Science.gov

Sample records for abundant interstellar molecules

  1. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  2. Ion-molecule calculation of the abundance ratio of CCD to CCH in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Adams, Nigel G.; Smith, David; Defrees, D. J.

    1987-01-01

    Laboratory measurements and calculations have been performed to determine the abundance ratio of the deuterated ethynyl radical (CCD) to the normal radical (CCH) which can be achieved in dense interstellar clouds via isotopic fractionation in the C2H2(+) (HD)=C2HD(+)(H2) system of reactions. According to this limited treatment, the CCD/CCH abundance ratio which can be attained is in the range 0.02-0.03 for the Orion molecular cloud and 0.0l-0.02 for TMC-1. These ranges of numbers are in reasonable agreement with the observed values in Orion and TMC-1. However, the analysis of the CCD/CCH abundance ratio is complicated via the presence of competing fractionation mechanisms, especially in the low-temperature source TMC-1.

  3. Interstellar magnesium abundances

    NASA Technical Reports Server (NTRS)

    Murray, M. J.; Dufton, P. L.; Hibbert, A.; York, D. G.

    1984-01-01

    An improved evaluation of the Mg II 1240 A doublet oscillator strength is used in conjunction with recently published Copernicus observations to derive accurate Mg II column densities toward 74 stars. These imply an average of 40 percent of interstellar magnesium is in the gaseous phase. Magnesium depletion is examined as a function of various interstellar extinction and density parameters, and the results are briefly discussed in terms of current depletion theories.

  4. Indirect observation of unobservable interstellar molecules

    NASA Technical Reports Server (NTRS)

    Herbst, E.; Green, S.; Thaddeus, P.; Klemperer, W.

    1977-01-01

    It is suggested that the abundances of neutral non-polar interstellar molecules unobservable by radio astronomy can be systematically determined by radio observation of the protonated ions. As an example, observed N2H(+) column densities are analyzed to infer molecular nitrogen abundances in dense interstellar clouds. The chemistries and expected densities of the protonated ions of O2, C2, CO2, C2H2 and CH4 are then discussed. Microwave transition frequencies fo HCO2(+) and C2H3(+) are estimated, and a preliminary astronomical search for HCO2(+) is described.

  5. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  6. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars).

  7. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  8. Abundance fluctuations in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1982-01-01

    The determination of abundances within the interstellar medium is reviewed. It appears that interstellar abundances within 1 kpc of the Sun are uniform to within a factor of two or three, but it is not yet possible to determine whether there are real fluctuations at this level except for deuterium for which the factor of two variations appear to be real. Establishing the level of local fluctuations in the abundances is of considerable importance for understanding the history of nucleosynthesis in the solar neighborhood, the evolution of the interstellar medium and the formation of stars.

  9. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  10. Interstellar isomeric species: Energy, stability and abundance relationship

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Arunan, Elangannan

    2016-12-01

    Accurate enthalpies of formation are reported for known and potential interstellar isomeric species using high-level ab initio quantum-chemical calculations. A total of 130 molecules comprising of 31 isomeric groups and 24 cyanide/isocyanide pairs with molecules ranging from 3 to 12 atoms have been considered. The results show an interesting relationship between energy, stability and abundance (ESA) existing among these molecules. Among the isomeric species, isomers with lower enthalpies of formation are more easily observed in the interstellar medium compared to their counterparts with higher enthalpies of formation. Available data in the literature confirm the high abundance of the most stable isomer over other isomers in the different groups considered. Potential for interstellar hydrogen bonding accounts for the few exceptions observed. Thus, in general, it suffices to say that the interstellar abundances of related species could be linked to their stabilities if other factors do not dominate. The immediate consequences of this relationship in addressing some of the whys and wherefores among interstellar molecules and in predicting some possible candidates for future astronomical observations are discussed.

  11. New observations of interstellar organic molecules

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Friberg, P.; Matthews, H. E.; Minh, Y. C.; Ziurys, L. M.

    1990-01-01

    Discussed here are new observations of 3-carbon-containing interstellar molecules which play an important role in the chemistry of dense molecular clouds: protonated carbon dioxide, formic acid, and propynal. In 1984 a new oxide of carbon, C3O, was discovered in the interstellar medium (Matthews et al. 1984; Brown et al. 1985). Theoretical models suggest that C3O is produced by dissociative electron recombination with the ion H3C3O+. Although no laboratory data for the branching ratios of such a recombination exist, it seemed to us likely that additional products would include H2C3O. This molecule has more than one isomeric form, but one stable species is propynal (HC2CHO), which had been suggested as a possible interstellar molecule by Winnewisser (1973). In observations at the National Radio Astronomy Observatory 43 m telescope in Green Bank earlier this year, researchers detected a line in the cold cloud TMC-1 which they assign to the 2(0,2)-1(0,1) transition of propynal. The observed line agrees with the laboratory frequency to well within the experimental uncertainty a few parts in 10 to the 7th power. Researchers sought and failed to detect the corresponding 2(1,1)-1(1,0) line, which is understandable given the presence of both a and b components of the electric dipole moment in propynal. The b type transitions will drain population from energy levels with K(sub p) does not equal 0 into the K(sub p) equal 0 stack. If the researchers' assignment is correct, this is the first interstellar detection of propynal. Assuming typical rotational temperatures for TMC-1 and that the line is optically thin, the column density determined is about 5 times 10 to the 12th power cm to the -2nd power, or about three times that for C3O. Formic acid (HCOOH) was the first organic acid to be observed in the interstellar medium, in the Galactic center source Sgr B2. The only other interstellar detection has been recently made in the giant molecular cloud in Orion. As part of the

  12. The determination of electron abundances in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Wootten, A.; Snell, R.; Glassgold, A. E.

    1979-01-01

    An independent method is proposed for the determination of electron abundances in dense clouds based upon the abundance ratio of HCO(+) and CO. The method is derived from a simple application of gas phase ion molecule interstellar chemistry. It is noted that unlike the fractionation of deuterated molecules, it applies to warm as well as to cool clouds. The method is illustrated with the results of the recent abundance survey of Wooten et al. (1978). Finally, it is shown that in cases where deuterium enhancement is measured, an upper limit can be obtained for the cosmic ray ionization rate.

  13. Characterization of Interstellar Organic Molecules

    NASA Astrophysics Data System (ADS)

    Gençaǧa, Deniz; Carbon, Duane F.; Knuth, Kevin H.

    2008-11-01

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  14. Characterization of Interstellar Organic Molecules

    SciTech Connect

    Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.

    2008-11-06

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  15. Systematic Theoretical Study on the Interstellar Carbon Chain Molecules

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2016-12-01

    In an effort to further our interest in understanding the basic chemistry of interstellar molecules, here we carry out an extensive investigation of the stabilities of interstellar carbon chains; C n , H2C n , HC n N and C n X (X = N, O, Si, S, H, P, H-, N-). These sets of molecules account for about 20% of all the known interstellar and circumstellar molecules. Their high abundances, therefore, demand serious attention. High-level ab initio quantum chemical calculations are employed to accurately estimate the enthalpy of formation, chemical reactivity indices, global hardness and softness, and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, and these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd-numbered carbon chains. Interstellar chemistry is not actually driven by thermodynamics, but it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd-numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even-numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.

  16. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.

    PubMed

    Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren

    2004-06-10

    The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

  17. Metastable isomers - A new class of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Green, S.; Herbst, E.

    1979-01-01

    The abundances of a variety of metastable isomers of small organic molecules, analogous to HNC/HCN, in dense interstellar clouds are considered. These metastable species, some of which are thought to exist as intermediates in laboratory organic chemical reactions, are of considerable interest to chemists. Current ideas of gas-phase, ion-molecule chemistry are utilized to demonstrate that such metastable species should often be present in dense clouds in sufficient abundance to be observed. Unfortunately, the spectral constants of metastable isomers have rarely been determined in the laboratory, and quantum chemical calculations of a varying degree of accuracy must be utilized; results are included of some new quantum chemical calculations. The interstellar chemistry and expected microwave spectra of a representative sample of possibly important interstellar metastable isomers are discussed.

  18. INTERSTELLAR ABUNDANCES TOWARD X Per, REVISITED

    SciTech Connect

    Valencic, Lynne A.; Smith, Randall K.

    2013-06-10

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the Chandra X-Ray Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO{sub 3} (enstatite) and Mg{sub 1.6}Fe{sub 0.4}SiO{sub 4} (olivine) provided the best fit to the O K edge, with N(MgSiO{sub 3})/N(Mg{sub 1.6}Fe{sub 0.4}SiO{sub 4}) = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

  19. Abundance and chemistry of interstellar HOCO(+)

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Brewer, M. K.; Irvine, W. M.; Friberg, P.; Johansson, L. E. B.

    1991-01-01

    Column densities of 10 to the 15th/sq cm toward the Galactic center and not more than 10 to the 12th/sq cm for cold dark clouds are derived from observations using an LVG model, and the chemical implications are discussed. The HOCO(+) 4(04)-3(03) line toward Sgr A is mapped. The fractional abundance of HOCO(+) in the Galactic center region was found to be three orders of magnitude larger than predicted by quiescent ion-molecule chemistry and an order of magnitude larger than predicted by an MHD shock model. It is suggested that the possibly high CO2 abundance, and consequently the observed HOCO(+) abundance in the Galactic center, may result from UV photolysis of grain mantles.

  20. The synthesis of complex molecules in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Mitchell, G. F.

    1979-01-01

    The abundances of polyatomic molecules that may be formed by CH3(+) radiative association reactions in dense interstellar molecular clouds are reevaluated. The formation of a number of complex interstellar molecules via radiative association reactions involving ionic precursors other than CH3(+) is also investigated; these additional precursors include CH3O(+), CH3CO(+), CH5(+), HCO(+), NO(+), H2CN(+), C2H2(+), and NH3(+). The results indicate that the postulated gas-phase ion-molecule radiative association reactions could potentially explain the synthesis of most of the more complex species observed in dense molecular clouds such as Sgr B2. It is concluded, however, that in order to be conclusive, laboratory data are needed to show whether or not these reactions proceed at the required rates at low temperatures.

  1. RKR Franck-Condon factors for blue and ultraviolet transitions of some molecules of astrophysical interest and some comments on the interstellar abundance of CH, CH+ and SiH+.

    NASA Technical Reports Server (NTRS)

    Liszt, H. S.; Hayden Smith, W.

    1972-01-01

    RKR Franck-Condon factors for thirteen of the blue and ultraviolet transitions of AlF, AlO, BH, BD, CH, CD, CH(+), SiO and SiH(+) have been calculated. The interstellar abundances of CH, CH(+) and SiH(+) are discussed with regard to recent laboratory measurements, our Franck-Condon factors, and observations of the sun and the interstellar medium.

  2. Collisional Transitions in Interstellar Asymmetric Top Molecules

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    2012-07-01

    For the study of a molecule in interstellar space or in circumstellar envelopes of an evolved star, one has to deal with a multi-level system in the molecule. These levels are connected through radiative as well as collisional transitions. The NLTE effects in a molecule come in the picture only when collisional transitions are present. Computation of collisional rates is quite cumbersome task. Besides emission and absorption, two anomalous phenomena: (i) MASER action and (ii) Anomalous absorption (Absorption against the CMB) are shown by some molecules in interstellar space. Both of these phenomena are good examples of NLTE prevailing in the interstellar space and circumstellar envelopes of evolved stars. In the present talk, we shall discuss about the collisional transitions between rotational levels in a molecule. The collisional rate coefficients for the rotational transition J τ → J' τ' at the kinetic temperature T, averaged over the Maxwellian distribution are C(J τ → J' τ'|T) = \\Big(\\frac{8 k T}{π μ}\\Big)^{1/2} \\Big(\\frac{1}{k T}\\Big)^2 \\int_0^\\infty σ (J τ → J' τ'|E) E {e}^{-E/kT} {d} E where μ is the reduced mass of the system and the cross section σ(J τ → J' τ'|E) for the transition is \\begin{eqnarray} σ (J τ → J' τ'|E) = \\sum_{L M M'} S(J, τ, J', τ'|L, M, M') q(L, M, M'|E) The q(L, M, M'|E) are the parameters which can be obtained from the software MOLSCAT. The spectroscopic coefficients, S ( J, τ, J', τ'|L, M, M'), depend on the wave-functions of the molecules and on the angular momentum coupling factors: S(J, τ, J', τ'|L, M, M') = \\sum_{p, p', q, q'} g^p_{J τ} g^q_{J τ} g^{p'}_{J' τ'} g^{q'}_{J' τ'} \\big \\big Here, \\big represents the Clebsch-Gorden coefficient. The g-coefficients can be obtained from laboratory analysis of the molecule and the parameters q(L, M, M'|E) can be obtained with the help of the software MOLSCAT for a

  3. Non-equilibrium processes in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Strelnitskiy, V. S.

    1979-01-01

    The types of nonequilibrium emission and absorption by interstellar molecules are summarized. The observed brightness emission temperatures of compact OH and H2O sources are discussed using the concept of maser amplification. A single thermodynamic approach was used in which masers and anti-masers are considered as heat engines for the theoretical interpretation of the cosmic maser and anti-maser phenomena. The requirements for different models of pumping are formulated and a classification is suggested for the mechanisms of pumping, according to the source and discharge of energy.

  4. Interstellar Abundances Toward X Per, Revisited

    NASA Technical Reports Server (NTRS)

    Valencic, Lynne A.; Smith, Randall K.

    2012-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of O, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  5. Interstellar Abundances Toward X Per, Revisited

    NASA Technical Reports Server (NTRS)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  6. Anomalous Oxygen and Krypton Abundances in Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    2004-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar H2 absorption toward a sample of stars observed with the HST STIS spectrograph as part of the ISM SNAP Survey. This Survey was designed to produce a database of high quality, high resolution W spectra from which interstellar gas-phase elemental abundances could be derived for large portions of the Galaxy. In particular, oxygen and krypton were chosen as excellent tracers for measuring the homogeneity of the interstellar gas due to their weak depletion into dust grains. The gas-phase 0 and Kr abundances relative to total hydrogen column density had previously been shown with HST GHRS measurements to be essentially constant in the local Milky Way. One of the main motivations of the ISM SNAP Survey was to determine if this constancy held at greater distances and in denser sightlines (where depletion into dust could be a possibility). The initial ISM SNAP STIS observations indicated a number of sightlines with unusual 0 and Kr abundances relative to the measured H I column densities. Since the appropriate benchmark for accurate abundance comparisons is the total hydrogen column density (H I plus H2), FUSE observations of interstellar H2 were carried out in these sightlines in order to determine if they represent cases of true abundance anomalies.

  7. New Large Interstellar Molecules Detected with the GBT

    NASA Technical Reports Server (NTRS)

    Hollis, Jan M.

    2005-01-01

    At present, more than 135 different molecules have been identified in interstellar clouds. The newest instrument in the interstellar molecule search arsenal is the recently commissioned Green Bank Telescope (GBT). In 2004, the large aldehydes propenal (CH2CHCHO) and propanal (CH3CH2CHO) were the first new interstellar molecules discovered with the GBT. At the same time, the GBT was used to observe interstellar glycolaldehyde (CH2OHCHO), which is the simplest possible aldehyde sugar; interstellar ethylene glycol (HOCH2CH2OH), which is the sugar alcohol of glycolaldehyde; and interstellar methylcyanodiacetylene (CH3C5N). These new GBT observations suggest that successive atomic addition reactions are common in the formation of larger related species. The observations will be presented and discussed.

  8. Abundance of atomic carbon /C I/ in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.

    1981-01-01

    The abundance of interstellar neutral atomic carbon is investigated by means of its ground state fine-structure line emission at 492 GHz using the 91.5 cm telescope of NASAs Kuiper Airborne Observatory. Atomic carbon is found to be very abundant in dense interstellar molecular clouds with column densities of about 10 to the 19th per sq cm. Because the observations have considerably greater column densities than current theories of carbon chemistry, it is suggested that the physical conditions of these clouds are not as simple as assumed in the models. Various situations are discussed which would lead to large C I abundances, including the possibility that the chemical lifetimes of the clouds are relatively short.

  9. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Suto, Masako

    1989-01-01

    Photoabsorption and fluorescence cross sections of molecules important in the interstellar medium were measured in the 90 to 200 nm region using synchrotron radiation, excimer laser, and condensed discharge lamps as light sources. The quantitative spectroscopic data are currently needed for the modeling of formation and destruction rates of molecules by the interstellar radiation field. Fluorescences from excited photofragments produced by vacuum ultraviolet radiation of molecules are dispersed to identify the emitting species. The fluorescence data are useful for the identification of emission sources in interstellar clouds.

  10. The Submillimeter-wave Rotational Spectra of Interstellar Molecules

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.; Butler, R. A. H.; Winnewisser, M.; Winnewisser, G.; Fuchs, U.; Groner, P.; Sastry, K. V. L. N.

    2002-01-01

    We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.

  11. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1986-01-01

    In the period from May 15, 1985 to May 14, 1986, the photoabsorption and photodissociation cross sections of the interstellar radical of SO and the interstellar molecules of HCl, H2CO, and CH3CN were measured and the results were reported in scientific papers. In the meantime, a windowless apparatus is used to measure the photoabsorption and photodissociation cross sections of CO in the 90-105 nm region. The optical data obtained in this research program are needed for the determination of the formation and destruction rates of molecules and radicals in the interstellar medium. Accomplishments in this research period are summarized below.

  12. Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.; Brünken, S.; Gottlieb, C. A.; McCarthy, M. C.; Thaddeus, P.

    2009-09-01

    A new interstellar molecule, HSCN (thiocyanic acid), an energetic isomer of the well-known species HNCS, has been detected toward Sgr B2(N) with the Arizona Radio Observatory 12 m telescope. Eight rotational transitions in the Ka = 0 ladder were observed in the 2 mm and 3 mm bands. Five consecutive transitions in the 3 mm band are unblended, but three in the 2 mm band are partially masked by lines of other molecules. The peak intensity of all eight transitions are well described by a rotational temperature that is in very good agreement with that of many other molecules in this source. The line width and radial velocity of HSCN match closely with those of the ground state isomer HNCS (isothiocyanic acid), HNCO (isocyanic acid), and HOCN (cyanic acid); preliminary maps indicate that all four molecules are similarly distributed in Sgr B2. Although HSCN is calculated to lie over 3000 K higher in energy than HNCS, its column density of 1.3 × 1013 cm-2 in Sgr B2(N) is only three times lower than that of HNCS. The fractional abundances of HSCN and HNCS relative to H2 are 4.5 × 10-12 and 1.1 × 10-11. By analogy with the isomeric pair HCN and HNC, these two sulfur-bearing isomers are plausibly formed from a common cation precursor.

  13. The interstellar abundances of tin and four other heavy elements

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Welty, D. E.; Morton, D. C.; Spitzer, L.; York, D. G.

    1993-01-01

    Spectra recorded at 1150-1600 A with an instrumental resolution near 16 km/s were obtained with the Goddard High-Resolution Spectrograph on board the HST. The gaseous interstellar abundances of five heavy elements along the light paths to 23 Ori, 15 Mon, 1 Sco, Pi Sco, and Pi Aqr were determined from the observations. The 1400.450 A line of Sn II was detected and identified toward three stars; at Z = 50, tin is the first element from the fifth row of the periodic table to be identified in the interstellar medium. One spectral line of each of Cu II (Z = 29) and Ga II (Z = 31), three lines of Ge II (Z = 32), and two lines of Kr I (Z = 36) were also detected toward some or all of the five stars. The depletions of these five heavy elements generally decrease monotonically with increasing atomic number toward each of the six stars, and tin is generally undepleted within the observational errors. The depletions of 26 elements from the interstellar gas in an average dense interstellar cloud appear to correlate with the elemental 'nebular' condensation temperatures more closely than with the first ionization potentials.

  14. DETERMINING INTERSTELLAR CARBON ABUNDANCES FROM STRONG-LINE TRANSITIONS

    SciTech Connect

    Sofia, U. J.; Parvathi, V. S.; Babu, B. R. S.; Murthy, J.

    2011-01-15

    Carbon is arguably the most important element in the interstellar medium, yet its abundance in gas and dust is poorly understood due to a paucity of data. We explore the possibility of substantially increasing our knowledge of interstellar carbon by applying and assessing a new method for determining the column density of the dominant ion of interstellar carbon in diffuse neutral lines of sight. The method relies on profile fitting of the strong transition of C II at 1334 A in spectra continuum normalized with stellar models. We apply our method to six sight lines for which the carbon abundance has previously been determined with a weak intersystem absorption transition. Our strong-line method consistently shows a significantly lower gas-phase C abundance than the measurements from the weak lines. This result implies that more carbon could reside in dust than was previously thought. This has implications for dust models, which often suffer from a lack of sufficient carbon to plausibly explain extinction. There is no immediately clear explanation for the difference found between the strong- and weak-line C II determinations, but there are indications that the results from the method presented here have advantages over the weak-line column densities. If this is the case, then the reported oscillator strength for the C II transition at 2325 A may be too small. Our findings further suggest that damping wings modeled with a single absorption component may not produce accurate abundances. This problem could affect a large number of H I abundances determined through absorption line analysis that are reported in the literature.

  15. Chemical Simulations of Prebiotic Molecules: Interstellar Ethanimine Isomers

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    The E- and Z-isomers of ethanimine (CH3CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s-1 in the foreground of continuum emission generated by H ii regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

  16. The solar system/interstellar medium connection - Gas phase abundances

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.

    1987-01-01

    Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.

  17. The Abundance of Mg in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Edward L.

    1997-06-01

    An empirical determination of the f-values of the far-UV Mg II λλ1239, 1240 lines is reported. The strong near-UV Mg II λλ2796, 2803 lines are generally highly saturated along most interstellar sight lines outside the local interstellar medium (ISM) and usually yield extremely uncertain estimates of Mg+ column densities in interstellar gas. Since Mg+ is the dominant form of Mg in the neutral ISM, and since Mg is expected to be a significant constituent of interstellar dust grains, the far-UV lines are critical for assessing the role of this important element in the ISM. This study consists of complete component analyses of the absorption along the lines of sight toward HD 93521 in the Galactic halo and ξ Persei and ζ Ophiuchi in the Galactic disk, including all four UV Mg+ lines and numerous other transitions. The three analyses yield consistent determinations of the λλ1239, 1240 f-values, with weighted means of (6.4 +/- 0.4) × 10-4 and (3.2 +/- 0.2) × 10-4, respectively. These results are a factor of ~2.4 larger than a commonly used theoretical estimate, and a factor of ~2 smaller than a recently suggested empirical revision. The effects of this result on gas- and dust-phase abundance measurements of Mg are discussed. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-2655. This Letter is dedicated to the memory of Professor Lyman Spitzer Jr. He was a great guy.

  18. Molecule formation by inverse predissociation. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Julienne, P. S.; Krauss, M.

    1973-01-01

    The general theory of inverse predissociation is described, and is applied to specific molecules. The list of molecules which can be formed by radiative association will be lengthened considerably by considering this phenomenon. Typical rate constants for diatoms will lie in the range 10 to the minus 16th power to 10 to the minus 20th power cu cm/sec/molecule, with the heavy atom molecules such as CN, CO, or NO generally having larger rates than the hydrides. An attempt is made to point out what molecular characteristics determine the radiative association rate and also to make estimates of what rates may be expected for various interstellar molecules. The formal theory is developed, and the molecular properties are discussed which determine the inverse predissociation rate. The details of the theory as applied to specific interstellar molecules are studied.

  19. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    SciTech Connect

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H.; Duvernay, F.; Chiavassa, T.

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  20. Carbon Dioxide Influence on the Thermal Formation of Complex Organic Molecules in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Duvernay, F.; Fray, N.; Bouilloud, M.; Chiavassa, T.; Cottin, H.

    2015-08-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H2O, NH3, CO2, H2CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  1. New Interstellar Dust Models Consistent with Interstellar Extinction, Emission and Abundances Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, V.; Dwek, E.; Arendt, R. G.; Oegerle, William (Technical Monitor)

    2001-01-01

    We present new interstellar dust models that are consistent with both, the FUV to near-IR extinction and infrared (IR) emission measurements from the diffuse interstellar medium. The models are characterized by different dust compositions and abundances. The problem we solve consists of determining the size distribution of the various dust components of the model. This problem is a typical ill-posed inversion problem which we solve using the regularization approach. We reproduce the Li Draine (2001, ApJ, 554, 778) results, however their model requires an excessive amount of interstellar silicon (48 ppM of hydrogen compared to the 36 ppM available for an ISM of solar composition) to be locked up in dust. We found that dust models consisting of PAHs, amorphous silicate, graphite, and composite grains made up from silicates, organic refractory, and water ice, provide an improved fit to the extinction and IR emission measurements, while still requiring a subsolar amount of silicon to be in the dust. This research was supported by NASA Astrophysical Theory Program NRA 99-OSS-01.

  2. Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide

    NASA Astrophysics Data System (ADS)

    Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M.

    2014-09-01

    The largest noncyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a nonterminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic.

  3. Recent observations of organic molecules in nearby cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Ohishi, M.; Morimoto, M.; Kaifu, N.; Friberg, P.

    1985-01-01

    Recent investigations of the organic chemistry of relatively nearby cold, dark interstellar clouds are reported. Specifically, the presence of interstellar tricarbon monoxide (C3O) in Taurus Molecular Cloud 1 (TMC-1) is confirmed. The first detection in such regions of acetaldehyde (CH3CHO), the most complex oxygen-containing organic molecule yet found in dark clouds is reported, as well as the first astronomical detection of several molecular rotational transitions, including the J = 18-17 and 14-13 transitions of cyanodiacetylene (HC5N), the 1(01)-0(00) transition of acetaldehyde, and the J = 5-4 transition of C3O. A significant upper limit is set on the abundance of cyanocarbene (HCCN) as a result of the first reported interstellar search for this molecule.

  4. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  5. Centrosymmetric molecules as possible carriers of diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Schmidt, M. R.; Galazutdinov, G. A.; Musaev, F. A.; Betelesky, Y.; Krełowski, J.

    2010-11-01

    In this paper, we present new data with interstellar C2 (Phillips bands A 1 Πu-X1 Σ+g), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excitation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 Å) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 Å) for which this effect does not exist. Based on observations made with ESO telescopes at the Paranal Observatory under programme IDs 266.D-5655(A), 67.C-0281(A), 71.C-0513(C), 67.D-0439(A) and 082.C-0566(A) and at La Silla under programme IDs 078.C-0403(A), 076.C-0164(A) and 073.C-0337(A). Also based on observations made with the 1.8-m telescope in South Korea and the 2-m telescope at the International Centre for Astronomical and Medico-Ecological Research, Terskol, Russia. E-mail: kazmierczak@astri.uni.torun.pl (MK); schmidt@ncac.torun.pl (MRS); runizag@gmail.com (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  6. Infrared emission spectra of candidate interstellar aromatic molecules

    NASA Technical Reports Server (NTRS)

    Schlemmer, S.; Balucani, N.; Wagner, D. R.; Steiner, B.; Saykally, R. J.

    1996-01-01

    Interstellar dust is responsible, through surface reactions, for the creation of molecular hydrogen, the main component of the interstellar clouds in which new stars form. Intermediate between small, gas-phase molecules and dust are the polycyclic aromatic hydrocarbons (PAHs). Such molecules could account for 2-30% of the carbon in the Galaxy, and may provide nucleation sites for the formation of carbonaceous dust. Although PAHs have been proposed as the sources of the unidentified infrared emission bands that are observed in the spectra of a variety of interstellar sources, the emission characteristics of such molecules are still poorly understood. Here we report laboratory emission spectra of several representative PAHs, obtained in conditions approximating those of the interstellar medium, and measured over the entire spectral region spanned by the unidentified infrared bands. We find that neutral PAHs of small and moderate size can at best make only a minor contribution to these emission bands. Cations of these molecules, as well as much larger PAHs and their cations, remain viable candidates for the sources of these bands.

  7. The abundance of boron in diffuse interstellar clouds

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.

    The origins of the stable isotopes of boron remain uncertain despite much theoretical and observational effort. Spallation reactions between relativistic Galactic cosmic rays (GCR) and interstellar nuclei can adequately account for the production of 10 B and contribute to the cosmic abundance of 11 B. However, an additional source of 11 B synthesis is required to raise the isotopic ratio of 11 B/ 10 B from its GCR spallation value (2.4) to the value measured in carbonaceous chondrites (4.0). The n-process, neutrino-induced spallation in Type II supernovae, is a potentially significant source of 11 B production. Since neutrino-induced spallation does not result in substantial yields for 10 B, this process could naturally explain the enhancement in 11 B/ 10 B over the predictions of standard GCR spallation. Without the n-process, enhanced 11 B production, relative to 10 B, could be attributed to an increased flux of low- energy (5-40 MeV nucleon -1 ) cosmic rays, which are unobservable from Earth due to magnetic shielding by the solar wind. In this thesis, I present a comprehensive survey of boron abundances in diffuse interstellar clouds from Space Telescope Imaging Spectrograph (STIS) observations made with the Hubble Space Telescope in an effort to identify the sources responsible for light element nucleosynthesis. The present sample of 56 Galactic sight lines is the result of a complete search of archival STIS data for the B II l1362 resonance line. Each detection is confirmed by the presence of absorption due to O I l1355, Cu II l1358, and Ga II l1414 (when available) at the same velocity. Like B + , these species represent the dominant ionization stage of their element in neutral diffuse clouds and therefore should coexist. Profile templates based on synthesized absorption profiles of O I, Cu II, and Ga II are fitted to the B II line, yielding the total boron column density along each line of sight. By synthesizing B II profiles with components seen in high

  8. Chemical modeling of interstellar molecules in dense cores

    NASA Astrophysics Data System (ADS)

    Quan, Donghui

    There are billions of stars in our galaxy, the Milky Way Galaxy. In between the stars is where the so-called "interstellar medium" locates. The majority of the mass of interstellar medium is clumped into interstellar clouds, in which cold and hot dense cores exist. Despite of the extremely low densities and low temperatures of the dense cores, over one hundred molecules have been found in these sources. This makes the field of astrochemistry vivid. Chemical modeling plays very important roles to understand the mechanism of formation and destruction of interstellar molecules. In this thesis, chemical kinetics models of different types were applied: in Chapter 4, pure gas phase models were used for seven newly detected or confirmed molecules by the Green Bank Telescope; in Chapter 5, the potential reason of non-detection of O 2 was explored; in Chapter 6, the mysterious behavior of CHNO and CHNS isomers were studied by gas-grain models. In addition, effects of varying rate coefficients to the models are also discussed in Chapter 3 and 7.

  9. Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, shockingly large molecules by early interstellar chemistry standards, is very strong.

  10. Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal

    NASA Technical Reports Server (NTRS)

    Dickens, J. E.; Irvine, W. M.; Nummelin, A.; Mollendal, H.; Saito, S.; Thorwirth, S.; Hjalmarson, A.; Ohishi, M.

    2001-01-01

    Rotational spectroscopy at millimeter wavelengths is a powerful means of investigating the chemistry of dense interstellar clouds. These regions can exhibit an interesting complement of gas phase molecules, including relatively complex organics. Here we report the tentative first astronomical detection of aziridine (ethylenimine), the possible detection of propenal (acrolein), and upper limits on the abundances of cyclopropenone, furan, hydroxyethanal (glycolaldehyde), thiohydroxylamine (NH2SH), and ethenol (vinyl alcohol) in various interstellar clouds.

  11. Astrochem: Abundances of chemical species in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Maret, Sébastien; Bergin, Edwin A.

    2015-07-01

    Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

  12. Molecules in Laboratory and in Interstellar Space?

    NASA Astrophysics Data System (ADS)

    Thimmakondu, Venkatesan S.

    2016-06-01

    In this talk, the quantum chemistry of astronomically relevant molecules will be outlined with an emphasis on the structures and energetics of C_7H_2 isomers, which are yet to be identified in space. Although more than 100's of isomers are possible for C_7H_2, to date only 6 isomers had been identified in the laboratory. The equilibrium geometries of heptatriynylidene (1), cyclohepta-1,2,3,4-tetraen-6-yne (2), and heptahexaenylidene (3), which we had investigated theoretically will be discussed briefly. While 1 and 3 are observed in the laboratory, 2 is a hypothetical molecule. The theoretical data may be useful for the laboratory detection of 2 and astronomical detection of 2 and 3. THIS WORK IS SUPPORTED BY A RESEARCH GRANT (YSS/2015/00099) FROM SERB, DST, GOVERNMENT OF INDIA. Apponi, A. P.; McCarthy, M. C.; Gottlieb, C. A.; Thaddeus, P. Laboratory Detection of Four New Cumulene Carbenes: H_2C_7, H_2C_8, H_2C_9, and D_2C10, Astrophys. J. 2000, 530, 357-361 Ball, C. D; McCarthy, M. C.; Thaddeus, P. Cavity Ringdown Spectroscopy of the Linear Carbon Chains HC_7H, HC_9H, HC11H, and HC13H. J. Chem. Phys. 2000, 112, 10149-10155 Dua, S.; Blanksby, S. J.; Bowie, J. H. Formation of Neutral C_7H_2 Isomers from Four Isomeric C_7H_2 Radical Anion Precursors in the Gas Phase. J. Phys. Chem. A, 2000, 104, 77-85. Thimmakondu, V. S. The equilibrium geometries of heptatriynylidene, cyclohepta-1,2,3,4-tetraen-6-yne, and heptahexaenylidene, Comput. Theoret. Chem. 2016, 1079, 1-10

  13. Desorption of Hot Molecules from Photon Irradiated Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Thrower, J. D.; Burke, D. J.; Collings, M. P.; Dawes, A.; Holtom, P. D.; Jamme, F.; Kendall, P.; Brown, W. A.; Clark, I. P.; Fraser, H. J.; McCoustra, M. R. S.; Mason, N. J.; Parker, A. W.

    2008-02-01

    We present experimental measurements of photodesorption from ices of astrophysical relevance. Layers of benzene and water ice were irradiated with a laser tuned to an electronic transition in the benzene molecule. The translational energy of desorbed molecules was measured by time-of-flight (ToF) mass spectrometry. Three distinct photodesorption processes were identified: a direct adsorbate-mediated desorption producing benzene molecules with a translational temperature of around 1200 K, an indirect adsorbate-mediated desorption resulting in water molecules with a translational temperature of around 450 K, and a substrate-mediated desorption of both benzene and water producing molecules with translational temperatures of around 530 and 450 K, respectively. The translational temperature of each population of desorbed molecules is well above the temperature of the ice matrix. The implications for gas-phase chemistry in the interstellar medium are discussed.

  14. Recombination Rates of Electrons with Interstellar PAH Molecules

    NASA Technical Reports Server (NTRS)

    Ballester, Jorge (Cartographer)

    1996-01-01

    The goal of this project is to develop a general model for the recombination of electrons with PAH molecules in an interstellar environment. The model is being developed such that it can be applied to a small number of families of PAHs without reference to specific molecular structures. Special attention will be focused on modeling the approximately circular compact PAHs in a way that only depends on the number of carbon atoms.

  15. Interferometric observations of large biologically interesting interstellar and cometary molecules

    PubMed Central

    Snyder, Lewis E.

    2006-01-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled “biomolecules.” Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168

  16. The prebiotic molecules observed in the interstellar gas

    PubMed Central

    Thaddeus, P

    2006-01-01

    Over 130 molecules have been identified in the interstellar gas and circumstellar shells, the largest among them is a carbon chain with 13 atoms and molecular weight of 147 (twice that of the simplest amino acid glycine). The high reliability of astronomical identifications, as well as the fairly accurate quantitative analysis which can often be achieved, is emphasized. Glycine itself has been claimed, but a recent analysis indicates that few, if any, of the astronomical radio lines attributed to glycine are actually from that molecule. Polycyclic aromatic hydrocarbons (PAHs) have long been proposed as the source of the unidentified infrared bands between 3 and 16 μm, but no single PAH has been identified in space, partly because PAHs generally have weak or non-existent radio spectra. A remarkable exception is the non-planar corannulene molecule (C20H10) that has a strong radio spectrum; in the rich molecular cloud TMC-1, it is found that less than 10−5 of the carbon is contained in this molecule, suggesting that PAHs are not the dominant large molecules in the interstellar gas, as has been claimed. Owing to inherent spectroscopic limitations, determining the structures of the large molecules in space may require capture of the dust grains, which are continually entering the outer Solar System. PMID:17008209

  17. Detection of interstellar N2O: A new molecule containing an N-O bond

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Hollis, J. M.; Snyder, L. E.

    1994-01-01

    A new interstellar molecule, N2O, known as nitrous oxide or 'laughing gas,' has been detected using the NRAO 12 m telescope. The J = 3 - 2, 4 - 3, 5 - 4, and 6 - 5 rotational transitions of this species at 75, 100, 125, and 150 GHz, respectively, were observed toward Sgr B2(M). The column density derived for N2O in this source is N(sub tot) approx. 10(exp 15)/sq. cm, which corresponds to a fractional abundance of approx. 10(exp -9), relative to H2. This value implies abundance ratios of N2O/NO approx. 0.1 and N2O/HNO approx. 3 in the Galactic center. Such ratios are in excellent agreement with predictions of ion-molecule models of interstellar chemistry using early-time calculations and primarily neutral-neutral reactions. N2O is the third interstellar molecule detected thus far containing an N-O bond. Such bonds cannot be so rare as previously thought.

  18. High level ab initio structural and spectroscopic studies of interstellar ion-molecule complexes and interstellar triatomic molecules

    NASA Astrophysics Data System (ADS)

    Cotton, C. Eric

    Ion molecule complexes are considered possible novel intermediates in the molecular complexification of the interstellar medium. This study reports the results of calculations on the CO, CS, PN, HCN, and HNC molecules and the HCO+, HCS+, HPN+, and HNCH+ ions and their ion-molecule complexes, CO-HCO +, SC-HCS+, and PN-HNP+, HCN-HCNH +, HNC-HCNH+, and HCN-HNCH+. Results from calculations on the triatomic molecules HNSx, HSN x, HPSx, and HNSx (x = -1, 0 , +1) and their low lying electronic excited states are reported. Binging energies of the complexes are found to be significant, implying that these complexes may be observable. It is also found that the interaction of HNC with HNCH+ leads to a novel barrierless isomerization pathway for HNC to HCN. Structural and spectroscopic results from the highly correlated CCSD(T)/aug-cc-pV(6+d)Z and the explicitly correlated CCSD(T)-F12/VQZ-F12 calculations are within 1% when compared to available experimental values. Essential structural and spectroscopic properties for ions and molecules as well as ion-molecule complex are reported. This study provides evidence of novel intermediates and triatomic molecules that can be included in the molecular pathways that constitute the chemical models describing molecular complexification in the interstellar medium.

  19. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical

    NASA Astrophysics Data System (ADS)

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-05-01

    We conducted radioastronomical observations of 9 dark clouds with the IRAM 30 m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483 and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which significantly extends the number of dark clouds where these molecules are known to be present. We have derived a beam-averaged column density of HCCO of ~5 × 1011 cm-2 in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×1012 cm-2, and CH2CHCH3, (1.9-4-2) ×1013 cm-2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in light of these new observational results. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Tables 3-6 are available in electronic form at http://www.aanda.org

  20. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical.

    PubMed

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-05-01

    We have conducted radioastronomical observations of 9 dark clouds with the IRAM 30m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483, and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which extends significantly the number of dark clouds where these molecules are known to be present. We derive a beam-averaged column density of HCCO of ~ 5 × 10(11) cm(-2) in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×10(12) cm(-2), and CH2CHCH3, (1.9-4-2) ×10(13) cm(-2), are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in the light of these new observational results.

  1. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical★

    PubMed Central

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-01-01

    We have conducted radioastronomical observations of 9 dark clouds with the IRAM 30m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483, and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which extends significantly the number of dark clouds where these molecules are known to be present. We derive a beam-averaged column density of HCCO of ~ 5 × 1011 cm−2 in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×1012 cm−2, and CH2CHCH3, (1.9-4-2) ×1013 cm−2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in the light of these new observational results. PMID:26722130

  2. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  3. Abundances of Neutral and Ionized PAH Along The Lines-of-Sight of Diffuse and Translucent Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Galazutdinov, Gazinur; Krewloski, Jacek; Biennier, Ludovic; Beletsky, Yuri; Song, In-Ok

    2013-01-01

    The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.

  4. Angular motion of a PAH molecule in interstellar environment

    NASA Technical Reports Server (NTRS)

    Rouan, D.; Leger, Alain; Omont, A.; Giard, Martin

    1989-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules have recently been proposed as an important and hitherto undetected component of the Interstellar Medium (ISM). The theory was based on an explanation of the Unidentified IR Emission Bands by Leger et al. It has already led to a verified prediction on extended galactic and extragalactic emissions measured by IRAS, or by a recent balloon borne experiment. The physics that rules the motion of such molecules in the ISM was studied, taking into account their coupling with the ambient gas, the radiation field (absorption and emission) and the static magnetic field. This is important for many implications of the PAH theory such as the radio emission by these molecules or the expected polarization of their IR emission. A reflection nebulae is considered where the situation is rather well known. Every day life of a mean PAH molecule in such a region is as follows: every 3 hrs a UV photon is absorbed heating the molecule to a thousand degs; the temperature decay due to cooling by IR emission follows then within a few seconds. A collision with a molecule of gas occurs typically once a week, while an H atom is ejected or captured at the same rate. A typical cooling cycle after a heat impulse is given. The PAH molecules studied as representative of the family has typically 50 atoms, a radius of 4.5 A, is circular and has a molecular mass of M = 300; its permanent dipole moment is 3 Debye.

  5. Modeling the Infrared Emission Spectra of Specific PAH Molecules in Interstellar Space

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2007-05-01

    The 3.3, 6.2, 7.7, 8.6 and 11.3 micron emission features ubiquitously seen in a wide variety of Galactic and extragalactic objects, are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Although the PAH hypothesis is quite successful in explaining the general pattern of the observed emission spectra, so far there is no actual precise identification of a single specific PAH molecule in interstellar space. Therefore, when modeling the observed PAH emission spectra, astronomers usually take an empirical approach by constructing 'astro-PAHs' which do not represent any specific material, but approximate the actual absorption properties of the PAH mixture in astrophysical regions. We propose a Spitzer Theory Program to study the photoexcitation of specific PAH molecules and their ions in interstellar space, taking a statistical-mechanical (instead of thermal) approach. For most of the specific PAH molecules selected for this research (with a small number of vibrational degrees of freedom), thermal approximation is not valid. Using available laboratory and quantum-chemical data (e.g. vibrational frequencies, UV/visible/IR absorption cross sections), we will calculate the emission spectra of 21 representative specific PAH molecules and their ions, ranging from naphthalene to circumcoronene, illuminated by interstellar radiation fields of a wide range of intensities. This program will create a web-based 'library' of the emission spectra of 21 specific PAH molecules and their ions as a function of starlight intensities. This 'library' will be made publicly available by October 2008 on the internet at http://www.missouri.edu/~lia/. By comparing observed PAH spectra with model spectra produced by co-adding the emission spectra of different PAH molecules available in this 'library' (with different weights for different species), one will be able to estimate the total PAH mass and relative abundances of each PAH species, using real PAH properties.

  6. Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH)

    NASA Technical Reports Server (NTRS)

    Dickens, J. E.; Irvine, W. M.; DeVries, C. H.; Ohishi, M.

    1997-01-01

    Methylenimine (CH2NH) has been convincingly detected for the first time outside the Galactic center as part of a study of the hydrogenation of interstellar molecules. We have observed transitions from energy levels up to about 100 K above the ground state in the giant molecular clouds W51, Orion KL and G34.3 + 0.15. In addition, CH2NH was found at the " radical-ion peak" on the quiescent ridge of material in the Orion molecular cloud. The abundance ratio CH2NH/HCN at the radical-ion peak agrees with the predictions of recent gas-phase chemical models. This ratio is an order of magnitude higher in the warmer cloud cores, suggesting additional production pathways for CH2NH, probably on interstellar grains.

  7. The interstellar carbon abundance. II - Rho Ophiuchi and Beta Scorpii

    NASA Technical Reports Server (NTRS)

    Welty, D. E.; York, D. G.; Hobbs, L. M.

