

    PubMed Central

    Dermer, Juri; Fuchs, Georg

    2012-01-01

    Cholesterol is a ubiquitous hydrocarbon compound that can serve as substrate for microbial growth. This steroid and related cyclic compounds are recalcitrant due to their low solubility in water, complex ring structure, the presence of quaternary carbon atoms, and the low number of functional groups. Aerobic metabolism therefore makes use of reactive molecular oxygen as co-substrate of oxygenases to hydroxylate and cleave the sterane ring system. Consequently, anaerobic metabolism must substitute oxygenase-catalyzed steps by O2-independent hydroxylases. Here we show that one of the initial reactions of anaerobic cholesterol metabolism in the β-proteobacterium Sterolibacterium denitrificans is catalyzed by an unprecedented enzyme that hydroxylates the tertiary C25 atom of the side chain without molecular oxygen forming a tertiary alcohol. This steroid C25 dehydrogenase belongs to the dimethyl sulfoxide dehydrogenase molybdoenzyme family, the closest relative being ethylbenzene dehydrogenase. It is a heterotrimer, which is probably located at the periplasmic side of the membrane and contains one molybdenum cofactor, five [Fe-S] clusters, and one heme b. The draft genome of the organism contains several genes coding for related enzymes that probably replace oxygenases in steroid metabolism. PMID:22942275

  6. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  7. Transesterification of PHA to oligomers covalently bonded with (bio)active compounds containing either carboxyl or hydroxyl functionalities.

    PubMed

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Adamus, Grażyna

    2015-01-01

    This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond.

  8. Patterns of rare and abundant marine microbial eukaryotes.

    PubMed

    Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon

    2014-04-14

    Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy.

    PubMed

    Brockerman, Jacob A; Okon, Mark; McIntosh, Lawrence P

    2014-01-01

    Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of (1)H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond (1)H-(15)N or (1)H-(13)C couplings. However, by filtering against protons directly bonded to (13)C or (15)N nuclei, signals from slowly-exchanging hydroxyls can be observed in the (1)H-NMR spectrum of a uniformly (13)C/(15)N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with (13)C/(15)N-serine or (13)C/(15)N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via (3)JC-OH couplings in long-range (13)C-HSQC spectra. These scalar couplings (~5-7 Hz) were measured in a sample of uniformly (13)C/(15)N-labeled BcX using a quantitative (13)C/(15)N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a (13)C/(15)N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein.

  10. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  11. Abundance and characteristics of snags in western Montana forests

    Treesearch

    Richard B. Harris

    1999-01-01

    Plot data from the U.S. Forest Service's Forest Inventory and Analysis program was used to characterize the abundance and selected characteristics of snags from forests in western Montana. Plots were grouped by whether they had a history of timber harvest, and the U.S. Forest Service classifications of forest type, habitat type, and potential vegetation group were...

  12. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy

    DOE PAGES

    Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari; ...

    2017-09-07

    Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less

  13. Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients.

    PubMed

    Orellana, Myriam; Rodrigo, Ramón; Varela, Nelson; Araya, Julia; Poniachik, Jaime; Csendes, Attila; Smok, Gladys; Videla, Luis A

    2006-01-01

    The aim of the present study was to test the hypothesis that induction of cytochrome P450 2E1 (CYP2E1) in the liver of patients with non-alcoholic fatty liver disease (NAFLD) is correlated both with the in vivo activity of the cytochrome and with the development of liver injury. For this purpose, the liver content of CYP2E1 was determined by Western blot and the CYP2E1 activity by the in vivo hydroxylation of chlorzoxazone (CLZ). The study groups were obese women with an average body mass index (BMI) of 40.3kg/m(2), who underwent therapeutic gastroplasty or gastrectomy with a gastro-jejunal anastomosis. Further, the hepatic histology was determined to establish the pathological score grouping the subjects into three categories: control, steatosis and steatohepatitis. The liver CYP2E1 content and the CLZ hydroxylation of obese patients with steatosis and, particularly, with steatohepatitis were significantly higher than controls and correlated positively with both the severity of the liver damage. These data provide evidence that CYP2E1 would be involved in the mechanism of liver injury found in obese NAFLD patients. Also, the correlation between liver CYP2E1 content and in vivo CLZ hydroxylation would validate the latter as a reliable indicator of liver injury in NAFLD, thus providing a simple and not invasive method to study these patients.

  14. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy

    SciTech Connect

    Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari

    Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less

  15. Hydroxyl radical measurements and oxidation capacity in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Hens, K.; Tatum Ernest, C.; Novelli, A.; Paasonen, P.; Sipilä, M.; Petäjä, T.; Nölscher, A.; Taraborrelli, D.; Keronen, P.; Trawny, K.; Kubistin, D.; Oswald, R.; Axinte, R.; Hosaynali Beygi, Z.; Auld, J.; Klüpfel, T.; Mesarchaki, E.; Song, W.; Valverde Canossa, J.; González Orozco, D.; Königstedt, R.; Bohn, B.; Rudolf, M.; Fischer, H.; Williams, J.; Crowley, J.; Martinez, M.; Harder, H. D.; Lelieveld, J.

    2012-12-01

    Forests cover about one third of the earth's total land surface and are known to be an important global source of biogenic volatile organic compounds (BVOCs) that are partly very reactive towards OH. Different types of forests are known to emit various characteristic BVOCs significantly influencing atmospheric oxidation chemistry. Measurements of OH and HO2 radicals in forest environments, however, reveal a serious lack of understanding of the underlying processes. The HUMPPA-COPEC intensive field campaign took place in summer 2010 at the SMEAR II station, located in Hyytiälä, Southern Finland, as collaboration between the Max Planck Institute for Chemistry and the University of Helsinki. The main goal of the campaign was to investigate the summertime emissions and photochemistry in a boreal forest. Comprehensive measurements including observations of many VOCs, HOx, and total OH reactivity were conducted to increase our understanding of atmospheric self-cleaning processes based on detailed analysis of production and loss mechanisms of the hydroxyl radical. Also the HOx budget in a coniferous forest was examined by using direct calculations from measured species as well as an observationally constrained chemical box model in steady state. For HUMPPA-COPEC chemical reaction schemes considering isoprene as the predominant primary BVOC lead to an over prediction of the measured OH concentration by a factor of up to 4. However, only a minor fraction of the measured total OH reactivity can be explained by measured isoprene. A preliminary terpene mechanism, taking the most abundant terpenes measured during HUMPPA-COPEC-2010 and their oxidation products into account, improves the agreement between simulated and measured OH, but is not sufficient to explain the missing OH reactivity in all cases. HO2 is described reasonably well by the model for conditions where the modeled and measured total OH reactivity agree. For lower than measured reactivity, the HO2 mixing ratios

  16. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol.

    PubMed

    Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide

    2017-03-01

    The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.

  17. [Study of scavenging activity of sorghum pigment to hydroxyl free radicals by fluorimetry].

    PubMed

    Zhang, Hai-rong; Wang, Wen-yan

    2007-03-01

    A natural product, sorghum pigment, consists of a number of important flavonoid derivatives, occurrs on the seed capsules or in the stems of many sorghums, and is widely applied in different fields of food, cosmetic and dyeing industries, It is important for scavenging hydroxyl free radicals and protection of human healthiness. Scavenging capacities of hydroxyl free radicals with sodium nitrite, quercetin and sorghum pigment were comparatively researched by fluorimetry, and the model of hydroxyl free radicals produced is based on the reaction of Cu2+ -catalyzed oxidation of ascorbic acid in the presence of hydrogen peroxide. The hydroxyl radicals react with benzoic acid, forming a fluorescent product, and the fluorescence intensity was determined by the concentration of hydroxybenzoic acid. The experimental results show that the sodium nitrite, quercetin and sorghum pigment have a quantity-effect relationship for scavenging hydroxyl free radicals, and sodium nitrite and quercetin in comparison with sorghum pigment have high antioxidant capacity. Finally, the quenching mechanisms were explored with sodium nitrite, sorghum pigment, and quercetin respectively. The sorghum pigment and sodium nitrite feature a dynamic quenching processes, while quercetin shows a static quenching processes. A reference method was provided for reasonable exploitation and utilization of sorghum pigment.

  18. Impact of Ti Incorporation on Hydroxylation and Wetting of Fe 3 O 4

    SciTech Connect

    Stoerzinger, Kelsey A.; Pearce, Carolyn I.; Droubay, Timothy C.

    2017-08-24

    Understanding the interaction of water with compositionally tuned metal oxides is central to exploiting their unique catalytic and magnetic properties. However, processes such as hydroxylation, wetting, and resulting changes in electronic structure at ambient conditions are challenging to probe in situ. Here, we examine the hydroxylation and wetting of Fe(3-x)TixO4 epitaxial films directly using ambient pressure X-ray photoelectron spectroscopy under controlled relative humidity. Fe2+ formation promoted by Ti4+ substitution for Fe3+ increases with hydroxylation, commensurate with a decrease in the surface work function or change in the surface dipole. The incorporation of small amounts of Ti (x=0.25) as a bulkmore » dopant dramatically impacts hydroxylation, in part due to surface segregation, leading to coverages closer to that of TiO2 than Fe3O4. However, the Fe(3-x)TixO4 compositional series shows a similar affinity for water physisorption, which begins at notably lower relative humidity than on TiO2. The findings suggest that relative humidity rather than surface hydroxyl density controls wettability. Studies of this kind directly relate to rational design of doped magnetite into more active catalysts for UV/Fenton degradation, the adsorption of contaminants, and the development of spin filters.« less

  19. Sensitive determination of endogenous hydroxyl radical in live cell by a BODIPY based fluorescent probe.

    PubMed

    Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed

    2017-08-01

    The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Abundance measurements in stellar environments

    SciTech Connect

    Leone, F.

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  1. The solar abundance of Oxygen

    NASA Astrophysics Data System (ADS)

    Grevesse, N.

    2009-07-01

    With Martin Asplund (Max Planck Institute of Astrophysics, Garching) and Jacques Sauval (Observatoire Royal de Belgique, Brussels) I recently published detailed reviews on the solar chemical composition ({Asplund et al. 2005}, {Grevesse et al. 2007}). A new one, with Pat Scott (Stockholm University) as additional co-author, will appear in Annual Review of Astronomy and Astrophysics ({Asplund et al. 2009}). Here we briefly analyze recent works on the solar abundance of Oxygen and recommend a value of 8.70 in the usual astronomical scale.

  2. Normalization and microbial differential abundance strategies depend upon data characteristics.

    PubMed

    Weiss, Sophie; Xu, Zhenjiang Zech; Peddada, Shyamal; Amir, Amnon; Bittinger, Kyle; Gonzalez, Antonio; Lozupone, Catherine; Zaneveld, Jesse R; Vázquez-Baeza, Yoshiki; Birmingham, Amanda; Hyde, Embriette R; Knight, Rob

    2017-03-03

    Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses. Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average

  3. New aerial survey and hierarchical model to estimate manatee abundance

    USGS Publications Warehouse

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  4. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    PubMed

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  5. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation

    NASA Astrophysics Data System (ADS)

    Sun, Jianteng; Zhu, Lizhong; Pan, Lili; Wei, Zi; Song, Yao; Zhang, Yuduo; Qu, Liping; Zhan, Yu

    2016-07-01

    The concentrations of methoxylated polychlorinated biphenyls (MeO-PCBs) and hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in the sewage sludge samples collected from twelve wastewater treatment plants in China. Two MeO-PCB congeners, including 3‧-MeO-CB-65 and 4‧-MeO-CB-101, were detected in three sludge with mean concentrations of 0.58 and 0.52 ng/g dry weight, respectively. OH-PCBs were detected in eight sludge samples, with an average total concentration of 4.2 ng/g dry weight. Furthermore, laboratory exposure was conducted to determine the possible source of OH-PCBs and MeO-PCBs in the sewage sludge, and their metabolism by the microbes. Both 4‧-OH-CB-101 and 4‧-MeO-CB-101 were detected as metabolites of CB-101 at a limited conversion rate after 5 days. Importantly, microbial interconversion between OH-PCBs and MeO-PCBs was observed in sewage sludge. Demethylation of MeO-PCBs was favored over methylation of OH-PCBs. The abundant and diverse microbes in sludge play a key role in the transformation processes of the PCB analogues. To our knowledge, this is the first report on MeO-PCBs in environmental matrices and on OH-PCBs in sewage sludge. The findings are important to understand the environmental fate of PCBs.

