Science.gov

Sample records for abundant mantle xenoliths

  1. Mantle Xenoliths of Cerro Mercedes, Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Lindsay, F. N.; Carr, M. J.; Herzberg, C. T.; Feigenson, M. D.

    2003-12-01

    Mantle peridotite occurs as xenoliths in lavas and bombs at Cerro Mercedes, a Plio-Quaternary potassic alkaline basalt volcano approximately 70 km behind the volcanic front of northern Costa Rica (Tournon and Alvarado, 1997). Mineral exploration led to the first discovery of abundant mantle xenoliths in Central America (Vargas and Alfaro, 1992). The compositions of 71 xenoliths recovered in January 2003 include dunite, harzburgite, lherzolite and olivine websterite. Twenty xenoliths have a diameter of at least 3 cm. The nodules are abundant in basalt outcrops and the rare bombs. In spite of substantial soil development in a rain forest environment, both xenoliths and host lava remain well preserved. Olivine, pyroxenes and spinel are common, plagioclase is present and garnet appears to be absent. There is no obvious shearing or deformation and several pyroxenes are as much as 1 cm in diameter. The mineralogy suggests a relatively shallow upper mantle source, within either the lithosphere or possibly the uppermost asthenosphere. Cerro Mercedes, at latitude 10° 58' N and longitude 82° 21' W, lies along the Rio San Juan, which is locally the border between Nicaragua and Costa Rica, Central America. This location approximately coincides with a boundary between dominantly depleted mantle to the northwest and OIB or Galapagos-like mantle to the southeast. We will use mineralogical data to better define the likely depths and oxidation states of representative nodules and isotopic data to define the type of mantle source.

  2. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): Implications for melt generation and volatile recycling processes in subduction zones

    NASA Astrophysics Data System (ADS)

    Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.

    2017-02-01

    We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites.

  3. Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds

    NASA Astrophysics Data System (ADS)

    Pearson, D. G.; Canil, D.; Shirey, S. B.

    2003-12-01

    , 1989).Even within either "group" of volcanic rocks the variety of possible xenolith types is great. Table 1 presents a summary of the most common mantle xenolith groups that are found in kimberlitic hosts and within the alkalic and potassic mafic magmas. The significance and abundance of these groups will be discussed below. Table 1. Major groups of mantle xenoliths in kimberlite-related and alkali basalt series volcanic rocks (after Harte and Hawkesworth, 1989). Textural classification follows that of Harte (1977). Terminology for phlogopite-rich mafic mantle xenoliths from Gregoire et al. (2002). For supplementary data and classifications see Nixon (1987), table 62 TypeCharacteristicsExamplesMg# olivine (A) Cratonic/circum-cratonic xenoliths erupted by Kimberlite-related volcanics AI: Coarse Mg-rich, low-T peridotitesOften abundant. Mostly harzburgites and lherzolites with varying but low modal diopside and garnet. Wide range of orthopyroxene abundance, Kaapvaal examples notably enriched. Crystals typically 0.2 mm with equant or tabular shapes, irregular grain boundaries, rarely granoblastic (Harte, 1977). Bulk compositions typically highly depleted in Fe, Ca, and Al, enriched in Mg. Mineralogy: Cr-rich pyrope, Cr-diopside. Orthopyroxene in garnet facies characterized by >1.0 wt.% Al2O3. Cr-spinel sometimes evident. Minor phlogopite common grading into type VIII phlogopite peridotites. Phlogopite often surrounds garnet and is strongly correlated with the presence of diopside. Estimated equilibration temperatures less than 1,100 °C. Equilibration pressures can vary widely within a pipe and range from c. 2 GPa to >6 GPa. Rarely diamondiferous (e.g., Dawson and Smith, 1975), more commonly contain graphite ( Pearson et al., 1994).N. Lesotho (Nixon and Boyd, 1973a), Kaapvaal craton ( Gurney and Harte, 1980; Boyd and Nixon, 1978; Boyd and Mertzman, 1987; Nixon, 1987), Siberia ( Sobolev, 1974; Boyd et al., 1993); Jericho Slave craton ( Kopylova et al., 1999)Av 92.8 (91

  4. Petrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, California

    USGS Publications Warehouse

    Wilshire, H.G.; McGuire, A.V.; Noller, J.S.; Turrin, B.D.

    1991-01-01

    Basaltic rocks of the Cima Volcanic Field in the southern Basin and Range province contain abundant gabbro, pyroxenite, and peridotite xenoliths. Composite xenoliths containing two or more rock types show that upper-mantle spinel peridotite was enriched by multiple dike intrusions in at least three episodes; the mantle was further enriched by intergranular and shear-zone melt infiltration in at least two episodes. Because of their high densities, the gabbros and pyroxenites can occupy the zone immediately above the present Moho (modeled on seismic data as 10-13 km thick, with Vp 6.8 km/s) only if their seismic velocities are reduced by the joints, partial melts, and fluid inclusions that occur in them. Alternatively, these xenoliths may have been derived entirely from beneath the Moho, in which case the Moho is not the local crust-mantle boundary. -from Authors

  5. Metasomatism in mantle xenoliths from intraplate and suprasubduction settings

    NASA Astrophysics Data System (ADS)

    Massimo, Coltorti

    2010-05-01

    Chemical composition of minerals and glasses in mantle xenoliths in alkaline basalts from intraplate (Cape Verde, Antarctica, Gran Comore, Lessini) and in calc-alkaline basalts from suprasubduction settings (Kamchatcka, Japan, Philippine, Grenada) are summarized, with the aim of highlighting the petrological features of the metasomatizing melts in the two environments. Two peridotites complexes (Finero and Val d'Ultimo) believed to represent subduction-metasomatized bodies are also included in the comparison. It appears that, at comparable SiO2, subduction-related glasses are characterized by lower alkalies contents than glasses from intra-plate settings. The more SiO2-saturated character of the metasomatizing melts in this enviroment is also evidenced by the widespread presence of secondary orthopyroxene as small crystals or as veins. Subduction-related glasses may have Na2O content similar to carbonatite-metasomatised intra-plate glasses, but the latter presents consistently higher CaO and Nb abundances. Subduction-related glasses have also lower Rb, Ba, Zr, Ti and HREE contents than alkali-silicate intra-plate glasses, bearing some analogies with slab-derived melt. Chemical features of erupted calc-alkaline lavas (including adakites) are however unable to take into account the whole compositional range of minerals and glasses in subduction zone. Irrespective of textural positions, amphiboles in mantle xenoliths from intra-plate settings present much higher Nb and, to a lesser extent, Zr and Ti contents than amphiboles found in xenoliths from suprasubduction setting. Similar indications, although less robust for crystallographic and statistical reasons, can be found for clinopyroxene and orthopyroxene. These data strongly suggest that metasomatizing agents in the mantle wedge above a subduction zone are richer in SiO2 and depleted in Nb, Zr and Ti with respect to fluids migrating in intra-plate setting. The presence of accessory phases such as rutile and zircon

  6. Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Byerly, Benjamin L.; Lassiter, John C.

    2012-11-01

    Seismic tomography beneath the Central Rio Grande Rift (RGR) at ˜34°N shows a low P and S wave velocity zone in the mantle that extends up the base of the Moho. This low-velocity region has been interpreted by (Gao et al., 2004) to be the result of convective removal of a portion of the once >100 km thick Proterozoic lithosphere. The amount of extension in the central RGR is thought to be low (˜25%) and thus cannot account for the amount of lithosphere thinning suggested by seismic tomography. We measured whole rock and mineral major element, trace element, and isotopic compositions of spinel-peridotite xenoliths erupted along the central axis of the rift (Elephant Butte) and the eastern margin of the Colorado Plateau (Cerro Chato) to determine their depth of origin and mantle provenance and to test the delamination hypothesis. If lithosphere removal has not occurred and the low P and S wave velocities are instead the result of hydration or melt infiltration in the lithosphere, then xenoliths erupted on the rift axis should have geochemical compositions similar to Proterozoic sub-continental lithospheric mantle (SCLM). At Cerro Chato, on the margin of the Colorado Plateau, xenoliths were derived from ˜60 km depth and have geochemical signatures similar to Proterozoic sub-continental lithospheric mantle (e.g. refractory major element compositions, LREE-enrichment, enriched Sr and Nd isotopes, unradiogenic Os isotopes). At Elephant Butte, along the central rift axis, two distinct groups of xenoliths are present. The majority of xenoliths from Elephant Butte are LREE-depleted and have fertile major element compositions. Additionally, these xenoliths have isotopic signatures similar to the range for DMM (e.g. 87Sr/86Sr ranging from 0.7018 to 0.7023, ɛNd ranging from 7 to 21, and 187Os/188Os ranging from 0.122 to 0.130). We interpret this group of xenoliths to be derived from asthenospheric mantle. A less-abundant group of xenoliths at Elephant Butte are LREE

  7. Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths.

    PubMed

    Haggerty, S E; Sautter, V

    1990-05-25

    Geophysical discontinuities in Earth's upper mantle and experimental data predict the structural transformation of pyroxene to garnet and the solid-state dissolution of pyroxene into garnet with increasing depth. These predictions are indirectly verified by omphacitic pyroxene exsolution in pyropic garnet-bearing xenoliths from a diamondiferous kimberlite. Conditions for silicon in octahedral sites in the original garnets are met at pressures greater than 130 kilobars, placing the origin of these xenoliths at depths of 300 to 400 kilometers. These ultradeep xenoliths support the theory that the 400-km seismic discontinuity is marked by a transition from peridotite to eclogite.

  8. The Fidelity of Xenoliths in Recording Mantle Water Concentrations

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Ferriss, E.; Lloyd, A. S.; Hauri, E.

    2014-12-01

    Mantle xenoliths bear the nominally anhydrous minerals olivine and pyroxene which may contain significant quantities of water and potentially provide information on the water contents (and therefore solidus and strength) of the mantle. Very high diffusivities of water (as H) in olivine and pyroxenes, however, will promote rapid equilibration of water between xenoliths and their host magma. If magma ascends from the mantle (> 40 km) on the order of 10 m/s (an upper bound), minimum timescales available for interaction between melt and xenoliths are on the order of hours. Assuming the fastest diffusivities measured in olivine and clinopyroxene [1,2], water could exchange on the mm to cm lengthscales that are relevant to xenoliths during ascent. In this case, xenoliths would no longer convey reliable information about the water concentration of the upper mantle. However, multiple diffusive mechanisms may operate in olivine [3] and clinopyroxene [4]; some of these mechanisms are orders of magnitude slower than others, and may prevent widespread diffusive exchange [3]. To explore the potential for water exchange between mantle xenoliths and their host magma, we report here data on xenolith-host magma pairs from two cinder cones in the Western US: MO1016 from the Mojave Desert, CA and GCB from the north rim of the Grand Canyon, AZ). The host magma at MO1016 is relatively dry, while the magma at GCB is relatively wet, with 1.3 vs. 3.2 wt% H2O as measured by SIMS in olivine-hosted melt inclusions. The water concentration of mantle xenolith clinopyroxenes (cpx) in MO1016 also contain lower H2O (< 225 ppm, by SIMS) than those in GCB (< 560 ppm, from [5]). If we apply an Al-dependent partition coefficient [6] to the cpx water concentrations, the predicted melt concentrations are nearly identical to those recorded in the host magma melt inclusions. This relationship is suggestive of complete diffusive exchange of xenolith cpx with the host magma. Future work will explore grain

  9. Mantle Xenoliths from the Calatrava Volcanic Province, Spain - Evidence for Carbonatite- Silicate Interaction in the Upper Mantle.

    NASA Astrophysics Data System (ADS)

    Humphreys, E. R.; Bailey, K.; Hawkesworth, C. J.; Wall, F.

    2008-12-01

    Mantle xenoliths entrained in pyroclastic tuffs from the Calatrava Volcanic Province (CVP), Spain represent a snapshot of the lithospheric mantle from the last 10 Ma. They display significant heterogeneity in modal mineralogy and mineral chemistry. The presence of carbonate as inclusions in mantle minerals and the chemical composition of the clinopyroxenes suggest interaction of the lithospheric mantle with a compositionally different melt or fluid phase. Our study details the chemical complexity of xenoliths from this province, and seeks to distinguish the effects of partial melting and carbonatite-mantle interaction. The CVP is an alkaline volcanic province (8 to 1.6 Ma) located in a failed rift in central Spain. Volcanoes are dominantly maars or cinder cones, some of which are associated with minor lava extrusions. Carbonate forms a major component in many pyroclastic deposits (Bailey et al., 2005) and xenolithic material is prolific in most pyroclastic tuff rings. Mantle xenoliths are abundant and they show an affinity to pyroclastic tuffs including a melilitite or leucitite silicate component. Nodules encompassing lherzolite, wehrlite, harzburgite, pyroxenites and a range of composite lithologies have been studied from three localities. The dominant nodule composition from the CVP is spinel lherzolite, but wehrlite is also common. Mg numbers of olivines from lherzolites and wehrlites show a strong bimodality with wehrlitic olivines being enriched in iron Fo(84.7-85.5) whereas lherzolites show mantle values of Fo(89.6-90.6). The analysed wehrlites contain phlogopite in major quantities; a rare mineral component for Cenozoic European mantle xenoliths. Texturally, wehrlites differ from lherzolites primarily as a result of reaction textures and disequilibrium features. Spongy clinopyroxene reaction halos are commonly associated with interstitial melt and spinels also show reaction textures with granular boundaries, enriched in chromium and iron. Lherzolites

  10. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Giuliani, Andrea; Phillips, David; Kamenetsky, Vadim S.; Goemann, Karsten

    2016-01-01

    Kimberlite magmas are of economic and scientific importance because they represent the major host to diamonds and are probably the deepest magmas from continental regions. In addition, kimberlite magmas transport abundant mantle and crustal xenoliths, thus providing fundamental information on the composition of the sub-continental lithosphere. Despite their importance, the composition and ascent mechanism(s) of kimberlite melts remain poorly constrained. Phlogopite is one of the few minerals that preserves a history of fluid migration and magmatism in the mantle and crust and is therefore an invaluable petrogenetic indicator of kimberlite magma evolution. Here we present major and trace element compositional data for phlogopite from the Bultfontein kimberlite (Kimberley, South Africa; i.e. the kimberlite type-locality) and from entrained mantle xenoliths. Phlogopite macrocrysts ( > 0.3-0.5 mm) and microcrysts (between 0.1 and 0.3 mm) in the Bultfontein kimberlite display concentric compositional zoning patterns. The cores of these phlogopite grains exhibit compositions typical of phlogopite contained in peridotite mantle xenoliths. However, the rims of some grains show compositions analogous to kimberlite groundmass phlogopite (i.e. high Ti, Al and Ba; low Cr), whereas other rims and intermediate zones (between cores and rims) exhibit unusually elevated Cr and lower Al and Ba concentrations. The latter compositions are indistinguishable from matrix phlogopite in polymict breccia xenoliths (considered to represent failed kimberlite intrusions) and from Ti-rich overgrowth rims on phlogopite in other mantle xenoliths. Consequently, it is likely that these phlogopite grains crystallized from kimberlite melts and that the high Ti-Cr zones originated from earlier kimberlite melts at mantle depths. We postulate that successive pulses of ascending kimberlite magma progressively metasomatised the conduit along which later kimberlite pulses ascended, producing progressively

  11. Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Francis, D.

    1999-09-01

    The recently discovered Nikos kimberlite on Somerset Island, in the Canadian Arctic, hosts an unusually well preserved suite of mantle xenoliths dominated by garnet-peridotite (lherzolite, harzburgite, dunite) showing coarse and porphyroclastic textures, with minor garnet-pyroxenite. The whole rock and mineral data for 54 Nikos xenoliths indicate a highly refractory underlying mantle with high olivine forsterite contents (ave. Fo=92.3) and moderate to high olivine abundances (ave. 80 wt.%). These characteristics are similar to those reported for peridotites from the Archean Kaapvaal and Siberian cratons (ave. olivine Fo=92.5), but are clearly distinct from the trend defined by oceanic peridotites and mantle xenoliths in alkaline basalts and kimberlites from post-Archean continental terranes (ave. olivine Fo=91.0). The Nikos xenoliths yield pressures and temperatures of last equilibration between 20 and 55 kb and 650 and 1300°C, and a number of the peridotite nodules appear to have equilibrated in the diamond stability field. The pressure and temperature data define a conductive paleogeotherm corresponding to a surface heat flow of 44 mW/m 2. Paleogeotherms based on xenolith data from the central Slave province of the Canadian craton require a lower surface heat flow (˜40 mW/m 2) indicating a cooler geothermal regime than that beneath the Canadian Arctic. A large number of kimberlite-hosted peridotites from the Kaapvaal craton in South Africa and parts of the Siberian craton are characterized by high orthopyroxene contents (ave. Kaapvaal 32 wt.%, Siberia 20 wt.%). The calculated modal mineral assemblages for the Nikos peridotites show moderate to low contents of orthopyroxene (ave. 12 wt.%), indicating that the orthopyroxene-rich mineralogy characteristic of the Kaapvaal and Siberian cratons is not a feature of the cratonic upper mantle beneath Somerset Island.

  12. Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia

    NASA Astrophysics Data System (ADS)

    Rubolini, Diego; Ambrosini, Roberto; Caffi, Mario; Brichetti, Pierandrea; Armiraglio, Stefano; Saino, Nicola

    2007-10-01

    Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1 3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites.

  13. Magnetite Nucleation in Mantle Xenoliths During Quasi-Adiabatic Ascent

    NASA Astrophysics Data System (ADS)

    Walsh, K. B., Jr.; Filiberto, J.; Friedman, S. A.; Knafelc, J.; Conder, J. A.; Ferre, E. C.; Khakhalova, E.; Feinberg, J. M.; Neal, C. R.; Ionov, D. A.; Hernandez, F. M.

    2014-12-01

    Can magnetite be a stable phase in the lithospheric mantle? Equilibrium-based thermodynamic calculations and petrologic models predict that it should not be stable. Studies of mantle xenoliths during the 1980s concluded that even though there were rare exceptions, mantle rocks do not host sufficient concentrations of ferromagnetic minerals and are too hot to allow any magnetic remanence. Thus, conventional wisdom dictates that the Moho constitutes a fundamental magnetic boundary. Yet, growing evidence from a more complete global mantle xenolith survey indicates the presence of ferromagnetic minerals in mantle materials. Examination of mantle xenoliths devoid of serpentinization and meteoric alteration show the presence of ferromagnetic minerals within primary silicate mineral phases, including olivine, pyroxene, and spinel. Nucleation of these magnetic minerals could occur at three different stages: in-situ in the mantle, upon ascent, and at the surface. This study reports the results of laboratory-based quasi-adiabatic decompression experiments that aim to simulate the ascent of mantle xenoliths through the lithosphere and test if magnetite growth is promoted during the process. The starting material for these experiments is San Carlos olivine, which holds a magnetic remanence of less than ~10-10 A/m2-1kg2 (the detection limit of the vibrating sample magnetometer). This low starting remanence will allow us to identify whether new magnetic minerals are formed during the decompression experiments using either vibrating sample magnetometry or SQUID-based rock magnetometers. All olivine grains in these experiments were hand-picked under a light microscope in an effort to avoid the inclusion of grains with spurious magnetic minerals. Olivine powders from these carefully selected grains will be used to represent average mantle olivine compositions (Fo90-Fo92). Experiments will start at 1 GPa and be decompressed to 0.3 GPa over 60 hrs at constant temperature (1200° C

  14. Mantle metasomatism above subduction zones: Trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines)

    SciTech Connect

    Vidal, Ph. ); Dupuy, C. ); Maury, R.; Richard, M. )

    1989-12-01

    Trace-element abundances and radiogenic isotope ratios have been determined for a suite of upper mantle-derived xenoliths collected from Pliocene-Quaternary andesitic lavas on Batan Island, northernmost Philippines. The xenoliths exhibit mineralogical changes and large ion lithophile enrichment indicative of metasomatism involving H{sub 2}O-rich fluids. Strontium and neodymium isotopes in the xenoliths are not totally consistent with those in host lavas, but a common signature is indicated by the fact that all samples plot below the mantle array. The flux of fluids in the mantle wedge probably occurred over a long period of time. The flux induced large but variable changes in mineral and trace and isotopic compositions, and ultimately resulted in the melting of the peridotites and production of island-arc lavas.

  15. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    NASA Technical Reports Server (NTRS)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  16. Power law olivine crystal size distributions in lithospheric mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Tarquini, S.

    2002-12-01

    Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.

  17. Experimental study bearing on the absence of carbonate in mantle-derived xenoliths

    SciTech Connect

    Canil, D. )

    1990-10-01

    Experimentation at high pressures in peridotite + CO{sub 2} systems has suggested that some CO{sub 2}-rich, Si-undersaturated magmas originate in mantle source regions consisting of carbonated peridotite. However, a caveat to the petrological application of such experiments has been the virtual absence of carbonate in mantle xenoliths. Decompression experiments were undertaken to resolve this problem and to test the hypothesis that carbonated peridotite exists in the upper mantle, but decomposes during ascent as xenoliths in its host magma. The author demonstrate that carbonate coexisting with silicates in mantle-derived xenoliths could not survive entrainment even in the fastest ascending magmas due to rapid decarbonation upon decompression. The author conclude that carbonate may indeed exist in the upper mantle, and that the paucity of this phase in mantle-derived xenoliths does not require its absence in the mantle source regions of many primary, alkalic magmas.

  18. Mantle xenoliths from Marosticano area (Northern Italy): a comparison with Veneto Volcanic Province lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo

    2016-04-01

    The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the North-East of Italy, represents the most important volcanic distric of Adria Plate. It is composed by five volcanic bodies: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas and range in composition from nephelinites to tholeiites. Often VVP nephelinites and basanites carry mantle xenoliths (mainly harzburgites and lherzolite). This study reports petrological comparison between Marosticano xenoliths (new outcrop) and xenoliths from the Lessinean and Val d'Adige areas already studied by many Authors (Siena & Coltorti 1989; Beccaluva et al., 2001, Gasperini et al., 2006). Mineral major elements analyses show that the Marosticano lherzolites and harzburgites reflect "more restitic" composition than the mantle domain beneath the other VVP districts (Lessini Mts. and Val d'Adige). In fact, olivine and pyroxene of Marosticano xenoliths have the highest mg# values of the entire district (Marosticano→90-93; literature→86-92). At comparable mg# (45-85 wt%) Marosticano spinels tend to be higher in Cr2O3 (23-44 wt%) contents with respect to the other VVP sp (7-25 wt%). It is worth noting that, Ni contents of Marosticano olivines in both harzburgites and lherzolites are higher (2650-3620 ppm) than those of the Lessinean xenoliths (1500- 3450 ppm), and similar to that of Val d'Adige lherzolites (3000-3500 ppm), approaching the contents of Archean cratonic mantle (Kelemen, 1998). In turn, Lessinean olivines properly fall in the Ni-mg# Phanerozoic field. At fixed pressure of 15 kbar, the equilibration temperature of Marosticano xenoliths are similar (Brey & Köhler: 920-1120°C) to those of Lessini (O'Neill & Wall: 990-1110°C; Beccaluva et al., 2007), but higher than those of Val d'Adige (Wells: 909-956°C; Gasperini et al., 2006). Finally, Marosticano mantle fragment show similar relatively high

  19. Mantle Evolution Associated With the Rio Grande Rift: Geochemistry of Upper Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Kil, Y.; Wendlandt, R. F.

    2001-12-01

    Upper mantle xenoliths from three locales associated with the southern Rio Grande Rift have been investigated to determine lithosphere composition, chemical processes, and pre-eruptive pressure and temperature conditions. Sample locations, Potrillo and Elephant Butte within the rift axis and Adam's Diggings, located 50 km west of the rift axis, were specifically selected to evaluate spatial differences in mantle evolution. Xenolith suites from all locations included spinel lherzolites, harzburgites, and pyroxenites hosted in basanite and alkali basalt. Thin section, electron microprobe, and LA-ICPMS analyses were used to obtain detailed textural information, mineral compositions, and whole rock geochemistry. Xenoliths are classified as protogranular, porphyroclastic, or equigranular texture types. Equigranular texture types occur in the off-axis site. Recrystallized olivine grains are larger in xenoliths from sites along the rift axis than from the rift shoulder. Geothermal gradients based on mineral compositions, utilizing two-pyroxene and olivine-spinel geothermometers and the Ca-in olivine geothermobarometer, indicate temperatures off the rift axis at Adam's Diggings that are 75o-100oC cooler for a given pressure than under the rift axis. Whole rock chemical data and mineral modes support an early depletion event affecting xenoliths from all locations: Al2O3, CaO, Na2O, TiO2, V, Sc, Yb, and clinopyroxene content decrease with increasing MgO. The average (La/Yb)n of clinopyroxenes are 12.37, 0.95, and 1.14 for Adam's Diggings, Elephant Butte, and Potrillo xenoliths, respectively. This LREE enrichment and the occurrence of phlogopite that is interpreted to be primary in xenoliths from the off-axis site indicate both cryptic and modal metasomatic events. Both LREE-enriched and -depleted lherzolites are present at rift axis sites. Differences in recrystallized olivine size, xenolith textures, composition, and pre-eruptive pressure-temperature conditions between rift

  20. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  1. Carbonates in mantle xenoliths from French Massif Central: inference for carbonatite-related metasomatism.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Deloule, Etienne

    2016-04-01

    -richer, particularly the type 2 and 3 carbonates (XCa = 0.88 - 0.91; 3 - 5 wt. % MgO), a composition similar to that of the carbonates from the vesicles in the basanite (XCa = 0.86 - 0.88; 4 - 5 wt. % MgO). In both xenoliths, the carbonates have low REE abundances (mostly below the detection limit except La and Ce), similar to those reported for carbonates from mantle xenoliths. Moreover, the carbonate globules in the basanite have the same REE composition. Although the presence of rounded vesicles of calcite was originally interpreted as an evidence for silicate-carbonate liquid immiscibility, experimental studies have shown that alkali-free immiscible carbonates cannot be almost pure calcite. Textural features and composition (high XCa, low alkali contents and low REE abundances) of carbonates rule out their origin as quenched carbonatitic melts or immiscible carbonate liquids and favor, thus, an origin as crystal cumulates from mantle-derived carbonate-rich melts (e.g. alkali-carbonate melts). A possible scenario is the injection of small amounts of a carbonate-rich melt at mantle level shortly before the eruption to preserve the calcite crystals. Carbonate-rich melt or emanated fluids may have permeated the xenoliths (MC2) during the ascent and precipitated calcite crystals in the xenolith as well as in the entraining basanitic magma.

  2. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    PubMed

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-06-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.

  3. Nanodiamond Finding in the Hyblean Shallow Mantle Xenoliths

    PubMed Central

    Simakov, S. K.; Kouchi, A.; Mel’nik, N.N.; Scribano, V.; Kimura, Y.; Hama, T.; Suzuki, N.; Saito, H.; Yoshizawa, T.

    2015-01-01

    Most of Earth’s diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter. PMID:26030133

  4. Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily

    NASA Astrophysics Data System (ADS)

    Scirè, Salvatore; Ciliberto, Enrico; Crisafulli, Carmelo; Scribano, Vittorio; Bellatreccia, Fabio; Ventura, Giancarlo Della

    2011-08-01

    Microscopic blebs of sulfur-bearing organic matter (OM) commonly occur between the secondary calcite grains and fibrous phyllosilicates in extensively serpentinized and carbonated mantle-derived ultramafic xenoliths from Hyblean nephelinite diatremes, Sicily, Italy. Rarely, coarse bituminous patches give the rock a blackish color. Micro Fourier transform infrared spectra (μ-FTIR) point to asphaltene-like structures in the OM, due to partially condensed aromatic rings with aliphatic tails consisting of a few C atoms. X-ray photoelectron spectroscopy (XPS) analysis indicates the occurrence of minor S═O (either sulphonyl or sulphoxide) functional groups in the OM. Solubility tests in toluene, thermo-gravimetric (TGA) and differential thermal (DTA) analyses confirm the presence of asphaltene structures. It is proposed that asphaltenes derive from the in situ aromatization (with decrease in H/C ratio) of previous light aliphatic hydrocarbons. Field evidence excludes that hydrocarbon from an external source percolated through the xenolith bearing tuff-breccia. The discriminating presence of hydrocarbon in a particular type of xenolith only and the lack of hydrocarbon in the host breccia matrix, are also inconsistent with an interaction between the ascending eruptive system and a supposed deep-seated oil reservoir. Assuming that the Hyblean unexposed basement consists of mantle ultramafics and mafic intrusive rocks having hosted an early abyssal-type hydrothermal system, one can put forward the hypothesis that the hydrocarbon production was related to hydrothermal activity in a serpentinite system. Although a bacteriogenesis or thermogenesis cannot be ruled out, the coexisting serpentine, Ni-Fe ores and hydrocarbon strongly suggest a Fischer-Tropsch-type (FTT) synthesis. Subsequent variations in the chemical and physical conditions of the system, for example an increase in the water/rock ratio, gave rise to partial oxidation and late carbonation of the serpentinite

  5. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  6. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  7. The Homestead kimberlite, central Montana, USA: Mineralogy, xenocrysts, and upper-mantle xenoliths

    USGS Publications Warehouse

    Carter, Hearn B.

    2004-01-01

    The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25-30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca-Al-Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites. Garnet xenocrysts are mainly Cr-pyropes, of which 2-12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7-11 wt.% MgO and 0.8-1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17-0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample. Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet-spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic. Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite

  8. Iddingzitized olivine in mantle xenoliths: evidence for (really) early alteration

    NASA Astrophysics Data System (ADS)

    Low, P. C.; Schultz, L.; Stier, N.

    2011-12-01

    olivine. Some of the partially altered olivine crystals exhibiting the later texture contain deformational kink bands that, given that the young eruption age of the host basalt, post-dates any crustal activity that could be responsible for such a fabric at this location, much have occurred in the lithospheric mantle. Textural evidence that the iddingzitized areas of these olivine crystals pre-date the kink banding suggests that the alteration of these olivines occurred in the mantle. Post-entrainment alteration is unlikely particularly given the close proximity of altered and unaltered samples with similar post-entrainment history and the fact that the host basalts are not particularly hydrous. The variety of alteration in xenoliths at this location suggest that the entraining flows are either sampling small regions of the mantle that contains very high gradients with regard to water content or oxygen fugacity or are sampling relatively large areas. Quantitative analysis of volatiles in altered and unaltered olivine crystals planned in order to better constrain these gradients.

  9. Platinum-group element abundance patterns in different mantle environments

    SciTech Connect

    Rehkaemper, M.; Halliday, A.N.; Barfod, D.; Fitton, J.G.; Dawson, J.B.

    1997-11-28

    Mantle-derived xenoliths from the Cameroon Line and northern Tanzania display differences in their platinum-group element (PGE) abundance patterns. The Cameroon Line lherzolites have uniform PGE patterns indicating a homogeneous upper mantle over several hundreds of kilometers, with approximately chondritic PGE ratios. The PGE patterns of the Tanzanian peridotites are similar to the PGE systematics of ultramafic rocks from ophiolites. The differences can be explained if the northern Tanzanian lithosphere developed in a fluid-rich suprasubduction zone environment, whereas the Cameroon Line lithosphere only experienced melt extraction from anhydrous periodotites. 32 refs., 2 figs., 1 tab.

  10. Chemical and petrological heterogenity of lithospheric mantle beneath N Patagonia (Argentina) - case study of Cerro Chenque xenoliths.

    NASA Astrophysics Data System (ADS)

    Kozdrowska, Dominika; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Puziewicz, Jacek; Bjerg, Ernesto

    2015-04-01

    Mantle-xenoliths-bearing, back-arc Pliocene - Quaternary alkali basalts occur in N Patagonia, Argentina (Bjerg et al., 2005, J. of S. Am. Sci.). The Cerro Chenque (Rio Negro province) trachybasaltic lavas carry small (up to 10 cm in diameter) xenoliths of anhydrous, spinel bearing harzburgites, dunites and less abundant clino- , orthopyroxenites, websterites. The xenolith suite comprises also gabbros and norites, which are not discussed in this study. All the phases forming xenoliths are rich in Mg (Fo=90.5-93.5%; mg#Opx=0.90-0.94; mg#Cpx=0.91-0.95). Composition of spinel is extremely variable (mg#=0.65-0.85; cr#=0.00-0.70). Three types (A, B, C) of REE patterns occur in clinopyroxene and orthopyroxene: (1) type A (harzburgites and orthopyroxenites) is U-shaped in both the pyroxenes, REE contents vary significantly (e.g. La=~0.5 primitive mantle values (PM), ~5 PM, and ~50PM); (2) type B (dunites and harzburgites) clinopyroxene has flat HREE and is continuously enriched in LREE up to 10x PM, orthopyroxene is U-shaped; (3) type C (harzburgites) clinopyroxene is convex upward, La=5-7PM), orthopyroxene is continuously depleted in LREE. Clinopyroxene of all the types is poor in Ti, while normalized content of other trace elements is strongly variable. Trace element compositions of Cerro Chenque xenolithc clinopyroxene cover whole compositional range of mantle-derived clinopyroxene from Rio Negro province presented by Bjerg et al., 2005 (op.cit.). In xenoliths where clino- and orthopyroxene are in equilibrium, the calculated temperatures are always around 1000°C (Brey and Köhler,1990, JoP). No spinel-clinopyroxene symplectites suggesting peridotite provenance from garnet stability field were observed. Strong variations in rock-type and chemical composition of minerals forming Cerro Chenque xenoliths suggest complicated structure of upper mantle beneath N Patagonia. At present stage of study we suggest that Earth's lithospheric mantle in this region: - suffered from

  11. Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen)

    NASA Astrophysics Data System (ADS)

    Sgualdo, P.; Aviado, K.; Beccaluva, L.; Bianchini, G.; Blichert-Toft, J.; Bryce, J. G.; Graham, D. W.; Natali, C.; Siena, F.

    2015-05-01

    Detailed petrological and geochemical investigations of an extensive sampling of mantle xenoliths from the Neogene-Quaternary Bir Ali diatreme (southern Yemen) indicate that the underlying lithospheric mantle consists predominantly of medium- to fine-grained (often foliated) spinel-peridotites (85-90%) and spinel-pyroxenites (10-15%) showing thermobarometric estimates in the P-T range of 0.9-2.0 GPa and 900-1150 °C. Peridotites, including lherzolites, harzburgites and dunites delineate continuous chemical, modal and mineralogical variations compatible with large extractions of basic melts occurring since the late Proterozoic (~ 2 Ga, according to Lu-Hf model ages). Pyroxenites may represent intrusions of subalkaline basic melts interacting and equilibrated with the host peridotite. Subsequent metasomatism has led to modal changes, with evidence of reaction patches and clinopyroxene and spinel destabilization, as well as formation of new phases (glass, amphibole and feldspar). These changes are accompanied by enrichment of the most incompatible elements and isotopic compositions. 143Nd/144Nd ranges from 0.51419 to 0.51209 (εNd from + 30.3 to - 10.5), 176Hf/177Hf from 0.28459 to 0.28239 (εHf from + 64.4 to - 13.6), and 208Pb/204Pb from 36.85 to 41.56, thus extending from the depleted mantle (DM) towards the enriched OIB mantle (EM and HIMU) components. 3He/4He (R/RA) ratios vary from 7.2 to 7.9 with He concentrations co-varying with the most incompatible element enrichment, in parallel with metasomatic effects. These metasomatic events, particularly effective in harzburgites and dunites, are attributable to the variable interaction with alkaline basic melts related to the general extensional and rifting regime affecting the East Africa-Arabian domain during the Cenozoic. In this respect, Bir Ali mantle xenoliths resemble those occurring along the Arabian margins and the East Africa Rift system, similarly affected by alkaline metasomatism, whereas they are

  12. Actualistic models of mantle metasomatism documented in a composite xenolith from Dish Hill, California

    USGS Publications Warehouse

    Nielson, J.E.; Budahn, J.R.; Unruh, D.M.; Wilshire, H.G.

    1993-01-01

    infiltrated beyond that zone. The small distance over which variations occur is due to the small amount of liquid that infiltrated. Only in the contact zone was peridotite wallrock saturated by a liquid composition similar to the dike. Comparison of the Ba-2-1 data with those of another xenolith from Dish Hill suggests that the compositional variations of mantle metasomatism result from both the compositional contrast between the metasomatizing liquid and wallrock and the relative abundances of each. Compositional and volumetric variations of mantle partial melts and their fractionates, and repeated events of melting and reaction in contiguous mantle, can create broad ranges of metasomatic "signatures" from the same process. ?? 1993.

  13. An EMPA investigation of the redox state of natural glasses from mantle xenoliths and mantle-derived boninitic magmas.

    NASA Astrophysics Data System (ADS)

    Fialin, Michel; Wagner, Christiane; Ohnenstetter, Daniel

    2010-05-01

    shallow (spinel-bearing) and deep (garnet-bearing) lithosphere [5, 6, 7]. It is thus of great interest to measure directly the glass ferric-ferrous ratios at a scale of a few µm. In the lherzolite, the glassy pockets formed around primary spinel contain small (10-30 micrometers) secondary phases and abundant bubble-like voids, suggesting a former high content of volatiles removed during degassing. The glasses have a phono-tephrite to trachy-andesite, a composition in the range of that reported for world-wide peridotite xenoliths [6], with low FeO (~3 wt.%) and H2O (< 1wt.%) contents. The boninites contain abundant (48 vol. %) fresh glass of dacitic composition with low FeO (2 wt. %) and rich in H2O (~5-6 wt. %). In both samples, the glass is in contact with Cr-spinel which shows (in mantle xenolith) or not (in boninite) a sieve-textured rim resulting from a coupled dissolution-precipitation process. The secondary spinels of the rim are enriched in Cr and depleted in Al. With or without a sieve-textured rim, the spinel shows a hematite rim at the contact with the glass. The high (0.6-0.8 ±0.04 at 1sigma) EMP Fe3+/SFe ratio measured in the glass from the lherzolite samples strongly contrasts with the calculated melt fO2 (FMQ ± 1) from the composition of secondary phases. Thus, the measured ratio does not reflect the original redox state of the migrating melt but is consistent with the late-stage reworking of the sample under oxidized conditions (hematite deposition). Measuring the Fe3+/SFe ratios in highly hydrated glasses, such as those in boninite (up to 6 wt% H2O) is challenging, due to beam damage caused during the analysis. Nevertheless values in the range Fe3+/SFe=0.7-0.8 were measured for the glass, in good agreement with the Fe3+/SFe ratios for the iron oxides formed as late epitaxial layers grown onto the early cristallized spinels. [1] Fialin et al. (2001) Am. Mineral. 86, 456-472. [2] Fialin et al. (2004) Am. Mineral., 89,654-662. [3] Wagner et al. (2008

  14. In situ SIMS oxygen isotope analysis of olivine in the Tibetan mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Zhao, Zhidan; Zhu, Di-Cheng; Liu, Dong; Mo, Xuanxue

    2016-04-01

    Although the mantle-derived xenoliths from Lhasa terrane provide a means of directly investigating the mantle underlying the southern part of the plateau, they were rarely found in the region. The only case of mantle xenoliths came from the Sailipu ultrapotassic volcanic rocks, erupted at ˜17 Ma, which have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). A further study by Liu et al.(2014) of in-situ oxygen isotope of olivine crystals in Sailipu mantle xenoliths identify a metasomatized mantle reservoir that interpreted as the sub-arc lithospheric mantle, with anomalously enriched oxygen isotopes (δ18O=8.03). Here we present oxygen isotopes data on the Sailipu mantle xenolith olivines, using different method of sample preparation. Mantle xenoliths (less than 1 cm in diameter) together originally with their host volcanic rocks were prepared in epoxy adjacent to grains of a San Carlos olivine intralaboratory standard and then polished to a flat and smooth surface. Oxygen isotope compositions of olivines occurs both in mantle xenolith and as phenocryst in the host rock, were analyzed in situ using CAMECA SIMS-1280 ion microprobe at the Institute of Geology and Geophysics, Chinese Academy of Sciences. We also performed traditional oxygen isotope analysis on three olivine phenocrysts separates from the host lava. Our new data show: (1) The mantle xenolith olivines have typical mantle oxygen isotopic composition (δ18O=4.8-8.0‰ with average of 5.5±0.2‰ n=105) with variety Fo#(78-90), (2) Oxygen isotopes of situ olivine phenocrysts in the Sailipu lavas (δ18O=7.1-9.2‰ Fo#=70-84, n=66), are similar to that of the whole rock (δ18O=7.0-9.4‰ Fo#=64-74, n=8, Zhao et al., 2009), and three olivine phenocryst grains (δ18O=7.2-7.8); (3) The intralaboratory standard of San Carlos olivine can be a suitable standard using for analyzing olivines with Fo not only

  15. Isotopic evidence from lavas and mantle xenoliths for a mixed asthenospheric-lithospheric source for Rio Grande rift magmas

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. N.; Byerly, B. L.; Lassiter, J. C.