    1986-01-01

    A procedure designed to obtain increased sensitivity from high-dispersion IUE spectra by using a flat-field spectrum to remove nonrandom noise due to the response pattern of the SEC vidicon detector is described. Application of this procedure to spectra of Rho Oph and Beta(1) Sco near the spin-forbidden interstellar 2325 line of C II yields 2 sigma upper limits on absorption of W (lambda) not greater than about 4 mA. The resulting depletion of carbon from the interstellar gas toward Rho Oph exceeds a factor of 1.4.

  8. Probing non polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH(+)).

    PubMed

    Agúndez, M; Cernicharo, J; de Vicente, P; Marcelino, N; Roueff, E; Fuente, A; Gerin, M; Guélin, M; Albo, C; Barcia, A; Barbas, L; Bolaño, R; Colomer, F; Diez, M C; Gallego, J D; Gómez-González, J; López-Fernández, I; López-Fernández, J A; López-Pérez, J A; Malo, I; Serna, J M; Tercero, F

    2015-07-01

    Cyanogen (NCCN) is the simplest member of the series of dicyanopolyynes. It has been hypothesized that this family of molecules can be important constituents of interstellar and circumstellar media, although the lack of a permanent electric dipole moment prevents its detection through radioastronomical techniques. Here we present the first solid evidence of the presence of cyanogen in interstellar clouds through the detection of its protonated form toward the cold dark clouds TMC-1 and L483. Protonated cyanogen (NCCNH(+)) has been identified through the J = 5 - 4 and J = 10 - 9 rotational transitions using the 40m radiotelescope of Yebes and the IRAM 30m telescope. We derive beam averaged column densities for NCCNH(+) of (8.6 ± 4.4) × 10(10) cm(-2) in TMC-1 and (3.9 ± 1.8) × 10(10) cm(-2) in L483, which translate to fairly low fractional abundances relative to H2, in the range (1-10) × 10(-12). The chemistry of protonated molecules in dark clouds is discussed, and it is found that, in general terms, the abundance ratio between the protonated and non protonated forms of a molecule increases with increasing proton affinity. Our chemical model predicts an abundance ratio NCCNH(+)/NCCN of ~ 10(-4), which implies that the abundance of cyanogen in dark clouds could be as high as (1-10) × 10(-8) relative to H2, i.e., comparable to that of other abundant nitriles such as HCN, HNC, and HC3N.

  9. Probing non polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)★

    PubMed Central

    Agúndez, M.; Cernicharo, J.; de Vicente, P.; Marcelino, N.; Roueff, E.; Fuente, A.; Gerin, M.; Guélin, M.; Albo, C.; Barcia, A.; Barbas, L.; Bolaño, R.; Colomer, F.; Diez, M. C.; Gallego, J. D.; Gómez-González, J.; López-Fernández, I.; López-Fernández, J. A.; López-Pérez, J. A.; Malo, I.; Serna, J. M.; Tercero, F.

    2015-01-01

    Cyanogen (NCCN) is the simplest member of the series of dicyanopolyynes. It has been hypothesized that this family of molecules can be important constituents of interstellar and circumstellar media, although the lack of a permanent electric dipole moment prevents its detection through radioastronomical techniques. Here we present the first solid evidence of the presence of cyanogen in interstellar clouds through the detection of its protonated form toward the cold dark clouds TMC-1 and L483. Protonated cyanogen (NCCNH+) has been identified through the J = 5 – 4 and J = 10 – 9 rotational transitions using the 40m radiotelescope of Yebes and the IRAM 30m telescope. We derive beam averaged column densities for NCCNH+ of (8.6 ± 4.4) × 1010 cm−2 in TMC-1 and (3.9 ± 1.8) × 1010 cm−2 in L483, which translate to fairly low fractional abundances relative to H2, in the range (1-10) × 10−12. The chemistry of protonated molecules in dark clouds is discussed, and it is found that, in general terms, the abundance ratio between the protonated and non protonated forms of a molecule increases with increasing proton affinity. Our chemical model predicts an abundance ratio NCCNH+/NCCN of ~ 10−4, which implies that the abundance of cyanogen in dark clouds could be as high as (1-10) × 10−8 relative to H2, i.e., comparable to that of other abundant nitriles such as HCN, HNC, and HC3N. PMID:26543239

  10. Dynamical evolution and molecular abundances of interstellar clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Heere, Karen R.; Tarafdar, Shankar P.

    1991-01-01

    Dynamical models are presented that start with interstellar gas in an initial diffuse state and consider their gravitational collapse and the formation of dense cores. Frozen-in tangled magnetic fields are included to mimic forces that might oppose gravitational contraction and whose effectiveness may increase with increasing core densities. Results suggest the possibility that dense cloud cores may be dynamically evolving ephemeral objects, such that their lifespan at a given core density decreases as that density increases.

  11. Small and Large Molecules in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Huang, Jane

    2014-06-01

    Although molecules with a wide range of sizes exist in dense clouds (e.g. H(C≡C)_nC≡N with n = 0 - 5), molecules identified in diffuse clouds are all small ones. Since the initial discovery of CH, CN, and CH^+, all molecules detected in the optical region are diatomics except for H_3^+ in the infrared and C_3 in the visible. Radio observations have been limited up to triatomic molecules except for H_2CO and the ubiquitous C_3H_2. The column densities of all molecules are less than 1014 cm-2 with the two exceptions of CO and H_3^+ as well as CH and C_2 in a few special sightlines. Larger molecules with many carbon atoms have been searched for but have not been detected. On the other hand, the observations of a great many diffuse interstellar bands (380 toward HD 204827 and 414 toward HD 183143) with equivalent widths from 1 to 5700 m Å indicate high column densities of many heavy molecules. If an electronic transition dipole moment of 1 Debye is assumed, the observed equivalent widths translate to column densities from 5 × 1011 cm-2 to 3 × 1015 cm-2. It seems impossible that these large molecules are formed from chemical reactions in space from small molecules. It is more likely that they are fragments of aggregates, perhaps mixed aromatic/aliphatic organic nanoparticles (MAONS). MAONS and their large fragment molecules are stable against photodissociation in the diffuse ISM because the energy of absorbed photons is divided into statistical distributions of vibrational energy and emitted in the infrared rather than breaking a chemical bond. We use a simple Rice-Ramsperger-Kassel-Marcus theory to estimate the molecular size required for the stabilization. Snow, T. P. & McCall, B. J. 2006, ARA&A, 44 367 Hobbs, L. M., York, D. G., Snow, T. P., Oka, T., Thorburn, J. A., et al. 2008, ApJ, 680 1256 Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., et al. 2009, ApJ, 705 32 Kwok, S. & Zhang, S. 2013, ApJ, 771 5 Freed, K. F., Oka, T., & Suzuki, H

  12. Interstellar iron and manganese - UV oscillator strengths and abundances

    NASA Technical Reports Server (NTRS)

    Lugger, P.; Barker, E.; York, D. G.; Oegerle, W.

    1982-01-01

    Observations of 16 UV resonance lines of Fe II and six of Mn II in five stars are used to derive new f-values for the lines of these species at wavelengths lower than 1300 A. Values of forbidden lines Fe/H and Mn/H are derived. These new values are used to reassess mean depletions and range of variations in depletions for several lines of sight. On an integrated line-of-sight basis, depletions of Fe and Mn show larger variations than P, Cl, or Zn. The mean local depletion forbidden line Fe/H is 1.65, in interstellar gas. One Fe II line, 2366.864 A, has never been detected. Its f-value is shown to be much lower than previously thought. This line is therefore not useful for interstellar studies at the present time. It is suggested that the true wavelength of 1142 A of Fe II, from UV multiplet 10, is 1142.285 A.

  13. PAHs molecules and heating of the interstellar gas

    NASA Technical Reports Server (NTRS)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  14. Abundances of Neutral and Ionized PAH Along The Lines-of-Sight of Diffuse and Translucent Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2013-06-01

    The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments. Acknowledgements: F.S. acknowledges the support of the Astrophysics Research and Analysis Program of the NASA Space Mission Directorate and the technical support provided by R. Walker at NASA ARC. J.K. acknowledges the financial support of the Polish State. The authors are deeply grateful to the

  15. The interstellar depletion mystery, or where have all those atoms gone. [cosmic abundance as grain model evidence

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The observed depletion of intermediate-weight elements O, C, and N from the interstellar medium is shown to be significantly greater than can be accounted for by accretion on interstellar dust. A number of possible explanations are presented, ranging from the existence in interstellar space of many 'snowballs' intermediate in size between dust grains and comets to the existence of many far more complicated interstellar molecules than have been detected.

  16. The Ne-to-O Abundance Ratio of the Interstellar Medium from IBEX-Lo Observations

    NASA Astrophysics Data System (ADS)

    Park, J.; Kucharek, H.; Möbius, E.; Leonard, T.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  17. The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations

    SciTech Connect

    Park, J.; Kucharek, H.; Möbius, E.; Leonard, T.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  18. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  19. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.

    PubMed

    Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R

    2014-01-01

    In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously

  20. Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery

    NASA Astrophysics Data System (ADS)

    2007-07-01

    knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations

  1. INTERSTELLAR ICES AS WITNESSES OF STAR FORMATION: SELECTIVE DEUTERATION OF WATER AND ORGANIC MOLECULES UNVEILED

    SciTech Connect

    Cazaux, S.; Spaans, M.; Caselli, P.

    2011-11-10

    Observations of star-forming environments revealed that the abundances of some deuterated interstellar molecules are markedly larger than the cosmic D/H ratio of 10{sup -5}. Possible reasons for this pointed to grain surface chemistry. However, organic molecules and water, which are both ice constituents, do not enjoy the same deuteration. For example, deuterated formaldehyde is very abundant in comets and star-forming regions, while deuterated water rarely is. In this paper, we explain this selective deuteration by following the formation of ices (using the rate equation method) in translucent clouds, as well as their evolution as the cloud collapses to form a star. Ices start with the deposition of gas-phase CO and O onto dust grains. While reaction of oxygen with atoms (H or D) or molecules (H{sub 2}) yields H{sub 2}O (HDO), CO only reacts with atoms (H and D) to form H{sub 2}CO (HDCO, D{sub 2}CO). As a result, the deuteration of formaldehyde is sensitive to the gas D/H ratio as the cloud undergoes gravitational collapse, while the deuteration of water strongly depends on the dust temperature at the time of ice formation. These results reproduce well the deuterium fractionation of formaldehyde observed in comets and star-forming regions and can explain the wide spread of deuterium fractionation of water observed in these environments.

  2. Interstellar Medium Abundances in the Pegasus Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Skillman, Evan D.; Bomans, Dominik J.; Kobulnicky, Henry A.

    1997-01-01

    We report Hα imaging and optical spectrophotometry of a faint H II region in the Pegasus dwarf irregular galaxy, a low-luminosity, possible Local Group member. We find that the emission-line spectrum is consistent with excitation by a single star with a temperature of less than 35,000 K, in agreement with Aparicio & Gallart (1995). Although we cannot measure the electron temperature of the ionized gas directly, we can infer a narrow range in electron temperature by comparing the emission-line spectrum with photoionization models. Then we derive a relatively low oxygen abundance of approximately 10% of the solar value, in accordance with the well-known metallicity-luminosity relationship for dwarf irregular galaxies. We also find an N/O ratio of 6%, which is higher than the typical value of 3% found in more actively star-forming dwarf irregular galaxies. By comparing this high N/O ratio with the recent star formation history of the Pegasus dwarf irregular derived by Aparicio & Gallart, we hypothesize that this may be evidence of delayed N production.

  3. Changes in interstellar atomic abundances from the galactic plane to the halo

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1982-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.

  4. Interstellar gas phase abundance of carbon, oxygen, nitrogen, copper, gallium, germanium, and krypton toward Zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Savage, Blair D.; Ebbets, Dennis C.

    1991-01-01

    An analysis of weak (less than 10 mA) UV interstellar absorption line data obtained for the line of sight to the O9.5 IV star Zeta Oph is presented. Measurements of weak semiforbidden lines of N I, O I, Cu II, and a new UV detection of Na I are reported along with a small upper limit for C II. Interstellar detections of Ga II, Ge II, and Kr I are also presented. Ga, Ge, and Kr represent the heaviest elements detected in the ISM. A comparison of the derived column densities to cosmic abundances shows Ga to be depleted by about -1.2 dex while Ge is overabundant by +0.2 dex. Assuming Kr to be undepleted, a logarithmic cosmic abundance of Kr/H = 2.95 is obtained on the scale where H = 12.00.

  5. Ubiquitous interstellar diamond and SiC in primitive chondrites - Abundances reflect metamorphism

    NASA Technical Reports Server (NTRS)

    Huss, Gary R.

    1990-01-01

    It is shown here that interstellar diamond and SiC were incorporated into all groups of chondrite meteorites. Abundances rapidly go to zero with increasing metamorphic grade, suggesting that metamorphic destruction is responsible for the apparent absence of these grains in most chondrites. In unmetamorphosed chondrites, abundances normalized to matrix content are similar for different classes. Diamond samples from chondrites of different classes have remarkably similar noble-gas constants and isotropic compositions, although constituent diamonds may have come from many sources. SiC seems to be more diverse, partly because grains are large enough to measure individually, but average characteristics seem to be similar from meteorite to meteorite. These observations suggest that various classes of chondritic meteorites sample the same solar system-wide reservoir of interstellar grains.

  6. Measurements of the interstellar C-12H+/C-13H+ abundance

    NASA Astrophysics Data System (ADS)

    vanden, P. A.; Snell, R. L.

    1980-03-01

    Detections have been made of the interstellar 13CH+ satellite lines of λ4232 in high-resolution spectra of 20 Tau, ξ Per, and ζ Oph and of λ3957 in ζ Oph that were taken using a Reticon detector. These detections lead to 12CH+/113CH+ abundance ratios of 49( + 12, -8), 59( +24, - 13), and 77( + 17, -12) for the 20 Tau, ξ Per, and ζ Oph clouds, respectively.

  7. The Interstellar Abundance of Lead: Experimental Oscillator Strengths for Pb II λ1203 and λ1433 and New Detections of Pb II in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam Michael; Heidarian, Negar; Irving, Richard E.; Federman, Steven R.; Ellis, David G.; Cheng, Song; Curtis, Larry J.; Furman, W. A.

    2015-08-01

    Accurate gas-phase abundances of ions in the interstellar medium may be obtained through the analysis of interstellar absorption lines, but only if the oscillator strengths (f-values) of the relevant transitions are well known. For dominant ions, comparison of the gas-phase abundance with the appropriate solar reference abundance yields the degree to which the element is incorporated into interstellar dust grains. Singly-ionized lead is the dominant form of this element in the neutral interstellar medium. However, while Pb II has several strong resonance lines in the ultraviolet, the f-values for these transitions are uncertain. Here, we present the first experimentally determined oscillator strengths for the Pb II transitions at 1203.6 Å and 1433.9 Å, obtained from lifetime measurements made using beam-foil techniques. We also present new detections of these lines in the interstellar medium from an analysis of archival spectra acquired by the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. Notably, our observations of the Pb II λ1203 line represent the first detection of this transition in interstellar gas. Our experimental f-values for the Pb II λ1203 and λ1433 transitions are consistent with recent theoretical results, including our own relativistic calculations, but are significantly smaller than previous values based on older calculations. For the Pb II λ1433 line, in particular, our new f-value yields an increase in the interstellar abundance of Pb of 0.43 dex over estimates based on the f-value listed by Morton. With our revised f-values, and with our new detections of Pb II λ1203 and λ1433, we find that the depletion of Pb onto interstellar grains is not nearly as severe as previously thought, and is very similar to the depletions seen for elements such as Zn and Sn, which have similar condensation temperatures.

  8. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.

    2017-02-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  9. Differential adsorption of complex organic molecules isomers at interstellar ice surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Bertin, M.; Mokrane, H.; Romanzin, C.; Michaut, X.; Jeseck, P.; Fillion, J.-H.; Chaabouni, H.; Congiu, E.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Pauzat, , F.; Pilmé, J.; Minot, C.; Ellinger, Y.

    2011-08-01

    Context. Over 20 of the ~150 different species detected in the interstellar and circumstellar media have also been identified in icy environments. For most of the species observed so far in the interstellar medium (ISM), the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle - MEP) with few exceptions such as, for example, CH3COOH/HCOOCH3 and CH3CH2OH/CH3OCH3, whose formation is thought to occur on the icy mantles of interstellar grains. Aims: We investigate whether differences found in the compositions of molecular ices and the surrounding gas phase could originate from differences between the adsorption of one isomer from that of another at the ice surface. Methods: We performed a coherent and concerted theoretical/experimental study of the adsorption energies of the four molecules mentioned above, i.e. acetic acid (AA)/methyl formate (MF) and ethanol (EtOH)/dimethyl ether (DME) on the surface of water ice at low temperature. The question was first addressed theoretically at LCT using solid state periodic density functional theory (DFT) to represent the organized solid support. The experimental determination of the ice/molecule interaction energies was then carried out independently by two teams at LPMAA and LERMA/LAMAp using temperature programmed desorption (TPD) under an ultra-high vacuum (UHV) between 70 and 160 K. Results: For each pair of isomers, theory and experiments both agree that the most stable isomer (AA or EtOH) interacts more efficiently with the water ice than the higher energy isomer (MF or DME). This differential adsorption can be clearly seen in the different desorption temperatures of the isomers. It is not related to their intrinsic stability but instead to both AA and EtOH producing more and stronger hydrogen bonds with the ice surface. Conclusions: We show that hydrogen bonding may play an important role in the release of organic species from grains and propose that, depending on the

  10. Laboratory simulation of interstellar grain chemistry and the production of complex organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Valero, G. J.

    1990-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared (5000 to 500 cm(-1), 2 to 20 microns m), the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these astronomical spectra with the spectra of laboratory ices one can determine the composition and abundance of the icy materials frozen on the cold (10K) dust grains present in the interior of molecular clouds. These grains and their ice mantles may well be the building blocks from which comets are made. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, researchers present the infrared spectra of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds. The last component was incorporated into this particular experiment as a tracer of the behavior of a non-aromatic hydrocarbon. The change in the composition that results from ultraviolet photolysis of this ice mixture using a UV lamp to simulate the interstellar radiation field is shown. Photolysis produces CO, CO2, CH4, HCO, H2CO, as well as a family of moderately volatile hydrocarbons. Less volatile carbonaceous materials are also produced. The evolution of the infrared spectrum of the ice as the sample is warmed up to room temperature is illustrated. Researchers believe that the changes are similar to those which occur as ice is ejected from a comet and warmed up by solar radiation. The warm-up sequence shows that the nitrile or iso-nitrile bearing compound

  11. The Abundances of Solid N2 and Gaseous CO2 in Interstellar Dense Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.; Goorvitch, David; Teixeira, Teresa C. V. S.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    We present 2338-2322 per centimeter (4.277-4.307 micrometer) infrared spectra of a number of N2-containing mixed molecular ices and demonstrate that the strength of the infrared "forbidden" band due to the N=N stretch near 2328 per centimeter (4.295 micrometer) is extremely sensitive to the composition of the ice. The strength of the 2328 per centimeter N2 fundamental is significantly enhanced relative to that of pure N2 ice when NH3, H2O, or CO2 are present, but is largely unaffected by the presence of CO, CH4 or O2. We use the laboratory data in coil junction with ISO data that probes several lines-of-sight through dense molecular clouds to place limits on the abundance of interstellar solid phase N2 and the composition of the ices. Deriving upper limits is complicated by the presence of overlapping absorptions due to CO2 gas in the clouds and, in some cases, to photospheric CO in the background star. These upper limits are just beginning to be low enough to constrain interstellar grain models and the composition of possible N2-bearing interstellar ices. We outline the search criteria that will need to be met if solid interstellar N2 is to be detected in the future. We also discuss some of the implications of the presence of warm CO2 gas along the lines-of-sight to embedded protostars and demonstrate that its presence may help resolve certain puzzles associated with the previously derived gas/solid CO2 ratios and the relative abundances of polar and nonpolar ices towards these objects. Finally, we briefly comment on the possible implications of these results for the interpretation of N2 detections on outer solar system bodies.

  12. Matrix-Isolation Spectroscopy of Reactive Organic Molecules of Relevance to Interstellar Space

    NASA Astrophysics Data System (ADS)

    Kopff, Laura A.; Nolan, Alex M.; Kreifels, Terese A.; Draxler, Thomas W.; Esselman, Brian J.; Burrmann, Nicola J.; McMahon, Robert J.

    2010-11-01

    Matrix isolation, the process of trapping a molecule in an inert gas at low temperature, provides a means for studying highly reactive intermediates, such as carbenes or radicals. Reactive species can be characterized by IR, UV-vis and/or EPR spectroscopy. Comparison of experimental and computed spectral data, as well as chemical reactivity, is used for structural assignment Triplet propynylidene is proposed to exist in the interstellar medium (ISM), due to the detection of a higher-energy isomers via rotational spectroscopy. Currently, we are exploring the structural and photochemical effects of varying substituents on the propynylidne system. A diazo precursor has been synthesized and photolyzed to produce dimethylpropynylidene in an argon matrix. A photochemical hydrogen shift to produce 1-penten-3-yne has been observed through infrared spectroscopy. Cyanocarbons are known to be abundant in the ISM and the atmosphere of Titan, however matrixisolation studies have not yet been carried out for a significant number of these compounds. Photolysis of 3-cyano-3-methyldiazirine should yield methylcyanocarbene, one of the simplest species in this family. Another molecule of interest is l-HC4N, which has been detected in the ISM, but has not yet been matrix-isolated and characterized. The study of arylcarbenes is vital to understanding the chemistry of carbon-rich environments, such as discharges, interstellar clouds, and circumstellar envelopes. The identification of small, sulfur containing molecules, and the identification of aromatics in the ISM make future thiophene and benzothiophene detections a real possibility. Studies on 2- and 3-diazomethyl substituted benzothiophenes are underway to assess their photochemical reactivity and potential for forming benzothiophene carbenes. Macrocylic polyynes are proposed to be involved in carbon condensation via the ring coalescence and annealing model to produce graphitic sheets or fullerenes. To simplify a complex system we

  13. The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.

    2002-01-01

    Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.

  14. Laboratory Experiments on the Reactions of PAH Cations with Molecules and Atoms of Interstellar Interest

    NASA Technical Reports Server (NTRS)

    LePage, V.; Lee, H. S.; Bierbaum, V. M.; Snow, T. P.

    1996-01-01

    The C10H8(+) cation and its dehydrogenated derivatives, C10H7(+) and C10H6(+), have been studied using a selected ion flow tube (SIFT). Reactions with molecules and atoms of interstellar interest show that C10H8(+) reacts with N md O to give neutral products HCN and CO, respectively. C10H6(+) and C10H6(+) are moderately reactive and reactions proceed through association with molecules. The implications of these results for the depletion of C10H(n)(+) in the interstellar medium are briefly discussed.

  15. Interstellar chemistry - Polycyanoacetylene formation

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Schloerb, F. P.; Snell, R. L.; Young, J. S.

    1981-01-01

    It is argued that interstellar polycyanoacetylenes are formed not on dust grains by catalytic buildup or by dissociation of longer molecules, but rather by gas phase ion-molecule reactions. The primary evidence for this view is the detection of deuterated cyanoacetylene in an interstellar cloud. It is also argued that the relative abundance of successive homologs of polycyanoacetylenes rules out the grain catalysis theory.

  16. Abundance patterns in the interstellar medium of early-type galaxies observed with Suzaku

    SciTech Connect

    Konami, Saori; Matsushita, Kyoko; Tamagawa, Toru; Nagino, Ryo

    2014-03-01

    We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0 galaxies, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-source region, which is four times the effective radius, r {sub e}, is reproduced with one-temperature (1T) or two-temperature (2T) thermal plasma models as well as a multi-temperature model, using APEC plasma code version 2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83 ± 0.04, 0.93 ± 0.03, 0.80 ± 0.02, and 0.80 ± 0.02 solar, respectively, in solar units according to the solar abundance table by Lodders in 2003. These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between versions 2.0.1 and 1.3.1 of the APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within an aperture with a radius of one r {sub e} derived from optical spectroscopy. From these results, we discuss the past and present Type Ia supernova rates and star formation histories in early-type galaxies.

  17. Towards Complete Microphysical Modeling of Warm Interstellar Molecules: H2 Collisional Dissociation for Spitzer IR Observations

    NASA Astrophysics Data System (ADS)

    Forrey, Robert; Ferland, Gary; Lee, Teck; Naduvalath, Balakrishnan; Schultz, David; Stancil, Phillip

    2006-05-01

    The role of molecules in a variety of interstellar environments, including photodissociation regions, star-forming regions, circumstellar shells, and other molecular regions, is far-reaching. Molecules are pivotal to determining the thermal and density structure of the gas and provide diagnostics through emission, absorption, and fluorescence. However, these environments are typically of low density, may be exposed to shocks, and are usually irradiated in the UV by nearby hot stars which results in significant departures from equilibrium for the chemical, ionization, and internal energy state of the gas. Therefore, to accurately model these environments, and thereby interpret results from Spitzer spectroscopic observing programs, requires a quantitative understanding of a variety of microphysical processes. We propose here to focus our studies on the most abundant of molecules, H2. To derive significant scientific return from current and future Spitzer observations, we will compute dissociation rate coefficients of H2 due to collisions of H, He, para-H2, and ortho-H2, a process which is competitive with other H2 destruction mechanisms. The rate coefficients will be computed for temperatures between 1 and 50,000 K and from ALL initial bound rotational-vibrational levels of H2 in the ground electronic state, information which is unavailable today. The computations will be performed using established quantum mechanical close-coupling and coupled-states methods on accurate, and well tested, potential energy surfaces. The results will be benchmarked against experiment, where available, and fit to analytic forms with physical low- and high-temperature limits for easy modeling use. The results of this proposal will then enable models, such as those from the widely used and tested spectral synthesis code Cloudy, to reliably simulate H2 in molecular environments, leading to deeper examination and understanding of their physical properties through Spitzer observations.

  18. Formation of Prebiotic Molecules in Interstellar and Cometary Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Dworkin, Jason; Gilette, J. Seb; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    We report here on our lab studies of ice photochemistry of large organic molecules under cometary conditions. We focus on polycyclic aromatic hydrocarbons (PAHs), their photoproducts, and their similarities to molecules seen in living systems today. We note that these kinds of compounds are seen in meteorites and we propose an explanation for both their formation and their observed deuterium enrichments.

  19. The abundance of interstellar oxygen toward Orion: Evidence for recent infall?

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Jura, M.; Hawkins, Isabel; Cardelli, Jason A.

    1994-01-01

    We present high S/N (greater than 800) Goddard High-Resolution Spectrograph (GHRS) observations of the weak interstellar O I lambda 1356 absorption in the low-density sight lines toward iota Ori and kappa Ori. By comparing these data with observations toward more reddened stars, we find no evidence of density-dependent depletion from the gas phase for oxygen. The derived total oxygen abundance (gas plus grains) towards iota Ori and kappa Ori is consistent with stellar and nebular determinations in Orion at a level that is one-half the solar value. We speculate that the O/H abundance ratio is lower in Orion compared to the Sun because the local Milky Way has suffered a recent infall of metal-poor material, perhaps from the Magellanic Stream.

  20. H2 Molecular Clusters with Embedded Molecules and Atoms as the Source of the Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K.

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ("seed"), embedded in a single-layer shell of H2 molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as contaminated H2 clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectral profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~centimeter-sized, dirty H2 ice balls, called contaminated H2 ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the ~10-100 GHz spectral region.

  1. On the alignment of diamagnetic molecules in interstellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2017-01-01

    This paper reports the results of new chemical modeling measurements of the Faraday rotation braking mechanism operating on a diamagnetic molecule in a magnetic field (see Papoular 2016). The time length of the experiment is extended, more relevant variables are measured (rotation, vibration, drift energies; molecule orientation), and more accurately, as a function of time. The polarization of light by the moving molecule is computed. The observed behavior of the molecule may be understood, and the rotation damping time more accurately deduced by fitting a mathematical model built upon the classical equations of motion in a field. This model, meant to include the essential physics involved in the experiment, with the minimum number of parameters, also allows the chemical modeling experimental results to be extrapolated to other molecular structures, shapes and sizes, and other magnetic fields. For a given particle, the rotation damping time scales like 1/H and is independent on rotation frequency. As an example, we follow the motion of a rod of homogeneous material, 10-5 cm in length, moving in a field 5 10-6 G in intensity. Its angular rotation is found to decrease to 0, while its axis settles perpendicularly to the field within a few years. Molecular vibrations appear as an illustration of the fluctuation-dissipation theorem: they absorb friction heat and, at the same time, are the very cause of this friction.

  2. Discovery of the First Interstellar Chiral Molecule: Propylene Oxide

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; McGuire, Brett A.; Loomis, Ryan; Finneran, Ian A.; Jewell, Philip; Remijan, Anthony; Blake, Geoffrey

    2016-06-01

    Life on Earth relies on chiral molecules, that is, species not superimposable on their mirror images. This manifests itself as a reliance on a single molecular handedness, or homochirality that is characteristic of life and perhaps most readily apparent in the large enhancement in biological activity of particular amino acid and sugar enantiomers. Yet, the ancestral origin of biological homochirality remains a mystery. The non-racemic ratios in some organics isolated from primitive meteorites hint at a primordial chiral seed but even these samples have experienced substantial processing during planetary assembly, obscuring their complete histories. To determine the underlying origin of any enantiomeric excess, it is critical to understand the molecular gas from which these molecules originated. Here, we present the first extra-solar, astronomical detection of a chiral molecule, propylene oxide (CH_3CHCH_2O), in absorption toward the Galactic Center. With the detection of propylene oxide, we at last have a target for broad-ranging searches for the possible cosmic origin of the homochirality of life.

  3. H2CS abundances and ortho-to-para ratios in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; Brewer, M. K.

    1991-01-01

    Several H2CS ortho and para transitions have been observed toward interstellar molecular clouds, including cold, dark clouds and star-forming regions. H2CS fractional abundances f(H2CS) about 1-2 10 to the -9th relative to molecular hydrogen toward TMC-1, Orion A, and NGC 7538, and about 5 10 to the -10th for L134N are derived. The H2CS ortho-to-para ratios in TMC-1 are about 1.8 toward the cyanopolyyne peak and the ammonia peak, which may indicate the thermalization of H2CS on 10 K grains. A ratio of about 3, the statistical value, for Orion (3N, 1E) and NGC 7538 is derived, while a value of about 2 for Orion (KL) is found.

  4. The abundance of interstellar sulphur and zinc in high density sight-lines

    NASA Technical Reports Server (NTRS)

    Harris, A. W.; Mashesse, J. M.

    1986-01-01

    On the basis of early absorption line studies of individual lines of sight with the Copernicus satellite, chlorine, sulphur and zinc were classed together as elements which showed little or no depletion, relative to hydrogen, in the interstellar medium. The abundances of other less volatile elements, such as Fe and Mg were found to vary widely from one sight-line to another with gas-phase abundances in some cases being orders of magnitude below their solar counterparts. Detailed studies are reported of the depletion/density behavior of two other volatile elements which were previously considered to be virtually undepleted, S and Zn, using equivalent width data from both Copernicus and IUE observations. The results provide further evidence that the established dependence of depletion on n bar (H) extends to volatile elements and show that their use as tracers of metallicity, or for estimating hydrogen column densities, may lead to large errors in sight-lines through dense regions. It now appears that such elements may take part in the surface chemistry of grains and be important constituents of grain mantle material, although they probably do not contribute significantly to the bulk mass of grains. Due to the very similar atomic masses and ionization potentials of sulphur and phosphorous, the thermal velocity distributions of the singly ionized species of these elements in interstellar clouds should be very similar. However, a comparison of Doppler widths (b-values) derived for SIT and PIT in the same sight-lines from the Bohlin et al Copernicus equivalent width measurements has revealed an unexpected systematic discrepancy of a factor of approx. 1.7. This Discrepancy indicates that the normally adopted oscillators strengths of the PII lambda lambda 1153 and 1302 A lines may require revision.

  5. A critical analysis of interstellar Zn and Cr as galactic abundance benchmarks for quasar absorbers

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Steidel, Charles C.; Macke, Robert J.; Meyer, David M.

    1995-01-01

    We present interstellar gas-phase abundances of zinc and chromium in the Milky Way for comparison with the abundances of these elements in damped Ly-alpha systems at redshifts near z approximately 2. We make use of both IUE (International Ultraviolet Explorer) and GHRS (Goddard High Resolution Spectrograph) archival information in deriving the Milky Way values and find that the average difference in (Zn/H) and (Cr/Zn) between the Milky Way and damped Ly-alpha systems at large N(H1) is about 0.9 dex. The Zn/H values we find for the Milky Way are approximately -0.2 to -0.7 dex below solar and are due in large part to depletion of Zn onto dust grains. The amount of this gas-phase depletion is variable and depends upon the H1 column density and molecular fraction of the gas. Milky Way sight lines having low molecular fractions have values of (Zn/H) within approximately 0.2 dex of the solar value. Combined with larger values of (Cr/Zn) found for the damped Ly-alpha systems, this result confirms that measures of (Zn/H) should accurately reflect the lower gas-phase abundances of Zn found in these systems.

  6. REVISITING THE CHLORINE ABUNDANCE IN DIFFUSE INTERSTELLAR CLOUDS FROM MEASUREMENTS WITH THE COPERNICUS SATELLITE

    SciTech Connect

    Moomey, Daniel; Federman, S. R.; Sheffer, Y. E-mail: ysheffer@astro.umd.edu

    2012-01-10

    We reanalyzed interstellar Cl I and Cl II spectra acquired with the Copernicus satellite. The directions for this study come from those of Crenny and Federman and sample the transition from atomic to molecular-rich clouds where the unique chemistry leading to molecules containing chlorine is initiated. Our profile syntheses relied on up-to-date laboratory oscillator strengths and component structures derived from published high-resolution measurements of K I absorption that were supplemented with Ca II and Na I D results. We obtain self-consistent results for the Cl I lines at 1088, 1097, and 1347 A from which precise column densities are derived. The improved set of results reveals clearer correspondences with H{sub 2} and total hydrogen column densities. These linear relationships arise from rapid conversion of Cl{sup +} to Cl{sup 0} in regions where H{sub 2} is present.

  7. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    NASA Astrophysics Data System (ADS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-02-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  8. The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA-Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quiriones, amphiphiles, and amino acids. Quinones play a variety of roles including electron transport and are used by all organisms. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are irradiated in interstellar ices (Bernstein et al. 2001). Amphiphiles are also made when mixed molecular ices are irradiated. These amphiphiles self-assemble into membrane-walled vesicles when put in liquid water (Dworkin et al. 2001). Ice irradiation can also produce (Bernstein et al. 2002) and destroy amino acids (Ehrenfreund et al. 2001). Many of the same processes thought to make organics in space should yield products highly enriched in deuterium (D) (Sandford et al. 2001). The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggests that such linkages do exist. By using D as a tracer, we expect to learn more about the different chemical processes occurring in space and their relative importance in the production of different organic compounds and delivery to planetary surfaces.

  9. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  10. Mogadoc - a Personal Computer Database for Atmospheric and Interstellar Molecules in Microwave Spectroscopy and Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Vogt, J.

    1992-03-01

    MOGADOC is a comprehensive database for gas-phase molecules, investigated by microwave spectroscopy, radio astronomy and electron diffraction. It contains data on electrical, magnetic, dynamical and spectroscopic properties of inorganic, organic and organometallic compounds in the gas phase. As a special feature the in-house database, which can be run on a personal computer by means of the well known Messenger retrieval language, contains numerical data sets for structural parameters such as internuclear distances and bond angles. Key words: INTERSTELLAR MOLECULES - MOLECULAR PROCESSES - RADIOSOURCES: SPECTRA

  11. Interstellar hydrogen sulfide.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  12. The Identification of Complex Organic Molecules in the Interstellar Medium: Using Lasers and Matrix Isolation Spectroscopy to Simulate the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1998-01-01

    The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.

  13. Gas-phase Reactions of Polycyclic Aromatic Hydrocarbon Anions with Molecules of Interstellar Relevance

    NASA Astrophysics Data System (ADS)

    Demarais, Nicholas J.; Yang, Zhibo; Martinez, Oscar; Wehres, Nadine; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-02-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C6H- 5), naphthalenide (C10H- 7), and anthracenide (C14H- 9) with atomic H, H2, and D2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O2, CO2, N2O, C2H2, CH3OH, CH3CN, (CH3)2CO, CH3CHO, CH3Cl, and (CH3CH2)2O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  14. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  15. Probing the Formation of Complex Organic Molecules in Interstellar Ices - Beyond the FTIR - RGA Limitation

    NASA Astrophysics Data System (ADS)

    Kaiser, Ralf I.

    2015-08-01

    An understanding of the formation of key classes of complex organic molecules (COMs) within interstellar ices is of core value to the laboratory astrophysics community with structural isomers - molecules with the same molecular formula but different connectivities of atoms - serving as a molecular clock and tracers in defining the evolutionary stage of cold molecular clouds and star forming regions. Here, the lack of data on products, branching ratios, and rate constants of their formation and how they depend on the ice temperature and composition limits the understanding how COMs are synthesized. Classically, infrared spectroscopy combined with mass spectrometry of the irradiated and subliming ices have been exploited for the last decades, but the usefulness of these methods has reached the limits when it comes to the identification of CMS in those ices. Here, infrared spectroscopy can only untangle the functional groups of COMs; mass spectrometry coupled with electron impact ionization cannot discriminate structural isomers and suffers from extensive fragmentation. This talk presents a novel approach to elucidate the formation of COMs by exploiting - besides classical infrared, Raman, and ultraviolet-visual spectroscopy - reflectron time-of-flight mass spectrometry (ReTOF) coupled with tunable vacuum ultraviolet (VUV) soft photoionization (ReTOF-PI). This technique has the unique power to identify the molecules based on a cross correlation of their mass-to-charge ratios, their ionization energies (IE), and their sublimation temperatures ultimately unraveling an inventory of individual COMs molecules formed upon interaction of ionizing radiation with interstellar analog ices.

  16. Interstellar H(3)(+).

    PubMed

    Oka, Takeshi

    2006-08-15

    Protonated molecular hydrogen, H(3)(+), is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H(2), although its steady state concentration is low because of its extremely high chemical reactivity. H(3)(+) is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H(3)(+) in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region.

  17. Interstellar H3+

    PubMed Central

    Oka, Takeshi

    2006-01-01

    Protonated molecular hydrogen, H3+, is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H2, although its steady state concentration is low because of its extremely high chemical reactivity. H3+ is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H3+ in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region. PMID:16894171

  18. Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J.; Deamer, D.; Sandford, S.; Allamandola, L.

    2001-01-01

    Interstellar gas and dust constitute the primary material from which the solar system formed. Near the end of the hot early phase of star and planet formation, volatile, less refractory materials were transported into the inner solar system as comets and interplanetary dust particles. Once the inner planets had sufficiently cooled, late accretionary infall seeded them with complex organic compounds [Oro, J. (1961) Nature (London) 190, 389-390; Delsemme, A. H. (1984) Origins Life 14, 51-60; Anders, E. (1989) Nature (London) 342, 255-257; Chyba, C. F. & Sagan, C. (1992) Nature (London) 355, 125-131]. Delivery of such extraterrestrial compounds may have contributed to the organic inventory necessary for the origin of life. Interstellar ices, the building blocks of comets, tie up a large fraction of the biogenic elements available in molecular clouds. In our efforts to understand their synthesis, chemical composition, and physical properties, we report here that a complex mixture of molecules is produced by UV photolysis of realistic, interstellar ice analogs, and that some of the components have properties relevant to the origin of life, including the ability to self-assemble into vesicular structures.

  19. Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices

    PubMed Central

    Dworkin, Jason P.; Deamer, David W.; Sandford, Scott A.; Allamandola, Louis J.

    2001-01-01

    Interstellar gas and dust constitute the primary material from which the solar system formed. Near the end of the hot early phase of star and planet formation, volatile, less refractory materials were transported into the inner solar system as comets and interplanetary dust particles. Once the inner planets had sufficiently cooled, late accretionary infall seeded them with complex organic compounds [Oró, J. (1961) Nature (London) 190, 389–390; Delsemme, A. H. (1984) Origins Life 14, 51–60; Anders, E. (1989) Nature (London) 342, 255–257; Chyba, C. F. & Sagan, C. (1992) Nature (London) 355, 125–131]. Delivery of such extraterrestrial compounds may have contributed to the organic inventory necessary for the origin of life. Interstellar ices, the building blocks of comets, tie up a large fraction of the biogenic elements available in molecular clouds. In our efforts to understand their synthesis, chemical composition, and physical properties, we report here that a complex mixture of molecules is produced by UV photolysis of realistic, interstellar ice analogs, and that some of the components have properties relevant to the origin of life, including the ability to self-assemble into vesicular structures. PMID:11158552

  20. Self-Assembling Amphiphilic Molecules: A Possible Relationship Between Interstellar Chemistry and Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Dworkin, Jason P.; Deamer, David W.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Interstellar gas and dust comprise the primary material from which the solar system formed. Evidence that some of this material was organic in nature and survived incorporation into the protosolar nebula is provided by the presence of deuterium-enriched organics in meteorites and interplanetary dust particles. Once the inner planets had sufficiently cooled, late accretionary infall of meteoroids and cosmic dust must have seeded them with some of these complex organic compounds. Delivery of such extraterrestrial compounds may have contributed to the organic inventory necessary for the origin of life. Interstellar ices, the building blocks of comets, tie up a large fraction of the biogenic elements available in molecular clouds. In our efforts to understand their synthesis, chemical composition, and physical properties, we report here that a complex mixture of molecules is produced by ultraviolet (UV) photolysis of realistic, interstellar ice analogs, and that some of the components have properties relevant to the origin of life, including the ability to self-assemble into vesicular structures.

  1. SURVIVAL OF INTERSTELLAR MOLECULES TO PRESTELLAR DENSE CORE COLLAPSE AND EARLY PHASES OF DISK FORMATION

    SciTech Connect

    Hincelin, U.; Wakelam, V.; Hersant, F.; Guilloteau, S.; Commerçon, B.

    2013-09-20

    An outstanding question of astrobiology is the link between the chemical composition of planets, comets, and other solar system bodies and the molecules formed in the interstellar medium. Understanding the chemical and physical evolution of the matter leading to the formation of protoplanetary disks is an important step for this. We provide some new clues to this long-standing problem using three-dimensional chemical simulations of the early phases of disk formation: we interfaced the full gas-grain chemical model Nautilus with the radiation-magnetohydrodynamic model RAMSES, for different configurations and intensities of the magnetic field. Our results show that the chemical content (gas and ices) is globally conserved during the collapsing process, from the parent molecular cloud to the young disk surrounding the first Larson core. A qualitative comparison with cometary composition suggests that comets are constituted of different phases, some molecules being direct tracers of interstellar chemistry, while others, including complex molecules, seem to have been formed in disks, where higher densities and temperatures allow for an active grain surface chemistry. The latter phase, and its connection with the formation of the first Larson core, remains to be modeled.

  2. Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Menten, K. M.; Schilke, P.; Comito, C.

    2013-11-01

    Context. The discovery of amino acids in meteorites fallen to Earth and the detection of glycine, the simplest of them, in samples returned from a comet to Earth strongly suggest that the chemistry of the interstellar medium is capable of producing such complex organic molecules and that they may be widespread in our Galaxy. Aims: Our goal is to investigate the degree of chemical complexity that can be reached in the interstellar medium, in particular in dense star-forming regions. Methods: We performed an unbiased, spectral line survey toward Sgr B2(N) and (M), two regions where high-mass stars are formed, with the IRAM 30 m telescope in the 3 mm atmospheric transmission window. Partial surveys at 2 and 1.3 mm were performed in parallel. The spectra were analyzed with a simple radiative transfer model that assumes local thermodynamic equilibrium but takes optical depth effects into account. Results: About 3675 and 945 spectral lines with a peak signal-to-noise ratio higher than 4 are detected at 3 mm toward Sgr B2(N) and (M), i.e. about 102 and 26 lines per GHz, respectively. This represents an increase by about a factor of two over previous surveys of Sgr B2. About 70% and 47% of the lines detected toward Sgr B2(N) and (M) are identified and assigned to 56 and 46 distinct molecules as well as to 66 and 54 less abundant isotopologues of these molecules, respectively. In addition, we report the detection of transitions from 59 and 24 catalog entries corresponding to vibrationally or torsionally excited states of some of these molecules, respectively, up to a vibration energy of 1400 cm-1 (2000 K). Excitation temperatures and column densities were derived for each species but should be used with caution. The rotation temperatures of the detected complex molecules typically range from ~50 to 200 K. Among the detected molecules, aminoacetonitrile, n-propyl cyanide, and ethyl formate were reported for the first time in space based on this survey, as were five rare

  3. INTERPRETATION OF INFRARED VIBRATION-ROTATION SPECTRA OF INTERSTELLAR AND CIRCUMSTELLAR MOLECULES

    SciTech Connect

    Lacy, John H.