  6. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation

    PubMed Central

    Sun, Jianteng; Zhu, Lizhong; Pan, Lili; Wei, Zi; Song, Yao; Zhang, Yuduo; Qu, Liping; Zhan, Yu

    2016-01-01

    The concentrations of methoxylated polychlorinated biphenyls (MeO-PCBs) and hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in the sewage sludge samples collected from twelve wastewater treatment plants in China. Two MeO-PCB congeners, including 3′-MeO-CB-65 and 4′-MeO-CB-101, were detected in three sludge with mean concentrations of 0.58 and 0.52 ng/g dry weight, respectively. OH-PCBs were detected in eight sludge samples, with an average total concentration of 4.2 ng/g dry weight. Furthermore, laboratory exposure was conducted to determine the possible source of OH-PCBs and MeO-PCBs in the sewage sludge, and their metabolism by the microbes. Both 4′-OH-CB-101 and 4′-MeO-CB-101 were detected as metabolites of CB-101 at a limited conversion rate after 5 days. Importantly, microbial interconversion between OH-PCBs and MeO-PCBs was observed in sewage sludge. Demethylation of MeO-PCBs was favored over methylation of OH-PCBs. The abundant and diverse microbes in sludge play a key role in the transformation processes of the PCB analogues. To our knowledge, this is the first report on MeO-PCBs in environmental matrices and on OH-PCBs in sewage sludge. The findings are important to understand the environmental fate of PCBs. PMID:27417462

  7. Elemental Abundances in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; Mushotzky, R. F.; George, I. M.; Gabel, J. R.

    2003-01-01

    We present Reflection Grating Spectrometer data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extremely low flux state. This observation offers a rare opportunity for a detailed study of emission from a Seyfert 1 galaxy as these are usually dominated by high nuclear continuum levels and heavy absorption. The spectrum shows numerous narrow emission lines (FWHM approximately less than 1300 kilometers per second) in the 0.3 - 2 keV range, including the H-like lines of C, N, and O and the He-like lines of N, O and Ne. The emission-line ratios and the narrow width of the radiative recombination continuum of CVI indicate that the gas is photoionized and of fairly low temperature (kT approximately less than 0.01 keV). The availability of emission lines from different elements for two iso-electronic sequences allows us to constrain the element abundances. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models we find that nitrogen is overabundant in the central regions of the galaxy, compared to carbon, oxygen and neon by at least a factor of 2.5. We suggest that this is the result of secondary production of nitrogen in intermediate mass stars, and indicative of the history of star formation in NGC 3516.

  8. Direct deposition of silver nanoplates on quartz surface by sequence pre-treatment hydroxylation and silanisation.

    PubMed

    Abu Bakar, Norhayati; Mat Salleh, Muhamad; Ali Umar, Akrajas; Shapter, Joseph George

    2017-01-01

    Silver nanoparticles deposited on quartz substrates are widely used as SERS substrates. The nanoparticles can be deposited directly from colloidal solution by dipping technique. However, the adhesion of the particles on the quartz surface is very poor. Normally the substrate is pre-treated with hydroxylation or silanisation process. In this paper, we have demonstrated that the application of the sequence pre-treatment hydroxylation and silanisation have improved the density of silver nanoplates desposited on the quartz surface. •Sequence hydroxylation and silanisation pre-treatment assists the deposition of the nanoplate on the surface.•Various immersion times of the quartz surface into the colloidal nanoplates determined size distributions and density surface of the nanoplates on the surface.

  9. Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids.

    PubMed

    Świzdor, Alina; Panek, Anna; Milecka-Tronina, Natalia

    2017-10-01

    Aspergillus niger, one of fungal species most frequently used for experimental and industrial-scale biotransformations of various organic compounds, is generally known to transform steroids at 16β position. In this work, application of the strain A. niger KCH910 to bioconversion of dehydroepiandrosterone (DHEA), androstenediol and testosterone is described, with emphasis on the metabolic steps leading to the products. Evidence from this study indicated that incubated 5-ene steroids underwent bioconversion within two metabolic pathways: oxidation by the action of 3β-HSD (3β-hydroxysteroid dehydrogenase) to 4-ene steroids, and minor allylic hydroxylation to epimeric 7-alcohols. Further transformation of the 3-oxo-4-ene metabolites resulted in non-selective 16-hydroxylation. It is the first report on an A. niger strain able to introduce not only 16β- but also 16α-hydroxyl function into steroids. Copyright © 2017. Published by Elsevier Inc.

  10. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion.

    PubMed

    Zhu, Pei; Chen, Daijie; Liu, Wenbin; Zhang, Jianbin; Shao, Lei; Li, Ji-an; Chu, Ju

    2014-02-01

    The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Energetic-particle abundances in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.

    1990-01-01

    The abundances of elements and of He-3 in 90 solar electron events have been examined. It is found that the events fall into two distinct groups based upon their F/C ratio. Events in the F-rich group frequently have high He-3/He-4 ratios and are associated with type III and type V radio bursts in the parent flare. The F-poor events are associated with type IV bursts. These results on individual events support the conclusions of earlier work done with daily-averaged abundances.

  12. Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules?

    PubMed

    Duruflé, Harold; Hervé, Vincent; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-01-01

    Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to N -glycosylation, O -glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for O -glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five Arabidopsis thaliana proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.

  13. SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems

    SciTech Connect

    Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA

    2016-06-15

    Purpose: Hydroxyl radicals can be produced within tissue by radiation therapy, and they are largely responsible for DNA damage and cell killing. Coumarin-3-carboxylic acid (3-CCA) and crystal violet are reported to react with hydroxyl radicals and can be used for fluorescence and absorbance measurements, respectively. This study assesses the ability of hydroxyl measurement for both 3-CCA and crystal violet in radiolized water systems in order to provide dosimetric information in radiation chemistry and radiation biology experiments. Methods: 3-CCA and crystal violet were both dissolved in phosphate buffered saline (PBS, pH 7.4) with final concentrations 0.5 mg/mL and 0.05 mg/mL. 3-CCAmore » and control solutions (PBS only) were loaded in black bottom 96-well plates. Crystal violet and control solutions were loaded in clear bottom 96-well plates. The prepared solutions were irradiated at 2 Gy using a small animal radiation research platform. Fluorescence reading with 360 nm excitation wavelength and 485 nm emission wavelength was done for 3-CCA, and absorbance reading at wavelength 580 nm was done for crystal violet before and after radiation. Results: 3-CCA showed clear difference in fluorescence before and after radiation, which suggested hydroxyl production during radiation. However, crystal violet absorbance at 580 nm was not changed significantly by radiation. Conclusion: The overall conclusion is that 3-CCA can be used for hydroxyl measurement in radiolized water systems, while crystal violet cannot, although crystal violet is reported widely to react with hydroxyl radicals produced in Fenton reactions. Possible reasons could relate to reaction pH.« less

  14. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  15. How does hydroxyl introduction influence the double helical structure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex

    PubMed Central

    Ovaere, Margriet; Sponer, Jiri; Sponer, Judit E.; Herdewijn, Piet; Van Meervelt, Luc

    2012-01-01

    Altritol nucleic acids (ANAs) are a promising new tool in the development of artificial small interfering ribonucleic acids (siRNAs) for therapeutical applications. To mimic the siRNA:messenger RNA (mRNA) interactions, the crystal structure of the ANA:RNA construct a(CCGUAAUGCC-P):r(GGCAUUACGG) was determined to 1.96 Å resolution which revealed the hybrid to form an A-type helix. As this A-form is a major requirement in the RNAi process, this crystal structure confirms the potential of altritol-modified siRNAs. Moreover, in the ANA strands, a new type of intrastrand interactions was found between the O2′ hydroxyl group of one residue and the sugar ring O4′ atom of the next residue. These interactions were further investigated by quantum chemical methods. Besides hydration effects, these intrastrand hydrogen bonds may also contribute to the stability of ANA:RNA duplexes. PMID:22638588

  16. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity

    PubMed Central

    Fan, Chenyao; Chen, Chao; Wang, Jia; Fu, Xinxin; Ren, Zhimin; Qian, Guodong; Wang, Zhiyu

    2015-01-01

    The amorphous TiO2 derived from hydroxylation has become an effective approach for the enhancement of photocatalytic activity of TiO2 since a kind of special black TiO2 was prepared by engineering disordered layers on TiO2 nanocrystals via hydrogenation. In this contribution, we prepared totally amorphous TiO2 with various degrees of blackness by introducing hydroxyls via ultrasonic irradiation, through which can we remarkably enhance the photocatalytic activity of TiO2 with improved light harvesting and narrowed band gap. PMID:26133789

  17. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  18. Lettuce Costunolide Synthase (CYP71BL2) and Its Homolog (CYP71BL1) from Sunflower Catalyze Distinct Regio- and Stereoselective Hydroxylations in Sesquiterpene Lactone Metabolism*

    PubMed Central

    Ikezawa, Nobuhiro; Göpfert, Jens Christian; Nguyen, Don Trinh; Kim, Soo-Un; O'Maille, Paul E.; Spring, Otmar; Ro, Dae-Kyun

    2011-01-01

    Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive. Germacrene A acid (GAA) has been suggested as a central precursor of diverse STLs. The regioselective (C6 or C8) and stereoselective (α or β) hydroxylation on a carbon of GAA adjacent to its carboxylic acid at C12 is responsible for the γ-lactone formation. Here, we report two cytochrome P450 monooxygenases (P450s) capable of catalyzing 6α- and 8β-hydroxylation of GAA from lettuce and sunflower, respectively. To identify these P450s, sunflower trichomes were isolated to generate a trichome-specific transcript library, from which 10 P450 clones were retrieved. Expression of these clones in a yeast strain metabolically engineered to synthesize substrate GAA identified a P450 catalyzing 8β-hydroxylation of GAA, but the STL was not formed by spontaneous lactonization. Subsequently, we identified the closest homolog of the GAA 8β-hydroxylase from lettuce and discovered 6α-hydroxylation of GAA by the recombinant enzyme. The resulting 6α-hydroxy-GAA spontaneously undergoes a lactonization to yield the simplest form of STL, costunolide. Furthermore, we demonstrate the milligram per liter scale de novo synthesis of costunolide using the lettuce P450 in an engineered yeast strain, an important advance that will enable exploitation of STLs. Evolution and homology models of these two P450s are discussed. PMID:21515683

  19. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  20. Metal abundance of Tal 13

    SciTech Connect

    Zinn, R.; Diaz, A.I.

    1982-08-01

    Low-resolution spectrograms have been obtained of the three RR Lyrae variables in the distant and very sparse globular cluster Pal 13. A comparison of these spectrograms with similar ones of several RR Lyrae variables in the globular clusters M4, M5, and M22 reveals that Pal 13 is intermediate to M5 and M22 in metal abundance. A value of (Fe/H) = -1.67 +- 0.15 is obtained for Pal 13 by adopting Zinn's (1980a (Astrophys. J. Suppl. 42,19)) values of (Fe/H) for these other clusters. Pal 13 is another example of a distant halo object that is not extremely metal poor.