    2011-12-01

    generation for the West Potrillo lavas. Future O2 isotopic studies on the lavas should further help to evaluate whether the heterogeneity in these lavas represents the mantle source or a crustal component. The isotopic end members of the lavas clearly fall within the field of the mantle xenoliths providing strong support for the mixing of variable mantle components in the lava source. The more deeply sourced West Potrillo lavas show a stronger input from the asthenospheric source. The shallower Elephant Butte lavas have a dominantly lithospheric signature. The lack of correlation between major element indicators such as Mg#, MgO and SiO2 with isotopic ratios as well as the abundance of mantle xenoliths hosted by these lavas suggests very limited crustal residence times. This implies that significant crustal assimilation is unlikely. Our data supports the arguments of Perry et al. (1987) and McMillan et al. (2000) that the isotopic heterogeneity in Rio Grande rift lavas results from variable contribution of asthenospheric and lithospheric sources and that the lithospheric mantle signature is more pronounced in lavas derived from shallower depths.

  16. Crustal evolution at mantle depths constrained from Pamir xenoliths

    NASA Astrophysics Data System (ADS)

    Kooijman, E.; Hacker, B. R.; Smit, M. A.; Kylander-Clark, A. R.; Ratschbacher, L.

    2012-12-01

    Lower crustal xenoliths erupted in the Pamir at ~11 Ma provide an exclusive opportunity to study the evolution of crust at mantle depths during a continent-continent collision. To investigate, and constrain the timing of, the petrologic processes that occurred during burial to the peak conditions (2.5-2.8 GPa, 1000-1100 °C; [1]), we performed chemical- and isotope analyses of accessory minerals in 10 xenoliths, ranging from eclogites to grt-ky-qtz granulites. In situ laser ablation split-stream ICPMS yielded 1) U-Pb ages, Ti concentrations and REE in zircon, 2) U/Th-Pb ages and REE in monazite, and 3) U-Pb ages and trace elements in rutile. In addition, garnet, and biotite and K-feldspar were dated using Lu-Hf and 40Ar/39Ar geochronology, respectively. Zircon and monazite U-(Th-)Pb ages are 101.9±1.8, 53.7±1.0, 39.1±0.8, 21.7±0.4, 18.2±0.5, 16.9±0.8, 15.1±0.3 (2σ) and 12.5-11.1 Ma; most samples showed several or all of these populations. The 53.7 Ma and older ages are xenocrystic or detrital. For younger ages, zircon and monazite in individual samples recorded different ages-although zircon in one rock and monazite in another can be the same age. The 39.1 Ma zircon and monazite mostly occur as inclusions in minerals of the garnet-bearing assemblage that represents the early, low-P stages of burial. Garnet Lu-Hf ages of 37.8±0.3 Ma support garnet growth at this time. Spinifex-like textures containing 21.7-11.1 Ma zircon and monazite record short-lived partial melting events during burial. Aligned kyanite near these patches indicates associated deformation. Zircons yielding ≤12.5 Ma exhibit increased Eu/Eu* and markedly decreased HREE concentrations, interpreted to record feldspar breakdown and omphacite growth during increasing pressure. Rutile U-Pb cooling ages are 10.8±0.3 Ma in all samples. This agrees with the weighted mean 40Ar/39Ar age of eight biotite, K-feldspar and whole rock separates of 11.00+0.16/-0.09 Ma. Rutile in eclogites provides Zr

  17. Geochemical and Sr-Nd isotopic characteristics of mantle xenoliths from NE Spain

    NASA Astrophysics Data System (ADS)

    Galán, G.; Oliveras, V.

    2012-04-01

    Mantle xenoliths in alkaline mafic lavas and pyroclasts from the Neogene-Quaternary volcanism in NE Spain are studied using major, trace element geochemistry and Sr-Nd isotopes, to compare the lithospheric mantle of this area with that of other European zones, and to assess the different processes that conditioned its evolution. The xenoliths mostly come from two volcanoes and are mainly formed of anhydrous spinel lherzolites and harzburgites, in approximately equal proportion. Accessory amphibole and phlogopite are occasional, as it happens with plagioclase, which appears in corona textures around lherzolite spinel. Much subordinated cumulate pyroxenite xenoliths (olivine wbsterite, clinopyroxenite types) are also found. Textures are mostly protogranular, but there are also porphyroclastic, transitional between protogranular and porphyroclastic, and equigranular forms among lherzolites. Pyrometamorphic textures are observed in a few xenoliths. Co-variation diagrams for basaltic components and MgO concentrations in whole rock analyses show gradation from lherzolites to harzburgites. This is also the case for compatible and mildly incompatible trace elements, but not for the most incompatible ones. This gradual variation is also confirmed by mineral compositions, most of which correspond to off-craton xenoliths. REE patterns for lherzolites and for their clinopyroxene are LREE and MREE depleted, whereas for harzburgites are LREE and MREE enriched. U-shaped REE patterns are rarely observed in lherzolite clinopyroxene that also shows more significant negative anomalies at Zr and Ti. Clinopyroxene from harzburgites is also remarked by more significant negative anomalies at Nb, Ti and Zr, and by higher Th and U abundances, than lherzolite clinopyroxene . Sr and Nd isotopic compositions for clinopyroxene define a continuous and inverse trend from DMM lherzolites to enriched harzburgites (87Sr/86Sr: 0.702486-0.709772; 143Nd/144Nd: 0.513359-0.512411). Harzburgite

  18. Petrogenesis of spinel peridotite suite xenoliths from northern Santa Cruz province, Argentina; implication for the Patagonian Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theodoros; Mundl, Andrea; Bjerg, Ernesto; Tschegg, Cornelius; Kosler, Jan

    2010-05-01

    Mantle xenoliths from Don Camilo, an area located on the North margin of the Deseado Masiff in Patagonia, comprise spinel bearing lherzolites, harburgites and dunites, wehrlites, clinopyroxenites and gabbros. The most common rock type in our collection is spinel-lherzolite followed by dunites. Harzurgites, wehrlites and gabbros are less widespread. Spinel-lherzolites and harzburgites have protogranular textures whereas dunites have equigranular to equigranular tabular textures. There are two kinds of dunites: mantle dunites and cumulate dunites. The olivine mg# in the mantle dunites vary within a narrow range, from 90.5 to 91.5 and the NiO content from 0.39 to 0.42 wt%, whereas in the cumulate dunites the mg# ranges from 87 to 90.5 and the NiO content from 0.22 to 0.40 wt%. Both types of dunites contain fine grained interstitial diopside. Hydrous phases, besides one sample that contains amphibole, were so far not found. The spinel peridotites have whole rock REE abundances depleted in LREE [(La/Yb)N=0.34-0.85)] and the dunites are LREE enriched [(La/Yb)N=3.49]. LA-ICP-MS analyses of cpx show that a number of the studied spinel peridotite xenoliths experienced cryptic metasomatism. Three groups of xenoliths have been recognized according to REE and other incompatible trace element patterns in cpx: group I has depleted LREE abundances, group II is highly enriched in LREE (20-30 x PM) and group 3 has moderate LREE enrichments. The core of some clinopyroxenes in group II has depleted LREE similar to those in group I, apparently representing relictic cores not affected by metasomatism. In addition the metasomatized clinopyroxenes are significantly enriched in Sr, Th and U. Evidently, the metasomatic agent was a H2O-rich fluid (high LREE, Sr, Th and U). Clinopyroxene Sr and Nd isotopic ratios vary largely from 0.702671 to 0.705788 and from 0.51229 to 0.513251 respectively. Mantle and cumulate dunites have experienced modal metasomatism. In both types of dunites the

  19. Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Macris, Catherine A.; Manning, Craig E.; Young, Edward D.

    2015-04-01

    The origin of variations in iron isotope compositions of mantle minerals is uncertain, and predictions of equilibrium inter-mineral iron isotope fractionation conflict. This hinders interpretation of the petrologic and geochemical implications of Fe isotope data from mantle lithologies. To address this, we present a revised ionic model for predicting equilibrium iron isotope fractionation between mantle minerals and use it to interpret measured inter-mineral iron isotopic fractionation from five distinct mantle xenolith lithologies from San Carlos, Arizona. The samples represent a broad range of modal abundances and include lherzolite, harzburgite, dunite, clinopyroxenite, and websterite. The xenoliths exhibit Fe-isotopic variation between minerals in a single sample, and between samples. In all cases where spinel and olivine coexist, the 57Fe/54Fe of spinel is greater than that of the corresponding olivine, agreeing with expectations for equilibrium fractionation from theory (ionic model), but disagreeing with predictions based on Mössbauer data. The 57Fe/54Fe values of clinopyroxenes from the xenoliths show no clear systematic differences. We interpret this to be a result of varying degrees of metasomatism, perhaps involving interaction with a melt. The spinel peridotite samples (lherzolite, harzburgite, and dunite) are partially melted residual mantle that exhibit a decrease in whole-rock 57Fe/54Fe with increasing olivine abundance. This is consistent with progressive extraction of a 57Fe-rich partial melt. The clinopyroxenite has the highest whole-rock 57Fe/54Fe, consistent with its origin as a cumulate from an unrelated magma possessing elevated 57Fe/54Fe. The websterite sample is transitional to Group II type xenoliths, has the lowest whole-rock 57Fe/54Fe of the investigated samples, and likely experienced a more complex metasomatic history. This study demonstrates that the Fe isotope compositions of San Carlos xenoliths and their component minerals record

  20. Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths

    NASA Astrophysics Data System (ADS)

    Peters, Bradley J.; Day, James M. D.; Taylor, Lawrence A.

    2016-08-01

    Ultramafic cumulate rocks form during intrusive crystallization of high-MgO magmas, incorporating relatively high abundances of compatible elements, including Cr and Ni, and high abundances of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Here, we utilize a suite of cumulate xenoliths from Piton de la Fournaise, La Réunion (Indian Ocean), to examine the mantle source composition of the Réunion hotspot using HSE abundances and Os isotopes. Dunite and wherlite xenoliths and associated lavas from the Piton de la Fournaise volcanic complex span a range of MgO contents (46 to 7 wt.%), yet exhibit remarkably homogeneous 187Os/188Os (0.1324 ± 0.0014, 2σ), representing the Os-isotopic composition of Réunion hotspot primary melts. A significant fraction of the xenoliths also have primitive upper-mantle (PUM) normalized HSE patterns with elevated Ru and Pd (PUM-normalized Ru/Ir and Pd/Ir of 0.8-6.3 and 0.2-7.2, respectively). These patterns are not artifacts of alteration, fractional crystallization, or partial melting processes, but rather require a primary magma with similar relative enrichments. Some highly olivine-phyric (>40 modal percent olivine) Piton de la Fournaise lavas also preserve these relative Ru and Pd enrichments, while others preserve a pattern that is likely related to sulfur saturation in evolved melts. The estimate of HSE abundances in PUM indicates high Ru/Ir and Pd/Pt values relative to carbonaceous, ordinary and enstatite chondrite meteorite groups. Thus, the existence of cumulate rocks with even more fractionated HSE patterns relative to PUM suggests that the Réunion hotspot samples a yet unrecognized mantle source. The origin of fractionated HSE patterns in Réunion melts may arise from sampling of a mantle source that experienced limited late accretion (<0.2% by mass) compared with PUM (0.5-0.8%), possibly involving impactors that were distinct from present-day chondrites, or limited core-mantle interactions. Given the

  1. Carbon elemental and isotopic composition in mantle xenoliths from Spain: Insights on sources and petrogenetic processes

    NASA Astrophysics Data System (ADS)

    Bianchini, G.; Natali, C.

    2017-02-01

    The carbon elemental concentration (C wt%) and isotopic (δ13C ‰) composition of mantle xenoliths from the Tallante and Calatrava volcanic occurrences (in South-East and Central Spain, respectively) have been investigated to identify carbon sources and processes occurring in distinct geodynamic settings of the Iberian Peninsula. The peridotitic mantle xenoliths from Calatrava show elemental C ranging from 0.11 to 2.87 wt% which is coupled with a continuous isotopic variation from very negative values (δ13C - 26.1‰) to typical mantle values (δ13C - 5.9‰). On the other hand, the Tallante mantle xenolith suite displays lower C contents (0.06-0.15 wt%) showing a tighter variation with 13C-depleted values ranging between - 20.1 and - 23.7‰; higher elemental C up to 0.41 wt% displaying distinctly less negative isotopic values (δ13C between - 13.8 and - 11.9‰) have been recorded in veins crosscutting Tallante peridotites, plausibly representing the product of metasomatic reactions. The data from the two investigated xenolith suites invariably display a good correlation between elemental and isotopic composition, suggesting a mantle origin for carbon and Rayleigh-type fractionation as the process responsible for the observed C-δ13C variation. However, the correlation between the carbon isotopic data with other isotopic tracers (e.g. 87Sr/86Sr, 3He/4He) used to identify distinct mantle components and metasomatic reactions, indicates systematic differences between the two xenolith suites suggesting that beneath the Betic Cordillera (where Tallante is located) the deep C-cycle involves recycling, via subduction preceding/accompanying continental collision, of crustal components back in the mantle. Coherently, geochemical trends observed in the Tallante xenoliths seem to be influenced by metasomatic agents generated by melting of crustal lithologies that according to the analysis of a metasedimentary xenolith can contain C up to 1.2 wt% having δ13C of ca. - 18

  2. 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Sobolev, Nikolay V.; Pernet-Fisher, John F.; Ketcham, Richard A.; Maisano, Jessica A.; Pokhilenko, Lyudmila N.; Taylor, Dawn; Taylor, Lawrence A.

    2015-04-01

    Diamonds form over billions of years, hundreds of kilometers beneath the Earth's surface, and in combination with inclusions trapped within, provide important constraints on the evolution of the mantle over geological time. Diamonds are generally studied as individual crystals sourced from highly explosive kimberlite pipes, which entrain and subsequently disaggregate mantle fragments (xenoliths) en route to the surface. This has resulted in a general absence of robust textural descriptions of diamonds relative to their hosting mantle protolith. The textural associations of diamonds within their mantle host rocks are reviewed here on the basis of a compilation of X-ray tomographic data for 17 diamondiferous eclogite xenoliths from Siberian kimberlites. This review represents a comprehensive description of diamonds relative to their host silicates. The lack of such descriptions in previous studies is largely due to the rarity of these xenoliths, the difficulty in preparing petrographic thin sections containing diamonds, and their high-monetary value. High-resolution computed X-ray tomography (HRCXT) produces up to 1200 sequential 2-D slices through individual xenoliths, each of which represents a 'pseudo thin-section' with a resolution on the order of 5-20 μm. The improved resolution of X-ray imaging in recent studies allows for the identification of not only primary minerals, but metasomatic minerals assemblages, including: 'spongy' textured clinopyroxene, phlogopite/K-richterite, and hercynitic spinel, allowing for the delineation of distinct metasomatic pathways through the xenoliths and their relationship to diamonds. Diamonds are observed in three distinct textural settings, potentially representing several temporally distinct diamond growth events, these setting includes: (1) diamonds completely enclosed in garnet; (2) diamonds associated with highly embayed silicate grain boundaries; and (3) diamonds contained within distinct metasomatic 'plumbing

  3. Preliminary data on mantle xenoliths from the Feldstein basalt (Thuringia, Germany)

    NASA Astrophysics Data System (ADS)

    Kukuła, Anna; Puziewicz, Jacek; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Milke, Ralf

    2014-05-01

    Feldstein is an isolated outcrop of columnar basaltic rock nearby Themar, located 60 km south-west of Erfurt (Thuringia, Germany). The Feldstein alkali basalt (ca. 16.3 Ma) belongs to the Heldburger Gangschar subset of the Central European Volcanic Province (Abratis et al. 2007). The Feldstein alkali basalt contains peridotitic xenoliths, which were the subject of our study. Two groups of spinel peridotite xenoliths occur in the Feldstein basalt. Group A spinel peridotite (2 xenoliths) is characterized by protogranular texture with typical grain size of 2 - 3 mm (max 8 mm). It consists of olivine (90.28 - 91.36 % Fo, 0.35 - 0.45 wt. % NiO), orthopyroxene (mg# 0.91 - 0.92, Al 0.09 - 0.18 a pfu), clinopyroxene (mg# 0.93 - 0.95, Al 0.06 - 0.21 a pfu) and spinel (cr# 0.20 - 0.41, mg# 0.66 - 0.78). The mg# and Al content in clinopyroxene are negatively correlated following the depletion trend after variable degrees of partial melting of the same source. One of the studied samples contains clinopyroxene that does not plot on the general depletion trend but has significantly higher Al (0.15 - 0.21 a pfu) for similar mg # 0.93 - 0.94 with clinopyroxenes from this trend. However the primitive mantle normalized clinopyroxene REE patterns (concave upwards with LaN/YbN=0.11) indicate that they are the residues after elevated degrees of partial melting. The most magnesian clinopyroxene that is Ca-rich and Al-poor has REE abundances, typical for strongly depleted spinel peridotites. It has concave upwards primitive mantle normalized pattern and LaN/YbN=0.61. A slight increase of LaN and CeN with inflection point at PrN has been observed as well. The group B spinel peridotites have protogranular texture (3-4 mm, max 7 mm grains) and some of them contain several melt pockets of basaltic composition. It consists of olivine (88.95 - 91.32 % Fo, 0.34 - 0.47 wt.% NiO), orthopyroxene (mg# 0.90 - 0.93, Al 0.04 - 0.16 apfu) and clinopyroxene (mg# 0.90 - 0.93, Al 0.10 - 0.20 a pfu). The

  4. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton

    NASA Astrophysics Data System (ADS)

    Araújo, D. P.; Griffin, W. L.; O'Reilly, S. Y.

    2009-11-01

    Abundant carbonatitic to ultramafic melt inclusions 0.2-2.5mm in diameter occur in the Cr-diopside of megacrystalline lherzolite xenoliths from the A154 kimberlite of the Diavik mine, Lac de Gras area. The melts range from carbonatitic (50-97% carbonate) to Ca-Mg-silicic (10-50% carbonate) to Mg-silicic (< 10% dispersed calcite) compositions, and are connected by veinlets of similar material, or by fractures bordered by spongy Cr-diopside. Phenocrysts and quench crystals of calcite, olivine and mica are set in carbonatitic to Mg-silicic matrices, and irregular volumes of carbonatite and Mg-silicate melt appear to have unmixed from one another within single inclusions. Calculated bulk compositions of the more silicic melts are similar in major- and trace elements to kimberlites from the Slave province. The Cr-diopside adjacent to melt inclusions is enriched in LREE, Ba, alkali elements, HFSE, Th and U. Calculated compositions of the metasomatising fluids are strongly enriched in these elements relative to the trapped melts, and are similar to fluids trapped in the opaque coats found on many Diavik diamonds. The microstructures, the metasomatic effects and the genetic relationship to diamond formation suggest that the melt inclusions formed when kimberlite-like melts penetrated the lherzolites along fractures deep in the lithospheric mantle. The melts began to differentiate into carbonatitic and ultramafic end-members, were trapped as globular inclusions during recrystallisation and necking-down prior to entrainment of the xenoliths in the kimberlite, and were quenched during ascent. The evolution of saline, water- and carbonate-rich fluids from melts such as these may play an important role in diamond genesis.

  5. Peridotite mantle xenoliths from the Pilchowice basanite (SW Poland): mineral chemistry

    NASA Astrophysics Data System (ADS)

    Ćwiek, Mateusz; Puziewicz, Jacek; Ntaflos, Theodoros; Kukuła, Anna

    2013-04-01

    The Cenozoic basanite from Pilchowice (SW Poland) belongs to the Cenozoic alkaline lava occurrences in SW Poland, which form the NE part of the Central European Volcanic Province. The basanite occurs in the Intra-Sudetic Fault, the major Variscan geological border in the NE Bohemian Massif. The rock, known for abundant rhönite (Ladenberger et al. 2006 and references therein) contains numerous, usually small (<10 cm) peridotitic mantle xenoliths. The protogranular texture (olivine up to 8 mm, common kink bands) of peridotites is obliterated by intense fissuring and fragmentation of the grains. The rocks contain crystallized melt pockets filled with olivine, clinopyroxene and plagioclase. The primary mineral assemblage consists of olivine, orthopyroxene and clinopyroxene and sparse spinel. Clinopyroxene occurs only in the part of the studied samples. The olivine is rich in forsterite (Fo 90.2 - 91.5) and contains 0.35 - 0.45 wt. % NiO. Clinopyroxene-free harzburgite contains Al poor orthopyroxene (mg# 0.92, 0.02 - 0.03 atoms of Al per formula unit, pfu in the following) and Cr -rich spinel (cr# 0.8). The clinopyroxene-bearing peridotites contain Al poor orthopyroxene (mg# 0.92, 0.04 atoms of Al pfu) and mildly Al impoverished clinopyroxene (mg# 0.92, 0.09 atoms Al pfu). The temperatures of equilibration (Brey & Köhler 1990) recorded in ortho- and clinopyroxene pairs are close to 900 °C. One of the peridotites contains clinopyroxene with abundant spongy rims. The orthopyroxene occurring in this rock is Al-rich (mg# 0.92, 0.12 atoms Al pfu) and the primary(non-spongy) clinopyroxene is Al-enriched (mg# 0.92, 0.17 atoms of Al pfu). Major element mineral composition in these rocks suggests that they preserved depleted chemical characteristics, which has been little changed by later metasomatic events, excepting the sample containing spongy clinopyroxene. One of the studied peridotite xenoliths contains low-forsterite olivine (Fo 83.00 - 86.50), relatively rich in

  6. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  7. Rock Magnetic Mineral Assemblage in Mineral Separates from Xenoliths of Continental Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Khakhalova, E.; Feinberg, J. M.; Ionov, D. A.; Ferre, E. C.; Friedman, S. A.; Hernandez, F. M.; Neal, C. R.; Conder, J. A.

    2014-12-01

    Studies of aeromagnetic anomalies suggest that the lithospheric mantle may contribute to long wavelength features. Examination of unaltered mantle xenoliths may reveal the mineralogical sources of these aeromagnetic anomalies. Prior work has reported microscopic inclusions of magnetic minerals in mantle silicates. Here we explore the magnetism of pure olivine, clinopyroxene, orthopyroxene, and spinel separated from peridotite xenoliths from the Dariganga and Tariat localities in Mongolia that sample the lithospheric mantle. All separates were leached with HF and HCl to remove secondary minerals adhering to the surface of the grains or in cracks. Separates were then mounted in cement to create monomineralic specimens for investigation using hysteresis loops, first order reversal curves (FORC), alternating field and thermal demagnetization of a 1T IRM, and low-temperature magnetometry. All specimens showed trace concentrations of ferromagnetic inclusions with Ms values of ~10-3 Am2kg-1. Thermal demagnetization showed a range of unblocking temperatures with median destructive temperatures of 300-400°C. Two specimens showed a dramatic demagnetization at 585°C, consistent with pure magnetite (Mt). The presence of Mt was confirmed by observations of the Verwey transition at 100-120K and by backfield remanence acquisition curves that plateau at ~300 mT. The median destructive alternating field was ~20 mT and 40-80 mT for specimens from Dariganga and Tariat, respectively. FORC diagrams show single-domain-like behavior with a median Hc of ~20 mT. The demagnetization experiments suggest that Mt inclusions in the lattice of olivine, opx, cpx and spinel carry magnetic remanence. Thus, the lithospheric mantle may exhibit in-situ ferromagnetism carried by Mt below 585°C. The magnetization of separates varies between xenolith localities but is consistent amongst minerals of the same locality. Future work will address whether the Mt formed before or during xenolith ascent.

  8. Cumulate xenoliths from Mt. Overlord, northern Victoria Land, Antarctica: A window into high pressure storage and differentiation of mantle-derived basalts

    NASA Astrophysics Data System (ADS)

    Perinelli, Cristina; Gaeta, Mario; Armienti, Pietro

    2017-01-01

    The alkaline basaltic magmas at Mt. Overlord (northern Victoria Land, Antarctica) entrained abundant ultramafic xenoliths (wehrlites, clinopyroxenites and hornblendites). Textures, bulk rock compositions, mineral chemistry and thermobarometric calculations indicate that the xenoliths represent cumulates that crystallised at the mantle-crust boundary. In particular, the major and trace element compositions of the bulk rocks and minerals indicate that the Mt. Overlord cumulates were formed through processes of crystal fractionation that affected hydrous basanitic magmas. Some of the xenoliths have textural features that suggest a lengthy (> 13 Myr) post-emplacement history at relatively low temperatures (1050-1100 °C) and high pressures (0.8 to 1.4 GPa) and that their primary parental melts were therefore related to the earliest phases of Cenozoic magmatism. These processes produced a "wet and hot deep zone" that had a strong influence on the thermochemical evolution of the lower crust beneath Mt. Overlord.

  9. A Mantle Xenolith Window Into the Grenville Orogeny of Southern Laurentia

    NASA Astrophysics Data System (ADS)

    Young, H. P.; Lee, C. A.

    2008-12-01

    The creation and isolation of the craton, or stable SCLM, is intimately connected to orogenesis. However, the nature of the lithospheric mantle beneath orogenic belts is incompletely understood due to the general lack of mantle xenolith-bearing basaltic magmas in such regions. One such place where we are afforded the opportunity to study the deep lithosphere beneath an orogenic belt is in central Texas, United States. Mantle xenoliths occur in late Cretaceous alkali basaltic magmas erupted through the remnants of the Appalachian - Ouachita structural belt of eastern and southern Laurentia. The Appalachian - Ouachita structural belt, which is buried beneath most of the Gulf Plain, represents two dissimilar cycles of orogenesis. The earlier cycle was the culmination of a long period of Proterozoic juvenile crust formation along Laurentia's southern and eastern margin. The more recent (Paleozoic) cycle created the fold and thrust belts currently exposed in the Appalachian and Ouachita Mountains, but involved mainly thin-skin tectonics and accretion of terranes, rather than continental suprasubduction settings. We are interested in identifying the process which emplaced mantle lithosphere beneath this ancient orogenic belt, and whether the original lithospheric mantle has been preserved there. Here, we show that the xenoliths beneath west-central Texas are of continental origin. These samples also have geochemical signatures suggestive of a suprasubduction zone setting in the form of enrichments in fluid-mobile trace (e.g. La) elements over fluid-immobile trace elements (e.g. Nb). These observations imply that the original continental lithosphere created in the Proterozoic suprasubduction zone setting was likely preserved during continent-continent collision and did not undergo wholesale delamination over a billion year period. During this period, the mantle convectively resisted two episodes of supercontinent rifting. However, the lithospheric mantle may have been

  10. Mantle xenoliths from Szentbékálla, Balaton: Geochemical and petrological constraints on the evolution of the lithospheric mantle underneath Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theo; Bizimis, Michael; Abart, Rainer

    2017-04-01

    Pliocene alkali basalts from the Bakony-Balaton Highland Volcanic Field (BBHVF) in the western Pannonian Basin carry mantle xenoliths comprising hydrous and anhydrous spinel peridotites. The studied mantle xenoliths from Szentbékálla, near Lake Balaton, Hungary, are fine- and coarse-grained fertile to depleted spinel lherzolites, spinel harzburgites and dunites, with protogranular, porphyroclastic, and secondary protogranular and mosaic equigranular textures. Melt pockets, with shapes resembling amphibole, are common in a number of samples, whereas other samples have thin films of intergranular glass. Bulk-rock major element abundances show that the mantle lithosphere beneath this area experienced variable degrees (up to 20%) of partial melting. The clinopyroxene trace elements systematics retain a record of melt depletion and metasomatic processes attributed to subduction-related melt/fluids or to the infiltration of percolating undersaturated melts in the Pannonian lithospheric mantle. The radiogenic isotopes of Sr, Nd and Hf in clinopyroxene suggest that this metasomatism was a relatively recent event. Textural evidence suggests that the calcite filling up the vesicles in the melt pockets and in veinlets cross-cutting the constituent minerals is of epigenetic nature and not due to carbonatite metasomatism. The non-metasomatized primitive mantle normalized clinopyroxene REE abundances mimic those, but at higher values, of their bulk-rock REE patterns. Bulk-rock and clinopyroxene REE with upward and downward LREE respectively, indicate up to 2.4% host basalt infiltration. The calculated bulk composition of the melt pockets is identical to small amphibole relics found as inclusions in second generation clinopyroxene within the melt pockets, suggesting incongruent melting of amphibole, without the need for additional metasomatic melt/fluids to initiate the amphibole breakdown. The heat for the temperature increase necessary for amphibole breakdown was derived from

  11. Petrofabric and seismic properties of lithospheric mantle xenoliths from the Calatrava volcanic field (Central Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, P.; Ábalos, B.; Gil Ibarguchi, J. I.; Sarrionandia, F.; Carracedo, M.; Fernández-Armas, S.

    2016-06-01

    The microstructural and petrofabric study of peridotite xenoliths from the El Aprisco (Neogene Calatrava Volcanic Field) has provided new information on deformation mechanisms, ambient conditions and seismic properties of the central Iberian subcontinental mantle. Olivine, orthopyroxene, clinopyroxene, amphibole and spinel constitute the mineral assemblage in equilibrium. Their microstructure indicates that they accommodated crystal-plastic deformation under high water fugacity conditions. Crystallographic preferred orientation patterns of key minerals were determined with the EBSD technique. The xenoliths exhibit B, C and A olivine fabrics. B-type fabrics, involving the (010)[001] slip system, may develop in domains where deformation occurs under comparatively lower temperature, higher water-content and faster strain rates. They are interpreted here as the result of deformation in a suprasubduction mantle setting triggered by changing conditions imposed by a cooler subducting slab that incorporated fluids into the system. Xenoliths with olivine C-type fabrics involve activation of the dominant (100)[001] slip system, denote intracrystalline slip at higher temperatures and water-contents. They are here interpreted to sample lithospheric mantle domains where the impact of those new conditions was not so strong. Finally, the A-type fabrics, characteristic of the (010)[100] slip system, are frequent in the mantle under moderate to high temperature. These fabrics are considered here as characteristic of the mantle prior to subduction. The olivine fabrics constrain heterogeneous seismic properties. Propagation orientation of P waves (8.27-8.51 km/s) coincides with olivine [100] axis concentrations, whereas the fastest S1 waves (5.13-5.22 km/s) propagate parallel to [010] axis minima. The maximum shear wave birefringence (VS1-VS2 = 0.17-0.37 km/s) is close to the direction of the macroscopic lineation. Heterogeneity of calculated seismic properties would concur with

  12. Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Maurizio; Cipriani, Anna; Hémond, Christophe; Zanetti, Alberto; Bertotto, Gustavo Walter; Cingolani, Carlos Alberto

    2016-04-01

    The sub-continental lithospheric mantle of South America has been known for some time to carry the DUPAL isotope anomaly as seen in volcanics from the Paraná volcanic province. However, this has not allowed discriminating whether the DUPAL anomaly is a primary feature of the mantle source or acquired during the upwelling and emplacement of the primary magmas. We discovered mantle xenoliths from the Tres Lagos location in Patagonia that carry evidence of percolation by metasomatic melts that imparted the DUPAL isotope anomaly signature. We discuss a model that requires four isotope components (LCC, EM2, HIMU and DM) to account for the Sr, Nd and Pb isotope variability of our samples. We propose that upwelling of hot astenosphere during the Miocene could have triggered the melting of the LCC and EM2 components carrying the DUPAL anomaly, previously entrained in the subcontinental mantle by subduction. These ascending melts would have then metasomatised the local SCLM characterised by DMM and HIMU geochemical affinity generating the hybrid DUPAL-bearing mantle sampled by the Tres Lagos xenoliths.

  13. The Cenozoic lithospheric mantle beneath the interior of South China Block: Constraints from mantle xenoliths in Guangxi Province

    NASA Astrophysics Data System (ADS)

    Li, Xi-Yao; Zheng, Jian-Ping; Sun, Min; Pan, Shao-Kui; Wang, Wei; Xia, Qun-Ke

    2014-12-01

    In contrast to the coastal regions of the South China Block (SCB), little is known about the subcontinental lithospheric mantle beneath the interior of the SCB. Mantle xenoliths entrained in Cenozoic basalts in the eastern and central Guangxi Province, the interior of the SCB, includes spinel harzburgites, clinopyroxene-poor lherzolites, lherzolites and olivine websterites. The mineral chemistry of the harzburgites and clinopyroxene-poor lherzolites is moderately refractory [Mg# value of olivine (Mg#Ol) = 90.2-91.3], whereas other lherzolite is more fertile (Mg#Ol = 89.3). Zoned olivines (Mg#Ol = 83.7-88.8) in the harzburgites and zoned olivine xenocrysts (Mg#Ol = 75.2-82) in the basalts reflect disequilibrium between olivines and the basaltic host melts during magma ascent. An olivine websterite (Mg#Ol = 87.5) is similar to the lherzolite in mineral chemistry. The REE patterns of clinopyroxenes in these xenoliths vary from LREE-depleted, to flat, to LREE-enriched patterns, and commonly exhibit positive Sr anomalies and negative Nb, Zr and Ti anomalies. The peridotitic xenoliths mostly experienced moderate to high degree of melt extraction (F = 10-20%) and were modified by silicate metasomatism. We thus suggest that the harzburgites and clinopyroxene-poor lherzolites with high Mg#Ol values represent ancient (Proterozoic) lithospheric mantle, preserved beneath the Guangxi Province. In contrast, the minor, fertile (low-Mg#Ol) lherzolites represent lithospheric mantle accreted during the Phanerozoic, and a small amount of pyroxenite was produced via interaction between peridotite and silicate-rich melts. The mantle-accretion process that occurred beneath the SCB during the Mesozoic to Cenozoic time extended into Guangxi Province. The lithospheric mantle beneath the interior of the SCB is heterogeneous, featuring various types of peridotite and co-existing pyroxenite. This heterogeneity also indicates that the lithospheric mantle beneath the regions affected by

  14. Olivine inclusions in Siberian diamonds and mantle xenoliths: Contrasting water and trace-element contents

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Taylor, L. A.; Howarth, G. H.; Peslier, A. H.; Fedele, L.; Bodnar, R. J.; Guan, Y.; Doucet, L. S.; Ionov, D. A.; Logvinova, A. M.; Golovin, A. V.; Sobolev, N. V.

    2016-11-01

    A subject of continuing debate is how the Earth's lithospheric portion of the upper mantle has remained the thickest (> 200 km) and oldest (> 3 Gy) beneath cratons and is yet surrounded by a vigorously convecting asthenosphere. It is generally admitted that water is a key parameter in the strength and longevity of cratonic roots, because olivine, the main phase of the lithospheric mantle, becomes stronger if its water content decreases. Expanding upon the work presented in Novella et al. (2015) and Taylor et al. (2016), we report new water contents for additional olivine inclusions in diamonds together with the trace-element composition for all olivine inclusions, as well as for mantle xenoliths from various kimberlite pipes located on the Siberian craton. The olivine diamond inclusions from this study have systematically low-water contents (< 50 ppmw H2O), moderate to high forsterite (e.g., Fo91-94) contents and low Ni, Co, and Zn ppm contents (e.g., < 2848, < 108, and < 47 ppm, respectively). In contrast, olivines from Siberian craton mantle xenoliths have a wide range of water contents (6-323 ppmw H2O) and extend to lower-Fo (91-92), Ni, Co, and Zn-rich compositions, compared to the diamond inclusions. Depleted incompatible trace-element concentrations in olivine (0.1-0.001 × Primitive Mantle) advance our hypothesis for the protogenetic origins for the majority of Siberian diamond inclusions. These observations are consistent with the peridotite xenoliths as representing a part of the cratonic lithosphere that has experienced melt re-fertilization, which has also transported water. The olivine diamond inclusions, on the other hand, preserve ;micro-samples; of an initial, dry cratonic lithosphere, mostly resulting from melting events. These inclusions are likely sourced from the initial cratonic mantle lithosphere, which thereby, resisted delamination over time, due to its buoyancy and strength, imparted from melt and water depletion, respectively. And thus, our

  15. Metasomatic Control of Water in Garnet and Pyroxene from Kaapvaal Craton Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.