    2013-03-10

    Infrared vibration-rotation lines can be valuable probes of interstellar and circumstellar molecules, especially symmetric molecules, which have no pure rotational transitions. But most such observations have been interpreted with an isothermal absorbing slab model, which leaves out important radiative transfer and molecular excitation effects. A more realistic non-LTE and non-isothermal radiative transfer model has been constructed. The results of this model are in much better agreement with the observations, including cases where lines in one branch of a vibration-rotation band are in absorption and another in emission. In general, conclusions based on the isothermal absorbing slab model can be very misleading, but the assumption of LTE may not lead to such large errors, particularly if the radiation field temperature is close to the gas temperature.

  4. THE C({sup 3}P) + NH{sub 3} REACTION IN INTERSTELLAR CHEMISTRY. II. LOW TEMPERATURE RATE CONSTANTS AND MODELING OF NH, NH{sub 2}, AND NH{sub 3} ABUNDANCES IN DENSE INTERSTELLAR CLOUDS

    SciTech Connect

    Hickson, Kevin M.; Loison, Jean-Christophe; Bourgalais, Jérémy; Capron, Michael; Picard, Sébastien D. Le; Goulay, Fabien; Wakelam, Valentine

    2015-10-20

    A continuous supersonic flow reactor has been used to measure rate constants for the C({sup 3}P) + NH{sub 3} reaction over the temperature range 50–296 K. C({sup 3}P) atoms were created by the pulsed laser photolysis of CBr{sub 4}. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence of C({sup 3}P) loss and through H({sup 2}S) formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of (1.8 ± 0.2) × 10{sup −10} cm{sup 3} molecule{sup −1} s{sup −1} at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas–grain interactions. In particular, the effect of the ortho-to-para ratio of H{sub 2}, which plays a crucial role in interstellar NH{sub 3} synthesis, is examined.

  5. Matrix-Isolation Spectroscopy and Computational Studies of Reactive Organic Molecules of Relevance to Interstellar Space

    NASA Astrophysics Data System (ADS)

    Kopff, Laura A.; Kreifels, Terese A.; Schaffer, Christopher J.; Haenni, Benjamin C.; Esselman, Brian J.; McMahon, Robert J.

    2011-10-01

    Matrix isolation, the process of trapping a molecule in an inert gas at low temperature, provides a means for studying highly reactive intermediates, such as carbenes or radicals. Reactive species can be characterized by IR, UV-vis and/or EPR spectroscopy. Comparison of experimental and computed spectral data, as well as chemical reactivity, is used for structural assignment. Highly-unsaturated carbon chains are well known compounds in the interstellar medium (ISM). Detection of these molecules relies mostly on radioastronomy, making the detection of the linear HC2nH series difficult. The electronic structure changes from even carbon chain lengths (HC2nH) to odd chain lengths (HC2n+1H), changing from closed shell to open shell species. The odd series further alternate from a diradical character (HC3H) to a localized carbene (HC5H). This poster will present the synthesis and spectroscopy of the HC3H and HC7H species and derivatives. The study of arylcarbenes is vital to understanding the chemistry of carbon-rich environments, such as discharges, interstellar clouds, and circumstellar envelopes. The identification of small, sulfur containing molecules, and the identification of aromatics in the ISM make future thiophene and benzothiophene detections a real possibility. Studies on 2- and 3- diazomethyl substituted benzothiophenes are underway to assess their photochemical reactivity and potential for forming benzothiophene carbenes. Macrocylic polyynes are proposed to be involved in carbon condensation via the ring coalescence and annealing model to produce graphitic sheets or fullerenes. To simplify a complex system we are computationally studying the series of ethynyl-substituted cyclobutadienes and their possible involvement in the build-up of larger carbon containing molecules in the ISM.

  6. Differential adsorption of complex organic molecule isomers on interstellar ice surfaces

    NASA Astrophysics Data System (ADS)

    Bertin, M.; Michaut, X.; Lattelais, M.; Mokrane, H.; Pauzat, F.; Pilmé, J.; Minot, C.; Ellinger, Y.; Romanzin, C.; Jeseck, P.; Fillion, J.-H.; Chaabouni, H.; Congiu, E.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.

    2012-02-01

    We present a combined theoretical and experimental study of the adsorption of two pairs of organic isomers, (i) acetic acid AA (CH3COOH) and methyl formate MF (HCOOCH3), and (ii) ethanol EtOH (CH3CH2OH) and dimethyl ether DME (CH3OCH3), onto crystalline water ice surfaces at low temperatures. Both approaches show that, for each pair, the most stable isomer from a thermodynamical point of view, i.e. AA and EtOH, is also the one which is the more tightly bound to the water ice surface compared to the less stable isomers (MF and DME). This finding, which can be explained by the ability of AA or EtOH to efficiently interact with the ice surface via hydrogen bondings, may have important consequences in an astrophysical context, since it could explain why the most stable isomer is not the most abundant observed in the interstellar gas phase.

  7. GAS-PHASE REACTIONS OF POLYCYCLIC AROMATIC HYDROCARBON ANIONS WITH MOLECULES OF INTERSTELLAR RELEVANCE

    SciTech Connect

    Demarais, Nicholas J.; Yang Zhibo; Martinez, Oscar; Wehres, Nadine; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Zhibo.Yang@Colorado.edu E-mail: Nadine.Wehres@Colorado.edu E-mail: Theodore.Snow@Colorado.edu

    2012-02-10

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C{sub 6}H{sup -}{sub 5}), naphthalenide (C{sub 10}H{sup -}{sub 7}), and anthracenide (C{sub 14}H{sup -}{sub 9}) with atomic H, H{sub 2}, and D{sub 2} using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O{sub 2}, CO{sub 2}, N{sub 2}O, C{sub 2}H{sub 2}, CH{sub 3}OH, CH{sub 3}CN, (CH{sub 3}){sub 2}CO, CH{sub 3}CHO, CH{sub 3}Cl, and (CH{sub 3}CH{sub 2}){sub 2}O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  8. Initiating Molecular Growth in the Interstellar Medium via Dimeric Complexes of Observed Ions and Molecules

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2011-01-01

    A feasible initiation step for particle growth in the interstellar medium (ISM) is simulated by means of ab quantum chemistry methods. The systems studied are dimer ions formed by pairing nitrogen containing small molecules known to exist in the ISM with ions of unsaturated hydrocarbons or vice versa. Complexation energies, structures of ensuing complexes and electronic excitation spectra of the encounter complexes are estimated using various quantum chemistry methods. Moller-Plesset perturbation theory (MP2, Z-averaged perturbation theory (ZAP2), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)), and density functional theory (DFT) methods (B3LYP) were employed along with the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Two types of complexes are predicted. One type of complex has electrostatic binding with moderate (7-20 kcal per mol) binding energies, that are nonetheless significantly stronger than typical van der Waals interactions between molecules of this size. The other type of complex develops strong covalent bonds between the fragments. Cyclic isomers of the nitrogen containing complexes are produced very easily by ion-molecule reactions. Some of these complexes show intense ultraviolet visible spectra for electronic transitions with large oscillator strengths at the B3LYP, omegaB97, and equations of motion coupled cluster (EOM-CCSD) levels. The open shell nitrogen containing carbonaceous complexes especially exhibit a large oscillator strength electronic transition in the visible region of the electromagnetic spectrum.

  9. Very low temperature formaldehyde reactions and the build-up of organic molecules in comets and interstellar ices

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Allamandola, L. J.; Sandford, S. A.

    1995-01-01

    We have investigated thermally promoted reactions of formaldehyde (H2CO) in very low temperature ices. No such reactions occurred in ices of pure formaldehyde. However, addition of trace amounts of ammonia (NH3) were sufficient to catalyze reactions at temperatures as low as 40 K. Similar reactions could take place in interstellar ices and in Comets and produce considerable amounts of organic molecules.

  10. Laboratory Anion Chemistry: Implications for the DIBs, and a Potential Formation Mechanism for a Known Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Eichelberger, B.; Barckholtz, C.; Stepanovic, M.; Bierbaum, V.; Snow, T.

    2002-01-01

    Due to recent interest in molecular anions as possible interstellar species, we have carried out several laboratory studies of anion chemistry. The reactions of the series C(sub n)(sup -); and C(sub n)H(sup -) with H and H2 were studied to address the viability of such species in the diffuse interstellar medium and to address their ability to be carriers of the diffuse interstellar bands (DIBs). These same molecules were also reacted with N and O to show possible heteroatomic products. C(sub m)N(sup - was a particularly stable product from the reaction of C(sub n)(sup -) + N. C3N(sup -) was further reacted with H to study chemistry that could produce HC3N, a known interstellar species. The reactions were done in a flowing afterglow selected ion flow tube apparatus (FA-SIFT). The anions were generated in an electron impact or cold cathode discharge source and the anion of interest was then selected by a quadrupole mass filter. The selected ion was then reacted with the atomic or molecular species in the flow tube and products were detected by another quadrupole. While the C(sub n)(sup -) species do not appear to be viable DIB carriers, their possible presence could provide a mechanism for the formation of known heteroatomic neutral molecules detected in the interstellar medium (ISM).

  11. New observations of interstellar abundances and depletions of boron, vanadium, chromium, and cobalt

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Weiler, W. J.; Oegerle, W. R.

    1979-01-01

    New observations of interstellar lines of boron, vanadium, chromium, and cobalt in the spectra of Zeta Oph and Xi Per have been obtained with the Copernicus satellite. Chromium has been detected for the first time toward a reddened star, and cobalt has been seen for the first time in any interstellar line of sight. New limits have been obtained for boron and vanadium. These new data, along with limits on scandium and other species from the literature, have been compared with models for the depletion process. No fully conclusive test of depletion models is yet possible, but the new data on boron appear to favor the hypothesis that the depletions are dominated by accretion of gas-phase particles onto grains, rather than being due to grain condensation under pressure equilibrium. The impact of these new data on the study of grain surface properties is described.

  12. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  13. True Chemical Abundances of Galaxies in the Nearby Universe: A Comparison of Abundance Methods, Interstellar Processes, and Galaxy Types

    NASA Astrophysics Data System (ADS)

    Berg, Danielle Amanda

    2013-12-01

    Peeples et al. (2008) identified low-mass, high oxygen abundance outliers from the mass-metallicity (M-Z) relationship. We present new MMT spectroscopy of four of these dwarf galaxy outliers. We re-examined these anomalous spectra and compared to the parameter space for which standard strong-line methods are calibrated. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the "Wolf-Rayet galaxy" phase. To address the issue of securing the low-luminosity end of the M-Z relationship, we present MMT spectroscopic observations of HII regions in 42 low-luminosity galaxies in the Spitzer LVL survey. Direct oxygen abundances were determined based on the temperature sensitive [O III] lambda4363 line, measured at a strength of 4sigma or greater, for 31 of the 42 galaxies in our sample. Combining our results with previous direct abundance studies, we present a further refined sample, requiring reliable distance determinations. We characterize the direct L-Z and M-Z relationships at low-luminosity using the resulting 38 object sample. We show that the luminosity of a low-luminosity galaxy is often a better indicator of metallicity than strong-line methods. Additionally, our results provide the first direct estimates of oxygen abundance for 19 local volume dwarf galaxies. Properties of the ISM of spiral galaxies are known to show radial variations. Motivated by the need to place gradients on the same scale for comparisons amongst galaxies, we present direct oxygen abundance gradients of the nearby spiral galaxies NGC 628 and NGC 2403. A bi-modal N/O gradient pattern is measured for NGC 628. Notably, the N/O ratio plateaus beyond R25, demonstrating that primary nitrogen production is the dominant mechanism in the outer disk. The outer disk beyond R 25 was not

  14. Interstellar Deuterium, Nitrogen and Oxygen Abundances Toward BD+28(deg) 4211: Results from the Far Ultraviolet Spectroscopic Explorer

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Andre, Martial; Oliveira, Cristina; Hebrard, Guillaume; Howk, J. Christopher; Tripp, Todd M.; Chayer, Pierre; Friedman, Scott D.; Kruk, Jeffery W.; Jenkins, Edward B.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    High resolution far-ultraviolet spectra of the O-type subdwarf BD+28(deg)4211 were obtained with the Far Ultraviolet Spectroscopic Explorer to measure the interstellar deuterium, nitrogen, and oxygen abundances in this direction. The interstellar D(I) transitions are analyzed down to Ly(ioat) at 920.7 A. The star was observed several times at different target offsets in the direction of spectral dispersion. The aligned and coedited spectra have high signal-to-noise ratios (S/N=50-100). D(I), N(I), and O(I) transitions were analyzed with curve-of-growth and profile fitting techniques. A model of interstellar molecular hydrogen on the line of sight was derived from H(II) lines in the FUSE spectra and used to help analyze some features where blending with H(II) was significant. The H(I) column density was determined from high resolution HST/STIS spectra of Ly(alpha) to be log N(H(I))= 19.846+/-0.035(2sigma), which is higher than is typical for sight lines in the local ISM studied for D/H. We found that D/H=(1.39+/-0.21)x 10(exp -5)(2sigma) and O/H=(2.37+/-0.55)x10(exp -4)(2sigma). O/H toward BD+28(deg)4211 appears to be significantly below the mean O/H ratio for the ISM and the Local Bubble.

  15. Interstellar Neutral Helium in the Heliosphere from IBEX Observations. IV. Flow Vector, Mach Number, and Abundance of the Warm Breeze

    NASA Astrophysics Data System (ADS)

    Kubiak, Marzena A.; Swaczyna, P.; Bzowski, M.; Sokół, J. M.; Fuselier, S. A.; Galli, A.; Heirtzler, D.; Kucharek, H.; Leonard, T. W.; McComas, D. J.; Möbius, E.; Park, J.; Schwadron, N. A.; Wurz, P.

    2016-04-01

    Following the high-precision determination of the velocity vector and temperature of the pristine interstellar neutral (ISN) He via a coordinated analysis summarized by McComas et al., we analyzed the Interstellar Boundary Explorer (IBEX) observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010-2014 and cover the region in the Earth's orbit where the Warm Breeze (WB) persists. We used the same simulation model and a parameter fitting method very similar to that used for the analysis of ISN He. We approximated the parent population of the WB in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and found a temperature of ˜9500 K, an inflow speed of 11.3 km s-1, and an inflow longitude and latitude in the J2000 ecliptic coordinates 251.°6, 12.°0. The abundance of the WB relative to ISN He is 5.7% and the Mach number is 1.97. The newly determined inflow direction of the WB, the inflow directions of ISN H and ISN He, and the direction to the center of the IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the WB. This co-planarity lends support to the hypothesis that the WB is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field (ISMF). The common plane for the direction of the inflow of ISN gas, ISN H, the WB, and the local ISMF is given by the normal direction: ecliptic longitude 349.°7 ± 0.°6 and latitude 35.°7 ± 0.6 in the J2000 coordinates, with a correlation coefficient of 0.85.

  16. Probing the Origin and Evolution of Interstellar and Protoplanetary Biogenic Molecules:A Comprehensive Survey of Interstellar Ices with SPHEREx

    NASA Astrophysics Data System (ADS)

    Melnick, Gary J.; SPHEREx Science Team

    2016-01-01

    Many of the most important building blocks of life are locked in interstellar and protoplanetary ices. Examples include H2O, CO, CO2, and CH3OH, among others. There is growing evidence that in some environments, such as within the cores of dense molecular clouds and the mid-plane of protoplanetary disks, the amounts of these species in ices far exceeds that in the gas phase. As a result, collisions between ice-bearing bodies and newly forming planets are thought to be a major means of delivering these key species to young planets. There currently exist fewer than 250 ice absorption spectra toward Galactic molecular clouds, which is insufficient to reliably trace the ice content of clouds through the various stages of collapse to star and planet formation, or assess the effects of their environments and physical conditions, such as cloud density, internal temperature, presence or absence of embedded sources, external UV and X-ray radiation, gas-phase composition, or cosmic-ray ionization rate, on the ice composition for clouds at similar evolutionary stages. Ultimately, our goal is to understand how these findings connect to our own Solar System.SPHEREx, which is a mission in NASA's Small Explorer (SMEX) program that was selected for a Phase A study in July 2015, will be a game changer for the study of interstellar, circumstellar, and protoplanetary disk ices. SPHEREx will obtain spectra over the entire sky in the optical and near-IR, including the 2.5 to 4.8 micron region, which contains the above biogenic ice features. SPHEREx will detect millions of potential background continuum point sources already catalogued by NASA's Wide-field Infrared Survey Explorer (WISE) at 3.4 and 4.6 microns for which there is evidence for intervening gas and dust based on the 2MASS+WISE colors with sufficient sensitivity to yield ice absorption spectra with SNR ≥ 100 per spectral resolution element. The resulting > 100-fold increase in the number of high-quality ice absorption

  17. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. II. ABUNDANCE RATIO IN THE HOT INTERSTELLAR MATTER

    SciTech Connect

    Kim, Dong-Woo; Fabbiano, Giuseppina; Pipino, Antonio

    2012-05-20

    Using Chandra X-ray observations of young, post-merger elliptical galaxies, we present X-ray characteristics of age-related observational results by comparing them with typical old elliptical galaxies in terms of metal abundances in the hot interstellar matter (ISM). While the absolute element abundances may be uncertain because of unknown systematic errors and partly because of the smaller amount of hot gas in young ellipticals, the relative abundance ratios (e.g., the {alpha}-element to Fe ratio, and most importantly the Si/Fe ratio) can be relatively well constrained. In two young elliptical galaxies (NGC 720 and NGC 3923) we find that the Si to Fe abundance ratio is super-solar (at a 99% significance level), in contrast to typical old elliptical galaxies where the Si to Fe abundance ratio is close to solar. Also, the O/Mg ratio is close to solar in the two young elliptical galaxies, as opposed to the sub-solar O/Mg ratio reported in old elliptical galaxies. Both features appear to be less significant outside the effective radius (roughly 30'' for the galaxies under study), consistent with the observations that confine to the centermost regions the signatures of recent star formation in elliptical galaxies. Observed differences between young and old elliptical galaxies can be explained by the additional contribution from SNe II ejecta in the former. In young elliptical galaxies, the later star formation associated with recent mergers would have a dual effect, resulting both in galaxy scale winds-and therefore smaller observed amounts of hot ISM-because of the additional SN II heating, and in different metal abundances, because of the additional SN II yields.

  18. Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1979-01-01

    The ions, radicals, and molecules observed in comets may be derived intact or by partial decomposition from parent compounds of the sort found either in the interstellar medium or in carbonaceous meteorites. The early loss of highly reducing primitive atmosphere and its replacement by a secondary atmosphere dominated by H2O, CO2, and N2, as depicted in current models of the earth's evolution, pose a dilemma for the origin of life: the synthesis of organic compounds necessary for life from components of the secondary atmosphere appears to be difficult, and plausible mechanisms have not been evaluated. Both comets and carbonaceous meteorites are implicated as sources for the earth's atmophilic and organogenic elements. A mass balance argument involving the estimated ratios of hydrogen to carbon in carbonaceous meteorites, comets, and the crust and upper mantle suggests that comets supplied the earth with a large fraction of its volatiles. The probability that comets contributed significantly to the earth's volatile inventory suggests a chemical evolutionary link between comets, prebiotic organic synthesis, and the origin of life.

  19. The abundance of CO in diffuse interstellar clouds - An ultraviolet survey

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Glassgold, A. E.; Jenkins, E. B.; Shaya, E. J.

    1980-01-01

    CO was detected in 17 directions and its upper limits were estimated in 21 directions by a UV survey carried out with the Copernicus satellite in the C-X 1088 A and E-X 1076 A lines toward 48 bright stars. The CO column densities range from 10 to the 12th to 10 to the 17th/sq cm and correlate with C I and H2. The tendency of the C I/CO ratio to be about 10 follows the ratio of particular atomic and molecular cross-sections and the physical parameters of interstellar clouds. Finally, the connection between UV observations in diffuse clouds and radio observations of (C-13)O in dark clouds is discussed.

  20. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  1. THE ABUNDANCE OF C{sub 3}H{sub 2} AND OTHER SMALL HYDROCARBONS IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Liszt, Harvey; Sonnentrucker, Paule; Cordiner, Martin; Gerin, Maryvonne

    2012-07-10

    Hydrocarbons are ubiquitous in the interstellar medium, observed in diverse environments ranging from diffuse to molecular dark clouds and strong photon-dominated regions near H II regions. Recently, two broad diffuse interstellar bands (DIBs) at 4881 A and 5450 A were attributed to the linear version of propynylidene l-C{sub 3}H{sub 2}, a species whose more stable cyclic conformer c-C{sub 3}H{sub 2} has been widely observed in the diffuse interstellar medium at radio wavelengths. This attribution has already been criticized on the basis of indirect plausibility arguments because the required column densities are quite large, N(l-C{sub 3}H{sub 2})/E{sub B-V} =4 Multiplication-Sign 10{sup 14} cm{sup -2} mag{sup -1}. Here we present new measurements of N(l-C{sub 3}H{sub 2}) based on simultaneous 18-21 GHz Very Large Array absorption profiles of cyclic and linear C{sub 3}H{sub 2} taken along sight lines toward extragalactic radio-continuum background sources with foreground Galactic reddening E{sub B-V} = 0.1-1.6 mag. We find that N(l-C{sub 3}H{sub 2})/N(c-C{sub 3}H{sub 2}) Almost-Equal-To 1/15-1/40 and N(l-C{sub 3}H{sub 2})/E{sub B-V} Almost-Equal-To (2 {+-} 1) Multiplication-Sign 10{sup 11} cm{sup -2} mag{sup -1}, so that the column densities of l-C{sub 3}H{sub 2} needed to explain the DIBs are some three orders of magnitude higher than what is observed. We also find N(C{sub 4}H)/E{sub B-V} <1.3 Multiplication-Sign 10{sup 13} cm{sup -2} mag{sup -1} and N(C{sub 4}H{sup -})/E{sub B-V} <1 Multiplication-Sign 10{sup 11} cm{sup -2} mag{sup -1} (3{sigma}). Using available data for CH and C{sub 2}H we compare the abundances of small hydrocarbons in diffuse and dark clouds as a guide to their ability to contribute as DIB carriers over a wide range of conditions in the interstellar medium.

  2. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of Oxygen. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernovae (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  3. AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649

    SciTech Connect

    Loewenstein, Michael; Davis, David S. E-mail: David.S.Davis@nasa.gov

    2012-10-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady-state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernova (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649, we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern toward low {alpha}/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an Appendix, we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  4. The chemistry of phosphorus in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Prasad, S. S.; Huntress, W. T., Jr.

    1984-01-01

    Laboratory experiments show that the ion-molecule chemistry of phosphorus is significantly different from that of nitrogen in dense interstellar clouds. The PH3 molecule is not readily formed by gas-phase, ion-molecule reactions in these regions. Laboratory results used in a simple kinetic model indicate that the most abundant molecule containing phosphorus in dense clouds is PO.

  5. Statistical model for the abundance of deuterated ammonia in interstellar space

    NASA Astrophysics Data System (ADS)

    Nyman, Gunnar

    2016-04-01

    The elemental abundance of deuterium to normal hydrogen in the universe is on the order of 10-5. A random distribution would therefore give a ratio of triply deuterated ammonia, ND3, to NH3 of 10-15. Observations indicate an ND3 to NH3 ratio of roughly 10-3, implying enrichment of triply deuterated ammonia by about twelve orders of magnitude. A simple model, based on the elemental abundances of N, D and H, is developed and solved analytically. At zero temperature the expressions are particularly simple. Effects of finite temperature are included through the partition functions of the isotopologues. It is found that the effect of finite temperature is modest in the temperature range 10-100 K. The results of the model are in good agreement with the observed abundances so local thermal equilibrium may therefore be a reasonable approximation and thus also be an explanation for the apparent enrichment of deuterated isotopologues.

  6. The abundance and excitation of the carbon chains in interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Bujarrabal, V.; Guelin, M.; Morris, M.; Thaddeus, P.

    1981-01-01

    Emission lines from the carbon chains HC3N, HC5N, HC7N and HC9N were observed at 3 mm, 7 mm, and 1.4 cm in a number of dark clouds, Orion A and IRC(plus)10216. Non-LTE models were constructed to describe excitation and column densities. Component models for the Taurus dark cloud TMC-1 suggested that relative molecular abundances do not vary substantially along the cloud ridge, whereas the H2 density does by a factor of three. Data available for other dark clouds showed that the decrease in abundance with length from one carbon chain to the next is nearly constant, being close to 2.3. The decline in carbon chain abundance with length is steeper in Orion KL than in dark clouds by a factor of approximately four. Abundance ratios derived for the carbon star IRC(plus)10216 are uncertain, due to difficulties in modeling excitation rates in this environment.

  7. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  8. ESTIMATION OF THE NEON/OXYGEN ABUNDANCE RATIO AT THE HELIOSPHERIC TERMINATION SHOCK AND IN THE LOCAL INTERSTELLAR MEDIUM FROM IBEX OBSERVATIONS

    SciTech Connect

    Bochsler, P.; Petersen, L.; Moebius, E.; Schwadron, N. A.; Wurz, P.; Scheer, J. A.; Fuselier, S. A.; McComas, D. J.; Bzowski, M.; Frisch, P. C.

    2012-02-01

    We report the first direct measurement of the Ne/O abundance ratio of the interstellar neutral gas flowing into the inner heliosphere. From the first year of Interstellar Boundary Explorer IBEX data collected in spring 2009, we derive the fluxes of interstellar neutral oxygen and neon. Using the flux ratio at the location of IBEX at 1 AU at the time of the observations, and using the ionization rates of neon and oxygen prevailing in the heliosphere during the period of solar minimum, we estimate the neon/oxygen ratios at the heliospheric termination shock and in the gas phase of the inflowing local interstellar medium. Our estimate is (Ne/O){sub gas,ISM} = 0.27 {+-} 0.10, which is-within the large given uncertainties-consistent with earlier measurements from pickup ions. Our value is larger than the solar abundance ratio, possibly indicating that a significant fraction of oxygen in the local interstellar medium is hidden in grains and/or ices.

  9. INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. IV. FLOW VECTOR, MACH NUMBER, AND ABUNDANCE OF THE WARM BREEZE

    SciTech Connect

    Kubiak, Marzena A.; Swaczyna, P.; Bzowski, M.; Sokół, J. M.; Fuselier, S. A.; McComas, D. J.; Galli, A.; Wurz, P.; Heirtzler, D.; Kucharek, H.; Leonard, T. W.; Möbius, E.; Park, J.; Schwadron, N. A.

    2016-04-15

    Following the high-precision determination of the velocity vector and temperature of the pristine interstellar neutral (ISN) He via a coordinated analysis summarized by McComas et al., we analyzed the Interstellar Boundary Explorer (IBEX) observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010–2014 and cover the region in the Earth's orbit where the Warm Breeze (WB) persists. We used the same simulation model and a parameter fitting method very similar to that used for the analysis of ISN He. We approximated the parent population of the WB in front of the heliosphere with a homogeneous Maxwell–Boltzmann distribution function and found a temperature of ∼9500 K, an inflow speed of 11.3 km s{sup −1}, and an inflow longitude and latitude in the J2000 ecliptic coordinates 251.°6, 12.°0. The abundance of the WB relative to ISN He is 5.7% and the Mach number is 1.97. The newly determined inflow direction of the WB, the inflow directions of ISN H and ISN He, and the direction to the center of the IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the WB. This co-planarity lends support to the hypothesis that the WB is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field (ISMF). The common plane for the direction of the inflow of ISN gas, ISN H, the WB, and the local ISMF is given by the normal direction: ecliptic longitude 349.°7 ± 0.°6 and latitude 35.°7 ± 0.6 in the J2000 coordinates, with a correlation coefficient of 0.85.

  10. Theoretical study of electronic absorption spectroscopy of propadienylidene molecule vis-â-vis the observed diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Reddy, Samala Nagaprasad; Mahapatra, S.

    2012-07-01

    Observation of broad and diffuse interstellar bands (DIBs) at 4881 Å and 5440 Å assigned to the optical absorption spectrum of Y-shaped propadienylidene (H2Cdbnd Cdbnd C:) molecule is theoretically examined in this paper. This molecule apparently absorbs in the same wavelength region as the observed DIBs and was suggested to be a potential carrier of these DIBs. This assignment mostly relied on the experimental data from radioastronomy and laboratory measurements. Motivated by these available experimental data we attempt here a theoretical study and investigate the detailed electronic structure and nuclear dynamics underlying the electronic absorption bands of propadienylidene molecule. Our results show that this molecule indeed absorbs in the wavelength region of the recorded DIBs. Strong nonadiabatic coupling between its energetically low-lying electronic states plays major role, initiates ultrafast internal conversion and contributes to the spectral broadening. Theoretical findings are finally compared with the available experimental and theoretical data and discussed in connection with the recorded DIBs.

  11. A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules

    PubMed Central

    Abplanalp, Matthew J.; Gozem, Samer; Krylov, Anna I.; Shingledecker, Christopher N.; Herbst, Eric; Kaiser, Ralf I.

    2016-01-01

    Complex organic molecules such as sugars and amides are ubiquitous in star- and planet-forming regions, but their formation mechanisms have remained largely elusive until now. Here we show in a combined experimental, computational, and astrochemical modeling study that interstellar aldehydes and enols like acetaldehyde (CH3CHO) and vinyl alcohol (C2H3OH) act as key tracers of a cosmic-ray-driven nonequilibrium chemistry leading to complex organics even deep within low-temperature interstellar ices at 10 K. Our findings challenge conventional wisdom and define a hitherto poorly characterized reaction class forming complex organic molecules inside interstellar ices before their sublimation in star-forming regions such as SgrB2(N). These processes are of vital importance in initiating a chain of chemical reactions leading eventually to the molecular precursors of biorelevant molecules as planets form in their interstellar nurseries. PMID:27382172

  12. Galactic interstellar abundance surveys with IUE. III - Silicon, manganese, iron, sulfur, and zinc

    NASA Technical Reports Server (NTRS)

    Van Steenberg, Michael E.; Shull, J. Michael

    1988-01-01

    This paper continues a survey of intestellar densities, abundances, and cloud structure in the Galaxy using the IUE satellite. A statistical data set of 223 O3-B2.5 stars is constructed, including 53 stars in the Galactic halo. It is found that S II lines in B stars, of luminosity classes IV and V, have possible contamination from stellar S II, particular for stars with v sin i less than 200 km/s. The mean logarithmic depletions are -1.00, -1.19. -0.63, and -0.23 (Si, Mn,Fe,S, Zn). Depletions of Si, Mn, and Fe correlate with the mean hydrogen density n-bar along the line of sight, with a turnover for n-bar greater than 1/cm. Sulfur depletions correlate with n-bar along the line of sight. The slight Zn depletion correlation also appears to be statistically insignificant. No correlation of depletion is found with the physical density derived from H2 rotational states in 21 lines of sight. Depletion variations in the disk are consistent with a Galactic abundance gradient or with enhanced mean depletions in the anticenter region.

  13. Laboratory Studies of Stabilities of Heterocyclic Aromatic Molecules: Suggested Gas Phase Ion-Molecule Routes to Production in Interstellar Gas Clouds

    NASA Technical Reports Server (NTRS)

    Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.

    2006-01-01

    Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.

  14. Interstellar isomers

    NASA Technical Reports Server (NTRS)

    Defrees, D.; Mclean, D.; Herbst, E.

    1986-01-01

    Both observational and theoretical studies of molecular clouds are hindered by many difficulties. One way to partially circumvent the difficulties of characterizing the chemistry within these objects is to study the relative abundances of isomers which are synthesized from a common set of precursors. Unfortunately, only one such system has been confirmed, the HCN/HNC pair of isomers. While the basic outlines of its chemistry have been known for some years, there are still many aspects of the chemistry which are unclear. Another potential pair of isomers is HCO+/HOC+; HCO+ is an abundant instellar molecule and a tentative identification of HOC+ has been made in Sgr B2. This identification is being challenged, however, based on theoretical and laboratory evidence that HOC+ reacts with H2. Another potential pair of interstellar isomers is methyl cyanide (CH3CN, acetonitrile) and methyl isocyanide (CH3NC). The cyanide is well known, however the isocyanide has yet to be observed despite theoretical predictions that appreciable quantities should be present.

  15. The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Aguado, Alfredo; Roncero, Octavio; Zanchet, Alexandre; Agúndez, Marcelino; Cernicharo, José

    2017-03-01

    The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross sections of HCN and HNC isomers have been calculated in the 7–13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need to consider non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental value. It is found that HNC is photodissociated faster than HCN by a factor of 2.2 for the local interstellar radiation field and 9.2 for the solar radiation field, at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field, it is necessary to use different photodissociation rates for each of the two isomers, which are obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.

  16. The Abundances of Hydrocarbon Functional Groups in the Interstellar Medium Inferred from Laboratory Spectra of Hydrogenated and Methylated Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Steglich, M.; Jäger, C.; Huisken, F.; Friedrich, M.; Plass, W.; Räder, H.-J.; Müllen, K.; Henning, Th.

    2013-10-01

    Infrared (IR) absorption spectra of individual polycyclic aromatic hydrocarbons (PAHs) containing methyl (\\sbondCH3), methylene (\\protect{\\epsfbox{art/apjs484229un01.eps}}CH2), or diamond-like \\protect{\\epsfbox{art/apjs484229un02.eps}}CH groups and IR spectra of mixtures of methylated and hydrogenated PAHs prepared by gas-phase condensation were measured at room temperature (as grains in pellets) and at low temperature (isolated in Ne matrices). In addition, the PAH blends were subjected to an in-depth molecular structure analysis by means of high-performance liquid chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Supported by calculations at the density functional theory level, the laboratory results were applied to analyze in detail the aliphatic absorption complex of the diffuse interstellar medium at 3.4 μm and to determine the abundances of hydrocarbon functional groups. Assuming that the PAHs are mainly locked in grains, aliphatic CH x groups (x = 1, 2, 3) would contribute approximately in equal quantities to the 3.4 μm feature (N CHx /N H ≈ 10-5-2 × 10-5). The abundances, however, may be two to four times lower if a major contribution to the 3.4 μm feature comes from molecules in the gas phase. Aromatic \\epsfbox{art/apjs484229un03.eps} CH groups seem to be almost absent from some lines of sight, but can be nearly as abundant as each of the aliphatic components in other directions (N_{\\epsfbox{art/apjs484229un03.eps} CH}/N H lsim 2 × 10-5 upper value for grains). Due to comparatively low binding energies, astronomical IR emission sources do not display such heavy excess hydrogenation. At best, especially in protoplanetary nebulae, \\protect{\\epsfbox{art/apjs484229un01.eps}}CH2 groups bound to aromatic molecules, i.e., excess hydrogens on the molecular periphery only, can survive the presence of a nearby star.

  17. From the Matterhorn to Molecules: The Beauty of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2015-05-01

    Our generation is opening humanity's eyes to the electromagnetic spectrum, revealing the interstellar medium's stunning beauty and profound role in star and planet formation and cosmic evolution. The enabling technologies of this revolution also have huge impacts on the world's economy.

  18. From the Matterhorn to Molecules: The Beauty of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2016-05-01

    Our generation is opening humanity's eyes to the electromagnetic spectrum, revealing the interstellar medium's stunning beauty and profound role in star and planet formation and cosmic evolution. The enabling technologies of this revolution also have huge impacts on the world's economy.

  19. Electron Irradiation of Carbon Disulfide-Oxygen Ices: Toward the Formation of Sulfur-bearing Molecules in Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Maity, Surajit; Kaiser, Ralf I.

    2013-08-01

    The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS2)-oxygen (O2) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO2), sulfur trioxide (SO3), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO2), carbon monoxide (CO), and ozone (O3) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS2) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H2O), carbon dioxide (CO2), and/or methanol (CH3OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO2) are the dominant sulfur-bearing molecules in interstellar ices.

  20. ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES

    SciTech Connect

    Maity, Surajit; Kaiser, Ralf I.

    2013-08-20

    The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

  1. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  2. Interstellar Predation

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.; Lee, M.

    Although chemosynthesis and photosynthesis can theoretically supply enough energy for intelligence, for reasons elucidated here, heterotrophy and specifically phagotrophy (ingestion of prey) are likely to make predation a characteristic of life and extraterrestrial intelligence (ETI). Here, the Earth's biota is used to consider the nature of interstellar predation. The ability of the ETI to directly ingest a biota will be determined by the chiral preference of the ETI, the compatibility of the biochemistry used in life on Earth with the molecules required by the ETI and the potential toxicity of the macromolecules. If chirality is determined by astrophysical factors and not by the specificities of terrestrial origins of life and if molecules found in terrestrial organisms are also represented in ETIs (which could plausibly include hydrated carbohydrides and many amino acids that are similar or identical to amino acids found in meteoritic or cometary material) then the Earth might represent a universally appreciated resource. The Earth's biota could be used as an energy supply or, if other forms of technology have advanced to the point where bioreactors can be exclusively used to supply a civilization with food, as a culinary curiosity. Even in the absence of metabolic compatibility, technology can be used to extract useful products from an undigestible biota, similarly to the industrial biotransformation of cellulose. The value of the resource will also be determined by the availability of prey. Planets at stages in biological evolution where the surface is dominated by just one or several large (>5kg), abundant, easily captured organisms are particu- larly attractive to predators because harvesting techniques can be standardized. We discuss implications for exobiology and the `Fermi Paradox'.

  3. Modeling Linear Molecules as Carriers of the λ5797 Å and λ6613 Å Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Huang, Jane; Oka, Takeshi

    2014-06-01

    Electronic transitions of polar linear molecules have been modeled and compared to archival high resolution spectra of the diffuse interstellar bands (DIBs) at 5797 and 6613 Å. These two bands are notable for fine structure that has most commonly been attributed to the rotational structure of electronic transitions of gas-phase molecules. Most strikingly, the 5797 DIB has a sharp, narrow center peak that is characteristic of the Q branch of parallel transitions with non-zero Λ. This work is also motivated by Oka et al.'s analysis of the anomalously extended redward tails seen in certain DIBs toward Herschel 36, which are reminiscent of electronic transitions of polar linear molecules at high radiative temperatures. The determination of rotational distributions, which includes radiative and collisional effects, is based on the model presented in the earlier work. Thus far, the most promising models are a ^2Π ← ^2Π transition for the 5797 DIB and a ^2Δ ← ^2Π transition for the 6613 DIB, with the effects of spin-orbit coupling examined in each case. The degree of consistency of these transitions with respect to the anomalous DIBs toward Herschel 36 is also discussed. Sarre, P. J., Miles, J. R., Kerr, T. H. et al. 1995, MNRAS, 177L 41 Oka, T., Welty, D. E., Johnson, S. et al. 2013, ApJ, 773 42

  4. Interstellar Abundances in the SMC - Implications for QSO - Line Systems and for Chem EV of Universe-Cyc 4 Med Early Acq for 5608

    NASA Astrophysics Data System (ADS)

    Welty, Daniel

    1994-01-01

    We propose a detailed study of the interstellar (IS) abundances and depletions for one line of sight in the SMC - a nearby low metallicity, low dust-to-gas ratio system where stellar abundance data are also available. We will use the GHRS ECH-B to obtain absorption-line profiles of Zn II, Cr II, Si II, Fe II, Mn II, Mg II, and Al III, to determine both the detailed component structures and the relative abundances of those species in the various components. We will use the derived component structures to obtain similarly detailed abundances for S II, Ni II, and Al II from existing lower resolution short-wavelength IUE spectra (in which severe blending of components has to now prevented accurate abundance determinations). In addition to the intrinsic interest in obtaining detailed IS abundance and depletion data for an external galaxy quite different from our own, such data are needed for interpreting the abundance patterns found in QSO absorption-line systems. A number of the QSOALS examined to date seem to exhibit overall metallicities of about 0.1 x Solar, with some additional depletion of refractory elements. If the pattern of that depletion can be constrained, then the build-up of many elements can be traced, via the QSOALS, from redshifts 3.5 to 0.5 - with significant implications for the formation and evolution of galaxies.

  5. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  6. The kinetic chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  7. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  8. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  9. Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, P. Brandon; Loomis, Ryan A.; Finneran, Ian A.; Jewell, Philip R.; Remijan, Anthony J.; Blake, Geoffrey A.

    2016-06-01

    Life on Earth relies on chiral molecules—that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere. We present the astronomical detection of a chiral molecule, propylene oxide (CH3CHCH2O), in absorption toward the Galactic center. Propylene oxide is detected in the gas phase in a cold, extended molecular shell around the embedded, massive protostellar clusters in the Sagittarius B2 star-forming region. This material is representative of the earliest stage of solar system evolution in which a chiral molecule has been found.

  10. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1989-01-01

    Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.

  11. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  12. Local Interstellar Medium Properties and Deuterium Abundances for the Lines of Sight Toward HR 1099, 31 Comae, beta Ceti, and beta Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Piskunov, Nikolai; Wood, Brian E.; Linsky, Jeffrey L.; Dempsey, Robert C.; Ayres, Thomas R.

    1997-01-01

    We analyze Goddard High-Resolution Spectrograph data to infer the properties of local interstellar gas and the Deuterium/Hydrogen (D/H) ratio for lines of sight toward four nearby late-type stars-HR 1099, 31 Comae, beta Ceti, and beta Cassiopeiae. The data consist of spectra of the hydrogen and deuterium Lyman-(alpha) lines, and echelle spectra of the Mg IIh and k lines toward all stars except beta Cas. Spectra of the RS CVn-type spectroscopic binary system HR 1099 were obtained near opposite quadratures to determine the intrinsic stellar emission line profile and the interstellar absorption separately. Multiple-velocity components were found toward HR 1099 and beta Cet. The spectra of 31 Com and beta Cet are particularly interesting because they sample lines of sight toward the north and south Galactic poles, respectively, for which H I and D I column densities were not previously available. The north Galactic pole appears to be a region of low hydrogen density like the 'interstellar tunnel' toward epsilon CMa. The temperature and turbulent velocities of the Local InterStellar Medium (LISM) that we measure for the lines of sight toward HR 1099, 31 Com, beta Cet, and beta Cas are similar to previously measured values (T approx.7000 K and xi = 1.0-1.6 km/s). The deuterium/hydrogen ratios found for these lines of sight are also consistent with previous measurements of other short lines of sight, which suggest D/H approx. 1.6 x 10(sup -5). In contrast, the Mg abundance measured for the beta Cet line of sight (implying a logarithmic depletion of D(Mg) = +0.30 +/- 0.15) is about 5 times larger than the Mg abundance previously observed toward alpha Cen, and about 20 times larger than all other previous measurements for the LISM. These results demonstrate that metal abundances in the LISM vary greatly over distances of only a few parsecs.

  13. PAHs in Translucent Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2011-05-01

    We discuss the proposal of relating the origin of some of the diffuse interstellar bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. This comparison provides - for the first time - accurate upper limits for the abundances of specific PAH molecules along specific lines-of-sight. Something that is not attainable from IR observations alone. The comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments. // Reference: F. Salama et al. (2011) ApJ. 728 (1), 154 // Acknowledgements: F.S. acknowledges the support of the NASA's Space Mission Directorate APRA Program. J.K. acknowledges the financial support of the Polish State (grant N203 012 32/1550). The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.

  14. Life's First Handshake - Discovery of the Interstellar Chiral Molecule Propylene Oxide

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, P. Brandon; Loomis, Ryan A.; Finneran, Ian A.; Jewell, Philip R.; Remijan, Anthony J.; Blake, Geoffrey A.