  1. Hematite Abundance Map at Echo

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the hematite abundance map for a portion of the Meridiani Planum rock outcrop near where the Mars Exploration Rover Opportunity landed. It was acquired by the rover's miniature thermal emission spectrometer instrument from a spot called 'Echo.' Portions of the inner crater wall in this region appear rich in hematite (red). The sharp boundary from hematite-rich to hematite-poor (yellow and green) surfaces corresponds to a change in the surface texture and color. The hematite-rich surfaces have ripple-like forms suggesting wind transported hematite to these surfaces. The bounce marks produced during landing at the base of the slope on the left are low in hematite (blue). The hematite grains that originally covered the surface were pushed below the surface by the lander, exposing a soil that has less hematite.

  2. Reaction mechanism of sterol hydroxylation by steroid C25 dehydrogenase - Homology model, reactivity and isoenzymatic diversity.

    PubMed

    Rugor, Agnieszka; Wójcik-Augustyn, Anna; Niedzialkowska, Ewa; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej; Szaleniec, Maciej

    2017-08-01

    Steroid C25 dehydrogenase (S25DH) is a molybdenum-containing oxidoreductase isolated from the anaerobic Sterolibacterium denitrificans Chol-1S. S25DH is classified as 'EBDH-like' enzyme (EBDH, ethylbenzene dehydrogenase) and catalyzes the introduction of an OH group to the C25 atom of a sterol aliphatic side-chain. Due to its regioselectivity, S25DH is proposed as a catalyst in production of pharmaceuticals: calcifediol or 25-hydroxycholesterol. The aim of presented research was to obtain structural model of catalytic subunit α and investigate the reaction mechanism of the O 2 -independent tertiary carbon atom activation. Based on homology modeling and theoretical calculations, a S25DH α subunit model was for the first time characterized and compared to other S25DH-like isoforms. The molecular dynamics simulations of the enzyme-substrate complexes revealed two stable binding modes of a substrate, which are stabilized predominantly by van der Waals forces in the hydrophobic substrate channel. However, H-bond interactions involving polar residues with C3=O/C3-OH in the steroid ring appear to be responsible for positioning the substrate. These results may explain the experimental kinetic results which showed that 3-ketosterols are hydroxylated 5-10-fold faster than 3-hydroxysterols. The reaction mechanism was studied using QM:MM and QM-only cluster models. The postulated mechanism involves homolytic CH cleavage by the MoO ligand, giving rise to a radical intermediate with product obtained in an OH rebound process. The hypothesis was supported by kinetic isotopic effect (KIE) experiments involving 25,26,26,26-[ 2 H]-cholesterol (4.5) and the theoretically predicted intrinsic KIE (7.0-7.2). Finally, we have demonstrated that the recombinant S25DH-like isoform catalyzes the same reaction as S25DH. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Changes in structural characteristics of antioxidative soy protein hydrolysates resulting from scavenging of hydroxyl radicals.

    PubMed

    Zhao, Jing; Xiong, Youling L; McNear, Dave H

    2013-02-01

    Antioxidant activity of soy protein (SP) and its hydrolyzed peptides has been widely reported. During scavenging of radicals, these antioxidative compounds would be oxidatively modified, but their fate is not understood. The objective of this study was to evaluate the structural characteristics of SP hydrolysates (SPHs), compared to intact SP, when used to neutralize hydroxyl radicals (•OH). SPHs with degree of hydrolysis (DH) 1 to 5 were prepared with Alcalase. Antioxidant activity of SPHs was confirmed by lipid oxidation inhibition measured with thiobarbituric acid-reactive substances, ability to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radicals, and ferrous ion chelation capability. Oxidation of SPHs was initiated by reaction with •OH generated from 0.1 mM FeCl(3) , 20 mM H(2) O(2) , and 1.0 mM ascorbate. After oxidative stress, carbonyl content of SPHs increased by 2- to 3-fold and sulfhydryl groups decreased by up to 42% compared to nonoxidized samples (P < 0.05). Methionine, histidine, and lysine residues were significantly reduced as a result of inactivating •OH (P < 0.05). Attenuated total reflectance-Fourier transform infrared and circular dichroism spectroscopy suggested the conversion of helical structure to strands and turns. Oxidatively modified SPHs had a lower intrinsic fluorescence intensity but similar solubility when compared to nonoxidized samples. These structural changes due to •OH stress may impact the ingredient interaction and functionality of SPHs in food products. © 2013 Institute of Food Technologists®

  4. Palila abundance estimates and trends

    USGS Publications Warehouse

    Banko, Paul C.; Brink, Kevin W.; Camp, Richard

    2014-01-01

    The palila (Loxioides bailleui) population was surveyed annually during 1998−2014 on Mauna Kea Volcano to determine abundance, population trend, and spatial distribution. In the latest surveys, the 2013 population was estimated at 1,492−2,132 birds (point estimate: 1,799) and the 2014 population was estimated at 1,697−2,508 (point estimate: 2,070). Similar numbers of palila were detected during the first and subsequent counts within each year during 2012−2014, and there was no difference in their detection probability due to count sequence. This suggests that greater precision in population estimates can be achieved if future surveys include repeat visits. No palila were detected outside the core survey area in 2013 or 2014, suggesting that most if not all palila inhabit the western slope during the survey period. Since 2003, the size of the area containing all annual palila detections do not indicate a significant change among years, suggesting that the range of the species has remained stable; although this area represents only about 5% of its historical extent. During 1998−2003, palila numbers fluctuated moderately (coefficient of variation [CV] = 0.21). After peaking in 2003, population estimates declined steadily through 2011; since 2010, estimates have fluctuated moderately above the 2011 minimum (CV = 0.18). The average rate of decline during 1998−2014 was 167 birds per year with very strong statistical support for an overall declining trend in abundance. Over the 16-year monitoring period, the estimated rate of change equated to a 68% decline in the population.

  5. Stronger warming effects on microbial abundances in colder regions

    DOE PAGES

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  6. Stronger warming effects on microbial abundances in colder regions

    PubMed Central

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-01-01

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions. PMID:26658882

  7. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M.; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H.; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-01-01

    Aims Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein–protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. Methods and results We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. Conclusions This study

  8. Aflatoxins, hydroxylated metabolites, and aflatoxicol from breast muscle of laying hens.

    PubMed

    Díaz-Zaragoza, M; Carvajal-Moreno, M; Méndez-Ramírez, I; Chilpa-Galván, N C; Avila-González, E; Flores-Ortiz, C M

    2014-12-01

    Aflatoxins (AF) are toxic fungal secondary metabolites that are pathological to animals and humans. This study identified and quantified AF (AFB(1), AFB(2), AFG(1), AFG(2)) and their hydroxylated metabolites (AFM(1), AFM(2), AFP(1)) and aflatoxicol (AFL) from laying hen breast muscles. Aflatoxins pass from cereal feed to the laying hen tissues, causing economic losses, and from there to humans. To detect the passage of AF from feed to hen breast muscle tissues, an experiment that included 25 Hy-Line W36 121-wk-old hens was performed for 8 d. Hens in individual cages were distributed into 3 groups: a control group, with feed free of AFB(1), and 2 experimental groups, with feed spiked with 2 AFB(1) dosages: 30 µg·kg(-1) (low) or 500 µg·kg(-1) (high). The daily feed consumption per hen was recorded and afterward hens were euthanized and breast muscles were collected, weighed, and dried individually. Aflatoxins were extracted by 2 chemical methods and quantified by HPLC. Both methods were validated by lineality (calibration curves), recovery percentage (>80%), limit of detection, and limit of quantification. The AF (µg·kg(-1)) averages recovered in control breast muscles were as follows: AFB(1) (18); AFG(1), AFM(2), and AFL (0); AFG(2) (1.3); AFM(1) (52), and AFP1 (79). Hens fed with feed spiked with 30 µg·kg(-1) of AFB(1) had AFG(1) (16); AFG(2) (72); AFM(1) (0); AFM(2) (18); AFP(1) (145); and AFL (5 µg·kg(-1)). Hens with feed spiked with 500 µg·kg(-1) of AFB(1) had AFG(1) (512); AFG(2) (7); AFM(1) (4,775); AFM(2) (0); AFP(1) (661); and AFL (21 µg·kg(-1)). The best AF extraction method was Qian and Yang's method, modified by adding additional AF from both Supelclean LC18 SPE columns; its limit of detection (0.5 ng·mL(-1)) was lower compared with that of Koeltzow and Tanner, which was 1 ng·mL(-1). ©2014 Poultry Science Association Inc.

  9. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  10. Rovibrational intensities and electric dipole moment function of the X2 Pi hydroxyl radical

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Martin, P. M.; Abrams, M. C.; Davis, S. P.

    1992-01-01

    Recent work aimed at determining the absolute rovibrational transition intensities for the ground electronic state of the hydroxyl radical is reviewed. Two new sets of Fourier transform emission spectra of OH are described which were recorded at the University of Paris and at the Kitt Peak National Solar Observatory.

  11. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    PubMed

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  12. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    PubMed

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  13. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals

    USDA-ARS?s Scientific Manuscript database

    Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and tri...

  14. RELATIVE RATE CONSTANTS OF CONTAMINANT CANDIDATE LIST PESTICIDES WITH HYDROXYL RADICALS

    EPA Science Inventory

    The objective of this study was to establish the rate constants for the reactions of selected pesticides listed on the US EPA Contaminant Candidate List, with UV and hydroxyl radicals (·OH). Batch experiments were conducted in phosphate buffered solution at pH 7. All pestici...

  15. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT

    EPA Science Inventory

    The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...

  16. Effects of surface hydroxylation on adhesion at zinc/silica interfaces.

    PubMed

    Le, Ha-Linh Thi; Goniakowski, Jacek; Noguera, Claudine; Koltsov, Alexey; Mataigne, Jean-Michel

    2018-06-06

    The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/β-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.

  17. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  18. Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting

    PubMed Central

    Wang, Liwen; Chance, Mark R.

    2011-01-01

    Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described. PMID:21770468

  19. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water.

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; Updegraff, D.M.; Bennett, J.L.

    1988-01-01

    Studies conducted in an aquifer contaminated by creosote suggest that quinoline is converted to 2(1H)quinolinone by an indigenous consortium of microorganisms. Laboratory microbial experiments using H218O indicate that water is the source of the oxygen atom for this hydroxylation reaction under aerobic and anaerobic conditions.

  20. RAPID MEASUREMENT OF AQUEOUS HYDROXYL RADICAL CONCENTRATIONS IN STEADY-STATE HO· FLUX SYSTEMS

    EPA Science Inventory

    The spin-trap compound a-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN) is utilized for the detection and quantitation of the hydroxyl radical (HO·) in aqueous solution. Capillary electrophoresis enables rapid analysis of the probe compound. The thermally unstable HO· radical ...

  1. Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.

    ERIC Educational Resources Information Center

    Henderson, Giles; And Others

    1982-01-01

    Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)

  2. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2011-06-01

    Understanding nanodiamond functionalisation is of great importance for biological and medical applications. Here we examine the stabilities of oxygen, hydroxyl, and water functionalisation of the nanodiamonds using the self-consistent charge density functional tight-binding simulations. We find that the oxygen and hydroxyl termination are thermodynamically favourable and form strong C–O covalent bonds on the nanodiamond surface in an O2 and H2 gas reservoir, which confirms previous experiments. Yet, the thermodynamic stabilities of oxygen and hydroxyl functionalisation decrease dramatically in a water vapour reservoir. In contrast, H2O molecules are found to be physically adsorbed on the nanodiamond surface, and forced chemical adsorption results in decomposition of H2O. Moreover, the functionalisation efficiency is found to be facet dependent. The oxygen functionalisation prefers the {100} facets as opposed to alternative facets in an O2 and H2 gas reservoir. The hydroxyl functionalisation favors the {111} surfaces in an O2 and H2 reservoir and the {100} facets in a water vapour reservoir, respectively. This facet selectivity is found to be largely dependent upon the environmental temperature, chemical reservoir, and morphology of the nanodiamonds.