    2012-01-01

    Fourier transform infrared spectrometry (FTIR) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used to determine water, rare earth (REE), lithophile (LILE), and high field strength (HFSE) element contents in garnet and pyroxene from mantle xenoliths, Kaapvaal craton, southern Africa. Water enters these nominally anhydrous minerals as protons bonded to structural oxygen in lattice defects. Pyroxene water contents (150-400 ppm in clinopyroxene; 40-250 ppm in orthopyroxene) correlate with their Al, Fe, Ca and Na and are homogeneous within a mineral grains and a xenolith. Garnets from Jagersfontein are chemically zoned for Cr, Ca, Ti and water contents. Garnets contain 0 to 20 ppm H2 Despite the fast diffusion rate of H in mantle m inerals, the observations above indicate that the water contents of mantle xenolith minerals were not disturbed during kimberlite entrainment and that the measured water data represent mantle values. Trace elements in all minerals show various degrees of light REE and LILE enrichments indicative of minimal to strong metasomatism. Water contents of peridotite minerals from the Kaapvaal lithosphere are not related to the degree of depletion of the peridotites. Instead, metasomatism exerts a clear control on the amount of water of mantle minerals. Xenoliths from each location record specific types of metasomatism with different outcomes for the water contents of mantle minerals. At pressures . 5.5 GPa, highly alkaline melts metasomatized Liqhobong and Kimberley peridotites, and increased the water contents of their olivine, pyroxenes and garnet. At higher pressures, the circulation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, overall decreasing their water content, and lowered the water content of olivines at Finsch Mine. The calculated water content of these melts varies depending on whether the water content of the peridotite

  16. Variations on the Lower Silesian (SW Poland) lithospheric mantle - the Grodziec xenoliths case study

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Ćwiek, Mateusz; Puziewicz, Jacek; Ntaflos, Theodoros

    2016-04-01

    The lithospheric mantle underlying the northern margin of Bohemian Massif (Lower Silesia, SW Poland) is in general characterized by presence of two ultramafic lithologies, both of mostly harzburgitic composition. The group A harzburgites are strongly depleted and record variable metasomatic events, which are however always related to reactions with mixed alkaline-carbonatite melts. The group B harzburgites also record reaction with mafic melts, but in this case the reaction resulted in enrichment of the peridotites in Fe ("Fe-metasomatism"). The xenoliths suites from Grodziec (this study), Krzeniów (Matusiak-Małek et al., 2014, JoP) and Wilcza Góra (Matusiak-Małek et al., submitted), all in the Złotoryja volcanic complex, follow the "A" and "B" lithological characteristics. The Grodziec suite contains, however, numerous lherzolitic xenoliths. The group A xenoliths from Grodziec are anhydrous lherzolites, scarcely harzburgites. The Fo content in olivine varies from 90.7 to 91.8%, Mg# in ortho-and clinopyroxene is 0.91-0.92. Al content in orthopyroxene is 0.05-0.14 a pfu (0.70 to 3.44 wt.%), which makes them one of the highest in region. Few lherzolites are characterized by slightly lower Fo content in olivine (89.16-90.10%) and are therefore classified as A- group. The Mg# of pyroxenes in this group varies from 0.89 to 0.90, but orthopyroxene is generally characterized by low Al content (< 0.08 a pfu, corresponding to <2 wt.% in majority of xenoliths). Group B xenoliths are orthopyroxene - free dunites, and wehrlite. Olivine contains from 85.14 to 86.14 % of Fo, the Mg# of clinopyroxene varies from 0.84 to 0.88. Clinopyroxene in all the groups is LREE enriched and has negative Sr, Zf-Hf and Ti anomalies, but the enrichment decreases from group A to B and so are the depths of negative anomalies. Temperatures of major element equilibration of group A and A- pyroxenes are from approximately 1010 to 1100°C with no specific differences between the groups. So high

  17. Constraints from Xenoliths on Cenozoic Deformation and Rheology of the Western North American Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Behr, W. M.; Smith, D.; Bernard, R. E.

    2015-12-01

    We investigate xenoliths from several volcanic centers in the western US Cordillera, including the Navajo Volcanic Field in the Four Corners region of the Colorado Plateau, the San Carlos Volcanic Field in Arizona, and the Cima and Dish Hill volcanic fields in the western Mojave. We use these xenolith suites to determine to what extent and by what mechanisms the western North American lithospheric mantle has deformed during Cenozoic tectonic events, including Laramide flat-slab subduction, Basin-and-Range extension, and Quaternary strike-slip faulting associated with the San Andreas Fault System. We find the following. 1) Laramide flat-slab subduction substantially and heterogeneously deformed the North American lithospheric mantle. Despite some serpentinization, deformation along the plate interface was accommodated primarily by olivine dislocation creep, and was cold enough that the mantle lithosphere was strong and could transmit basal shear tractions into the upper plate crust, generating high topography. 2) During B&R extension, the mantle lithosphere was thinned and heated, and Laramide-age shear zone foliations were obliterated by grain growth, even in mixed phase lithologies. Despite annealing, LPO in olivine is preserved in several samples. This fossil LPO may control present-day mantle lid seismic anisotropy in the Basin and Range and may also provide an important source of viscous anisotropy. 3) The mantle lithosphere is actively deforming in localized zones beneath faults of the San Andreas system, but high sub-Moho temperatures render it very weak such that most of the strength of the lithosphere resides in the crust. Because deformation is localized, mantle lid anisotropy in the Mojave region is likely controlled by a fossil LPO, despite present-day deformation in the lithospheric mantle.

  18. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Sakyi, Patrick Asamoah

    2016-06-01

    Mantle xenoliths hosted in Quaternary basaltic lavas from the Dillo and Megado areas of the southern Ethiopian rift are investigated to understand the geochemical composition and associated processes occurring in the lithospheric mantle beneath the region. The xenoliths are comprised of predominantly spinel lherzolite with subordinate harzburgite and clinopyroxenite. Fo content of olivine and Cr# of spinel for peridotites from both localities positively correlate and suggest the occurrence of variable degrees of partial melting and melt extraction. The clinopyroxene from lherzolites is both LREE depleted (La/Sm(N) = 0.11-0.37 × Cl) and LREE enriched (La/Sm(N) = 1.88-15.72 × Cl) with flat HREEs (Dy/Lu(N) = 0.96-1.31 × Cl). All clinopyroxene from the harzburgites and clinopyroxenites exhibits LREE-enriched (La/Sm(N) = 2.92-27.63.1 × Cl and, 0.45 and 1.38 × Cl, respectively) patterns with slight fractionation of HREE. The 143Nd/144Nd and 176Hf/177Hf ratios of clinopyroxene from lherzolite range from 0.51291 to 0.51370 and 0.28289 to 0.28385, respectively. Most of the samples define ages of 900 and 500 Ma on Sm-Nd and Lu-Hf reference isochrons, within the age range of Pan-African crustal formation. The initial Nd and Hf isotopic ratios were calculated at 1, 1.5, 2 and 2.5 Ga plot away from the trends defined by MORB, DMM and E-DMM which were determined from southern Ethiopian peridotites, thus indicating that the Dillo and Megado xenoliths could have been produced by melt extraction from the asthenosphere during the Pan-African orogenic event. There is no significant difference in 87Sr/86Sr ratios between the depleted and enriched clinopyroxene. This suggests that the melts that caused the enrichment of the clinopyroxene are mainly derived from the depleted asthenospheric mantle from which the xenoliths are extracted. Largely, the mineralogical and isotopic compositions of the xenoliths show heterogeneity of the CLM that could have been produced from various

  19. Characterization of the sub-continental lithospheric mantle beneath the Cameroon volcanic line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and Nyos Lakes

    NASA Astrophysics Data System (ADS)

    Pintér, Zsanett; Patkó, Levente; Tene Djoukam, Joëlle Flore; Kovács, István; Tchouankoue, Jean Pierre; Falus, György; Konc, Zoltán; Tommasi, Andréa; Barou, Fabrice; Mihály, Judith; Németh, Csaba; Jeffries, Teresa

    2015-11-01

    We carried out detailed petrographic, major and trace element geochemical, microstructural and FTIR analyses on eight characteristic ultramafic xenoliths from Nyos and Barombi Mbo Lakes in the continental sector of the Cameroon Volcanic Line (CVL). The studied xenoliths are spinel lherzolites showing lithologies similar to the other xenoliths reported previously along the CVL. They have protogranular and porphyroclastic textures. One of the Barombi xenolith contains amphibole, which had not been previously reported in this locality. Amphibole is common in the Nyos xenoliths suite. Peridotite xenoliths from both localities show some chemical heterogeneity, but Barombi xenoliths generally are less depleted in basaltic elements with respect to Nyos xenoliths. Trace element compositions of Nyos spinel lherzolites show a moderately depleted initial (premetasomatic) composition and variable enrichment in REE. Evidence for both modal and cryptic metasomatism is present in Nyos xenoliths. Rare earth element patterns of clinopyroxene suggest that interaction between mafic melts and the upper mantle occurred beneath the Nyos locality. Barombi Mbo xenoliths, on the other hand, record a small degree of partial melting. The Barombi Mbo xenoliths have weak, dominantly orthorhombic olivine crystal preferred orientations, whereas Nyos ones have strong axial-[010] patterns, which may have formed in response to transpression. Nominally anhydrous mantle minerals (NAMs) of the Barombi Mbo xenoliths show generally higher bulk concentrations of 'water' (70-127 ppm) than Nyos xenoliths (32-81 ppm). The Barombi Mbo xenoliths could originate from a juvenile segment of the lithospheric mantle, which had been originally part of the asthenosphere. It became a part of the lithosphere in response to thermal relaxation following the extension, forming a weakly deformed lower lithospheric mantle region along the CVL. The Nyos xenoliths, however, represent a shallow lithospheric mantle bearing

  20. Alteration of Mantle Sulfides: the Effects of Oxidation and Melt Infiltration in a Kilbourne Hole Harzburgite Xenolith

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Harvey, J.; Warren, J. M.; Klein, F.; Walshaw, R.

    2013-12-01

    Sulfides, while commonly present in volumetrically minor amounts (< 0.1 modal %; e.g.[1]) in the mantle, impart a strong control over many of the highly siderophile and strongly chalcophile elements. The mass balance of some elements, such as Os, are almost completely controlled by heterogeneously distributed sulfide grains[2][3]. Hence, processes that re-distribute sulfides and / or alter their composition can have profound effects on the information preserved within them regarding primary mantle processes. Different generations of interstitial sulfide may partly or completely re-equilibrate with one another or may be exposed to open-system processes that mobilize and / or precipitate sulfides[4]. In mantle xenoliths in particular, supergene weathering at the Earth's surface can oxidize sulfide to soluble sulfate, and its removal affects highly siderophile and strongly chalcophile element abundances [6]. Here we present the initial results from a study of interstitial mantle sulfides (n = 24) recovered from a single harzburgitic xenolith from Kilbourne Hole, NM. Large compositional differences are observed in the sulfides even at the scale of a single xenolith. Mono-sulfide solid solution has exsolved into two Fe-Ni-rich phases, one with a significantly larger Ni content for a given Fe abundance. Occurrences of Cu-rich sulfides are rare, but where present Cu can account for up to 22 weight % of the sulfide. Critically, no fresh, unaltered sulfides were recovered and in all of the sulfides there is evidence for at least two secondary processes. EDS mapping of the sulfides reveals pervasive, but incomplete, oxidation in all of the grains; Raman spectroscopy reveals this oxide to be goethite. In addition, there is also evidence for the interaction of many of the sulfides with a volatile-rich silicate melt. Silicate melt veins cross-cut the original sulfide mineralogy in some areas of the sulfide grain, while leaving other areas virtually untouched. The degree of

  1. Mantle xenoliths from Central Vietnam: evidence for at least Meso-Proterozoic formation of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Proßegger, Peter; Ntaflos, Theodoros; Ackerman, Lukáš; Hauzenberger, Christoph; Tran, Tuan Anh

    2016-04-01

    Intraplate Cenozoic basalts that are widely dispersed along the continental margin of East Asia belong to the Western Pacific "diffuse" igneous province. They consist mainly of alkali basalts, basanites,rarely nephelinites, which are mantle xenolith-bearing, potassic rocks and quartz tholeiites. The volcanism in this area has been attributed to the continental extension caused by the collision of India with Asia and by the subduction of the Pacific Ocean below Asia. We studied a suite of 24 mantle xenoliths from La Bang Lake, Dak Doa district and Bien Ho, Pleiku city in the Gia Province, Central Vietnam. They are predominantly spinel lherzolites (19) but spinel harburgites (3) and two garnet pyroxenites are present as well. The sizes of the xenoliths range from 5 to 40 cm in diameter with medium to coarse-grained protogranular textures. Whole rock major and trace element analyses display a wide range of compositions. The MgO concentration varies from 36.0 to 45.8 wt% whereas Al2O3 and CaO range from 0.63 to 4.36 wt% and from 0.52 to 4.21 wt% (with one sample having CaO of 6.63 wt%) respectively. Both CaO and Al2O3 positively correlate with MgO most likely indicating that the sampled rocks were derived from a common mantle source experienced variable degrees of partial melting. Mineral analyses show that the rock forming minerals are chemically homogeneous. The Fo contents of olivine vary between 89.2 and 91.2 and the Mg# of orthopyroxene and clinopyroxene range from 89 to 92 and 89 to 94 respectively. The range of Cr# for spinel is 0.06-0.26. Model calculations in both whole rock and clinopyroxenes show that lithospheric mantle underneath Central Vietnam experienced melt extractions that vary between 2-7, 12-15 and 20-30%. The majority of the primitive mantle-normalized whole rock and clinopyroxene REE patterns are parallel to each other indicating that clinopyroxene is the main repository of the trace elements. Clinopyroxenes are divided into two groups: group A

  2. Metasomatism vs Refertilisation: New Insights from Northern Victoria Land mantle xenoliths (Antarctica)

    NASA Astrophysics Data System (ADS)

    Pelorosso, Beatrice; Bonadiman, Costanza; Coltorti, Massimo; Ntaflos, Theodoros; Gregoire, Michel

    2016-04-01

    The petrology of anhydrous (Greene Point, Handler Ridge) and amphibole-bearing (Harrow Peaks, Baker Rocks) xenolith populations from Cenozoic volcanics of Northern Victoria Land (NVL), Antarctica, provide new geochemical/geodynamic constraints on the nature and evolution of the NVL lithospheric mantle. Based on mineral major and trace element modelling applied on the various xenolith suites, this mantle domain is supposed to represent a residuum after 10 to 20% of partial melting, with Handler Ridge showing the most fertile character. Moreover, melting models and isotopic results evidence the large geochemical contribution of melt infiltration acting in different times, from at least Jurassic to Cenozoic. The close correlation between Greene Point clinopyroxene trace element contents and those from phenocrysts of Ferrar tholeiites, allows to ascribe the first refertilisation event to the Jurassic Ferrar magmatism; this asthenospheric melt was also able to transfer a garnet signature to some NVL mantle segment. The rare presence of glassy patches and related secondary phases in Greene Point and Handler Ridge, as well as the amphibole presence in Harrow Peaks and Baker Rocks xenoliths prove that alkaline metasomatism, probably related to the West Antarctic Rift System opening, heterogeneously affected the NVL lithospheric domain. At a fixed P of 15 Kbar, T and fO2 were calculated; data reveal that the presence of amphibole (always < 3% modal content) does not influence the ambient redox conditions (comparable in amphibole-bearing and anhydrous Greene Point peridotites [ Δlog fO2 (QFM) -0.7)] but the anhydrous suite presents systematic higher temperature (950-1050 °C) than those amphibole bearing (850 °C).

  3. Tychite in mantle xenoliths from kimberlites: The first find and a new genetic type

    NASA Astrophysics Data System (ADS)

    Sharygin, I. S.; Golovin, A. V.; Korsakov, A. V.; Pokhilenko, N. P.

    2016-03-01

    Tychite Na6Mg2(CO3)4(SO3) is a rare natural Na and Mg sulfatocarbonate. It is found only as minor mineral in deposits of saline lakes in the United States, Canada, Uganda, and China. In these continental evaporites tychite has sedimentary genesis. In this study, we report the first occurrence of tychite as a crystal phase in the melt inclusions in olivine from mantle xenoliths of the Udachnaya-East kimberlite pipe. This find provides an evidence for the probability of tychite crystallization from melts; i.e., this rare sulfatocarbonate may have a magmatic origin as well.

  4. Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.

    2015-12-01

    Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure

  5. Major and trace element whole rock and mineral chemistry of Southern Patagonian Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Mundl, Andrea; Ntaflos, Theodoros; Bjerg, Ernesto; Hauzenberger, Christoph

    2013-04-01

    The Pali Aike Volcanic Field (PAVF) situated in the back-arc tectonic setting of southern Patagonia is one of the two Patagonian localities where garnet and spinel peridotites are brought to the surface by alkaline basalts. The other locality is Prahuaniyeu in northern Patagonia. The xenoliths from the PAVF were collected at Salsa, El Ruido and Potrok Aike mare and are spinel- and spinel-garnet-lherzolites, followed by spinel- and spinel-garnet harzburgites. Textures are protogranular to protogranular-equigranular with some samples slightly foliated. None of the studied xenoliths contain hydrous phases such as phlogopite and/or amphibole but few contain secondary interstitial clinopyroxenes and melt pockets. Inclusions of spinel in some garnets suggest transition from spinel to garnet peridotite stability field. Frequently, Opx show exsolution lamellae of Cpx (+/- Sp) and vice versa indicating subsolidus cooling. Occasionally, Cpx show spongy rims suggesting either decompression or reaction with infiltrating melt. Whole rock Al2O3 and CaO contents range from 0.63 to 3.54 wt% and 0.24 to 2.90 wt%, respectively. The variation diagrams of CaO and Al2O3 versus MgO exhibit a linear correlation that could be interpreted as residuals after extraction of melts with different degrees of partial melting from a common mantle source. Modeled fractional melting degrees for Salsa, El Ruido and Potrok Aike Sp-peridotites are 6.5 - 12%, 4 - 17% and 5.5 - 9%, respectively. Olivine compositions vary between Fo89.51 - Fo92.04. However, one El Ruido Sp-harzburgite and one Gt-harzburgite have lower Fo-contents (Fo88.88 -Fo89.11) indicating either a cumulate nature of the xenoliths or a change in chemical composition of the rocks due to reaction with infiltrating melts. Primary Cpx are Cr-diopsides with mean compositions En47-50Fs4-5Wo48-45 in lherzolites, En49-53Fs6-5Wo44-41 in harzburgites, and En47Fs3Wo50 in the El Ruido dunite. Cpx Al2O3 and Cr2O3 contents in all rock types vary

  6. The characteristics of lower crust and upper mantle in the Cima volcanic field deduced from xenolith studies

    NASA Astrophysics Data System (ADS)

    Cardon, K. P.; Anthony, E.

    2015-12-01

    A lithospheric model based on mineral chemistry, textures, and temperatures is used to interpret the seismic structure of the upper mantle and lower crust observed under the Cima Volcanic Field, CA. Seismic velocities calculated from xenolith compositions are used in conjunction with petrologic information to interpret geophysical models of the area. The lower crust is composed of mafic compositions and contains a high percentage of quenched partial melt. The combination of quenched partial melt and mafic composition explains the relatively low seismic velocities observed in seismic models. The mafic composition is consistent with a rift environment. Melt compositions, some with > 60 wt% SiO2 are found in all types of Cima xenoliths, although pyroxenites and gabbros contain the largest amount. Pyroxenite from the uppermost mantle transitions into gabbroic compositions and plagioclase rich lithologies in the crust. Temperatures calculated for peridotite xenoliths range from ~ 950 to 1030˚ C. Plagioclase bearing samples have the lowest temperatures and are interpreted as residing in the immediate sub-Moho mantle. Plagioclase bearing lherzolite structurally overlies spinel bearing peridotite. Strain accumulation is most prevalent in plagioclase bearing peridotite and virtually absent from pyroxenites and gabbros. Seismic velocities calculated for peridotite xenoliths are faster than pyroxenite and gabbroic samples. Despite the chemical heterogeneity and complex history of the Moho transitional are most mantle is composed dominantly by peridotite. Very little lithosphere, rhelologically speaking, remains under the volcanic field. We interpret lithospheric dismemberment to be caused by hot mantle working northward from the Gulf of California.

  7. Sapphirine and fluid inclusions in Tel Thanoun mantle xenoliths,Syria

    NASA Astrophysics Data System (ADS)

    Bilal, Ahmad

    2016-04-01

    Volcanoes along the Syrian rift, which extend a distance of about 1000 km, brought to the surface mantle xenoliths within erupted basalts, during multiples periods of volcanic activity. Xenoliths in early Cretaceous volcanoes originate in the garnet peridotite field of the subcontinental mantle, whereas those in recent Cenozoic volcanoes, the prime object of this study, are issued from shallower levels (spinel peridotite field). The recent discovery of sapphirine-bearing websterite in Tel Thanoun, a small volcanic diatreme inside the larger Quaternary volcanic field (Djebel Al Arab), allows us to estimate the P-T evolution and fluid-rock interaction at the volcanic source. Harzburgites and lherzolites are equilibrated at a temperature of about 1000 °C at a depth of 35-40 km. Sapphirine appears to have formed during cooling, at depth at a temperature of about 900 °C, at a time where spinel exsolution occurred in harzburgite and lherzolite pyroxenes. This occurred in the presence of a high-density pure CO2 fluid phase, still present in primary fluid inclusions. The highly-aluminous sapphirine-bearing protolith might be former garnet websterite (possibly uplifted during cretaceous magmatism), which resided and cooled in the spinel peridotite stability field, and was then dragged and brought to the surface by quaternary basalts.

  8. The redox conditions of anhydrous and hydrous xenoliths of suprasubduction and intraplate lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Bonadiman, C.; Coltorti, M.

    2012-12-01

    The oxidation state of the upper mantle, its relationship with C-H-O fluids speciation and tectonic settings has been debated for decades and the various modelling have considered the prevalent role of the hydrous minerals over nominally anhydrous minerals (and the opposite) as well as the dissolution of silicate minerals (as providers of Fe3+ to the system) as directly related to water activity and oxygen fugacity. Each of these modelling has different implications for mantle rheology, seismic structure, and the evolution of the lithosphere (i.e.: Karato and Jung, 1998, Hirshmann, 2006). Upper mantle is the only part of the Earth's mantle where the oxygen fugacity can be directly measured, its values/variation being dependent on various processes such as partial melting and metasomatism often operating in time and space without solution of continuity. Recent general reviews of oxygen thermobarometry measurements (Forst & McCammon, 2008; Foley, 2011) indicate that the oxygen fugacity at the top of the upper mantle falls within ±2 log units of the fayalite-magnetite-quartz (FMQ) oxygen buffer. There is also a general consensus in considering H2O as the strongest oxidizing agent in mantle metasomatic fluids, its activity leading to the formation of amphibole and raising the mantle redox state. This contribution presents fO2 and water activity results from three spinel-bearing mantle xenolith localities and distinct geodynamic settings: Ichinomegata (Japan) amphibole-bearing peridotites entrained in calc-alkaline basalts and Cerro Fraile (South Patagonia, Argentina), mostly anhydrous lherzolites and pirossenites brought up to the surface by alkaline basalts representing fragments of sub-arc mantle and Baker Rocks, Victoria Land (Antarctica), amphibole-bearing lherzolites representing portion of intraplate subcontinental lithospheric mantle. The three mantle sectors records fO2 values in the range of -1.9 to +0.8 log units of the FQM buffer. and low to very low aH2O

  9. Geochemistry and petrology of spinel lherzolite xenoliths from Xalapasco de La Joya, San Luis Potosi, Mexico: Partial melting and mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Liang, Yan; Elthon, Don

    1990-09-01

    Spinel Iherzolite xenoliths from Xalapasco de La Joya, San Luis Potosi, Mexico, are divided into two distinct groups according to their major element and trace element characteristics. Group Ia xenoliths are characterized by light rare earth element (LREE) depletion ((La/Lu)N = 0.10-0.77 in clinopyroxene) and linear major and compatible trace element relationships. Group Ib xenoliths are characterized by FeO and Na2O enrichment and higher (La/Lu)N ratios (0.80-4.1 in clinopyroxene) and complex major element relationships. These samples, which have a range of equilibrium temperatures of 910°-1070°C, exhibit protogranular textures and typical orthopyroxene+clinopyroxene+spinel clusters. Modal abundances and chemical compositions of the group Ia xenoliths vary from primitive (15.2% clinopyroxene, 38.5% MgO, 1824 ppm Ni) to moderately depleted (6.4-8.7% clinopyroxene, 43.8-44.1% MgO, 2192 ppm Ni). Systematic variations of major elements and compatible trace elements in the group Ia xenoliths are interpreted to result from various degrees (<25%) of partial melting and melt extraction, followed by subsolidus equilibration and annealing. The extracted melts have a range of compositions similar to picritic basalts. Abundances of moderately incompatible trace elements, Sc and Cr, in the group Ia minerals have been substantially redistributed during subsolidus equilibration. In a few of these xenoliths there appears to be vestiges of incipient metasomatism, but metasomatism has not substantially influenced the group as a whole. Group Ib xenoliths have been substantially influenced by metasomatic processes. The ∑FeO and Na2O contents of the cores of clinopyroxenes in group Ib xenoliths are higher than clinopyroxenes in group Ia samples. The higher La contents and La/Lu ratios in group Ib clinopyroxenes (compared to group Ia), together with this FeO and Na2O enrichment, suggest that equilibration of basanites with residual mantle has been a major process in the evolution

  10. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  11. Geochemical and isotopic characterization of mantle xenoliths from the back arc region of north Patagonia

    NASA Astrophysics Data System (ADS)

    Mundl, Andrea; Ntaflos, Theodoros; Lukás, Ackerman; Bizimis, Michael; Bjerg, Ernesto; Hauzenberger, Christoph

    2015-04-01

    Mantle xenoliths brought to the surface by alkali basalts in north Patagonia, Argentina, were studied for their geochemical and isotopic compositions. Samples were collected at four different outcrops within the North Patagonian Massif in Rio Negro Province. The studied sample suite from Comallo (COM), Puesto Diaz (PD), Cerro Chenque (CH) and Prahuaniyeu (PRA) comprises anhydrous spinel-harzburgites, spinel-dunites, as well as one PRA spinel-garnet-lherzolite. Bulk rock Al2O3 and CaO compositions of the studied samples lie within a narrow range of 0.68 to 1.31 wt. % and 0.36 to 1.25 wt. %, respectively. Al2O3 and CaO decrease with increasing MgO ranging from 44.7 to 48.0 wt. %. The single spinel-garnet lherzolite has a more fertile composition with CaO, Al2O3 and MgO of 2.78 wt. %, 2.35 wt. % and 42.2 wt. %, respectively. With the exception of the PRA region, the studied mantle xenoliths represent an overall highly depleted lithospheric mantle underneath northern Patagonia (up to 25% melt extraction). The rock forming minerals show concentrations typical for depleted peridotites with mg# that range from 0.91 to 0.92 for olivine and orthopyroxene and mg# from 0.91 to 0.95 for clinopyroxene. Variably elevated clinopyroxene trace element compositions in all studied north Patagonian mantle samples indicate reactions with a chromatographically fractionated melt after the initial melt depletion event. A percolating melt reacts with a strongly depleted mantle peridotite as it propagates through the wall rock and subsequently changes its composition. These melt-rock reactions lead to a compositionally evolving melt and variably altered mantle sections, which is strongly reflected in primitive mantle normalized clinopyroxene trace element patterns. Bulk rock and mineral compositions, on the other hand, suggest that this melt percolation event has not significantly affected major element systematics. Contrary, isotope and HSE systematics also indicate melt-rock reactions. In

  12. Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Chazot, Gilles; Chauvel, Catherine; Merlet, Claude; Bodinier, Jean-Louis

    2006-03-01

    Spinel peridotite xenoliths in alkali basalts at Tok, SE Siberian craton range from fertile lherzolites to harzburgites and wehrlites; olivine-rich (70-84%) rocks are dominant. REE patterns in the lherzolites range from nearly flat for fertile rocks (14-17% cpx) to LREE-enriched; the enrichments are positively correlated with modal olivine, consistent with high-permeability of olivine-rich rocks during melt percolation. Clinopyroxene in olivine-rich Tok peridotites typically has convex-upward trace element patterns (La/Nd PM < 1 and Nd/Yb PM ≫ 1), which we consider as evidence for equilibration with evolved silicate liquids (with higher REE and lower Ti contents than in host basalts). Whole-rock patterns of the olivine-rich xenoliths range from convex-upward to LREE-enriched (La/Nd PM > 1); the LREE-enrichments are positively correlated with phosphorus abundances and are mainly hosted by accessory phosphates and P-rich cryptocrystalline materials. In addition to apatite, some Tok xenoliths contain whitlockite (an anhydrous, halogen-poor and Na-Mg-rich phosphate), which is common in meteorites and lunar rocks, but has not been reported from any terrestrial mantle samples. Some olivine-rich peridotites have generations of clinopyroxene with distinct abundances of Na, LREE, Sr and Zr. The mineralogical and trace element data indicate that the lithospheric mantle section represented by the xenoliths experienced a large-scale metasomatic event produced by upward migration of mafic silicate melts followed by percolation of low- T, alkali-rich melts and fluids. Chromatographic fractionation and fractional crystallisation of the melts close to the percolation front produced strong LREE-enrichments, which are most common in the uppermost mantle and are related to carbonate- and P 2O 5-rich derivatives of the initial melt. Reversal and gradual retreat of the percolation front during thermal relaxation to ambient geotherm ("retrograde" metasomatism) caused local migration

  13. Petrological and geochemical studies of mantle xenoliths from La Palma, Canary Islands

    NASA Astrophysics Data System (ADS)

    Janisch, Astrid; Ntaflos, Theodoros

    2015-04-01

    La Palma is the second youngest island, after El Hierro, of the Canary archipelago. The archipelago consists of seven large islands, forming an east-west-trending island chain, and several seamounts. All together they form a volcanic belt of around 800 km length and 450 km width, which presumably comprises roughly the Canary hotspot. The islands are located off the western coast of Morocco, Africa. The distance ranges from 100 km to 500 km. Concurrently with the distance, subaerial volcanism age progresses from the oldest lava in the east to the youngest in the west of the archipelago. Presently, La Palma is in the shield building stage of growth (alongside with El Hierro and Tenerife) and is furthermore the fastest growing island of the Canary archipelago. Historical volcanic eruptions are restricted on the younger islands, La Palma and El Hierro, with the last eruption at the south end of La Palma in 1971. Mantle xenoliths described in this work were collected at the slopes of San Antonio Volcano, Fuencaliente, brought to the surface during the 1677/1678 eruption. The mantle xenolith collection comprises sp-lherzolites, sp-harzburgites and pyroxenites. The texture can be distinguished between coarse-grained matrix and fine-grained veins in various thicknesses, mostly with olivine and pyroxene but also with amphibole, phlogopite as well as apatite. Mineral analyses reveal the existence of primary and secondary ol, cpx and opx. Primary ol has Fo contents of 89.2 to 91.7 and NiO ranging from 0.3 to 0.45 wt.%, whereas secondary ol show Fo values of 78.4 to 91.9 but with NiO below 0.3 wt.%. Primary cpx are predominantly Cr-Diopsides with En48.7-51.9-Wo43.5-44.3-Fs4.1-4.9 and Mg# of 91.5 to 92.4. Secondary cpx, primarily Ti-Augit, display En36.7-44.4-Wo47.7-49.6-Fs6.7-13.0 and Mg# of 75.3 to 90.8. Primary opx compositions are in range of En89.3-90.6-Wo1.3-1.5-Fs8.1-9.3 with Mg# between 90.7 and 92.0. Secondary opx exhibit En88.7-89.2-Wo1.7-1.9-Fs9.1-9.5 and Mg# of 90

  14. How can the water concentrations in nominally anhydrous minerals (NAMs) from mantle xenoliths be used to learn about the distribution of water in the mantle?

    NASA Astrophysics Data System (ADS)

    Grant, K. J.; Kohn, S. C.; Brooker, R. A.

    2005-12-01

    Water has a very large effect on the physical and chemical properties of the Earth's mantle. In recent years, progress has been made in understanding how water is stored in mantle phases and the maximum amount which can be dissolved in each phase has been constrained to some extent. However, the methods which are used to estimate the actual amount of water in different regions of the mantle remain rather crude. Although mantle xenoliths would ideally be convenient samples which record the water concentrations in their source regions, the very fast diffusion of H in silicates means that water could potentially be either lost or gained by interaction with the host magma during ascent. Methods are therefore required to assess the degree of xenolith-melt interaction which has occurred in each case. In this study we have performed high pressure experiments to obtain mineral-mineral and mineral-melt partitioning coefficients to use as the basis of such methods. Careful analysis of the OH stretching region in the FTIR spectra of the experimentally produced samples, and natural xenolith material, provides an additional, powerful method for comparing the pressure, temperature and chemical environment preserved by the xenoliths. Several series of experiments were performed. Firstly equilibrium partitioning experiments between forsterite and enstatite in the system MgO-SiO2-H2O and partitioning between forsterite, enstatite and melt in the system Na2O-MgO-SiO2-Al2O3-H2O were used to study the effect of pressure, temperature and composition on the equilibrium water concentrations in the phases and the equilibrium hydrated defect structure, as observed by FTIR. DHopx/ol varies from about 3 to 30 depending on Al concentration and pressure. Finally, FTIR measurements of olivine and orthopyroxene in several xenoliths were made, and compared with experimentally hydrated crystals from the same xenoliths. Large (4 mm) crystals were annealed for different lengths of time to assess the

  15. Toward a general view of mantle peridotite beneath the volcanic front: petrology of peridotite xenoliths from Bezymyanny volcano (central Kamchatka)

    NASA Astrophysics Data System (ADS)

    Ishimaru, S.; Arai, S.; Tamura, A.; Okrugin, V. M.; Shcherbakov, V.; Plechov, P.

    2012-04-01

    We have a large amount of data about petrological and geochemical features of upper mantle peridotites based on researches of mantle xenoliths, ophiolites or solid intrusions. But the nature of sub-arc mantle, especially beneath a volcanic front, has not been fully understood due to the scarcity of occurrences of mantle-derived materials there. Kamchatka Peninsula is one of the active volcanic arcs, having 29 active volcanoes, and 13 volcanoes of them contain cognate or mantle peridotite xenoliths (Erlich et al., 1979). Peridotite xenoliths derived from the upper mantle beneath the volcanic front are expected from 9 of them (Erlich et al., 1979). Avachinsky (Avacha) volcano is the most famous of them because of its easy accessibility and high xenolith production. Peridotite xenoliths from Avacha record high degree of melting and multiple stages of metasomatism (e.g., Ishimaru et al., 2007; Ionov, 2010). Formation of secondary orthopyroxenes replacing olivine is one of characteristics of arc-derived peridotite xenoliths (e.g., Arai & Kida, 2000; McInnes et al., 2001). In addition, we found peculiar metasomatisms, e.g., Ni enrichment (e.g., Ishimaru and Arai, 2008), in the Avacha peridotite xenolith suite. Here, we show petrological and geochemical features of ultramafic xenoliths from Bezymyanny volcano, central Kamchatka, to obtain a more generalized view of the sub-front mantle. We examined 2 harzburgite xenoliths from Bezymyanny. They are composed of fine-grained minerals (cf. Arai and Kida, 2000), and occasionally contain hornblende and/or phlogopite. Almost all orthopyroxenes show irregular shapes and replace olivine, indicating a secondary origin. At the boundary between the harzburgite and host andesite, we observed hornblende and secondary orthopyroxenes. At the xenoliths' interior, Fo content of olivine and Cr# (= Cr/(Cr + Al) atomic ratio) of chromian spinel are high, 91-92 and 0.43-0.69, respectively, and the Fo content decreases to 76 at the boundary

  16. The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Berkesi, Márta; Guzmics, Tibor; Szabó, Csaba; Dubessy, Jean; Bodnar, Robert J.; Hidas, Károly; Ratter, Kitti

    2012-05-01

    Upper mantle peridotite xenoliths from the Tihany Maar Volcanic Complex, Bakony-Balaton Highland Volcanic Field (Central Pannonian Basin, Hungary) contain abundant pyroxene-hosted negative crystal shaped CO2-rich fluid inclusions. The good correlation between enrichment of the clinopyroxenes in Al2O3, TiO2, Na2O, MREE and Zr, and the presence of fluid inclusions in the xenoliths provide strong evidence for fluid-related cryptic metasomatism of the studied xenoliths. The FIB-SEM (focused ion beam-scanning electron microscopy) exposure technique revealed a thin glass film, covering the wall of the fluid inclusions, which provides direct evidence that the silicate components were formerly dissolved in the CO2-rich fluid phase. This means that at upper mantle conditions CO2-rich fluids are capable of transporting trace and major elements, and are the agents responsible for cryptic metasomatism of the peridotite wall rock. Several daughter phases, including magnesite, quartz and sulfide, were identified in the fluid inclusions. Magnesite and quartz are the products of a post entrapment carbonation reaction, whereby the reactants are the CO2-rich fluid and the host orthopyroxene. It is likely that the thin glass film prevented or arrested further growth of the magnesite and quartz by isolating the fluid from the host orthopyroxene, resulting in the preservation of residual CO2 in the fluid inclusions.

  17. Geochemical and isotopic characteristics of lithospheric mantle beneath West Kettle River, British Columbia: Evidence from ultramafic xenoliths

    SciTech Connect

    Xue, Xianyu; Baadsgaard, H.; Scarfe, C.M. ); Irving, A.J. )

    1990-09-10

    A group of spinel peridotite xenoliths from West Kettle River, British Columbia, represents essentially undepleted to moderately depleted lithospheric mantle rocks in terms of major and compatible trace elements. Whole rock Sr isotopic composition for most of these xenoliths, and whole rock Sm-Nd isotopic composition and LREE contents for some of them, seem to have been perturbed by near-surface processes. Sr and Nd isotopic results for acid-cleaned clinopyroxenes separated from these spinel peridotites reveal an isotopically mid-ocean ridge basalt (MORB)-like mantle. Seven spinel lherzolites gave Nd model ages of 1.5-3.6 Ga, similar to MORB, and on a Sm-Nd isotope diagram plot close to a reference Nd isochron with an age of 0.7 Ga and an initial {var epsilon}{sub Nd} of +7. These features likely resulted from multiple mantle depletion. The isotopic similarities of these xenoliths with MORB suggest that this area is underlain by oceanic lithospheric mantle, possibly accreted to North America during the mid-Jurassic. The Nd isochron age could record the time when the oceanic lithosphere was isolated from the asthenosphere. Recent enrichment event may have acted on such a depleted mantle, as indicated by the low Sm/Nd ratios of two spinel harzburgites.

  18. Argon isotopic studies of minerals in kimberlites, mantle xenoliths and diamonds, from selected southern African localities

    SciTech Connect

    Phillips, D.

    1989-01-01

    The occurrence, composition, behavior and origin of excess argon components, in mantle phases hosted by southern African kimberlites, is evaluated using furnace step-heating and laser-probe analytical techniques. Laser-probe {sup 40}Ar/{sup 39}Ar analyses of phlogopite from the swartruggens kimberlite dyke (145 Ma), and Premier diatreme ({approximately}1200 Ma) lherzolite xenoliths, yielded apparent ages decreasing from high ages at grain centres to values approaching the age of kimberlite intrusion, along grain margins. The old apparent ages are attributed excess radiogenic argon, with high {sup 40}Ar/{sup 39}Ar ratios (> 15,000), incorporated prior to kimberlite intrusion under conditions of locally high argon partial pressure. The preservation of the excess argon components is dependent on the timing of melt devolatilization, temperature, cooling rate and the characteristic radius for argon diffusion. Swartruggens phlogopite grains also display chlorine zonations, measured by a neutron activation technique and the laser probe. Fluorine contents, determined by electron microprobe were uniform. Halogen analyses of Premier xenolith phlogopite revealed minor variations. {sup 40}Ar/{sup 39}Ar laser-probe analyses of eclogitic suite clinopyroxene inclusions in diamonds from the Premier kimberlite yielded an age of 1198 {plus minus} 6 Ma, indistinguishable from the inferred time of intrusion of the host kimberlite ({approximately}1200 Ma). This implies diamond formation synchronous with, or no more than {approximately}20 Ma before kimberlite generation. The associated initial {sup 40}Ar/{sup 39}Ar ratio of 334 {plus minus} 50 is similar to the present day atmospheric composition. It is suggested that late-stage equilibration with {sup 36}Ar-rich fluids, derived either from primordial mantle, or from subducted atmospheric argon, is the most likely explanation for this low {sup 40}Ar/{sup 39}Ar value.