    2016-06-01

    Life on Earth relies on chiral molecules, that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere, and is perhaps most readily apparent in the large enhancement in biological activity of particular amino acid and sugar enantiomers. Yet, the ancestral origin of biological homochirality remains a mystery. The non-racemic ratios in some organics isolated from primitive meteorites hint at a primordial chiral seed, but even these samples have experienced substantial processing during planetary assembly, obscuring their complete histories. To determine the underlying origin of any enantiomeric excess, it is critical to understand the molecular gas from which these molecules originated. Here, we present the first extra-solar, astronomical detection of a chiral molecule, propylene oxide (CH3CHCH2O), in absorption toward the Galactic Center. We discuss the implications of the detection on observational searches to determine a primordial chiral excess, as well as the state of laboratory efforts in these areas.

  15. Laboratory experiments on interstellar ice analogs: The sticking and desorption of small physisorbed molecules

    NASA Technical Reports Server (NTRS)

    Fuchs, G. W.; Acharyya, K.; Bisschop, S. E.; Oberg, K. I.; vanBroekhuizen, F. A.; Fraser, H. J.; Schlemmer, S.; vanDishoeck, E. F.; Linnartz, H.

    2006-01-01

    Molecular oxygen and nitrogen are difficult to observe since they are infrared inactive and radio quiet. The low O2 abundances found so far combined with general considerations of dense cloud conditions suggest molecular oxygen is frozen out at low temperatures (< 20 K) in the shielded inner regions of cloud cores. In solid form O2 and N2 can only be observed as adjuncts within other ice constituents, like CO. In this work we focus on fundamental properties of N2 and O2 in CO ice-gas systems, e.g. desorption characteristics and sticking probabilities at low temperatures for different ice morphologies.

  16. Communication: Ab initio study of O{sub 4}H{sup +}: A tracer molecule in the interstellar medium?

    SciTech Connect

    Xavier, George D.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2014-08-28

    The structure and energetics of the protonated molecular oxygen dimer calculated via ab initio methods is reported. We find structures that share analogies with the eigen and zundel forms for the protonated water dimer although the symmetrical sharing of the proton is more prevalent. Analysis of different fragmentation channels show charge transfer processes which indicate the presence of conical intersections for various states including the ground state. An accurate estimate for the proton affinity of O{sub 4} leads to a significantly larger value (5.6 eV) than for O{sub 2} (4.4 eV), implying that the reaction H{sub 3}{sup +} + O{sub 4} → O{sub 4}H{sup +} + H{sub 2} is exothermic by 28 Kcal/mol as opposed to the case of O{sub 2} which is nearly thermoneutral. This opens up the possibility of using O{sub 4}H{sup +} as a tracer molecule for oxygen in the interstellar medium.

  17. Elemental nitrogen partitioning in dense interstellar clouds

    PubMed Central

    Daranlot, Julien; Hincelin, Ugo; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M.

    2012-01-01

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms, each involving two radical-radical reactions, are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N2 formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N2 formation are inefficient, we argue that N2 does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH3 should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules. PMID:22689957

  18. From Interstellar PAHs and Ices to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building

  19. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    York, D. G.; Jura, M.

    1982-01-01

    IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.

  20. Discovery of interstellar rubidium

    NASA Technical Reports Server (NTRS)

    Jura, M.; Smith, W. H.

    1981-01-01

    Interstellar rubidium is detected through observations of the resonance line of Rb I at 7800 A towards zeta Oph. The abundance ratio of rubidium to potassium is estimated to be approximately solar, and if rubidium is generally found to have an abundance similar to potassium, it is indicated that the local interstellar medium is well mixed with a wide variety of the products of nucleosynthesis.

  1. Spatial Distributions and Interstellar Reaction Processes

    NASA Astrophysics Data System (ADS)

    Neill, Justin L.; Steber, Amanda L.; Muckle, Matt T.; Zaleski, Daniel P.; Lattanzi, Valerio; Spezzano, Silvia; McCarthy, Michael C.; Remijan, Anthony J.; Friedel, Douglas N.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2011-05-01

    Methyl formate presents a challenge for the conventional chemical mechanisms assumed to guide interstellar organic chemistry. Previous studies of potential formation pathways for methyl formate in interstellar clouds ruled out gas-phase chemistry as a major production route, and more recent chemical kinetics models indicate that it may form efficiently from radical-radical chemistry on ice surfaces. Yet, recent chemical imaging studies of methyl formate and molecules potentially related to its formation suggest that it may form through previously unexplored gas-phase chemistry. Motivated by these findings, two new gas-phase ion-molecule formation routes are proposed and characterized using electronic structure theory with conformational specificity. The proposed reactions, acid-catalyzed Fisher esterification and methyl cation transfer, both produce the less stable trans-conformational isomer of protonated methyl formate in relatively high abundance under the kinetically controlled conditions relevant to interstellar chemistry. Gas-phase neutral methyl formate can be produced from its protonated counterpart through either a dissociative electron recombination reaction or a proton transfer reaction to a molecule with larger proton affinity. Retention (or partial retention) of the conformation in these neutralization reactions would yield trans-methyl formate in an abundance that exceeds predictions under thermodynamic equilibrium at typical interstellar temperatures of interstellar clouds. Motivated by new theoretical predictions, the rotational spectrum of trans-methyl formate has been measured for the first time in the laboratory, and seven lines have now been detected in the interstellar medium using the publicly available PRIMOS survey from the NRAO Green Bank Telescope.

  2. THE SEARCH FOR THE DIFFUSE INTERSTELLAR BANDS AND OTHER MOLECULES IN COMETS 17P (HOLMES) AND C/2007 W1 (BOATTINI)

    SciTech Connect

    O'Malia, K. K. J.; Snow, T. P.; Thorburn, J. A.; Hammergren, M.; Dembicky, J.; Hobbs, L. M.; York, D. G.

    2010-01-01

    We present the search for both diffuse interstellar bands (DIBs) and molecules in Comet 17P (Holmes) and Comet C/2007 W1 (Boattini) occultation observations. Absorption spectra were taken during stellar occultations by Comet Holmes of 31 and beta Persei, and the occultation of BD+22 216 by Comet Boattini. While no signature of the comets was detected, we present upper limits for some common cometary molecules such as C{sub 2}, C{sub 3}, CH, CN and for the most common DIBs. We did not detect either comet in absorption, most likely because of the large distance between the line of sight to the star and the nucleus of the comet. Interstellar sight lines with comparable reddening to what was measured in Comet Holmes have DIB equivalent widths between 5 and 50 mA. However, future observations with closer approaches to a background star have great potential for spatially mapping molecule distributions in comets, and in discovering DIBs, if they are present, in comets. Future observations could detect DIBs and molecules if they are done: (1) less than approx10{sup 4}-10{sup 3} km from the nucleus (2) with a signal to noise in the background star of approx300 and (3) with a resolving power of at least 38,000.

  3. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  4. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2012-03-01

    Context. Early B-type stars are ideal indicators for present-day cosmic abundances since they preserve their pristine abundances and typically do not migrate far beyond their birth environments over their short lifetimes, in contrast to older stars like the Sun. They are also unaffected by depletion onto dust grains, unlike the cold/warm interstellar medium (ISM) or H ii regions. Aims: A carefully selected sample of early B-type stars in OB associations and the field within the solar neighbourhood is studied comprehensively. Quantitative spectroscopy is used to characterise their atmospheric properties in a self-consistent way. Present-day abundances for the astrophysically most interesting chemical elements are derived in order to investigate whether a present-day cosmic abundance standard can be established. Methods: High-resolution and high-S/N FOCES, FEROS and ELODIE spectra of well-studied sharp-lined early B-type stars are analysed in non-LTE. Line-profile fits based on extensive model grids and an iterative analysis methodology are used to constrain stellar parameters and elemental abundances at high accuracy and precision. Atmospheric parameters are derived from the simultaneous establishment of independent indicators, from multiple ionization equilibria and the Stark-broadened hydrogen Balmer lines, and they are confirmed by reproduction of the stars' global spectral energy distributions. Results: Effective temperatures are constrained to 1-2% and surface gravities to less than 15% uncertainty, along with accurate rotational, micro- and macroturbulence velocities. Good agreement of the resulting spectroscopic parallaxes with those from the new reduction of the Hipparcos catalogue is obtained. Absolute values for abundances of He, C, N, O, Ne, Mg, Si and Fe are determined to better than 25% uncertainty. The synthetic spectra match the observations reliably over almost the entire visual spectral range. Three sample stars, γ Ori, o Per and θ1 Ori D, are

  5. A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds - 1993 supplement

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.

    1993-01-01

    This is a supplement to a previous paper (Anicich & Huntress 1986). It is a survey of bimolecular positive ion-molecule reactions with potential importance to the chemistry of planetary atmospheres, cometary comae, and interstellar clouds. This supplement covers the literature from 1986 through 1991, with some additional citations missed in the original survey. Over 200 new citations are included. A table of reactions is listed by reactant ion, and cross-references are provided for both ionic and neutral reactants and also for both ionic and neutral products.

  6. Molecular diagnostics of interstellar shocks

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-02-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  7. Molecular diagnostics of interstellar shocks

    NASA Technical Reports Server (NTRS)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  8. The abundances of nitrogen-containing molecules during pre-protostellar collapse

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau Des Forêts, G.; Walmsley, C. M.

    2006-09-01

    Aims.We have studied the chemistry of nitrogen-bearing species during the initial stages of protostellar collapse, with a view to explaining the observed longevity of N2H+ and NH3 and the high levels of deuteration of these species. Methods: .We followed the chemical evolution of a medium comprising gas and dust as it underwent free-fall gravitational collapse. Chemical processes which determine the relative populations of the nuclear spin states of molecules and molecular ions were included explicitly, as were reactions which lead ultimately to the deuteration of the nitrogen-containing species N2H+ and NH3. The freeze-out of "heavy" molecules on to dust grains was taken into account. Results: .We found that the timescale required for the nitrogen-containing species to attain their steady-state values was much larger than the free-fall time and even comparable with the probable lifetime of the precursor molecular cloud. However, it transpires that the chemical evolution of the gas during gravitational collapse is insensitive to its initial composition. If we suppose that the grain-sticking probabilities of atomic nitrogen and atomic oxygen are both less than unity (S ≲ 0.3), we find that the observed differential freeze-out of nitrogen- and carbon-bearing species can be reproduced by the model of free-fall collapse when a sufficiently large grain radius (ag ≈ 0.50 μ m) is adopted. Furthermore, the results of our collapse model are consistent with the high levels of deuteration of N2H+ and NH3 which have been observed in L1544, for example, providing that 0.5 ≲ ag ≲ 1.0 μ m. We note that the ortho:para H2D+ ratio, and fractional abundance of ortho-H2D^+, which is the observed form of H2D^+, should be largest where ND3 is most abundant.

  9. Investigating nearby star-forming galaxies in the ultraviolet with HST/COS spectroscopy. I. Spectral analysis and interstellar abundance determinations

    SciTech Connect

    James, B. L.; Aloisi, A.; Sohn, S. T.; Wolfe, M. A.; Heckman, T.

    2014-11-10

    This is the first in a series of three papers describing a project with the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure abundances of the neutral interstellar medium (ISM) in a sample of nine nearby star-forming galaxies. The goal is to assess the (in)homogeneities of the multiphase ISM in galaxies where the bulk of metals can be hidden in the neutral phase, yet the metallicity is inferred from the ionized gas in the H II regions. The sample, spanning a wide range in physical properties, is to date the best suited to investigate the metallicity behavior of the neutral gas at redshift z = 0. ISM absorption lines were detected against the far-ultraviolet spectra of the brightest star-forming region(s) within each galaxy. Here we report on the observations, data reduction, and analysis of these spectra. Column densities were measured by a multicomponent line-profile fitting technique, and neutral-gas abundances were obtained for a wide range of elements. Several caveats were considered, including line saturation, ionization corrections, and dust depletion. Ionization effects were quantified with ad hoc CLOUDY models reproducing the complex photoionization structure of the ionized and neutral gas surrounding the UV-bright sources. An 'average spectrum of a redshift z = 0 star-forming galaxy' was obtained from the average column densities of unsaturated profiles of neutral-gas species. This template can be used as a powerful tool for studies of the neutral ISM at both low and high redshift.

  10. Interstellar organic chemistry.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  11. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  12. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early

  13. CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Kozak, M.; Gnaciński, P.; Galazutdinov, G. A.; Beletsky, Y.; Krełowski, J.

    2007-07-01

    A new kind of interstellar cloud is proposed. These are rare (just a few examples among ~300 lines of sight) objects with the CaI 4227-Å, FeI 3720-Å and 3860-Å lines stronger than those of KI (near 7699 Å) and NaI (near 3302 Å). We propose the name `CaFe' for these clouds. Apparently they occupy different volumes from the well-known interstellar HI clouds where the KI and ultraviolet NaI lines are dominant features. In the CaFe clouds we have not found either detectable molecular features (CH, CN) or diffuse interstellar bands which, as commonly believed, are carried by some complex, organic molecules. We have found the CaFe clouds only along sightlines toward hot, luminous (and thus distant) objects with high rates of mass loss. In principle, the observed gas-phase interstellar abundances reflect the combined effects of the nucleosynthetic history of the material, the depletion of heavy elements into dust grains and the ionization state of these elements which may depend on irradiation by neighbouring stars. Based on data collected using the Maestro spectrograph at the Terskol 2-m telescope, Russia; and on data collected using the ESO Feros spectrograph; and on data obtained from the ESO Science Archive Facility acquired with the UVES spectrograph, Chile. E-mail: `arctur'@rambler.ru (AB); marizak@astri.uni.torun.pl (MK); pg@iftia.univ.gda.pl (PG); gala@boao.re.kr (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  14. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    NASA Astrophysics Data System (ADS)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm‑1. We also observed the 13C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  15. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: evidence for interstellar origin.

    PubMed

    Mumma, M J; DiSanti, M A; Dello Russo, N; Fomenkova, M; Magee-Sauer, K; Kaminski, C D; Xie, D X

    1996-05-31

    The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.

  16. Interstellar Dust - A Review

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  17. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  18. Infrared Emission From Interstellar PAHs, New Probes of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    2002-01-01

    Tremendous strides have been made in the understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational IR astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely unknown and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, impossibly large molecules by early interstellar chemistry standards, is very strong. PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. Aromatic carbon-rich materials ranging in size from PAHs and PAH nanoclusters, to sub-micron and micron-sized dust grains represent an important component of the ISM. These species: (1) dominate the heating and cooling of interstellar clouds via energetic photoelectron ejection and infrared (IR) emission; (2) moderate the ionization balance in photodissociation regions and molecular clouds; (3) moderate the composition of the gas phase and play an important role in determining the chemistry of the ISM; (4) contribute to the interstellar extinction in the near IR, visible, and UV spectral regions; and (5) convert UV, visible, and near-IR radiation to mid- and far-IR radiation in the ISM and, as such, are responsible for the well known, widespread family of mid-IR emission features with major components near 3.3, 6.2, 7.7, 8.6, and 11.3 microns.

  19. Trans-cis molecular photoswitching in interstellar Space.

    PubMed

    Cuadrado, S; Goicoechea, J R; Roncero, O; Aguado, A; Tercero, B; Cernicharo, J

    2016-12-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation.

  20. Trans-cis molecular photoswitching in interstellar Space*

    PubMed Central

    Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.

    2016-01-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. PMID:28003686

  1. Herschel Observations of Interstellar Chloronium

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.; Roueff, Evelyne; Snell, Ronald L.; Lis, Dariusz; Benz, Arnold O.; Bruderer, Simon; Black, John H.; De Luca, Massimo; Gerin, Maryvonne; Goldsmith, Paul F.; Gupta, Harshal; Indriolo, Nick; Le Bourlot, Jacques; Le Petit, Franck; Larsson, Bengt; Melnick, Gary J.; Menten, Karl M.; Monje, Raquel; Nagy, Zsófia; Phillips, Thomas G.; Sandqvist, Aage; Sonnentrucker, Paule; van der Tak, Floris; Wolfire, Mark G.

    2012-03-01

    Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared, we have observed para-chloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight lines to the bright submillimeter continuum sources Sgr A (+50 km s-1 cloud) and W31C. Both the para-H35 2Cl+ and para-H37 2Cl+ isotopologues were detected, through observations of their 111-000 transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio (OPR) of 3, the observed optical depths imply that chloronium accounts for ~4%-12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed OPR of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of ~2 × 1013 cm-2 and ~1.2 × 1013 cm-2, respectively, for chloronium in these two sources. We obtained upper limits on the para-H35 2Cl+ line strengths toward H2 Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL 2591. The chloronium abundances inferred in this study are typically at least a factor ~10 larger than the predictions of steady-state theoretical models for the chemistry of interstellar molecules containing chlorine. Several explanations for this discrepancy were investigated, but none has proven satisfactory, and thus the large observed abundances of chloronium remain puzzling. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. Studies of sulphur containing model interstellar ices

    NASA Astrophysics Data System (ADS)

    Brown, W. A.; Burke, D. J.; Edridge, J. L.

    2011-05-01

    Sulphur bearing species have long been proposed as good evolutionary tracers of star forming regions. The abundance of sulphur containing molecules varies by large amounts during the evolution of a proto-star and hence astronomical models are very sensitive to the amount of sulphur present and to its chemical composition. Interstellar observations have identified a range of sulphur containing species including SO, SO2, H2S, CS and OCS (amongst others). To try to understand the role of sulphur containing species in interstellar ices, we have undertaken a detailed investigation of the adsorption and desorption of a range of sulphur-containing model ices on a carbonaceous dust grain analogue surface (graphite) held at 14 K. Ices consisting of pure sulphur-containing molecules, sulphur-containing molecules adsorbed on top of amorphous solid water ice, mixed ices containing water ices and sulphur-species, all adsorbed on graphite, have been investigated. Ultra-high vacuum techniques have been used to model the low pressure conditions of interstellar space and a combination of surface infrared spectroscopy (RAIRS - reflection absorption infrared spectroscopy) and temperature programmed desorption (TPD) have been used to investigate the behaviour of the ices.

  3. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  4. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  5. Interstellar fullerene compounds and diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Omont, Alain

    2016-05-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed and new findings suggest that these fullerenes may possibly form from polycyclic aromatic hydrocarbons (PAHs) in the ISM. Moreover, the first confirmed identification of two strong diffuse interstellar bands (DIBs) with the fullerene, C60+, connects the long standing suggestion that various fullerenes could be DIB carriers. These new discoveries justify reassessing the overall importance of interstellar fullerene compounds, including fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerene compounds is complex. In addition to fullerene formation in grain shattering, fullerene formation from fully dehydrogenated PAHs in diffuse interstellar clouds could perhaps transform a significant percentage of the tail of low-mass PAH distribution into fullerenes including EEHFs. But many uncertain processes make it extremely difficult to assess their expected abundance, composition and size distribution, except for the substantial abundance measured for C60+. EEHFs share many properties with pure fullerenes, such as C60, as regards stability, formation/destruction and chemical processes, as well as many basic spectral features. Because DIBs are ubiquitous in all lines of sight in the ISM, we address several questions about the interstellar importance of various EEHFs, especially as possible carriers of diffuse interstellar bands. Specifically, we discuss basic interstellar properties and the likely contributions of fullerenes of various sizes and their charged counterparts such as C60+, and then in turn: 1) metallofullerenes; 2) heterofullerenes; 3) fulleranes; 4) fullerene-PAH compounds; 5) H2@C60. From this reassessment of the literature and from combining it with known DIB line identifications, we conclude that the general landscape of interstellar fullerene compounds is probably much richer than heretofore realized

  6. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  7. Modelling Study of Interstellar Ethanimine Isomers

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    Ethanimine (CH3CHNH) , including both the E- and Z- isomers, were detected towards the star-forming region Sgr B2(N) using the GBT PRIMOS data (Loomis et al 2013), and were recently imaged by the ACTA (Corby et al. 2015). These aldimines can serve as precursors of biological molecules such as amino acids thus are considered prebiotic molecules in interstellar medium. In this study, we present chemical simulations of ethanimine with various physical conditions. From models for Sgr B2(N) and environs, calculated ethanimine abundances show reasonable agreement with observed values, while the translucent cloud models yield much lower abundances. These results agree with locations suggested by observations that ethanimine isomers were detected in the foreground of the shells of the hot core.

  8. H3+ in the diffuse interstellar medium.

    PubMed

    Liszt, Harvey S

    2006-11-15

    Three forms of solely hydrogen-bearing molecules--H2, HD and H3+--are observed in diffuse or optically transparent interstellar clouds. Although no comprehensive theory exists for the diffuse interstellar medium or its chemistry, the abundances of these species can generally be accommodated locally within the existing static equilibrium frameworks for heating/cooling, H2-formation on large grains, etc. with one modification demanded equally by observations of HD and H3+, i.e. a pervasive low-level source of H and H2 ionization ca 10 times faster than the usual cosmic ray ionization rate zetaH = 10(-17) s(-1) per free H-atom. We discuss this situation with reference to observation and time-dependent modelling of H2 and H3+ formation. While not wishing to appear ungrateful for the success of what are very simplistic notions of the interstellar medium, we point out several reasons not to feel smug. The equilibrium conditions which foster high H2 and H3+ abundances are very slow to appear and these same simple ideas of static equilibrium cannot explain any, but a few, of the simplest of the trace species, which are ubiquitously embedded in H2-bearing diffuse gases.

  9. Search for fullerenes and PAHs in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Foing, B. H.

    1995-02-01

    Recent studies suggest carbon-containing molecules as the best candidates for carriers of the unidentified diffuse interstellar bands (DIBs). considering their abundance and ability to form stable bonds in interstellar space. We have searched for new DIBs in the near-IR and have detected two new diffuse bands that are consistent with laboratory measurements of C 60+ in a neon matrix. Criteria for this possible identification are discussed. From these observations and the DIB treasured absorption. we estimate that up to 0.9% of interstellar carbon could be in the form of C 60+ We also searched for poly cyclic aromatic hydrocarbon (PAH) canons and have derived corresponding limits for the presence of the coronene C 24H 12 and ovalene C 32H 14 cations in space. We have studied the ionization properties of these PAH cations, which could explain their selective destruction. From these results we discuss the role of fullerenes and PAHs as possible DIB carriers.

  10. VizieR Online Data Catalog: Molecule and grain abundances (Marchand+, 2016)

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commercon, B.; Vaytet, N.

    2016-06-01

    chemistry.tar is the fortran code that was used to compute the following table. abundance.txt is a 3D table giving the abundances of several ionised species over a wide range of density, temperature and cosmic rays ionisation rate, useful in prestellar core collapse conditions. The table is organised as follow : density (cm-3), temperature (K), ionisation rate (s-1), abundance of electrons, abundances of ions (metal (Mg etc.), molecular ions (HCO+), H3+, H+, C+, He+, K+, Na+), abundances of grains (grains +, grain -, neutral grains) for bins 1 to 5 (see Sect. 2.4 of the paper), total abundances of grains, integration time. Format : '(31(e24.17,2X))' Reading : ------------------------------------------------------------------------- read(unit,format) nrho, nT, nX, nvar read(unit,format) read(unit,format) read(unit,format) read(unit,format) do i=1,nX do j=1,nT do k=1,nrho read(unit,format) rho(k), T(j), Xi(i), abundance(k,j,i,1:nvar) end do read(unit,format) read(unit,format) end do read(unit,format) read(unit,format) end do ---------------------------------------------------------------------- The description of each column can be found in the header of the file. You can compute the resistivities using read_table.f90, which creates a table of resistivities with the same parameters and adding the magnetic field dependance (see Sect. 2.1 of the paper for the formulae used). You can use it as a subroutine in your code. (4 data files).

  11. Interstellar Grain Mantles

    NASA Technical Reports Server (NTRS)

    Witteborn, F.; Goebel, J.; Bregman, J.; Allamandola, Louis J.; Dhendecourt, L. B.; Tielens, Alexander G. G. M.

    1984-01-01

    Techniques for determining the composition of small dust grains in interstellar matter are discussed. The best way to study the composition of interstellar grain mantles is by infrared spectroscopy. The absorption features in a complete infrared spectrum from 2 to 15 microns can be used as fingerprints to identify the absorbing molecule. Ground-based observations around 3 microns confirmed the presence of H2O ice in interstellar grain mantles, through the detection of the 3.08 micron OH stretching vibration. The detection of other molecules, in particular the carbon bearing molecules, is however hampered by atmospheric absorption in the 5-8 micron region and the presence of the strong ice and silicate bands, which dominate the 3 and 10 micron region respectively. Kuiper Airborne Observatory observations of the 5-8 micron region of the spectrum are therefore extremely important to determine the composition of interstellar grain mantles. The 5 to 8 micron spectra of molecular cloud sources was obtained using a 24 detector grating spectrometer. An important characteristic of this spectrometer is that the whole spectrum is obtained simultaneously. It is therefore relatively easy to correct for atmospheric transmission.

  12. Deuterium Fractionation during Amino Acid Formation by Photolysis of Interstellar Ice Analogs Containing Deuterated Methanol

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Takano, Yoshinori; Watanabe, Naoki; Kouchi, Akira

    2016-08-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH2DOH at 10 K. Five amino acids (glycine, α-alanine, β-alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3-1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α-alanine and β-alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  13. Fullerenes and Buckyonions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Iglesias Groth, S.

    2004-09-01

    We have studied the contribution of single fullerenes and buckyonions to the interstellar extinction. The photoabsorption spectra of these molecules is predicted and compared with some of the most relevant features of interstellar extinction, the UV bump, far UV rise and the diffuse interstellar bands. We conclude that fullerenes and buckyonions may explain these features and make a preliminary estimate of the carbon fraction locked in these molecules.

  14. State-of-the-Art Thermochemical and Kinetic Computations for Astrochemical Complex Organic Molecules: Formamide Formation in Cold Interstellar Clouds as a Case Study.

    PubMed

    Vazart, Fanny; Calderini, Danilo; Puzzarini, Cristina; Skouteris, Dimitrios; Barone, Vincenzo

    2016-11-08

    We describe an integrated computational strategy aimed at providing reliable thermochemical and kinetic information on the formation processes of astrochemical complex organic molecules. The approach involves state-of-the-art quantum-mechanical computations, second-order vibrational perturbation theory, and kinetic models based on capture and transition state theory together with the master equation approach. Notably, tunneling, quantum reflection, and leading anharmonic contributions are accounted for in our model. Formamide has been selected as a case study in view of its interest as a precursor in the abiotic amino acid synthesis. After validation of the level of theory chosen for describing the potential energy surface, we have investigated several pathways of the OH + CH2NH and NH2 + H2CO reaction channels. Our results show that both reaction channels are essentially barrierless (in the sense that all relevant transition states lie below or only marginally above the reactants) and once tunneling is taken into the proper account indicate that the reaction can occur under the low temperature conditions of interstellar environments.

  15. Interstellar Extinction

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-12-01

    This review describes our current understanding of interstellar extinction. This differ substantially from the ideas of the 20th century. With infrared surveys of hundreds of millions of stars over the entire sky, such as 2MASS, SPITZER-IRAC, and WISE, we have looked at the densest and most rarefied regions of the interstellar medium at distances of a few kpc from the Sun. Observations at infrared and microwave wavelengths, where the bulk of the interstellar dust absorbs and radiates, have brought us closer to an understanding of the distribution of the dust particles on scales of the Galaxy and the universe. We are in the midst of a scientific revolution in our understanding of the interstellar medium and dust. Progress in, and the key results of, this revolution are still difficult to predict. Nevertheless, (a) a physically justified model has been developed for the spatial distribution of absorbing material over the nearest few kiloparsecs, including the Gould belt as a dust container, which gives an accurate estimate of the extinction for any object just by its galactic coordinates. It is also clear that (b) the interstellar medium contains roughly half the mass of matter in the galactic vicinity of the solar system (the other half is made up of stars, their remnants, and dark matter) and (c) the interstellar medium and, especially, dust, differ substantially in different regions of space and deep space cannot be understood by only studying near space.

  16. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  17. The Origin and Evolution of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Houches, Les

    2006-01-01

    In this lecture I will discuss the many different manifestation of interstellar dust, and current dust models that satisfy interstellar extinction, diffuse infrared emission, and interstellar abundances constraints. Dust is made predominantly in AGB stars and Type I1 supernovae, and I will present observational evidence for the presence of dust in these sources. I will then present chemical evolution models that follow the abundance of dust which is determined by the combined processes of formation, destruction by interstellar shock waves, and accretion in molecular clouds. The model will be applied to the evolution of PAHs and the evolution of dust in the high-redshift galaxy (z=6.42) JD11.

  18. Interstellar Glycolaldehyde: The First Sugar

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.

    2000-09-01

    Interstellar glycolaldehyde (CH2OHCHO) has been detected in emission toward the Galactic center source Sagittarius B2(N) by means of millimeter-wave rotational transitions. Glycolaldehyde is an important biomarker since it is structurally the simplest member of the monosaccharide sugars that heretofore have gone undetected in interstellar clouds. There is no consensus as to how any such large complex molecules are formed in the interstellar clouds. It may be that the typical environment of dense interstellar clouds is favorable to glycolaldehyde synthesis by means of the polymerization of formaldehyde (H2CO) molecules either on grain surfaces or in the gas phase. Alternatively, we speculate that glycolaldehyde and other complex molecules may undergo assembly from functional molecular groups on grain surfaces. Utilizing common chemical precursors, a chance process could account for the high degree of isomerism observed in complex interstellar molecules (e.g., methyl formate, acetic acid, and glycolaldehyde). This work suggests that the phenomenon of isomerism be investigated further as a means of potentially constraining interstellar chemistry routes for those individual sources where the condition of good source-beam coupling can be achieved.

  19. Chemical Evolution in the Interstellar Medium: From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2009-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the Universe. In cold molecular clouds, the birthplace of planets and stars, interstellar molecules freeze onto dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. Astrochemical evolution, highlights of this field from a chemist's perspective, and the astronomer's infrared toolbox will be reviewed.

  20. Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commerçon, B.; Vaytet, N.

    2016-07-01

    We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to nH = 1012 cm-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process. The multi-dimensional multi-species equilibrium abundance table and a copy of the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A18

  1. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  2. Interstellar Isotopes: Prospects with ALMA

    NASA Technical Reports Server (NTRS)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  3. Rapid fabrication of silver nanoparticle-coated filter paper as SERS substrate for low-abundance molecules detection.

    PubMed

    Wei, Wenxian; Huang, Qingli

    2017-05-15

    Silver nanoparticles (Ag NPs) were fabricated on the fibers of the filter paper by the reaction between silver nitrate (AgNO3) and hydrazine hydrate (N2H4·H2O). By using the Ag NPs-coated paper, the limit of detection as low as 10(-11)M for Rhodamine B (RhB) and 10(-10)M for crystal violet (CV) was achieved. Moreover, the uniformity, reproducibility and stability of the Ag NPs-coated paper were also involved. Meanwhile, the detection of 10(-4)-10(-6)M moxifloxacin in deionized water and tap water was also carried out successfully by using the paper-based substrates. The fabrication process is easy to handle, cost-efficient and the as-prepared paper-based SERS substrate is ideal for rapid and simple detection of low-abundance molecules.

  4. Near-infrared spectroscopy of M dwarfs. II. H2O molecule as an abundance indicator of oxygen†

    NASA Astrophysics Data System (ADS)

    Tsuji, Takashi; Nakajima, Tadashi; Takeda, Yoichi

    2015-04-01

    Based on the near-infrared spectra (R ≈ 20000) of M dwarfs, oxygen abundances are determined from the rovibrational lines of H2O. Although H2O lines in M dwarfs are badly blended with each other and the continuum levels are depressed appreciably by the collective effect of the numerous H2O lines themselves, quantitative analysis of H2O lines has been carried out by referring to the pseudo-continua, consistently defined on the observed and theoretical spectra. For this purpose, the pseudo-continuum on the theoretical spectrum has been evaluated accurately by the use of the recent high-precision H2O line-list. Then, we propose a simple and flexible method of analyzing the equivalent widths (EWs) of blended features (i.e., not necessarily limited to single lines) by the use of a mini-curve-of-growth (CG), which is a small portion of the usual CG around the observed EW. The mini-CG is generated by using the theoretical EWs evaluated from the synthetic spectrum in exactly the same way as the EWs are measured from the observed spectrum. The observed EW is converted to the abundance by the use of the mini-CG, and the process is repeated for all the observed EWs line-by-line or blend-by-blend. In cool M dwarfs, almost all the oxygen atoms left after CO formation are in stable H2O molecules, which suffer little change for the uncertainties due to imperfect modelling of the photospheres. Thus the numerous H2O lines are excellent abundance indicators of oxygen. The oxygen abundances are determined to be log AO (AO = NO/NH) between -3.5 and -3.0 in 38 M dwarfs, but cannot be determined in four early M dwarfs in which H2O lines are detected only marginally. The resulting log AO/AC values plotted against log AC appear to be systematically smaller in the carbon-rich M dwarfs, showing the different formation histories of oxygen and carbon in the chemical evolution of the Galactic disk. Also, AO/AFe ratios in most M dwarfs are closer to the solar AO/AFe ratio, based on the

  5. The chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase.

  6. Confirmation of interstellar methylene

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.

    1995-01-01

    Four spectral emission features of the N(sub KK) = 4(sub 04) -3(sub 13) rotational transition of methylene (CH2) have been detected at signal levels 5-7 sigma above noise toward the hot core of the Orion-KL nebula and the molecular cloud in proximity to the continuum source W51 M. Specifically, in both sources we have resolved the F = 6-5, 5-4, and 4-3 hyperfine transitions of the J = 5-4 fine-structure levels and detected the blended hyperfine structure of the J = 4-3 fine structure levels. At the J = 3-2 fine-structure levels, we have observed new transitions of NS, a known interstellar molecule, which severely contaminates the search for CH2 hyperfine transitions. These new sensitive observations finally confirm the existence of interstellar CH2 which was tentatively reported by us some years ago.

  7. Detection of [SiLL] (34.8 micron) emission in Orion-KL: A measurement of the silicon abundance in dense interstellar gas

    NASA Technical Reports Server (NTRS)

    Haas, M. R.; Hollenbach, D. J.; Erickson, E. F.

    1985-01-01

    The first detection of the ground state fine structure transition of Si+ at a rest wavelength determined to be 34.815 + or - 0.004 micron are reported. These observations were obtained with the facility spectrometer on NASA's Kuiper Airborne Observatory. A 6' NW-SE strip scan across the Orion-KL region shows SiII emission from both the extended photodissociation region surrounding theta 1 Ori C and from the shocked gas NW of BN-KL. The inferred gas-phase silicon elemental abundance relative to hydrogen in the dense 10 to the 5/cc primarily neutral photodissociation region is approximately 2.6 x to the -6, a factor of 0.075 times the solar value and 3.4 times greater than the abundance in the moderate density approx. 10 to the 3/cc cloud toward zeta Oph. The silicon abundance in the shocked gas is approximately solar, indicating that any pre-existing grains have been destroyed in the shock wave or that the preshock gas carries a near solar abundance of gas phase silicon. The shock-excited SiII (34.8 micron) emission may arise from shocked wind material in the outflow around IRc2, with wind velocities approx. 100 km/s.

  8. Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Pei, Yezhe

    This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.

  9. Abundances of Deuterium, Oxygen and Nitrogen in the Local Interstellar Medium: Overview of First Results from the Far Ultraviolet Spectroscopic Explorer Mission

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.

  10. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  11. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  12. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  13. Organic chemistry and biology of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  14. Time scales for molecule formation by ion-molecule reactions

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Glassgold, A. E.

    1976-01-01

    Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.

  15. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in Dense Interstellar Clouds: Summary of Research

    NASA Technical Reports Server (NTRS)

    Irvine, William M.

    1999-01-01

    The basic theme of this program was the study of molecular complexity and evolution for the biogenic elements and compounds in interstellar clouds and in primitive solar system objects. Research included the detection and study of new interstellar and cometary molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation. One PhD dissertation on this research was completed by a graduate student at the University of Massachusetts. An additional 4 graduate students at the University of Massachusetts and 5 graduate students from other institutions participated in research supported by this grant, with 6 of these thus far receiving PhD degrees from the University of Massachusetts or their home institutions. Four postdoctoral research associates at the University of Massachusetts also participated in research supported by this grant, receiving valuable training.

  16. The water abundance behind interstellar shocks: results from Herschel/PACS and Spitzer/IRS observations of H{sub 2}O, CO, and H{sub 2}

    SciTech Connect

    Neufeld, David A.; Gusdorf, Antoine; Güsten, Rolf; Herczeg, Greg J.; Kristensen, Lars; Melnick, Gary J.; Nisini, Brunella; Ossenkopf, Volker; Tafalla, Mario; Van Dishoeck, Ewine F.

    2014-02-01

    We have investigated the water abundance in shock-heated molecular gas, making use of Herschel measurements of far-infrared (IR) CO and H{sub 2}O line emissions in combination with Spitzer measurements of mid-IR H{sub 2} rotational emissions. We present far-IR line spectra obtained with Herschel's Photodetector Array Camera and Spectrometer instrument in range spectroscopy mode toward two positions in the protostellar outflow NGC 2071 and one position each in the supernova remnants W28 and 3C391. These spectra provide unequivocal detections, at one or more positions, of 12 rotational lines of water, 14 rotational lines of CO, 8 rotational lines of OH (4 lambda doublets), and 7 fine-structure transitions of atoms or atomic ions. We first used a simultaneous fit to the CO line fluxes, along with H{sub 2} rotational line fluxes measured previously by Spitzer, to constrain the temperature and density distribution within the emitting gas; we then investigated the water abundances implied by the observed H{sub 2}O line fluxes. The water line fluxes are in acceptable agreement with standard theoretical models for nondissociative shocks that predict the complete vaporization of grain mantles in shocks of velocity v ∼ 25 km s{sup –1}, behind which the characteristic gas temperature is ∼1300 K and the H{sub 2}O/CO ratio is 1.2.

  17. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  18. Cosmic carbon chemistry: from the interstellar medium to the early Earth.

    PubMed

    Ehrenfreund, Pascale; Cami, Jan

    2010-12-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed.

  19. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  20. Formation of nitrogen- and oxygen-bearing molecules from radiolysis of nitrous oxide ices - implications for Solar system and interstellar ices

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; da Silveira, E. F.; Fulvio, D.; Boduch, P.; Rothard, H.

    2017-03-01

    The radiolysis of pure N2O ice at 11 and 75 K by 90 MeV 136Xe23 + ion irradiation has been studied by Fourier-transformed infrared spectroscopy (FTIR). Six daughter molecular species have been observed: NO2, (NO)2, N2O3, N2O4, N2O5, and O3. The chemical evolution of the new molecules formed in the sample was followed by the measurement of the column densities of the precursor and products as a function of the beam fluence. This procedure allows the determination of their formation and dissociation cross-sections. Other processes monitored by FTIR were sublimation (non-existent at 11 K, but present at 75 K) and ice compaction by the ion beam. Comparison between results obtained for the 11 and 75 K ices shows that formation and destruction cross-sections are higher (for light products) or much higher (for heavy products) at 75 K. This enhancement of chemical activity at higher temperature should not be attributed to higher projectile ionization rate but rather to a higher mobility of the radiolysis products in an ice undergoing slow sublimation. Although N2O ice has not yet been observed in space, it is reasonable to expect its occurrence since N and O are very abundant and reactive. Furthermore, if this ice is actually absent, the knowledge of the chemical-physical processes induced by ion irradiation on N2O ice at low temperature is necessary to explain its depletion.

  1. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  2. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGES

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; ...

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  3. A Search for Interstellar Monohydric Thiols

    NASA Astrophysics Data System (ADS)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.

    2017-02-01

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  4. Top-down formation of fullerenes in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Berné, O.; Montillaud, J.; Joblin, C.

    2015-05-01

    Fullerenes have recently been detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form at the low densities found in the interstellar medium by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modelling, the possibility that the PAH C66H20 (i.e. circumovalene) can lead to the formation of the C60 fullerene upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation of C66H20, folding into a floppy closed cage and shrinking of the cage by loss of C2 units until it reaches the symmetric C60 molecule. At 10'' from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C66H20 is converted into C60 in ~105 yr, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C66H20 are unlikely to contribute significantly to the formation of C60, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C60 with shorter timescales, and PAHs containing fewer than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts that absolute abundances of C60 are up to several 10-4 of the elemental carbon, that is, less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C60 can survive much longer (> 107 yr for radiation fields below G0 = 104) than other fullerenes because of the remarkable stability of the C60 molecule at high internal energies. Hence, a natural consequence is that C60 is more abundant than other fullerenes in highly irradiated environments.

  5. Trans-cis molecular photoswitching in interstellar space

    NASA Astrophysics Data System (ADS)

    Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.

    2016-11-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. This paper makes use of observations obtained with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  6. Interstellar grains: Effect of inclusions on extinction

    NASA Astrophysics Data System (ADS)

    Katyal, N.; Gupta, R.; Vaidya, D. B.

    2011-10-01

    A composite dust grain model which simultaneously explains the observed interstellar extinction, polarization, IR emission and the abundance constraints, is required. We present a composite grain model, which is made up of a host silicate oblate spheroid and graphite inclusions. The interstellar extinction curve is evaluated in the spectral region 3.4-0.1 μm using the extinction efficiencies of composite spheroidal grains for three axial ratios. Extinction curves are computed using the discrete dipole approximation (DDA). The model curves are subsequently compared with the average observed interstellar extinction curve and with an extinction curve derived from the IUE catalogue data.

  7. EXPERIMENTAL AND COMPUTATIONAL STUDIES OF THE FORMATION MECHANISM OF PROTONATED INTERSTELLAR DIAZINES

    SciTech Connect

    Wang, Zhe-Chen; Cole, Callie A.; Bierbaum, Veronica M.; Snow, Theodore P.

    2015-01-10

    Studies of interstellar chemistry have grown in number and complexity by both observations and laboratory measurements, and nitrogen-containing aromatics have been implicated as important interstellar molecules. In this paper, the gas-phase collision induced dissociation (CID) processes of protonated pyridazine (1,2-diazine), pyrimidine (1,3-diazine), and pyrazine (1,4-diazine) cations (C{sub 4}H{sub 5}N{sub 2} {sup +}) are investigated in detail both experimentally and theoretically. The major neutral loss for all three CID processes is HCN, leading to the formation of C{sub 3}H{sub 4}N{sup +} isomers; our density functional theory (DFT) calculations support and elucidate our experimental results. The formation of C{sub 3}H{sub 4}N{sup +} isomers from the reaction of abundant interstellar acrylonitrile (CH{sub 2}CHCN) and H{sup +}is also studied employing DFT calculations. Our results lead to a novel mechanism for interstellar protonated diazine formation from the consecutive reactions of CH{sub 2}CHCN+ H{sup +} + HCN. Moreover, our results motivate the continuing search for interstellar C{sub 3}H{sub 4}N{sup +} isomers as well as polycyclic aromatic N-containing hydrocarbons (PANHs)

  8. Search for H2COH+ and H2(13)CO in dense interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; McGonagle, D.

    1993-01-01

    We have searched for the 2 mm transitions of H2COH+ (2(02) - 1(01)) and H2(13)CO (2(02) - 1(01), 2(12) - 1(11), and 2(11) - 1(10)) toward the dense interstellar molecular clouds Orion A, TMC-1 and L134N using the FCRAO 14m telescope. None of the transitions have been detected except the H2(13)CO transitions toward Orion-KL. We set upper limits for the abundances of the protonated formaldehyde ion (H2COH+), which are close to the abundances expected from ion-molecule chemistry.

  9. The nature and evolution of interstellar ices.

    PubMed

    Chiar, J E

    1997-06-01

    The evolution of icy grain mantles is governed by the environment in which they exist. This review presents an overview of the study of the molecules that make up the mantles and discusses their relevance to the origin of life. Models predict two phases of mantle growth during cloud collapse: simple polar and nonpolar molecules dominate the mantle layers at early and late times, respectively (Section 1). The effect of processing on grain mantle composition and the connection between organics in grain mantles and prebiotic chemistry is introduced. Section 2 describes how infrared spectroscopy of dense cloud sources, combined with theoretical models and laboratory data, gives us information on the composition and abundance of the ices in varying regions. The observed features and how they are used as diagnostics of mantle evolution are discussed in Section 3. This section also discusses the importance of these molecules to prebiotic chemistry. Section 4 compares grain mantle composition in different low-mass star forming regions, which best represent the solar birthplace. The final section (Section 5) summarizes the information presented, emphasizing the link between the study of interstellar dust and the origin of life.