  3. QSPR prediction of the hydroxyl radical rate constant of water contaminants.

    PubMed

    Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun

    2016-07-01

    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  5. Mineral Abundances in Martian Soils

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2011-01-01

    Using traditional geochemical calculations with in situ Martian cosmochemical data researchers Harry (Hap) McSween Jr. and Ian McGlynn (University of Tennessee) and Deanne Rogers (SUNY at Stony Brook) have developed a method for identifying the major and minor minerals in soils at the Mars Exploration Rovers (MER) landing sites. The team used information from the MER Athena instrument package operating on Mars since January, 2004. They created two models using MiniTES spectra, Alpha Particle X-ray Spectrometer (APXS) data, and Mossbauer spectrometer data to calculate the mineralogy of average dark soils on the Gusev crater plains and on Meridiani Planum, located on opposite sides of Mars. Soils at both locations are similarly composed of minerals derived from the comminution of basalts (about three quarters by weight) and other minerals derived from rocks altered by chemical weathering (about one quarter by weight). This mixture of possibly unrelated materials (primary and altered) might mean that the alteration of soil did not occur in place and that the basaltic and alteration suites of minerals came from different sources. The nearly identical modal mineralogy at two widely-separated locations on the planet supports a previous hypothesis based on comparable chemical compositions that soils have been homogenized, if not globally then at least over large areas of the Martian surface. Yet, global maps of orbital remote sensing data have not shown surface abundances of alteration minerals as high as those in the Martian soils.

  6. Palila abundance estimates and trend

    USGS Publications Warehouse

    Camp, Richad; Banko, Paul C.

    2012-01-01

    The Palila (Loxioides bailleui) is an endangered, seed-eating, finch-billed honeycreeper found only on Hawai`i Island. Once occurring on the islands of Kaua`i and O`ahu and Mauna Loa and Hualālai volcanoes of Hawai`i, Palila are now found only in subalpine, dry-forest habitats on Mauna Kea (Banko et al. 2002). Previous analyses showed that Palila numbers fluctuated throughout the 1980s and 1990s but declined rapidly and steadily since 2003 (Jacobi et al. 1996, Leonard et al. 2008, Banko et al. 2009, Gorresen et al. 2009, Banko et al. in press). The aim of this report is to update abundance estimates for the Palila based on the 2012 surveys. We assess Palila trends over two periods: 1) the long-term trend during 1998–2012 and 2) the short-term trajectory between 2003 and 2012. The first period evaluates the population trend for the entire time series since additional transects were established (Johnson et al. 2006). These additional transects were established to produce a more precise population estimate and provide more complete coverage of the Palila range. The initial year for short-term trajectory was chosen subjectively to coincide with the recent decline in the Palila population. Additionally, stations in the core Palila habitat were surveyed on two occasions in 2012, thus allowing us to address the question of how repeat samples improve estimate precision.

  7. 40 CFR 721.10108 - Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt... Specific Chemical Substances § 721.10108 Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo...

  8. Structural insights into the catalytic mechanism of cysteine (hydroxyl) lyase from the hydrogen sulfide-producing oral pathogen, Fusobacterium nucleatum.

    PubMed

    Kezuka, Yuichiro; Ishida, Tetsuo; Yoshida, Yasuo; Nonaka, Takamasa

    2018-02-16

    Hydrogen sulfide (H 2 S) plays important roles in the pathogenesis of periodontitis. Oral pathogens typically produce H 2 S from l-cysteine in addition to pyruvate and [Formula: see text] However, fn1055 from Fusobacterium nucleatum subsp. nucleatum ATCC 25586 encodes a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the production of H 2 S and l-serine from l-cysteine and H 2 O, an unusual cysteine (hydroxyl) lyase reaction (β-replacement reaction). To reveal the reaction mechanism, the crystal structure of substrate-free Fn1055 was determined. Based on this structure, a model of the l-cysteine-PLP Schiff base suggested that the thiol group forms hydrogen bonds with Asp 232 and Ser 74 , and the substrate α-carboxylate interacts with Thr 73 and Gln 147 Asp 232 is a unique residue to Fn1055 and its substitution to asparagine (D232N) resulted in almost complete loss of β-replacement activity. The D232N structure obtained in the presence of l-cysteine contained the α-aminoacrylate-PLP Schiff base in the active site, indicating that Asp 232 is essential for the addition of water to the α-aminoacrylate to produce the l-serine-PLP Schiff base. Rapid-scan stopped-flow kinetic analyses showed an accumulation of the α-aminoacrylate intermediate during the reaction cycle, suggesting that water addition mediated by Asp 232 is the rate-limiting step. In contrast, mutants containing substitutions of other active-site residues (Ser 74 , Thr 73 , and Gln 147 ) exhibited reduced β-replacement activity by more than 100-fold. Finally, based on the structural and biochemical analyses, we propose a mechanism of the cysteine (hydroxyl) lyase reaction by Fn1055. The present study leads to elucidation of the H 2 S-producing mechanism in F. nucleatum . © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Comparison of synthesis of 15α-hydroxylated steroids in males of four North American lamprey species

    USGS Publications Warehouse

    Bryan, Mara B.; Young, Bradley A.; Close, David A.; Semeyn, Jesse; Robinson, T. Craig; Bayer, Jennifer M.; Li, Weiming

    2006-01-01

    Recent studies have provided evidence that 15α-hydroxytestosterone (15α-T) and 15α-hydroxyprogesterone (15α-P) are produced in vitro and in vivo in adult male sea lampreys (Petromyzonmarinus), and that circulatory levels increase in response to injections with gonadotropin-releasing hormone (GnRH). We examined four species from the Petromyzontidae family including silver lampreys (Ichthyomyzon unicuspis), chestnut lampreys (I. castaneus), American brook lampreys (Lethenteron appendix), and Pacific lampreys (Entosphenus tridentatus) to determine if these unusual steroids were unique to sea lampreys or a common feature in lamprey species. In vitro production was examined through incubations of testis with tritiated precursors, and 15α-T and 15α-P production was confirmed in all species through co-elution with standards on both high performance liquid chromatography (HPLC) and thin layerchromatography. In vivo production was proven by demonstrating that HPLC-fractionated plasma had peaks of immunoreactive 15α-T and 15α-P that co-eluted with standards through using previously developed radioimmunoassays for 15α-T and 15α-P. The possible functionality of 15α-T and 15α-P was further examined in silver and Pacific lampreys by investigating the effect of injection of either type of lamprey GnRH on plasma concentrations of 15α-T and 15α-P. Injections with exogenous GnRH did not affect circulatory levels of either steroid in silver lampreys, and only GnRH III elicited higher levels of both steroids in Pacific lampreys. The 15α-hydroxylase enzyme(s) for steroids appeared to present in adult males of all species examined, but the question of whether 15α-hydroxylated steroids are functional in these lamprey species, and the significance of the 15-hydroxyl group, requires further research.

  10. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.

    PubMed

    Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria

    2017-03-01

    Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.

  11. Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents.

    PubMed

    Idowu, O R; Peggins, J O; Brewer, T G

    1995-01-01

    Primaquine, 8-(4-amino-1-methylbutylamino)-6-methoxyquinoline, is an antimalarial 8-aminoquinoline derivative. Although it has been in use since 1952, its metabolism has not been clearly defined. This is due to the instability of the expected aminophenol metabolites and their amphoteric nature, which makes their isolation difficult. Recent studies on the metabolism of WR 238605, a new primaquine analog, has shown that these problems may be solved by extracting the metabolites in the presence of ethyl chloroformate. Subsequent identification of the ethoxycarbonyl derivatives of the metabolites has made it possible to define the in vitro metabolism of primaquine. The primary metabolic pathways of primaquine involved hydroxylation of the phenyl ring of the quinoline nucleus and C-hydroxylation of the 3'-position of the 8-aminoalkylamino side chain. Ring-hydroxylation of primaquine gives rise to 5-hydroxyprimaquine, which on demethylation produces 5-hydroxy-6-demethylprimaquine. Side-chain hydroxylation of primaquine gives rise to 3'-hydroxyprimaquine, which also undergoes O-demethylation to 3'-hydroxy-6-demethylprimaquine. 6-Demethylprimaquine, a putative metabolite of primaquine, also underwent metabolism involving 3'-hydroxylation of the side chain. WR 6026, 8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline, is an antileishmanial 8-aminoquinoline derivative. The in vitro metabolism of WR 6026 also results in the formation of side chain-oxygenated metabolites. The present results, together with previous observations on the metabolism of WR 238605 and closely related primaquine analog, suggest that side-chain oxygenation is an important metabolic pathway of antiparasitic 8-aminoquinoline compounds in general.

  12. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms

    PubMed Central

    Osakabe, Keishi; Tsao, Cheng Chung; Li, Laigeng; Popko, Jacqueline L.; Umezawa, Toshiaki; Carraway, Daniel T.; Smeltzer, Richard H.; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1999-01-01

    A central question in lignin biosynthesis is how guaiacyl intermediates are hydroxylated and methylated to the syringyl monolignol in angiosperms. To address this question, we cloned cDNAs encoding a cytochrome P450 monooxygenase (LsM88) and a caffeate O-methyltransferase (COMT) from sweetgum (Liquidambar styraciflua) xylem. Mass spectrometry-based functional analysis of LsM88 in yeast identified it as coniferyl aldehyde 5-hydroxylase (CAld5H). COMT expressed in Escherichia coli methylated 5-hydroxyconiferyl aldehyde to sinapyl aldehyde. Together, CAld5H and COMT converted coniferyl aldehyde to sinapyl aldehyde, suggesting a CAld5H/COMT-mediated pathway from guaiacyl to syringyl monolignol biosynthesis via coniferyl aldehyde that contrasts with the generally accepted route to sinapate via ferulate. Although the CAld5H/COMT enzyme system can mediate the biosynthesis of syringyl monolignol intermediates through either route, kcat/Km of CAld5H for coniferyl aldehyde was ≈140 times greater than that for ferulate. More significantly, when coniferyl aldehyde and ferulate were present together, coniferyl aldehyde was a noncompetitive inhibitor (Ki = 0.59 μM) of ferulate 5-hydroxylation, thereby eliminating the entire reaction sequence from ferulate to sinapate. In contrast, ferulate had no effect on coniferyl aldehyde 5-hydroxylation. 5-Hydroxylation also could not be detected for feruloyl-CoA or coniferyl alcohol. Therefore, in the presence of coniferyl aldehyde, ferulate 5-hydroxylation does not occur, and the syringyl monolignol can be synthesized only from coniferyl aldehyde. Endogenous coniferyl, 5-hydroxyconiferyl, and sinapyl aldehydes were detected, consistent with in vivo operation of the CAld5H/COMT pathway from coniferyl to sinapyl aldehydes via 5-hydroxyconiferyl aldehyde for syringyl monolignol biosynthesis. PMID:10430877

  13. Human hydroxylated metabolites of BDE-47 and BDE-99 are glucuronidated and sulfated in vitro.

    PubMed

    Erratico, Claudio; Zheng, Xiaobo; Ryden, Andreas; Marsh, Goran; Maho, Walid; Covaci, Adrian

    2015-07-16

    Polybrominated diphenyl ethers (PBDEs) were used worldwide as additive flame retardants and are classified as persistent, bioaccumulable and toxic environmental pollutants. In humans, the hydroxylated metabolites of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) formed in vitro have also been detected in vivo. To further characterize the metabolism of BDE-47 and BDE-99 and to identify candidate markers for monitoring the human exposure to PBDEs using non-invasive approaches, glucuronidation and sulfation of hydroxylated metabolites of BDE-47 and BDE-99 were investigated using human liver microsomes and cytoplasm, respectively. The formed Phase II metabolites were analyzed by liquid chromatography-tandem mass spectrometry using a novel approach to develop analytical methods in absence of authentic standards. All available standards for hydroxylated metabolites of BDE-47 and BDE-99 were glucuronidated and sulfated, showing that glucuronidation and sulfation are part of the metabolism pathway of BDE-47 and BDE-99 in vitro. The major glucuronidated and sulfated analogs of hydroxylated metabolites of BDE-47 were (a) 2,4-DBP-Gluc and 5-Gluc-BDE-47, and (b) 2'-Sulf-BDE-28, 4-Sulf-BDE-42 and 3-Sulf-BDE-47, respectively. The major glucuronidated and sulfated analogs of hydroxylated metabolites of BDE-99 were (a) 2,4,5-TBP-Gluc and 6'-Gluc-BDE-99, and (b) 3'-Sulf-BDE-99 and 5'-Sulf-BDE-99, respectively. Apparent Km values associated with the formation of sulfated metabolites of BDE-47 and BDE-99 were ten times lower than those of the corresponding glucuronidated metabolites, suggesting that sulfated rather than glucuronidated metabolites of OH-PBDEs might be used as markers of human exposure to PBDEs using a non-invasive approach based on urine sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted.