  19. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity

    SciTech Connect

    Yan Song; Frey, F.A. )

    1989-01-01

    Based on geochemical studies of six anhydrous spinel peridotite xenoliths in basanite, the upper mantle beneath Hannuoba, eastern China is compositionally heterogeneous. These samples range in Sr and Nd isotopic ratios from MORB-like to near bulk-earth estimates. The low {sup 87}Sr/{sup 86}Sr and high {sup 143}Nd/{sup 144}Nd samples contain the largest amount of a basaltic component, but they are relatively depleted in light rare earth elements compared to chondrites. Other samples have U-shaped chondrite-normalized REE patterns. Trace element and radiogenic isotopic data require enrichment processes acting on depleted mantle. Constraints on these processes are: (a) inverse correlations between basaltic constituents, such as CaO and Al{sub 2}O{sub 3}, and La/Sm; and, (b) samples most depleted in CaO and Al{sub 2}O{sub 3} have the highest {sup 87}Sr/{sup 86}Sr and lowest {sup 143}Nd/{sup 144}Nd. These trends can be explained by a model whereby garnet peridotite zoned in isotopic composition undergoes partial melting. Because of a gradient in degree of melting, e.g., from the wall-rock contact to hotter interior, or as a function of depth in a diapir, melts initially segregate from regions where the degree of melting is high. Subsequently, the recently created residues are infiltrated by slower segregating incipient melts. Preferential mixing of these incipient melts with residues from high degrees of melting can explain the observed complex geochemical trends seen in Hannuoba and many other peridotite xenolith suites. Clinopyroxene-rich veins in some of the peridotites may reflect pathways of ascending melt.

  20. Nitrogen Isotopes in Olivine Separates from Volcanic Arcs, Hot Spots and Continental Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Takahata, N.; Sano, Y.; Hilton, D. R.

    2004-12-01

    We report the first nitrogen isotopic data of olivine separates from volcanic arcs (Cerro Negro, Nicaragua; Izalco, El Salvador; Turrialba, Costa Rica; Ichinomegata, Japan). In addition, we report nitrogen isotopic data of olivine separates from ocean islands (Hawaii, Reunion, Iceland) and continental mantle xenoliths (San Carlos, Arizona). Samples were processed by crushing and analyzed using a modified noble gas mass spectrometer (VG3400). N concentrations range from 0.6 to 22 micro ccSTP/g olivine. The 15N/14N ratios (expressed in the δ 15N notation where δ 15N sample = {[(15N/14N)sample/(15N/14N)Air]-1} X 1000) of olivine separates are distinctly different from air (0.0‰ ) and range from lower than mean MORB (- 5 ‰ ) to values characteristic of (subducted) oceanic sediments (+ 7 ‰ ). Positive δ 15N values are found in olivines from volcanic arcs: Cerro Negro 1992 ash (+ 6.2 ± 1.6‰ ), Izalco lava flow (+ 5.1 ± 0.7‰ ), Ichinomengata spinel lherzolite (+ 1.1 ± 0.5 ‰ ) with the exception of Turrialba lava (- 1.7 ± 2.5‰ ). Olivines from hot spots have both positive and negative δ 15N signatures: Iceland, Theistareykir - northern rift zone (- 8± 1.6 ‰ ), Hawaii, dunite from 1801 Kaupulehu flow of Hualuai volcano (+ 3.1 ± 0.3 ‰ ) and Reunion dunite (+ 0.2 ± 0.5‰ ). The San Carlos mantle xenolith has a value of - 1.5 ± 2.5‰ . 40Ar/36Ar ratios of the samples as determined in this study or reported in the literature are significantly higher than air (295.5) in olivines from Ichinomegata, San Carlos, Iceland, Reunion and Hawaii. The olivines from Cerro Negro have a 40Ar/36Ar ratio of 306, close to that of air. The 3He/4He ratios of the samples are higher than the MORB value of 8.0 RA (RA is the 3He/4He of air), the exception being Cerro Negro (6.1 RA). Hawaii, Reunion and Iceland have 3He/4He of 10.3, 12.9 and 12.3 RA, respectively. δ 15N signatures of fumarole gas samples collected at Cerro Negro (+ 4.9 ±0.1 ‰ ), Turrialba (- 1.0 ±0

  1. Flow in the western Mediterranean shallow mantle: Insights from xenoliths in Pliocene alkali basalts from SE Iberia (eastern Betics, Spain)

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Konc, Zoltán.; Garrido, Carlos J.; Tommasi, Andréa.; Vauchez, Alain; Padrón-Navarta, José Alberto; Marchesi, Claudio; Booth-Rea, Guillermo; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, María. Isabel; Gervilla, Fernando

    2016-11-01

    Mantle xenoliths in Pliocene alkali basalts of the eastern Betics (SE Iberia, Spain) are spinel ± plagioclase lherzolite, with minor harzburgite and wehrlite, displaying porphyroclastic or equigranular textures. Equigranular peridotites have olivine crystal preferred orientation (CPO) patterns similar to those of porphyroclastic xenoliths but slightly more dispersed. Olivine CPO shows [100]-fiber patterns characterized by strong alignment of [100]-axes subparallel to the stretching lineation and a girdle distribution of [010]-axes normal to it. This pattern is consistent with simple shear or transtensional deformation accommodated by dislocation creep. One xenolith provides evidence for synkinematic reactive percolation of subduction-related Si-rich melts/fluids that resulted in oriented crystallization of orthopyroxene. Despite a seemingly undeformed microstructure, the CPO in orthopyroxenite veins in composite xenoliths is identical to those of pyroxenes in the host peridotite, suggesting late-kinematic crystallization. Based on these observations, we propose that the annealing producing the equigranular microstructures was triggered by melt percolation in the shallow subcontinental lithospheric mantle coeval to the late Neogene formation of veins in composite xenoliths. Calculated seismic properties are characterized by fast propagation of P waves and polarization of fast S waves parallel to olivine [100]-axis (stretching lineation). These data are compatible with present-day seismic anisotropy observations in SE Iberia if the foliations in the lithospheric mantle are steeply dipping and lineations are subhorizontal with ENE strike, implying dominantly horizontal mantle flow in the ENE-WSW direction within vertical planes, that is, subparallel to the paleo-Iberian margin. The measured anisotropy could thus reflect a lithospheric fabric due to strike-slip deformation in the late Miocene in the context of WSW tearing of the subducted south Iberian margin

  2. A review of mantle xenoliths and their role in diamond exploration

    NASA Astrophysics Data System (ADS)

    Nixon, Peter H.

    1995-12-01

    An historical introduction to the geotherm and its significance for the existence of a diamond window at the base of the peridotite lithosphere is followed by a brief survey of types of mantle zenoliths (low T, high T and metasomatized peridotites, megacrysts or discrete nodules, eclogites and less common varieties). The similarities of eclogite xenoliths to the subducted eclogites with graphitized diamonds in the peridotite massif of Beni Bousera, northern Morocco, are reviewed. Diamond-bearing peridotite (Archaean harzburgite and lherzolite) and eclogite xenoliths are rare, having suffered excessive disaggregation. They do not necessarily relate proportionately to the types of diamonds in the host kimberlite/lamproite. Batches of single mineral species from disaggregated diamondiferous xenoliths, particularly garnets, form a realistic approach to diamond exploration. Nickel thermometry applied to Cr pyropes, developed by Griffin et al. (1989) Contr. Miner. Petrol. 103, 199-203, and barometry dependent upon Cr content in notional coexisting spinels, provide a realistic appreciation of the extent of the diamond window. Sodium and K pressure "indicators" in eclogitic garnets and clinopyroxenes are reviewed, but estimates are affected by mantle processes (metasomatism) and amounts of coexisting P and Ti. Metasomatic processes in the basal lithosphere are sourced in the underlying asthenospheric (megacryst) magmas. Depending on the degree and type of interaction they can result in the destruction of ancient diamonds or the growth of new peridotitic diamonds. Partial destruction or replacement of mineral indicators may also result and Cr garnets acquire distinctive quantifiable trace element signatures. High T minerals encapsulated in diamond are either relict from former ambient high T conditions or the result of localized thermal highs emanating from asthenospheric magmas (or plume/diapir). It is concluded that the fullest significance of the geochemistry ( sensuo

  3. Metasedimentary and igneous xenoliths from Tallante (Betic Cordillera, Spain): Inferences on crust-mantle interactions and clues for post-collisional volcanism magma sources

    NASA Astrophysics Data System (ADS)

    Bianchini, Gianluca; Braga, Roberto; Langone, Antonio; Natali, Claudio; Tiepolo, Massimo

    2015-04-01

    The deep seated xenolith association exhumed in the Pliocenic volcano of Tallante (Betic Cordillera, Spain) includes protogranular mantle peridotites, felsic (metasedimentary) crustal rocks, as well as cumulus igneous rocks such as norites and amphibole (± phlogopite)-clinopyroxenites. The whole xenolith suite equilibrated at the same pressure (0.7-0.9 GPa) representing the local crust-mantle boundary (MOHO) characterized by extreme lithological heterogeneity. This heterogeneity resulted from orogenic processes that induced the juxtaposition of crustal rocks (variably depleted in fusible components) within mantle domains including metasomes, as it is commonly observed in orogenic mantle massifs of the Mediterranean area. In this contribution, we report new mineral compositions of igneous parageneses recorded in these xenoliths, and we present Sr-Nd isotope data on both igneous and metasedimentary xenoliths that integrate those from the literature. Sr-Nd isotopes coherently indicate a restitic character of the metasedimentary xenoliths, which according to model ages were affected by partial melting in Paleozoic times. Sr-Nd isotopic errorchrons on the igneous xenoliths, on the other hand, qualitatively indicate Tertiary ages, which are corroborated by U-Pb zircon datings of one norite xenolith and two composite xenoliths having zircon-bearing norite veinlets. The new data are discussed proposing that MOHO lithologies of Tallante could provide significant source compositions for the genesis of the Neogene volcanics of the Betic area, which included calcalkaline lavas as well as more potassic products such as lamproites.

  4. Petrological characterization of mantle xenoliths from Handler Ridge, Northern Victoria Land (Antarctica)

    NASA Astrophysics Data System (ADS)

    Pelorosso, Beatrice; Bonadiman, Costanza; Coltorti, Massimo; Giacomoni, Pier Paolo

    2014-05-01

    A study of ultramafic xenoliths in Cenozoic alkali basalts from Handler Ridge has been carried out in order to characterize the petrological features of the lithospheric mantle beneath Handler Ridge, Northern Victoria Land (NVL) and to extend the petrological knowledge of the mantle over a large portion of the Western Antarctic Rift, from M.te Melbourne (74°21'S 164°42'E) to Handler Ridge (72°31'S 167°18'E). Xenoliths are anhydrous spinel(sp) bearing lherzolites. Two textural types were recognized: i) medium to coarse grain protogranular and ii) fine grain equigranular. Some xenoliths present evidences of peridotite-melt interactions, such as spongy textures, cloudy rims and glassy patches. Large primary sp are often lobated. Newly formed, secondary crystals are referred to cpx only. Regardless textural types, olivine (ol) is forsteritic in composition with Fo varying from 87.5 to 91.0, with a more fertile group ranging between 87.6 and 88.6. NiO contents between 0.31 and 0.44 wt% match the typical mantle values. As observed in ol, orthopyroxene (opx) can be distinguished in two clusters: the more fertile group with mg# [=Mg/(Mg+Fe)*100 mol] ranging between 87.6 and 88.3 and the more residual one with mg# from 88.9 to 91.0. In cpx mg# varies between 87.06 and 91.7. Cpx in depleted lherzolite and secondary cpx are characterized by high values of Na2O (1.3-1.63 wt%) and Al2O3 (4.62-6.62 wt%). Glasses are SiO2 (≥55.50 wt%) oversaturated with TiO2 content between 0.6 and 1wt% and Na2O/K2O in the range of 0.80-2.02. Sp are characterized by mg# values between 62 and 78, and cr# [=Cr/(Cr+Al)*100 mol] from 14 to 42 with the usual negative correlation between the two parameters. The relationship between ol, opx and sp suggest that partial melting is the main process controlling the chemical variation of these three phases, while cpx were affected by metasomatic event/s. On the basis of the formalism of Brey & Kohler (1990), Liermann & Ganguly (2003) and Ballhaus (1991

  5. Water in the Lithospheric Mantle Beneath a Phanerozoic Continental Belt: FTIR Analyses of Alligator Lake Xenoliths (Yukon, Canada)

    NASA Technical Reports Server (NTRS)

    Gelber, McKensie; Peslier, Ann H.; Brandon, Alan D.

    2015-01-01

    Water in the mantle influences melting, metasomatism, viscosity and electrical conductivity. The Alligator Lake mantle xenolith suite is one of three bimodal peridotite suites from the northern Canadian Cordillera brought to the surface by alkali basalts, i.e., it consists of chemically distinct lherzolites and harzburgites. The lherzolites have equilibration temperatures about 50 C lower than the harzburgites and are thought to represent the fertile upper mantle of the region. The harzburgites might have come from slightly deeper in the mantle and/or be the result of a melting event above an asthenospheric upwelling detected as a seismic anomaly at 400-500 km depth. Major and trace element data are best interpreted as the lherzolite mantle having simultaneously experienced 20-25% partial melting and a metasomatic event to create the harzburgites. Well-characterized xenoliths are being analyzed for water by FTIR. Harzburgites contain 29-52 ppm H2O in orthopyroxene (opx) and (is) approximately140 ppm H2O in clinopyroxene (cpx). The lherzolites have H2O contents of 27-150 ppm in opx and 46-361 ppm in cpx. Despite correlating with enrichments in LREE, the water contents of the harzburgite pyroxenes are low relative to those of typical peridotite xenoliths, suggesting that the metasomatic agents were water-poor, contrarily to what has been suggested before. The water content of cpx is about double that of opx indicating equilibrium. Olivine water contents are low ((is) less than 5 ppm H2O) and out of equilibrium with those of opx and cpx, which may be due to H loss during xenolith ascent. This is consistent with olivines containing more water in their cores than their rims. Olivines exclusively exhibit water bands in the 3400-3000 cm-1 range, which may be indicative of a reduced environment.

  6. CO2 fluid inclusion barometry in mantle xenoliths from central Mexico: A detailed record of magma ascent

    NASA Astrophysics Data System (ADS)

    Levresse, Gilles; Cervantes-de la Cruz, Karina Elizabeth; Aranda-Gómez, José Jorge; Dávalos-Elizondo, María Guadalupe; Jiménez-Sandoval, Sergio; Rodríguez-Melgarejo, Francisco; Alba-Aldave, Leticia Araceli

    2016-01-01

    Chemical equilibrium and CO2 fluid inclusion barometry are complementary techniques, as they register different geological processes. Chemical equilibrium barometry records the pressure at the site where the xenoliths were incorporated into the transporting magma, but it is not a sensible technique to document magma ascent. CO2 fluid inclusion pore pressure in xenoliths does not register the P-T conditions in the source area, but it allows illustrating a fairly detailed record of different geological processes that occurred during the magma transport to the surface and as the eruption proceeded. Mantle xenoliths from Ventura-Espíritu Santo and Santo Domingo volcanic fields contain dominant CO2 pseudosecondary and secondary fluid inclusions trapped in cpx and ol. Cpx chemical equilibrium pressures indicate a maximum pressure of 10 kbar for the source area. Pore pressures obtained in CO2 pseudosecondary and secondary fluid inclusions show a distribution with three maximum peaks at ca. 8, 5-7, and less than 3 kbar. A comparison with geophysical models for the area where the xenoliths-bearing volcanoes are located shows that the three peaks in the pore pressures correspond to three physico-chemical transitions within the continental crust. Likewise, the pore pressure suggests that rapid magma ascent is momentarily interrupted by these discontinuities, a fact that allows the formation of new fluid inclusions and the re-equilibration of some of the inclusions already present in the primary minerals of the xenoliths.

  7. Nature of the lithospheric mantle beneath the Arabian Shield and genesis of Al-spinel micropods: Evidence from the mantle xenoliths of Harrat Kishb, Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ahmed, Ahmed H.; Moghazi, Abdel Kader M.; Moufti, Mohamed R.; Dawood, Yehia H.; Ali, Kamal A.

    2016-01-01

    The Harrat Kishb area of western Saudi Arabia is part of the Cenozoic volcanic fields in the western margin of the Arabian Shield. Numerous fresh ultramafic xenoliths are entrained in the basanite lava of Harrat Kishb, providing an opportunity to study the nature and petrogenetic processes involved in the evolution of the lithospheric mantle beneath the Arabian Shield. Based on the petrological characteristics and mineralogical compositions, the majority of the mantle xenoliths ( 92%) are peridotites (lherzolites and pyroxene-bearing harzburgites); the remaining xenoliths ( 8%) are unusual spinel-rich wehrlites containing black Al-spinel micropods. The two types of mantle xenoliths display magmatic protogranular texture. The peridotite xenoliths have high bulk-rock Mg#, high forsterite (Fo90-Fo92) and NiO (0.24-0.46 wt.%) contents of olivine, high clinopyroxene Mg# (0.91-0.93), variable spinel Cr# (0.10-0.49, atomic ratio), and approximately flat chondrite-normalized REE patterns. These features indicate that the peridotite xenoliths represent residues after variable degrees of melt extraction from fertile mantle. The estimated P (9-16 kbar) and T (877-1227 °C) as well as the oxidation state (∆logfO2 = - 3.38 to - 0.22) under which these peridotite xenoliths originated are consistent with formation conditions similar to most sub-arc abyssal-type peridotites worldwide. The spinel-rich wehrlite xenoliths have an unusual amount ( 30 vol.%) of Al-spinel as peculiar micropods with very minor Cr2O3 content (< 1 wt.%). Olivines of the spinel-rich wehrlites have low-average Fo (Fo81) and NiO (0.18 wt.%) contents, low-average cpx Mg# (0.79), high average cpx Al2O3 content (8.46 wt.%), and very low-average spinel Cr# (0.01). These features characterize early mantle cumulates from a picritic melt fraction produced by low degrees of partial melting of a garnet-bearing mantle source. The relatively high Na2O and Al2O3 contents of cpx suggest that the spinel-rich wehrlites

  8. Lithospheric mantle duplex beneath the central Mojave Desert revealed by xenoliths from Dish Hill, California

    NASA Astrophysics Data System (ADS)

    Luffi, Peter; Saleeby, Jason B.; Lee, Cin-Ty A.; Ducea, Mihai N.

    2009-03-01

    Low-angle subduction of oceanic lithosphere may be an important process in modifying continental lithosphere. A classic example is the underthrusting of the Farallon plate beneath North America during the Laramide orogeny. To assess the relevance of this process to the evolution and composition of continental lithosphere, the mantle stratigraphy beneath the Mojave Desert was constrained using ultramafic xenoliths hosted in Plio-Pleistocene cinder cones. Whole-rock chemistry, clinopyroxene trace element and Nd isotope data, in combination with geothermometry and surface heat flow, indicate kilometer-scale compositional layering. The shallow parts are depleted in radiogenic Nd (ɛNd = -13 to -6.4) and are interpreted to be ancient continental mantle that escaped tectonic erosion by low-angle subduction. The deeper samples are enriched in radiogenic Nd (ɛNd = +5.7 to +16.1) and reveal two superposed mantle slices of recent origin. Within each slice, compositions range from fertile lherzolites at the top to harzburgites at the bottom: the latter formed by 25-28% low-pressure melt depletion and the former formed by refertilization of harzburgites by mid-ocean-ridge-basalt-like liquids. The superposition and internal compositional zonation of the slices preclude recent fertilization by Cenozoic extension-related magmas. The above observations imply that the lower Mojavian lithosphere represents tectonically subcreted and imbricated lithosphere having an oceanic protolith. If so, the lherzolitic domains may be related to melting and refertilization beneath mid-ocean ridges. The present Mojavian lithosphere is thus a composite of a shallow section of the original North American lithosphere underlain by Farallon oceanic lithosphere accreted during low-angle subduction.

  9. Interaction of extended mantle plume head with ancient lithosphere: evidence from deep-seated xenoliths in basalts and lamprophyre diatremes in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2016-04-01

    The Middle Cretaceous lamprophyric diatremes of the Jabel Ansaria Ridge contain xenoliths of ancient lower crustal rocks mainly represented by the suite of partly altered garnet granulite and eclogite-like rocks, which were formed at the expense of ferrogabbros and ferroclinopyroxenites most likely in the course of underplating of Fe-Ti basalt. Garnet (Alm26Grs11Py63) megacrysts and coarse-granular garnet-clinopyroxene intergrowths are most likely the varieties of rocks of this series. Garnet megacrysts are represented by large (up to 10 cm in diameter) round "nodules," often molten from the surface. Garnet is usually fractured, and the kelyphite material similar to that in rocks of the eclogite-granulite series occurs in fractures. In addition, we found several intergrowths of garnet with large (up to 3-5 cm in length) crystals of high-Al augite with the low of Ti and Na contents like in rocks of the eclogite-granulite suite. Coarse-grained garnet-clinopyroxene-hornblende rocks with spinel, as well as megacrysts of Al-Ti augite with kaersutite, form the second group in prevalence. This group is close to mantle xenoliths of the "black series" in alkali Fe-Ti basalt worldwide. Kaersutite in these rocks contains gaseous cavities, which provides evidence for the origin of rocks at the expense of a strongly fluidized melt/fluid. In contrast to rocks of the eclogite-granulite series, these rocks did not undergo alteration. Garnet Alm19-26Grs12-13.5Py59-67.5 usually associates with dark opaque spinel. In contrast, the Late Cenozoic plateaubasalts of the region practically do not contain lower crustal xenoliths, whereas xenoliths of mantle spinel lherzolite (fragments of the upper cooled rim of the plume head) are widely abundant. According to data of mineralogical thermobarometry, rocks of the eclogite-granulite suite were formed at 13.5-15.4 kbar (depths of 45-54 km) and 965-1115°C. Rocks of this suite are typical representatives of the continental lower crust

  10. Helium and argon isotopic compositions of mantle xenoliths from Tallante and Calatrava, Spain

    NASA Astrophysics Data System (ADS)

    Martelli, M.; Bianchini, G.; Beccaluva, L.; Rizzo, A.

    2011-02-01

    We have analyzed by single-step crushing helium and argon isotopes in olivine and orthopyroxene from mantle xenoliths of Calatrava (CLV) in central Spain and Tallante (TL) in southeast Spain. The investigation focused on carefully selected samples previously characterized in terms of major and trace elements on both bulk rock and constituent minerals, and Sr and Nd isotopes on clinopyroxene separates. Six analyses were performed on protogranular spinel lherzolites from CLV, and 17 were performed on spinel harzburgites, lherzolites, and orthopyroxenites from TL. The 40Ar/ 36Ar ratio was between 296 and 622, indicating atmospheric contamination, which probably occurred during exposure to the surface. The helium-isotope ratio ( 3He/ 4He) ranged between 3.6 and 6.5 Ra in CLV samples and between 1.4 and 5.7 Ra in TL samples. There was a positive correlation between the 3He/ 4He and 4He/ 40Ar* ratios, possibly reflecting diffusive fractionation between 3He, 4He, and 40Ar within mantle sections interacting with ascending melts. However, the difference between the maximum 3He/ 4He ratios measured in CLV and TL appears to be related to significant differences in the metasomatic melts that affected the two sectors of the lithospheric mantle. In agreement with the findings of previous studies, the helium isotopes at CLV are compatible with metasomatism due to ascending HIMU-type asthenospheric melts. In contrast, the lower 3He/ 4He values recorded at TL suggest subduction-related metasomatic components that are possibly related to the Cenozoic subduction of the Betic system. Such event plausibly introduced crust-derived fluids that metasomatized the mantle wedge, slightly decreasing its 3He/ 4He value. Noble gases appear decoupled from other elements during these mantle processes, since comparatively low 3He/ 4He values have been recorded also in samples that are relatively unmetasomatized in terms of incompatible lithophile elements. We hypothesize a role for volatile

  11. High Water Contents in the Siberian Cratonic Mantle: An FTIR Study of Udachnaya Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Doucet, Luc S.; Peslier, Anne H.; Ionov, Dimitri A.; Brandon, Alan D.; Golovin, Alexander V.; Ashchepkov, Igor V.

    2013-01-01

    Water is believed to be a key factor controlling the long-term stability of cratonic lithosphere, but mechanisms responsible for the water content distribution in the mantle remain poorly constrained. Water contents were obtained by FTIR in olivine, pyroxene and garnet for 20 well-characterized peridotite xenoliths from the Udachnaya kimberlite (central Siberian craton) and equilibrated at 2-7 GPa. Water contents in minerals do not appear to be related to interaction with the host kimberlite. Diffusion modeling indicates that the core of olivines preserved their original water contents. The Udachnaya peridotites show a broad range of water contents in olivine (6.5 +/- 1.1 to 323 +- 65 ppm H2O (2 sigma)), and garnet (0 - 23 +/- 6 ppm H2O). The water contents of olivine and garnet are positively correlated with modal clinopyroxene, garnet and FeO in olivine. Water-rich garnets are also rich in middle rare earth elements. This is interpreted as the result of interaction between residual peridotites and water rich-melts, consistent with modal and cryptic metasomatism evidenced in the Siberian cratonic mantle. The most water-rich Udachnaya minerals contain 2 to 3 times more water than those from the Kaapvaal craton, the only craton with an intact mantle root for which water data is available. The highest water contents in olivine and orthopyroxene in this study (>= 300 ppm) are found at the bottom of the lithosphere (> 6.5 GPa). This is in contrast with the Kaapvaal craton where the olivines of peridotites equilibrated at > 6.4 GPa have < 1 ppm H2O. The latter "dry" olivine may make the base of the Kaapvaal cratonic root strong and thus protects it from erosion by the convective mantle The calculated viscosity for water-rich Udachnaya peridotites at > 6 GPa is lower or similar (8.4× 10(exp 16) to 8.0× 10(exp 18) Pa./s) to that of the asthenosphere (<= 3.7x10(exp 18) Pa./s ). Such lithologies would not be able to resist delamination by the convecting asthenosphere

  12. Water Contents of the Mantle Beneath the Rio Grande Rift: FTIR Analysis of Kilbourne Hole Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Schaffer, Lillian A.; Peslier, Anne; Brandon, Alan

    2013-01-01

    Although nominally anhydrous mantle minerals contain only trace amounts of water, they are the main reservoir of water in the mantle. Added up at the scale of the Earth's mantle, these trace amounts of water represent oceans worth in mass]. Mantle xenoliths from Kilbourne Hole in southern New Mexico are ideal to study mantle water distribution in a rift tectonic setting as they come from a recently-erupted maar in the middle of the Rio Grande Rift. Eleven lherzolites, one harzburgite, and one dunite are being analyzed for water contents by FTIR. The xenoliths will also be analyzed for major and trace element composition, Fe3+/Summation (Fe) ratios, and characterized petrologically. Olivines exhibit variable water contents with less water at the rims compared to the cores. This is probably due to H loss during decompression and xenolith transport by the host magma. Mantle water contents appear to have been primarily preserved in the core of the olivines, based on diffusion modeling of the typically plateau-shaped water content profiles across these grains. Water concentrations are in equilibrium between clino- and orthopyroxene, but olivine concentrations are typically not in equilibrium with those of either pyroxene. Lherzolites analyzed so far have water contents of 2-12 ppm H2O in olivines, 125-165 ppm H2O in orthopyroxenes, and 328-447 ppm H2O in clinopyroxenes. These water contents are similar to, but with a narrower range, than those for the respective minerals in other continental peridotite xenoliths. The lherzolites have bulk-rock (BR) Al2O3 contents that range between 3.17 and 3.78 wt%, indicating similar degrees of partial melting, which could explain the narrow range of their pyroxene water contents. Primitive mantle normalized rare earth element (REE) profiles of the bulk lherzolites vary from light REE depleted to flat, with no significant differences between, nor relation to, their mineral water contents. Consequently, the metasomatic agents that

  13. Thermal history of the upper mantle beneath a young back-arc extensional zone: ultramafic xenoliths from San Luis Potosí, Central Mexico

    NASA Astrophysics Data System (ADS)

    Heinrich, Wilhelm; Besch, Thomas

    1992-06-01

    At the San Luis Potosí (SLP) volcanic field (Central Mexico), Quaternary basanites and tuff breccias have sampled a suite of ultramafic xenoliths, predominately spinel lherzolites, spinel-olivine websterites, spinel pyroxenites, and hornblende-rich pyroxenites. Spinel lherzolites from the La Ventura maars have protogranular to equigranular textures, those from the Santo Domingo maars are strongly sheared. Both spinel-lherzolite types show similar whole-rock major and trace-element abundances. They are fertile to slightly depleted with mineralogical and geochemical heterogeneities induced by partial melting processes. Pyroxenites with either magmatic or metamorphic textures are high-pressure cumulates. Hornblende-rich pyroxenites are genetically linked to the host basanites. Most of the protogranular spinel lherzolites contain veinlets of glass along grain boundaries. These glasses are chemically homogeneous and have trachybasaltic to trachyandesitic compositions. Mg- and Fe2+-partitioning between olivine and glass suggests chemical equilibrium between the melts represented by the glasses and the spinel-lherzolite mineral assemblage at about 1,000°C and 10 to 15 kbar. The melts are interpreted to be of upper mantle origin. They may have been formed by in-situ partial melting in the presence of volatiles or represent percolating melts chemically buffered by the spinel-lherzolite mineral assemblage at uppermost mantle conditions. Mineral chemistry in all rock types of the whole xenolith suite reveals distinct disequilibrium features reflecting partial re-equilibration stages towards lower temperatures estimated to be from 1,050°C to 850°C at 9 to 15 kbar. The presence of similar zoning and exsolution features mainly documented in pyroxenes along with similar maximum and minimum temperatures requires all sampled xenoliths to have undergone the same temperature regime within the upper mantle. The sheared spinel lherzolites from the Sto. Domingo field are interpreted

  14. Flow in the uppermost mantle during back-arc spreading revealed by Ichinomegata peridotite xenoliths, NE Japan

    NASA Astrophysics Data System (ADS)

    Satsukawa, Takako; Michibayashi, Katsuyoshi

    2014-02-01

    Spinel peridotite xenoliths from the Ichinomegata Volcano (NE Japan) have distinct foliations defined by compositional layering between olivine-rich and pyroxene-rich layers as well as lineations defined by elongated spinel grains. Crystallographic preferred orientations (CPOs) of olivine are consistent with slip on (010)[100] and {0kl}[100]. The angles between the foliation and the olivine slip planes decrease with increasing values of the J-index (i.e. CPO strength). Such composite planar relationships within the peridotite xenoliths could result from shearing in the uppermost mantle, so that shear strains can be estimated by the angles between the foliation and the olivine slip plane in terms of simple shear strain (0.31-4.26). From these observations, we argue that a suite of the peridotite xenoliths recorded a rare snapshot of uppermost-mantle flow related to back-arc spreading during the opening of the Japan Sea. The peridotite xenoliths with higher J-indices (i.e. higher shear strain) tend to have slightly lower minimum temperatures, possibly defining a vertical strain gradient in the uppermost mantle section at the time of the volcano's eruption. The CPO data have been used to calculate the seismic properties of the xenoliths at PT conditions obtained from geothermobarometry, and are compared to field geophysical data from the literature. Our results are consistent with a roughly EW-oriented fastest P-wave propagation direction in the uppermost mantle beneath the northeast part of the Japan arc. Average samples are calculated based on three different structural reference frames; horizontal plane parallel to 1) foliation, 2) the plane containing the maximum concentration of olivine [100], and 3) P-wave maximum direction. S-wave anisotropy deduced from CPOs requires a reasonable thickness of the anisotropic layer (24.1-26.6 km), and the structural reference frame does not have significant effect on the estimation of thickness. Consequently, Ichinomegata

  15. Trace element compositions of the mantle peridotite xenoliths from Primorie (Russian Far East)

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Aseeva, Anna; Vysotsky, Sergei; Prikhodko, Valdimir; Kutolin, Valdislav

    2013-04-01

    The trace element compositions were determined for 30 Cpx and some Cr spinels from the mantle xenoliths by LAM ICP using Finnigan ELEMENT with the YAG Nd 266 Laser Probe laser system (analyst S.V. Palessky) in Analytic centre of IGM SB RAS. Cpx from Kamku river show nearly flat or inclined REE patterns (La/Ybn ~2.5) with the depressions in Ta, Nb and less in Zr. Similar patterns show Cpx from volc. Medvezhy showing higher fluctuations in LREE 0.1>La/Ybn >1 with the depressions in HFSE. The Cpx from Tuttocha lava plateau show small depletion in LREE correspondent to 1-2% melting in Sp facie but one grain showing the spectrum with humped LREE probably refer to the interaction with basalt melt. CPx from the volc. Mount Kurgan show slightly humped in MREE convex upward patterns. Some of them reveal the depletion in LREE Zr, Hf, Nb, Ta which is common for the spinel peridotites subjected to the reactions with the oxidized melts crystallized oxides. Another one grain show La/Yb>1 correspondent to presence of small amount of Gar in the melting source and flattened incompatible part of TRE spectrum. The Cpx from Koppy reveal common REE slightly depleted LREE pattern and deeper Zr, Ta. minima. Podgelbanochny Cpx (Ionov et al., 1995) show stronger inclination referring to 2-5 % of Gar in melting source and progressively depleted incompatible part of the TRE spectrum as well as minima in Pb and smaller in Zr. The Cr spinels from Tuttocha show flattened patterns depleted LREE or U shaped patterns with peaks in Pb, Nb, U. But for Cr- Sp from Medvezhy the REE inclination is positive, the Pb dip is higher, and small Y depletion exists. So the mantle in the Southern part of Primorie and volcanoes of the latest activity show more inclines REE patterns with the garnet signatures and LREE enrichment and higher LA/Ybn rations corresponding to the lower melting degrees. In general there is now evidences for the support of the low crust and mantle lithosphere delamination which should

  16. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Ting; Zhu, Hong-Li; Liu, Yu-Fei; Liu, Fang; Wu, Fei; Hao, Yan-Tao; Zhi, Xia-Chen; Zhang, Zhao-Feng; Huang, Fang

    2016-02-01

    This study presents calcium isotope data for co-existing clinopyroxenes (cpx), orthopyroxenes (opx), and olivine (ol) in mantle xenoliths to investigate Ca isotopic fractionation in the upper mantle. δ44/40Ca (δ44/40Ca (‰) = (44Ca/40Ca)SAMPLE/(44Ca/40Ca)SRM915a - 1) in opx varies from 0.95 ± 0.05‰ to 1.82 ± 0.01‰ and cpx from 0.71 ± 0.06‰ to 1.03 ± 0.12‰ (2se). δ44/40Ca in ol (P-15) is 1.16 ± 0.08‰, identical to δ44/40Ca of the co-existing opx (1.12 ± 0.09‰, 2se). The Δ44/40Caopx-cpx (Δ44/40Caopx-cpx = δ44/40Caopx-δ44/40Cacpx) shows a large variation ranging from -0.01‰ to 1.11‰ and it dramatically increases with decreasing of Ca/Mg (atomic ratio) in opx. These observations may reflect the effect of opx composition on the inter-mineral equilibrium fractionation of Ca isotopes, consistent with the theoretical prediction by first-principles theory calculations (Feng et al., 2014). Furthermore, Δ44/40Caopx-cpx decreases when temperature slightly increases from 1196 to 1267 K. However, the magnitude of such inter-mineral isotopic fractionation (1.12‰) is not consistent with the value calculated by the well-known correlation between inter-mineral isotope fractionation factors and 1/T2 (Urey, 1947). Instead, it may reflect the temperature control on crystal chemistry of opx (i.e., Ca content), which further affects Δ44/40Caopx-cpx. The calculated δ44/40Ca of bulk peridotites and pyroxenites range from 0.76 ± 0.06‰ to 1.04 ± 0.12‰ (2se). Notably, δ44/40Ca of bulk peridotites are positively correlated with CaO and negatively with MgO content. Such correlations can be explained by mixing between a fertile mantle end-member and a depleted one with low δ44/40Ca, indicating that Ca isotopes could be a useful tool in studying mantle evolution.

  17. Mantle metasomatism by melts of HIMU piclogite components: new insights from Fe-lherzolite xenoliths (Calatrava Volcanic District, Central Spain)

    NASA Astrophysics Data System (ADS)

    Bianchini, Gianluca; Beccaluva, Luigi; Bonadiman, Costanza; Nowell, Geoff M.; Pearson, D. Graham; Siena, Franca; Wilson, Marjorie

    2010-05-01

    Mantle xenoliths from the Calatrava Volcanic District (CLV), central Spain, are characterized by a wide compositional range, which includes lherzolites (prevalent) as well as minor amounts of wehrlite, ol-websterite and rare dunites. They generally have bulk-rock Mg#s <89, lower than any primordial mantle estimates. Intra-suite variations in modal proportions are inconsistent with those predicted by melting models irrespective of the starting composition; mineral and bulk-rock variation diagrams show inconsistencies between the CLV compositions (anomalously enriched in Fe-Ti) and those predicted from partial melting of primordial mantle material. Processes other than pure melt extraction are confirmed by the whole-rock REE budget, typically characterized by LREE enrichments, with LaN/YbN (up to 6.7), probably related to pervasive metasomatism. CLV mantle clinopyroxenes (cpx) generally display fractionated REE patterns with upward convex shapes, characterized by low HREE (Tm-Lu) concentrations (typically <6 x chondrite) and enrichments in Middle/Light REE (NdN/YbN up to 7, LaN/YbN up to 5). These "enriched" cpx compositions either result from re-equilibration of primary mantle cpx with an incoming melt, or represent cpx crystallization directly from the metasomatic agent. The latter was plausibly generated at greater depths in the presence of residual garnet (from peridotite or eclogite starting materials). Separated cpx have homogeneous 87Sr/86Sr compositions between 0.7031 and 0.7032; 143Nd/144Nd ranges from 0.51288 to 0.51295 and 176Hf/177Hf is in the range 0.28302-0.28265. Unlike mantle xenoliths and alpine-type peridotites from other Iberian occurrences, which range in composition from the Depleted Mantle (DM) to the Enriched Mantle (EM), the CLV mantle cpxs approach the composition of the HIMU mantle end-member, the genesis of which is generally interpreted as the result of long-term recycling of oceanic basalts/gabbros (or their eclogitic equivalent) via

  18. Sr-Nd-Pb isotope data for ultramafic xenoliths from Hierro, Canary Islands: Melt infiltration processes in the upper mantle

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Neumann, E.-R.