  10. The nature of interstellar/pre-cometary dust

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis

    1990-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle-infrared region (5000-500/cm, 2-20 microns), the region where most diagnostic molecular vibrations occur. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds and others obscured only by dust in the diffuse interstellar medium are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas and solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these spectra with laboratory spectra one can determine the composition and abundance of the icy material frozen on the cold (- 10K) dust in the dark interior of molecular clouds and of the hydrocarbon component of dust in the diffuse interstellar medium. As these are the building blocks of comets, the work described here also gives insight into the nature of comets.

  11. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    SciTech Connect

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-11-20

    Methanol (CH{sub 3}OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH{sub 3}OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH{sub 3}OH and the other commonly observed C- and O-bearing species, H{sub 2}O, CO, and CO{sub 2}. We use this catalog to investigate the abundance of ice-phase CH{sub 3}OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH{sub 3}OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H{sub 2}O and CO{sub 2} is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH{sub 3}OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH{sub 3}OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH{sub 3}OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  12. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  13. A Search for Interstellar Carbon-60

    NASA Astrophysics Data System (ADS)

    Nuccitelli, Dana; Richter, Matthew J.; McCall, Benjamin J.

    Carbon-60 has been proposed as a potentially important interstellar molecule. While there is a mounting body of indirect evidence suggesting that interstellar C60 exists, no direct spectroscopic detection toward an astronomical object has been made.We present here the results of our search for interstellar C60 in five sources using TEXES (the Texas Echelon Cross Echelle Spectrograph; Lacy et al. 2002). 1. Introduction The discovery of Buckminsterfullerene, C60, by Kroto et al. (1985) launched a new branch of chemical research. It is sometimes forgotten that the impetus for the experimental discovery of "buckyballs" was an attempt to understand the formation of long-chain carbon molecules in interstellar and circumstellar material. The stability of the molecule was recognized immediately and led to the suggestion that C60 may be widely distributed in the interstellar medium. Currently, only indirect evidence exists for interstellar C60. Because the ionization potential of C60 is relatively low the majority of C60 along optical/UV lines-of-sight will be ionized. Two electronic transitions of C60+, observed in rare gas matrices, lie near two diffuse interstellar bands (DIBs) near 9600Å (Foing & Ehrenfreund 1997). Detecting neutral C60 may be easier toward an embedded source using infrared vibrational bands, such as the one near 1184 cm-1 (&lambda=8.45 μm). The exact location and width of the band depends on the gas temperature. Assuming the average temperature is fairly low (T<100 K), the band structure should be be fairly narrow, which argues for high spectral resolution. 2. Observations We searched for the C60 1184 cm-1 vibrational band in three high- extinction molecular cloud sources (AFGL 2136, AFGL 2591, NGC 7538 IRS 1), the mass-loss star NML Cygni, and R Corona Borealis.We used TEXES, the Texas Echelon-cross-Echelle Spectrograph, a high resolution, mid-IR spectrograph (Lacy et al. 2002) on the 3m NASA IRTF. In highresolution mode, TEXES provides resolving

  14. The Chemical Impact of Physical Conditions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul B.

    2012-03-01

    We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10(-14) s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR

  15. The Chemical Impact of Physical Conditions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul Brandon

    2012-09-01

    We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10 -14 s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR

  16. INTERSTELLAR CARBODIIMIDE (HNCNH): A NEW ASTRONOMICAL DETECTION FROM THE GBT PRIMOS SURVEY VIA MASER EMISSION FEATURES

    SciTech Connect

    McGuire, Brett A.; Loomis, Ryan A.; Charness, Cameron M.; Corby, Joanna F.; Blake, Geoffrey A.; Hollis, Jan M.; Lovas, Frank J.; Jewell, Philip R.; Remijan, Anthony J.

    2012-10-20

    In this work, we identify carbodiimide (HNCNH), which is an isomer of the well-known interstellar species cyanamide (NH{sub 2}CN), in weak maser emission, using data from the Green Bank Telescope PRIMOS survey toward Sgr B2(N). All spectral lines observed are in emission and have energy levels in excess of 170 K, indicating that the molecule likely resides in relatively hot gas that characterizes the denser regions of this star-forming region. The anticipated abundance of this molecule from ice mantle experiments is {approx}10% of the abundance of NH{sub 2}CN, which in Sgr B2(N) corresponds to {approx}2 Multiplication-Sign 10{sup 13} cm{sup -2}. Such an abundance results in transition intensities well below the detection limit of any current astronomical facility and, as such, HNCNH could only be detected by those transitions which are amplified by masing.

  17. RUBIDIUM IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Walker, Kyle M.; Federman, S. R.; Knauth, David C.; Lambert, David L. E-mail: steven.federman@utoledo.ed E-mail: dll@astro.as.utexas.ed

    2009-11-20

    We present observations of interstellar rubidium toward o Per, zeta Per, AE Aur, HD 147889, chi Oph, zeta Oph, and 20 Aql. Theory suggests that stable {sup 85}Rb and long-lived {sup 87}Rb are produced predominantly by high-mass stars, through a combination of the weak s- and r-processes. The {sup 85}Rb/{sup 87}Rb ratio was determined from measurements of the Rb I line at 7800 A and was compared to the solar system meteoritic ratio of 2.59. Within 1sigma uncertainties, all directions except HD 147889 have Rb isotope ratios consistent with the solar system value. The ratio toward HD 147889 is much lower than the meteoritic value and similar to that toward rho Oph A; both lines of sight probe the Rho Ophiuchus Molecular Cloud. The earlier result was attributed to a deficit of r-processed {sup 85}Rb. Our larger sample suggests instead that {sup 87}Rb is enhanced in these two lines of sight. When the total elemental abundance of Rb is compared to the K elemental abundance, the interstellar Rb/K ratio is significantly lower than the meteoritic ratio for all the sight lines in this study. Available interstellar samples for other s- and r- process elements are used to help interpret these results.

  18. Interstellar cyanomethane

    NASA Technical Reports Server (NTRS)

    Turner, B. E.; Friberg, P.; Irvine, W. M.; Saito, S.; Yamamoto, S.

    1990-01-01

    An observational study was made of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and providing a possible test of Bates's models of dissociative electron recombination. A remarkably different abundance ratio CH2CN/CH3CN was found in TMC-1 and Sgr B2 which is deduced to be a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O.

  19. Synthesis of prebiotic glycerol in interstellar ices.

    PubMed

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2015-01-02

    Contemporary mechanisms for the spontaneous formation of glycerol have not been able to explain its existence on early Earth. The exogenous origin and delivery of organic molecules to early Earth presents an alternative route to their terrestrial in situ formation since biorelevant molecules like amino acids, carboxylic acids, and alkylphosphonic acids have been recovered from carbonaceous chondrites. Reported herein is the first in situ identification of glycerol, the key building block of all cellular membranes, formed by exposure of methanol-based - interstellar model ices to ionizing radiation in the form of energetic electrons. These results provide compelling evidence that the radiation-induced formation of glycerol in low-temperature interstellar model ices is facile. Synthesized on interstellar grains and eventually incorporated into the "building material" of solar systems, biorelevant molecules such as glycerol could have been dispensed to habitable planets such as early Earth by comets and meteorites.

  20. Amino Acid Formation on Interstellar Dust Particles

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  1. ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) - Merging Observations and Laboratory Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the

  2. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  3. Deuteration of formaldehyde on an interstellar dust surface

    NASA Astrophysics Data System (ADS)

    Hidaka, H.; Watanabe, N.; Kouchi, A.

    Recently, the formaldehyde (H2CO) and methanol (CH3OH) were observed abundantly in ice toward various molecular clouds. It has been expected that these organic molecules were produced by the hydrogenation reaction of CO on the surface of interstellar ice. Watanabe & Kouchi (2002) observed experimentally the successive production of these molecules by the hydrogenation of CO on the ice surface, indicating that the surface hydrogenation reactions at low temperatures play an important role in evolution of molecules on the interstellar ice. The high gas-phase abundance of deuterated molecules, which include H2CO-d1,2 and CH3OH-d1-3, have observed in molecular clouds (Loinard et al. 2000, Parise et al. 2002, Parise et al. 2004) and comet (Crovisier et al. 2004) compared to the ratio of D/H ratio in space. This deuterium fractionation in interstellar molecules has been an interesting topic in interstellar chemistry. There have been several studies on the mechanism of the deuterium fractionation. The pure gas-phase models are difficult to reproduce the high D/H ratio observed. We deduce that the surface reaction on interstellar ice is a key process not only for the production of H2CO and CH3OH but also for that of H2CO-d1,2 and CH3OH-d1-3. In fact, Nagaoka, Watanabe & Kouchi (2005) indicated the validity of deuterium fractionation by surface reaction in methanol, including multiple deuterations. In the present work, we investigated the formation of deuterated formaldehyde experimentally. Below 20 K, solid H2CO and D2CO were exposed to cold (30 K) D and H atoms, respectively. The variations of IR absorption spectra for the solid samples were measured by a Fourier transform infrared spectrometer during the exposure to atoms. The rates of H-D substitution in those molecules were measured. H2CO was converted to HDCO and D2CO by the reaction with D atom. The conversions to HDCO and H2CO also occur in exposure of D2CO to H atom. In the case of methanol, this substitution

  4. The Distribution of Complex Organic Molecules in the Orion KL Molecular Core

    NASA Technical Reports Server (NTRS)

    Kuan, Yi-Jehng; Hsu, Yu-Sen; Charnley, Steven B.; Wang, Kuo-Song

    2011-01-01

    We conducted high angular-resolution observations toward the massive star-forming region Orion KL at 1.3 mm using the Submillimeter Array (SMA). Spectral emission from twelve complex organic molecules was simultaneously imaged. We discuss the distinct chemical characteristics among four sub- regions in Orion KL by comparing the spatial distributions and fractional abundances of these complex molecules. These observations will allow us to test and constrain chemical models of interstellar organic synthesis.

  5. Fulleranes and Carbon Nanostructures in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Iglesias-Groth, Susana; Cataldo, Franco

    We review the potential contribution of single fullerenes and buckyonions to interstellar extinction. Photoabsorption spectra of these molecules are compared with some of the most relevant features of interstellar extinction, the UV bump, the far UV rise and the diffuse interstellar bands. According to semiempirical models, photoabsorption by fullerenes (single and multishell) could explain the shape, width and peak energy of the most prominent feature of the interstellar absorption, the UV bump at 2,175 Å. Other weaker transitions are predicted in the optical and near-infrared providing a potential explanation for diffuse interstellar bands. In particular, several fullerenes could contribute to the well known strong DIB at 4,430 Å comparing cross sections and available data for this DIB and the UV bump we estimate a density of fullerenes in the diffuse interstellar medium of 0.1-0.2 ppm. These molecules could then be a major reservoir for interstellar carbon. We give an estimation of the carbon fraction locked in these molecules. We discuss the rotation rates and electric dipole emission of hydrogenated icosahedral fullerenes in various phases of the interstellar medium. These molecules could be the carriers of the anomalous microwave emission detected by Watson et al. (Astrophys. J. 624:L89, 2005) in the Perseus molecular complex and Cassasus et al. (2006) in the dark cloud LDN 1622. Hydrogenated forms of fullerenes may account for the dust-correlated microwave emission detected in our Galaxy by Cosmic Microwave Background experiments.

  6. A Laboratory Route to Interstellar Ice

    NASA Astrophysics Data System (ADS)

    van Broekhuizen, Fleur Antoinette

    2005-06-01

    The formation of snow and ice has always intrigued humans and challenged them to study these phenomena. Every snowflake has its own unique history of formation, but no two are alike. Like snow-crystals, interstellar ices consist predominantly of water (H2O), but also contain significant fractions of other molecules such as carbon monoxide (CO), carbon dioxide (CO2), and methanol (CH3OH), and traces of dinitrogen (N2) and ammonia (NH3). The presence, or absence, of a molecule in the ice strongly depends on the environmental conditions. Vice versa, these molecules have an influence on their environment as well. Hence, the chemical composition and the structure of interstellar ices are thought to contain valuable information about the past and the future of interstellar regions, and it is for this reason that interstellar ices are simulated and studied under laboratory conditions. The present thesis contains a study of laboratory analogs of interstellar ices and presents a newly developed apparatus that provides a novel laboratory route to investigate the properties of these ices in more detail than has previously been possible.

  7. Alcohol Chemistry: Tentative Detections of Two New Interstellar Big Molecules CH_3OC_2H_5 and (C_2H_5)_2O

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Charnley, S. B.; Wilson, T. L.; Ohishi, M.; Huang, H.-C.; Snyder, L. E.

    1999-05-01

    Recent modeling of gas-grain chemistry demonstrated that many of the organic species are not the products of grain-surface reactions but are in fact synthesized in the warm gas from simpler species produced on grains. To test gas-grain chemistry, in particular alcohol chemistry, we have thus searched for (C_2H_5)_2O (diethyl ether) and CH_3OC_2H_5 (methyl ethyl ether), using the NRAO 12-m, in the giant molecular cloud cores Sgr B2(N), W51 e1/e2 and Orion-KL, where alcohols have been evaporated from ice mantles. In addition, we have also used the BIMA array to observe the 3-mm transitions of the two molecules toward Sgr B2. The preliminary 12-m results indicate clean detections of various line transitions of the two molecular species in the 1-mm, 2-mm and 3-mm regimes in all 3 molecular cloud cores. Furthermore our BIMA maps show a clear concentration of CH_3OH toward Sgr B2(N), the Large Molecule Heimat; sole detections of CH_3OC_2H_5 and (C_2H_5)_2O toward Sgr B2(N), instead of the more evolved Sgr B2(M), are also observed unambiguously as predicted by alcohol chemistry. Our detections of the two complex molecules not only further confirm the gas-grain chemistry but also require specifically that methanol (CH_3OH) and ethanol (C_2H_5OH) to be formed in grain mantles. In addition, the detections of diethyl ether and methyl ethyl ether lead to the discovery of two new molecules, including the largest ever, (C_2H_5)_2O. This work was partially supported by: NSC grants 87-2112-M-003-007 and 88-2112-M-003-013 of Taiwan, National Taiwan Normal University, Academia Sinica Institute of Astronomy and Astrophysics, NSF AST 96-13999, the University of Illinois, and NASA's Exobiology Program.

  8. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  9. A Search for Interstellar Oxiranecarbonitrile (C3H3NO)

    NASA Technical Reports Server (NTRS)

    Dicken, J. E.; Irvine, W. M.; Ohishi, M.; Arrhenius, G.; Bauder, A.; Mueller, F.; Eschenmoser, A.

    1996-01-01

    We report a search in cold, quiescent and in 'hot core' type interstellar molecular clouds for the small cyclic molecule oxiranecarbonitrile (C3H3NO), which has been suggested as a precursor of important prebiotic molecules. We have determined upper limits to the column density and fractional abundance for the observed sources and find that, typically, the fractional abundance by number relative to molecular hydrogen Of C3H3NO is less than a few times 10(exp -10). This limit is one to two orders of magnitude less than the measured abundance of such similarly complex species as CH3CH2CN and HCOOCH3 in well-studied hot cores. A number of astrochemical discoveries were made, including the first detection of the species CH3CH2CN in the massive star-forming clouds G34.3+0.2 and W51M and the first astronomical detections of some eight rotational transitions of CH3CH2CN, CH3CCH, and HCOOCH3. In addition, we found 8 emission lines in the 89 GHz region and 18 in the 102 GHz region which we were unable to assign.

  10. The IRAM-30 m line survey of the Horsehead PDR. III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas

    NASA Astrophysics Data System (ADS)

    Gratier, P.; Pety, J.; Guzmán, V.; Gerin, M.; Goicoechea, J. R.; Roueff, E.; Faure, A.

    2013-09-01

    Context. Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively easily detected in our Galaxy and in other galaxies. Aims: We aim at constraining their chemistry through observations of two positions in the Horsehead edge: the photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just behind it. Methods: We systematically searched for lines of CH3CN, HC3N, C3N, and some of their isomers in our sensitive unbiased line survey at 3, 2, and 1 mm. We stacked the lines of C3N to improve the detectability of this species. We derived column densities and abundances through Bayesian analysis using a large velocity gradient radiative transfer model. Results: We report the first clear detection of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and 6 at the dense core position, and we resolved its hyperfine structure for 3 lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR position. We computed new electron collisional rate coefficients for CH3CN, andwe found that including electron excitation reduces the derived column density by 40% at the PDR position, where the electron density is 1-5 cm-3. While CH3CN is 30 times more abundant in the PDR (2.5 × 10-10) than in the dense core (8 × 10-12), HC3N has similar abundance at both positions (8 × 10-12). The isomeric ratio CH3NC/CH3CN is 0.15 ± 0.02. Conclusions: The significant amount of complex (iso-)nitrile molecule in the UV illuminated gas is puzzling as the photodissociation is expected to be efficient. This is all the more surprising in the case of CH3CN, which is 30 times more abundant in the PDR than in the dense core. In this case, pure gas phase chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of grains are destroyed through photo-desorption or thermal-evaporation in PDRs, and through sputtering in shocks. Based on observations

  11. Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. III. Suprathermal Chemistry-Induced Formation of Hydrocarbon Molecules in Solid Methane (CH4), Ethylene (C2H4), and Acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Kaiser, R. I.; Roessler, K.

    1998-08-01

    Methane, ethylene, and acetylene ices are irradiated in a ultra high vacuum vessel at 10 K with 9.0 MeV α-particles and 7.3 MeV protons to elucidate mechanisms to form hydrocarbon molecules upon interaction of Galactic cosmic-ray particles with extraterrestrial, organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our experimental and computational investigations reveal that each MeV particle transfers its kinetic energy predominantly through inelastic encounters to the target leading to electronic excitation and ionization of the target molecules. Here electronically excited CH4 species can fragment to mobile H atoms and nonmobile CH3 radicals. The potential energy stored in Coulomb interaction of the CH+4 ions release energetic H and C atoms not in thermal equilibrium with the 10 K target (suprathermal species). Moderated to 1-10 eV kinetic energy, these carbon atoms and those triggered by the elastic energy transfer of the MeV projectile to the target are found to abstract up to two H atoms to yield suprathermal CH and CH2 species. C and CH, as well as CH2, can insert into a CH bond of a CH4 molecule to form methylcarbene (HCCH3), the ethyl radical (C2H5), and ethane (C2H6). HCCH3 either loses H2/2H to form acetylene, C2H2, rearranges to ethylene, C2H4, or adds two H atoms to form ethane, C2H6. C2H5 can abstract or lose an H atom, giving ethane and ethylene, respectively. C2H2 and C2H4 are found to react with suprathermal H atoms to form C2H3 and C2H5, respectively. Overlapping cascades and an increasing MeV ion exposure transforms C2Hx (x = 2, ..., 6) to even more complex alkanes up to C14H30. These elementary reactions of suprathermal species to insert, abstract, and add in/to bonds supply a powerful pathway to form new molecules in icy grain mantles condensed on interstellar grains or in hydrocarbon rich bodies in our solar system even at temperatures as low as 10 K.

  12. NASA's IBEX Observes Interstellar Matter

    NASA Video Gallery

    The Interstellar Boundary Explorer (IBEX) has directly sampled multiple heavy elements from the Local Interstellar Cloud for the first time. It turns out that this interstellar material is not like...

  13. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  14. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  15. Top-down formation of fullerenes in the interstellar medium

    PubMed Central

    Berné, O.; Montillaud, J.; Joblin, C.

    2015-01-01

    Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form at the low densities found in the interstellar medium by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C66H20 (i.e. circumovalene) can lead to the formation of C60 upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation of C66H20, folding into a floppy closed cage and shrinking of the cage by loss of C2 units until it reaches the symmetric C60 molecule. At 10” from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C66H20 is converted into C60 in ~ 105 years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C66H20 are unlikely to contribute significantly to the formation of C60, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C60 with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C60 are up to several 10−4 of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C60 can survive much longer (> 107 years for radiation fields below G0 = 104) than other fullerenes because of the remarkable stability of the C60 molecule at high internal energies. Hence, a natural consequence is that C60 is more abundant than other fullerenes in highly irradiated environments. PMID:26722131

  16. Top-down formation of fullerenes in the interstellar medium.

    PubMed

    Berné, O; Montillaud, J; Joblin, C

    2015-05-01

    Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form at the low densities found in the interstellar medium by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C66H20 (i.e. circumovalene) can lead to the formation of C60 upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation of C66H20, folding into a floppy closed cage and shrinking of the cage by loss of C2 units until it reaches the symmetric C60 molecule. At 10" from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C66H20 is converted into C60 in ~ 10(5) years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C66H20 are unlikely to contribute significantly to the formation of C60, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C60 with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C60 are up to several 10(-4) of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C60 can survive much longer (> 10(7) years for radiation fields below G0 = 10(4)) than other fullerenes because of the remarkable stability of the C60 molecule at high internal energies. Hence, a natural consequence is that C60 is more abundant than other fullerenes in highly irradiated environments.

  17. Boussard Interstellar Ramjet Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Boussard Interstellar Ramjet engine concept uses interstellar hydrogen scooped up from its environment as the spacecraft passes by to provide propellant mass. The hydrogen is then ionized and then collected by an electromagentic field. In this image, an onboard laser is uded to heat the plasma, and the laser or electron beam is used to trigger fusion pulses thereby creating propulsion.

  18. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. ID We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with LTV light from a hydrogen plasma lamp: The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  19. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  20. Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.

    2014-12-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.

  1. LABORATORY FORMATION OF FULLERENES FROM PAHS: TOP-DOWN INTERSTELLAR CHEMISTRY

    SciTech Connect

    Zhen, Junfeng; Castellanos, Pablo; Tielens, Alexander G. G. M.; Paardekooper, Daniel M.; Linnartz, Harold

    2014-12-20

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C{sub 60} fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C{sub 60} formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C{sub 2} units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C{sub 60}. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.

  2. Deuterium enrichment of interstellar dusts

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  3. DIBSyRCH: The Diffuse Interstellar Band Synchrotron Radiation Carrier Hunt: New Tools

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Wood, M. P.; Lawler, J. E.

    2010-11-01

    The identity of the carrier molecules of the Diffuse Interstellar Bands (DIBs) is the most durable mystery of spectroscopic astronomy. The DIBs are persistent absorption features, >300 total, observed along many lines of sight through the Interstellar Medium (ISM). The DIBs are scattered throughout the visible and near infrared, with widths in the 2-100 cm-1 range. For nearly a century, laboratory spectroscopists have struggled to match astrophysical wavelengths to laboratory wavelengths of known molecules including a variety of stable molecules, radicals, cations, and anions. Many researchers have hypothesized that hydrocarbon molecules are responsible for the DIBs, due to the rich chemistry and high cosmic abundance of carbon and hydrogen. Though large Polycyclic Aromatic Hydrocarbons (PAHs) are now suspected to be the source of the DIBs, no definitive matches have yet been made to laboratory PAH spectra. Aromatic clusters are also thought to be an important constituent of the interstellar dust distribution and may contribute to the 2175 Å "bump" in the interstellar extinction curve. The Diffuse Interstellar Band Synchrotron Radiation Carrier Hunt (DIBSyRCH) experiment has been built at the Synchrotron Radiation Center (SRC) to test these hypotheses by conducting a spectroscopic survey of a broad range of cold, gas phase and clustered PAH molecules and ions. Using a custom echelle spectrograph and the innovative Cryogenic Circulating Advective Multi-Pass (CCAMP) absorption cell, we routinely achieve a detection sensitivity to molecular densities on the order of 107 cm-3 with a signal-to-noise ratio of 10,000 in 60 seconds of data collection in the visible. This instrument, coupled with the high spectral radiance of the synchrotron radiation continuum from the SRC's White Light Beamline, permits rapid acquisition of spectra covering broad wavelength regions with resolution appropriate for the DIBs. In order to obtain astrophysically relevant spectra of low

  4. Differential adsorption of CHON isomers at interstellar grain surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C.

    2015-06-01

    Context. The CHON generic chemical formula covers different isomers such as isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC); the first three have been identified in a large variety of environments in the interstellar medium (ISM). Several phenomena could be at the origin of the observed abundances, such as different pathways of formation and destruction involving gas phase reactions with different possible activation barriers and/or surface processes depending on the local temperature and the nature of the support. Aims: The scope of this article is to shed some light on the interaction of the CHON isomers with interstellar grains as a function of the nature of the surface and to determine the corresponding adsorption energies in order to find whether this phenomenon could play a role in the abundances observed in the ISM. Methods: The question was addressed by means of numerical simulations using first principle periodic density functional theory (DFT) to represent the grain support as a solid of infinite dimension. Results: Regardless of the nature of the model surface (water ice, graphene, silica), two different classes of isomers were identified: weakly bound (HNCO and HCNO) and strongly bound (HOCN and HONC), with the adsorption energies of the latter group being about twice those of the former. The range of the adsorption energies is (from highest to lowest) HOCN > HONC > HNCO > HCNO. They are totally disconnected from the relative stabilities, which range from HNCO > HOCN > HCNO > HONC. Conclusions: The possibility of hydrogen bonding is the discriminating factor in the trapping of CHON species on grain surfaces. Whatever the environment, differential adsorption is effective and its contribution to the molecular abundances should not be ignored. The theoretical adsorption energies provided here could be profitably used for a more realistic modeling of molecule-surfaces interactions.

  5. Discovery of Interstellar Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Zmuidzinas, Jonas; Schilke, Peter; Phillips, Thomas G.

    1997-01-01

    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2-1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of approximately 3 x 10(exp -10) relative to H2. If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for approximately 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus, the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (approximately 5 sigma) for an emission feature at the expected position of the 4(sub 32)-4(sub 23) 121.7219 micron line of water. The emission-line equivalent width of 0.5 nm for the water feature is consistent with the water abundance of 5 x 10(exp -6) relative to H2 that has been inferred previously from observations of the hot core of Sgr B2.

  6. Discovery of Interstellar Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Zmuidzinas, Jonas; Schilke, Peter; Phillips, Thomas G.

    1997-01-01

    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2-1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of about 3 x 10 (exp -10) relative to H, If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for about 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus, the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (about 5 sigma) for an emission feature at the expected position of the 4(sub 32)-4(sub 23) 121.7219 micron line of water. The emission-line equivalent width of 0.5 mm for the water feature is consistent with the water abundance of 5 x 10(exp -6) relative to H, that has been inferred previously from observations of the hot core of Sgr B2.

  7. Assessment of detectability of neutral interstellar deuterium by IBEX observations

    NASA Astrophysics Data System (ADS)

    Kubiak, M. A.; Bzowski, M.; Sokół, J. M.; Möbius, E.; Rodríguez, D. F.; Wurz, P.; McComas, D. J.

    2013-08-01

    Context. The abundance of deuterium in the interstellar gas in front of the Sun gives insight into the processes of filtration of neutral interstellar species through the heliospheric interface and potentially into the chemical evolution of the Galactic gas. Aims: We investigate the possibility of detection of neutral interstellar deuterium at 1 AU from the Sun by direct sampling by the Interstellar Boundary Explorer (IBEX). Methods: Using both previous and the most recent determinations of the flow parameters of neutral gas in the local interstellar cloud (LIC) and an observation-based model of solar radiation pressure and ionization in the heliosphere, we simulated the flux of neutral interstellar D at IBEX for the actual measurement conditions. We assessed the number of interstellar D atom counts expected during the first three years of IBEX operation. We also simulated the observations expected during an epoch of high solar activity. In addition, we calculated the expected counts of D atoms from the thin terrestrial water layer covering the IBEX-Lo conversion surface, sputtered by neutral interstellar He atoms. Results: Most D counts registered by IBEX-Lo are expected to come from the water layer, exceeding the interstellar signal by 2 orders of magnitude. However, the sputtering should stop once the Earth leaves the portion of orbit traversed by interstellar He atoms. We identify seasons during the year when mostly the genuine interstellar D atoms are expected in the signal. During the first 3 years of IBEX operations about 2 detectable interstellar D atoms are expected. This number is comparable to the expected number of sputtered D atoms registered during the same time intervals. Conclusions: The most favorable conditions for the detection occur during low solar activity, in an interval including March and April each year. The detection chances could be improved by extending the instrument duty cycle, say, by making observations in the special deuterium mode

  8. On the Detectability of the X 2A" HSS, HSO, and HOS Radicals in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2017-02-01

    {\\tilde{X}}2A\\prime\\prime HSS has yet to be observed in the gas phase in the interstellar medium (ISM). HSS has been observed in cometary material and in high abundance. However, its agglomeration to such bodies or dispersal from them has not been observed. Similarly, HSO and HOS have not been observed in the ISM, either, even though models support their formation from reactions of known sulfur monoxide and hydrogen molecules, among other pathways. Consequently, this work provides high-level, quantum chemical rovibrational spectroscopic constants and vibrational frequencies in order to assist in interstellar searches for these radical molecules. Furthermore, the HSO‑HOS isomerization energy is determined to be 3.63 kcal mol‑1, in line with previous work, and the dipole moment of HOS is 36% larger at 3.87 D than HSO, making the less stable isomer more rotationally intense. Finally, the S‑S bond strength in HSS is shown to be relatively weak at 30% of the typical disulfide bond energy. Consequently, HSS may degrade into SH and sulfur atoms, making any ISM abundance of HSS likely fairly low, as recent interstellar surveys have observed.

  9. INTERSTELLAR ANALOGS FROM DEFECTIVE CARBON NANOSTRUCTURES ACCOUNT FOR INTERSTELLAR EXTINCTION

    SciTech Connect

    Tan, Zhenquan; Abe, Hiroya; Sato, Kazuyoshi; Ohara, Satoshi; Chihara, Hiroki; Koike, Chiyoe; Kaneko, Kenji

    2010-11-15

    Because interstellar dust is closely related to the evolution of matter in the galactic environment and many other astrophysical phenomena, the laboratory synthesis of interstellar dust analogs has received significant attention over the past decade. To simulate the ultraviolet (UV) interstellar extinction feature at 217.5 nm originating from carbonaceous interstellar dust, many reports focused on the UV absorption properties of laboratory-synthesized interstellar dust analogs. However, no general relation has been established between UV interstellar extinction and artificial interstellar dust analogs. Here, we show that defective carbon nanostructures prepared by high-energy collisions exhibit a UV absorption feature at 220 nm which we suggest accounts for the UV interstellar extinction at 217.5 nm. The morphology of some carbon nanostructures is similar to that of nanocarbons discovered in the Allende meteorite. The similarity between the absorption feature of the defective carbon nanostructures and UV interstellar extinction indicates a strong correlation between the defective carbon nanostructures and interstellar dust.

  10. Chemistry of nitrile anions in the interstellar medium

    SciTech Connect

    Carles, S.; Le Garrec, J.-L.; Biennier, L.; Guillemin, J.-C.

    2015-12-31

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm{sup 3}), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C{sub 4}H{sup ¯}, C{sub 6}H{sup ¯}, C{sub 8}H{sup ¯}, CN{sup ¯}, C{sub 3}N{sup ¯} and C{sub 5}N{sup ¯}. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN{sup ¯} and C{sub 3}N{sup ¯} anions by dissociative electron attachment on the molecular precursors BrCN and BrC{sub 3}N.

  11. STUDIES OF THE DIFFUSE INTERSTELLAR BANDS. III. HD 183143

    SciTech Connect

    Hobbs, L. M.; Thorburn, J. A.; York, D. G.; Bishof, M.; Oka, T.; Snow, T. P.; Friedman, S. D.; McCall, B. J.; Rachford, B.; Sonnentrucker, P.; Welty, D. E.

    2009-11-01

    Echelle spectra of HD 183143 [B7Iae, E(B - V) = 1.27] were obtained on three nights, at a resolving power R = 38,000 and with a signal-to-noise ratio approx 1000 at 6400 A in the final, combined spectrum. A catalog is presented of 414 diffuse interstellar bands (DIBs) measured between 3900 and 8100 A in this spectrum. The central wavelengths, the widths (FWHM), and the equivalent widths of nearly all of the bands are tabulated, along with the minimum uncertainties in the latter. Among the 414 bands, 135 (or 33%) were not reported in four previous, modern surveys of the DIBs in the spectra of various stars, including HD 183143. The principal result of this study is that the great majority of the bands in the catalog are very weak and fairly narrow. Typical equivalent widths amount to a few mA, and the bandwidths (FWHM) are most often near 0.7 A. No preferred wavenumber spacings among the 414 bands are identified which could provide clues to the identities of the large molecules thought to cause the DIBs. At generally comparable detection limits in both spectra, the population of DIBs observed toward HD 183143 is systematically redder, broader, and stronger than that seen toward HD 204827 (Paper II). In addition, interstellar lines of C{sub 2} molecules have not been detected toward HD 183143, while a very high value of N(C{sub 2})/E(B - V) is observed toward HD 204827. Therefore, either the abundances of the large molecules presumed to give rise to the DIBs, or the physical conditions in the absorbing clouds, or both, must differ significantly between the two cases.

  12. Presolar/Interstellar Materials

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    This talk will review much of our current understanding of the origins, nature, and evolution of materials in circumstellar and interstellar space. I will begin by familiarizing the audience with some of the nomenclature associated the field, reviewing the lifecycle of dust in space, and pointing out where the speakers that follow will address portions of the lifecycle in greater detail. I will then address the different techniques used to study interstellar materials, paying particular attention to (i) telescopic remote sensing of the dust currently in interstellar space, (ii) laboratory studies of individual interstellar grains found in meteorites and other extraterrestrial materials, and (iii) laboratory simulation experiments. To complete the talk, I will focus on the nature of interstellar organic compounds as a particular example of how these disparate techniques can be used to improve our understanding of interstellar matter. While interstellar organics will be addressed in general, particular attention will be made to that portion of the organic inventory that may play a role in the origin and evolution of life on planetary surfaces.

  13. Energetic Processing of Interstellar Ices: A Route to Complexity

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie L.

    2009-01-01

    More than 140 gas-phase molecules have been detected in the interstellar (IS) medium or in circumstellar environments including inorganics, organics, ions, and radicals. The significant abundance of large, complex organic molecules, and families of isomers in these regions makes the origin and formation history of these species the subject of debate. Observationally determined condensed-phase species are H2O, CO, CO2, NH3 and CH30H, with CH4, HCOOH, OCS, OCN-, H2CO and NH4(+) present at trace levels. These ices can undergo energetic processing with cosmic rays or far-UV photons to form larger complex organics with abundance levels that make them undetectable in icy mantles. Once warmed, however, it is likely that these complex species would enter the gas-phase where they might be detected by Herschel or Alma. Understanding the role of radiation chemistry and thermal processing of ices and identifying new products are the goals of our laboratory research. In the Cosmic lee Laboratory at NASA Goddard Space Plight Center, we can study both the photo-and radiation chemistries of ices from 8 -- 300 K. Using dear- and mid-IR spectroscopy we can follow the destruction of primary molecules and the formation of radicals and secondary products as a function of energetic processing. During warming we can monitor the trapping of species and the results of any thermal chemistry. An overview of recent and past work will focus on complex secondary radiation products from small condensed-phase IS species. Likely reactions include dimerization, isomerization, H-addition and H-elimination. Another focus of our work is the development of reaction schemes for the formation of complex molecules and the use of such schemes to predict new molecules awaiting detection by Herschel and Alma.

  14. Complex Organics from Laboratory Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T < 50 K) preclude most chemical reactions, but photolysis can drive reactions that produce a suite of new species, many of which are complex organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D

  15. Addition of nucleophiles on cyanoacetylene N≡CCH=CH-X (X = NH2, OH, SH, …). Synthesis and Physico-chemical Properties of Potential Prebiotic Compounds or Interstellar Molecules.

    NASA Astrophysics Data System (ADS)

    Guillemin, Jean-Claude

    Among the molecules detected to date in the interstellar medium (ISM), cyanopolyynes constitute a rich and important subset. These robust compounds exhibit special properties with respect to their reactivity and kinetic stability, and some have been found in other astrochemical environments, such as comets or in lab simulations of planetary atmospheres.[1] These systems are supposed to be good starting materials for the formation of new, more complex, astrochemical species, or amino acids on primitive Earth. The formal addition of water, hydrogen sulfur or ammonia on cyanoacetylene (H-C≡C-C≡N) gives the corresponding heterosubstitued acrylonitriles. We have extensively investigated the study of such adducts. With water, the formed cyanovinylalcohol (NC-CH=CH-OH) is in a tautomeric equilibrium with the kinetically more stable cyanoacetaldehyde (NC-CH2 CH(=O)). Isolation of these compounds in pure form is challenging but the gas phase infrared spectrum has been recorded. Reaction of ammonia with cyanoacetylene gives aminoacrylonitrile (H2 N-CH=CH-CN), a stable enamine; microwave and infrared spectra were obtained.[2] Similarly the MW spectrum of 3-mercapto-2-propenenitrile (HS-CH=CH-CN) has been recorded.[3] Attempts to detect both species in the ISM have been performed. A combined experimental and theoretical study on the gas-phase basicity and acidity of a series of cyanovinyl derivatives is also presented.[4] We will demonstrate that many particular physicochemical properties are associated to these simple adducts of cyanoacetylene, compounds often proposed as prebiotic molecules or components of the ISM. 1] S. W. Fow, K. Dose, Molecular Evolution and the Origin of Life, Marcel Dekker, Stateplace- New York, metricconverterProductID1977. A1977. A. Coustenis, T. Encrenaz, B. BJzard, B. Bjoraker, G. Graner, G. Dang-Nhu, E. AriJ, Icarus 1993, 102, 240 - 269. [2] Benidar, A. ; Guillemin, J.-C. ; M—, O. ; Y‡-ez, M. J. Phys. Chem. A. 2005, 109, 4705-4712. E

  16. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  17. Search for Interstellar LiH in the Milky Way

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.; Goldsmith, Paul F.; Comito, Claudia; Schmiedeke, Anika

    2017-03-01

    We report the results of a sensitive search for the 443.952902 GHz J=1{--}0 transition of the lithium hydride (LiH) molecule toward two interstellar clouds in the Milky Way, W49N and Sgr B2 (Main), that has been carried out using the Atacama Pathfinder Experiment telescope. The results obtained toward W49N place an upper limit of 1.9× {10}-11 (3σ ) on the LiH abundance, N({LiH})/N({{{H}}}2), in a foreground, diffuse molecular cloud along the sight line to W49N, corresponding to 0.5% of the solar system lithium abundance. Those obtained toward Sgr B2 (Main) place an abundance limit N({LiH})/N({{{H}}}2)< 3.6× {10}-13 (3σ ) in the dense gas within the Sgr B2 cloud itself. These limits are considerably smaller that those implied by the tentative detection of LiH reported previously for the z = 0.685 absorber toward B0218+357.

  18. Infrared maser emission from interstellar hydroxyl molecules

    NASA Technical Reports Server (NTRS)

    Pelzmann, R. F., Jr.

    1974-01-01

    The energy structure and transition rates of the OH radical were studied in rotational and vibrational energies to provide the basis for studies of the population distributions under various exciting mechanisms. The absorption of ultra-violet or near infrared radiation which might explain the microwave emission was examined, as well as the absorption of low temperature blackbody radiation and collisions with molecular hydrogen. The results of the population studies were applied to the transfer equation, and a model of a uniform spherical cloud of OH was used with the pumping process which occurs uniformly throughout the region. The emission is unsaturated and the intensity is an exponential function of the size of the cloud for high pumping rates, and the region of unsaturated emission shrinks for lower pumping rates until the entire region is saturated, the intensity then becoming a linear function of the size of the emitting cloud.

  19. Complex molecules in galactic dust cores: Biologically interesting molecules and dust chemistry

    NASA Astrophysics Data System (ADS)

    Liu, Shen-Yuan

    2000-06-01

    The astronomical study of molecules has been an essential research field since the development of radio astronomy. Presently nearly 120 molecules have been identified in interstellar and circumstellar environments. The complexity of molecular species, and particularly organic molecules, that can be synthesized in the interstellar medium (ISM) leads to one interesting and important subfield in interstellar molecular studies, namely, the search and study for molecules of possible biological interest. Observationally, complex and most saturated molecules are observed exclusively toward compact hot, dense regions, often called ``hot cores'', in molecular clouds. To account for the observed amount of saturated organic molecules, interstellar dust particles play an important role. It has often been suggested that solid state reactions on grain surfaces provide an efficient way to synthesis saturated organic molecules. The objective of this study is to obtain observational data on biologically interesting molecules and to study important complex interstellar molecules. Since hot molecular cores are inherently compact, interferometric observations are therefore an ideal approach to study these sources. All our observations were all made with the Berkeley-Illinois-Maryland-Association (BIMA) Array. We conducted the first survey of formic acid (HCOOH) with an interferometric array, and identified at least three sources. HCOOH is found with column densities above 1015 cm-2 in these sources. The correlation between HCOOH and HCOOCH3 emission implies a surface chemistry origin of HCOOH. Details of the results are given in Chapter 2. Meanwhile, we continued to search for molecules of biological interest, namely urea, acetic acid, and glycine. In Chapter 3, the results of column density limits set by our observations are discussed. We have also investigated properties of individual hot molecular cores. It is very important to obtain the physical and chemical properties of these

  20. X-ray Haloes and Scattering by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2003-01-01

    The presence of dust in the general interstellar medium is inferred f r o m the general extinction of starlight, the diffuse infrared emission, and the elemental abundance constraints. X-ray haloes around X-ray sources, produced by small angle scattering from intervening interstellar dust particles provide a new probe into the nature of interstellar dust. In this talk I will review the physics of X-ray scattering by dust particles, and present an analysis of dust properties around select X-ray sources.

  1. X-ray Haloes and Scattering by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2003-01-01

    The presence of dust in the general interstellar medium is inferred from the general extinction of starlight, the diffuse infrared emission, and the elemental abundance constraints. X-ray haloes around X-ray sources, produced by small angle scattering from intervening interstellar dust particles provide a new probe into the nature of interstellar dust. In this talk I will review the physics of X-ray scattering by dust particles, and present an analysis of dust properties around select X-ray sources.

  2. On the detection of rubidium in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Sneden, C.; Schempp, W. V.; Smith, W. H.

    1985-01-01

    A search for absorption from neutral rubidium at 7800 A was conducted. No evidence for absorption to a 3 sigma limit of less than 1.5 mA was seen in the diffuse interstellar gas toward the stars omicron Persei, zeta Persei, and zeta Ophiuchi. Present results do not confirm the detection by Jura and Smith (1981) toward zeta Oph. A possible reason for the discrepancy is presented. In light of the present measurements, the abundance of interstellar rubidium in reconsidered.

  3. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    PubMed

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  4. Gas-grain Modeling of Isocyanic Acid (HNCO), Cyanic Acid (HOCN), Fulminic Acid (HCNO), and Isofulminic Acid (HONC) in Assorted Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Osamura, Yoshihiro; Roueff, Evelyne

    2010-12-01

    Isocyanic acid (HNCO) is a well-known interstellar molecule. Evidence also exists for the presence of two of its metastable isomers in the interstellar medium: HCNO (fulminic acid) and HOCN (cyanic acid). Fulminic acid has been detected toward cold and lukewarm sources, while cyanic acid has been detected both in these sources and in warm sources in the Galactic Center. Gas-phase models can reproduce the abundances of the isomers in cold sources, but overproduce HCNO in the Galactic Center. Here we present a detailed study of a gas-grain model that contains these three isomers, plus a fourth isomer, isofulminic acid (HONC), for four types of sources: hot cores, the warm envelopes of hot cores, lukewarm corinos, and cold cores. The current model is partially able to rationalize the abundances of HNCO, HOCN, and HCNO in cold and warm sources. Predictions for HONC in all environments are also made.

  5. Interstellar Material towards eta UMa

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Jenkins, E. B.; Welty, D. E.; Johns-Krull, C.