    PubMed Central

    Ingelman-Sundberg, M; Kaur, H; Terelius, Y; Persson, J O; Halliwell, B

    1991-01-01

    Attack by hydroxyl radicals (.OH) upon salicylate (2-hydroxybenzoate) leads to formation of both 2,3-dihydroxybenzoate (2,3-DHB) and 2,5-dihydroxybenzoate (gentisate, 2,5-DHB). It has been suggested that formation of 2,3-DHB from salicylate is a means of monitoring .OH formation. Production of 2,3-DHB and 2,5-DHB by liver microsomal fractions and isoforms of cytochrome P-450 was investigated. Liver microsomes prepared from variously treated rats and rabbits catalysed the formation of 2,5-DHB but not 2,3-DHB. Formation of 2,5-DHB was inhibited by CO, metyrapone and SKF-525A, but not by the .OH scavengers mannitol and formate or by the iron chelator desferrioxamine. Purified P-450s IIE1, IIB4 or IA2 from rabbit liver microsomes, reconstituted together with NADPH-cytochrome P-450 reductase, led to formation of equal amounts of 2,3-DHB and 2,5-DHB in reactions that were almost completely inhibited by mannitol or formate. Addition of Fe3+/EDTA either to microsomes or to membranes containing reconstituted P-450 caused formation of approximately equal amounts of 2,3-DHB and 2,5-DHB, consistent with an .OH-dependent attack on salicylate. The data indicate that the microsomal P-450 system catalyses hydroxylation of salicylate to 2,5-DHB, but not formation of 2,3-DHB. Hence measurement of 2,3-DHB might provide a means of monitoring .OH formation. Care must be taken in studies of substrate hydroxylation by microsomes or reconstituted P-450 systems to avoid artefacts resulting from .OH generation. PMID:2064611

  15. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.

    PubMed

    Świzdor, Alina; Panek, Anna; Milecka-Tronina, Natalia

    2014-04-01

    Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer-Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted "normal" binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  17. Effect of thyme/cumin essential oils and butylated hydroxyl anisole/butylated hydroxyl toluene on physicochemical properties and oxidative/microbial stability of chicken patties.

    PubMed

    Sariçoban, Cemalettin; Yilmaz, Mustafa Tahsin

    2014-02-01

    In this study, effects of thyme/cumin essential oils (EO) and butylated hydroxyl anisole (BHA)/butylated hydroxyl toluene (BHT) on physicochemical properties and storage stability of chicken patties were compared in different storage periods (0, 3, 7, 14, 21, and 28 d). It was found that there were significant (P < 0.05) differences between physicochemical properties of patty samples treated with EO and the synthetic antioxidants. The EO showed similar performance to those of BHA and BHT in limiting TBARS values of chicken patty samples. Similarity in performance was also the case for microbial stability (total aerobic mesophilic, psychrotrophic, lactic acid, and coliform bacteria as well as molds and yeasts); namely, their effects were significant (P < 0.05). Effect of thyme EO was significant (P < 0.05) and remarkable, not allowing any coliform bacteria to grow in the samples. Given that EO were obtained from natural sources, the data suggested that the EO might be more useful than their synthetic counterparts, BHA and BHT, as additives for chicken patties to maintain oxidative/microbial stability and increase shelf life.

  18. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  19. Book review: A new view on the species abundance distribution

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2018-01-01

    The sampled relative abundances of species of a taxonomic group, whether birds, trees, or moths, in a natural community at a particular place vary in a way that suggests a consistent underlying pattern, referred to as the species abundance distribution (SAD). Preston [1] conjectured that the numbers of species, plotted as a histogram of logarithmic abundance classes called octaves, seemed to fit a lognormal distribution; that is, the histograms look like normal distributions, although truncated on the left-hand, or low-species-abundance, end. Although other specific curves for the SAD have been proposed in the literature, Preston’s lognormal distribution is widely cited in textbooks and has stimulated attempts at explanation. An important aspect of Preston’s lognormal distribution is the ‘veil line’, a vertical line drawn exactly at the point of the left-hand truncation in the distribution, to the left of which would be species missing from the sample. Dewdney rejects the lognormal conjecture. Instead, starting with the long-recognized fact that the number of species sampled from a community, when plotted as histograms against population abundance, resembles an inverted J, he presents a mathematical description of an alternative that he calls the ‘J distribution’, a hyperbolic density function truncated at both ends. When multiplied by species richness, R, it becomes the SAD of the sample.

  20. Generalized estimators of avian abundance from count survey data

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture?recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.

  1. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    SciTech Connect

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less

  2. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).

    PubMed

    Gharachorlou, Amir; Detwiler, Michael D; Gu, Xiang-Kui; Mayr, Lukas; Klötzer, Bernhard; Greeley, Jeffrey; Reifenberger, Ronald G; Delgass, W Nicholas; Ribeiro, Fabio H; Zemlyanov, Dmitry Y

    2015-08-05

    Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu(1+) to metallic copper (Cu(0)) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al(3+) in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al(3+) (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3

  3. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111)

    PubMed Central

    2015-01-01

    Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu1+ to metallic copper (Cu0) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al3+ in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al3+ (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al–O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3–4

  4. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study

    PubMed Central

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.

    2011-01-01

    The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033

  5. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method.

    PubMed

    Airianah, Othman B; Vreeburg, Robert A M; Fry, Stephen C

    2016-03-01

    Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides

  6. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method

    PubMed Central

    Fry, Stephen C.

    2016-01-01

    Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (•OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ •OH-attacked polysaccharides. Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during •OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (•OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by •OH. The evidence shows that •OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen

  7. Hypochlorous acid-activated carbon: an oxidizing agent capable of producing hydroxylated polychlorinated biphenyls.

    PubMed Central

    Voudrias, E A; Larson, R A; Snoeyink, V L; Chen, A S; Stapleton, P L

    1986-01-01

    Granular activated carbon (GAC), in the presence of dilute aqueous hypochlorite solutions typical of those used in water treatment, was converted to a reagent capable of carrying out free-radical coupling reactions and other oxidations of dilute aqueous solutions of phenols. The products included biphenyls with chlorine and hydroxyl substitution (hydroxylated polychlorinated biphenyls). For example, 2,4-dichlorophenol, a common constituent of wastewaters and also natural waters treated with hypochlorite, was converted to 3,5,5'trichloro-2,4'-dihydroxybiphenyl and several related compounds in significant amounts. It is possible that these products pose more of a health hazard than either the starting phenols or the unhydroxylated polychlorinated biphenyl derivatives. PMID:3028770

  8. PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility

    PubMed Central

    Luo, Weibo; Lin, Benjamin; Wang, Yingfei; Zhong, Jun; O'Meally, Robert; Cole, Robert N.; Pandey, Akhilesh; Levchenko, Andre; Semenza, Gregg L.

    2014-01-01

    Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins. PMID:25079693

  9. Effect of Hydroxyl Concentration on Chemical Sensitivity of Polyvinyl Alcohol/Carbon-Black Composite Chemiresistors

    SciTech Connect

    Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham

    1999-05-19

    The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage ("-OH") of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an arraymore » to distinguish the responses to methanol-water mixtures.« less

  10. Effects of various vitamins and coenzymes Q on reactions involving alpha-hydroxyl-containing radicals.

    PubMed

    Shadyro, Oleg I; Sosnovskaya, Anna A; Edimecheva, Irina P; Grintsevich, Ivan B; Lagutin, Petr Yu; Alekseev, Aleksei V; Kazem, Kamel

    2005-07-01

    Effects of vitamins B, C, E, K and P, as well as coenzymes Q, on formation of final products of radiation-induced free-radical transformations of ethanol, ethylene glycol, alpha-methylglycoside and glucose in aqueous solutions were studied. Based on the obtained results, it can be concluded that there are substances among vitamins and coenzymes that effectively interact with alpha-hydroxyl-containing radicals. In the presence of these substances, recombination reactions of alpha-hydroxyalkyl radicals and fragmentation of alpha-hydroxy-beta-substituted organic radicals are suppressed. It has been established that the observed effects are due to the ability of the vitamins and coenzymes under study to either oxidize alpha-hydroxyl-containing radicals yielding the respective carbonyl compounds or reduce them into the initial molecules.

  11. Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Pehrman, R.; Amme, M.; Cachoir, C.

    2006-01-01

    Assessment of alpha radiolysis influence on the chemistry of geologically disposed spent fuel demands analytical methods for radiolytic product determination at trace levels. Several chemiluminescence methods for the detection of radiolytic oxidants hydrogen peroxide and hydroxyl radicals are tested. Two of hydrogen peroxide methods use luminol, catalyzed by either μ-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl)-acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All recipes are tested as batch systems in basic conditions. For hydroxyl radical detection luminophores selected are 3-hydroxyphthalic hydrazide and rutin. Both methods are tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed.

  12. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    NASA Astrophysics Data System (ADS)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  13. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, Valeriy; Kleperis, Janis; Pavlovica, Sanita; Vaivars, Guntars

    2012-08-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  14. A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies.

    PubMed

    Vilella, Laia; Conde, Ana; Balcells, David; Díaz-Requejo, M Mar; Lledós, Agustí; Pérez, Pedro J

    2017-12-01

    A dual mechanism for direct benzene catalytic hydroxylation is described. Experimental studies and DFT calculations have provided a mechanistic explanation for the acid-free, Tp x Cu-catalyzed hydroxylation of benzene with hydrogen peroxide (Tp x = hydrotrispyrazolylborate ligand). In contrast with other catalytic systems that promote this transformation through Fenton-like pathways, this system operates through a copper-oxyl intermediate that may interact with the arene ring following two different, competitive routes: (a) electrophilic aromatic substitution, with the copper-oxyl species acting as the formal electrophile, and (b) the so-called rebound mechanism, in which the hydrogen is abstracted by the Cu-O moiety prior to the C-O bond formation. Both pathways contribute to the global transformation albeit to different extents, the electrophilic substitution route seeming to be largely favoured.