    1995-03-01

    We present here Sr, Nd, and Pb-isotopic data from harzburgite (group I) and dunite-pyroxenite (group II) suite mantle xenoliths from the island of Hierro, one of the youngest and westernmost of the Canary Islands. A progressive leaching technique has been developed and applied to the whole-rock powder samples in order to identify and remove as far as possible any recent additions (host basalt and/or sea-water). Isotopic analyses of the leached residues show significant systematic differences between these two suites. Dunite-pyroxenite suite xenoliths (olivine pyroxenites, dunites and wehrlites) exhibit a relatively small range of isotopic compositions (87Sr/86Sr from 0.70292 to 0.70315; 143Nd/144Nd from 0.51295 to 0.51302; 206Pb/204Pb from 19.18 to 19.40) compared to the harzburgite suite (87Sr/86Sr from 0.70295 to 0.70320; 143Nd/144Nd from 0.51285 to 0.51296; 206Pb/204Pb from 18.85 to 19.41). In all isotope correlation diagrams the leached dunite-pyroxenite suite xenoliths plot between the Hierro basalt field and a hypothetical depleted mantle suggesting that these xenoliths may have been strongly infiltrated by Hierro-type basalt. Progressive leaching of this suite of samples showed removal of a component with more enriched Sr (higher 87Sr/86Sr relative to depleted mantle) and Nd (lower 143Nd/144Nd) isotopic compositions that is probably host basalt glass. The leached harzburgite suite xenoliths extend to more enriched Sr and Nd isotopic compositions than Hierro-type basalt but always have more depleted Pb. This relationship can best be explained if this suite has been subject to infiltration by earlier magmas of the Canary Island suite (in particular, those from Gran Canaria show appropriate compositional ranges), although additional infiltration by Hierro basalt cannot be ruled out. The leaching experiments for this suite mostly show removal of a radiogenic Sr component only (? seawater) which supports the interpretation of early infiltration and subsequent

  19. Textures in spinel peridotite mantle xenoliths using micro-CT scanning: Examples from Canary Islands and France

    NASA Astrophysics Data System (ADS)

    Bhanot, K. K.; Downes, H.; Petrone, C. M.; Humphreys-Williams, E.

    2017-04-01

    Spinel pyroxene-clusters, which are intergrowths of spinel, orthopyroxene and clinopyroxene in mantle xenoliths, have been investigated through the use of micro-CT (μ-CT) in this study. Samples have been studied from two different tectonic settings: (1) the northern Massif Central, France, an uplifted and rifted plateau on continental lithosphere and (2) Lanzarote in the Canary Islands, an intraplate volcanic island on old oceanic lithosphere. μ-CT analysis of samples from both locations has revealed a range of spinel textures from small < 2 mm microcrystals which can be either spatially concentrated or distributed more evenly throughout the rock with a lineation, to large 4-12 mm individual clusters with ellipsoidal complex vermicular textures in random orientation. Microprobe analyses of pyroxenes inside and outside the clusters show broadly similar compositions. Spinel-pyroxene clusters are the result of a transition of shallow lithospheric mantle from the garnet stability field to the spinel stability field. Both the northern Massif Central and Lanzarote are regions that have experienced significant lithospheric thinning. This process provides a mechanism where the sub-solidus reaction of olivine + garnet = orthopyroxene + clinopyroxene + spinel is satisfied by providing a pathway from garnet peridotite to spinel peridotite. We predict that such textures would only occur in the mantle beneath regions that show evidence of thinning of the lithospheric mantle. Metasomatic reactions are seen around spinel-pyroxene clusters in some Lanzarote xenoliths, so metasomatism post-dated cluster formation.

  20. Petrological characteristics of mantle xenoliths from the Azrou-Timahdite quaternary basalts, middle atlas, Morocco: A mineral chemistry perspective

    NASA Astrophysics Data System (ADS)

    Chanouan, Lhoussaine; Ikenne, Moha; Gahlan, Hisham A.; Arai, Shoji; Youbi, Nasrrddine

    2017-03-01

    Quaternary alkali basalts of the Azrou-Timahdite area contain a wide variety of ultramafic mantle xenoliths (e.g. lherzolites, wehrlites, pyroxenites and amphibolites). A comprehensive mineral chemistry studies using electron probe micro-analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows us to propose a petrogenetic history of these ultramafic rocks. The studied mantle xenoliths contain spinel, which attests for their derivation from depths from 30 to 70 km, i.e. the intermediate zone of continental lithospheric upper mantle. The olivine forsterite (Fo) content is higher in lherzolites than in wehrlite, Fo88-91 and Fo80-83, respectively. The orthopyroxene is enstatite with relatively high Mg number (Mg#) (0.88-0.91). The clinopyroxene displays Mg# (0.88-0.92) similar to or slightly higher than that of olivine and orthopyroxene, indicating equilibrium between these phases. Progressive depletion of this ratio in lherzolite clinopyroxene suggests the generation of peridotitic rocks through a series of partial melting processes at different degrees. LREE enrichment in clinopyroxene combined with decoupling of Ti and Na (Fusible major elements) indicates mantle metasomatic processes, which possibly resulted in recrystallization of clinopyroxene. The wehrlitic lithologies are possibly the end product of the metasomatism. The LaN/YbN and Ti/Eu ratios of spine-bearing lherzolites and non-spongy clinopyroxenes combined with the low Ti contents and the Zr and Nb negative anomalies argue for an alkali-silicate metasomatism. Given the above scenario, we conclude that the mineralogical variations in the upper mantle beneath this part of the Middle Atlas Mountains can be attributed to a combination of mantle processes including partial melting that occurs in response of a mantle upwelling, and an alkali-silicate metasomatism.

  1. Multi-stage evolution of the lithospheric mantle beneath the westernmost Mediterranean: Geochemical constraints from peridotite xenoliths in the eastern Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Konc, Zoltán; Garrido, Carlos J.; Bosch, Delphine; Hidas, Károly; Varas-Reus, María Isabel; Acosta-Vigil, Antonio

    2017-04-01

    Spinel (± plagioclase) peridotite xenoliths from the Tallante and Los Perez volcanic centres in the eastern Betics (SE Spain) range from depleted (clinopyroxene-poor) harzburgites to fertile (clinopyroxene-rich) lherzolites and orthopyroxene-free wehrlites. Significantly, only one harzburgite, which is depleted in heavy rare earth elements (HREE), retains the imprint of ca. 20% ancient melting of an original garnet lherzolite source. In contrast, REE abundances of other harzburgites and lherzolites from the eastern Betics have been increased by melt-rock reaction. The whole-rock and mineral compositions of these mantle rocks are largely controlled by three types of modal metasomatism: 1) common clinopyroxene-orthopyroxene addition and olivine consumption which increased FeOt, SiO2 and Al2O3, and decreased MgO compared to the refractory melting products; 2) subordinate orthopyroxene dissolution and precipitation of clinopyroxene and olivine, which led to higher FeOt and MgO and lower SiO2 than in common (orthopyroxene-rich) lherzolites; and 3) rare orthopyroxene consumption and olivine addition that caused higher FeOt and lower SiO2 compared to the original melting residues. These mineral modal and major element variations have been produced mostly by interactions with relatively FeOt-rich/SiO2-poor melts, likely derived from a peridotite-pyroxenite lithospheric mantle with a highly heterogeneous isotopic composition. Melting of the lithospheric mantle in the western Mediterranean was triggered by upwelling of the asthenosphere induced by back-arc extension in the Late Oligocene-Early Miocene. Trapping of small fractions of exotic melts in whole-rocks - likely the parental magmas of Miocene back-arc dykes that intruded the Betic crust - caused local disequilibrium between the trace element signatures and Pb isotopic compositions of clinopyroxene and whole-rock. Subsequent interaction with SiO2-undersaturated magmas, similar to the parental melts of the Pliocene

  2. Water in the lithospheric mantle beneath a Phanerozoic continental belt: FTIR analyses of Alligator Lake Xenoliths (Yukon, Canada)

    NASA Astrophysics Data System (ADS)

    Gelber, M.; Peslier, A. H.; Brandon, A. D.

    2015-12-01

    Water in the mantle influences melting, metasomatism, viscosity and electrical conductivity. The Alligator Lake mantle xenolith suite is one of three bimodal peridotite suites from the northern Canadian Cordillera brought to the surface by alkali basalts, i.e., it consists of chemically distinct lherzolites and harzburgites [1-2]. The lherzolites have equilibration temperatures about 50 °C lower than the harzburgites and are thought to represent the fertile upper mantle of the region. The harzburgites might have come from slightly deeper in the mantle and/or be the result of a melting event above an asthenospheric upwelling detected as a seismic anomaly at 400-500 km depth [3]. Major and trace element data are best interpreted as the lherzolite mantle having simultaneously experienced 20-25% partial melting and a metasomatic event to create the harzburgites [3]. Well-characterized xenoliths are being analyzed for water by FTIR. Harzburgites contain 29-52 ppm H2O in orthopyroxene (opx) and ~140 ppm H2O in clinopyroxene (cpx). The lherzolites have H2O contents of 27-150 ppm in opx and 46-361 ppm in cpx. Despite correlating with enrichments in LREE, the water contents of the harzburgite pyroxenes are low relative to those of typical peridotite xenoliths [4], suggesting that the metasomatic agents were water-poor, contrarily to what has been suggested before [3]. The water content of cpx is about double that of opx indicating equilibrium. Olivine water contents are low (< 5 ppm H2O) and out of equilibrium with those of opx and cpx, which may be due to H loss during xenolith ascent. This is consistent with olivines containing more water in their cores than their rims. Olivines exclusively exhibit water bands in the 3400-3000 cm-1 range, which may be indicative of a reduced environment [5]. [1] Francis. 1987 JP 28, 569-97. [2] Eiche et al. 1987 CMP 95, 191-201. [3] Shi et al. 1997 CMP 131, 39-53. [4] Peslier et al. 2015 GGG 154, 98-117. [5] Bai et al. 1993 PCM 19, 460-71.

  3. Petrological features of anhydrous and hydrous mantle xenoliths from Harrow Peaks, Antarctica

    NASA Astrophysics Data System (ADS)

    Pelorosso, Beatrice; Bonadiman, Costanza; Coltorti, Massimo; Giacomoni, Pier Paolo; Ntaflos, Theodoros

    2014-05-01

    A preliminary study on the petrological features of a new xenoliths population, collected in the area of Harrow Peaks (HP) Northern Victoria Land, Antarctica is presented. The presence of modal hydrous phases (amphibole and rare phlogopite) allows to explore the water circulation and volatile reservoirs of this mantle domain. HP samples are medium to coarse grain peridotites, protogranular to phorphyroclastic in texture. They vary in composition from fertile lherzolite to harzburgite. Both anhydrous and hydrous peridotites show matrix/melt interaction forming secondary minerals and resorbed rims in primary olivines and spongy textures or cloudy rims of the other peridotite minerals. Opx occur as large crystals (opx1) with thin and resorbed spongy rims or texturally well equilibrated small, elongated grains (opx2). Primary unmetasomatized cpx are rare, the majority is spongy, resorbed grains or newly formed small crystals. Spinel (sp) always occur as small anhedral crystals, or larger, often dendritic primary grains. Amphibole occurs both as disseminated and in veins; the latter frequently associated with newly formed, secondary cpx crystals (Coltorti et al.,2004). Glassy patches are rare, not associated with amphibole, but occur related to resorbed/spongy cpx and spinel(sp).Mineral and glass major element analyses evidence that HP peridotites are following a residual trend, but are characterized by low mg#[=100*Mg/Mg+Fetot]values. Fo in primary unmetasomatized olivine range between 87.49 and 89.07 reflecting an anomalous fertile character respect to the lithological type (PM ol: Fo= 89.5). CaO(< 0.1 wt%)and NiO(0.28 to 0.41 wt%) contents are in the range of variably residual mantle values. In term of mg# values (87.24 - 89.56),opx1 and opx2 are coherent with primary ol. Both types show a narrow range of variation in terms of Al2O3(2.11-3.32 wt%), TiO2(0.05-0.14 wt%) and CaO(0.36-0.96 wt%). Spongy rims and resorbed crystals in both olivine and opx record a sensible

  4. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew

    2016-01-01

    Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three

  5. Osmium isotope evidence for Early to Middle Proterozoic mantle lithosphere stabilization and concomitant production of juvenile crust in Dish Hill, CA peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Armytage, Rosalind M. G.; Brandon, Alan D.; Peslier, Anne H.; Lapen, Thomas J.

    2014-07-01

    The 187Os/188Os compositions in peridotite samples from the sub-continental lithospheric mantle (SCLM) can be used to constrain the timing of melt extraction and potentially test the link between large-scale mantle melting and juvenile crust production. The SCLM has often experienced a complex history such that some lithophile elements such as REEs (rare earth elements) in these rocks typically record overprinting during metasomatism. New 187Os/188Os, major and trace element compositional data were obtained on sixteen Dish Hill peridotite xenoliths (California, USA) and are used to examine these issues. The samples show strong correlations between 187Os/188Os and indicators of melt depletion such as Lu abundance in clinopyroxene, modal abundance of clinopyroxene, bulk rock Al2O3 and the Cr# (Cr/(Cr + Al) in spinel. These relationships indicate that metasomatism did not compromise the 187Os/188Os systematics. The data appear to form two melt depletion trends consistent with Re depletion model ages (TRD) obtained from the two Al2O3 versus 187Os/188Os trends are 2.1 ± 0.5 Ga and 1.3 ± 0.3 Ga (±95% conf.). It has been suggested that the SCLM under Dish Hill may be fragments of oceanic lithosphere emplaced as the result of Farallon plate subduction during the Late Cretaceous (Luffi et al., 2009). However, the strong melt depletion trends, major element compositions and Re-depletion ages are not consistent with the interpretation of this suite of xenoliths having an oceanic lithospheric origin. Rather, the 2.1 Ga age coincides with Nd model ages of 2-2.3 Ga (Bennett and DePaolo, 1987; Rämö and Calzia, 1998) for the overlying Mojavia crustal province. The 1.3 Ga age is consistent with large-scale A-type magmatism in the nearby region at this time that is purported to be the result of mantle plume melting processes. Therefore, data from this study point to the SCLM under Dish Hill being formed by two ancient mantle-melting events, which could be the result of

  6. In-situ assimilation of mantle minerals by kimberlitic magmas - Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa)

    NASA Astrophysics Data System (ADS)

    Soltys, Ashton; Giuliani, Andrea; Phillips, David; Kamenetsky, Vadim S.; Maas, Roland; Woodhead, Jon; Rodemann, Thomas

    2016-07-01

    The lack of consensus on the possible range of initial kimberlite melt compositions and their evolution as they ascend through and interact with mantle and crustal wall rocks, hampers a complete understanding of kimberlite petrogenesis. Attempts to resolve these issues are complicated by the fact that kimberlite rocks are mixtures of magmatic, xenocrystic and antecrystic components and, hence, are not directly representative of their parental melt composition. Furthermore, there is a lack of direct evidence of the assimilation processes that may characterise kimberlitic melts during ascent, which makes understanding their melt evolution difficult. In this contribution we provide novel constraints on the interaction between precursor kimberlite melts and lithospheric mantle wall rocks. We present detailed textural and geochemical data for a carbonate-rich vein assemblage that traverses a garnet wehrlite xenolith [equilibrated at ~ 1060 °C and 43 kbar (~ 140-145 km)] from the Bultfontein kimberlite (Kimberley, South Africa). This vein assemblage is dominated by Ca-Mg carbonates, with subordinate oxide minerals, olivine, sulphides, and apatite. Vein phases have highly variable compositions indicating formation under disequilibrium conditions. Primary inclusions in the vein minerals and secondary inclusion trails in host wehrlite minerals contain abundant alkali-bearing phases (e.g., Na-K bearing carbonates, Mg-freudenbergite, Na-bearing apatite and phlogopite). The Sr-isotope composition of vein carbonates overlaps those of groundmass calcite from the Bultfontein kimberlite, as well as perovskite from the other kimberlites in the Kimberley area. Clinopyroxene and garnet in the host wehrlite are resorbed and have Si-rich reaction mantles where in contact with the carbonate-rich veins. Within some veins, the carbonates occur as droplet-like, globular segregations, separated from a similarly shaped Si-rich phase by a thin meniscus of Mg-magnetite. These textures are

  7. Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons

    NASA Astrophysics Data System (ADS)

    Smith, D.

    2000-07-01

    The interplay between the evolution of mantle and crust has been investigated by textural and electron probe analysis of Cr-diopside spinel peridotite xenoliths from six localities and by comparisons to a database of mineral compositions. The six localities are on a 300-km transect from the Colorado Plateau into the adjoining Rio Grande rift. Typical xenolith populations from the Colorado Plateau province have magnesian olivine (average Fo90.5) and Ti- and Na-poor clinopyroxene. In contrast, typical xenolith populations from the Rio Grande rift and the Basin and Range are characterized by more Fe-rich olivine (average Fo89.6) and clinopyroxene with a range of Ti and Na (average 0.44wt%TiO2). The contrast between the xenoliths from these adjacent provinces documents that the Colorado Plateau has a depleted mantle root that helps to stabilize it. At Mount Taylor, however, a locality high on a composite volcano within the eastern Colorado Plateau, most xenoliths are not depleted, and the Fe-rich olivine (Fo86-Fo88) in them may characterize mantle affected by silicate melt metasomatism at high melt/rock ratios. Low-Al orthopyroxene occurs at two of the six transect localities, and part of a large porphyroblast contains only 0.13wt%Al2O3 because of the unusual compositions and textures, water-rock reactions are inferred to have been important in parts of the refractory continental mantle. Zonation of Ca and Al in orthopyroxene provides constraints on the temperature histories of the unusual pyroxenes. Equilibration temperatures for xenoliths from Lunar Crater, Nevada, average 1270°C, much higher than the average of 1012°C for others from the Basin and Range; Lunar Crater xenoliths may be samples of a plume or asthenosphere emplaced recently into the uppermost mantle.

  8. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2015-04-01

    It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole

  9. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths - Implications for the chemical evolution of subcontinental mantle

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Carlson, R. W.; Shirey, S. B.; Boyd, F. R.

    1989-01-01

    Isotope analyses of Os, Sr, Nd, and Pb elements were caried out on twelve peridotite xenoliths from the Jagersfontein, Letseng-la-terae, Thaba Patsoa, Mothae, and Premier kimberlites of southern Africa, to investigate the timing and the nature of melt extraction from the continental lithosphere and its relation to the continent formation and stabilization. The distinct Os and Pb isotopic characteristics found in these samples suggested that both the low- and the high-temperature peridotites reside in an ancient stable lithospheric 'keel' to the craton that has been isolated from chemical exchange with the sublithospheric mantle for time periods in excess of 2 Ga.

  10. Mantle Recycling of Crustal Materials through Study of Ultrahigh-Pressure Minerals in Collisional Orogens, Ophiolites, and Xenoliths

    NASA Astrophysics Data System (ADS)

    Liou, J. G.; Tsujimori, T.; Yang, J.; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized ultrahigh-pressure (UHP) mineral occurrences including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mafic/ultramafic xenoliths suggest the recycling of crustal materials through profound subduction, mantle upwelling, and return to the Earth's surface. Recycling is supported by unambiguously crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths, and from ultramafic bodies of several Alpine-Himalayan and Polar Ural ophiolites; some such phases contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and stishovite, a wide variety of nanometric minerals have been identified as inclusions employing state-of-the-art analysis. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. Some podiform chromitites and associated peridotites contain rare minerals of undoubted crustal origin, including Zrn, corundum, Fls, Grt, Ky, Sil, Qtz, and Rtl; the zircons possess much older U-Pb ages than the formation age of the host ophiolites. These UHP mineral-bearing chromitites had a deep-seated evolution prior to extensional mantle upwelling and its partial melting at shallow depths to form the overlying ophiolite complexes. These new findings plus stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of biogenic carbon into the lower mantle, and ascent to the Earth's surface through deep mantle ascent.

  11. Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Bell, D. R.; Grégoire, M.; Grove, T. L.; Chatterjee, N.; Carlson, R. W.; Buseck, P. R.

    2005-10-01

    Textural evidence in a composite garnet harzburgite mantle xenolith from Kimberley, South Africa, suggests metasomatism of a severely melt-depleted substrate by a siliceous, volatile-rich fluid. The fluid reacted with olivine-rich garnet harzburgite, converting olivine to orthopyroxene, forming additional garnet and introducing phlogopite, and small quantities of sulfide and probable carbonate. Extensive reaction (>50%) forming orthopyroxenite resulted from channelized flow in a vein, with orthopyroxene growth in the surrounding matrix from a pervasive grain-boundary fluid. The mineralogy of the reaction assemblage and the bulk composition of the added component dominated by Si and Al, with lesser quantities of K, Na, H, C and S, are consistent with experimental studies of hybridization of siliceous melts or fluids with peridotite. However, low Na, Fe and Ca compared with melts of eclogite suggest a fluid phase that previously evolved by reaction with peridotitic mantle. Garnet and phlogopite trace element compositions indicate a fluid rich in large-ion lithophile (LIL) elements, but poor in high field-strength elements (HFSE), qualitatively consistent with subduction zone melts and fluids. An Os isotope (TRD) model age of 2.97 ± 0.04 Ga and lack of compositional zonation in the xenolith indicate an ancient origin, consistent with proposed 2.9 Ga subduction and continental collision in the Kimberley region. The veined sample reflects the silicic end of a spectrum of compositions generated in the Kimberley mantle lithosphere by the metasomatizing effects of fluids derived from oceanic lithosphere. These results provide petrographic and chemical evidence for fluid-mediated Si-, volatile- and trace-element metasomatism of Archean mantle, and support models advocating large-scale modification of regions of Archean subcontinental mantle by subduction processes that occurred in the Archean.

  12. Hydrous and anhydrous garnet-bearing mantle xenoliths from Hawaii: Isotopic Heterogeneity?

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Bizimis, M.; Keshav, S.; Sen, G.

    2003-12-01

    This study focuses on the petrography, major element mineral chemistry, and bulk-rock trace element and Sr-Nd isotopes compositions of a suite of garnet-bearing xenoliths from Oahu, Hawaii, in an attempt to answer the following questions: (1) Are these xenoliths restites, cumulates, or frozen melts? (2) Are they related to Koolau-like (shield stage) magmas or post-erosional Honolulu Volcanics (HV)-type magmas? Large clinopyroxene (cpx) is the dominant phase; however, large garnet (gt), orthopyroxene (opx), olivine (ol), and spinel (sp) are also present. Some xenoliths also have trace (less than 1 percent) amounts of phlogopite of different shapes and sizes. Cpx has exsolved opx, sp, and gt. Mineral chemically, cpx is a low-Cr, high-Al, Na, Ti, and Fe/Mg variety. Garnet is a low-Cr and high Fe/Mg type. The Mg#s of cpx and gt range from 74-85 and 61-74, respectively. The Mg# of opx ranges from ~80-84. Spinels are of the pleonaste type. Chemical traits of cpx, gt, and sp indicate that these xenoliths cannot be treated as either restites or frozen melts. Post-exsolution and "igneous" stage temperatures based on cpx-gt thermometry range from ~ 950-1350oC and ~ 1290-1470oC. Cpx and gt are in Mg# equilibrium with each other. Opx has not equilibrated with cpx or gt in terms of Mg/Fe. The anhydrous xenoliths are distinct from the Pacific-MORB and Koolau, but are virtually identical to the HV lavas, confirming previous suggestions that the garnet pyroxenites are genetically related to parental magmas. However, some hydrous xenoliths have more radiogenic Sr isotope (for a given Nd) than both HV and the anhydrous xenoliths, and fall outside the compositions of the Hawaiian lavas in the Sr-Nd isotope space. From Sr-Nd data on these xenoliths, the following becomes clear: (1) All the anhydrous and some hydrous xenoliths pyroxenite are virtually identical to the HV; (2) Higher Sr isotope compositions of the hydrous variety indicates that water-bearing phases may be partially

  13. The Diamondiferous Lithospheric Mantle Underlying the Eastern Superior Craton: Evidence From Mantle Xenoliths From the Renard Kimberlites, Quebec

    NASA Astrophysics Data System (ADS)

    Hunt, L.; Stachel, T.; Armstrong, J. P.; Simonetti, A.

    2009-05-01

    The Renard kimberlite cluster consists of nine pipes located within a 2km2 area in the northern Otish Mountains of Quebec. The pipes are named Renards 1 to 10, with subsequent investigation revealing Renards 5 and 6 to join at depth (now Renard 65). The pipes are located within the eastern portion of the Superior craton, emplaced into Archean granitic and gneissic host rocks of the Opinica Subprovince (Percival, 2007). Amphibolite grade metamorphism, locally passing into the granulite facies (Percival et al., 1994) occurred in late Archean time (Moorhead et al., 2003). Radiometric dating of the hypabyssal Renard 1 kimberlite indicates Neoproterozoic emplacement, with a 206Pb/238U model age of 631.6±3.5 Ma (2σ) (Birkett et al., 2004). A later study on the main phases in Renard 2 and 3 gave a similar emplacement, with a 206Pb/238U model age of 640.5±2.8Ma (Fitzgerald et al., 2008). This makes this kimberlite district one of the oldest in Canada, similar in eruption age to the Wemindji kimberlites (629±29Ma: Letendre et al., 2003). These events are broadly coeval with the conversion from subduction magmatism to rifting in northern Laurentia (Birkett et al., 2004). The bodies are part of a late Neoproterozoic to Cambrian kimberlite field in eastern Canada (Girard, 2001; Moorhead et al, 2002; Letendre et al., 2003) and fit into the north-east of the Eocambrian/Cambrian Labrador Sea Province of Heaman et al. (2004). To better understand the diamondiferous lithospheric mantle beneath the Renard kimberlites, 116 microxenoliths and xenocrysts were analysed. The samples were dominantly peridotitic, composed primarily of purple garnet, emerald green clinopyroxene and olivine, with a few pink and red garnets. A minor eclogitic component comprises predominantly orange garnets and lesser amounts of clinopyroxene. A detailed study on the major, minor and trace element composition of xenolith minerals is currently underway. All but three of the clinopyroxenes analysed to date

  14. Water contents of the mantle beneath the Rio Grande Rift: FTIR analysis of Kilbourne Hole peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Schaffer, L. A.; Peslier, A. H.; Brandon, A. D.

    2013-12-01

    Although nominally anhydrous mantle minerals contain only trace amounts of water, they are the main reservoir of water in the mantle. Added up at the scale of the Earth's mantle, these trace amounts of water represent oceans worth in mass [1,2]. Mantle xenoliths from Kilbourne Hole in southern New Mexico are ideal to study mantle water distribution in a rift tectonic setting as they come from a recently-erupted maar in the middle of the Rio Grande Rift. Eleven lherzolites, one harzburgite, and one dunite are being analyzed for water contents by FTIR. The xenoliths will also be analyzed for major and trace element composition, Fe3+/ΣFe ratios, and characterized petrologically. Olivines exhibit variable water contents with less water at the rims compared to the cores. This is probably due to H loss during decompression and xenolith transport by the host magma. Mantle watercontents appear to have been primarily preserved in the core of the olivines, based on diffusion modeling of the typically plateau-shaped water content profiles across these grains.Water concentrations are in equilibrium between clino- and orthopyroxene, but olivine concentrations are typically not in equilibrium with those of either pyroxene. Lherzolites analyzed so far have water contents of 2-12 ppm H2O in olivines, 125-165 ppm H2O in orthopyroxenes, and 328-447 ppm H2O in clinopyroxenes. These water contents are similar to, but with a narrower range, than those for the respective minerals in other continental peridotite xenoliths [3]. The lherzolites have bulk-rock (BR) Al2O3 contents that range between 3.17 and 3.78 wt.%, indicating similar degrees of partial melting, which could explain the narrow range of their pyroxene water contents. Primitive mantle normalized rare earth element (REE) profiles of the bulk lherzolites vary from light REE depleted to flat, with no significant differences between, nor relation to, their mineral water contents. Consequently, the metasomatic agents that

  15. Noble gases in anhydrous mantle xenoliths from Tasmania in comparison with other localities from eastern Australia: Implications for the tectonic evolution

    NASA Astrophysics Data System (ADS)

    Czuppon, György; Matsumoto, Takuya; Matsuda, Jun-ichi; Everard, John; Sutherland, Lin

    2010-11-01

    Ultramafic xenoliths from Tasmanian basalts were analysed for elemental and isotopic compositions of noble gases, for greater understanding of the evolution of the underlying subcontinental lithosphere. The noble gas isotopic compositions indicate contributions of radiogenic and MORB-like components to the xenoliths. The MORB-like component is characterized by 3He/ 4He ratios between 7 and 9 Ra while the radiogenic component shows lower 3He/ 4He ratios than those in MORB (8.75 ± 2.14 Ra, Graham, 2002). The identified radiogenic component in xenoliths from Tasmania may stem from subduction events, during which the mantle wedge and subcontinental lithospheric mantle were metasomatised by U- and Th-rich fluids. As subduction processes have played important role in the evolution of Eastern Australia during the Paleozoic, the radiogenic component is probably associated with this event. Incorporation of MORB-like noble gases in the subcontinental lithospheric mantle beneath Tasmania is likely related to extensional rifting and associated opening of the Tasman Sea in the Late Mesozoic and Cenozoic. The identified noble gas components of the xenoliths are consistent with the geochemical character of the host basalt based on the radiogenic isotope and trace element systematics. This agreement and the petrographic observations (e.g. fluid inclusion trails connected with the reaction rim of the minerals close to the host basalt, spongy texture) indicate that fluids (noble gases, CO 2) most likely propagated from the host basalts to the xenoliths forming fluid inclusions. The observed noble gas isotopic heterogeneity in mantle-derived xenoliths from Tasmanian to North Queensland reflects isotopic heterogeneity at regional scale in the subcontinental lithospheric mantle beneath eastern Australia.

  16. Os-isotopic Compositions of Peridotite Xenoliths from the Oceanic Mantle: Implications for the Age of Isotopic Domains in the Oceanic Mantle.

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Shirey, S. B.; Hauri, E. H.; Kurz, M. D.

    2015-12-01

    Os-isotopic compositions of abyssal peridotites and peridotite xenoliths from oceanic hotpots that sample the convecting mantle extend to relatively unradiogenic compositions. However, they do not preserve a record of early-formed (Hadean and Archean) depleted mantle domains, either by earlier cycles of ridge-related depletion, continent extraction, or subcontinental lithospheric mantle erosion. The lack of preservation of early-formed (Hadean and Archean) depleted Os-isotopic compositions is consistent with the lack of preservation of Hadean 142Nd/144Nd variability in the modern convecting mantle, but is in stark contrast to the existence of early-formed (early-Hadean), heterogeneous 129Xe/130Xe isotopic anomalies in the modern mantle. Mukhopadhay (Nature, 2012) suggested that the erasure of 142Nd/144Nd, but not 129Xe/130Xe, anomalies from the convecting mantle may be due to the small magnitude of the 142Nd/144Nd anomalies (< 0.004% variability has been observed in terrestrial Archean terraines) compared to 129Xe/130Xe anomalies (>10% variability observed) because the smaller 142Nd/144Nd anomalies would have been more easily erased than the larger magnitude 129Xe/130Xe anomalies. This model does not work for the Re-Os system because the magnitude of Os-isotopic heterogeneities in the mantle are large, yet early-formed Os-isotopic signatures have been erased. For example, the 187Os/188Os of early-formed depleted mantle at 4.55 Ga was ~0.095, which is >25% lower than the modern mantle. Given that there were substantial amounts of mantle partial melting throughout the Hadean and Archean, it is hard to understand how some refractory residues retaining some vestige of these low, early-formed Os isotopic compositions have not have been preserved in the modern mantle. Therefore, the lack of preservation of early-formed, large magnitude 187Os/188Os excursions in the modern convecting mantle suggests that the preservation of early geochemical heterogeneities was not

  17. Pyroxenite and granulite xenoliths from beneath the Scottish Northern Highlands Terrane: evidence for lower-crust/upper-mantle relationships

    NASA Astrophysics Data System (ADS)

    Upton, B. G. J.; Aspen, P.; Hinton, R. W.

    2001-08-01

    , Ti and OH and ascending from the asthenosphere, interact with the ultramafic cumulates, modifying them texturally and modally to produce a complex veined assemblage of clinopyroxene- and pargasite-rich rocks. The metasomatism involved an increase in LREE, HFSE and LILE contents. Some modal and cryptic metasomatism may also have affected the granulites, accounting for the presence of amphibole and relatively high LREE/HREE values (La/Lu 38-206). Since closely comparable xenolith assemblages also occur in Mull at the southwestern extremity of the Northern Highland Terrane, such metasomatised olivine- and orthopyroxene-deficient ultramafic rocks may characterise the shallowest part of the mantle beneath the entire terrane. The strongly bimodal character of the xenolith populations (either ultramafic or mafic grading to felsic) is taken to reflect the sharpness of the petrological Moho in this region.

  18. Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources

    NASA Astrophysics Data System (ADS)

    Martin, Adam P.; Cooper, Alan F.; Price, Richard C.

    2013-12-01

    Two volcanic lineages are identified at Mount Morning, a Cenozoic to recent, eruptive centre in the Ross Sea, West Antarctica, which is part of the McMurdo Volcanic Group. Both the older (at least 18.7-11.4 Ma), mildly alkalic, nepheline- or quartz-normative Mason Spur Lineage, and the younger (at least 6-0.02 Ma), nepheline normative, strongly alkalic Riviera Ridge Lineage evolved by fractional crystallization from nominally anhydrous (<0.5 wt% H2O) parental magmas. Both lineages are analogous to other, relatively anhydrous lineages in the McMurdo Volcanic Group and distinctly different from those in which kaersutite is present on the liquid line of descent. Sub-continental lithospheric mantle (SCLM) xenoliths entrained in Riviera Ridge Lineage rocks show trace element and isotopic Sr-Nd-Pb variation that is consistent with four-component mixing whereby depleted mantle has been refertilised by enriched, HIMU-like and Nb-enriched (carbonatite) components. Refertilization may have occurred c. 530-490 Ma ago when fluids derived from subduction associated with Gondwanaland amalgamation infiltrated the SCLM. Similar trace element and isotope variation (Sr-Nd-Pb) in Mount Morning basaltic rocks and entrained xenoliths suggests that the source for the basaltic magmas lies (at least in part) in the lithospheric mantle. It has long been recognized that Cenozoic volcanic rocks in Antarctica (Victoria Land - including Mount Morning - and Marie Byrd Land), Zealandia and eastern Australia share common chemical and isotopic source characteristics and they have been argued to collectively constitute a single diffuse alkaline magmatic province (DAMP). Source characteristic similarities suggest DAMP volcanic rocks inherit at least some of their trace element and isotopic characteristics from the lithospheric mantle. Super-chondritic Nb/Ta values measured in some SCLM xenoliths and volcanic rocks at Mount Morning, and in volcanic rocks across the DAMP, can be explained by addition

  19. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review

    NASA Astrophysics Data System (ADS)

    Liou, Juhn G.; Tsujimori, Tatsuki; Yang, Jingsui; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized occurrences of ultrahigh-pressure (UHP) minerals including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mantle xenoliths suggest the recycling of crustal materials through deep subduction, mantle upwelling, and return to the Earth's surface. This circulation process is supported by crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths in kimberlites, and from chromitities of several Alpine-Himalayan and Polar Ural ophiolites; some of these minerals contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and inferred stishovite, a number of nanometric minerals have been identified as inclusions employing state-of-the-art analytical tools. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. For example, Tibetan chromites containing exsolution lamellae of coesite + diopside suggest that the original chromitites formed at P > 9-10 GPa at depths of >250-300 km. The precursor phase most likely had a Ca-ferrite or a Ca-titanite structure; both are polymorphs of chromite and (at 2000 °C) would have formed at minimum pressures of P > 12.5 or 20 GPa respectively. Some podiform chromitites and host peridotites contain rare minerals of undoubted crustal origin, including zircon, feldspars, garnet, kyanite, andalusite, quartz, and rutile; the zircons possess much older U-Pb ages than the time of ophiolite formation. These UHP mineral-bearing chromitite hosts evidently had a deep-seated evolution prior to extensional mantle upwelling and partial

  20. Nano-Diamonds in melt inclusions in ortho- and clinopyropxene from mantle xenoliths, Salt Lake Crater, Hawaii.

    NASA Astrophysics Data System (ADS)

    Wirth, R.; Rocholl, A.

    2002-12-01

    We observed nanocrystalline diamonds in magmatic rocks from Hawaii (Salt Lake Crater). They occur in mantle xenoliths (Ga-pyroxenites) in melt inclusions in ortho- and clinopyroxene. The xenoliths are incorporated in the host lava and have been transported from the Earth's interior to the surface by volcanic eruptions. Consequently, such xenoliths allow an insight into the structure, the chemical composition and the P-T conditions of the Earth's mantle. Salt Lake Crater pyroxenites are interpreted as high-pressure basaltic cumulates trapped and adiabatically cooled within the Hawaiian lithosphere at 1000o - 1150oC and 1.6 - 2.5 GPa (50-80 km). The melt inclusions were investigated by using TEM and AEM. Specimen preparation was performed by focused ion beam technique (FIB) at the GeoForschungsZentrum Potsdam (GFZ). Promising melt inclusions in pyroxene have been selected from thin sections. FIB technique uses oil-free vacuum to avoid contamination of the foil. The resulting TEM foil has the dimensions 20 μm x 10 μm x 100 nm. Coating of the TEM ready foil with carbon was not necessary. Nanocrystalline diamonds are embedded in melt droplets, which are enclosed in pyroxene crystals. The melt inclusions with an average diameter of about 5 æm are always associated with a fluid phase or gas. The matrix of the melt inclusion consists of amorphous material (basaltic glass) containing very small inclusions of e.g. ZnS, Fe-Pd-S, Ag and In-rich minerals, native nanocrystalline iron and copper. Most of the diamonds occur in approximately rectangular shaped aggregates of polycrystalline diamonds, between 20 and 500 nm in size. The grain size of individual diamonds within each aggregate varies from 5 to 50 nm. The diamonds have been identified by X-ray analysis, electron diffraction and by EELS. The carbon K-edge in the EEL spectra allows to discriminate diamond, graphite and amorphous carbon. Some of the diamonds are single crystals; most of them are polycrystalline. Electron

  1. Mantle water contents beneath the Rio Grande Rift (NM, USA): FTIR analysis of Rio Puerco and Kilbourne Hole peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Schaffer, L. A.; Peslier, A. H.; Brandon, A. D.; Selverstone, J.