    1999-05-01

    The star eta UMa (B3 V, vsini=205 km s(-1) , d=31 pc, l=101(o) , b=+65(o) ) samples nearby interstellar gas in a high latitude direction relatively devoid of material. IMAPS, Hubble GHRS Echelle, and ground based optical data are combined to present a comprehensive picture of the interstellar material (ISM) in this direction. Two main components dominate: the blue-shifted component which appears to be ionized, and the dominant, red-shifted, component which exhibits a low electron density ( ~ 0.2 cm(-3) ). However, the Mg(o/Mg^+) ratio and C(+) fine-structure lines yield different ionizations, depending on the adopted temperature, similar to differences found in the diffuse material towards 23 Ori (Welty et al. 1999). The IMAPS and GHRS data give C, N, O, and Fe column densities, which form the basis for calculating the gas-to-dust mass ratio for the main component using a ``missing mass'' calculation combined with an assumed reference abundance (Frisch et al. 1999). Comparing the eta UMa value with other diffuse cloud values then further constrains uncertainties in N(H(o) ) values for this sightline.

  6. Enabling interstellar probe

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Wimmer-Schweingruber, Robert F.; International Interstellar Probe Team

    2011-04-01

    The scientific community has advocated a scientific probe to the interstellar medium for over 30 years. While the Voyager spacecraft have passed through the termination shock of the solar wind, they have limited lifetimes as their radioisotope power supplies decay. It remains unclear whether they can reach the heliopause, the boundary between shocked solar wind and interstellar plasmas, and, in any case, they will not reach the undisturbed interstellar medium. As with most exploratory space missions, their ongoing observations continue to raise even more questions about the nature of the interaction of our heliosphere and the interstellar medium. Scientific questions including: What is the nature of the nearby interstellar medium? How do the Sun and galaxy affect the dynamics of the heliosphere? What is the structure of the heliosphere? How did matter in the solar system and interstellar medium originate and evolve? can only be answered by an "interstellar precursor" probe. Such a mission is required to make in situ measurements in the interaction region and interstellar medium itself at distances far from the Sun, but in a finite mission lifetime. By launching a probe toward the incoming "interstellar wind," whose direction is known, the distance to be traveled can be minimized but is still large. The current consensus is that a scientifically compelling mission must function to at least a distance of 200 astronomical units (AU) from the Sun and return a reasonable stream of data during the voyage. The central problem is that of providing a means of propulsion to accelerate a probe from the Solar System. Even with a low-mass payload and spacecraft, achieving the high speeds needed, even with gravity assists, have remained problematic. Voyager 1, the fastest object ever to leave the system is now traveling ˜3.6 AU/yr, and a credible probe must reach at least 2-3 times this speed. The use of an Ares V is an approach for enabling a fast interstellar precursor

  7. Excitation of interstellar hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Neufild, David A.; Green, Sheldon

    1994-01-01

    We have computed new rate coefficients for the collisional excitation of HCl by He, in the close-coupled formalism and using an interaction potential determined recently by Willey, Choong, & DeLucia. Results have been obtained for temperatures between 10 K and 300 K. With the use of the infinite order sudden approximation, we have derived approximate expressions of general applicability which may be used to estimate how the rate constant for a transition (J to J prime) is apportioned among the various hyperfine states F prime of the final state J prime. Using these new rate coefficients, we have obtained predictions for the HCl rotational line strengths expected from a dense clump of interstellar gas, as a function of the HCl fractional abundance. Over a wide range of HCl abundances, we have found that the line luminosities are proportional to abundance(exp 2/3), a general result which can be explained using a simple analytical approximation. Our model for the excitation of HCl within a dense molecular cloud core indicates that the J = 1 goes to 0 line strengths measured by Blake, Keene, & Phillips toward the Orion Molecular Cloud (OMC-1) imply a fractional abundance n(HCl)/n(H2) approximately 2 x 10(exp -9), a value which amounts to only approximately 0.3% of the cosmic abundance of chlorine nuclei. Given a fractional abundance of 2 x 10(exp -9), the contribution of HCl emission to the total radiative cooling of a dense clump is small. For Orion, we predict a flux approximately 10(exp -19) W/sq cm for the HCl J = 3 goes to 2 line near 159.8 micrometers, suggesting that the strength of this line could be measured using the Infrared Space Observatory.

  8. Are CO Observations of Interstellar Clouds Tracing the H2?

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  9. HST STIS Observations of Interstellar Chlorine

    NASA Astrophysics Data System (ADS)

    Becker, Valerie Rose; Dirks, Cody; Meyer, David M.; Cartledge, Stefan I. B.

    2017-01-01

    Among the dominant ions of abundant elements in the diffuse interstellar medium, only chlorine (Cl II) has a rapid exothermic reaction with molecular hydrogen (H2) that should lead to the dominance of its atomic form (Cl I) in clouds where most of the hydrogen is in H2. We present the results of an archival study of the interstellar Cl I λ1347.24 absorption observed at high spectral resolution toward 41 stars with the Space Telescope Imaging Spectrograph (STIS) onboard the Hubble Space Telescope (HST). Our key goals in this survey are to explore the relationship between interstellar N(Cl I) and N(H2) with a larger sample and a larger N(H2) range (16.44 < log N(H2) < 20.87) than the Copernicus interstellar survey of Moomey et al. (2012). We additionally contrast it with the high-z QSO damped Lyman-alpha system (DLA) findings of Balashev et al. (2015). We find that for log N(H2) > 19.0, the HST STIS sample is consistent with the Copernicus data and high-z DLA samples in indicating a linear trend of increasing N(Cl I) with increasing N(H2). Furthermore, all of the interstellar sightlines with log f(H2) > -0.5 have log N(Cl I) > 13.5, and those with log f(H2) < -1.5 have log N(Cl I) < 13.5, where f(H2)=2N(H2)/[2N(H2)+N(H I)] is the fractional amount of H2 in H. Consequently, observations of interstellar Cl I can potentially trace the H2 fraction of the “CO-dark” gas marking the transition between diffuse atomic and dense CO molecular clouds.

  10. On the relative abundance of LiH and LiH+ molecules in the early universe: new results from quantum reactions

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Tacconi, M.; Gianturco, F.

    2011-05-01

    The chemistry of Li in the early universe has been discussed in the past, reaching contrasting conclusions (see e.g., SLD96; BG97; GP98; Vonlanthen et al. 2009). Of critical relevance, is the uncertainty in the knowledge of reliable reaction rates for the destruction of LiH and LiH^+ molecules formed by radiative recombination (Dickinson & Gadéa 2000) via strongly exothermic reactions without entrance barriers: LiH + H → Li + H_2 LiH + H^+ → Li + H_2^+ and LiH^+ + H → Li^+ + H_2. Therefore, it is an accurate knowledge of the reaction rates for the above processes, at low redshift values, that can ultimately tell us what the end-role of the LiH/LiH^+ systems could be as efficient coolants under early universe conditions. The task of the present work is to show that the reaction rates recently determined from fully ab-initio quantum methods (Bovino et al. 2009, 2010a, 2010b), which also employ accurate interaction forces between partners, have a significant impact on the evolution of LiH and LiH^+ during the post-recombination era of the early universe. We shall further show that a more realistic description of the rates for a neutralization process LiH^+ + e^- → Li + H could substantially change the relative abundance of the ionic molecular species.

  11. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry.

    PubMed

    Highland, Margaret A; Schneider, David A; White, Stephen N; Madsen-Bouterse, Sally A; Knowles, Donald P; Davis, William C

    2016-06-01

    Although both domestic sheep (DS) and bighorn sheep (BHS) are affected by similar respiratory bacterial pathogens, experimental and field data indicate BHS are more susceptible to pneumonia. Cross-reactive monoclonal antibodies (mAbs) for use in flow cytometry (FC) are valuable reagents for interspecies comparative immune system analyses. This study describes cross-reactive mAbs that recognize leukocyte differentiation molecules (LDMs) and major histocompatibility complex antigens on DS and BHS leukocytes. Characterization of multichannel eosinophil autofluorescence in this study permitted cell-type specific gating of granulocytes for evaluating LDMs, specifically on neutrophils, by single-label FC. Evaluation of relative abundances of LDMs by flow cytometry revealed greater CD11a, CD11b, CD18 (β2 integrins) and CD 172a (SIRPα) on DS neutrophils and greater CD14 (lipopolysaccharide receptor) on BHS neutrophils. Greater CD25 (IL-2) was identified on BHS lymphocytes following Concavalin A stimulation. While DS and BHS have similar total peripheral blood leukocyte counts, BHS have proportionately more neutrophils.

  12. Molecular evolution of contracting clouds - Basic methods and initial results. [interstellar processes

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Glassgold, A. E.

    1978-01-01

    The relationship between the dynamics of the interstellar gas and the thermal and chemical effects associated with interstellar molecules and dust is investigated. The evolution of a rather massive isolated initially diffuse cloud under self-gravity is studied, using the equations of hydrodynamics; only radial motions are considered, and the heat, chemical, and radiative-transfer equations are solved simultaneously with the hydrodynamic equations. The relevant chemistry is described along with the thermal model, the radiative-transfer process, and the numerical methods employed. Results for a contracting cloud are discussed in terms of the problem of initial conditions, the dynamical evolution of the cloud, its chemical and thermal evolution, time scales, and column densities. It is shown that the chemical evolution of a massive contracting diffuse cloud is sensitive to such physical properties as temperature and ion abundances, that warm and cool versions of a typical cloud evolve differently, and that the physical origin of this effect is the level of heating due to H2 formation on interstellar dust grains.

  13. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2012-01-01

    aromatic molecules, together with measurements from the VIMS data, allow us to calculate the number of C atoms to find the relative abundances of C atoms in the two kinds of organic molecules. The strength of the prominent aromatic C-H stretch band relative to the aliphatic band complex in Phoebe and Iapetus indicates that the relative abundance of aromatic to aliphatic carbon is very large (greater than 200). In contract, the aromatic band is nearly imperceptible in spectra of interplanetary dust particles (IDP), returned samples from comet 91P/Wild 2, insoluable carbonaceous material in most meteorites, and the diffuse interstellar dust (DISM) (although aromatics are known in all these materials-here we consider only the spectroscopic signature)

  14. Components in interstellar molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.; Morton, W. A.

    1976-01-01

    Results are reported for precise spectrophotometric measurements of the profiles of selected Lyman absorption lines produced by hydrogen molecules in various rotational levels along the line of sight to 13 stars which have shown some evidence for an increase in line width with increasing rotational quantum number (J). The line profiles were measured by multiple scans with the Copernicus satellite telescope. Based on analysis of the radial velocities, derivations of the column densities, and line-profile fitting, the following conclusions are made: (1) the increase in interstellar H2 line width with increasing J results from the presence of the most shortward component, which is relatively weak at low J but becomes more important at higher J; (2) the relative column densities found for the different J levels in each component may be fitted by a theoretical model in which rotational excitation is due to absorption of UV photons followed by radiative quadrupole spontaneous transitions or collisionally induced downward transitions between different J levels; (3) the atomic hydrogen density is between 300 and 1000 per cu cm in the most shortward component for each of three stars; (4) the approaching gas which produces each shortward component must be in the form of thin sheets; and (5) the sheets are the compressed gas behind a shock front moving through the interstellar medium.

  15. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  16. Three milieux for interstellar chemistry: gas, dust, and ice.

    PubMed

    Herbst, Eric

    2014-02-28

    The interdisciplinary science of astrochemistry is 45 years of age, if we pinpoint its origin to have occurred when the first polyatomic molecules were detected in the interstellar gas. Since that time, the field has grown remarkably from an esoteric area of research to one that unites scientists around the globe. Almost 200 different molecules have been detected in the gas-phase of interstellar clouds, mainly by rotational spectroscopy, while dust particles and their icy mantles in colder regions can be probed by vibrational spectroscopy. Astrochemistry is exciting to scientists in a number of different fields. Astronomers are interested in molecular spectra from the heavens because such spectra are excellent probes of the physical conditions where molecules exist, while chemists are interested in the exotic molecules, their spectra, and the unusual chemical processes that produce and destroy them under conditions often very different from those on our home planet. Chemical simulations involving thousands of reactions are now used to calculate concentrations and spectra of interstellar molecules as functions of time. Even biologists share an interest in the subject, because the interstellar clouds of gas and dust, portions of which collapse to form stars and planetary systems, contain organic molecules that may become part of the initial inventory of new planets and may indeed be the precursors of life. An irresistible subject to its practitioners, astrochemistry is proving to be exciting to a much wider audience. In this perspective article, the field is first introduced, and the emphasis is then placed on the three environments in which chemistry occurs in the interstellar medium: the gas phase, the surfaces of bare dust particles, and the ice mantles that cover bare grains in cold dense interstellar clouds. What we do know and what we do not know is distinguished. The status of chemical simulations for a variety of interstellar sources having to do with stellar

  17. Correlation between molecular lines and diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Szczerba, Richard; Krelowski, J.; Walker, G. A. H.; Kennelly, E. T.; Sneden, C.; Volk, Kevin; Hill, G.

    1994-01-01

    Observations are presented of the Diffuse Interstellar Bands (DIB's) at 4726, 4763, and 4789 A and at 5780 and 5797 A together with the ultraviolet lines of CH and CN molecules for stars with different shapes of UV extinction curve. The new results concerning the relationship between different characteristics of the interstellar clouds; molecular lines, blue and yellow DIB's, and UV extinction curves are discussed.

  18. Isotope Fractionation in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2011-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  19. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  20. Low-temperature surface formation of NH3 and HNCO: hydrogenation of nitrogen atoms in CO-rich interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Ioppolo, S.; Zhao, D.; Lamberts, T.; Linnartz, H.

    2015-01-01

    Solid-state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen-containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices towards young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. The aim of this work is to experimentally investigate the formation routes of NH3 and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant temperatures. This study focuses on the formation of NH3 and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in dark interstellar cloud regions, well before thermal and energetic processing start to become relevant. We demonstrate and discuss the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH3 upon sequential hydrogenation of N atoms. The importance of HNCO for astrobiology is discussed.

  1. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  2. The Role of Polycyclic Aromatic Hydrocarbons in Dense Cloud Absorption Features: The Last Major Unanswered Question in Interstellar Ice Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiar, Jean

    Interstellar dust plays a vital role in the star formation process and the eventual formation of planetary systems including our own. Ice mantles are an important component of the dust: reactions involving simple ices can create more complex (and astrobiologically interesting) molecules, and ices sublimated back into the gas phase influence the gas- phase chemistry. Although polycyclic aromatic hydrocarbons (PAHs) are commonly thought to be very abundant interstellar species and, as such, are likely to be important components of interstellar ices, their contribution to the infrared spectra and chemistry of ices in dense molecular clouds is an open question. This program makes extensive use of three major NASA-funded databases: the Spitzer archive, the 2MASS archive, and the NASA Ames PAH database in order to answer the last major unanswered question in interstellar ice spectroscopy: what role do PAHs play in contributing to unidentified absorption features observed in dense cloud spectra. PAHs are observed to be present and abundant in nearly all phases of the galactic and extragalactic interstellar medium. The evidence for the ubiquity of interstellar PAHs is the widespread well-known family of prominent emission bands at 3.28, 6.2, 7.7, 8.6, and 11.2 micron. To date, these PAH bands have been most easily detected in regions where individual gas phase PAH molecules (neutrals and ions) become highly vibrationally excited by the ambient radiation field. While PAHs and closely related aromatic materials should be present throughout dense interstellar regions, PAH emission is quenched in cold dark dense clouds. Also, in these regions, most PAHs should efficiently condense out onto dust grains, either as "pure" solids or as "guest molecules" in icy grain mantles, much as is the case for most other interstellar molecules. Thus, in dense molecular clouds, condensed PAHs will give rise to IR absorption bands rather than emission features. While PAH absorption has been

  3. High Abundance of Ions in Cosmic Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Water-rich, mixed molecular ices and polycyclic aromatic hydrocarbons (PAHs) are common throughout interstellar molecular clouds and the Solar System. Vacuum ultraviolet (VUV) irradiation and particle bombardment of these abiotic ices produces complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs which may have played a role in the origin of life. This ability of such water-rich, oxygen dominated ices to promote production of complex organic species is surprising and points to an important, unusual, but previously overlooked mechanism at play within the ice. Here we report the nature of this mechanism using electronic spectroscopy. VUV-irradiation of PAH/H2O ices leads to an unprecedented and efficient (greater than 70 %) conversion of the neutral PAHs to their cation form (PAH+). Further, these H2O/PAH+ ices are stabile at temperatures below 50 K, a temperature domain common throughout interstellar clouds and the Solar System. Between 50 and 125 K they react to form the complex organics. In view of this, we conclude that charged PAHs and other molecular ions should be common and abundant in many cosmic ices. The chemical, spectroscopic and physical properties of these ion-rich ices can be of fundamental importance for objects as diverse as comets, planets, and molecular clouds and may account for several poorly understood phenomena associated with each of these object classes.

  4. Stardust Interstellar Preliminary Examination (ISPE)

    NASA Astrophysics Data System (ADS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Cody, G.; Ferroir, T.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grün, E.; Hoppe, P.; Kearsley, A.; Lemelle, L.; Leroux, H.; Lettieri, R.; Marchant, W.; Mendez, B.; Nittler, L. R.; Ogliore, R.; Postberg, F.; Sandford, S. A.; Schmitz, S.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stroud, R. M.; Susini, J.; Sutton, S.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Warren, J.; Zolensky, M. E.

    2009-03-01

    The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the Stardust interstellar dust collection and collector using non-destructive techniques. We summarize the status of the ISPE.

  5. Voyager Interstellar Mission (VIM)

    NASA Technical Reports Server (NTRS)

    Rudd, R.; Textor, G.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for the Voyager Interstellar Mission (VIM) are summarized. The general objectives of the VIM are to investigate the interplanetary and interstellar media and to continue the Voyager program of ultraviolet astronomy. The VIM will utilize both Voyager spacecraft for the period from January 1990 through December 2019. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, control and support systems; and tracking support responsibility.

  6. Prebiotically Important Molecules in Orion KL

    NASA Astrophysics Data System (ADS)

    Kuan, Yi-Jehng; Chuang, Yo-Ling

    Many interstellar, complex organic molecules are known to be prebiotically important and have essential functions in terrestrial biochemistry. Observations of complex organic molecular species in molecular clouds can thus enable us to test the origin of the primitive organic material found in the Solar System. Interstellar pyrimidine and glycine, the building block of nucleic acid and the simplest amino acid, respectively, are key molecules for astrobiology and were both detected in meteorites and comets. Although the formation of prebiotic molecules in extraterrestrial environments and their contribution to prebiotic chemistry and the origin of life remains unsettled, the connection between interstellar organic chemistry, meteoritic pyrimidines and amino acids, and the emergence of life on the early Earth would be strengthened with the discovery of interstellar pyrimidine and glycine. We have therefore observed the Orion KL hot molecular core to search for interstellar pyrimidine and for the confirmation of interstellar glycine using the ALMA array. We will present some of the encouraging, positive results.

  7. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  8. Interstellar molecular clouds.

    PubMed

    Bally, J

    1986-04-11

    The interstellar medium in our galaxy contains matter in a variety of states ranging from hot plasma to cold and dusty molecular gas. The molecular phase consists of giant clouds, which are the largest gravitationally bound objects in the galaxy, the primary reservoir of material for the ongoing birth of new stars, and the medium regulating the evolution of galactic disks.

  9. The Evolution of Dust in the Multiphase Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan

    2003-01-01

    Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.

  10. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  11. Interstellar dust at our doorstep

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.

    2013-12-01

    Interstellar dust has long been researched by astronomical methods to learn about its size distribution, grain properties and composition. However, interstellar dust grains also move through the solar system. They were detected for the first time in-situ with the Ulysses dust detector in 1993. In addition, in 2006, the Stardust mission returned three interstellar dust grain candidates back to Earth after a collection period of 195 days. In this talk we elaborate on how the current in-situ ISD measurement methods are a valuable addition to the knowledge about interstellar dust inferred from classical astronomy. We also discuss the role of interstellar dust dynamics and simulations herein.

  12. Evidence for biodegradation products in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Rauf, Kani; Wickramasinghe, Chandra

    2010-01-01

    The interstellar absorption band centred on 2175 Å that is conventionally attributed to monodisperse graphite spheres of radii 0.02 μm is more plausibly explained as arising from biologically derived aromatic molecules. On the basis of panspermia models, interstellar dust includes a substantial fraction of biomaterial in various stages of degradation. We have modeled such an ensemble of degraded biomaterial with laboratory spectroscopy of algae, grass pigments, bituminous coal and anthracite. The average ulrtraviolet absorption profile for these materials is centred at 2175 Å with a full width at half maximum of 250 Å, in precise agreement with the interstellar extinction observations. Mid-infrared spectra also display general concordance with the unidentified interstellar absorption features found in a wide variety of astronomoical sources.

  13. Interstellar and Planetary Analogs in the Laboratory

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  14. Near-infrared spectroscopy of ices under conditions relevant to interstellar and planetary environments

    NASA Astrophysics Data System (ADS)

    Richey, Christina R.

    The abundances of ices in planetary environments are obtain ed through measurements of near-infrared absorption features (n? = 10,000-4,000 cm-1 , λ1-2.5 μm), and near-IR measurements of materials present in the interstellar medium are increasingly common. In the studies presented here, the near-IR band strengths for molecules are determined through correlations to their better-known mid-IR characteristics. These strengths are used to determine the column densities of molecules in interstellar dense clouds or other environments from observed data. The first set of experiments focused on the near-IR features of molecules relevant to the study of interstellar icy grain mantles and planetary bodies: CO, CO 2 , C3 O2 , CH4 , H2 O, CH 3 OH, and NH3 . The spectra of these species were studied in the near-IR region from 10,000-4,000 cm-1 and in the mid-IR region from 4,000-400 cm-1 after the slow growth of films at ˜5K. The results were then used the results to determine the near-IR band strengths of each molecule. Many icy satellites have surfaces that are dominated by either N2 or H2 O, and ices in the ISM are primarily composed of H2 O. The second set of experiments is focused on the near-IR absorption features of CO, CO2 , CH4 , and NH 3 diluted in H2 O and diluted in N2 . Since the compositions of icy planetary bodies and interstellar ices are affected by processing due to UV light and proton bombardment, spectra of UV photolyzed and proton irradiated ices of N2 + CO2 and H2 O + CO2 have been collected to determine the extent of energetic processing on icy bodies in the outer solar system. These studies have shown that planetary ices are best represented by laboratory analogs comprised of mixed, energetically processed ices.

  15. Identification of New Near-Infrared Diffuse Interstellar Bands in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Gandhi, Poshak; Hida, Akira; Tamagawa, Toru; Yamaguchi, Tomohiro

    2009-08-01

    Large organic molecules and carbon clusters are basic building blocks of life, but their existence in the universe has not been confirmed beyond doubt. A number of unidentified absorption features (arising in the diffuse interstellar medium), usually called "Diffuse Interstellar Bands" (DIBs), are hypothesized to be produced by large molecules. Among these, buckminsterfullerene C60 has gained much attention as a candidate for DIB absorbers because of its high stability in space. Two DIBs at λ ~ 9577 Å and 9632 Å have been reported as possible features of C+ 60. However, it is still not clear how their existence depends on their environment. We obtained high-resolution spectra of three stars in/around the Orion Nebula, to search for any correlations of the DIB strength with carrier's physical conditions, such as dust abundance and UV radiation field. We find three DIBs at λ ~ 9017 Å, 9210 Å, and 9258 Å as additional C+ 60 feature candidates, which could support this identification. These DIBs have asymmetric profiles similar to the longer wavelength features. However, we also find that the relative strengths of DIBs are close to unity and differ from laboratory measurements, a similar trend as noticed for the 9577/9632 DIBs. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  16. Detecting interstellar migrations

    NASA Astrophysics Data System (ADS)

    Matloff, Gregory L.; Pazmino, John

    1997-01-01

    Interstellar migrations may occur when a civilization's star enters the red giant phase, thereby dooming the life-bearing planet. Ecologically self-contained 'world ships', massing billions of kilograms and propelled by hyperthin, space manufactured solar sails thousands of kilometers in diameter unfurled near the home star are possible vehicles to transfer a threatened civilization to a neighboring star. Consideration of the nearest red giants reveals that Pollux is the nearest formerly solar-type red giant. Known stellar neighbors of Pollux are surveyed to determine likely directions for an interstellar migration departing Pollux. Such migrations might consist of many world ships launched over millennia on voyages of about 1000 terrestrial-year duration; discovery of such events will be serendipitous. The difficulties of observing solar-sail star ships near Pollux are considered. A facility dedicated to imaging extrasolar planets within 10 parsecs might be capable of detecting these large spacecraft.

  17. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  18. Formation of Benzene in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  19. The Diffuse Interstellar Clouds toward 23 Orionis

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.; Hobbs, L. M.; Lauroesch, James T.; Morton, Donald C.; Spitzer, Lyman; York, Donald G.

    1999-10-01

    unobserved ionization stages, aluminum (typically severely depleted) is probably depleted there by only a factor ~3, even at cloud velocities in excess of 100 km s-1. The individual high-velocity components typically have T~8000+/-2000 K, ne=nH~0.4-0.5 cm-3, thermal pressure log(2neT)~3.7-4.0 cm-3 K, and thicknesses of order 0.1 pc. Weak absorption components from ionized (H II) gas are seen in C II, Mg II, and Si III at intermediate velocities (-43 km s-1<~vsolar<~-4 km s-1). Broad, weak absorption from the higher ions S III, C IV, Si IV, and N V is centered at -5 km s-1<~vsolar<~+6 km s-1. No obvious absorption is discerned from a circumstellar H II region around 23 Ori itself. The large range in ne (from 0.04 to 0.95 cm-3) derived independently from nine pairs of neutral and singly ionized species in the SLV gas suggests that additional processes besides simple photoionization and radiative recombination affect the ionization balance. Charge exchange with protons may reduce the abundances of S I, Mn I, and Fe I; dissociative recombination of CH+ may help to enhance C I. The large apparent fractional ionization in the SLV and WLV gas may be due to an enhanced flux of X-rays in the Orion region, to mixing of neutral and ionized gas at the boundary of the Orion-Eridanus bubble, or perhaps (in part) to charge exchange between singly ionized atomic species and large molecules (in which case the true ne would be somewhat smaller). Comparisons of the SLV depletions and nH with those found for the strong ``component B'' (vsolar~-14 km s-1) blend toward ζ Oph hint at a possible relationship between depletion and local density for relatively cold interstellar clouds. Calcium appears to be more severely depleted in warm, low density gas than has generally been assumed. An appendix summarizes the most reliable oscillator strengths currently available for a number of the interstellar absorption lines analyzed in this work. Based on observations with the NASA/ESA Hubble Space

  20. The interstellar chemistry of H2C3O isomers.

    PubMed

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-03-11

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects.

  1. The interstellar chemistry of H2C3O isomers

    PubMed Central

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  2. Diffuse interstellar bands and PAHs in the Galaxy and beyond

    NASA Astrophysics Data System (ADS)

    Cox, Nick L. J.; Ehrenfreund, Pascale

    2006-09-01

    Diffuse interstellar bands (DIBs) are ubiquitously observed towards reddened stars throughout the Milky Way. In the past decade, DIBs have been observed in only a few extra-galactic lines of sight. The carriers of DIBs are likely large organic gas phase molecules that reside in the diffuse interstellar medium. However, ever since they were first observed in the 1920s their identity remains a mystery. Investigated candidate carriers include, but are not limited to, carbon chains, polycyclic aromatic hydrocarbons (PAHs), fullerenes and tubular PAHs. Recent advances and successes in laboratory and theoretical work have given a great boost to the study of large molecules under interstellar conditions, i.e. low temperature, gas phase. We present here a short overview of our recent (extra)-galactic DIBs observations and the related studies of PAH chemistry in these environments.

  3. Pathway to the identification of C60+ in diffuse interstellar clouds.

    PubMed

    Maier, John P; Campbell, Ewen K

    2016-09-13

    The origin of the attenuation of starlight in diffuse clouds in interstellar space at specific wavelengths ranging from the visible to the near-infrared has been unknown since the first astronomical observations around a century ago. The absorption features, termed the diffuse interstellar bands, have subsequently been the subject of much research. Earlier this year four of these interstellar bands were shown to be due to the absorption by cold, gas phase [Formula: see text] molecules. This discovery provides the first answer to the problem of the diffuse interstellar bands and leads naturally to fascinating questions regarding the role of fullerenes and derivatives in interstellar chemistry. Here, we review the identification process placing special emphasis on the laboratory studies which have enabled spectroscopic measurement of large cations cooled to temperatures prevailing in the interstellar medium.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  4. Stardust Interstellar Preliminary Examination

    NASA Astrophysics Data System (ADS)

    Westphal, A.; Stardust Interstellar Preliminary Examation Team: http://www. ssl. berkeley. edu/~westphal/ISPE/

    2011-12-01

    A. J. Westphal, C. Allen, A. Ansari, S. Bajt, R. S. Bastien, H. A. Bechtel, J. Borg, F. E. Brenker, J. Bridges, D. E. Brownlee, M. Burchell, M. Burghammer, A. L. Butterworth, A. M. Davis, P. Cloetens, C. Floss, G. Flynn, D. Frank, Z. Gainsforth, E. Grün, P. R. Heck, J. K. Hillier, P. Hoppe, G. Huss, J. Huth, B. Hvide, A. Kearsley, A. J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, R. Lettieri, W. Marchant, L. R. Nittler, R. Ogliore, F. Postberg, M. C. Price, S. A. Sandford, J.-A. Sans Tresseras, T. Schoonjans, S. Schmitz, G. Silversmit, A. Simionovici, V. A. Solé, R. Srama, T. Stephan, V. Sterken, J. Stodolna, R. M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, D. Zevin, M. E. Zolensky, >29,000 Stardust@home dusters ISPE author affiliations are at http://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002, a ~0.1m2 array of aerogel tiles and alumi-num foils onboard the Stardust spacecraft was exposed to the interstellar dust (ISD) stream for an integrated time of 200 days. The exposure took place in interplanetary space, beyond the orbit of Mars, and thus was free of the ubiquitous orbital debris in low-earth orbit that precludes effective searches for interstellar dust there. Despite the long exposure of the Stardust collector, <<100 ISD particles are expected to have been captured. The particles are thought to be ~1μm or less in size, and the total ISD collection is probably <10-6 by mass of the collection of cometary dust parti-cles captured in the Stardust cometary dust collector from the coma of the Jupiter-family comet Wild 2. Thus, although the first solid sample from the local interstellar medium is clearly of high interest, the diminutive size of the particles and the low numbers of particles present daunting challenges. Nevertheless, six recent developments have made a Preliminary Examination (PE) of this sample practical: (1) rapid automated digital optical scanning microscopy for three

  5. Element abundances at high redshift

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Welty, D. E.; York, D. G.

    1989-01-01

    Abundances of Si(+), S(+), Cr(+), Mn(+), Fe(_), and Zn(+) are considered for two absorption-line systems in the spectrum of the QSO PKS 0528 - 250. Zinc and sulfur are underabundant, relative to H, by a factor of 10 compared to their solar and Galactic interstellar abundances. The silicon-, chromium-, iron-, and nickel-to-hydrogen ratios are less than the solar values and comparable to the local interstellar ratios. A straightforward interpretation is that nucleosynthesis in these high-redshift systems has led to only about one-tenth as much heavy production as in the gas clouds around the sun, and that the amount of the observed underabundances attributable to grain depletion is small. The dust-to-gas ratio in these clouds is less than 8 percent of the Galactic value.

  6. Innovative interstellar explorer

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Gold, Robert E.; Krimigis, Tom; Roelof, Edmond C.; Gruntman, Mike; Gloeckler, George; Koehn, Patrick L.; Kurth, William S.; Oleson, Steven R.; Fiehler, Douglas I.; Horanyi, Mihaly; Mewaldt, Richard A.; Leary, James C.; Anderson, Brian J.

    2006-09-01

    An interstellar ``precursor'' mission has been under discussion in the scientific community for at least 30 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements that such a mission can provide. The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is being studied under a NASA ``Vision Mission'' grant. Speed is provided by a combination of a high-energy launch, using current launch vehicle technology, a Jupiter gravity assist, and long-term, low-thrust, continuous acceleration provided by an ion thruster running off electricity provided by advanced radioisotope electric generators. A payload of ten instruments with an aggregate mass of ~35 kg and requiring ~30 W has been carefully chosen to address the compelling science questions. The nominal 20-day launch window opens on 22 October 2014 followed by a Jupiter gravity assist on 5 February 2016. The REP system accelerates the spacecraft to a ``burnout'' speed of 7.8 AU per year at 104 AU on 13 October 2032 (Voyager 1's current speed is ~3.6 AU/yr). The spacecraft will return at least 500 bits per second from at least 200 AU ~30 years after launch. Additional (backup) launch opportunities occur every 13 months to early 2018. In addition to addressing basic heliospheric science, the mission will ensure continued information on the far-heliospheric galactic cosmic ray population after the Voyagers have fallen silent and as the era of human Mars exploration begins.

  7. Thermal phases of interstellar and quasar gas

    NASA Technical Reports Server (NTRS)

    Lepp, S.; Mccray, R.; Shull, J. M.; Woods, D. T.; Kallman, T.

    1985-01-01

    Interstellar gas may be in a variety of thermal phases, depending on how it is heated and ionized; here a unified picture of the equation of state of interstellar and quasar gas is presented for a variety of such mechanisms over a broad range of temperatures, densities, and column densities of absorbing matter. It is found that for select ranges of gas pressure, photoionizing flux, and heating, three thermally stable phases are allowed: coronal gas (T above 100,000 K); warm gas (T about 10,000 K); and cold gas (T less than 100 K). With attenuation of ultraviolet and X-ray radiation, the cold phase may undergo a transition to molecules. In quasar broad-line clouds, this transition occurs at column density N(H) = about 10 to the 23rd/sq cm and could result in warm molecular cores and observable emission from H2 and OH. The underlying atomic physics behind each of these phase transitions and their relevance to interstellar matter and quasars are discussed.

  8. Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.

    1986-01-01

    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud.

  9. Near Infrared Emission of Highly Electronically Excited CO: A Sensitive Probe to Study the Interstellar Medium??

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.

    2002-01-01

    Among the various spectroscopic features of the second most abundant molecule in the space, CO, "the triplet - triplet transitions involving the lowest triplet state a(sup 3)II and the higher-lying a(sup 1)3 SIGMA (sup +), d(sup 3) (DELTA), e (sup 3) SIGMA (sup -) states spanning near-UV to mid-IR spectral range" have so far not been explored in astrophysical observations. The energies of these transitions are highly sensitive to the surroundings in which CO exists, i.e. gas-phase, polar or non-polar condensed phase. It is proposed here that these triplet-triplet emission/absorption bands can be used as a sensitive probe to investigate the local environments of CO, whether in the planetary atmosphere, stellar atmosphere or interstellar medium.

  10. Formation of benzene in the interstellar medium

    PubMed Central

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.

    2011-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430

  11. Interstellar C2, CH, and CN in translucent molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1989-01-01

    Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A 2Pi-X 2Sigma(+) (1,O) and (2,O) bands of the red system are reported and compared with observations of the violet system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photoprocesses still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.

  12. A Comparison of Oxidized Carbon Abundances among Comets

    NASA Technical Reports Server (NTRS)

    DiSanti, M. A.; Mumma, M. J.; Bonev, B. P.; Villanueva, G. L.; Radeva, Y. L.; Magee-Sauer, K.; Gibb, E. L.

    2010-01-01

    Comets contain relatively well preserved icy material remaining from the epoch of Solar System formation, however the extent to which these ices are modified from their initial state remains a fundamental question in cometary science. As a comet approaches the Sun, sublimation of the ices contained in its nucleus (termed " native ices") releases parent volatiles into the coma, where they can be measured spectroscopically. One means of assessing the degree to which interstellar ices were processed prior to their incorporation into cometary nuclei is to measure the relative abundances of chemically-related parent volatiles. For example, formation of C2H6 by hydrogen atom addition (e.g., to C2H2) on surfaces of ice-mantled grains was proposed to explain the high C2H6 to CH4 abundance observed in C/1996 B2 (Hyakutake) [1]. The large C2H6/CH4 abundance ratios measured universally in comets, compared with those predicted by gas phase production of C2H6, establishes H-atom addition as an important and likely ubiquitous process. CO should also be hydrogenated on grain surfaces. Laboratory irradiation experiments on interstellar ice analogs indicate this to require very low temperatures (T approx. 10-25 K), the resulting yields of H2CO and CH3OH being highly dependent both on hydrogen density (i.e., fluence) and on temperature ([2],[3]). This relatively narrow range in temperature reflects a lack of mobility below 8-10 K on the one hand, and reduced sticking times for H-atoms as grain surfaces are warmed above 20 K on the other. The relative abundances of these three chemically-related molecules in comets provides one measure of the efficiency of H-atom addition to CO on pre-cometary grains (Fig. 1).

  13. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundance was assessed by utilizing a panel of cross-reactive monoclonal antibodies (mAbs) tested in this study. Characterization of multichannel autofluorescence of eosinophils permitted cell-type specific gating of granulocytes for quantification of LDMs on neutrophils and eosinophils by indirect,...

  14. Interstellar oxygen, nitrogen and neon in the heliosphere

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Gloeckler, G.; Mall, U.; Von Steiger, R.; Galvin, A. B.; Ogilvie, K. W.

    1994-01-01

    Oxygen, nitrogen and neon pick-up ions of interstellar origin were detected for the first time with the Solar Wind Ion Spectrometer (SWICS) on board Ulysses. The interstellar origin of these ions is established by the following criteria: (a) they are singly charged, (b) they have the broad velocity distributions characteristic of pick-up ions, with an upper limit of twice the solar wind speed, (c) their relative abundance as a function of distance from the sun corresponds to the theoretical expectation, and (d) there is no relation to a planetary or cometary source. The interstellar abundance ratios He(+)/O(+), N(+)/O(+), Ne(+)/O(+) were investigated. At approximately 5.25 AU in the outermost part of Ulysses' trajectory He(+)/O(+) = 175(sup +70 sub -50) N(+)/O(+) = 0.13(sup +0.05 sub -0.05) and Ne(+)/O(+) = 0.18(sup +0.10 sub -0.07) were determined. For the interstellar gas passing through the termination region and entering the heliosphere (He/O)(sub 0) = 290(sup +190 sub -100), (N/O)(sub 0) = 0.13(sup +0.06 sub -0.06) and (Ne/O)(sub 0) = 0.20(sup +0.12 sub -0.09) were obtained from the pick-up ion measurements. Upper limits for the relative abundances of C(+) and C were also determined.

  15. Herschel/HIFI line surveys: Discovery of interstellar chloronium (H{sub 2}Cl{sup +})

    SciTech Connect

    Lis, Dariusz C.

    2015-01-22

    Prior to the launch of Herschel, HCl was the only chlorine-containing molecule detected in the interstellar medium (ISM). However, chemical models have identified chloronium, H{sub 2}Cl{sup +}, as a relatively abundant species that is potentially detectable. H{sub 2}Cl{sup +} was predicted to be most abundant in the environments where the ultraviolet radiation is strong: in diffuse clouds, or near the surfaces of dense clouds illuminated by nearby O and B stars. The HIFI instrument on Herschel provided the first detection of H{sub 2}Cl{sup +} in the ISM. The 2{sub 12}-1{sub 01} lines of ortho-H{sub 2}{sup 35}Cl{sup +} and ortho-H{sub 2}{sup 37}Cl{sup +} were detected in absorption toward NGC 6334I, and the 1{sub 11}-0{sub 00} transition of para-H{sub 2}{sup 35}Cl{sup +} was detected in absorption toward NGC 6334I and Sgr B2(S). The derived HCl/H{sub 2}Cl{sup +} column density ratios, ∼1-10, are within the range predicted by models of diffuse and dense Photon Dominated Regions (PDRs). However, the observed H{sub 2}Cl{sup +} column densities, in excess of 10{sup 13} cm{sup −2}, are significantly higher than the model predictions. These observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.

  16. Visualizing Interstellar's Wormhole

    NASA Astrophysics Data System (ADS)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-06-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres; (iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole; (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole; (vi) Using the student's implementation, exploring the wormhole's Einstein ring and particularly the peculiar motions of star images near the ring, and exploring what it looks like to travel through a wormhole.

  17. Are Silicon Nanoparticles an Interstellar Dust Component?

    NASA Astrophysics Data System (ADS)

    Li, Aigen; Draine, B. T.

    2002-01-01

    Silicon nanoparticles (SNPs) with oxide coatings have been proposed as the source of the observed ``extended red emission'' (ERE) from interstellar dust. We calculate the thermal emission expected from such particles, both in a reflection nebula such as NGC 2023 and in the diffuse interstellar medium (ISM). It is shown that Si/SiO2 SNPs (both neutral and charged) would produce a strong emission feature at 20 μm. The observational upper limit on the 20 μm feature in NGC 2023 imposes an upper limit of less than 0.2 parts per million in Si/SiO2 SNPs. The observed ERE intensity from NGC 2023 then gives a lower bound on the product ηPLf0, where ηPL<1 is the photoluminescence efficiency for a neutral SNP and f0<=1 is the fraction of SNPs that are uncharged. For foreground extinction A0.68μm=1.2mag, we find ηPLf0>0.24 for Si/SiO2 SNPs in NGC 2023. Measurement of the R-band extinction toward the ERE-emitting region could strengthen this lower limit. The ERE emissivity of the diffuse interstellar medium appears to require >~42% of solar Si abundance in Si/SiO2 SNPs even with ηPLf0=1. We predict IR emission spectra and show that DIRBE photometry appears to rule out such high abundances of free-flying SNPs in the diffuse ISM. We conclude that if the ERE is due to SNPs, they must be either in clusters or attached to larger grains.

  18. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    SciTech Connect

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup −6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.

  19. The Formation of Racemic Amino Acids by UV Photolysis of Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason P.; Sandford, Scott A.; Cooper, George; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Small biologically relevant organic molecules including the amino acids glycine, alanine, and marine were formed in the laboratory by the UV (Ultraviolet) photolysis of realistic interstellar ice analogs, composed primarily of H2O, and including CH3OH, NH3, and HCN, under interstellar conditions. N-formyl glycine, cycloserine (4-amino-3-isoxazolidinone), and glycerol were detected before hydrolysis, and glycine, racemic alanine, racemic marine, glycerol, ethanolamine, and glyceric acid were found after hydrolysis. This suggests that some meteoritic amino acids (and other molecules) may be the direct result of interstellar ice photochemistry, expanding the current paradigm that they formed by reactions in liquid water on meteorite parent bodies.

  20. Deuterium hyperfine structure in interstellar C3HD

    NASA Technical Reports Server (NTRS)

    Bell, M. B.; Watson, J. K.; Feldman, P. A.; Matthews, H. E.; Madden, S. C.; Irvine, W. M.

    1987-01-01

    The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.

  1. Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii.

    PubMed

    Zahn, Michael; D'Agostino, Tommaso; Eren, Elif; Baslé, Arnaud; Ceccarelli, Matteo; van den Berg, Bert

    2015-07-17

    Outer membrane (OM) β-barrel proteins composed of 12-18 β-strands mediate cellular entry of small molecules in Gram-negative bacteria. Small OM proteins with barrels of 10 strands or less are not known to transport small molecules. CarO (carbapenem-associated outer membrane protein) from Acinetobacter baumannii is a small OM protein that has been implicated in the uptake of ornithine and carbapenem antibiotics. Here we report crystal structures of three isoforms of CarO. The structures are very similar and show a monomeric eight-stranded barrel lacking an open channel. CarO has a substantial extracellular domain resembling a glove that contains all the divergent residues between the different isoforms. Liposome swelling experiments demonstrate that full-length CarO and a "loop-less" truncation mutant mediate small-molecule uptake at low levels but that they are unlikely to mediate passage of carbapenem antibiotics. These results are confirmed by biased molecular dynamics simulations that allowed us to quantitatively model the transport of selected small molecules.

  2. Telescope Observations of Interstellar and Circumstellar Ices: Successes of and Need for Laboratory Simulations

    NASA Astrophysics Data System (ADS)

    Boogert, A. C. A.