  15. Microbial carbonylation and hydroxylation of 20(R)-panaxadiol by Aspergillus niger.

    PubMed

    Yan, Bin; Chen, Zhihua; Zhai, Xuguang; Yin, Guibo; Ai, Yafei; Chen, Guangtong

    2018-04-01

    20(R)-panaxadiol (PD) was metabolised by the fungus Aspergillus niger AS 3.3926 to its C-3 carbonylated metabolite and five other hydroxylated metabolites (1-6). Their structures were elucidated as 3-oxo-20(R)-panaxadiol (1), 3-oxo-7β-hydroxyl- 20(R)-panaxadiol (2), 3-oxo-7β,23α-dihydroxyl-20(R)-panaxadiol (3), 3,12-dioxo- 7β,23β-dihydroxyl-20(R)-panaxadiol (4), 3-oxo-1α,7β-dihydroxyl-20(R)-panaxadiol (5) and 3-oxo-7β,15β-dihydroxyl-20(R)-panaxadiol (6) by spectroscopic analysis. Among them, compounds 2-6 were new compounds. Pharmacological studies revealed that compound 6 exhibited significant anti-hepatic fibrosis activity.

  16. (E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Xiao, Zhaohui; Xiao, Chunsheng; Wang, Huixin; Wang, Bing; Li, Ying; Chen, Xuesi; Guo, Xinhua

    2016-04-01

    Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS.

  17. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation.

    PubMed

    González-Pérez, Vanessa; Connolly, Elizabeth A; Bridges, Arlene S; Wienkers, Larry C; Paine, Mary F

    2012-11-01

    (S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions.

  18. Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation.

    PubMed

    Zheng, Yi-Wen; Chen, Bin; Ye, Pan; Feng, Ke; Wang, Wenguang; Meng, Qing-Yuan; Wu, Li-Zhu; Tung, Chen-Ho

    2016-08-17

    We present a blueprint for aromatic C-H functionalization via a combination of photocatalysis and cobalt catalysis and describe the utility of this strategy for benzene amination and hydroxylation. Without any sacrificial oxidant, we could use the dual catalyst system to produce aniline directly from benzene and ammonia, and phenol from benzene and water, both with evolution of hydrogen gas under unusually mild conditions in excellent yields and selectivities.

  19. Important Considerations When Using Hydroxyl Airglow Measurements to Determine Climate Trends of the Mesopause Region.

    NASA Astrophysics Data System (ADS)

    Burns, G.; French, J.

    2007-05-01

    Spectral calibrations, airglow and possibly auroral contaminations, solar and telluric absorption features and the selection of transition probabilities can all influence rotational temperatures derived from measurements of hydroxyl airglow intensities. Consideration and examples are given of these influences. Measurements and analyses are outlined for data checking that should be undertaken if a hydroxyl airglow data set is to be used to determine climate trends. Multiple spectral calibrations should be conducted throughout the observing period, with regular inter- comparisons to other calibration sources also required. Uncertainties in spectral calibrations should be expressed as a temperature equivalent. Sufficient spectral scans at maximum resolution should be obtained under all extreme observing conditions (at the lowest solar depression angle operated both morning and night, moon and cloud both separately and combined, aurora and under conditions of enhanced atomic oxygen airglow, and under clear sky conditions but with high atmospheric water vapour content) so that an uncertainty for the derived rotational temperatures can be determined for the established data selection criteria. Once the varying emission and absorption features for the hydroxyl region of interest at your site are understood for the observing site, then the spectral resolution of the observing instrument can be reduced to increase temporal resolution with reasonable confidence. This confidence should be tested by investigating the average rotational temperatures derived from all possible line intensity ratios under the extreme observing conditions noted. If a spectral-fitting rotational temperature determination is used, the residuals from the fit should be summed and similarly examined. Hydroxyl measurements provide a cost effective means of monitoring the temperature of the climate-sensitive mesopause region on an almost nightly basis. If care is taken, they provide a valuable data set

  20. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    PubMed

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  1. Synthesis and radical scavenging activity of 6-hydroxyl-4-methylcoumarin and its derivatives

    NASA Astrophysics Data System (ADS)

    Jumal, Juliana; Ayomide, Adetunji Fridaos

    2018-06-01

    Four compounds of coumarin derivatives namely 6-hydroxyl-4-methylcoumarin (I), 6-hydroxyl-4-methyl-5-(p-nitrophenyl azocoumarin) (II), 6-hydroxyl-4-methyl-5,7-(bis-p-nitrophenyl azocoumarin) (III) and 6-hydroxyl-4-methyl-5,7-(bis-p-chlorophenyl azocoumarin) (IV) were successfully synthesized. These compounds were prepared by reacting hydroquinone with ethylacetoacetate and selected anilines which are chloro and nitro aniline. All synthesized compounds were characterized by CHN micro-elemental analysis, 1H Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopic methods. The infrared spectra of these compounds exhibited five important stretching vibrations: ʋ(-OH), ʋ(C=O), ʋ(C=C), ʋ(C-O) and ʋ(C-N) at 3441-3359 cm-1, 1604-1632 cm-1, 1581-1496 cm-1, 1331-1225 cm-1, 1251-1109 cm-1, respectively. 1H NMR spectra of these compounds show the presence of proton aromatic, proton methyl and proton pyrone ring with the chemical shift at δH 7.00-8.70 ppm, δH 2.20-2.50 ppm and δH 6.10-6.90 ppm, respectively. CHN analysis results of all compounds are in good agreement with the calculated values. All the synthesized compounds were evaluated for their antioxidant activity using DPPH method and ascorbic acid used as the standard. UV-Vis spectroscopic technique was used to investigate the absorbance of these compounds. Compound (II) shows high antioxidant activities compared to compound (I), (III) and (IV) which show moderate to low activities.

  2. KINETIC STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TRICHLOROETHYLENE AND TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...

  3. Measurement of Hydroxyl Radicals in Plasma Pencil by Laser Induced Fluorescence

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada , Spain Topic number 6 Measurement of hydroxyl radicals in plasma pencil by laser induced fluorescence J...International Conference on Phenomena in Ionized Gases (31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013, The original document contains color images. 14...Prescribed by ANSI Std Z39-18 31st ICPIG, July 14-19, 2013, Granada , Spain Topic number 6 camera. The fluorescence signal was significantly stronger

  4. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  5. Bile acid synthesis in man. In vivo activity of the 25-hydroxylation pathway

    SciTech Connect

    Duane, W.C.; Pooler, P.A.; Hamilton, J.N.

    1988-07-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side-chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. We have previously shown in the rat that the contribution of the 25-hydroxylation pathway can be quantitated in vivo by measuring production of (/sup 14/C)acetone from (/sup 14/C)26-cholesterol. In the present study, we adapted this method to human subjects. 4 d after oral administration of 100 microCi of (/sup 14/C)26-cholesterol andmore » 1 d after beginning a constant infusion of 16.6 mumol/min unlabeled acetone, three men and two women underwent breath collections. Expired acetone was trapped and purified as the 2,4 dinitrophenylhydrazine derivative. /sup 14/CO/sub 2/ was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied by the acetone infusion rate to calculate production of (/sup 14/C)acetone. (/sup 14/C)Acetone production averaged 4.9% of total release of /sup 14/C from (/sup 14/C)26-cholesterol, estimated by /sup 14/CO2 output. The method was validated by showing that (/sup 14/C)acetone production from (/sup 14/C)isopropanol averaged 86.9% of the (/sup 14/C)-isopropanol infusion rate. We conclude that in man, as in the rat, the 25-hydroxylation pathway accounts for less than 5% of bile acid synthesis.« less

  6. Vibrational Study of Melatonin and its Radioprotective Activity towards Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Kaur, Sarvpreet; Saini, G. S. S.

    2011-12-01

    Vibrational study of Melatonin (N-acetyl 5-methoxytrypatamin) was done using FTIR and Raman spectroscopy. DFT calculations were employed to the structural analysis of melatonin and to the end products. The theoretical calculations confirmed the different observed vibrational modes. The optimized structure energy calculations of the different end products confirmed the most probable site of the hydroxyl radical attack is the hydrogen attached to nitrogen present in the indole ring.

  7. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  8. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  9. Climate and local abundance in freshwater fishes

    PubMed Central

    Knouft, Jason H.; Anthony, Melissa M.

    2016-01-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  10. Potential retention effect at fish farms boosts zooplankton abundance

    NASA Astrophysics Data System (ADS)

    Fernandez-Jover, D.; Toledo-Guedes, K.; Valero-Rodríguez, J. M.; Fernandez-Gonzalez, V.; Sanchez-Jerez, P.

    2016-11-01

    Coastal aquaculture activities influence wild macrofauna in natural environments due to the introduction of artificial structures, such as floating cages, that provide structural complexity in the pelagic system. This alters the abundance and distribution of the affected species and also their feeding behaviour and diet. Despite this, the effects of coastal aquaculture on zooplankton assemblages and the potential changes in their abundance and distribution remain largely unstudied. Traditional plankton sampling hauls between the farm mooring systems entail some practical difficulties. As an alternative, light traps were deployed at 2 farms in the SW Mediterranean during a whole warm season. Total zooplankton capture by traps at farms was higher than at control locations on every sampling night. It ranged from 3 to 10 times higher for the taxonomic groups: bivalvia, cladocera, cumacea, fish early-life-stages, gastropoda, polychaeta and tanaidacea; 10-20 times higher for amphipoda, chaetognatha, isopoda, mysidacea and ostracoda, and 22 times higher for copepoda and the crustacean juvenile stages zoea and megalopa. Permutational analysis showed significant differences for the most abundant zooplankton groups (copepoda, crustacean larvae, chaetognatha, cladocera, mysidacea and polychaeta). This marked incremental increase in zooplankton taxa at farms was consistent, irrespective of the changing environmental variables registered every night. Reasons for the greater abundance of zooplankton at farms are discussed, although results suggest a retention effect caused by cage structures rather than active attraction through physical or chemical cues.

  11. Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton

    SciTech Connect

    Lessard, E.J.

    1984-01-01

    The primary objectives of this thesis were to determine the distribution and abundance of heterotrophic dinoflagellates across the Gulf Stream system off Cape Hatteras and to assess the potential grazing impact of these microheterotrophs in plankton communities. A list of species encountered in this study and their trophic status based on epifluorescence is presented, as well as observations on the presence of external or internal symbionts. The abundance of heterotrophic dinoflagellates across the Gulf Stream region off Cape Hatteras was determined from bimonthly net tow samples over a year and from whole water samples in March. Their average abundance wasmore » twice that of net ciliates in the net plankton and ten times that of ciliates in the nanoplankton. An isotope technique was developed to measure grazing rates of individual dinoflaggellates and other microzooplankton which cannot be separated in natural populations on the basis of size. /sup 3/H-thymidine and /sup 14/C-bicarbonate were used to label natural heterotrophic (bacteria and bacterivores) and autotrophic (phytoplankton and herbivores) food, respectively. Estimates of the grazing impact of heterotrophic kinoflagellates relative to other groups of heterotrophs on phytoplankton and bacteria were made by combining abundance data and clearance rates. Such calculations suggested that heterotrophic dinoflagellates may be an important group of grazers in oceanic waters.« less

  12. A Skeletal, Gas Phase, Finite Rate, Chemical Kinetics Mechanism for Modeling the Deflagration of Ammonium Perchlorate - Hydroxyl-Terminated Polybutadiene Composite Propellants

    DTIC Science & Technology

    2016-04-01

    the Deflagration of Ammonium Perchlorate— Hydroxyl-Terminated Polybutadiene Composite Propellants by Chiung-Chu Chen and Michael McQuaid...for Modeling the Deflagration of Ammonium Perchlorate— Hydroxyl-Terminated Polybutadiene Composite Propellants by Chiung-Chu Chen and Michael...Ammonium Perchlorate—Hydroxyl-Terminated Polybutadiene Composite Propellants 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  13. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon.