    2015-12-01

    Peridotite xenoliths from the Rio Grande Rift (RGR) are being analyzed for H2O contents by FTIR as well as for major and trace element compositions. Nine samples are from the Rio Puerco Volcanic Field (RP) which overlaps the central RGR and southeastern Colorado Plateau; seventeen samples are from Kilbourne Hole (KH) in the southern RGR. Spinel Cr# (Cr/(Cr+Al) = 0.08-0.46) and olivine Mg# (Mg/(Mg+Fe) = 0.883-0.911) of samples fall within the olivine-spinel mantle array from [1], an indicator that these are residues of partial melting. Pyroxene H2O contents in KH correlate with bulk rock and pyroxene Al2O3 contents. The KH clinopyroxene rare earth element (REE) variations fit models of 0-13% fractional melting of a primitive upper mantle. Most KH peridotites have bulk-rock light REE depleted patterns, but five are enriched in light REEs consistent with metasomatism. Variation in H2O content seems unrelated to REE enrichment. Metasomatism is seen in RP pyroxenite xenoliths [2] and will be examined in the peridotites studied here. Olivine H2O contents are low (≤20 ppm), and decrease from core to rim within grains. This is likely due to H loss during xenolith transport by the host magma [3]. Diffusion models of H suggest that mantle H2O contents are still preserved in cores of KH olivine, but not those of RP olivine. The average H2O content of Colorado Plateau clinopyroxene (670 ppm) [4] is ~300 ppm higher than RGR clinopyroxene (350 ppm). This upholds the hypothesis that hydration-induced lithospheric melting occurred during flat-slab subduction of the Farallon plate [5]. Numerical models indicate hydration via slab fluids is possible beneath the plateau, ~600 km from the paleo-trench, but less likely ~850 km away beneath the rift [6]. [1]Arai, 1994 CG 113, 191-204.[2]Porreca et al., 2006 Geosp 2, 333-351.[3]Peslier and Luhr, 2006 EPSL 242, 302-319.[4]Li et al., 2008 JGR 113, 1978-2012.[5]Humphreys et al., 2003 Int Geol Rev 45, 575-595.[6]English et al., 2003 EPSL

  2. Mantle Water Contents Beneath the Rio Grande Rift (NM, USA): FTIR Analysis of Rio Puerco and Kilbourne Hole Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Schaffer, L. A.; Peslier, A. H.; Brandon, A.; Selverstone, J.

    2015-01-01

    Peridotite xenoliths from the Rio Grande Rift (RGR) are being analyzed for H (sub 2) O contents by FTIR (Fourier Transform Infrared) as well as for major and trace element compositions. Nine samples are from the Rio Puerco Volcanic Field (RP) which overlaps the central RGR and southeastern Colorado Plateau; seventeen samples are from Kilbourne Hole (KH) in the southern RGR. Spinel Cr# (Cr/(Cr+Al)) (0.08-0.46) and olivine Mg# (Mg/(Mg plus Fe)) (0.883-0.911) of all RGR samples fall within the olivine-spinel mantle array from [1], an indicator that peridotites are residues of partial melting. Pyroxene H (sub 2) O in KH correlate with bulk rock and pyroxene Al (sub 2) O (sub 3).The KH clinopyroxene rare earth element (REE) variations fit models of 0-13 percent fractional melting of a primitive upper mantle. Most KH peridotites have bulk-rock light REE depleted patterns, but five are enriched in light REEs consistent with metasomatism. Variation in H (sub 2) O content is unrelated to REE enrichment. Metasomatism is seen in RP pyroxenite xenoliths [2] and will be examined in the peridotites studied here. Olivine H (sub 2) O contents are low (less than or equal to 15 parts per million), and decrease from core to rim within grains. This is likely due to H loss during xenolith transport by the host magma [3]. Diffusion models of H suggest that mantle H (sub 2) O contents are still preserved in cores of KH olivine, but not RP olivine. The average H (sub 2) O content of Colorado Plateau clinopyroxene (670 parts per million) [4] is approximately 300 parts per million higher than RGR clinopyroxene (350 parts per million). This upholds the hypothesis that hydration-induced lithospheric melting occurred during flat-slab subduction of the Farallon plate [5]. Numerical models indicate hydration via slab fluids is possible beneath the plateau, approximately 600 kilometers from the paleo-trench, but less likely approximately 850 kilometers away beneath the rift [6].

  3. Comparing Mantle Xenoliths from Mount Taylor and Rio Puerco Necks, New Mexico: Evidence for Metasomatism

    NASA Astrophysics Data System (ADS)

    Thomas, A. E.; Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.

    2012-12-01

    The Mount Taylor Volcanic Field (MTVF) is located along the Jemez Lineament at the south eastern margin of the Colorado Plateau in north western New Mexico. To learn about its underlying lithospheric mantle, we conducted a survey of xenoliths from basaltic vents peripheral to the Mount Taylor edifice and the Rio Puerco Volcanic Necks. A total of 89 thin sections (32 from Mount Taylor and 57 from Rio Puerco) were examined. The population of thin sections from Mount Taylor and Rio Puerco listed respectively is: 18 and 20 lherzolites; 8 and 24 pyroxenites; 4 and 3 wehrlites; 1 and 6 dunites; and 1 and 4 harzburgites. Pyroxenite grain size ranged from 1 to 9 mm and lherzolite grains were typically 0.5 to 2 mm. Spinels ranged in colour from dark green, brown to black and they were generally <1 mm and interstitially concentrated. Spinel concentrations between the two suites were comparable, with an average of 2.6% for Mount Taylor and 2.0% for Rio Puerco. The largest concentration of spinels was in a pyroxenite at 12.5% from Mount Taylor. Up to 5% primary calcite is present in the Rio Puerco suite; in contrast calcite has not been identified in the Mount Taylor suite. Calcite grains were <0.5 mm in size and located at grain boundaries and as inclusions in clinopyroxene and orthopyroxene. Equilibrium textures include triple junction grain boundaries between olivines and clinopyroxenes in some lherzolites. Disequilibrium textures include rounded, optically continuous olivine and orthopyroxene in clinopyroxene, complex intergrowths between clinopyroxene and orthopyroxene, and sheared olivine. Electron microprobe analyses were performed on 9 representative thin sections with 5 pyroxenites, 4 lherzolites and 1 wehrlite; samples included green, brown, red and black spinels. Pyroxenes for the two suites decrease in Cr2O3 and increase in Al2O3 with decreasing Mg numbers, increase in CaO with decreasing MgO and increase in Na2O with increasing Al2O3. The presence of optically

  4. Anisotropic Structure of the Upper Mantle in the Carpathian-Pannonian Region: From SKS Splitting data and Xenolith Constraints

    NASA Astrophysics Data System (ADS)

    Bokelmann, G.; Qorbani, E.; Kovacs, I.; Falus, G.

    2014-12-01

    The Carpathian-Pannonian region (CPR) is the northeastern end of the Alpine mountain belt. This study is aimed at evaluating the seismic anisotropy of the upper mantle beneath the CPR concentrating on the eastward elongation of the fast anisotropic pattern of the Eastern Alps. We use data recorded by the temporary stations, set up for the Carpathian Basin Project (CBP) extending from the Vienna basin through Hungary into Serbia, together with the petrologic indicator of deformation in basalt-hosted upper mantle xenoliths from Szentbékkála. While some of the results agree with another recently published anisotropy analysis of the Eastern Alps and earlier results for the Pannonian basin, some don't. We reprocess data from 45 temporary CBP stations consisting recorded waveform of teleseismic events with magnitude greater than 6.0 Mw that have occurred in the distance range from 90° to 130° between 2005 and 2007. The dominant fast polarization orientation is NW-SE for the Hungarian part of the stations as well as at the stations located in the easternmost of the Pannonian Basin. This orientation matches well with the anisotropy structure under the Eastern Alps, which has been attributed to asthenospheric flow. The NW-SE trend turns more into WNW-ESE at the stations situated in Austria, mostly NW of the Vienna basin. Apart from predominately NW-SE fast orientation, there are a few measurements showing NE-SW and almost E-W trend. The SKS measurements most likely originate mainly from the asthenosphere and consequently past (Miocene) asthenospheric flow in the upper mantle may still have a significant contribution to the fast azimuth directions, however, the effect of other factors cannot be excluded. Xenoliths from the deeper lithospheric mantle have LPO structures of minerals as A-type of olivine in which the fast axis azimuth may correspond to the shear direction, possibly present-day asthenospheric flow in the upper mantle. Large delay times (>1.0 s) might also

  5. Water in the Cratonic Mantle: Insights from FTIR Data on Lac De Gras Xenoliths (Slave Craton, Canada)

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; O'Reilly, Suzanne Yvette; Griffin, William L.; Morris, Richard V.; Graff, Trevor G.; Agresti, David G.

    2014-01-01

    The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts. Peridotites analyzed so far have H O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km) but does not extend to as high values as those from Udachnaya (Siberian craton). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity.

  6. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    USGS Publications Warehouse

    Downes, H.; Macdonald, R.; Upton, B.G.J.; Cox, K.G.; Bodinier, J.-L.; Mason, P.R.D.; James, D.; Hill, P.G.; Hearn, B.C.

    2004-01-01

    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzbugites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0??5121 (close to the host minette values) to 0??5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd

  7. P-rich olivines in a melt vein of a composite mantle xenolith: implications for crystal growth and kinetics

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Asimow, Paul D.; Ntaflos, Theodoros; Koroneos, Antonios; Perugini, Diego; Stolper, Edward M.

    2014-05-01

    The mineral chemistry of mantle xenoliths, and in particular the presence of phosphorus (P) - a moderately incompatible and slowly diffusing element - may preserve the history of mineral growth and constrain timescales of pre-eruption petrogenetic processes (Boesenberg & Hewins 2010). P-rich zones in olivine may reflect incorporation of P in excess of equilibrium partitioning during rapid growth, in which case zoning patterns primarily record crystal growth rate variations (Milman-Barris et al. 2008; Stolper et al. 2009). We investigated using EMP analyses and X-ray maps a composite amphibole-bearing, mantle xenolith (sample: Ci-1-196) from Cima Volcanic Field (California, USA) that contains second generation P-rich olivines. The xenolith contains multiple lherzolite, websterite, and dunite layers. The host magma (not preserved in our hand-specimen) is thought to be a hawaiite (Wilshire et al. 1988). A thin (average ~200 μm width), dark layer is present along the contact between lherzolite and websterite. Interpreted as a rapidly crystallized melt, this layer consists of olivine + glass + plagioclase + spinel + clinopyroxene + apatite + ilmenite. The layer contains olivines (Fo83-89.3) with 0.03-0.52 wt.% P2O5; the P-rich olivines (P2O5 >0.1 wt.%) are Fo85 to Fo89.3. Apatite inclusions are present near the rim of P-rich olivine (Fo85) and in plagioclase (An54). Glass is widespread (~15 vol.%) in the layer, having variable composition with P2O5 up to 1.2 wt.%. Plagioclase occurs as prismatic, flow-oriented crystals, parallel to the elongation of the layer or intergranular crystals between olivine and/or clinopyroxene. Clinopyroxene formed either as crystallized products within the melt layer or by reaction at the interface between melt and matrix olivine. Spinel occurs as inclusions in the olivine or associated with plagioclase and glass, showing anhedral shape and linear edges; spinel composition varies from chromite to Ti-chromite from core to rim, with an outer

  8. Frozen melt-rock reaction in a peridotite xenolith from sub-arc mantle recorded by diffusion of trace elements and water in olivine

    NASA Astrophysics Data System (ADS)

    Tollan, P. M. E.; O'Neill, H. St. C.; Hermann, J.; Benedictus, A.; Arculus, R. J.

    2015-07-01

    Inferring the ambient state of the lithospheric mantle from xenoliths may be misleading if the magmatic activity responsible for the exhumation has modified the xenolith. Changes due to melt-xenolith interactions during exhumation are usually identifiable because of the short timescales involved, but changes due to earlier pulses of magma passing through the lithosphere may be more insidious because the longer timescales allow extensive overprinting of the ambient petrography. Here we describe an intermediate stage of melt-rock reaction recorded in a porphyroclastic peridotite xenolith from the upper mantle wedge adjacent to the West Bismarck Island Arc. The texture and chemistry, frozen during rapid exhumation, reflects the progressive change from harzburgite to clinopyroxene-bearing dunite caused by the infiltration of hydrous basaltic melt into the xenolith. The unusually low equilibration temperature of the xenolith (∼650 °C) prior to this event is reflected in very low concentrations of incompatible elements in the olivine, enhancing the diffusion profiles of these elements into the olivine from the interaction with the melt. The Ca concentration profiles correspond to a timescale of approximately three months, which we interpret as the time between the first infiltration of melt into the lithospheric mantle at this locality and the subsequent exhumation of the xenolith by a second pulse of magma. The diffusion profiles of other trace elements (Li, Na, Sc, Ti, V, Cr, Mn, Ni, Cu, Y) and major elements (Fe-Mg) confirm that all these elements diffuse through olivine at rates that differ from each other by less than one order of magnitude. Infrared spectroscopy reveals OH- ("water") contents and incorporation mechanisms typical of other arc mantle peridotites in the olivine cores. Water contents increase towards the crystal rims, similarly to the profiles of other measured trace elements. The increase in water concentration is accompanied by subtle changes in

  9. Methane-related diamond crystallization in the Earth's mantle: Stable isotope evidences from a single diamond-bearing xenolith

    NASA Astrophysics Data System (ADS)

    Thomassot, E.; Cartigny, P.; Harris, J. W.; (Fanus) Viljoen, K. S.

    2007-05-01

    Mineralogical studies of deep-seated xenoliths and mineral inclusions in diamonds indicate that there is significant variability in oxygen fugacity within the Earth's upper mantle. This variability is consistent both with the occurrence of reduced (methane-bearing) or oxidized (CO 2/carbonate-bearing) fluids. Invariably, direct sampling of reduced deep fluids is not possible as they are unquenchable and re-equilibrate with either the surrounding mantle or are affected by degassing. Key information about the nature of such fluids might be found in diamond if it were possible to study a population related to a single source. Usually, diamonds within a kimberlite pipe have different parageneses and can be shown to have formed at different times and depths. We studied 59 diamonds extracted from a single diamondiferous peridotite xenolith (with a volume of only 27 cm 3), from the Cullinan mine (formerly called the Premier mine) in South Africa. Diamond sizes range from 0.0005 to 0.169 carats (0.1 to 33.8 mg). A correlation between the nitrogen contents of the diamonds (range 40 to 1430 ppm) and their nitrogen aggregation state (varying from 10 to 85% of IaB defects) is compatible with a single growth event. δ 13C-values range from - 4.2‰ to - 0.1‰, with slight internal variability measured in the largest diamonds. Nitrogen isotope measurements show δ 15N ranging from - 1.2‰ to + 7.2‰. On the centimeter scale of this upper mantle rock, the variations for nitrogen content, nitrogen aggregation state, carbon and nitrogen isotopic compositions, respectively, cover 64%, 75%, 15% and 23% of the ranges known for peridotitic diamonds. In spite of such large ranges, N-content, δ 13C and δ 15N within this diamond population are distinctly coupled. These relationships do not support a mixing of carbon sources, but are best explained by a Rayleigh distillation within the sub-continental mantle at depths > 150 km and T > 1200 °C, which precipitates diamonds from methane

  10. Anisotropic Structure of the Upper Mantle in the Pannonian Basin: From SKS Splitting data and Xenolith Constraints

    NASA Astrophysics Data System (ADS)

    Qorbani, Ehsan; Bokelmann, Götz; Kovács, Istvan; Falus, György

    2015-04-01

    The Carpathian-Pannonian region (CPR) is the northeastern end of the Alpine mountain belt. In the Western Alps, available results of anisotropy investigations (SKS splitting) show clear belt-parallel anisotropy. In the Eastern Alps this pattern not only is broken but also does not follow the strike of Carpathians and Dinarides. This study is aimed at evaluating the seismic anisotropy of the upper mantle beneath the Pannonian Basin concentrating on the eastward elongation of the fast anisotropic pattern of the Eastern Alps. We use data recorded by the temporary stations, set up for the Carpathian Basin Project (CBP) extending from the Vienna basin through Hungary into Serbia, together with the petrological indicator of deformation in basalt-hosted upper mantle xenoliths from Szentbékkála analyzed with the EBSD system at Geosciences Montpellier, France (Kovács et al., 2012). We reprocess data from 45 temporary CBP stations consisting of recorded waveform of teleseismic events. The minimum energy method is applied to measure the splitting delay time and fast axis orientation. The dominant fast polarization orientation is NW-SE for the Hungarian part of the stations as well as at the stations located in the easternmost of the Pannonian Basin. This orientation matches well with the anisotropy structure under the Eastern Alps, which has already been attributed to the asthenospheric flow (Qorbani et al., 2015). The NW-SE trend turns more into WNW-ESE at the stations situated in Austria, mostly NW of the Vienna basin. Apart from predominately NW-SE fast orientation, there are a few measurements showing NE-SW and almost E-W trend. The lithospheric thickness in the CPR region is estimated about 60 km, the SKS measurements thus most likely originate mainly from the asthenosphere. Lattice preferred orientation of xenoliths from the deeper lithospheric mantle show A-type fabric of olivine, in which the fast axis azimuth may correspond to the shear direction, possibly present

  11. Sr-Nd-Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites: Evidence for lithosphere stratification beneath Arctic Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.

    2001-11-01

    Sr, Nd, and Pb isotopic compositions were determined for a suite of Archean garnet peridotite and garnet pyroxenite xenoliths and their host Nikos kimberlite (100 Ma) from Somerset Island to constrain the isotopic character of the mantle root beneath the northern Canadian craton. The Nikos peridotites are enriched in highly incompatible trace elements (La/Sm N = 4-6), and show 143Nd/ 144Nd (t) (0.51249-0.51276) and a large range in 87Sr/ 86Sr (t) (0.7047-0.7085) and Pb ( 206Pb/ 204Pb (t) = 17.18 to 19.03) isotope ratios that are distinct from those estimated for "depleted mantle" compositions at the time of kimberlite emplacement. The Nd isotopic compositions of the peridotites overlap those of the Nikos kimberlite, suggesting that the xenoliths were contaminated with kimberlite or a kimberlite-related accessory phase (i.e., apatite). The highly variable Sr and Pb isotopic compositions of the peridotites, however, indicate that kimberlite contribution was restricted to very small amounts (˜1 wt % or less). The high-temperature peridotites (>1100°C) that sample the deep Somerset lithosphere trend toward more radiogenic 87Sr/ 86Sr (t) (0.7085) and unradiogenic 206Pb/ 204Pb (t) (17.18) isotopic ratios than those of the low-temperature peridotites (<1100°C). This is in agreement with Sr isotopic compositions of clinopyroxene from the low-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7038-0.7046) that are significantly less radiogenic than those of clinopyroxene from the high-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7052-0.7091). The depth correlation of Sr isotopes for clinopyroxene and Sr and Pb isotopic compositions for the Nikos whole-rocks indicate that the deep Somerset lithosphere (>160 km) is isotopically distinct from the shallow lithospheric mantle. The isotopic stratification with depth suggests that the lower lithosphere is probably younger and may have been added to the existing Archean shallow mantle in a Phanerozoic magmatic event. The radiogenic Sr

  12. A Dynamic study of Mantle processes applying In-situ Methods to Compound Xenoliths: implications for small to intermediate scale heterogeneity

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Asimow, Paul; Koroneos, Antonios; Ntaflos, Theodoros; Poli, Giampero

    2013-04-01

    The mantle is the major geochemical reservoir of most rock-forming elements in the Earth. Convection and plate-tectonic driven processes act to generate local and regional heterogeneity within the mantle, which in turn through thermal and chemical interactions modulates ongoing geophysical processes; this feedback shapes the dynamics of the deep interior. Consequently, these processes contribute to the evolution of the earth throughout its geological history. Up to now, the heterogeneity of the mantle has been extensively studied in terms of conventional methods using basalt chemistry, bulk rock and mineral major and trace element analysis of isolated xenolith specimens of varying lithology, and massif exposures. The milestone of the present study, part of an ongoing research project, is the application of in-situ analytical methods such as microprobe, LA-ICP-MS and high resolution SEM in order to provide high quality major and trace element analyses as well as elemental distribution of the coexisting phases in the preserved intra-mantle lithologies, Particularly, in the context of the current study we used selected compound xenoliths from San Carlos (Arizona, USA), Kilbourne Hole (New Mexico, USA), Cima Dome and Dish Hill suites (California, USA), San Quintin (Baja California, Mexico) and Chino Valley (Arizona, USA), from the Howard Wilshire collection archived at the Smithsonian Institution. The selection of these compound xenoliths was based upon freshness and integrity of specimens, maximum distance on both sides of lithologic contacts, and rock types thought most likely to represent subsolidus juxtaposition of different lithologies that later partially melted in contact. The San Carlos samples comprise composite xenoliths with websterite, lherzolite and clinopyroxenite layers or clinopyroxenite veins surrounded by lherzolite or orthopyroxenite-rich rims. The Kilbourne Hole suite comprises spinel-(olivine) clinopyroxenite and orthopyroxenite dikes cutting

  13. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism

    SciTech Connect

    Neal, C.R.; Taylor, L.A. )

    1989-05-01

    The presence of negative cerium anomalies in island arc lavas has been considered enigmatic. Such negative Ce anomalies must be inherent in the source region and can be produced by subducting pelagic sediments + seawater-altered basalts (SWAB) into the mantle. A mantle peridotite from the Malaitan alnoeite also contains a negative Ce anomaly, which can be produced by sediment recycling into the upper mantle. However, in spite of the poorly defined effects of cryptic metasomatism and associated fO{sub 2} conditions, such a process also seems plausible for the generation of negative Ce anomalies. In order to define the petrogenesis of this peridotite within the constraints of the present experimental data, the authors have attempted various mixing models with the end-members: mantle peridotite, Pacific sediment and seawater-altered basalt. In their model, it was assumed that negative Ce anomalies cannot be produced by magmatic or metasomatic processes. Best results were obtained from mixing a maximum of 3 to 5% seawater-altered basalt and 2 to 3% pelagic sediment, with a LREE-enriched mantle precursor. The authors' model stresses the importance of the contribution that recycled crustal materials can have on the composition of the upper mantle, in particular the recognition of a crustal signature in a mantle regime.

  14. Tracing the metasomatic and magmatic evolution of continental mantle roots with Sr, Nd, Hf and and Pb isotopes: A case study of Middle Atlas (Morocco) peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Wittig, Nadine; Pearson, D. Graham; Duggen, Svend; Baker, Joel A.; Hoernle, Kaj

    2010-02-01

    We studied clinopyroxenes from spinel-facies peridotite xenoliths sampled by the Quaternary intra-plate volcanism of the Middle Atlas (Morocco) and present new trace element and Sr-Nd-Hf isotope data. However, we focus in particular on Pb isotope data and 238U/ 204Pb and 232Th/ 204Pb ratios of these clinopyroxenes. This data allows us to investigate: (a) the timing of metasomatic events, (b) the prevalence and persistence of elevated 238U/ 204Pb, 232Th/ 238U and 232Th/ 204Pb in continental mantle roots and (c) the 238U/ 204Pb and 232Th/ 204Pb composition of putative basaltic melts generated from such metasomatised sub-continental lithospheric mantle (SCLM). Incompatible trace element concentrations in these clinopyroxenes are elevated, marked by high-field strength element depletion and fractionated elemental ratios (e.g., U/Nb, Zr/Hf) most consistent with enrichment due to carbonatitic liquids. Sr, Nd and Hf isotopes have an affinity to HIMU. U, Th and Pb abundances in the clinopyroxenes generally exceed estimates of primitive mantle clinopyroxene. Pb isotope compositions of these clinopyroxenes are radiogenic and vary between 206Pb/ 204Pb = 19.93-20.25, 207Pb/ 204Pb = 15.63-15.66 and 208Pb/ 204Pb = 39.72-40.23. These Pb isotope systematics result in generally negative Δ7/4 but positive Δ8/4; setting these samples distinctly apart from typical HIMU. These Pb isotope compositions are also distinct from the associated host volcanic rocks. 238U/ 204Pb and 232Th/ 204Pb of these clinopyroxenes, which range from 26 to 81 and 136 to 399, respectively, are elevated and more extreme than estimates of MORB- and HIMU-source mantle. The Pb isotope evolution of the clinopyroxenes suggests that the metasomatic enrichment is younger than 200 Ma, which discounts the volcanic activity due to the opening of the Atlantic and the onset of the collision of the African and Eurasian plates as processes generating the lithophile element and isotope composition of this continental

  15. Rapid growth of phosphorus-rich olivine in mantle xenolith from Middle Atlas Mountains (Morocco, Africa)

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Mavrogonatos, Konstantinos; Flemetakis, Stamatios; Papoutsa, Angeliki; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2016-04-01

    Phosphorus(P)-rich zones in olivine may reflect incorporation of P in excess of equilibrium partitioning during rapid growth (e.g. Milman-Barris et al. 2008). We investigated a mantle xenolith from Middle Atlas Mountains (Morocco) by optical microscopy and electron microprobe. It contains spinel-bearing lherzolite and orthopyroxenite layers, cross-cut by veins dominated by glass and secondary phases including P-rich olivines. The host lava, presumed to be alkali basalt (El Messbahi et al. 2015), is present on the margins of the hand sample but not included in our thin section. The studied melt veins (MV) generally contain Ol+Gl+Cpx+Pl+Spl±Ap. Olivines in the MV have (Fo72.1-83.4) with 0.02-0.3 wt.% P2O5; olivines with P2O5 >0.1 wt.% are Fo75.3 -82.8. Some olivine grains are inclusion-free; others contain rounded glass inclusions or subhedral spinel or ilmenite inclusions. Olivines is generally found in contact with plagioclase and glass. Glass (5-15 vol%) has variable composition with P2O5 up to 1.52 wt.%, K2O 1.65-2.37 wt%, CaO 6.39-9.55 wt%, Na2O 0.78-6.70 wt% and SiO2 45.2-49.6 wt%. Where glass is in contact with matrix olivine, Fe-rich outer rims on olivine indicate mineral-melt reaction. In MgO variation diagrams, glass compositions display a coherent single trend for all oxides, with the exception of a discrete low-Na group. Clinopyroxene is present both as isolated subhedral to euhedral crystals within the MV and as replacive rims on matrix minerals. Very fine-grained dendritic clinopyroxene quench crystals up to 10 μm long are also present. Plagioclase occurs as prismatic, flow-oriented crystals parallel or sub-parallel to the layering. Spinel shows anhedral and euhedral shapes and occurs both as inclusions in olivine and as discrete grains associated with plagioclase and glass. Spinel in contact with glass shows a spongy outer rim and normal zonation towards Fe-rich rim compositions. Apatite is found mostly as very small crystals embedded in glass. High

  16. Geothermal profile and crust-mantle transition beneath east-central Queensland: Volcanology, xenolith petrology and seismic data

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Sutherland, F. L.; Hollis, J. D.

    1987-04-01

    Geothermobarometry of garnet granulite and garnet websterite xenoliths in basalts from numerous localities in east-central Queensland gives P-T points that fall along the geotherm previously defined for southeastern Australia. This elevated geotherm is ascribed to the advective transport of heat by Tertiary-Recent magmas ponded at the crust-mantle boundary. The lower crust in this region consists dominantly of mafic granulites, representing frozen basaltic melts and cumulates. Spinel lherzolite becomes a dominant rock type at depths of ca. 30 km, and persists, interlayered with pyroxenites, to depths of ca. 55 km. Seismic reflection profiles show a "layered lower crust" between depths of 20 and 36 km depth. The lithologically defined crust-mantle boundary lies within this zone, at least 6 km above the seismically defined Moho. This interpretation is consistent with the observed velocity ( Vp) gradient downward through the layered zone. The constructed geotherm implies that the bottom of the lithosphere beneath eastern Australia is shallower than ca. 100 km. This makes it unlikely that the diamonds of eastern Australia are derived from local intrusions, unless these are > 200 Ma old.

  17. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  18. A Lower Mantle Origin for Megacryst Suite Pyroxene-Ilmenite Xenoliths in Kimberlites: High-Pressure Experimental Constraints and Geodynamic Significance

    NASA Astrophysics Data System (ADS)

    Collerson, K. D.; Terasaki, H.; Ohtani, E.; Suzuki, A.; Kondo, T.

    2004-12-01

    Megacryst suite xenoliths (MSX's) in kimberlites, alnoites and alkali basalts are an important and poorly understood association. MSX's comprise medium- to coarse-grained monomineralic, or rare, multi-grain aggregates of low Cr, high Ti-Na pyrope, Mg ilmenite, sub-calcic pyroxene, Fo85±3 olivine, orthopyroxene and zircon. Some MSX's exceed 30 cm in diameter. They are interpreted to form by fractional crystallization from their host magma, near the base of the lithosphere [1-2]. However, majorite, and other high-pressure phases in some garnetite MSX's, indicates a mantle transition zone (TZ) origin [3]. A sub-lithospheric, deeply subducted slab source is also supported by Hf isotopic data [4]. A common member of the MSX suite, are graphic intergrowths of pyroxene and Mg-ilmenite interpreted to reflect cotectic, or non-equilibrium crystallization [5-6] from the kimberlite magma. However, Pb isotopic data for Monastery [7], and Namibian [8] megacrysts shows that MSX's and their host magmas are unrelated. Thus the mineralogy of the Ti-rich px-ilm MSX's needs to be determined at TZ and higher P. We have conducted multi-anvil (MA) and diamond anvil (DA) experiments on natural px-ilm xenoliths from Monastery and Malaita with different TiO2 contents (17% and 12%), in an attempt to synthesize the pre-exsolution phase. MA experiments were carried out on both starting compositions at 18 and 21 GPa, at 1800° C and 2100° C. None of the experiments yielded a single phase. Phases identified (EPMA, Raman & XRD) include: majorite, Si-rich ilmenite and Ca-Si-Ti Pv. At 21 GPa and 2100° C wadsleyite formed part of the assemblage, and melt was locally developed. Majorite is the most abundant phase in all experiments. Maximum majorite TiO2 occurs at 18 GPa (i.e., 5.4% - Malaita and 6.2% - Monastery). In the lower Ti Malaita composition, at 25 GPa and 1800° C, the assemblage is dominated by almost equal amounts of majorite (TiO2 1.3% to 2.1%) and Ca-Si-Ti Pv, with a small amount of

  19. Sub-continental lithospheric mantle structure beneath the Adamawa plateau inferred from the petrology of ultramafic xenoliths from Ngaoundéré (Adamawa plateau, Cameroon, Central Africa)

    NASA Astrophysics Data System (ADS)

    Nkouandou, Oumarou F.; Bardintzeff, Jacques-Marie; Fagny, Aminatou M.

    2015-11-01

    Ultramafic xenoliths (lherzolite, harzburgite and olivine websterite) have been discovered in basanites close to Ngaoundéré in Adamawa plateau. Xenoliths exhibit protogranular texture (lherzolite and olivine websterite) or porphyroclastic texture (harzburgite). They are composed of olivine Fo89-90, orthopyroxene, clinopyroxene and spinel. According to geothermometers, lherzolites have been equilibrated at 880-1060 °C; equilibrium temperatures of harzburgite are rather higher (880-1160 °C), while those of olivine websterite are bracketed between 820 and 1010 °C. The corresponding pressures are 1.8-1.9 GPa, 0.8-1.0 GPa and 1.9-2.5 GPa, respectively, which suggests that xenoliths have been sampled respectively at depths of 59-63 km, 26-33 km and 63-83 km. Texture and chemical compositional variations of xenoliths with temperature, pressure and depth on regional scale may be ascribed to the complex history undergone by the sub-continental mantle beneath the Adamawa plateau during its evolution. This may involve a limited asthenosphere uprise, concomitantly with plastic deformation and partial melting due to adiabatic decompression processes. Chemical compositional heterogeneities are also proposed in the sub-continental lithospheric mantle under the Adamawa plateau, as previously suggested for the whole Cameroon Volcanic Line.

  20. Quantifying the effects of metasomatism in mantle xenoliths: Constraints from secondary chemistry and mineralogy in Udachnaya edlogites, Yakutia

    SciTech Connect

    Sobolev, V.N.; Taylor, L.A.; Snyder, G.A.; Jerde, E.A.; Neal, C.R.; Sobolev, N.V.

    1999-05-01

    In mantle xenoliths, metasomatism is recorded by compositional variations within and between minerals, and by the introduction of secondary minerals. However, metasomatism has not been quantitatively evaluated as a process with respect to the fluid composition involved. Diamondiferous eclogites from the Udachnaya kimberlite provide a unique suite of samples that allow a semi-quantitative estimation of metasomatic fluid composition. The basis of this analysis involves comparison of reconstructed whole-rock compositions with measured whole-rock analyses. Primary minerals in these samples are relatively homogeneous, and permit the use of modal analyses and mineral chemistry for reconstruction of pristine whole-rock compositions. The metasomatic overprint, which is similar in all samples studied, has produced depletions in SiO{sub 2}, Na{sub 2}O, and FeO and enrichments in TiO{sub 2}, K{sub 2}O, MgO, and LREE. Secondary minerals from the samples are interpreted as the direct result of metasomatism (i.e., typical metasomatic minerals such as phlogopite, amphibole, djerfisherite, and sodalite are present in these xenoliths). Enrichment/depletion signatures demonstrate that the major metasomatic source for Udachnaya eclogites was not derived from the host kimberlite. These metasomatic agents appear to have been more enriched in TiO{sub 2}, K{sub 2}O, Cl, FeO, and LREE than are kimberlites, and may have contained significant amounts of F, CO{sub 2}, and H{sub 2}O. The high Ca contents of two samples are interpreted to be the product of metasomatism by a carbonatite-like fluid.

  1. Experimental forward approach to alkali-rich magma generation from the metasomatized mantle: Melting of mantle xenoliths from Tallante (Murcia, Spain)

    NASA Astrophysics Data System (ADS)

    Manjón-Cabeza Córdoba, Antonio; Castro, Antonio; Moreno-Ventas, Ignacio; López-Ruiz, José; María Cebriá, Jose

    2014-05-01

    Alkali-rich volcanism is a wide spread characteristic of the circum Mediterranean terrains. One of the outcrops of this kind of magmas is the "Cabezo Negro" Volcano in Tallante (Murcia, Spain). The "Cabezo Negro" lavas are alkali-rich basalts, with a Na/K ratio higher than 1, that were erupted between 3 and 2 My ago. Previous experiments have shown that the origin of alkali-rich series can be attributed to an Amphibole-rich metasomatized mantle. Continuing this work, we have carried out several forward experiments at the piston cylinder apparatus under different P-T conditions starting from a sample from a metasomatized mantle xenolith hosted in those lavas. The chosen xenoliths are amphibole bearing clinopyroxenites. Although there are some of them that are phlogopite-bearing, we have worked with those bearing only pargasite as a hydrous phase, in order to ease the understanding of the role of the amphibole in the melting process. The experiments were carried out at conditions ranging from 10 to 20 kbar and from 1000 to 1300 °C mostly of them were "dry", but those under higher pressures were also under water saturated conditions. The results show compositions of melts that are very similar to those that can be found in the k-rich magmas around the Alpine Mediterranean orogenes. In particular, silica, the alkalis and the K/Na ratio tend to decrease with temperature and to increase with pressure for the experiments under dry conditions, to sum up, approaching to the amphibole stability-solidus line. For those under water saturated (and higher pressure) conditions, however, a slight increase of those values can occur with increasing temperature. Since in this kind of metasomatized mantle amphibole seems to draw the solidus line, we have have analyzed the REE and other trace-element relations between amphiboles and the obtained melts seeking for the origin of particular REE affinities that can be found in post-orogenic magmas with adakitic or sanukitic signatures.

  2. Water in the Cratonic Mantle: Insights from FTIR Data on Lac de Gras Xenoliths (Slave Craton, Canada)

    NASA Astrophysics Data System (ADS)

    Peslier, A. H.; Brandon, A. D.; Schaffer, L. A.; O'Reilly, S. Y.; Griffin, W. L.; Morris, R. V.; Graff, T. G.; Agresti, D. G.

    2014-12-01

    The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle [e.g., 1]. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton [2] were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts [3,4]. Peridotites analyzed so far have H2O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment [5]. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km [1]) but does not extend to as high values as those from Udachnaya (Siberian craton [6]). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity. [1] Peslier et al. 2010 Nature 467, 78-81. [2] Aulbach et al. 2007 CMP 154, 409-427. [3] Creighton et al. 2009 CMP 157, 491-504. [4] Aulbach et al. 2013 CG 352, 153-169. [5] Bai & Kohlstedt 1993 PCM 19, 460-471. [6] Doucet et al. 2014 GCA 137, 159-187.

  3. Xenoliths From Isla Isabel, Nayarit, Mexico: The Nature of the Upper Mantle Underneath the Western Part of the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Housh, T. B.; Aranda-Gomez, J. J.; Luhr, J. F.

    2007-12-01

    Isla Isabel is located ~65 km NW of San Blas (Nayarit), off the Pacific coast of central Mexico. The island is a Quaternary (Ar/Ar < 0.7 Ma) volcanic complex built atop attenuated continental crust. Isabel lies on the east side of the mouth of the Gulf of California, near the area previously occupied (early Pliocene) by Los Cabos Block. Southeast of Isabel, on the mainland, is the NW-trending Tepic-Zacoalco rift, a major volcano-tectonic structure in the western part of the Mexican Volcanic Belt. On land, the rift is the boundary between the Jalisco and Sierra Madre Occidental blocks, and Isabel lies along its projection. Immediately S of Isabel is the San Blas Trough, a swale that trends NW-SE, co-linear with a gravity lineation parallel to the Tamayo and San Blas fault zones, which are the transform boundaries between the northern Rivera and North American plates. Plio-Quaternary alkaline and calc-alkaline lavas have erupted contemporaneously in the Tepic-Zacoalco rift, but so far no mantle xenoliths have been reported in them. Isabel's rocks are intra-plate type alkaline basalts to trachybasalts, with 5-6%\\ normative Ne. Primary paragenesis in the lavas is: Ol + Pl + Cpx + TMt. Small (< 5 cm) peridotite xenoliths, and xenocrysts derived from them, are ubiquitous in the rocks. Eleven xenoliths were studied comprising 3 dunites, 7 harzburgites (one Pl-bearing), and 1 gabbro. Compared to other Mexican xenolith localities N of the MVB, they are refractory as they are depleted in, or lack, Cpx. Ol crystals in xenoliths are homogenous and their Mg#\\ s range as follows: peridotites (92-88), gabbro (84), and Pl-harzburgite (80). Cores of primary Ol phenocrysts (90.5-86.5) in Isabel's volcanic rocks are significantly higher in Mg#\\ s than in Ol from other Mexican xenolith localities (max. 86) and overlap with the associated peridotite xenoliths. Such overlap has not been reported for other Mexican xenolith localities. Xenolith equilibration temperatures for 5

  4. Probing the structure of the sub-Salinia mantle lithosphere using spinel lherzolite xenoliths from Crystal Knob, Santa Lucia Range, California

    NASA Astrophysics Data System (ADS)

    Quinn, D. P.; Saleeby, J.; Ducea, M. N.; Luffi, P. I.