    2016-10-01

    Ices play a key role in the formation of simple and complex molecules in dense molecular clouds and in the envelopes and protoplanetary disks surrounding young stars. Some fraction of the interstellar ices may become building blocks of comets, and thus be delivered to the early Earth. Laboratory simulations have proven to be crucial in the derivation of ice abundances, in quantifying reaction rates on cold grain surfaces, in determining the thermal and energetic processing history of the ices, and in understanding the interaction between the ices and the underlying refractory grain surfaces. In this invited topical paper I will review possible ways forward in improving our knowledge of the composition of the ices, as many signatures in the interstellar spectra are still poorly identified. I will also emphasize the observed importance of thermal processing of the ices (crystallization, segregation), which likely affects the chemistry after the initial dominance of grain surface reactions. Continued laboratory work is warranted in view of the upcoming observational data from, for example, the James Webb Space Telescope (JWST), which is ideally suited for ices studies. For an exhaustive review on this topic I refer to Boogert, Gerakines & Whittet (2015).

  3. NEUTRAL INTERSTELLAR HELIUM PARAMETERS BASED ON IBEX-Lo OBSERVATIONS AND TEST PARTICLE CALCULATIONS

    SciTech Connect

    Bzowski, M.; Kubiak, M. A.; Sokol, J. M.; Hlond, M.; Moebius, E.; Bochsler, P.; Leonard, T.; Heirtzler, D.; Kucharek, H.; Schwadron, N. A.; Crew, G. B.; Fuselier, S. A.; McComas, D. J.

    2012-02-01

    Because of its high ionization potential and weak interaction with hydrogen, neutral interstellar helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the local interstellar cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominated by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly established flow direction is ecliptic longitude 79.{sup 0}2, latitude -5.{sup 0}1, the velocity is {approx}22.8 km s{sup -1}, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field, and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.

  4. Enhanced effects of starlight on the interstellar medium

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Schwartz, R. A.

    1976-01-01

    The photodesorption of molecules and atoms from the surfaces of interstellar grains can be an important source of heating for the interstellar medium and the origin of instabilities which may separate grains and gas. For low densities, the force exerted on the grains is proportional to the gas density and independent of the radiation intensity; for high densities, it is proportional to the radiative flux and independent of the gas density. This force may act differently on grains of different sizes. The photoelectric effect may also be an efficient mechanism for the separation of gas and dust in diffuse clouds.

  5. Enhanced effects of starlight on the interstellar medium

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Schwartz, R. A.

    1975-01-01

    The photodesorption of molecules and atoms from the surfaces of interstellar grains can be an important source of heating for the interstellar medium and the origin of instabilities which may separate grains and gas. For low densities, the force exerted on the grains is proportional to the gas density and independent of the radiation intensity; for high densities, it is proportional to the radiative flux and independent of the gas density. This force may act differently on grains of different sizes. The photoelectric effect may also be an efficient mechanism for the separation of gas and dust in diffuse clouds.

  6. A model for gas phase chemistry in interstellar clouds. II - Nonequilibrium effects and effects of temperature and activation energies

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1980-01-01

    The chemical evolution of diffuse and dense interstellar clouds is examined via the time-dependent model outlined by Prasad and Huntress (1980). This paper presents specific results for CH, CO, CH4, O2, CH2O, CN, C2, C2H, HC3N, and NH3. Comparison with observations and predictions of other contemporary models show that cloud temperature plays a very important role through the inverse temperature dependence of radiative association reactions and through activation energies in neutral reactions and selected ion-molecule reactions. The observed fractional abundance of CN with respect to H2 and more accurate recent laboratory data on CN + O and CN + O2 reactions suggest that there is an unidentified, yet efficient, mechanism for conversion of O and O2 into polyatomic species. C2H and HC3N are synthesized early in the history of dense clouds. The value of the fractional abundance of C2H remains high, because as the cloud cools down the activation energy in the C2H + O reaction closes down this most important loss channel. A rapidly decreasing fractional abundance of O with time can also accomplish the same result. The value of the fractional abundance of HC3N remains high because it is an unreactive molecule and probably does not condense readily onto grains.

  7. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  8. A search for interstellar anthracene towards the Perseus anomalous microwave emission region

    NASA Astrophysics Data System (ADS)

    Iglesias-Groth, S.; Manchado, A.; Rebolo, R.; González Hernández, J. I.; García-Hernández, D. A.; Lambert, D. L.

    2010-10-01

    We report the discovery of a new broad interstellar (or circumstellar) band at 7088.8 +/- 2.0 Å coincident to within the measurement uncertainties with the strongest band of the anthracene cation (C14H10+) as measured in gas-phase laboratory spectroscopy at low temperatures. The band is detected in the line of sight of star Cernis 52, a likely member of the very young star cluster IC 348, and is probably associated with cold absorbing material in an intervening molecular cloud of the Perseus star-forming region where various experiments have recently detected anomalous microwave emission. From the measured intensity and available oscillator strength we find a column density of implying that ~0.008 per cent of the carbon in the cloud could be in the form of C14H10+. A similar abundance has been recently claimed for the naphthalene cation in this cloud. This is the first location outside the Solar system where specific polycyclic aromatic hydrocarbons (PAHs) are identified. We report observations of interstellar lines of CH and CH+ that support a rather high column density for these species and for molecular hydrogen. The strength ratio of the two prominent diffuse interstellar bands at 5780 and 5797 Å suggests the presence of a `zeta'-type cloud in the line of sight (consistent with steep far-ultraviolet extinction and high molecular content). The presence of PAH cations and other related hydrogenated carbon molecules which are likely to occur in this type of clouds reinforces the suggestion that electric dipole radiation from fast-spinning PAHs is responsible of the anomalous microwave emission detected towards Perseus.

  9. Collection of interstellar gas on the Moon

    NASA Astrophysics Data System (ADS)

    Häberli, Roman M.; Reber, Martin J.; Bassi, Marco L.

    1997-09-01

    The isotopic composition of He and Ne in the local interstellar medium (LISM) is of great scientific interest, since it will help us to understand the chemical evolution of our galaxy since the formation of the solar system 4.6 × 10 9 years ago. In addition, the He isotope ratio is of cosmological interest as it is linked to primordial (Big Bang) nucleosynthesis and gives us a clue to the baryon density in the universe. To measure the abundance of He and Ne and their isotopes in situ in the interstellar gas is very ambitious due to the low density. Remote sensing, however, gives us only little information on the isotopic composition. Currently, most of the information on He and Ne isotopes comes from the measurement of pick-up ions and of the anomalous component of the cosmic rays, however, the measurement errors are still too high to reach firm conclusions. Recently, a novel measurement method has been proposed, using the foil collection technique and the Moon as a collection platform (Reber et al., 1995). In this notice a detailed description of the experiment is given. The foil collection technique uses thin metallic foils to trap the atoms which impinge on the foil. After retrieval of the foil the trapped particles are extracted by stepwise heating and the released atoms can be analysed using laboratory mass spectrometers. This technique was applied for the first time to successfully measure the noble gas composition of the solar wind (Geiss et al., 1970, 1972). (Interestingly enough, this experiment has been carried out on the Moon as well.) It has been tried before to measure the composition of the interstellar gas applying the foil collection method on an Earth orbiting satellite. However, in this case the measurements might be contaminated by the high fluxes of magnetospheric particles. It is shown that by using the Moon as a platform to collect the interstellar atoms one can overcome these difficulties. The experiment has to be carried out during the

  10. The C-12/C-13 abundance ratio in Comet Halley

    SciTech Connect

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-04-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs.

  11. Interstellar carbon in meteorites

    NASA Technical Reports Server (NTRS)

    Swart, P. K.; Grady, M. M.; Pillinger, C. T.; Lewis, R. S.; Anders, E.

    1983-01-01

    The Murchison and Allende chondrites contain up to 5 parts per million carbon that is enriched in carbon-13 by up to +1100 per mil (the ratio of carbon-12 to carbon-13 is approximately 42, compared to 88 to 93 for terrestrial carbon). This 'heavy' carbon is associated with neon-22 and with anomalous krypton and xenon showing the signature of the s-process (neutron capture on a slow time scale). It apparently represents interstellar grains ejected from late-type stars. A second anomalous xenon component ('CCFXe') is associated with a distinctive, light carbon (depleted in carbon-13 by 38 per mil), which, however, falls within the terrestrial range and hence may be of either local or exotic origin.

  12. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  13. Total synthesis of interstellar chemical compounds by high energy molecular beam bombardment on pure graphite

    NASA Astrophysics Data System (ADS)

    Devienne, F. M.; Teisseire, M.

    1985-06-01

    The objective of this paper is to show a possibility of forming interstellar molecules detected in the interstellar space by bombarding a carbon target or graphite grains with high energy neutrals. The authors have bombarded pure graphite in the ultra-vacuum with high energy molecular beams (from 2 to 10 keV) obtained by charge exchange from ion beams of hydrogen, oxygen, or nitrogen. They have observed many organic compounds: binary compounds like hydrogen carbides, ternary compounds containing carbon, nitrogen, oxygen or hydrogen, and finally, quaternary compounds. They also have obtained cyanopolyynes and organic molecules which had previously been observed in the interstellar space. So far, they have identified thirty-two compounds corresponding to molecules observed in the interstellar space and about forty containing only carbon, hydrogen, nitrogen and oxygen.

  14. High-Resolution Imaging in 3-mm and 0.8-mm Bands and Abundances of Shock/Dust Related Molecules Toward the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Takano, S.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We present the results of high-angular-resolution in 3-mm and 0.8-mm band observations with ALMA in cycle-0 toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068. The physical properties of CO isotopic species, CS, CN, and shock and dust related molecules such as HNCO, CH3CN, SO, and CH3OH were estimated using rotation diagrams. We discuss the chemistry of each species, and compare the fractional abundances in the circumnuclear disk (CND) and starburst ring with those of Galactic sources in order to study the overall characteristics.

  15. The Interstellar Production of Biologically Important Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason; Allamandola, Louis J.

    2000-01-01

    One of the primary tasks of the Astrochemistry Laboratory at Ames Research Center is to use laboratory simulations to study the chemical processes that occur in dense interstellar clouds. Since new stars are formed in these clouds, their materials may be responsible for the delivery of organics to new habitable planets and may play important roles in the origin of life. These clouds are extremely cold (less than 50 kelvin), and most of the volatiles in these clouds are condensed onto dust grains as thin ice mantles. These ices are exposed to cosmic rays and ultraviolet (UV) photons that break chemical bonds and result in the production of complex molecules when the ices are warmed (as they would be when incorporated into a star-forming region). Using cryovacuum systems and UV lamps, this study simulates the conditions of these clouds and studies the resulting chemistry. Some of the areas of progress made in 1999 are described below. It shows some of the types of molecules that may be formed in the interstellar medium. Laboratory simulations have already confirmed that many of these compounds are made under these conditions.

  16. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Jillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  17. Interstellar scattering and resolution limitations

    NASA Astrophysics Data System (ADS)

    Dennison, Brian

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources.

  18. New interstellar molecular transitions in the 2 millimeter range

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Snyder, L. E.; Blake, D. H.; Lovas, F. J.; Suenram, R. D.; Ulich, B. L.

    1981-01-01

    A Sgr B2 kinetic temperature of about 47 K is derived based on observations of K components of the 9K-8K transition of CH3CCH. Interstellar line emission is detected in the 2 mm wavelength region from SO, (S-34)O, SO2, CH3OH, CH3CCH, CH3CH2CN, HC3N, and nine unidentified transitions. The methylacetylene K component data combined with the derived data reduction technique, demonstrates the utility of the molecule as a temperature probe of molecular clouds when two or more rotational transitions are observed. Evidence for the existence of interstellar HNO is presented, and an attempt is made to detect sulfuric acid, formic anhydride, and the 0-18 isotopic for CO2 in interstellar clouds and in the Venusian atmosphere during inferior conjunction.

  19. Laboratory production of complex organics in simulated interstellar ices

    NASA Astrophysics Data System (ADS)

    Dworkin, J.; Bernstein, M.; Ashbourn, S.; Iraci, L.; Cooper, G.; Sandford, S.; Allamandola, L.

    1 see www.astrochem.org for more information. Bernstein, M., Dworkin, J., Sandford, S., &Allamandola, L. (2001). Ultraviolet Ir- radiation of Naphthalene in H2O Ice: Implications for Meteorites and Biogenesis. Meteoritics and Planetary Science36, 351-358. Bernstein, M., Dworkin, J., Sandford, S., Cooper, G. &Allamandola, L. (2002) The Formation of Racemic Amino Acids byUltraviolet Photolysis of Interstellar Ice Analogs. Nature, 416, 401U403 Dworkin, J., Deamer, D., Sandford, S., &Allamandola, L. (2001). Self-Assembling Amphiphilic Molecules: Synthesis in Simulated Interstellar/Precometary Ices. Proc. Nat. Acad. Sci. USA 98, 815-819. Krishnamurthy, R., Epstein, S., Cronin, J., Pizzarello, S. &Yuen, G. (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 56, 4045-4058. Sandford, S. A., Bernstein, M. P., &Dworkin, J. P. (2001). Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics. Meteoritics and Planetary Sci- ence36, 1117-1133.

  20. Diffuse interstellar bands: a comprehensive laboratory study.

    PubMed

    Johnson, Fred M

    2006-12-01

    As a result of the search for the identity of the chromophores responsible for producing the diffuse interstellar bands, a comprehensive exposition of experimental data is presented, which implicates the following molecules: (1) The extremely stable organic molecules, magnesium tetrabenzoporphyrin (MgTBP) and H(2)TBP. (2) A paraffin matrix (referred to as "grains") containing TBPs. (3) A low concentration of pyridine (also within the grains), whose transmission window at 2175 A, accounts for the ubiquitous UV bump. The blue emission spectra associated with the central star, HD44179, of the Red Rectangle displays the fluorescence excitation spectra of bare MgTBP. This unique spectrum matches the low temperature lab data of MgTBP in the vapor phase. An effective grain temperature of 2.728 K (+/-0.008) was deduced, based on MgTBP's lowest measured vibrational state of 341 GHz.

  1. Stardust Interstellar Preliminary Examination VII: Synchrotron X-Ray Fluorescence Analysis of Six Stardust Interstellar Candidates Measured with the Advanced Photon Source 2-ID-D Microprobe

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Anderson, David; Bastien, Ron K.; Brenker, Frank E.; Flynn, George J.; Frank, David; Gainsforth, Zack; Sandford, Scott A.; Simionovici, Alexandre S.; Zolensky, Michael E.

    2014-01-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 < or = Z < or = 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  2. Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.

    1987-01-01

    Phosphorus nitride (PN) has been detected in the interstellar medium. The J = 2-1, 3-2, 5-4, and 6-5 rotational lines of this species have been observed toward Orion-KL, and the J = 2-1 transition in Sgr B2 and W51. The PN line profiles in Orion indicate that the molecule's emission arises from the 'plateau' or 'doughnut' region associated with the outflow from IRc2. The species is thus primarily present in hot, dense gas. Column densities derived for PN toward Orion-KL are (3-4) x 10 to the 13th/sq cm, but may be as high as 10 to the 14th/sq cm, if the species is located in a 10-arcsec region. These column densities imply a fractional abundance for PN in the Orion 'plateau' of (1-4) x 10 to the -10th. Such a large abundance for PN is not predicted by quiescent cloud ion-molecule chemistry and suggests that high-temperature processes are responsible for the synthesis of PN in the KL outflow.

  3. Hydrothermal alteration experiments: tracking the path from interstellar to chondrites organics

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Jaber, M.; Remusat, L.

    2015-10-01

    Organic molecules are detected in primitive carbonaceous chondrites. The origin of these organics, whether formed prior the accretion phase, or in-situ on the parent body, is still a matter of debate. We have investigated experimentally the chemical evolution of interstellar organic molecules submitted to hydrothermal conditions, mimicking asteroidal alteration (T<200°C). In particular, we want to assess the potential catalytic role of clays minerals in the polymerization/degradation of organics. Hexamethylenetetramine (HMT, compound of C-N bonds) is used as a plausible interstellar precursors from icy grains. Experimental products reveal a large diversity of molecules, including nitrogen organic molecules similar to those found in chondrites.

  4. The abundance of deuterium relative to hydrogen in interstellar space

    NASA Technical Reports Server (NTRS)

    York, D. G.; Rogerson, J. B., Jr.

    1976-01-01

    Copernicus satellite observations of the deuterium and hydrogen Lyman lines in the lines of sight to mu COl, gamma-2 Vel, alpha Cru AB, and alpha Vir AB are reported. Together with previously published data for beta Cen A, the results yield a value N(D)/N(H) of approximately 0.000018 (m.e.) or a total deuterium mass portion of approximately 0.000025. Values for all stars with their error bars are contained within a band ranging from 0.25 to 2.0 times the quoted mean ratio. These limits are probably representative of the region within 200 pc of the sun. The results for these stars are essentially independent of assumptions about the Doppler parameter describing the formation of the lines, although this value can be derived from the observations. The results are consistent with a maximum temperature of 6000 K for the lines of sight studied.

  5. PAH Clusters as Sources of Interstellar Infrared Emission

    NASA Astrophysics Data System (ADS)

    Roser, J. E.; Ricca, A.

    2015-03-01

    Polycyclic aromatic hydrocarbons (or PAHs) have been the subject of astrochemical research for several decades as principal sources of the interstellar aromatic infrared emission bands. PAH clusters could possibly contribute to these emission bands, but a lack of data on their infrared properties has made this hypothesis difficult to evaluate. Here we investigate homogeneous neutral PAH clusters by measuring the mid-infrared absorption spectra of the five nonlinear PAH molecules phenanthrene, chrysene, pyrene, perylene, and benzo[ghi]perylene within solid argon ice at a fixed temperature of 5 K. We attribute observed spectral shifts in their principal absorption bands as a function of argon/PAH ratio to clustering of the PAH molecules within the argon matrix. These shifts are related to the cluster structures forming in the matrix and the topology of the monomer PAH molecule. We predict that interstellar PAH molecules that are relatively large (no fewer than 50 carbon atoms per molecule) and compact will have clusters that contribute to the asymmetrically red-shaded profile of the interstellar 11.2 μm emission band.

  6. POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS AS SOURCES OF INTERSTELLAR INFRARED EMISSION

    SciTech Connect

    Roser, J. E.; Ricca, A.

    2015-03-10

    Polycyclic aromatic hydrocarbons (or PAHs) have been the subject of astrochemical research for several decades as principal sources of the interstellar aromatic infrared emission bands. PAH clusters could possibly contribute to these emission bands, but a lack of data on their infrared properties has made this hypothesis difficult to evaluate. Here we investigate homogeneous neutral PAH clusters by measuring the mid-infrared absorption spectra of the five nonlinear PAH molecules phenanthrene, chrysene, pyrene, perylene, and benzo[ghi]perylene within solid argon ice at a fixed temperature of 5 K. We attribute observed spectral shifts in their principal absorption bands as a function of argon/PAH ratio to clustering of the PAH molecules within the argon matrix. These shifts are related to the cluster structures forming in the matrix and the topology of the monomer PAH molecule. We predict that interstellar PAH molecules that are relatively large (no fewer than 50 carbon atoms per molecule) and compact will have clusters that contribute to the asymmetrically red-shaded profile of the interstellar 11.2 μm emission band.

  7. Dust Astronomy: New venues in interplanetary and interstellar dust research

    NASA Astrophysics Data System (ADS)

    Grün, E.; Hahn, J.; Hamilton, D.; Harris, W.; Horanyi, Mihaly; Huestis, D. L.; Krivov, Alexander; Levasseur-Regourd, A. C.; Liou, J. C.; Lisse, C.; Kuchner, M.; Meisel, D.; Reach, W. T.; Snow, T. P.; Stansberry, J.; Sykes, M.; Yano, H.; Zolensky, M.

    2001-11-01

    Dust particles, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace, and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed and how those particles have evolved physically and dynamically. Remote sensing and in-situ methods, combined with sample analysis and theory, allow us to make a global assessment of dust origin and production in our solar system and its context within the local interstellar environment. Born in the expanding atmospheres of high-luminosity stars or in supernova remnants, interstellar grains provide the seeds that grow in cool interstellar clouds by accretion of atoms and molecules and by agglomeration. Ultimately, interstellar grains can be incorporated in newly forming stars, or they can become part of planetary systems. Reborn from comets, asteroids, Kuiper belt objects and satellites, inter- and circumplanetary dust particles populate our own planetary system. Key issues addressed by space measurements are: - Determination of the total inventory of dust (size, composition, shape, spatial distribution, and temporal variations) in the Solar System. - Characterization and analysis of interstellar dust inside and outside the heliosphere. - Exploration of the dusty environments in the F-corona, near comets, in the asteroid belt and in the Kuiper belt. - Determination of sources, dynamics, and sinks of dust in planetary environs (from Mercury to Pluto). These issues will be supported by ground-based observations, theoretical modeling studies and laboratory measurements.

  8. A Gas-phase Formation Route to Interstellar Trans-methyl Formate

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Wehres, Nadine; Yang, Zhibo; Thomsen, Ditte L.; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-07-01

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 ± 0.39) × 10-10 cm3 s-1 (± 1σ) and an average branching fraction of 0.05 ± 0.04 for protonated trans-methyl formate and 0.95 ± 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  9. The Interstellar Conspiracy

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to

  10. Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2012-02-01

    absorption (Redfield & Linsky 2008). Bzowski et al. also show evidence for a previously unknown and unanticipated secondary population of helium. Together, the Möbius et al. (2012) and Bzowski et al. (2012) results provide a new interstellar flow direction and a significantly lower velocity of the incoming gas and therefore significantly lower dynamic pressure on the heliosphere, which translates into a heliospheric interaction that is even less dominated by the external dynamic pressure and clearly lies squarely in the middle ground of astrospheres dominated by the external magnetic and dynamic pressures (McComas et al. 2009b). On another topic, Bochsler et al. (2012) report the first direct measurements of interstellar Ne and estimate the interstellar Ne/O abundance ratio, showing a gas-phase Ne/O ratio for the LISM of 0.27 ± 0.10. This value agrees with results obtained from pickup ion observations (Gloeckler & Geiss 2004; Gloeckler & Fisk 2007) and is significantly larger than the solar abundance ratio, indicating that the LISM is different than the Sun's formation region and/or that a substantial portion of the O in the LISM is tied up (and thus "hidden") in grains and/or ices. Finally, Saul et al. (2012) provide the first detailed analysis of the new interstellar H measurements from IBEX. These authors confirm that the arrival direction of interstellar H is offset from that of He. They further show a variation in the strength of the radiation pressure and thus a change in the apparent arrival direction of H penetrating to 1 AU between the first two years of IBEX observations; these results are consistent with solar cycle variations in the radiation pressure, which works opposite to the Sun's gravitational force to effect the penetration of H into the inner heliosphere. Together, these six studies provide the first detailed analyses of the multi-component local interstellar medium—a medium that both effects us by bounding and interacting with our heliosphere, and a

  11. Actinides in the Source of Cosmic Rays and the Present Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Kratz, K. -L.

    2003-01-01

    The abundances of the actinide elements in the cosmic rays can provide critical constraints on the major sites of their acceleration. Using recent calculations of the r-process yields in core collapse supernovae, we have determined the actinide abundances averaged over various assumed time intervals for their supernova generation and their cosmic-ray acceleration. Using standard Galactic chemical evolution models, we have also determined the expected actinide abundances in the present interstellar medium. From these two components, we have calculated the U/Th and other actinide abundances expected in the supernova-active cores of superbubbles, as a function of their ages and mean metallicity resulting from dilution with interstellar cloud debris. Then, using observations of the fractions of Galactic supernovae that occur in superbubbles and in the rest of the interstellar medium, we calculate the expected actinide abundances in cosmic rays accelerated by Galactic supernovae. We find that the current measurements of actinide/Pt-group and preliminary estimates of the UPuCm/Th ratio in cosmic rays are all consistent with the expected values if superbubble cores have mean metallicities of around 3 times solar. Such metallicities are quite comparable to the superbubble core metallicities inferred from other cosmic-ray observations. Future, more precise measurements of these ratios with experiments such as ECCO are needed to provide a better measure of the mean source metallicity sampled by the local Galactic cosmic rays. Measurements of the cosmic- ray actinide abundances have been favorably compared with the protosolar ratio, inferred from present solar system abundances, to infer that the cosmic rays are accelerated from the general interstellar medium. We suggest, however, that such an inference is not valid because the expected actinide abundances in the present interstellar medium are very different from the protosolar values, which sampled the interstellar medium

  12. Photodissociation Regions in the Interstellar Medium of Galaxies

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global

  13. Insight into the molecular composition of laboratory organic residues produced from interstellar/pre-cometary ice analogues using very high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Danger, G.; Fresneau, A.; Abou Mrad, N.; de Marcellus, P.; Orthous-Daunay, F.-R.; Duvernay, F.; Vuitton, V.; Le Sergeant d'Hendecourt, L.; Thissen, R.; Chiavassa, T.

    2016-09-01

    Experimental simulations in the laboratory may provide important information about the chemical evolution occurring in various astrophysical objects such as extraterrestrial ices. Interstellar or (pre)cometary ice analogues made of H2O, CH3OH, and NH3 at 77 K, when subjected to an energetic process (VUV photons, electrons or ions) and then warmed-up to room temperature, lead, in the laboratory, to the formation of an organic residue. In this paper we expand our previous analysis of the residues in order to obtain a better insight into their molecular content. Data analyses show that three different chemical groups are present in the residue in the negative electrospray ionization (ESI) mode: CHN, CHO and CHNOsbnd whereas only two groups are detected in the positive ESI mode: CHN and CHNO. In both cases, the CHNO group is the most abundant. The application of specific data treatment shows that residue mainly contains aliphatic linear molecules or cyclic structures connected to unsaturated chemical functions such as esters, carboxylic acids, amides or aldehydes. In lower abundances, some molecules do present aromatic structures. The comparison of our residue with organic compounds detected in the Murchison meteorite gives an interesting match, which suggests that laboratory simulation of interstellar ice chemistry is relevant to understand astrophysical organic matter evolution.

  14. Microwave to Submillimeter Observations of Molecules in the Laboratory and in Space

    NASA Astrophysics Data System (ADS)

    Halfen, DeWayne

    2013-06-01

    The primary method of identifying molecular species in interstellar space is radio astronomy. Observations performed at radio telescopes are based on high-resolution laboratory measurements of the pure rotational spectrum of a molecule. With this technique, over 150 different chemical compounds have been securely detected in interstellar gas. High-resolution rotational spectra have accuracies of one part in 107 - 108, and provide the characteristic frequencies that are used to search for these species. Rotational spectra are typically recorded using direct absorption methods, Fourier transform microwave/millimeter-wave spectroscopy, and velocity modulation techniques. Also exotic synthesis methods, such as DC and AC glow discharges, pulsed supersonic jet expansions, laser ablation, and Broida-type ovens, are often required to produce these molecules. Recent laboratory and astronomical studies have expanded set of molecules that are now known in interstellar/circumstellar gas. The first negative molecular ions have been detected in cold, dark clouds and circumstellar envelopes. The iron-bearing species FeCN was also recently measured in the laboratory and discovered in the gas surrounding a carbon-rich AGB star, the first iron-containing species found in space. New observations of oxygen-rich stars have shown that metal-bearing oxides and hydroxides are also abundant circumstellar species in these environments. These new discoveries, as well as recent laboratory results for other potential interstellar species, will also be presented, in particular those for ScO, ScC2, and AlC2. In addition, the need for more measurements of metal-containing molecules will be discussed.

  15. Interstellar lines in the ultraviolet spectrum of zeta Oph

    NASA Technical Reports Server (NTRS)

    Smith, A. M.

    1972-01-01

    Interstellar lines arising in carbon, oxygen, silicon, and sulfur observed in the ultraviolet spectrum of zeta Oph by rocket spectrographic techniques were analyzed. Within a factor of 10, the abundances of c(+), neutral 0, and Si(+) outside the H II region surrounding zeta Oph, relative to the hydrogen abundance, are equal to solar values. The lines in neutral C and S(+) imply that the interstellar matter is distributed among several clouds as indicated by high resolution visible spectra. It is suggested that the excited C(+) ions are inside the Stromgren sphere where proton densities equal to or greater than 0.0022 cm can collisionally excite the ions at sufficient rates. Stellar absorption lines of C IV (1548.2, 1550.8A) and N V (1238.8, 1242.8A) were observed shifted to lower wavelengths, indicating stellar mass loss.

  16. Interstellar molecular clouds

    NASA Astrophysics Data System (ADS)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  17. THz Time-Domain Spectroscopy of Complex Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Ioppolo, Sergio; McGuire, Brett A.; Allodi, Marco A.; de Vries, Xander; Finneran, Ian; Carroll, Brandon; Blake, Geoffrey

    2014-06-01

    It is generally accepted that complex organic molecules (COMs) form on the icy surface of interstellar grains. Our ability to identify interstellar complex species in the ices is affected by the limited number of laboratory analogs that can be compared to the huge amount of observational data currently coming from international astronomical facilities, such as the Herschel Space Observatory, SOFIA, and ALMA. We have recently constructed a new THz time-domain spectroscopy system to investigate the spectra of interstellar ice analogs in a range that fully covers the spectral bandwidth of the aforementioned facilities (0.3 - 7.5 THz). The system is coupled to a FT-IR spectrometer to monitor the ices in the mid-IR (4000 - 500 cm-1). This talk focuses on the laboratory investigation of the composition and structure of the bulk phases of interstellar ice analogs (i.e., H2O, CO2, CO, CH3OH, NH3, and CH4) compared to more complex molecules (e.g., HCOOH, CH3COOH, CH3CHO, (CH3)2CO, HCOOCH3, and HCOOC2H5). The ultimate goal of this research project is to provide the scientific community with an extensive THz ice database, which will allow quantitative studies of the ISM, and potentially guide future astronomical observations of species in the solid phase.

  18. Detection of interstellar ethyl cyanide

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Lovas, F. J.; Gottlieb, C. A.; Gottlieb, E. W.; Litvak, M. M.; Thaddeus, P.; Guelin, M.

    1977-01-01

    Twenty-four millimeter-wave emission lines of ethyl cyanide (CH3CH2CN) have been detected in the Orion Nebula (OMC-1) and seven in Sgr B2. To derive precise radial velocities from the astronomical data, a laboratory measurement of the rotational spectrum of ethyl cyanide has been made at frequencies above 41 GHz. In OMC-1, the rotational temperature of ethyl cyanide is 90 K (in good agreement with other molecules), the local-standard-of-rest radial velocity is 4.5 + or - 1.0 km/s (versus 8.5 km/s for most molecules), and the column density is 1.8 by 10 to the 14th power per sq cm (a surprisingly high figure for a complicated molecule). The high abundance of ethyl cyanide in the Orion Nebula suggests that ethane and perhaps larger saturated hydrocarbons may be common constituents of molecular clouds and have escaped detection only because they are nonpolar or only weakly polar.

  19. Use of Laboratory Data to Model Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.

    2006-01-01

    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.

  20. Stardust interstellar preliminary examination (ISPE).

    SciTech Connect

    Westphal, A.J.; Allen, C.; Bajt, S.; Basset, R.; Flynn, G.L.; Sutton, S.

    2009-03-23

    The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the Stardust interstellar dust collection and collector using non-destructive techniques. We summarize the status of the ISPE. In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were {approx}0.1 m{sup 2} in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m{sup 2}-day during two periods before the cometary encounter. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described in Westphal et al. The ISPE consists of six interdependent projects: (1) Candidate identification through automated digital microscopy and a massively distributed, calibrated search; (2) Candidate extraction and photodocumentation; (3) Characterization of candidates through synchrotron-based Fourier-Tranform Infrared Spectroscopy (FTIR), Scanning X-Ray Fluoresence Microscopy (SXRF), and Scanning Transmission X-ray Microscopy (STXM); (4) Search for and analysis of craters in foils through FESEM scanning, Auger Spectroscopy and synchrotron-based Photoemission Electron Microscopy (PEEM); (5) Modeling of interstellar dust transport in the solar system; and (6) Laboratory simulations of hypervelocity dust impacts into the collecting media.

  1. The mass spectrum of interstellar clouds

    NASA Technical Reports Server (NTRS)

    Dickey, John M.; Garwood, Robert W.

    1989-01-01

    The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal.

  2. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A

    PubMed Central

    Barker, Jason H.; Kaufman, Justin W.; Apicella, Michael A.; Weiss, Jerrold P.

    2016-01-01

    Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS) has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0) than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer. PMID:27326857

  3. Interstellar Sweat Equity

    NASA Astrophysics Data System (ADS)

    Cohen, M. H.; Becker, R. E.; O'Donnell, D. J.; Brody, A. R.

    So, you have just launched aboard the Starship, headed to an exoplanet light years from Earth. You will spend the rest of your natural life on this journey in the expectation and hope that your grandchildren will arrive safely, land, and build a new settlement. You will need to govern the community onboard the Starship. This system of governance must meet unique requirements for participation, representation, and decision-making. On a spaceship that can fly and operate by itself, what will the crewmembers do for their generations in transit? Certainly, they will train and train again to practice the skills they will need upon arrival at a new world. However, this vicarious practice neither suffices to prepare the future pioneers for their destiny at a new star nor will it provide them with the satisfaction in their own work. To hone the crewmembers' inventive and technical skills, to challenge and prepare them for pioneering, the crew would build and expand the interstellar ship in transit. This transstellar ``sweat equity'' gives a stake in the enterprise to all the people, providing meaningful and useful activity to the new generations of crewmembers. They build all the new segments of the vessel from raw materials - including atmosphere - stored on board. Construction of new pressure shell modules would be one option, but they also reconstruct or fill-in existing pressurized volumes. The crew makes new life support system components and develops new agricultural modules in anticipation of their future needs. Upon arrival at the new star or planet, the crew shall apply these robustly developed skills and self-sufficient spirit to their new home.

  4. Unresolved velocity structure in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1988-01-01

    Recent high-resolution observations of interstellar absorption lines of CH and CN toward Zeta Oph obtained by Crane et al. (1986), and Palazzi et al. (1988), exhibit line widths that suggest thermal line broadening at high temperature, T about 1200 K. Observations of CO line emission at 2.6 mm toward Zeta Oph (Langer et al.,1987) indicate that the molecular gas resides in four distinct velocity components that span less than 3 km/s in Doppler velocity. Simulated CH and CN absorption line profiles are compared for high-temperature (T = 1200 K) thermal broadening and for a combination of low-temperature (T = 50 K) thermal plus turbulent broadening. It is shown that the two broadening models reproduce existing observations comparably well and are virtually indistinguishable at a lambda/Delta-lambda ratio of about 100,000. The observed differences in the CH and CN line widths may reflect slightly different distributions of those molecules along the line of sight. The simulations use very recent, improved laboratory spectroscopic data on CH (Bernath). Some related consequences of such unresolved velocity structure on the ultraviolet absorption lines of CO are examined. Indirect diagnostics of temperature in the Zeta Oph cloud favor low-temperature thermal plus turbulent broadening, and the implied rate of dissipation of turbulence is in harmony with estimates of the global input of mechanical energy into to interstellar medium.

  5. A search for the lowest-energy conformer of interstellar glycine

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Snyder, L. E.; Suenram, R. D.; Lovas, F. J.

    1980-11-01

    The first search for the lowest-energy conformation of interstellar glycine has been carried out. An emission line has been detected in Sgr B2 which is coincident in frequency with the J(K-K+) = 14(1, 14)-13(1, 13) transition of conformer I glycine; while the carrier of the observed line is uncertain, no other frequency-coincident species are known, and hence glycine cannot be ruled out. Several previously unidentified lines have been identified as methyl formate. Evidence for the existence of the elusive interstellar ethylene oxide, the only reported interstellar ring-structure molecule, is discussed.

  6. Detection of H3+ in the diffuse interstellar medium toward Cygnus OB2 No. 12.

    PubMed

    McCall, B J; Geballe, T R; Hinkle, K H; Oka, T

    1998-03-20

    The molecular ion H3+ is considered the cornerstone of interstellar chemistry because it initiates the reactions responsible for the production of many larger molecules. Recently discovered in dense molecular clouds, H3+ has now been observed in the diffuse interstellar medium toward Cygnus OB2 No. 12. Analysis of H3+ chemistry suggests that the high H3+ column density (3.8 x 10(14) per square centimeter) is due not to a high H3+ concentration but to a long absorption path. This and other work demonstrate the ubiquity of H3+ and its potential as a probe of the physical and chemical conditions in the interstellar medium.

  7. Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13

    NASA Astrophysics Data System (ADS)

    Brenker, Frank E.; Westphal, Andrew J.; Vincze, Laszlo; Burghammer, Manfred; Schmitz, Sylvia; Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, SašA.; Bastien, Ron K.; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David R.; Gainsforth, Zack; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Tresseras, Juan-Angel Sans; Simionovici, Alexandre S.; Solé, Vicente A.; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Sterken, Veerle J.; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E.

    2014-09-01

    Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks—that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.

  8. Stardust Interstellar Preliminary Examination V: XRF Analyses of Interstellar Dust Candidates at ESRF ID13

    NASA Technical Reports Server (NTRS)

    Brenker, Frank E.; Westphal, Andrew J.; Simionovici, Alexandre S.; Flynn, George J.; Gainsforth, Zack; Allen, Carlton C.; Sanford, Scott; Zolensky, Michael E.; Bastien, Ron K.; Frank, David R.

    2014-01-01

    Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called midnight tracks that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.

  9. Interstellar Propulsion Research Within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    NASA is actively conducting advanced propulsion research and technology development in various in-space transportation technologies with potential application to interstellar missions and precursors. Within the last few years, interest in the scientific community in interstellar missions as well as outer heliospheric missions, which could function as interstellar precursor missions, has increased. A mission definition team was charted by NASA to define such a precursor, The Interstellar Probe, which resulted in a prioritization of relatively near-term transportation technologies to support its potential implementation. In addition, the goal of finding and ultimately imaging extra solar planets has raised the issue of our complete inability to mount an expedition to such as planet, should one be found. Even contemplating such a mission with today's technology is a stretch of the imagination. However, there are several propulsion concepts, based on known physics, that have promise to enable interstellar exploration in the future. NASA is making small, incremental investments in some key advanced propulsion technologies in an effort to advance their state-of-the-art in support potential future mission needs. These technologies, and their relative maturity, are described.

  10. Interstellar neutrals in interplanetary space

    SciTech Connect

    Hovestadt, D.; Moebius, E. )

    1989-03-01

    The solar system is moving through the interstellar medium with a velocity of about 20 km/s. The neutral interstellar gas, which thereby penetrates the heliosphere, is subject to ionization by solar UV radiation, charge exchange with the solar wind, and electron collisions. The newly created ions are then picked by the solar wind through interaction of interstellar neutrals with the interplanetary magnetic field. The pick-up ions with their peculiar elemental composition probably also constitute the source particles of the Anomalous Cosmic Ray Component (ACR). In this report descriptions of the interaction with the solar wind are reviewed. While most of the constituents are already ionized far beyond the orbit of the Earth, neutral helium (because of its high ionization potential) approaches the Sun to {lt}1 AU. The pick-up of interstellar He{sup +} ions has recently been directly observed for the first time. The observed velocity distribution of He{sup +} extending up to twice the solar wind velocity can be explained in terms of pitch angle scattering of the ions probably by interplanetary Alven waves and subsequent adiabatic cooling in the expanding solar wind. Thermal coupling of the He{sup +} to the solar wind is negligible in the inner heliosphere. Detailed studies of the pick-up distribution provide a method to investigate the interplanetary propagation parameters and the state of the local interstellar medium.

  11. Interstellar chemical differentiation across grain sizes

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Li, Aigen

    2016-07-01

    In this work, we investigate the effects of ion accretion and size-dependent dust temperatures on the abundances of both gas-phase and grain-surface species. While past work has assumed a constant areal density for icy species, we show that this assumption is invalid and the chemical differentiation over grain sizes is significant. We use a gas-grain chemical code to demonstrate this numerically for two typical interstellar conditions: a dark cloud (DC) and a cold neutral medium (CNM). It is shown that, although the grain-size distribution variation (but with the total grain surface area unchanged) has little effect on the gas-phase abundances, it can alter the abundances of some surface species by up to ∼2-4 orders of magnitude. The areal densities of ice species are larger on smaller grains in the DC model as a consequence of ion accretion. However, the surface areal density evolution tracks are more complex in the CNM model due to the combined effects of ion accretion and dust temperature variation. The surface areal density differences between the smallest ( ∼ 0.01 μm) and the biggest ( ∼ 0.2 μm) grains can reach ∼1 and ∼5 orders of magnitude in the DC and CNM models, respectively.

  12. High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.

    1999-01-01

    Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.

  13. Correlation properties of interstellar dust: Diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Somerville, W. B.

    1989-01-01

    Results are presented from a research program in which an attempt was made to establish the physical nature of the interstellar grains, and the carriers of the diffuse interstellar bands, by comparing relations between different observed properties; the properties used include the extinction in the optical and ultraviolet (including wavelength 2200 and the far-UV rise), cloud density, atomic depletions, and strengths of the diffuse bands. Observations and also data from literature were used, selecting particularly sight-lines where some observed property was found to have anomalous behavior.

  14. Isotopic Fractionation in Comets: Quantifying the Contribution of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2010-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cares where substantial freeze-taut of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with the GBT.

  15. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  16. Applications of abundance data and requirements for cosmochemical modeling

    SciTech Connect

    Busemann, H.; Binns, W. R.; Chiappini, C.; Gloeckler, G.; Hoppe, P.; Kirilova, Donka; Leske, R. A.; Manuel, O. K.; Wiens, R. C.

    2001-01-01

    Understanding the evolution of the universe from Big Bang to its present state requires an understanding of the evolution of the abundances of the elements and isotopes in galaxies, stars, the interstellar medium, the Sun and the heliosphere, planets and meteorites. Processes that change the state of the universe include Big Bang nucleosynthesis, star formation and stellar nucleosynthesis, galactic chemical evolution, propagation of cosmic rays, spallation, ionization and particle transport of interstellar material, formation of the solar system, solar wind emission and its fractionation (FIP/FIT effect), mixing processes in stellar interiors, condensation of material and subsequent geochemical fractionation. Here, we attempt to compile some major issues in cosmochemistry that can be addressed with a better knowledge of the respective element or isotope abundances. Present and future missions such as Genesis, Stardust, Interstellar Pathfinder, and Interstellar Probe, improvements of remote sensing instrumentation and experiments on extraterrestrial material such as meteorites, presolar grains, and lunar or returned planetary or cometary samples will result in an improved database of elemental and isotopic abundances. This includes the primordial abundances of D, 3He, 4He, and 7Li, abundances of the heavier elements in stars and galaxies, the composition of the interstellar medium, solar wind and comets as well as the (highly) volatile elements in the solar system such as helium, nitrogen, oxygen or xenon.

  17. Spectroscopic Evidence for Interstellar Ice in Comet Hyakutake

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Bockelee-Morvan, D.; Lis, D. C.; Matthews, H. E.; Biver, N.; Crovisier, J.; Davies, J. K.; Dent, W. R. F.; Gautier, D.; Godfrey, P. D.; Keene, J.; Lovell, A. J.; Owen, T. C.; Phillips, T. G.; Rauer, H.; Schloerb, F. P.; Senay, M.; Young, K.

    1996-01-01

    Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar material. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.

  18. Spectroscopic evidence for interstellar ices in comet Hyakutake.

    PubMed

    Irvine, W M; Bockelee-Morvan, D; Lis, D C; Matthews, H E; Biver, N; Crovisier, J; Davies, J K; Dent, W R; Gautier, D; Godfrey, P D; Keene, J; Lovell, A J; Owen, T C; Phillips, T G; Rauer, H; Schloerb, F P; Senay, M; Young, K

    1996-10-03

    Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.

  19. Molecular hydrogen in interstellar dark clouds

    NASA Technical Reports Server (NTRS)

    Allen, M.; Robinson, G. W.

    1976-01-01

    A simplified H2 formation mechanism is proposed in which small interstellar grains furnish the reaction sites. This mechanism results in a maximum value for the rate constant of about 2 by 10 to the -18th power per cu cm/sec for dark clouds at 10 K. Also, the nascent molecules are ejected in excited states, in qualitative agreement with Copernicus observations. A time-dependent treatment of the chemical evolution of a dark cloud with little or no ionizing radiation shows that the clouds require more than 10 million years to achieve chemical equilibrium. The observed residual atomic hydrogen in several dark clouds suggests that the clouds are 1 to 10 million years old. Other consequences of the temporal cloud model are in accord with astronomical observations.