    PubMed

    Akashi, Kinya; Nishimura, Noriyuki; Ishida, Yoshinori; Yokota, Akiho

    2004-10-08

    Wild watermelon (Citrullus lanatus sp.) has the ability to tolerate severe drought/high light stress conditions despite carrying out normal C3-type photosynthesis. Here, mRNA differential display was employed to isolate drought-responsive genes in the leaves of wild watermelon. One of the isolated genes, CLMT2, shared significant homology with type-2 metallothionein (MT) sequences from other plants. The second-order rate constant for the reaction between a recombinant CLMT2 protein and hydroxyl radicals was estimated to be 1.2 x 10(11) M(-1) s(-1), demonstrating that CLMT2 had an extraordinary high activity for detoxifying hydroxyl radicals. Moreover, hydroxyl radical-catalyzed degradation of watermelon genomic DNA was effectively suppressed by CLMT2 in vitro. This is the first demonstration of a plant MT with antioxidant properties. The results suggest that CLMT2 induction contributes to the survival of wild watermelon under severe drought/high light stress conditions. Copyright 2004 Elsevier Inc.

  15. Pulsed Electron Beam Water Radiolysis for Sub-Microsecond Hydroxyl Radical Protein Footprinting

    PubMed Central

    Watson, Caroline; Janik, Ireneusz; Zhuang, Tiandi; Charvátová, Olga; Woods, Robert J.; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a valuable technique for studying protein structure, but care must be taken to ensure that the protein does not unfold during the labeling process due to oxidative damage. Footprinting methods based on sub-microsecond laser photolysis of peroxide that complete the labeling process faster than the protein can unfold have been recently described; however, the mere presence of large amounts of hydrogen peroxide can also cause uncontrolled oxidation and minor conformational changes. We have developed a novel method for sub-microsecond hydroxyl radical protein footprinting using a pulsed electron beam from a 2 MeV Van de Graaff electron accelerator to generate a high concentration of hydroxyl radicals by radiolysis of water. The amount of oxidation can be controlled by buffer composition, pulsewidth, dose, and dissolved nitrous oxide gas in the sample. Our results with ubiquitin and β-lactoglobulin A demonstrate that one sub-microsecond electron beam pulse produces extensive protein surface modifications. Highly reactive residues that are buried within the protein structure are not oxidized, indicating that the protein retains its folded structure during the labeling process. Time-resolved spectroscopy indicates that the major part of protein oxidation is complete in a timescale shorter than that of large scale protein motions. PMID:19265387

  16. Measurement of hydroxyl radical density generated from the atmospheric pressure bioplasma jet

    NASA Astrophysics Data System (ADS)

    Hong, Y. J.; Nam, C. J.; Song, K. B.; Cho, G. S.; Uhm, H. S.; Choi, D. I.; Choi, E. H.

    2012-03-01

    Atmospheric pressure bioplasmas are being used in a variety of bio-medical and material processing applications, surface modifications of polymers. This plasma can generate the various kinds of radicals when it contacs with the water. Especially, hydroxyl radical species have very important role in the biological and chemical decontamination of media in this situation. It is very important to investigate the hydroxyl radical density in needle-typed plasma jet since it plays a crucial role in interaction between the living body and plasma. We have generated the needle-typed plasma jet bombarding the water surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy). It is noted that the electron temperature and plasma density are measured to be about 1.7 eV and 3.4 × 1012 cm-3, respectively, under Ar gas flow ranged from 80 to 300 sccm (standard cubic centimeter per minute) in this experiment. The hydroxyl radical density has also been investigated and measured to be maximum value of 2.6 × 1015 cm-3 for the gas flow rate of 150 sccm in the needle-typed plasma jet by the ultraviolet optical absorption spectroscopy.

  17. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  18. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat

    SciTech Connect

    Duane, W.C.; Bjoerkhem, I.H.; Hamilton, J.N.

    1988-05-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. In the present study, we have quantitated the relative importance of these two pathways in vivo by measuring production of (14C) acetone from (14C)-26-cholesterol. Four days after intraperitoneal injection of 20 to 40 muCi (14C)-26-cholesterol and 1 day after beginning a constant intravenous infusion of unlabeled acetone at 25 mumolesmore » per kg per min, 6 male and 2 female Sprague-Dawley rats underwent breath collections. Expired acetone was trapped and purified as the 2,4-dinitrophenylhydrazine derivative. 14CO2 was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied times the acetone infusion rate to calculate production of (14C)acetone. (14C) Acetone production averaged 1.7% of total release of 14C from (14C)-26-cholesterol, estimated by 14CO2 output. The method was validated by showing that (14C) acetone production from (14C)isopropanol averaged 111% of the (14C)isopropanol infusion rate. We conclude that, in the normal rat, the 25-hydroxylation pathway accounts for less than 2% of bile acid synthesis.« less

  19. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat.

    PubMed

    Duane, W C; Björkhem, I; Hamilton, J N; Mueller, S M

    1988-01-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. In the present study, we have quantitated the relative importance of these two pathways in vivo by measuring production of [14C] acetone from [14C]-26-cholesterol. Four days after intraperitoneal injection of 20 to 40 muCi [14C]-26-cholesterol and 1 day after beginning a constant intravenous infusion of unlabeled acetone at 25 mumoles per kg per min, 6 male and 2 female Sprague-Dawley rats underwent breath collections. Expired acetone was trapped and purified as the 2,4-dinitrophenylhydrazine derivative. 14CO2 was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied times the acetone infusion rate to calculate production of [14C]acetone. [14C] Acetone production averaged 1.7% of total release of 14C from [14C]-26-cholesterol, estimated by 14CO2 output. The method was validated by showing that [14C] acetone production from [14C]isopropanol averaged 111% of the [14C]isopropanol infusion rate. We conclude that, in the normal rat, the 25-hydroxylation pathway accounts for less than 2% of bile acid synthesis.

  20. Modelling On Photogeneration Of Hydroxyl Radical In Surface Waters And Its Reactivity Towards Pharmaceutical Wastes

    SciTech Connect

    Das, Radha; Dipartimento di Chimica Analitica, Universita degli Studi di Torino, Via Pietro Giuria 5, Torino; Vione, Davide

    2010-10-26

    This paper reports a simple model to describe the formation and reactivity of hydroxyl radicals in the whole column of freshwater lakes. It is based on empirical irradiation data and is a function of the water chemical composition (the photochemically significant parameters NPOC, nitrate, nitrite, carbonate and bicarbonate), the lake conformation best expressed as the average depth, and the water absorption spectrum in a simplified Lambert-Beer approach. The purpose is to derive the lifetime of dissolved molecules, due to reaction with OH, on the basis of their second-order rate constants with the hydroxyl radical. The model was applied to twomore » compounds of pharmaceutical wastes ibuprofen and carbamazepine, for which the second-order rate constants for reaction with the hydroxyl radical were measured by means of the competition kinetics with 2-propanol. The measured values of the rate constants are 1.0x10{sup 10} and 1.6x10{sup 10} M{sup -1} s{sup -1} for ibuprofen and carbamazepine, respectively. The model suggests that the lifetime of a given compound can be very variable in different lakes, even more than the lifetime of different compounds in the same lake. It can be concluded that as far as the reaction with OH, is concerned the concepts of photolability and photostability, traditionally attached to definite compounds, are ecosystem-dependent at least as much as they depend on the molecule under consideration.« less

  1. Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas

    PubMed Central

    Isono, Takahiro; Chano, Tokuhiro; Yoshida, Tetsuya; Kageyama, Susumu; Kawauchi, Akihiro; Suzaki, Masafumi; Yuasa, Takeshi

    2016-01-01

    Dormant cancer cells are deprivation-resistant, and cause a number of problems for therapeutic approaches for cancers. Renal cell carcinomas (RCCs) include deprivation-resistant cells that are resistant to various treatments. In this study, the specific characteristics of deprivation-resistant cells were transcriptionally identified by next generation sequencing. The hypoxia-inducible factors (HIF) transcription factor network was significantly enhanced in deprivation-resistant RCCs compared to the sensitive RCCs. Deprivation-resistant RCCs, that had lost Von Hippel-Lindau tumor suppressor expression, expressed hydroxyl-HIF2-alpha in the nucleus, but not sensitive-RCCs. Hydroxyl-HIF-alpha was also expressed in nuclei of RCC tissue samples. Knockdown for HIF2-alpha, but not HIF1-alpha, induced cell death related to a reduction in HIF-related gene expression in deprivation-resistant RCC cells. Chetomin, a nuclear HIF-inhibitor, induced marked level of cytotoxicity in deprivation-resistant cells, similar to the knockdown of HIF2-alpha. Therefore, hydroxyl-HIF2-alpha might be a potential therapeutic target for RCCs. PMID:27822416

  2. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  3. The hydroxyl-water megamaser connection. I. Water emission toward OH megamaser hosts

    DOE PAGES

    Wiggins, Brandon K.; Migenes, Victor; Smidt, Joseph M.

    2016-02-05

    Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different phases of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question, but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamasers. Our work roughly doubles the number of galaxies searched for emission in both molecules, which host at least one confirmed maser. We confirm with a high degree of confidence (more » $$\\gt 8\\sigma $$) the detection of water emission toward IIZw96, firmly establishing it as the second object to cohost both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamasers that coexistance may signal a brief phase along the merger sequence. In conclusion, a statistical analysis of the results of our observations provide possible evidence for an exclusion of H 2O kilomasers among OH megamaser hosts.« less

  4. Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of l-Pipecolic Acid

    PubMed Central

    Hibi, Makoto; Mori, Ryosuke; Miyake, Ryoma; Kawabata, Hiroshi; Kozono, Shoko; Takahashi, Satomi

    2016-01-01

    Hydroxypipecolic acids are bioactive compounds widely distributed in nature and are valuable building blocks for the organic synthesis of pharmaceuticals. We have found a novel hydroxylating enzyme with activity toward l-pipecolic acid (l-Pip) in a filamentous fungus, Fusarium oxysporum c8D. The enzyme l-Pip trans-4-hydroxylase (Pip4H) of F. oxysporum (FoPip4H) belongs to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily, catalyzes the regio- and stereoselective hydroxylation of l-Pip, and produces optically pure trans-4-hydroxy-l-pipecolic acid (trans-4-l-HyPip). Amino acid sequence analysis revealed several fungal enzymes homologous with FoPip4H, and five of these also had l-Pip trans-4-hydroxylation activity. In particular, the homologous Pip4H enzyme derived from Aspergillus nidulans FGSC A4 (AnPip4H) had a broader substrate specificity spectrum than other homologues and reacted with the l and d forms of various cyclic and aliphatic amino acids. Using FoPip4H as a biocatalyst, a system for the preparative-scale production of chiral trans-4-l-HyPip was successfully developed. Thus, we report a fungal family of l-Pip hydroxylases and the enzymatic preparation of trans-4-l-HyPip, a bioactive compound and a constituent of secondary metabolites with useful physiological activities. PMID:26801577

  5. Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals.

    PubMed

    Zhou, Juan; Li, Peng; Cheng, Ni; Gao, Hui; Wang, Bini; Wei, Yahui; Cao, Wei

    2012-08-01

    To understand the antioxidant properties of buckwheat honeys, we investigated their antioxidant effects on hydroxyl radical-induced DNA breaks in the non-site-specific and site-specific systems, the physicochemical properties, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity, chelating, and reducing power assays), total phenolic content and individual phenolic acids were also determined. Total phenolic content of buckwheat honeys ranged from 774 to 1694 mg PA/kg, and p-hydroxybenzoic and p-coumaric acids proved to be the main components in buckwheat honeys. All the buckwheat honey samples possess stronger capability to protect DNA in the non-site-specific systems than in the site-specific systems from being damaged by hydroxyl radicals. In the non-site-specific and site-specific system, buckwheat honeys samples prevented ()OH-induced DNA breaks by 21-78% and 5-31% over control value, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Damage mechanism of hydroxyl radicals toward adenine—thymine base pair

    NASA Astrophysics Data System (ADS)

    Tan, Rong-Ri; Wang, Dong-Qi; Zhang, Feng-Shou

    2014-02-01

    The adenine—thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 < HN61 < HN62 < H2 < H8.