    2013-12-01

    We present the first petrogenetic analysis of a suite of peridotite xenoliths from the Crystal Knob volcanic neck in the Santa Lucia Range, California. The neck was erupted during the Plio-Pleistocene through the Salinia terrane, a fragment of the Late Cretaceous southern Sierra-northwest Mojave supra-subduction core complex that was displaced ~310 km in the late Cenozoic along the dextral San Andreas fault. The marginal tectonic setting makes these xenoliths ideal for testing different models of upper-mantle evolution along the western North American plate boundary. Possible scenarios include the early Cenozoic underplating of Farallon-plate mantle lithosphere nappes (Luffi et al., 2009), Neogene slab window opening (Atwater and Stock, 1998), and the partial subduction and stalling of the Monterey microplate (Pisker et al., 2012). The xenoliths from Crystal Knob are spinel lherzolites, which sample the mantle lithosphere underlying Salinia, and dunite cumulates apparently related to the olivine-basalt host. Initial study is focused on the spinel lherzolites: these display an allotriomorphic granular texture with anisotropy largely absent. However, several samples exhibit a weak shape-preferred orientation in elongate spinels. Within each xenolith, the silicate phases are in Fe-Mg equilibrium; between samples, Mg# [molar Mg/(Mg+Fe)*100] ranges from 87 to 91. Spinels have Cr# [molar Cr/(Cr+Al)*100] ranging from 10 to 27. Clinopyroxene Rb-Sr and Sm-Nd radiogenic isotope data show that the lherzolites are depleted in large-ion lithophile (LIL) elements, with uniform enrichment in 143Nd (ɛNd from +10.3 to +11.0) and depletion in 87Sr (87/86Sr of .702). This data rules out origin in the continental lithosphere, such as that observed in xenoliths from above the relict subduction interface found at at Dish Hill and Cima Dome in the Mojave (Luffi et al., 2009). The Mesozoic mantle wedge, which is sampled by xenoliths from beneath the southern Sierra Nevada batholith

  5. Chalcophile and Siderophile Element Abundances in Kilbourne Hole Lherzolites: Distinguishing the Signature of Melt Depleted Primitive Mantle from Metasomatic Overprints

    NASA Astrophysics Data System (ADS)

    Harvey, J.; König, S.; Luguet, A.

    2013-12-01

    Selenium, tellurium and the highly siderophile elements in peridotites have the potential to illustrate planetary scale processes that are opaque to lithophile elements. However, the interpretation of chalcophile and siderophile element abundances relies heavily on the selection of representative mantle material and the determination of what processes have affected these elements since melt depletion. Whole rock and in-situ sulfide data demonstrate that chalcophile and HSE systematics of the upper mantle could be significantly modified through sulfide-metasomatism, particularly by C-O-H-S × Cl fluids[1] or sulfide melts[2] i.e., chalcophile and siderophile element abundances result from a complex interplay between sulfide addition and alteration of pre-existing sulfide. Here we present new bulk-rock S-Se-Te-PGE abundances on a suite (n = 17) of lherzolite and harzburgite xenoliths from Kilbourne Hole, USA[3, 4]. Mineral modal abundances, major element contents and LREE/HREE ratios for 10 of these xenoliths are consistent with varying degrees of melt depletion (≤ 20 %) whereas the remainder appear to have been affected by cryptic metasomatism, refertilization, or melt-rock interaction which affected lithophile element abundances [4]. While sulfur, Se and PGE budgets are primarily controlled by sulfides, 50 × 30% of Te in peridotite may be accounted for by Pt-Pd tellurides[5]. Although most Kilbourne Hole peridotite xenoliths have PGE characteristics consistent with varying degrees of melt depletion and somewhat scattered Se/Te ratios, KH96-24 has Pt-Pd-Te abundances consistent with Pt-Pd-telluride precipitation, in addition to petrographic evidence for alteration by secondary processes[4]. S/Se are well correlated within the suite. However, lherzolites that retain a strong melt-depletion signature have distinctly lower abundances of both S and Se (<65 ppm and <31 ppm respectively) compared to peridotites that have had their lithophile element budgets perturbed

  6. Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions in the upper mantle: a natural case study from Romanian mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Chalot-Prat, Françoise; Arnold, Michel

    1999-04-01

    This paper presents the textural, mineralogical and chemical study of veinlets cross-cutting peridotite xenoliths from the lithospheric mantle and brought to the surface by alkaline basalts (Persani Mountains, Romania). The veinlets utilized pre-existing zones of weakness in the host rocks or display a random distribution, lining grain boundaries or cross-cutting any mineral, and always forming an interconnected network. They are filled with carbonate patches included in a silicate matrix. Both products are holocrystalline. Carbonate products have alkali-poor calciocarbonatitic to sövitic compositions, while the silicate matrix composition ranges from monzodioritic to monzonitic and alkali feldspar syenitic, depending on the host-sample, i.e., within a rather alkaline silica-saturated series. The mineral phases present in the silicate matrix (F-apatite, armalcolite, chromite, diopside-enstatite series, plagioclase-sanidine series) are usually present in the carbonate zones, where forsterite is also found. Some minerals cross-cut the interface between both types of zones. Only the matrix is different, feldspathic (oligoclase to sanidine) in the former and pure calcite in the latter. Thus, mineralogical and textural relationships between both products are consistent with an origin with equilibrium liquid immiscibility. Mantle minerals cross-cut by veinlets are sometimes resorbed at grain boundaries, and at the contact of the most alkaline silicate and carbonate melts, subhedral diopside/augite formed at the expense of mantle enstatite or olivine. In terms of mineral chemistry, the compositional variations recorded by vein minerals vary along a continuous trend. They generally superpose to those observed from lherzolites to harzburgites, and exhibit the same range of composition as that observed between rims and cores of mantle minerals cross-cut by veinlets. In detail, the Ca-rich pyroxenes of veinlets are Al-poor and Mg-rich; cpx in the carbonate zones are slightly

  7. Short-scale variability of the SCLM beneath the extra-Andean back-arc (Paso de Indios, Argentina): Evidence from spinel-facies mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Ponce, Alexis D.; Bertotto, Gustavo W.; Zanetti, Alberto; Brunelli, Daniele; Giovanardi, Tommaso; Aragón, Eugenio; Bernardi, Mauro I.; Hémond, Christophe; Mazzucchelli, Maurizio

    2015-10-01

    Cenozoic basalts carrying ultramafic mantle xenoliths occur in the Matilde, León and Chenque hills in the Paso de Indios region, Argentina. The mantle xenoliths from the Chenque and León hills mainly present porphyroclastic textures, whereas the Matilde hill xenoliths have coarse-grained to porphyroclastic textures. The equilibrium temperatures are in the range of 780 to 940ºC, indicating a provenance from shallow sectors of the lithospheric mantle column that were subjected to a relatively low heat ffiux at Cenozoic Era. According to the modal compositions of xenoliths, the mantle beneath Matilde and León hills was affected by greater than 22% partial melting, while less depleted peridotites occur in the Chenque suite (starting from 10% partial melting). Such an observation is confirmed by the partial melting estimates based on Cr#Sp, which vary from 8 to 14% for the selected Chenque samples and from 14 to 18% for the Matilde ones. The common melting trend is overlapped by small-scale cross cutting local trends that may have been generated by open-system processes, such as open-system partial melting and/or post partial-melting metasomatic migration of exotic Na-Cr-rich melts. The two main mineralogical reaction schemes are: i) the dissolution of pyroxenes and the segregation of new olivine in olivine-rich peridotites, and ii) the replacement of primary olivine by orthopyroxene±clinopyroxene in orthopyroxene-rich peridotites. These were produced by channelled and/or pervasive melt extraction/ migration. Enhanced pyroxene dissolution is attributed to channelling of silica- undersaturated melts, whereas the replacement of primary olivine by orthopyroxene±clinopyroxene points to reaction with silica-saturated melts. Late disequilibrium reactions identified in the xenoliths comprise: the breakdown of orthopyroxene in contact with the host basalt, and (rarely) reaction coronae on orthopyroxene, clinopyroxene and spinel linked to glassy veins. Such features are

  8. Diamond-bearing Rocks among Mantle Xenoliths in Kimberlites as Indicatory for the Chambers of Diamond-parental Carbonatite Magma

    NASA Astrophysics Data System (ADS)

    Litvin, Yuriy; Kuzyura, Anastasia

    2014-05-01

    may originate and evolve by: (1) metasomatic-magmatic stage resulted in partial carbonatization of mantle peridotite under attack of K-CO2-bearing metasomatic agents and generation of carbonate melts; (2) dissolving-magmatic stage when major and accessory minerals of peridotite host-rock, volatiles and carbon dissolve in carbonate melt whereas insoluble sulphide phases penetrate into melts; eventually, completely miscible peridotite-carbonatite-carbon magma parental for diamond and paragenetic minerals (hosting xenogenetic sulphide minerals and melts) are formed; (3) fraction-crystallization stage (in chamber consolidated into a self-dependent body) during natural cooling of parental magma up to solidus temperature; the cooling activates physicochemical control that is created by PT-phase relations for the parental magma composition, i.e., syngenesis phase diagram on a representative polythermal section of peridotite-eclogite-carbonatite-diamond system at 7 GPa under conditions of fractional crystallization (Litvin, 2013). Parental carbonatite melts, while compositionally evolve under fractional crystallization, are physicochemically capable to form diamond and sequentially minerals of peridotitic and eclogitic parageneses (presented as primary inclusions in diamonds). Paragenetic peridotite-eclogite transition in the course of ultrabasic-basic fractional evolution of parental melts is revealed in physicochemical experiments as the effect of 'peridotite-to-eclogite' tonnel (Litvin, 2013). Diamond-bearing peridotite and eclogite rocks and intimate mineral intergrowths with diamond are also formed in the chambers of diamond-parental carbonatite magmas under these physicochemical conditions. Diamond-free rocks among mantle xenoliths in kimberlites represent samples of the enclosing host-rocks for the chambers of diamond-parental carbonatite magma. Support: grant of the RF President #MK-1386.2013.5, RFBR grants 12-05-33044, 13-05-00835 and 14-05-00537.

  9. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Viljoen, K. S.

    2015-12-01

    Major- and trace-element compositions of eclogite and pyroxenite xenoliths of ≥2.5 Ga age (in situ Pb-Pb data on clinopyroxene) from the Lace kimberlite on the Kaapvaal craton were investigated in order to constrain: (1) the nature and evolution of their protoliths; (2) the extent to which they preserve information on the state of the asthenospheric mantle source that gave rise to their low-pressure protoliths; and (3) the effect of their deep recycling on the radiogenic isotope evolution of the convecting mantle. Their elemental relationships are consistent with low-pressure fractionation of olivine ± plagioclase and clinopyroxene during oceanic crust formation, whereby the residual melt was enriched in rare-earth elements (REE), high field-strength elements and Y, producing inverse correlations of ΣREE with the size of Eu- and Sr-anomalies. LREE-depletion may indicate loss of on average 20% of a partial melt upon subduction and metamorphism (eclogitisation) of oceanic crust, which did not, however, contribute to juvenile growth of continental crust. The eclogites have median Sm/Nd (0.40) and Lu/Hf (0.27) similar to Depleted Mantle, and lower U/Pb (0.02) and Th/Pb (0.02). If deeply subducted, these rocks cannot explain unradiogenic Nd and Hf, and radiogenic Pb isotope compositions in the sources of some modern ocean island basalts. Low incompatible trace-element contents similar to picrites, and Yb concentrations at a given TiO2 content similar to modern MORB, indicate derivation of the protoliths by average melt fractions of ∼ 0.20- 0.25 that left a spinel peridotite residue at pressures ≤2.5 to 3.0 GPa. This shallow intersection of the peridotite solidus suggests moderate Archaean ambient mantle potential temperatures of ≤1420 to 1470 °C. Samples filtered for clinopyroxene fractionation and metasomatism have V/Sc (4.7 ± 1.2; n = 11) indicating lower fO2 (-1.9 relative to the fayalite-magnetite-quartz buffer = ΔFMQ) than modern MORB. This is in part

  10. Sulfur isotope composition of metasomatised mantle xenoliths from the Bultfontein kimberlite (Kimberley, South Africa): Contribution from subducted sediments and the effect of sulfide alteration on S isotope systematics

    NASA Astrophysics Data System (ADS)

    Giuliani, Andrea; Fiorentini, Marco L.; Martin, Laure A. J.; Farquhar, James; Phillips, David; Griffin, William L.; LaFlamme, Crystal

    2016-07-01

    Sulfur isotopes are a powerful geochemical tracer in high-temperature processes, but have rarely been applied to the study of mantle metasomatism. In addition, there are very limited S isotope data on sub-continental lithospheric mantle (SCLM) material. For cratonic regions, these data are restricted to sulfide inclusions in diamonds. To provide new constraints on the S isotope composition of the SCLM and on the source(s) of mantle metasomatic fluids beneath the diamondiferous Kimberley region (South Africa), we investigated the S isotope systematics of five metasomatised mantle xenoliths from the Bultfontein kimberlite. Pentlandite and chalcopyrite in these xenoliths were analysed by in situ secondary-ion mass spectrometry (SIMS), with bulk-rock material measured by gas source isotope ratio mass spectrometry techniques. Based on previous studies, the xenoliths experienced different types of metasomatism to one another at distinct times (∼180 and ∼90-80 Ma). Contained pentlandite grains show variable alteration to heazlewoodite (i.e. Ni sulfide) + magnetite. The in situ S isotope analyses of pentlandite exhibit a relatively restricted range between -5.9 and - 1.4 ‰δ34 S (compared to VCDT), with no statistically meaningful differences between samples. Chalcopyrite only occurs in one sample and shows δ34 S values between -5.4 and - 1.0 ‰. The bulk-rock Ssulfide isotope analyses vary between -3.4 and + 0.8 ‰δ34 S. Importantly, the only sample hosting dominantly fresh sulfides shows a bulk-rock δ34 S value consistent with the mean value for the sulfides, whereas the other samples exhibit higher bulk 34S/32S ratios. The differences between bulk-rock and average in situδ34 S values are directly correlated with the degree of sulfide alteration. This evidence indicates that the elevated 34S/32S ratios in the bulk samples are not due to the introduction of heavy S (commonly as sulfates) and are best explained by isotopic fractionation coupled with the removal

  11. Highly Siderophile Elements as Tracers for the Subcontinental Mantle Evolution Beneath the Southwestern USA: The San Carlos and Kilbourne Hole Peridotite Xenoliths Revisited

    NASA Technical Reports Server (NTRS)

    vanAcken, D.; Brandon, A. D.; Peslier, A. H.; Lee, C.-T. A.

    2010-01-01

    Peridotite xenoliths from San Carlos, Arizona, and Kilbourne Hole, New Mexico, have been studied since the 1970 s to give insights into melting and metasomatism in the subcontinental mantle beneath the southwestern USA. More recently, the highly siderophile elements (HSE; Os, Ir, Ru, Rh, Pt, Pd, and Re) and the included Re-Os isotope system have been established as powerful tools for the study of mantle processes because of their range in compatibility during mantle melting and their siderophile and chalcophile geochemical behavior. Model aluminachron Re-Os ages for San Carlos and Kilbourne Hole, as well as for the nearby Dish Hill and Vulcan's Throne sites, give consistent depletion ages of around 2.2 Ga. This age can be interpreted as a single large scale mantle melting event linked to crustal formation and continental growth under the southwestern USA. Highly siderophile elements, however, may be added to depleted peridotites via melt-rock interaction, especially the more incompatible and hence mobile Pt, Pd, and Re. This may result in overprinting of the signature of melt extraction, thus abating the usefulness of Re-Os mantle extraction model ages. A comprehensive characterization of the suite of mantle xenoliths from the SW USA in terms of HSE concentrations is thus necessary to re-assess the Re-Os system for dating purposes. San Carlos peridotites are depleted to moderately fertile, as indicated by their bulk Al2O3 contents between 0.66 wt% and 3.13 wt%. Bulk Os-187/Os-188 in San Carlos peridotites range from 0.1206 to 0.1357. In contrast, Kilbourne Hole peridotites tend to be more fertile with Al2O3 between 2.11 and 3.78 wt%, excluding one extremely depleted sample with 0.30 wt% Al2O3, and have Os-187/Os-188 between 0.1156 and 0.1272, typical for mantle peridotites. No large fractionation between the more compatible HSE Os, Ir, and Ru are observed. The more incompatible HSE Re, Pd, and to a minor extent, Pt, however, are depleted in a number of samples by

  12. Paradoxical co-existing base metal sulphides in the mantle: The multi-event record preserved in Loch Roag peridotite xenoliths, North Atlantic Craton

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Loocke, Matthew; Butler, Ian B.; Upton, Brian G. J.; Faithfull, John W.

    2017-04-01

    The role of the subcontinental lithospheric mantle as a source of precious metals for mafic magmas is contentious and, given the chalcophile (and siderophile) character of metals such as the platinum-group elements (PGE), Se, Te, Re, Cu and Au, the mobility of these metals is intimately linked with that of sulphur. Hence the nature of the host phase(s), and their age and stability in the subcontinental lithospheric mantle may be of critical importance. We investigate the sulphide mineralogy and sulphide in situ trace element compositions in base metal sulphides (BMS) in a suite of spinel lherzolite mantle xenoliths from northwest Scotland (Loch Roag, Isle of Lewis). This area is situated on the margin of the North Atlantic Craton which has been overprinted by a Palaeoproterozoic orogenic belt, and occurs in a region which has undergone magmatic events from the Palaeoproterozoic to the Eocene. We identify two populations of co-existing BMS within a single spinel lherzolite xenolith (LR80) and which can also be recognised in the peridotite xenolith suite as a whole. Both populations consist of a mixture of Fe-Ni-Cu sulphide minerals, and we distinguished between these according to BMS texture, petrographic setting (i.e., location within the xenolith in terms of 'interstitial' or within feldspar-spinel symplectites, as demonstrated by X-ray Computed Microtomography) and in situ trace element composition. Group A BMS are coarse, metasomatic, have low concentrations of total PGE (< 40 ppm) and high (Re/Os)N (ranging 1 to 400). Group B BMS strictly occur within symplectites of spinel and feldspar, are finer-grained rounded droplets, with micron-scale PtS (cooperite), high overall total PGE concentrations (15-800 ppm) and low (Re/Os)N ranging 0.04 to 2. Group B BMS sometimes coexist with apatite, and both the Group B BMS and apatite can preserve rounded micron-scale Ca-carbonate inclusions indicative of sulphide-carbonate-phosphate immiscibility. This carbonate

  13. Deformation and seismic anisotropy of the subcontinental lithospheric mantle in NE Spain: EBSD data on xenoliths from the Catalan Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2017-02-01

    Mantle xenoliths in Neogene-Quaternary basaltic rocks related to the European Cenozoic Rift System serve to assess the evolution of the subcontinental lithospheric mantle beneath the Catalan Volcanic Zone in NE Spain. Crystallographic preferred orientations, major element composition of minerals, and temperature and pressure estimates have been used to this end. The mantle consists of spinel lherzolites, harzburgites and subordinate websterites. Protogranular microstructures are found in all peridotites and websterites, but lherzolites also display finer-grained porphyroclastic and equigranular microstructures. The dominant olivine deformation fabric is [010] fiber, but subordinate orthorhombic and [100]-fiber types are also present, especially in porphyroclastic and equigranular lherzolites. The fabric strength (J index = 10.12-1.91), equilibrium temperature and pressure are higher in xenoliths with [010]-fiber fabric and decrease in those with orthorhombic and [100]-fiber type. Incoherence between olivine and pyroxene deformation fabric is mostly found in porphyroclastic and equigranular lherzolites. Seismic anisotropy, estimated from the crystal preferred orientations, also decreases (AVp = 10.2-2.60%; AVs max = 7.95-2.19%) in porphyroclastic and equigranular lherzolites. The olivine [010]-fiber fabric points to deformation by simple shear or transpression which is likely to have occured during the development of late-Hercynian strike-slip shear zones, and to subsequent annealing during late Hercynian decompression, Permian and Cretaceous rifting. Also, it cannot be excluded that the percolation of mafic magmas during these extensional events provoked the refertilization of the lithospheric mantle. However, no clear relationship has been observed between fabric strength and mineral mode and composition. Later transtensional deformation during late Alpine orogenesis, at higher stress and decreasing temperature and pressure, transformed the earlier fabric into

  14. Diversity of minor elements in olivines from mantle xenoliths (Wołek Hill, SW Poland) - PIXE measurements

    NASA Astrophysics Data System (ADS)

    Nowak, Monika; Munnik, Frans; Michalak, Przemysław P.; Renno, Axel

    2016-04-01

    Wołek Hill is one of the best examined exposures of Cenozoic volcanic rocks from SW Poland (Nowak, 2012). This is related with two facts: a great amount of mantle xenoliths were collected from that outcrop and this is one of two occurrences in Poland were modal metasomatism (related with amphibole crystals presence) was recognized. Wołek Hill is a relatively small exposure and belongs to the Złotoryja Volcanic Field, which is one of the volcanic concentrations in the Polish part of the Central European Volcanic Province (Ladenberger et al. 2006). Based on previous observations olivine crystals from the inside part of xenoliths occasionally display internal inhomogeneity visible on a BSE image. Such inhomogeneity has been related to olivine "sub-grains" with slightly shifted crystal axis. Those "sub-grains" are visible in optical microscope as transitional lamellae (Nowak, Stawikowski 2009). Besides the mentioned visible inhomogeneity olivine crystals also show diversity in Ca content inside single crystals (sometimes even more than 200 ppm). EPMA standard measurements (15 kV, 20 nA, time: 40 seconds) were limited to beam size and detection limits of the microprobe (most of the obtained results oscillate close to the detection limits - or even below it). Special conditions EPMA analyses (15 kV, 100nA, time: 100s) confirmed the differences in Ca content in the studied olivines, but did not provide any idea on how to interpret the results (Nowak, 2012). In this short summary we present preliminary data of olivine minor element composition (Ca, Zn, Cr, Ti, Co, K and also Mn, Ni, Fe) obtained with Particle Induced X-ray Emission(PIXE) measurements performed at the HZDR in Dresden using a 3 MeV proton beam, 1-1.5 nA current and an acquisition time of 3 hrs for each scan. The size of individual scans varied from ca. 30 μm up to 60-65 μm, with 8 x 8 measurement points - min. 4 μm in diameter. The measurements have been analysed with the GeoPIXE software (Ryan, 2001

  15. Sr-Nd-Pb-C-O isotope systematics of carbonated ultramafic xenoliths from Mafu, Taiwan: Evidence for an extremely enriched lithospheric mantle source beneath the extended margin of the South China block

    NASA Astrophysics Data System (ADS)

    Smith, A. D.; Wen, D.; Chung, S.; Wang, K.; Chiang, H.; Tsai, C.

    2008-12-01

    Deep-seated carbonate melt is widely proposed as an effective agent to metasomatize the lithospheric mantle. However, such carbonate melts may have a great diversity of composition and a mantle or recycled origin remains unclear. Here we present the evidence for unique carbonate metasomatism of the continental lithospheric mantle (CLM) beneath the extended southeast margin of the South China block from severely replaced spinel peridotite xenoliths from Mafu, northwestern Taiwan. The metasomatic calcitic carbonates and whole carbonated xenoliths from Mafu have unusually low trace element abundances (total REE abundance < 6 ppm), except for enrichment in Sr, Ba, Pb, Mn and LREE. A magmatic origin is suggested by textural observation that the chromium diopside is resorbed by carbonate melts. In addition, the carbonate melts are distinguishable from the overlaying Miocene limestone and the amygdaloidal carbonate in the host lava with respect to Sr, Nd, C and O isotopic compositions, thereby precluding a crustal origin or surficial alteration, respectively. Compared with the depleted CLM source(s) represented by the unaltered chromium diopside and/or leach residue (86Sr/87Sr = 0.7041; ɛ Nd = +4.9, one residual sample up to +12; 206Pb/204Pb = 18.3), the Sr-Nd-Pb-C-O isotope systematics of the carbonates (86Sr/87Sr = 0.7044-0.7045; ɛ Nd = -6.9 to -7.7; 206Pb/204Pb = 18.5; δ13C = -4.5 to -5.7; δ18O = +21.8 to +22.9) reveal an extremely enriched and heterogeneous CLM. According to the Nd model age, the enriched component evolved for at least 1 Gyrs after isolation from the depleted CLM, before the Late Miocene entrapment. Coupled with high Sr/Nd, Ba/Th, La/Yb, Zr/Hf, and low Nb/U, Ce/Pb, Th/U, Ti/Eu ratios, this EM1-like metasomatic agent may be one of the most efficient percolating melt to cause disequlibrium interaction or Sr-Nd isotope decoupling. To a broader interpretation, it offers an alternative to account for some enriched signatures in mantle lithosphere, such

  16. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: A unique view of depleted MORB mantle?

    NASA Astrophysics Data System (ADS)

    Handler, M. R.; Bennett, V. C.; Carlson, R. W.

    2005-12-01

    Northeastern Queensland, a part of the Phanerozoic composite Tasman Fold Belt of eastern Australia, has a Paleozoic to Mesozoic history dominated by subduction zone processes. A suite of 13 peridotite xenoliths from the <3 Ma Atherton Tablelands Volcanic Province, predominantly from Mount Quincan, comprise fertile (1.8-3.4 wt.% Al 2O 3 and 38.7-41.9 wt.% MgO) spinel lherzolites free from secondary volatile-bearing phases and with only weak metasomatic enrichment of incompatible trace elements (Sm N/Yb N = 0.23-1.1; La N/Yb N = 0.11-4.9). The suite is isotopically heterogeneous, with measured Sr ( 87Sr/ 86Sr = 0.7027-07047), Nd ( 143Nd/ 144Nd = 0.51249-0.51362), and to a lesser extent, Os ( 187Os/ 188Os = 0.1228-0.1292) compositions broadly overlapping MORB source mantle (DMM) and extending to more depleted compositions, reflecting evolution in a time-integrated depleted reservoir. Major and rare earth element systematics are consistent with mantle that is residual after low to moderate degrees of melt extraction predominantly in the spinel facies, but with a few samples requiring partial melting at greater pressures in the garnet field or near the garnet-spinel transition. In contrast to most previously studied suites of continental lithospheric mantle samples, the incompatible trace element contents and Sr and Nd isotopic systematics of these samples suggest only minimal modification of the sampled lithosphere by metasomatic processes. Five of six Mount Quincan xenoliths preserving depleted middle to heavy REE patterns form a whole rock Sm-Nd isochron with an age of ˜275 Ma (ɛ Ndi = +9), coincident with widespread granitoid emplacement in the overlying region. This isochron is interpreted to indicate the timing of partial melting of a DMM-like source. Xenoliths from other Atherton localities scatter about the isochron, suggesting that the sampled mantle represents addition of DMM mantle to the lithosphere in the Permian, when the region may have broadly been

  17. Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Soustelle, Vincent; Tommasi, Andréa; Demouchy, Sylvie; Franz, Leander

    2013-11-01

    This study analyses the interactions between deformation and reactive fluid and melt percolation, and their effects on sub-arc mantle seismic properties based on microstructural observations on mantle xenoliths extracted by the Tubaf and Edison seamounts close to the Lihir Island, in the Papua New Guinea archipelago. These xenoliths sample an oceanic lithosphere, which has experienced high-temperature deformation in the presence of fluids or melts. This was followed by metasomatism under static conditions. Syn-kinematic percolation of reactive Si-rich melts or fluids in peridotites has produced pyroxene-enrichment, grain size reduction, and dispersion of olivine crystal preferred orientation (CPO). Fourier transform infrared spectroscopy analyses show that olivine has very low water contents (1-4 wt. ppm H2O), similar to spinel peridotites from other subduction zones. These low values may record both low water solubility in olivine at low pressure and dehydration during transport and exhumation. Water contents in pyroxenes are highly variable and likely result from spatially heterogeneous melt or fluid percolation. Analysis of olivine CPO indicates dominant activation of both (010)[100] and (001)[100] slip systems, which are characteristic of deformation under high temperature, low stress, low pressure and low to moderate hydrous conditions. Fast S-wave polarization and P- and Rayleigh propagation directions are thus parallel to the mantle flow direction. The pyroxene enrichment by melt-rock reactions is accompanied by dispersion of olivine CPO and induces a significant decrease of the maximum S-wave and P-wave anisotropy in the peridotites. The calculated seismic properties also show that the lowest Vp/Vs ratios (< 1.7) mapped in fore-arc mantle may only be explained by taking in consideration the CPO-induced elastic anisotropy of the peridotites.

  18. Petrology, geochemistry and Resbnd Os isotopes of peridotite xenoliths from Maguan, Yunnan Province: Implications for the Cenozoic mantle replacement in southwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Zhou; Wu, Fu-Yuan; Sun, Jing; Chu, Zhu-Yin; Yu, Xue-Hui

    2013-05-01

    Petrology, geochemistry and Resbnd Os isotopes of peridotite xenoliths from Maguan (Yunnan Province) are reported in this paper with the aims of constraining the age and evolution of the lithospheric mantle beneath the western margin of the Cathyasia block. The Maguan mantle xenoliths contain predominantly fertile lherzolites with whole-rock Al2O3 contents of 2.42-4.99 wt.%, and subordinate clinopyroxene-poor lherzolites with Al2O3 contents of 1.19-1.98 wt.%. Their whole-rock CaO, Al2O3 and Na2O decrease along with the increase of MgO, following melt depletion trends. This suggests that the Maguan lherzolites represent mantle residues after variable degrees of partial melting. Clinopyroxenes in the fertile lherzolites display flat to depleted REE patterns, whereas those in the clinopyroxene-poor lherzolites are variably enriched in LREE. Modeling results of Y and Yb contents in clinopyroxenes suggest that the fertile lherzolites have experienced ~ 1-5% degrees of partial melting, in contrast with ~ 10-15% for the clinopyroxene-poor lherzolites. Both fertile and clinopyroxene-poor lherzolites have similarly high equilibrium temperatures, i.e., 911-1120 °C versus 919-941 °C, respectively. The whole-rock 187Os/188Os ratios of clinopyroxene-poor lherzolites vary from 0.11764 to 0.12506, which are slightly lower than most fertile lherzolites (0.12272-0.12854). Their 187Os/188Os ratios show no correlation with 187Re/188Os ratios or bulk-rock Al2O3 contents. The rhenium depletion ages (TRD) of the lherzolites range from 0.15 to 1.08 Ga, whereas the clinopyroxene-poor lherzolites have TRD ages of 0.64-1.67 Ga. This suggests the co-existence of Phanerozoic and Proterozoic mantle beneath the western Cathyasia block. Alternatively, the whole lithospheric mantle beneath Maguan was likely formed during the Phanerozoic, given the resemblance of their Os isotopic ratios with those of abyssal peridotites. The latter explanation is consistent with the fact that all the studied

  19. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Doucet, Luc S.; Carlson, Richard W.; Golovin, Alexander V.; Korsakov, Andrey V.

    2015-09-01

    The formation age of the Siberian cratonic mantle is not well established. Re-Os data on various mantle-derived materials brought up by kimberlite magmas have shown that it contains Archean components, but the reported ages range broadly (3.4 to <1 Ga). We report Re-Os isotope and PGE concentration data for a suite of 29 fresh, well-characterized xenoliths from the Udachnaya-East kimberlite representing all major peridotite rock types and a large part of the cratonic mantle profile. Several xenoliths with very low Os contents (<0.3 ppb) and/or high Re/Os ratios are not suitable for age estimates. The Os (and Ir) depletions are common in cpx-bearing spinel harzburgites and coarse garnet harzburgites, but are not found in deformed, high-T peridotites. Twenty refractory (Al2O3 0.1-1.6%) peridotites yield TRD ages from 0.9 to 2.2 Ga. TRD for a subset of six high-Mg# (0.92-0.93), low-T (⩽930 °C) spinel harzburgites and a single garnet harzburgite yield a narrow range from 2.0 to 2.2 Ga with an average of 2.1 ± 0.1 Ga, which we consider the best estimate for the age of the melting event that initially formed the lithospheric mantle beneath Udachnaya. The TRD estimates for less refractory (Mg# 0.907-0.919) deformed garnet peridotites show a greater range and are generally lower (0.9-2.0 Ga; average 1.54 ± 0.28 Ga) apparently due to the effects of melt metasomatism on the initial melting residues. The predominant part of the mantle in the central Siberian craton formed in the Paleoproterozoic and not in the Archean, unlike cratons in southern Africa and North America. Minor older components reported earlier from Udachnaya may be fragments of pre-existing lithosphere trapped during stacking of melting residues formed about 2 Ga ago. We argue that the formation of cratonic lithospheric mantle, with common high-Mg# (⩾0.92) and opx-enriched peridotites, was not limited to the Archean as previously thought, but continued in the Paleoproterozoic, i.e. that asthenospheric

  20. Subduction- vs- Intraplate-Type Melt Migration in the Alboran Lithospheric Mantle: Insights From the Tallante Xenoliths (Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Vissers, R. L.; Poggio, M.; Scambelluri, M.; Zanetti, A.

    2008-12-01

    The Alboran Sea region has been affected since the late Oligocene by widespread eruption of tholeiitic to calc-alkaline magmas followed by Late Neogene alkaline basalts. These magmatic episodes are related to Neogene lithospheric extension beneath the Alboran domain, as a consequence of slab roll-back. According to recent models, subduction of oceanic lithosphere caused continental-edge delamination of subcontinental lithosphere, associated with upwelling of plume-type mantle sources. The Alboran lithospheric mantle thus constitutes a unique setting to investigate the effects of subduction- and intraplate-type metasomatism. Here we present a microstructural and geochemical study of mantle xenoliths from the Cabezo Tallante Late Neogene alkaline volcanic center (SE Spain). These xenoliths record multiple episodes of reactive porous melt percolation, and melt entrapment, tracking their progressive extension-related uplift from P > 20 Kb to 7-10 Kb. This is documented by i) crystallization of undeformed olivine replacing pyroxene porphyroclasts, and unstrained opx overgrowing undeformed olivine and pyroxene porphyroclasts, in porphyroclastic spinel peridotites, ii) development of annealed equigranular structure, likely enhanced by heating during melt percolation, iii) crystallization of interstitial (plag±ol±opx) aggregates between mantle minerals in porphyroclastic and equigranular xenoliths. Cpx in equigranular peridotites have smooth trace element spectra characterized by slight LREE depletion; computed equilibrium liquids have a tholeiitic-transitional affinity. Diffuse melt percolation was followed by intrusion of melts with distinct chemical affinity. The first event is documented by the intrusion of cm-sized gabbronoritic veins, showing a fine-grained opx reaction rim against the host peridotite. Similar gabbronoritic lithotypes were previously documented and ascribed to slab-derived melts. A quite remarkable textural feature in these veins is the occurrence

  1. Peridotite xenoliths from the Polynesian Austral and Samoa hotspots: Implications for the destruction of ancient 187Os and 142Nd isotopic domains and the preservation of Hadean 129Xe in the modern convecting mantle

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Shirey, S. B.; Hauri, E. H.; Kurz, M. D.; Rizo, H.

    2016-07-01

    The Re-Os systematics in 13 peridotite xenoliths hosted in young (<0.39 myr) rejuvenated lavas from the Samoan island of Savai'i and 8 peridotite xenoliths from 6 to 10 myr old lavas from the Austral island of Tubuai have been examined to evaluate the history of the oceanic mantle in this region. Modal mineralogy, trace element compositions and 187Os/188Os ratios suggest that these peridotites are not cognate or residual to mantle plumes but rather samples of Pacific oceanic lithosphere created at the ridge. Savai'i and Tubuai islands lie along a flow line in the Pacific plate, and provide two snapshots (separated by over 40 Ma in time) of Pacific mantle that originated in the same region of the East Pacific rise. Tubuai xenoliths exhibit 187Os/188Os from 0.1163 to 0.1304, and Savai'i (Samoa) xenoliths span a smaller range from 0.1173 to 0.1284. The 187Os/188Os ratios measured in Tubuai xenoliths are lower than (and show no overlap with) basalts from Tubuai. The 187Os/188Os of the Savai'i xenoliths overlap the isotopic compositions of lavas from the island of Savai'i, but also extend to lower 187Os/188Os than the lavas. 3He/4He measurements of a subset of the xenoliths range from 2.5 to 6.4 Ra for Tubuai and 10.8 to 12.4 Ra for Savai'i. Like abyssal peridotites and xenoliths from oceanic hotspots that sample the convecting mantle, Os isotopes from the Savai'i and Tubuai xenolith suites are relatively unradiogenic, but do not preserve a record of depleted early-formed (Hadean and Archean) mantle domains expected from earlier cycles of ridge-related depletion, continent extraction, or subcontinental lithospheric mantle erosion. The lack of preservation of early-formed, geochemically-depleted Os-isotopic and 142Nd/144Nd domains in the modern convecting mantle contrasts with the preservation of early-formed (early-Hadean) 129Xe/130Xe isotopic heterogeneities in the convecting mantle. This can be explained if the initial isotopic signatures in Re-Os and Sm-Nd systems

  2. Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: Evidence for mantle metasomatism associated with kimberlite melts

    NASA Astrophysics Data System (ADS)

    Kargin, A. V.; Sazonova, L. V.; Nosova, A. A.; Tretyachenko, V. V.

    2016-10-01

    Here we present major and trace element data for garnet and clinopyroxene from mantle-derived peridotite xenoliths of the Grib kimberlite, the Arkhangelsk diamond province, Russia, and provide new insights into the metasomatic processes that occur within the subcontinental lithospheric mantle (SCLM) during the kimberlite generation and ascent. The mantle xenoliths examined in this study are both coarse and sheared garnet peridotites and consist of olivine, orthopyroxene, clinopyroxene, garnet with minor ilmenite, magnetite, and Cr-spinel. Based on garnet and clinopyroxene composition, two groups of peridotite are recognized. One group contains high-Ti, light rare earth elements (LREE) enriched garnets and low-Mg# clinopyroxenes with low (La/Sm)n (C1 chondrite-normalized) values. This mineral assemblage was in equilibrium with a high-temperature carbonate-silicate metasomatic agent, presumably, a protokimberlite melt. Pressure-temperature (P-T) estimates (T = 1220 °C and P = 70 kbar) suggest that this metasomatic event occurred at the base of the SCLM. Another group contains low-Ti garnet with normal to sinusoidal rare earth elements (REE) distribution patterns and high-Mg# clinopyroxenes with wide range of (La/Sm)n values. The geochemical equilibrium between garnet and clinopyroxene coupled with their REE composition indicates that peridotite mantle experienced metasomatic transformation by injection of a low-Ti (after crystallizations of the ilmenite megacrysts) kimberlite melt that subsequently percolated through a refractory mantle column. Peridotites of this group show a wide range of P-T estimates (T = 730-1070 °C and P = 22-44 kbar). It is suggested that evolution of a kimberlite magma from REE-enriched carbonate-bearing to carbonate-rich ultramafic silicate compositions with lower REE occurs during the ascent and interaction with a surrounding lithospheric mantle, and this process leads to metasomatic modification of the SCLM with formation of both high

  3. Mantle metasomatism did not modify the initial H2O content in peridotite xenoliths from the Tianchang basalts of eastern China

    NASA Astrophysics Data System (ADS)

    Hao, Yan-Tao; Xia, Qun-Ke; Tian, Zhen-Zhen; Liu, Jia

    2016-09-01

    Metasomatism induced by melts/fluids is ubiquitous in the lithospheric mantle and can potentially modify the initial water content of the mantle. However, the preservation of correlations between H2O content and partial melting indices (e.g., Yb content in clinopyroxene, Cr / (Cr + Al) in spinel) and the lack of correlations between H2O content and metasomatic indices (e.g., La/Yb in clinopyroxene) in peridotite xenoliths from several localities suggest that variations in the initial H2O content were controlled by partial melting processes rather than by subsequent metasomatic event(s) (Hao et al., 2014; Denis et al., 2015). However, the applied partition coefficients of H2O between peridotite and melt (Dperidotite/melt = 0.1-0.3) in the partial melting models cast doubts on the reasonability of such explanations. Whether metasomatism always modifies the initial H2O content of the lithospheric mantle remained a topic of debate. In this paper, we measure major and trace element concentrations and H2O contents of minerals in the peridotite xenoliths hosted by the Tianchang Cenozoic basalts in eastern China by using electron microprobe, laser-ablation ICP-MS and Fourier transform infrared spectroscopy, respectively. The H2O contents (weight in ppm) of clinopyroxene, orthopyroxene and olivine are 70-280 ppm, 35-140 ppm and below detection limit (< 2 ppm H2O), respectively. Although water diffusion during xenolith ascent cannot be excluded for olivine, pyroxenes largely retain the initial H2O content of the mantle source, as supported by (1) the correlation between H2O content and major element content of pyroxene, and (2) the equilibrium H2O partitioning between clinopyroxene and orthopyroxene. The calculated whole-rock H2O contents range from 14 to 93 ppm (average 52 ± 25 ppm) assuming 0.1 for the H2O partition coefficient between olivine and clinopyroxene. Although no hydrous minerals are found, the enrichment in light rare earth elements and large ion lithophile

  4. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust-mantle mixing and metamorphism in the deep crust

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Collins, William J.; Weinberg, Roberto F.; Li, Jin-xiang; Li, Qiu-yun; He, Wen-yan; Richards, Jeremy P.; Hou, Zengqian; Zhou, Li-min; Stern, Richard A.