  20. SPIRE spectroscopy of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Habart, E.; Dartois, E.; Abergel, A.; Baluteau, J.-P.; Naylor, D.; Polehampton, E.; Joblin, C.

    2010-12-01

    The SPIRE Fourier Transform Spectrometer on-board Herschel allows us, for the first time, to simultaneously measure the complete far-infrared spectrum from 194 to 671 μm. A wealth of rotational lines of CO (and its isotopologues), fine structure lines of C^0 and N^+, and emission lines from radicals and molecules has been observed towards several galactic regions and nearby galaxies. The strengths of the atomic and molecular lines place fundamental constraints on the physical conditions but also the chemistry of the interstellar medium. FTS mapping capabilities are also extremely powerful in characterizing the spatial morphology of the extended region and understand how the gas properties vary within the studied region. Here, we present a first analysis of SPIRE spectroscopic observations of the prototypical Orion Bar photodissociation region.

  1. Measuring Interstellar Inheritance and Its Consequences

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'D.; Nittler, L. R.; Davidson, J.; Ciesla, F. J.

    2016-08-01

    CIs, chondrite matrices and IDP accreted ~10 % of pristine interstellar material (ices, silicates, organics). The non-solar O isotopic compositions of most solar materials reflect early heating of interstellar dust and ices in FU Orionis outbursts.

  2. HYDROXYL CATION IN TRANSLUCENT INTERSTELLAR CLOUDS

    SciTech Connect

    Krelowski, J.; Beletsky, Y.; Galazutdinov, G. A. E-mail: ybialets@eso.or

    2010-08-10

    High-quality spectra acquired at the European Southern Observatory enabled us to discover a very weak spectral feature of the OH{sup +} molecule, near 3584 A. The species likely shares environments with another molecular ion, CH{sup +}. Its abundance is by a factor of 30 lower than that of neutral OH.

  3. Nonthermal Chemistry in Diffuse Clouds with Low Molecular Abundances

    NASA Astrophysics Data System (ADS)

    Zsargó, J.; Federman, S. R.

    2003-05-01

    High-quality archival spectra of interstellar absorption from C I toward nine stars, taken with the Goddard High Resolution Spectrograph on the Hubble Space Telescope, were analyzed. Our sample was supplemented by two sight lines, 23 Ori and β1 Sco, for which the C I measurements of Federman, Welty, & Cardelli were used. Directions with known CH+ absorption, but only upper limits on absorption from C2 and CN, were considered for our study. This restriction allows us to focus on regions where CH+ chemistry dominates the production of carbon-bearing molecules. Profile synthesis of several multiplets yielded column densities and Doppler parameters for the C I fine-structure levels. Equilibrium excitation analyses, using the measured column densities as well as the temperature from H2 excitation, led to values for gas density. These densities, in conjunction with measurements of CH, CH+, C2, and CN column densities, provided estimates for the amount of CH associated with CH+ production, which in turn set up constraints on the present theories for CH+ formation in this environment. We found for our sample of interstellar clouds that on average 30%-40% of the CH originates from CH+ chemistry, and in some cases it can be as high as 90%. A simple chemical model for gas containing nonequilibrium production of CH+ was developed for the purpose of predicting column densities for CH, CO, HCO+, CH+2, and CH+3 generated from large abundances of CH+. Again, our results suggest that nonthermal chemistry is necessary to account for the observed abundance of CH and probably that of CO in these clouds. Based on observations obtained with the NASA/ESA Hubble Space Telescope through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  4. The formation of interstellar jets

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Canto, J.; Rozyczka, M.

    1988-01-01

    The formation of interstellar jets by convergence of supersonic conical flows and the further dynamical evolution of these jets are investigated theoretically by means of numerical simulations. The results are presented in extensive graphs and characterized in detail. Strong radiative cooling is shown to result in jets with Mach numbers 2.5-29 propagating to lengths 50-100 times their original widths, with condensation of swept-up interstellar matter at Mach 5 or greater. The characteristics of so-called molecular outflows are well reproduced by the simulations of low-Mach-number and quasi-adiabatic jets.

  5. Interstellar helium in interplanetary space

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Lange, J. J.; Scherb, F.

    1972-01-01

    The velocity distribution function of He(+) in the solar wind at 1 AU is calculated with the assumption that the source is photoionization of a cold (T = 100 K), neutral interstellar wind. If the spiral magnetic field is noise free, the velocity distribution is diffuse and would not produce a peak at 4(E over Q) sub H in an E over Q particle spectrum. If the velocity of the interstellar wind with respect to the sun lies in the ecliptic, a large variation of the He(+) number density with respect to ecliptic longitude is expected.

  6. Interstellar Initiative Web Page Design

    NASA Technical Reports Server (NTRS)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  7. Interstellar Grains: 50 Years On

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2011-12-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewedpublicationsbytheauthorand/orFredHoyle. Theprevailingreluctancetoaccepttheseclear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance - a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  8. Electric propulsion and interstellar flight

    SciTech Connect

    Matloff, G.L.

    1987-01-01

    Two general classes of interstellar space-flights are defined: endothermic and exothermic. Endothermic methods utilize power sources external to the vehicle and associated technology. Faster exothermic methods utilize on-board propulsive power sources or energy-beam technology. Various proposed endothermic electric propulsion methods are described. These include solar electric rockets, mass drivers, and ramjets. A review of previously suggested exothermic electric propulsion methods is presented. Following this review is a detailed discussion of possible near future application of the beamed-laser ramjet, mainly for ultimate relativistic travel. Electric/magnetic techniques offer an excellent possibility for decelerating an interstellar vehicle, regardless of the acceleration technique. 20 references.

  9. Infrared emission from interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-IR absorption and Raman spectra of polycyclic aromatic hydrocarbons (PAHs) and the mechanisms determining them are reviewed, and the implications for observations of similar emission spectra in interstellar clouds are considered. Topics addressed include the relationship between PAHs and amorphous C, the vibrational spectroscopy of PAHs, the molecular emission process, molecular anharmonicity, and the vibrational quasi-continuum. Extensive graphs, diagrams, and sample spectra are provided, and the interstellar emission bands are attributed to PAHs with 20-30 C atoms on the basis of the observed 3.3/3.4-micron intensity ratios.

  10. Modelling interstellar organics: relevance for the identification of unidentified interstellar features

    NASA Astrophysics Data System (ADS)

    Malloci, Giuliano

    2003-02-01

    This thesis is part of the research activity of the Astrochemistry Group of the Cagliari Astronomical Observatory and the Physics Department at the University of Cagliari. The subjects of this work are two specific astrophysical problems concerning the Interstellar Medium (ISM) analysis: 1) the identification of Diffuse Interstellar Bands (DIBs) - Unidentified Infrared Bands (UIBs); 2) the identification of the Extended Red Emission (ERE). A new theoretical approach to the spectroscopic identification of these specific Unidentified Interstellar Features is presented.Concerning the DIBs-UIBs, this work is an extension of a computational Monte-Carlo model developed in the past few years by our group (Mulas G. A&A 1998,338,243) with the aim to integrate quantum-chemical ab initio tecnhiques in it and thus produce a self-contained molecular simulator. Concerning ERE, a general recipe is developed in order to extrapolate the expected photoluminescence of small particles starting from available laboratory results obtained on bulk samples. All the numerical results were obtained for interstellar carbonaceous compounds, hence the title ``Modelling interstellar organics'' given to the thesis. In particular, a specific molecule belonging to the class of polycyclic aromatic hydrocarbons (PAHs) is chosen as a test case to discuss the PAHs-DIBs-UIBs proposal, while the optical properties of laboratory samples of hydrogenated amorphous carbon (HAC) are used to obtain numerical results to be compared with luminescence phenomena such as ERE originating from some solid component of the ISM. The introductive chapter is intended to introduce the unfamiliar reader to the specific topic under study, and a short overview of the scientific scenario involved is given. Then, Part I and II discuss separately the two models above and represent the body of the work; each chapter follows a standard article format: introduction, theoretical method, numerical results, discussion and

  11. Millimeter-wave Absorption Studies of Molecules in Diffuse Clouds

    NASA Astrophysics Data System (ADS)

    Lucas, Robert; Liszt, Harvey S.

    1999-10-01

    With IRAM instruments in the last few years, we have been using compact extragalactic millimeter wave radio sources as background objects to study the absorption spectrum of diffuse interstellar gas at millimeter wavelengths. The molecular content of interstellar gas has turned out to be unexpectedly rich. Simple polyatomic molecules such as HCO+, C2H are quite ubiquitous near the Galactic plane (beta < 15o), and many species are detected in some directions (CO, HCO+, H2CO, HCN, HNC, CN, C2H, C3H2, H2S, CS, HCS+, SO, SiO). Remarkable proportionality relations are found between related species such as HCO+ and OH, or CN, HCN and HNC. The high abundance of some species is still a challenge for current models of diffuse cloud chemistry. A factor of 10 increase in the sensitivity will make such studies achievable in denser clouds, where the chemistry is still more active and where abundances are nowadays only available by emission measurements, and thus subject to uncertainties due to sometimes poorly understood line formation and excitation conditions.

  12. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history.

  13. On the question of interstellar travel

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.

    1985-01-01

    Arguments are presented which show that motives for interstellar travel by advanced technological civilizations based on an extrapolation of earth's history may be quite invalid. In addition, it is proposed that interstellar travel is so enormously expensive and perhaps so hazardous, that advanced civilizations do not engage in such practices because of the ease of information transfer via interstellar communication.

  14. Experimental interstellar organic chemistry - Preliminary findings

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  15. A UNIFIED MICROSCOPIC-MACROSCOPIC MONTE CARLO SIMULATION OF GAS-GRAIN CHEMISTRY IN COLD DENSE INTERSTELLAR CLOUDS

    SciTech Connect

    Chang Qiang; Herbst, Eric

    2012-11-10

    For the first time, we report a unified microscopic-macroscopic Monte Carlo simulation of gas-grain chemistry in cold interstellar clouds in which both the gas-phase and the grain-surface chemistry are simulated by a stochastic technique. The surface chemistry is simulated with a microscopic Monte Carlo method in which the chemistry occurs on an initially flat surface. The surface chemical network consists of 29 reactions initiated by the accreting species H, O, C, and CO. Four different models are run with diverse but homogeneous physical conditions including temperature, gas density, and diffusion-barrier-to-desorption energy ratio. As time increases, icy interstellar mantles begin to grow. Our approach allows us to determine the morphology of the ice, layer by layer, as a function of time, and to ascertain the environment or environments for individual molecules. Our calculated abundances can be compared with observations of ices and gas-phase species, as well as the results of other models.

  16. Stardust Interstellar Preliminary Examination (ISPE)

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  17. Term Projects on Interstellar Comets

    ERIC Educational Resources Information Center

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  18. Isotopic Fractionation in Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar sys tem without undergoing significant processing. In this poster, we sho w the results of several models of the nitrogen, oxygen, and carbon f ractionation in proto-stellar cores.

  19. A new interstellar component in the spectrum of HD 72127A

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Wallerstein, G.; Huu, E. M.

    1982-01-01

    New high dispersion observations are reported of the very strong, broad interstellar K line of Ca II in the spectrum of HD 72127A, a star located near a filament of the Vela supernova remnant. When compared with similar observations made in 1977, the new data reveal temporal variability of the interstellar absorption, as shown both by the presence of a new, sixth line component and by a 25% increase in the total equivalent width of the K line. All five Ca II components which were seen in both years show very large column-density ratios N(Ca II) /N(Na I) at least equal to 9, probably arising from anomalously large interstellar gas-phase abundances of Ca caused by disruption of interstellar grains. Marked differences in the structure of the K line between the two early-type components of this binary star, which are separated by only 3000 AU, are confirmed.

  20. Heavy element abundances and massive star formation

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  1. Dissociative Electron-Ion Recombination of the Protonated Interstellar Species Glycolaldehyde, Acetic Acid, and Methyl Formate

    NASA Astrophysics Data System (ADS)

    Lawson, Patrick; Adams, Nigel

    2011-10-01

    Recently, the prebiotic molecule and primitive sugar glycolaldehyde and its structural isomers acetic acid and the abundant methyl formate have been detected in the interstellar medium(ISM). Understanding the processes involving these molecules is vital to understand the ISM, where stars are formed. The rate constants, αe, for dissociative electron-ion recombination of protonated gycolaldehyde, (HOCH2CHO)H^+, and protonated methyl formate, (HCOOCH3)H^+, have been determined at 300K in a variable temperature flowing afterglow using a Langmuir probe to determine the electron density. The αe at 300K are 3.2 x 10-7 cm^3 s-1 for protonated methyl formate and 7.5 x 10-7 cm^3 s-1 for protonated glycolaldehyde. The αe of protonated acetic acid could not be directly measured due to difficulty in producing the ion, but it appears to have a recombination rate constant, αe, on the ˜10-7 cm^3 s-1 scale. Additional temperature dependence information was obtained. The astrochemical implications of the αe measurements and protonation routes are also discussed.

  2. Extraterrestrial Organic Chemistry: From the Interstellar Medium to the Origins of Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Extraterrestrially delivered organics in the origin of cellular life. Various processes leading to the emergence of cellular life from organics delivered from space to earth or other planetary bodies in the solar system will be reviewed. The focus will be on: (1) self-assembly of amphiphilic material to vesicles and other structures, such as micelles and multilayers, and its role in creating environments suitable for chemical catalysis, (2) a possible role of extraterrestrial delivery of organics in the formation of the simplest bioenergetics (3) mechanisms leading from amino acids or their precursors to simple peptides and, subsequently, to the evolution of metabolism. These issues will be discussed from two opposite points of view: (1) Which molecules could have been particularly useful in the protobiological evolution; this may provide focus for searching for these molecules in interstellar media. (2) Assuming that a considerable part of the inventory of organic matter on the early earth was delivered extraterrestrially, what does relative abundance of different organics in space tell us about the scenario leading to the origin of life.

  3. A Model to Estimate the Flux of Background Particles Expected to Accumulate on the Collector Foils of the Interstellar Gas Experiment on the Long Duration Exposure Facility Spacecraft

    DTIC Science & Technology

    1992-01-01

    of the noble gases xi interstellar wind. This information will aid research of nucleosynthesis and provide new clues regarding the origin of the...interstellar particles is in understanding nucleosynthesis . Current techniques for determining relative abundances of stellar elements rely on...provide important data on the synthesis of light nuclei in the early ualverse and the beginning processes of nucleosynthesis and galactic evolution

  4. The Sun's dusty interstellar environment

    NASA Astrophysics Data System (ADS)

    Sterken, Veerle

    2016-07-01

    The Sun's dusty interstellar environment Interstellar dust from our immediate interstellar neighborhood travels through the solar system at speeds of ca. 26 km/s: the relative speed of the solar system with respect to the local interstellar cloud. On its way, its trajectories are altered by several forces like the solar radiation pressure force and Lorentz force. The latter is due to the charged dust particles that fly through the interplanetary magnetic field. These trajectories differ per particle type and size and lead to varying fluxes and directions of the flow inside of the solar system that depend on location but also on phase in the solar cycle. Hence, these fluxes and directions depend strongly on the configuration of the inner regions and outer regions of the heliosphere. Several missions have measured this dust in the solar system directly. The Ulysses dust detector data encompasses 16 years of intestellar dust fluxes and approximate directions, Stardust captured returned to Earth a few of these particles sucessfully, and finally the Cassini dust detector allowed for compositional information to be obtained from the impacts on the instrument. In this talk, we give an overview of the current status of interstellar dust research through the measurements made inside of the solar system, and we put them in perspective to the knowledge obtained from more classical astronomical means. In special, we focus on the interaction of the dust with the interplanetary magnetic field, and on what we learn about the dust (and the fields) by comparing the available dust data to computer simulations of dust trajectories. Finally, we synthesize the different methods of observation, their results, and give a preview on new research opportunities in the coming year(s).

  5. Searching for Bio-Precursors and Complex Organic Molecules in Space using the GBT

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Kisiel, Z.

    2012-01-01

    Using the latest microwave receiver technology, large organic molecules with abundances as low as approx. 10(exp -11) times that of molecular hydrogen are detectable in cold interstellar clouds via their rotational emission line spectra. We report new observations to search for complex molecules, including molecules of possible pre-biotic importance, using the newly-commissioned Kband focal plane array (KFPA) of the NRAO Robert C. Byrd Green Bank Telescope. Spectra are presented of the dense molecular cloud TMC-1, showing strict upper limits on the level of emission from nitrogen-bearing rings pyrimidine, quinoline and iso-quinoline, carbon-chain oxides C60, C70, HC60 and HC70, and the carbon-chain anion C4H-. The typical RMS brightness temperature noise levels we achieved are approx. 1 mK at around 20 GHz.

  6. The life cycle of the Interstellar Medium in other galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.

    1995-01-01

    Gas in spiral galaxies cycles between the diffuse and dense phases as clouds collapse, form stars and are dispersed back into the ISM. Far infrared observations of continuum emission from interstellar dust and line emission from interstellar gas have revealed a wealth of information on the state of the ISM in galaxies of different morphological types. The analysis of these observations gives us information about the processes of star formation and about the evolution of the ISM. Star formation rates vary widely from galaxy to galaxy, with the rates in starburst galaxies being 10 - 100 times those in quiescent spiral galaxies. Far infrared spectroscopy of star-forming galaxies shows that the interstellar pressure increases with star formation rate. The structure of the interstellar medium in starburst galaxies is quite different from that of quiescent galaxies - much of the mass and volume are in HII regions and photodissociation regions. The size distribution of dust grains seems to depend on environment; small grains are abundant in the diffuse interstellar medium but not in dense molecular star forming regions. Quiescent spiral and elliptical galaxies contain a significant population of small grains, but starburst galaxies do not. Dwarf irregular galaxies also seem to contain few small grains; this may be the result of the higher UV flux in these galaxies. The star forming regions in dwarf irregulars also have a higher ratio of atomic to molecular gas than do those in the Galaxy. These results show that the ISM in galaxies of different morphological types reaches different equilibria, resulting in different modes of star formation and global galaxy evolution.

  7. Chemical Evolution of Interstellar Dust into Planetary Materials

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic

  8. Tholins - Organic chemistry of interstellar grains and gas

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.

    1979-01-01

    The paper discusses tholins, defined as complex organic solids formed by the interaction of energy - for example, UV light or spark discharge - with various mixtures of cosmically abundant gases - CH4, C2H6, NH3, H2O, HCHO, and H2S. It is suggested that tholins occur in the interstellar medium and are responsible for some of the properties of the interstellar grains and gas. Additional occurrences of tholins are considered. Tholins have been produced experimentally; 50 or so pyrolytic fragments of the brown, sometimes sticky substances have been identified by gas chromatography-mass spectrometry, and the incidence of these fragments in tholins produced by different procedures is reported.

  9. Interstellar Dust: Physical Processes

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Tielens, A. G. G. M.

    1993-01-01

    Dust is formed in stellar environments, and destroyed by sputtering, shattering and vaporization in shock waves due to cloud-cloud collisions and supernova blast waves. Dust is also destroyed during star formation. We review the dust formation and destruction balance. The calculated destruction time-scale is less than or equal to one billion years and the star dust injection time-scale is approx. 2.5 billion years. Hence, the fractions of elemental carbon and silicon locked up in stardust are less than 0.3 and less than 0.15, respectively. An efficient ISM dust formation route is therefore implied. In particular, in dense clouds dust grows; through the processes of coagulation and the accretion of gas phase molecules e.g. H20, CO, CH4. These icy materials may then be photoprocessed to refractory materials in more diffuse regions. The resulting carbonaceous grain mantle may actually be the glue that holds the coagulated grains together.

  10. The Local Interstellar Medium Legacy Project

    NASA Astrophysics Data System (ADS)

    Welsh, B.

    We propose to provide a legacy database of far ultraviolet absorption spectra (912 - 1100AA) of 44 bright early-type B stars residing within sim 50pc of the Sun. These spectra will primarily be used to map the physical and chemical characteristics of the neutral and ionized interstellar gas that lies both within and just beyond the contours of the Local Bubble region. Of particular importance will be the detection of the OVI ion, which is known to trace highly ionized, hot (sim 300,000K) interstellar gas. We shall produce plots of the spatial distribution of the OVI ion with respect to the cold and dense neutral boundary to the rarefied Local Bubble cavity. This information will provide new insights into the possible production mechanisms for this ion that is widely believed to be formed at the conductive interfaces of evaporating gas clouds. Our database will also allow study of the spatial distribution of the ions of ArI, OI, FeII, CII, CIII, NI and NII, such that both diffuse neutral and ionized local gas can be probed in order to determine if photo-ionization conditions dominate within the local cavity. These data will also allow an investigation of the gas phase element abundances in the local gas, such that we will be able to compare their relative depletion patterns with both the galactic disk and halo gas. In addition to these prime science objectives these data will also provide a large database of observations of local H_2 molecular absorption, as well as a large, high SN set of early-type star spectra that can be modelled with appropriate stellar atmospheres.

  11. Grain Surface Chemistry and the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.

  12. ON THE FORMATION OF CO{sub 2} AND OTHER INTERSTELLAR ICES

    SciTech Connect

    Garrod, R. T.; Pauly, T.

    2011-07-01

    We investigate the formation and evolution of interstellar dust-grain ices under dark-cloud conditions, with a particular emphasis on CO{sub 2}. We use a three-phase model (gas/surface/mantle) to simulate the coupled gas-grain chemistry, allowing the distinction of the chemically active surface from the ice layers preserved in the mantle beneath. The model includes a treatment of the competition between barrier-mediated surface reactions and thermal-hopping processes. The results show excellent agreement with the observed behavior of CO{sub 2}, CO, and water ice in the interstellar medium. The reaction of the OH radical with CO is found to be efficient enough to account for CO{sub 2} ice production in dark clouds. At low visual extinctions, with dust temperatures {approx}>12 K, CO{sub 2} is formed by direct diffusion and reaction of CO with OH; we associate the resultant CO{sub 2}-rich ice with the observational polar CO{sub 2} signature. CH{sub 4} ice is well correlated with this component. At higher extinctions, with lower dust temperatures, CO is relatively immobile and thus abundant; however, the reaction of H and O atop a CO molecule allows OH and CO to meet rapidly enough to produce a CO:CO{sub 2} ratio in the range {approx}2-4, which we associate with apolar signatures. We suggest that the observational apolar CO{sub 2}/CO ice signatures in dark clouds result from a strongly segregated CO:H{sub 2}O ice, in which CO{sub 2} resides almost exclusively within the CO component. Observed visual-extinction thresholds for CO{sub 2}, CO, and H{sub 2}O are well reproduced by depth-dependent models. Methanol formation is found to be strongly sensitive to dynamical timescales and dust temperatures.

  13. INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE

    SciTech Connect

    Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.

    2009-10-01

    The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H{sup +} {sub 3}), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He{sup +} chemistry reveals that only a small fraction of He{sup +} will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find zeta{sub He} < 1.2 x 10{sup -15} s{sup -1}, an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H{sup +} {sub 3}. While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H{sup +} {sub 3} in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.

  14. Radical formation, chemical processing, and explosion of interstellar grains

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1976-01-01

    The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.

  15. Infrared diffuse interstellar bands in the Galactic Centre region.

    PubMed

    Geballe, T R; Najarro, F; Figer, D F; Schlegelmilch, B W; de la Fuente, D

    2011-11-02

    The spectrum of any star viewed through a sufficient quantity of diffuse interstellar material reveals a number of absorption features collectively called 'diffuse interstellar bands' (DIBs). The first DIBs were reported about 90  years ago, and currently well over 500 are known. None of them has been convincingly identified with any specific element or molecule, although recent studies suggest that the DIB carriers are polyatomic molecules containing carbon. Most of the DIBs currently known are at visible and very near-infrared wavelengths, with only two previously known at wavelengths beyond one micrometre (10,000 ångströms), the longer of which is at 1.318 micrometres (ref. 6). Here we report 13 diffuse interstellar bands in the 1.5-1.8 micrometre interval on high-extinction sightlines towards stars in the Galactic Centre. We argue that they originate almost entirely in the Galactic Centre region, a considerably warmer and harsher environment than where DIBs have been observed previously. The relative strengths of these DIBs towards the Galactic Centre and the Cygnus OB2 diffuse cloud are consistent with their strengths scaling mainly with the extinction by diffuse material.

  16. The Production of Complex Organics from Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bernstein, Max; Deamer, David; Dworkin, Jason; Zare, Richard

    2001-01-01

    Infrared spectroscopy of ices in interstellar dense molecular clouds has shown that they contain a variety of simple molecules, as well as aromatic hydrocarbons. While in these clouds, these ices are processed by ultraviolet light and cosmic rays. High vacuum, UV irradiation laboratory simulations conducted using various realistic approx. 10 K interstellar mixed-molecular ice analogs, both with and without polycyclic aromatic hydrocarbons (PAHs), have been carried out in NASA-Ames' Astrochemistry Laboratory. Upon warming, these irradiated ices are found to produce refractory organic residues. These residues have been analyzed using a variety of techniques, including HPLC and laser desorption mass spectrometry, and they have been shown to contain a variety of complex organic compounds. Several of these compounds may be of prebiotic significance. In particular, we will discuss the detection of quinones (substituted PAHs that are used by living systems for electron transport) and amphiphiles (molecules that self-assemble to form membranes). Laboratory simulations have also demonstrated that the organic products can show isotopic enrichments in D that provide clues for the mechanisms of their formation. Similar compounds and D enrichments are seen in the organics found in primitive meteorites, suggesting a direct link between interstellar chemistry and the delivery of organics to newly formed planets.

  17. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    NASA Astrophysics Data System (ADS)

    2001-10-01

    Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space. Vinyl Alcohol and its fellow isomers "The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space. It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space. Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy. The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters. Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts. For many years now, scientists have been searching for the right mechanism to explain how the building

  18. TRES Survey of Variable Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Law, Charles; Milisavljevic, Dan; Crabtree, Kyle; Johansen, Sommer; Patnaude, Daniel

    2017-01-01

    Diffuse interstellar bands (DIBs) are absorption features commonly observed in optical/near-infrared spectra of stars and thought to be associated with polyatomic molecules that comprise a significant reservoir of organic material in the universe. However, because the central wavelengths of DIBs do not correspond with electronic transitions of known atomic or molecular species, the specific physical nature of their carriers remains inconclusive despite decades of observational, theoretical, and experimental research. It is well established that DIB carriers must be located in the interstellar medium, but the recent discovery of time-varying DIBs in the spectra of the extragalactic supernova SN 2012ap suggests that some may be created in massive star environments. We report evidence of short time-scale (˜1-60 days) variations in DIB absorption line substructure toward 3 of 17 massive stars observed as part of a pathfinder survey of variable DIBs. The detections are made in high-resolution optical spectra (R ˜ 44000) from the Tillinghast Reflection Echelle Spectrograph on the 1.5m Tillinghast telescope at the Smithsonian Astrophysical Observatory's Fred L. Whipple Observatory on Mt. Hopkins in Arizona. Our detections have signal-to-noise ratios of 5-15 around the features of interest, and are thus considered significant but requiring further investigation. We find that these changes are potentially consistent with interactions between stellar winds and DIB carriers in close proximity. Our findings motivate a larger survey to further characterize these variations and may establish a powerful new method for probing the poorly understood physical characteristics of DIB carriers.

  19. Infrared spectra of interstellar deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  20. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption

    NASA Technical Reports Server (NTRS)

    Bergin, E. A.; Langer, W. D.; Goldsmith, P. F.

    1995-01-01

    We present time-dependent models of the chemical evolution of molecular clouds which include depletion of atoms and molecules onto grain surfaces and desorption, as well as gas-phase interactions. We have included three mechanisms to remove species from the grain mantles: thermal evaporation, cosmic-ray-induced heating, and photodesorption. A wide range of parameter space has been explored to examine the abundance of species present both on the grain mantles and in the gas phase as a function of both position in the cloud (visual extinction) and of evolutionary state (time). The dominant mechanism that removes molecules from the grain mantles is cosmic-ray desorption. At times greater than the depletion timescale, the abundances of some simple species agree with abundances observed in the cold dark cloud TMC-1. Even though cosmic-ray desorption preserves the gas-phase chemistry at late times, molecules do show significant depletions from the gas phase. Examination of the dependence of depletion as a function of density shows that when the density increases from 10(exp 3)/cc to 10(exp 5)/cc several species including HCO(+), HCN, and CN show gas-phase abundance reductions of over an order of magnitude. The CO: H2O ratio in the grain mantles for our standard model is on the order of 10:1, in reasonable agreement with observations of nonpolar CO ice features in rho Ophiuchus and Serpens. We have also examined the interdependence of CO depletion with the space density of molecular hydrogen and binding energy to the grain surface. We find that the observed depletion of CO in Taurus in inconsistent with CO bonding in an H2O rich mantle, in agreement with observations. We suggest that if interstellar grains consist of an outer layer of CO ice, then the binding energies for many species to the grain mantle may be lower than commonly used, and a significant portion of molecular material may be maintained in the gas phase.

  1. How Interstellar Chemistry (and Astrochemistry More Generally) Became Useful

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.; van Loo, S.; Falle, S. A. E. G.

    In 1986 Alex Dalgarno published a paper entitled Is Interstellar Chemistry Useful?1 By the middle 1970s, and perhaps even earlier, Alex had hoped that astronomical molecules would prove to: possess significant diagnostic utility; control many of the environments in which they exist; stimulate a wide variety of physicists and chemists who are at least as fascinated by the mechanisms forming and removing the molecules as by astronomy. His own research efforts have contributed greatly to the realization of that hope. This paper contains a few examples of: how molecules are used to diagnose large-scale dynamics in astronomical sources including star forming regions and supernovae; the ways in which molecular processes control the evolution of astronomical objects such as dense cores destined to become stars and very evolved giant stars; theoretical and laboratory investigations that elucidate the processes producing and removing astronomical molecules and allow their detection.

  2. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  3. Electron Irradiation of Interstellar Ice Analogues

    NASA Astrophysics Data System (ADS)

    Nair, B. G.; Mason, N. J.

    2011-05-01

    Molecular synthesis in the Universe primarily occurs in the icy mantles on dust grains in dense interstellar dust clouds. The interaction of photons, electrons and cosmic rays with these ice mantles triggers complex chemical synthesis leading to the formation of complex molecules. Such molecular reactions can only be understood by systematic laboratory studies. In our experiments astrophysical environments are recreated in the laboratory using an ultra high vacuum chamber (UHV) capable of reaching pressures of the order of 10 -10 mBar containing a liquid helium cryostat capable of attaining a temperature of 20 K. Ice films are deposited on a ZnSe substrate (cooled by cryostat) by background deposition and irradiated with electrons of 1KeV energy. Chemical changes induced by electron irradiation were monitored by an infrared spectrometer. By varying the temperature, we also investigate the temperature dependence on the kinetics of the reactions. In this poster we will present the first results of electron irradiation of simple organic molecules like formamide (HCONH2) and allyl alcohol (CH2CHCH2OH).

  4. Diffuse Interstellar Bands in Emission

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Sarre, P.; Marshall, C. C. M.; Spekkens, K.; de Naray, R. Kuzio

    Recent Fabry-Pérot observations towards the galaxy NGC 1325 with the Southern African Large Telescope (SALT) led to the serendipitous discovery of an emission feature centered at 661.3 nm arising from material in the interstellar medium (ISM) of our Galaxy; this emission feature lies at the wavelength of one of the sharper and stronger diffuse bands normally seen in absorption. The flux of the feature is 4.2 +/- 0.5 × 10-18 es-1 cm-2 arcsec-2. It appears that this is the first observation of emission from a diffuse band carrier in the ISM, excited in this case by the interstellar radiation field. We present the discovery spectra and describe follow-up measurements proposed for SALT.

  5. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  6. Interstellar Grains: 50 Years on

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance -- a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  7. Formation of interstellar solid CO{_2} after energetic processing of icy grain mantles

    NASA Astrophysics Data System (ADS)

    Ioppolo, S.; Palumbo, M. E.; Baratta, G. A.; Mennella, V.

    2009-01-01

    Context: Space infrared observations with ISO-SWS and Spitzer telescopes have clearly shown that solid carbon dioxide (CO{2}) is ubiquitous and abundant along the line of sight to quiescent clouds and star forming regions. Due to the CO2 low gas-phase abundance, it is suggested that CO{2} is synthesized on grains after energetic processing of icy mantles and/or surface reactions. Aims: We study quantitatively the abundance of carbon dioxide synthesized from ice mixtures of astrophysical relevance induced by ion irradiation at low temperature. We compare the CO{2} stretching and bending-mode band profiles observed towards some young stellar objects (YSOs) for which infrared spectra exist. Methods: Using a high vacuum experimental setup, the effects induced by fast ions (30-200 keV) on several ice mixtures of astrophysical interest are investigated. Chemical and structural modifications of the ice samples that form new molecular species are analyzed using infrared spectroscopy. The formation cross section of solid CO{2} is estimated from the increase in column density as a function of the dose fitting of experimental data with an exponential curve. Results: Our laboratory experiments showed that carbon dioxide is formed after irradiation of ice mixtures containing C- and O-bearing molecules. Furthermore, when the same amount of energy is released into the icy sample, a larger amount of CO{2} is formed in H{2}O-rich mixtures in agreement with previous studies. We also found that the CO2 stretching and bending mode band profiles depend on the mixture and temperature of the ice sample. We found that the amount of carbon dioxide formed after ion irradiation can account for the observed carbon dioxide towards YSOs. Furthermore, we discovered that laboratory spectra are a good spectroscopic analogue of the interstellar features. Conclusions: Even if the comparison between laboratory and observed spectra presented here cannot be considered unique and complete, our results

  8. Representing culture in interstellar messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological

  9. MATRIICES - Mass Analytical Tool for Reactions in Interstellar ICES

    NASA Astrophysics Data System (ADS)

    Isokoski, K.; Bossa, J. B.; Linnartz, H.

    2011-05-01

    The formation of complex organic molecules (COMs) observed in the inter- and circumstellar medium (ISCM) is driven by a complex chemical network yet to be fully characterized. Interstellar dust grains and the surrounding ice mantles, subject to atom bombardment, UV irradiation, and thermal processing, are believed to provide catalytic sites for such chemistry. However, the solid state chemical processes and the level of complexity reachable under astronomical conditions remain poorly understood. The conventional laboratory techniques used to characterize the solid state reaction pathways - RAIRS (Reflection Absorption IR Spectroscopy) and TPD (Temperature-Programmed Desorption) - are suitable for the analysis of reactions in ices made of relatively small molecules. For more complex ices comprising a series of different components as relevant to the interstellar medium, spectral overlapping prohibits unambiguous identification of reaction schemes, and these techniques start to fail. Therefore, we have constructed a new and innovative experimental set up for the study of complex interstellar ices featuring a highly sensitive and unambiguous detection method. MATRIICES (Mass Analytical Tool for Reactions in Interstellar ICES) combines Laser Ablation technique with a molecular beam experiment and Time-Of-Flight Mass Spectrometry (LA-TOF-MS) to sample and analyze the ice analogues in situ, at native temperatures, under clean ultra-high vacuum conditions. The method allows direct sampling and analysis of the ice constituents in real time, by using a pulsed UV ablation laser (355-nm Nd:YAG) to vaporize the products in a MALDI-TOF like detection scheme. The ablated material is caught in a synchronously pulsed molecular beam of inert carrier gas (He) from a supersonic valve, and analysed in a Reflectron Time-of-Flight Mass Spectrometer. The detection limit of the method is expected to exceed that of the regular surface techniques substantially. The ultimate goal is to fully

  10. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    SciTech Connect

    Kimura, Hiroshi

    2013-09-20

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  11. The Reincarnation of Interstellar Dust: The Importance of Organic Refractory Material in Infrared Spectra of Cometary Comae and Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi

    2013-09-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  12. Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone.

    PubMed

    Adande, Gilles R; Woolf, Neville J; Ziurys, Lucy M

    2013-05-01

    We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×10(12) to 9.1×10(13) cm(-2), with rotational temperatures of 70-177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10(-11) to 1×10(-10). It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ~0.1 mol/km(2)/yr or 0.18 mmol/m(2) in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry.

  13. Observations of Interstellar Formamide: Availability of a Prebiotic Precursor in the Galactic Habitable Zone

    PubMed Central

    Adande, Gilles R.; Woolf, Neville J.

    2013-01-01

    Abstract We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×1012 to 9.1×1013 cm−2, with rotational temperatures of 70–177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10−11 to 1×10−10. It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ∼0.1 mol/km2/yr or 0.18 mmol/m2 in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry. Key Words: Formamide—Astrobiology—Radioastronomy—ISM—Comets—Meteorites. Astrobiology 13, 439–453. PMID:23654214

  14. Interstellar grains in primitive meteorites - Diamond, silicon carbide, and graphite

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1993-01-01

    Primitive meteorites contain a few parts per million (ppm) of pristine interstellar grains that provide information on nuclear and chemical processes in stars. Their interstellar origin is proven by highly anomalous isotopic ratios, varying more than 1000-fold for elements such as C and N. Most grains isolated thus far are stable only under highly reducing conditions (C/O greater than 1), and apparently are 'stardust' formed in stellar atmospheres. Microdiamonds, of median size about 10 A, are most abundant (about 400-1800 ppm) but least understood. They contain anomalous noble gases including Xe-HL, which shows the signature of the r- and p-processes. Silicon carbide, of grain size 0.2-10 microns and abundance about 6 ppm, shows the signature of the s-process and apparently comes mainly from red giant carbon (AGB) stars of 1-3 solar masses. Some grains appear to be not less than 10 exp 9 a older than the solar system. Graphite spherules of grain size 0.8-7 microns and abundance less than 2 ppm contain highly anomalous C and noble gases, as well as large amounts of fossil Mg-26 from the decay of extinct Al-26. They seem to come from at least three sources, probably AGB stars, novae, and Wolf-Rayet stars.

  15. Discovery of Interstellar Anions in Cepheus and Auriga

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnely, S. B.; Buckle, J. V.; Walsh, C.

    2011-01-01

    We report the detection of microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H in the star-forming region LI251 A (in Cepheus), and the pre-stellar core LI512 (in Auriga). The carbon chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for LI5l2. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  16. Effects of turbulent dust grain motion to interstellar chemistry

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Yan, H. R.

    2016-02-01

    Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modelling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarized as follows: (1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; (2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about 10; (3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviours too. These effects usually begin to emerge from a typical DC model age of about 105 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations on to positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

  17. DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA

    SciTech Connect

    Cordiner, M. A.; Charnley, S. B.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2011-04-01

    We report the detection of microwave emission lines from the hydrocarbon anion C{sub 6}H{sup -} and its parent neutral C{sub 6}H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C{sub 4}H, HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, and C{sub 3}S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC{sub 3}N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  18. Vibrational Spectroscopy after OSU - From C2- to Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2006-01-01

    The composition of interstellar ice and dust provides insight into the chemical history of the interstellar medium and early solar system. It is now possible to probe this unique and unusual chemistry and determine the composition of these microscopic interstellar particles which are hundreds to many thousands of light years away thanks to substantial progress in two areas: astronomical spectroscopic techniques in the middle-infrared, the spectral region most diagnostic of chemical composition, and laboratory simulations which realistically reproduce the critical conditions in various interstellar environments. High quality infrared spectra of many different astronomical sources, some associated with giant, dark molecular clouds -the birthplace of stars and planets- and others in more tenuous, UV radiation rich regions are now available. The fundamentals of IR spectroscopy and what comparisons of astronomical IR spectra with laboratory spectra of materials prepared under realistic simulated interstellar conditions tell us about the components of these materials is the subject of this talk. These observations have shown that mixed molecular ices comprised of H2O, CH3OH, CO, NH3 and H2CO contain most of the molecular material in molecular clouds and that gas phase, ionized polycyclic aromatic hydrocarbons (PAHs) are widespread and surprisingly abundant throughout most of the interstellar medium.

  19. Dispersion in DLA metallicities and deuterium abundances

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Silk, Joseph; Vangioni, Elisabeth; Petitjean, Patrick; Olive, Keith A.

    2017-03-01

    Recent chemical abundance measurements of damped Lyman-alpha absorbers (DLAs) revealed a large intrinsic scatter in their metallicities. We discuss a semi-analytic model that was specifically designed to study this scatter by tracing the chemical evolution of the interstellar matter in small regions of the Universe with different mean density, from over- to underdense regions. It is shown that different histories of structure formation in these regions are reflected in the chemical properties of the proto-galaxies. We also address deuterium abundance measurements, which constitute a complementary probe of the star formation and infall histories.

  20. Spectroscopy and reactions of molecules important in chemical evolution

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1974-01-01

    The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.

  1. Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.

    1997-01-01

    Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.

  2. Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Anasari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David; Sandford, Scott A.; Zolensky, Michael E.

    2012-01-01

    The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2].

  3. Structure and Dynamics of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Tenorio-Tagle, Guillermo; Moles, Mariano; Melnick, Jorge

    Here for the first time is a book that treats practically all aspects of modern research in interstellar matter astrophysics. 20 review articles and 40 carefully selected and refereed papers give a thorough overview of the field and convey the flavor of enthusiastic colloquium discussions to the reader. The book includes sections on: - Molecular clouds, star formation and HII regions - Mechanical energy sources - Discs, outflows, jets and HH objects - The Orion Nebula - The extragalactic interstellar medium - Interstellar matter at high galactic latitudes - The structure of the interstellar medium

  4. Interstellar and interplanetary solids in the laboratory

    NASA Astrophysics Data System (ADS)

    Dartois, Emmanuel; Alata, Ivan; Engrand, Cécile; Brunetto, Rosario; Duprat, Jean; Pino, Thomas; Quirico, Eric; Remusat, Laurent; Bardin, Noémie; Mostefaoui, Smail; Morinaud, Gilles; Crane, Bruno; Szwec, Nicolas; Delauche, Lucie; Jamme, Frédéric; Sandt, Christophe; Dumas, Paul

    The composition of interstellar matter is driven by environmental parameters and results from extreme interstellar medium physico-chemical conditions. Astrochemists must rely on remote observations to monitor and analyze the interstellar solids composition. They bring additional information from the study of analogues produced in the laboratory, placed in simulated space environments. Planetologists and cosmochemists access and spectroscopically examine collected extraterrestrial material in the laboratory. Diffuse interstellar medium and molecular clouds observations set constraints on the composition of organic solids that can then be compared with collected extraterrestrial materials analyses, to shed light on their possible links.

  5. CH(+) Destruction by Reaction with H: Computing Quantum Rates To Model Different Molecular Regions in the Interstellar Medium.

    PubMed

    Bovino, S; Grassi, T; Gianturco, F A

    2015-12-17

    A detailed analysis of an ionic reaction that plays a crucial role in the carbon chemistry of the interstellar medium (ISM) is carried out by computing ab initio reactive cross sections with a quantum method and by further obtaining the corresponding CH(+) destruction rates over a range of temperatures that shows good overall agreement with existing experiments. The differences found between all existing calculations and the very-low-T experiments are discussed and explored via a simple numerical model that links these cross section reductions to collinear approaches where nonadiabatic crossing is expected to dominate. The new rates are further linked to a complex chemical network that models the evolution of the CH(+) abundance in the photodissociation region (PDR) and molecular cloud (MC) environments of the ISM. The abundances of CH(+) are given by numerical solutions of a large set of coupled, first-order kinetics equations that employs our new chemical package krome. The analysis that we carry out reveals that the important region for CH(+) destruction is that above 100 K, hence showing that, at least for this reaction, the differences with the existing laboratory low-T experiments are of essentially no importance within the astrochemical environments discussed here because, at those temperatures, other chemical processes involving the title molecule are taking over. A detailed analysis of the chemical network involving CH(+) also shows that a slight decrease in the initial oxygen abundance might lead to higher CH(+) abundances because the main chemical carbon ion destruction channel is reduced in efficiency. This might provide an alternative chemical route to understand the reason why general astrochemical models fail when the observed CH(+) abundances are matched with the outcomes of their calculations.

  6. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of