  7. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds.

    PubMed

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-05

    The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response

    PubMed Central

    Xie, Liang; Pi, Xinchun; Mishra, Ashutosh; Fong, Guohua; Peng, Junmin; Patterson, Cam

    2012-01-01

    The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway. PMID:22797300

  9. Activity and the Li abundances in the FGK dwarfs⋆

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.

    2012-11-01

    Aims: The aim of the present study is to determine the Li abundances for a large set of the FGK dwarfs and to analyse the connections between the Li content, stellar parameters, and activity. Methods: The atmospheric parameters, rotational velocities and the Li abundances were determined from a homogeneous collection of the echelle spectra with high resolution and a high signal-to-noise ratio. The rotational velocities vsini were determined by calibrating the cross-correlation function. The effective temperatures Teff were estimated by the line-depth ratio method. The surface gravities log g were computed by two methods: the iron ionization balance and the parallax. The LTE Li abundances were computed using synthetic spectra method. The behaviour of the Li abundance was examined in correlation with Teff, [Fe/H] , as well as with vsini and the level of activity in three stellar groups of the different temperature range. Results: The stellar parameters and the Li abundances are presented for 150 slow rotating stars of the lower part of the main sequence. The studied stars show a decline in the Li abundance with decreasing temperature Teff and a significant spread, which should be due to the difference of age of stars. The correlations between the Li abundances, rotational velocities vsini, and the level of the chromospheric activity were discovered for the stars with 6000 > Teff > 5700 K, and it is tighter for the stars with 5700 > Teff > 5200 K. The target stars with Teff < 5200 K do not show any correlation between log A(Li) and vsini. The relationship between the chromospheric and coronal fluxes in active with detected Li as well as in less active stars gives a hint that there exist different conditions in the action of the dynamo mechanism in those stars. Conclusions: We found that the Li-activity correlation is evident only in a restricted temperature range and the Li abundance spread seems to be present in a group of low chromospheric activity stars that also

  10. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D. (Technical Monitor); Kashyap, Vinay

    2005-01-01

    The PI of this project was Jeff Scargle of NASA/Ames. Co-I's were Alma Connors of Eureka Scientific/Wellesley, and myself. Part of the work was subcontracted to Eureka Scientific via SAO, with Vinay Kashyap as PI. This project was originally assigned grant number NCC2-1206, and was later changed to NCC2-1350 for administrative reasons. The goal of the project was to obtain, derive, and develop statistical and data analysis tools that would be of use in the analyses of high-resolution, high-sensitivity data that are becoming available with new instruments. This is envisioned as a cross-disciplinary effort with a number of "collaborators" including some at SA0 (Aneta Siemiginowska, Peter Freeman) and at the Harvard Statistics department (David van Dyk, Rostislav Protassov, Xiao-li Meng, Epaminondas Sourlas, et al). We have developed a new tool to reliably measure the metallicities of thermal plasma. It is unfeasible to obtain high-resolution grating spectra for most stars, and one must make the best possible determination based on lower-resolution, CCD-type spectra. It has been noticed that most analyses of such spectra have resulted in measured metallicities that were significantly lower than when compared with analyses of high- resolution grating data where available (see, e.g., Brickhouse et al., 2000, ApJ 530,387). Such results have led to the proposal of the existence of so-called Metal Abundance Deficient, or "MAD" stars (e.g., Drake, J.J., 1996, Cool Stars 9, ASP Conf.Ser. 109, 203). We however find that much of these analyses may be systematically underestimating the metallicities, and using a newly developed method to correctly treat the low-counts regime at the high-energy tail of the stellar spectra (van Dyk et al. 2001, ApJ 548,224), have found that the metallicities of these stars are generally comparable to their photospheric values. The results were reported at the AAS (Sourlas, Yu, van Dyk, Kashyap, and Drake, 2000, BAAS 196, v32, #54.02), and at the

  11. Reionization and the Abundance of Galactic Satellites

    NASA Astrophysics Data System (ADS)

    Bullock, James S.; Kravtsov, Andrey V.; Weinberg, David H.

    2000-08-01

    One of the main challenges facing standard hierarchical structure formation models is that the predicted abundance of Galactic subhalos with circular velocities vc~10-30 km s-1 is an order of magnitude higher than the number of satellites actually observed within the Local Group. Using a simple model for the formation and evolution of dark halos, based on the extended Press-Schechter formalism and tested against N-body results, we show that the theoretical predictions can be reconciled with observations if gas accretion in low-mass halos is suppressed after the epoch of reionization. In this picture, the observed dwarf satellites correspond to the small fraction of halos that accreted substantial amounts of gas before reionization. The photoionization mechanism naturally explains why the discrepancy between predicted halos and observed satellites sets in at vc~30 km s-1, and for reasonable choices of the reionization redshift (zre~5-12) the model can reproduce both the amplitude and shape of the observed velocity function of galactic satellites. If this explanation is correct, then typical bright galaxy halos contain many low-mass dark matter subhalos. These might be detectable through their gravitational lensing effects, through their influence on stellar disks, or as dwarf satellites with very high mass-to-light ratios. This model also predicts a diffuse stellar component produced by large numbers of tidally disrupted dwarfs, perhaps sufficient to account for most of the Milky Way's stellar halo.

  12. Energetic particle abundances in solar electron events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.

    1990-01-01

    The results of a comprehensive search of the ISEE 3 energetic particle data for solar electron events with associated increases in elements with atomic number Z = 6 or greater are reported. A sample of 90 such events was obtained. The events support earlier evidence of a bimodal distribution in Fe/O or, more clearly, in Fe/C. Most of the electron events belong to the group that is Fe-rich in comparison with the coronal abundance. The Fe-rich events are frequently also He-3-rich and are associated with type III and type V radio bursts and impulsive solar flares. Fe-poor events are associated with type IV bursts and with interplanetary shocks. With some exceptions, event-to-event enhancements in the heavier elements vary smoothly with Z and with Fe/C. In fact, these variations extend across the full range of events despite inferred differences in acceleration mechanism. The origin of source material in all events appears to be coronal and not photospheric.

  13. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  14. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes

    SciTech Connect

    Galvis-Pareja, David; Centro Estudios Moleculares de la Célula; Zapata-Torres, Gerald

    2014-08-15

    Rationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca{sup 2+} channels and their renowned antioxidant properties. Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca{sup 2+} channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca{sup 2+} channel-blocking activity and antioxidant properties. The Ca{sup 2+} channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flowmore » cytometry using the ROS sensitive dye 1,2,3 DHR. Results: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca{sup 2+} channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca{sup 2+} channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Conclusions: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. - Highlights: • Dihydropyridine (DHP) molecules are widely used in cardiovascular disease. • DHPs block Ca{sup 2+} entry through LTCC—some DHPs have antioxidant activity as well. • We synthesized 6 new DHPs and tested their Ca{sup 2+} blocking and antioxidant activities. • 3-Aryl meta-hydroxyl substitution strongly increases their Ca{sup 2+} blocking activity. • 3-Aryl meta-hydroxyl substitution did not affect the antioxidant properties.« less

  15. Theoretical and modeling studies of the atmospheric chemistry of sulfur oxide and hydroxyl radical systems

    NASA Astrophysics Data System (ADS)

    El-Zanan, Hazem S.

    Models are the tools that integrate our understanding of the atmospheric processes. Box models are utilized frequently and used to simulate the fates and transformation of atmospheric pollutants. The results from models are usually used to produce one integrated system and further help the policy makers to develop control strategies. We have investigated the atmospheric chemistry of the SOx and HOx systems. The results of 15 laboratory experiments that involved the studies of the HO-SO2, reaction have been analyzed. Mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. Upon analyzing the data we have found that a very large amount of the observed SO2 oxidation (70.0 +/- 9.1%) can not be explained through the gas phase reaction of HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism, Version 2 (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. The results indicate that a mechanism(s) involving photochemical heterogeneous reactions could account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation alone. We have also investigated the distribution of the hydroxyl radical in different urban and rural areas. Photolysis of ozone and its reactions with nitrogen oxides and organic compounds, including both anthropogenic and biogenic volatile organic compounds (VOCs), control the mixing ratios of the hydroxyl radical (HO). Measurements of ozone, nitrogen oxides and volatile hydrocarbons from a deciduous forest in July 1999 and six sites located in the San Joaquin Valley obtained during the Central California Ozone Study (CCOS) measured in July 2000 and September 2000 were used to estimate the hydroxyl radical concentrations. Two methods were employed to determine the concentrations: (1) box model simulations and (2) steady state approximation of the species concentrations (Production-Loss Method). The

  16. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules aremore » identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  17. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C 6H 5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C *) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). Amore » large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C * are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  18. Monitoring Butterfly Abundance: Beyond Pollard Walks

    PubMed Central

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly reflect population sizes and trends. This study compares capture-mark-recapture (absolute abundance) and count-index (relative abundance) monitoring methods in three species (Maculinea nausithous and Iolana iolas: Lycaenidae; Minois dryas: Satyridae) in contrasted habitat types. We demonstrate that intraspecific variability in individual detectability under standard monitoring conditions is probably the rule rather than the exception, which questions the reliability of count-based indices to estimate and compare specific population abundance. Our results suggest that the accuracy of count-based methods depends heavily on the ecology and behavior of the target species, as well as on the type of habitat in which surveys take place. Monitoring programs designed to assess the abundance and trends in butterfly populations should incorporate a measure of detectability. We discuss the relative advantages and inconveniences of current monitoring methods and analytical approaches with respect to the characteristics of the species under scrutiny and resources availability. PMID:22859980

  19. Water Ice Abundance on Ceres

    NASA Image and Video Library

    2016-12-15

    This frame from an animation shows dwarf planet Ceres overlaid with the concentration of hydrogen determined from data acquired by the gamma ray and neutron detector GRaND instrument aboard NASA Dawn spacecraft. The hydrogen is in the upper yard (or meter) of regolith, the loose surface material on Ceres. The color scale gives hydrogen content in water-equivalent units, which assumes all of the hydrogen is in the form of H2O. Blue indicates where hydrogen content is higher, near the poles, while red indicates lower content at lower latitudes. In reality, some of the hydrogen is in the form of water ice, while a portion of the hydrogen is in the form of hydrated minerals (such as OH, in serpentine group minerals). The color information is superimposed on shaded relief map for context. A second animation (Figure 2) compares the hydrogen content of Ceres' regolith with that of the giant asteroid Vesta, which Dawn orbited from 2011 to 2012. These data show Vesta is a much drier world, with a much lower percent of hydrogen in its regolith. Both maps were produced from data acquired by GRaND. Videos are available at http://photojournal.jpl.nasa.gov/catalog/PIA21081

  20. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    USGS Publications Warehouse

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  1. Predicting the Dynamics of Protein Abundance

    PubMed Central

    Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael

    2014-01-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation

  2. Predicting the dynamics of protein abundance.

    PubMed

    Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael

    2014-05-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency

  3. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  4. Interstellar Abundances Toward X Per, Revisited

    NASA Technical Reports Server (NTRS)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  5. Interstellar Abundances Toward X Per, Revisited

    NASA Technical Reports Server (NTRS)

    Valencic, Lynne A.; Smith, Randall K.

    2012-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of O, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ACIS-S and XMM-Newton's RGS ins