    2016-07-01

    Felsic granulite xenoliths entrained in Miocene (~13 Ma) isotopically evolved, mantle-derived ultrapotassic volcanic (UPV) dykes in southern Tibet are refractory meta-granitoids with garnet and rutile in a near-anhydrous quartzo-feldspathic assemblage. High F-Ti (~4 wt.% TiO2 and ~3 wt.% F) phlogopite occurs as small inclusions in garnet, except for one sample where it occurs as flakes in a quartz-plagioclase-rich rock. High Si (~3.45) phengite is found as flakes in another xenolith sample. The refractory mineralogy suggests that the xenoliths underwent high-T and high-P metamorphism (800-850 °C, >15 kbar). Zircons show four main age groupings: 1.0-0.5 Ga, 50-45, 35-20, and 16-13 Ma. The oldest group is similar to common inherited zircons in the Gangdese belt, whereas the 50-45 Ma zircons match the crystallization age and juvenile character (ɛHf i +0.5 to +6.5) of Eocene Gangdese arc magmas. Together these two age groups indicate that a component of the xenolith was sourced from Gangdese arc rocks. The 35-20 Ma Miocene ages are derived from zircons with similar Hf-O isotopic composition as the Eocene Gangdese magmatic zircons. They also have similar steep REE curves, suggesting they grew in the absence of garnet. These zircons mark a period of early Miocene remelting of the Eocene Gangdese arc. By contrast, the youngest zircons (13.0 ± 4.9 Ma, MSWD = 1.3) are not zoned, have much lower HREE contents than the previous group, and flat HREE patterns. They also have distinctive high Th/U ratios, high zircon δ18O (+8.73-8.97 ‰) values, and extremely low ɛHf i (-12.7 to -9.4) values. Such evolved Hf-O isotopic compositions are similar to values of zircons from the UPV lavas that host the xenolith, and the flat REE pattern suggests that the 13 Ma zircons formed in equilibrium with garnet. Garnets from a strongly peraluminous meta-tonalite xenolith are weakly zoned or unzoned and fall into four groups, three of which are almandine-pyrope solid solutions and have low

  5. The first finding of graphite inclusion in diamond from mantle rocks: The result of the study of eclogite xenolith from Udachnaya pipe (Siberian craton)

    NASA Astrophysics Data System (ADS)

    Mikhailenko, D. S.; Korsakov, A. V.; Golovin, A. V.; Zelenovskiy, P. S.; Pohilenko, N. P.

    2016-08-01

    A xenolith of eclogite from the kimberlite pipe Udachnaya-East, Yakutia Grt+Cpx+Ky + S + Coe/Qtz + Dia + Gr has been studied. Graphite inclusions in diamond have been studied in detail by Confocal Raman (CR) mapping. The graphite inclusion in diamond has a highly ordered structure and is characterized by a substantial shift in the band (about 1580 cm-1) by 7 cm-1, indicating a significant residual strain in the inclusion. According to the results of FTIR spectroscopic studies of diamond crystals, a high degree of nitrogen aggregation has been detected: it is present mainly in form A, which means an "ancient" age of the diamonds. In the xenolith studied, the diamond formation occurred about 1 Byr, long before their transport by the kimberlite melt, and the conditions of the final equilibrium were temperatures of 1020 ± 40°C at 4.7 GPa. Thus, these graphite inclusions found in a diamond are the first evidence of crystallization of metastable graphite in a diamond stability field. They were formed in rocks of the upper mantle significantly below (≥20 km) the graphite-diamond equilibrium line.

  6. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts: Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Zou, Dongya; Zhang, Hongfu; Hu, Zhaochu; Santosh, M.

    2016-11-01

    The petrology, in situ analyses of major and trace elements as well as Sr isotopic compositions of spinel-facies lherzolite and harzburgite xenoliths from Weichang within the northern margin of the North China Craton (NCC) are reported for the first time in this study to evaluate the nature and evolution of the lithospheric mantle. These peridotite xenoliths display porphyroclastic texture and can be subdivided into two groups. Group I peridotites have slightly higher forsterite contents (Fo) (90.6-91.2) and 87Sr/86Sr ratios (0.7025-0.7043) in the cores than those in the rims (89.8-90.8; 0.7025-0.7038) of olivines and clinopyroxenes, respectively. The clinopyroxenes in these rocks exhibit uniform LREE-depleted patterns. These geochemical features suggest that the Group I peridotites were weakly metasomatized by recent asthenospheric melts. In contrast, Group II peridotites show sieve-texture and clear compositional zoning in minerals. The olivines and clinopyroxenes from these rocks have higher Fo (86.9-91.3) and 87Sr/86Sr ratios (0.7035-0.7049) in the cores than those in the rims (76.9-90.6; 0.7021-0.7046). The clinopyroxenes show three types of REE patterns: LREE-enriched, convex-upward and spoon-shaped. The LREE-enriched clinopyroxenes have the highest (La/Yb)N and lowest Ti/Eu and those with spoon-shaped REE patterns show an increase in LREE, Ba, Th and U contents from the cores to the rims. These features indicate that the Group II peridotites witnessed a high degree of refertilization by recent asthenosphere-derived silicate and carbonatite melts or their mixture. Compared with the data of the Mesozoic NCC lithospheric mantle, the heterogeneous and low 87Sr/86Sr ratios (0.7025-0.7049) in the LREE-depleted clinopyroxenes reveal that the ancient lithospheric mantle could have been modified by asthenospheric melts before the recent metasomatism event. We conclude that the lithospheric mantle beneath Weichang underwent multiple modifications through asthenosphere

  7. Subducted Farallon Plate Carries Water for Hydration Above the Flat Slab and Deep into the Mantle: Evidence from the Navajo Volcanic Field HP and UHP Xenolith Suite

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Helmstaedt, H. H.; Davis, D.

    2014-12-01

    Xenoliths in the Navajo Volcanic Field diatremes include HP-LT and UHP metamorphic eclogites (with lawsonite, phengite, coesite, zircon), exotic hydrous Cr-omphacitites (with guyanaite - CrOOH, carmichaelite, eskolaite, tawmawite, redledgeite) and hydrous and anhydrous peridotite, pyroxenite and lower crustal rocks. The eclogites (primarily dated at 30-80 Ma), omphacitites (30 Ma) and some of the (serpentinized) peridotites were derived from the subducted Farallon Plate (and possibly near-trench mantle wedge material accompanying the slab) from the flat slab by the diatremes at 30 Ma, approximately 700 km from the trench. Dehydration reactions in this assemblage (primarily prograde metamorphism of serpentinite yielding peridotite but also breakdown of guyanaite to eskolaite + water) provided water that hydrated overlying mantle materials (garnet and spinel peridotite to antigorite/chlorite serpentinite, garnet pyroxenite to chlorite-bearing eclogite, garnet and spinel pyroxenite to pargasite + chlorite). The accompanying volume expansion contributed to uplift of the Colorado Plateau, as originally suggested by Hess (1955). Phengite and possibly lawsonite remained stable and continued to carry water to greater depths. Guyanaite is stable to over 13.5 GPa and can transport water at least into the transition zone and thus may be a vehicle for hydrating ringwoodite in the transition zone (the present location of the Farallon slab). It is not known to how deep other hydrous minerals in these assemblages are stable (e.g., carmichaelite, redledgeite, tawmawite) but they, too, have potential for carrying water deep into the mantle.

  8. Small-scale lithospheric foundering beneath the Peruvian Altiplano: evidence from back arc potassic volcanic rocks and lower crustal and mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Chapman, A. D.; Ducea, M. N.

    2013-12-01

    Small-volume, Pliocene to Quaternary back arc high-K calc-alkaline to shoshonitic volcanic rocks and entrained xenoliths of southeastern Peru permit evaluation of models for the removal of crustal and mantle lithosphere beneath the northwestern Altiplano. Two distinct subsets of volcanic samples are apparent based on sample location, eruption age, geochemistry, and xenolith types. Suite 1 Quaternary mafic extrusives show: high K2O (1.3-8.4%), steep rare earth element patterns with La/Yb ranging from 17 to 161 and lacking Eu anomalies, and Sr-Nd isotope decoupling with 143Nd/144Nd from 0.5124 to 0.5129 at 87Sr/86Sr of 0.7095 to 0.7038. A second Plio-Quaternary suite shows small Eu anomalies, lower K2O (2.3-3.4%), a lower and narrower range of La/Yb (from 28 to 50), and Nd and Sr isotopic data follow an array from 143Nd/144Nd = 0.5125 to 0.5123 with corresponding range in 87Sr/86Sr from 0.7059 to 0.7072. Xenoliths from suite 2 lavas consist almost exclusively of clinopyroxene and plagioclase, whereas suite 1 inclusions are more diverse, containing clinopyroxenite (× garnet × plagioclase), garnet-bearing gabbro and diorite, aluminous garnet granulite gneiss; and rare spinel harzburgite. Thermobarometric, geochronologic, and Sr-Nd isotopic relations suggest a melting link between suite 1 xenoliths and volcanic rocks. Geochemical differences between back arc suites and frontal arc volcanic rocks strongly suggest that each was derived from a different source. Most notably, higher Nd isotopic values, younger depleted mantle model ages, and higher La/Yb in suite 1 vs. suite 2 lavas suggest an increased contribution of asthenospheric material and an increase in the depth to melting in the back arc region from Pliocene to Quaternary time. Variations in transition element ratios from the back arc to the frontal arc suggest a larger contribution of pyroxenitic material in the source of the former. Interactions between a downgoing lower crustal drip structure and upwelling

  9. Genesis of calc-alkali andesite magma in a hydrous mantle-crust boundary: Petrology of lherzolite xenoliths from the Ichinomegata crater, Oga peninsula, northeast Japan, part II

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiichi

    1986-09-01

    The Ichinomegata volcano, northwestern Honshu, Japan, consisting of three explosion craters, is characterized by the presence of contemporaneous basalt (high-alkali tholeiite) and calc-alkali andesite and a variety of mafic and ultramafic xenoliths of deep-seated origin. The population of the rock types decreases exponentially as a function of increasing depth of their origin. Based on the Ichinomegata xenolith mineralogy, it is inferred that the lower crust and uppermost mantle beneath this area is partially hydrated, consisting dominantly of hornblende gabbro and hornblende-bearing spinel lherzolite, respectively. Chemical analysis on spinel-pyroxene symplectite (so called garnet pseudomorph) in some Ichinomegata lherzolites suggests a calcic-plagioclase primary chemistry rather than garnet. In lherzolite xenoliths which have undergone a preheating event, primary partial melting textures are observed. The composition of the glass formed along the grain boundaries of the partially melted lherzolites are similar to those produced in hydrous melting experiments on natural peridotite at about 10 kbar between 1000 and 1100°C. The high-alkali tholeiite and calc-alkali andesite of the Ichinomegata volcano are considered to have been formed by the following two-stage melting processes; (1) derivation of the basalt magma from partial melting of a peridotite diapir in the upper mantle at 40-50 km depth; (2) derivation of the calc-alkali andesite magma at 25-30 km depth by wet partial melting of the rocks at the mantle/crust boundary caused by emplacement of hot basaltic magma body. It is proposed that similar wet partial melting takes place more extensively beneath major island-arc volcanoes in the world, because the lower crust and the upper mantle beneath them may be hydrated due to continuous water supply from the subducting plate, and the amount of heat energy liberated at the mantle/crust boundary would be much larger in major stratovolcanoes than in the

  10. Nd, Sr and Pb isotopic composition of metasomatised xenoliths from the backarc Patagonian Mantle Wedge: Insights into the origin of the uprising melts

    NASA Astrophysics Data System (ADS)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Hemond, Christope; Cipriani, Anna; Bertotto, Gustavo W.; Cingolani, Carlos; Vannucci, Riccardo

    2010-05-01

    Information about the geochemical composition of metasomatic melts migrating through the Patagonian mantle wedge is provided by the ultramafic xenoliths occurrence of Tres Lagos (TL; lat. 49.13°S, long. 71.18°W), Argentina. Such a locality is placed at the eastern border of the Meseta de la Muerte backarc basaltic plateau, where a post-plateau volcanic diatreme contains mantle xenoliths in both pyroclastites and lavas. Its latitude corresponds with the Northern limit of the Austral Volcanic Arc (AVZ), which is separated from the Southern Volcanic Zone (SVZ) by a gap in the arc magmatism ranging between 49° and 46°30' latitude S. The analysed xenoliths have been distinguished into two groups (Group 1 & 2). Group 1 consists of lherzolites and harzburgites, whereas Group 2 is formed by harzburgites. The texture of the Group 1 lherzolites varies from protogranular to granoblastic to porphyroblastic, whereas Group 1 harzburgites have always granoblastic texture. Group 2 harzburgites have granular texture, which may change to porphyroblastic owing to the random concentration of large olivine and orthopyroxene crystals. The clinopyroxenes (Cpx) from Group 1 lherzolites have PM-normalised REE patterns ranging from LREE-depleted (LaN/SmN= 0.24-0.37), to LREE-enriched (LaN/YbN up to 4.08) and spoon-shaped: the latter have minimum at Pr and Pr-Yb concentrations similar to those shown by the LREE-depleted Cpx. The Cpx from Group 1 harzburgites have lower REE concentrations with respect to the lherzolite ones and their REE patterns vary from HREE-enriched, steadily fractionated, (LaN/YbN = 0.21-0.35, Ybn ~ 1-2) to spoon-shaped (LaN/SmN = 2.81; SmN/YbN = 0.89; YbN ~ 3. The Cpx from the Group 2 harzburgites have convex-upward (LaN/SmN = 0.31; SmN/YbN = 1.50) to LREE-enriched (LaN/YbN = 2.94) patterns. The Sr, Nd and Pb isotopic compositions of the Group 1 clinopyroxenes form arrays spanning from DM to the field delimited by the TL basaltic lavas, pointing to EMI end

  11. Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths from the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Liang, Yan; Xu, Wenliang; Dygert, Nick

    2013-11-01

    Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt-peridotite interaction. To better understand the effect of melt composition on melt-peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite-lherzolite sequences with a thin orthopyroxenite layer at the melt-harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite-harzburgite-lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt-rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt-peridotite interaction took place in the ancient orogens with thickened lower crust.

  12. Peridotite xenoliths from the Shiribeshi Seamount, Japan Sea: insights into mantle processes in a back-arc basin

    NASA Astrophysics Data System (ADS)

    Ichiyama, Yuji; Morishita, Tomoaki; Tamura, Akihiro; Arai, Shoji

    2016-10-01

    Orthopyroxene-rich and orthopyroxene-poor peridotite xenoliths were sampled from quaternary basaltic to andesitic lava flows of the Shiribeshi seamount, Japan Sea. These xenoliths were affected by reactions with the host magma during transportation to the surface, which caused partial orthopyroxene dissolution and intergrowth with vermicular spinel. Chromian spinel and clinopyroxene major element compositions in the Shiribeshi peridotite are similar to those in abyssal peridotites. REE modeling indicates that the Opx-rich peridotite experienced decompression partial melting from the garnet to the spinel peridotite stability field. Rare earth element (REE) patterns of clinopyroxene in the Opx-rich peridotite show various degrees of enrichment in light REE, which resulted from melt percolation through the reaction with host magma. Comparison with peridotite xenoliths from two other localities (Seifu and Oshima-Ōshima) in the Japan Sea suggests that the Oshima-Ōshima peridotite record higher degree of partial melting than the Shiribeshi and Seifu peridotites. Oxygen fugacities calculated from chromian spinel in the Japan Sea peridotites are comparable to those of arc peridotites. The high degree of partial melting of the Oshima-Ōshima peridotite was possibly caused by the infiltration of a H2O-bearing flux released from the subducted slab. The Shiribeshi peridotite is interpreted as the residue formed after the extraction of depleted back-arc basalts during a later stage of the Japan Sea opening in the Middle Miocene, whereas the Oshima-Ōshima peridotite is residual after the extraction of enriched basalts during an earlier stage of the opening of the Japan Sea.

  13. Evolution of Mojavian mantle lithosphere influenced by Farallon plate subduction: Evidence from Hf and Nd isotopes in peridotite xenoliths from Dish Hill, CA

    NASA Astrophysics Data System (ADS)

    Armytage, Rosalind M. G.; Brandon, Alan D.; Andreasen, Rasmus; Lapen, Thomas J.

    2015-06-01

    A major issue in the assembly of continents is the role of subduction in building and reworking the continental mantle lithosphere. Spinel lherzolite xenoliths from Dish Hill, CA represent Mojavian sub-continental lithospheric mantle (SCLM) that existed along an off-craton continental edge during late Cretaceous Farallon plate subduction. The Dish Hill locale is well situated for recording any Farallon plate influence, be it as oceanic lithosphere accretion or for its role in providing metasomatic agents to the Mojavian SCLM. The 176Hf/177Hf and 143Nd/144Nd isotopic compositions of clinopyroxenes from these xenoliths are radiogenic with εHf from +12.9 to +134.4 and εNd from +2.2 to +26.1, indicative of ancient Proterozoic melt depletion. Four out of the sixteen samples lie on a 2.1 Ga reference line for melt extraction from primitive mantle for both 176Hf/177Hf and 143Nd/144Nd, confirming their position on the 2.1 Ga 187Os/188Os aluminachron from previous work on these peridotites (Armytage et al., 2014). A second Re-depletion age obtained from an 187Os/188Os aluminachron of 1.3 Ga is also observed in the 176Lu-176Hf and 147Sm-143Nd systematics. The 176Hf/177Hf-143Nd/144Nd data from Dish Hill do not provide strong evidence for the existence of a duplex of oceanic lithosphere and SCLM, or for these peridotites being sourced from modern asthenospheric mantle upwelling after lithospheric removal. However, subchondritic 176Lu/177Hf and 147Sm/144Nd ratios and trace element compositions in some of the peridotites point to the influence of metasomatic processes. In seven of the peridotites 176Hf/177Hf ratios are not complemented by similarly radiogenic 143Nd/144Nd ratios. Such decoupling, relative to the mantle array, indicates that the 176Hf/177Hf record in these peridotites is more robust to resetting by these local metasomatic processes than 143Nd/144Nd. The 87Sr/86Sr ratios measured in these samples fall into two distinct groups based on (Ce/Yb)PM, with the less

  14. Relationships between Noble Gases and Indicators of Geochemical Enrichment in Carbonatite Metasomatized Xenoliths from Samoa

    NASA Astrophysics Data System (ADS)

    Kukolich, S.; Jackson, M. G.; Kurz, M. D.

    2012-12-01

    Rejuvenated lavas from oceanic hotspots can host peridotite mantle xenoliths that provide windows into the composition and history of the upper mantle. Peridotite xenoliths hosted in Samoan rejuvenated lavas from the Island of Savaiíi exhibit evidence for variable enrichment by carbonatitic melts. Some xenoliths are trace element depleted, while others host incompatible element budgets on par with enriched alkali basalts (Hauri and Hart, 1994). The most incompatible element enriched xenoliths have 87Sr/86Sr ratios (up to 0.7128) that are the highest observed in the oceanic mantle. Poreda and Farley (1992) examined the noble gas isotopic compositions of a different suite of xenoliths from the same locality. They identified a narrow range of 3He/4He ratios (8.6 to 12.04 Ra), while the neon isotopic compositions spanned an enormous range, from the Loihi-Kileaua line (unradiogenic) to the MORB line. The xenoliths with the highest 3He/4He have neon isotopes that are most unradiogenic, while samples with lower 3He/4He have MORB-like neon isotopic compositions. It is not known which xenoliths in this suite have experienced carbonatite metasomatism, as lithophile element concentrations were not reported by Poreda and Farley (1992), and the noble gas signature associated with carbonatite metasomatism beneath Samoa is unknown. We report new helium measurements on olivine and orthopyroxene separates from 14 Savaii peridotite xenoliths that were previously characterized by Hauri and Hart (1994) and Hauri et al (1993). All samples are extremely fresh. Their 3He/4He ratios span 11.6 to 12.41 Ra, at the high end of the range reported by Poreda and Farley (1992). We also report whole-rock trace element abundances on these xenoliths (trace elements on individual clinopyroxenes from each sample were reported by Hauri and Hart and Hauri et al (1993)). The xenoliths that exhibit trace element evidence for enrichment from carbonatite fluids (low Nb/U, and high La/Nd and Nb/Ta) have

  15. Orthopyroxene-enrichment in the lherzolite-websterite xenolith suite from Paleogene alkali basalts of the Poiana Ruscă Mountains (Romania)

    NASA Astrophysics Data System (ADS)

    Nédli, Zsuzsanna; Szabó, Csaba; Dégi, Júlia

    2015-12-01

    In this paper we present the petrography and geochemistry of a recently collected lherzolite-websterite xenolith series and of clinopyroxene xenocrysts, hosted in Upper Cretaceous-Paleogene basanites of Poiana Ruscă (Romania), whose xenoliths show notable orthopyroxene-enrichment. In the series a slightly deformed porphyroclastic-equigranular textured series could represent the early mantle characteristics, and in many cases notable orthopyroxene growth and poikilitic texture formation was observed. The most abundant mantle lithology, Type A xenoliths have high Al and Na-contents but low mg# of the pyroxenes and low cr# of spinel suggesting a low degree (< 10 %) of mafic melt removal. They are also generally poor in overall REE-s (rare earth elements) and have flat REY (rare earth elements+ Y) patterns with slight LREE-depletion. The geochemistry of the Type A xenoliths and calculated melt composition in equilibrium with the xenolith clinopyroxenes suggests that the percolating melt causing the poikilitization can be linked to a mafic, Al-Na-rich, volatile-poor melt and show similarity with the Late Cretaceous-Paleogene (66-72 Ma) subduction-related andesitic magmatism of Poiana Ruscă. Type B xenoliths, with their slightly different chemistry, suggest that, after the ancient depletion, the mantle went through a slight metasomatic event. A subsequent passage of mafic melts in the mantle, with similar compositions to the older andesitic magmatism of Poiana Ruscă, is recorded in the pyroxenites (Fe-rich xenoliths), whereas the megacrysts seem to be cogenetic with the host basanite. The Poiana Ruscă xenoliths differ from the orthopyroxene-enriched mantle xenoliths described previously from the Carpathian-Pannonian Region and from the Dacia block.

  16. Xenoliths from Late Cretaceous seamounts in the Central Pacific: Cumulates of fractionating alkalic basalt magma chambers

    SciTech Connect

    Davis, A.S.; Friesen, W.B.; Pickthorn, L.; Pringle, M.S.; Clague, D.A. )

    1990-06-01

    Abundant xenoliths in alkalic basalt were recovered from two Late Cretaceous seamounts in the Central Pacific. One seamount, located in the Phoenix archipelago (lat 0{degree}22'5, long 176{degree}05'W), is dated by {sup 40}Ar/{sup 39}Ar techniques as 65 Ma. The other seamount, located in the northern Line Islands (lat 15{degree}39'N, long 170{degree}23'W), is dated as 70 Ma. Host lavas are basanite and differentiated alkalic basalt. Mafic xenolith assemblages consist of clinopyroxene with variable amounts of amphibole and mica. Intermediate assemblages have abundant feldspar in addition to the mafic minerals. Rare felsic xenoliths consist of two or more feldspars. Variable amounts of apatite, titanite, and magnetite are poikilitically enclosed in mafic phases, and minor feldspathoids are present in some xenoliths. Most xenoliths are holocrystalline with fine- to medium-grained, equigranular cumulus texture, but two xenoliths have a seriate, interlocking crystal framework in a small amount of glassy to microcrystalline matrix. Clinopyroxene in the holocrystalline samples is partially replaced by amphibole. In a few samples, extensive replacement of clinopyroxene by rounded amphibole grains results in a nearly granoblastic texture. Clinopyroxene compositions range from diopside to ferrosalite and are essentially Cr-free but generally have high Ti and Al contents. Cr-rich diopside and Al-augite, characteristic of mantle clinopyroxene, are absent. Feldspars include plagioclase, anorthoclase, and sanidine. Mineral compositions of xenoliths are similar to those of phenocrysts in the host lavas, indicating that these xenoliths are not metasomatized mantle material, but rather are cumulates from fractionating alkalic basalt magma chambers.

  17. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: evidence from peridotite xenoliths in the Datong basalts

    NASA Astrophysics Data System (ADS)

    Wang, C.; Liu, Y.; Min, N.; Zong, K.; Hu, Z.; Gao, S.

    2015-12-01

    In-situ major and trace elements and Sr isotopic compositions of peridotite xenoliths carried by the Datong Quaternary alkaline basalt were analyzed. These peridotite xenoliths were classified into three groups. The type 1 peridotites preserve depleted trace element and Sr isotopic signatures and record the lowest temperature (930 - 980 °C). Clinopyroxenes in these peridotites exhibit LREE-depleted REE patterns, and have the lowest 87Sr/86Sr ratios of 0.70243 - 0.70411. The types 2 and 3 peridotites are featured by enriched trace element and Sr isotopic signatures and record a higher temperature (1003 - 1032 °C). Clinopyroxenes in the type 2 peridotite have U-shaped REE patterns and relatively higher 87Sr/86Sr ratios of 0.70418 - 0.70465. Clinopyroxenes in the type 3 peridotite have concave-downward REE patterns and unusually high 87Sr/86Sr ratios of 0.70769 - 0.70929. Carbonatitic veinlets are found in the type 1 peridotites. They show steep LREE-enriched REE patterns with enrichments in LILE and depletions in HFSE, and have the highest 87Sr/86Sr ratios of 0.71147 - 0.71285. The types 2 and 3 peridotites suffered latter cryptic carbonatitic metasomatism, as indicated by the decreased Ti/Eu and increased Zr/Hf and CaO/Al2O3 ratios of clinopyroxenes. The carbonatitic veinlets have generally consistent trace element patterns and Sr isotopic ratios with the calculated melts being equilibrated with the clinopyroxenes in the type 3 peridotite, and may represent the metasoamtic agent solidified in the relatively cold and shallow mantle. The negative Eu anomalies (0.37 - 0.61) and high 87Sr/86Sr ratios of the calculated melts indicate a crustal sedimentary origin. It is speculated that the REE-rich and high-87Sr/86Sr metasoamtic agent should be carbonatitic melt derived from the carbonated pelite carried by the subducted PAOP, which could have contributed to the transformation of the lithospheric mantle beneath the NCC.

  18. The petrology of high pressure xenoliths and associated Cenozoic basalts from Northeastern Tasmania

    NASA Astrophysics Data System (ADS)

    Nasir, S. J.; Everard, J. L.; McClenaghan, M. P.; Bombardieri, D.; Worthing, M. A.

    2010-07-01

    Abundant mantle xenoliths are found in widespread undersaturated Cenozoic basaltic rocks in Northeastern Tasmania and comprise lavas, dykes, plugs and diatremes. The basanites and nephelinites, include primitive magmas (11-14 wt.% MgO) with OIB-like geochemical features. Trace element and Pb- and Sr-Nd isotope data suggest that they were generated by mixing of melts derived from low degree (< 5%) melting of both garnet- (˜ 90%) and spinel lherzolite (˜ 10%) facies mantle sources with HIMU and EMII characteristics. The associated xenolith suite consists mainly of spinel lherzolite and rare spinel pyroxenite with predominantly granoblastic textures. Calculated oxygen fugacities indicate equilibration of the xenoliths at 0.81 to 2.65 log units below the fayalite-magnetite-quartz (FMQ) buffer. Mantle xenolith equilibration temperatures range from 890-1050 ± 50 °C at weakly constrained pressures between 0.8 and 11.5 GPa. A hot xenolith's geotherm is indicated and attributed to tectonothermal events associated with the break-up of Gondwanaland and/or the opening of the Tasman Sea.

  19. Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.

    2004-01-01

    The highly siderophile elements (HSE: including Re, Au, Ir, Os, Ru, Pt, Pd, Rh) are strongly partitioned into metal relative to silicates. In the terrestrial planets these elements are concentrated in metallic cores. Earth s mantle has sufficiently high abundances of the HSE (0.008 times CI abundances) that it has been hypothesized approximately 0.1-0.5% of the mass of the Earth was added following the last major interaction between the core and mantle [e.g. 1]. The additional material added to the Earth and Moon has been termed a late veneer , and the process has often been termed late accretion [2]. The timing of the dominant late accretionary period of the Earth and Moon is still poorly known. The abundances of HSE in the lunar mantle could provide important constraints on when the late veneer was added. The material that ultimately became the silicate portion of the Moon was likely stripped of most of its HSE prior to and during coalescence of the Moon. Consequently the initial lunar mantle likely had very low concentrations of the HSE. Unlike Earth, the generation of permanent lunar crust by 4.4 Ga prevented subsequent additions of HSE to the lunar mantle via continued accretion. Thus, if a substantial portion of the late veneer was added after 4.4 Ga, the lunar mantle should have retained very low HSE concentrations. Conversely, if the late veneer was mostly added prior to 4.4 Ga, HSE abundances in the lunar mantle may be roughly similar to abundances in the terrestrial mantle.

  20. Lattice-preferred Orientation and Volatile Content of Olivine in Arc Mantle Lithosphere, Based on Xenoliths from the Sierra Nevada Batholith, California

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Hirth, G.; Saal, A. E.; Eiler, J. M.

    2014-12-01

    Peridotite xenoliths from the Mesozoic Sierra Nevada Batholith, California, USA record the origin and growth of arc mantle lithosphere. The peridotites vary from coarse-grained, clinopyroxene-poor spinel peridotite to fine-grained, recrystallized, clinopyroxene-rich garnet peridotite. Garnet coronas around spinel and garnet exsolution indicate cooling and/or increasing pressure. Previous thermobarometry (Chin et al., 2012) interpreted these peridotites as originally shallow (<3 GPa), melt-depleted residues that were subsequently refertilized by basaltic melt, transported to final pressures ~3 GPa, and cooled to 650 - 845 C. Here, we investigate deformation microstructures and volatile content of Sierran peridotites. Owing to the dependence of olivine lattice preferred orientation (LPO) on stress, temperature, and water content, we can gain new constraints on the relative chronology of deformation and introduction of volatiles, which may be related to the refertilization event. Olivine LPOs were determined using the electron backscatter diffraction (EBSD) technique with the HKL Channel 5 software. Measurements were done manually on a grain-by-grain basis along 3 mm-spacing profiles parallel to the long axis of each thin section. We analyzed three garnet peridotites and one mylonitic spinel peridotite. Of the garnet peridotites, one sample shows alignment of [001] parallel to lineation with [010] aligned normal to the foliation (B-type fabric), while the other samples display a girdle distribution of [100] and [001] parallel to lineation (possibly suggesting axial compression). The mylonitic spinel peridotite is also characterized by a B-type fabric. The B-type fabric is associated with low temperatures, high stress, and hydrous conditions, and could be the dominant fabric type in the cold part of the mantle wedge. The presence of B-type fabric in the Sierran peridotites is consistent with their equilibration at cold temperatures and high pressures, conditions that

  1. Germanium abundances in lunar basalts - Evidence of mantle metasomatism?

    NASA Technical Reports Server (NTRS)

    Dickinson, T.; Taylor, G. J.; Keil, K.; Bild, R. W.

    1989-01-01

    To fill in gaps in the present Ge database, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, and 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and thus are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and interelement variations, it does not appear that the observed Ge enrichments are due to silicate liquid immiscibility. KREEP basalt source regions may have been metasomatized, and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the moon suggest that the moon was never totally molten.

  2. Oxo-amphiboles in mantle xenoliths: evidence for H2O-rich melt interacting with the lithospheric mantle of Harrow Peaks (Northern Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Gentili, S.; Bonadiman, C.; Biagioni, C.; Comodi, P.; Coltorti, M.; Zucchini, A.; Ottolini, L.

    2015-12-01

    Amphiboles are the most widespread hydrous metasomatic phases in spinel-bearing mantle peridotites from Harrow Peaks (HP), Northern Victoria Land (Antarctica). They occur both in veinlets and disseminated in the peridotite matrix (preferentially associated with clinopyroxene and spinel grains). Four amphibole crystals were investigated by single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA), secondary ion mass spectrometry (SIMS) and micro-Mössbauer spectroscopy; these crystal-chemical data allow to constrain upper mantle conditions during growth of these amphiboles and the role of volatile circulation during metasomatic processes in the Antarctic region. The HP amphiboles have low Mg# values (69.3-84.1), high TiO2 (2.74-5.30 wt%) and FeOtot contents (3.40 to 6.90 wt%). The Fe3+/Fetot ratios are significantly high (0.53-0.66). The W-site is mainly occupied by O2- (0.984-1.187 apfu) plus OH (H2O: 0.70-1.01 wt%) and minor F (0.04-0.24 wt%) and Cl (0.03-0.08 wt%). Consequently, HP amphiboles are actually characterized by a significant oxo component. The aH2O values were calculated at 1.5 GPa by dehydration equilibrium equations written as H2O-buffering equilibria among end-member components of amphibole and coexisting peridotite phases. Three out of four HP amphibole-bearing peridotites have values of aH2O ranging from 0.122 to 0.335; whereas one sample has aH2O remarkably higher (0.782) approaching an ideal H2O basalt solubility. The HP fO2 values, determined by the olivine-spinel-orthopyroxene oxygeobarometer (ΔQFM = -1.77 : +0.01), are remarkably different from those calculated on the basis of the amphibole dehydration equilibrium and the application of the dissociation reaction (ΔQFM = -2.60 : +6.8). The high aH2O and the extremely high fO2 values, determined by the oxy-amphibole equilibrium with respect to the redox conditions recorded by the co-existing anhydrous minerals (close to QFM buffer), revealed that: i) the amphibole

  3. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    SciTech Connect

    Dickinson, T.; Taylor, G.J.; Keil, T.K.; Bild, R.W.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear that the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.

  4. Insight into the upper mantle beneath an active extensional zone: the spinel-peridotite xenoliths from San Quintin (Baja California, Mexico)

    NASA Astrophysics Data System (ADS)

    Cabanes, N.; Mercier, J.-C. C.

    1988-11-01

    Many of the peridotite xenoliths included in the San Quintin (Baja California Norte, Mexico) quaternary alkali-basalts have undergone a very intense shear deformation (deviatoric stresses up to 0.1 GPa), hence a first-order classification into coarse-grained lherzolites and deformed peridotites (porphyroclastic and mosaic textures) has been applied. All of these rocks show a very limited compositional variability in the Mg/(Mg+Fe2+) ratios (olivine: 0.894 0.905±0.005; orthopyroxene: 0.899 0.9105±0.005), and the observed trends in the Cr/(Cr+Al) spinel ratios (from 0.1 to 0.6) can be interpreted as resulting from gradual partial melting followed by homogenization of the bulk phases. A later and less accentuated melting event is also evidenced by internal core-rim variations in the spinels from a few samples and ascribed to the thermal effect of the host lava. Simultaneous application of exchange geothermometers which give the latest equilibrium temperatures (i.e. at the time of eruption: Fe-Mg exchange between olivine and spinel) and of pyroxene transfer thermobarometers yields two distinct behaviours: the porphyroclastic and mosaic peridotites record an event of deformation and recrystallization and were equilibrated at 800° 950° C and P≲-1 GPa at the time of eruption, but have also retained evidence of higher temperatures (1000° 1050° C) and pressures; the coarsegrained lherzolites, which yield conditions of 1000° 1050° C and P<-2 GPa at the time of eruption, were originally equilibrated at higher temperature and pressure conditions and were subsequently re-equilibrated to 1000° 1050° C by solid-state bulk diffusion, without exsolution. Clinopyroxenite veins provide evidence of magma injection into the host-peridotite, before deformation but after the major melting event. To explain the simultaneous sampling of both groups of peridotites by the San Quintin alkali basalts, we suggest that the ascending magma reached the critical limit for hydraulic

  5. Mantle metasomatism

    SciTech Connect

    Menzies, M.; Hawkesworth, C.

    1986-01-01

    The concept of metasomatism and its role in the geochemical enrichment and depletion processes in upper mantle rocks remains contentious. This volume makes a comprehensive contribution to the study of metasomatic and enrichment processes: origin and importance in determining trace element and isotopic heterogeneity in the lithospheric mantle. It begins with a theoretical thermodynamic and experimental justification for metasomatism and proceeds to present evidence for this process from the study of mantle xenoliths. Finally the importance of metasomatism in relation to basaltic volcanism is assessed. The contents are as follows: Dynamics of Translithospheric Migration of Metasomatic Fluid and Alkaline Magma. Solubility of Major and Trace Elements in Mantle Metasomatic Fluids: Experimental Constraints. Mineralogic and Geochemical Evidence for Differing Styles of Metasomatism in Spinel Lherzolite Xenoliths: Enriched Mantle Source Regions of Basalts. Characterization of Mantle Metasomatic Fluids in Spinel Lherzolites and Alkali Clinophyroyxenites from the West Eifel and South-West Uganda. Metasomatised Harzburgites in Kimberlite and Alkaline Magmas: Enriched Resites and ''Flushed'' Lherzolites. Metasomatic and Enrichment Phenomena in Garnet-Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite Pipe Lesotho. Evidence for Mantle Metasomatism in Periodite Nodules from the Kimberley Pipes South Africa. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effective of Asthenosphere-Lithosphere Interaction. Isotope Variations in Recent Volcanics: A Trace Element Perspective. Source Regions of Mid-Ocean Ridge Basalts: Evidence for Enrichment Processes. The Mantle Source for the Hawaiian Islands: Constraints from the Lavas and Ultramafic Inclusions.

  6. The first allanite-bearing eclogite xenolith in kimberlite

    NASA Astrophysics Data System (ADS)

    Trojman-Nichols, S.; Heaman, L.

    2015-12-01

    Here we report the first allanite-bearing mantle eclogite xenolith, entrained in the 173 Ma Jericho kimberlite pipe, located in the Slave craton, northwestern Canada. This eclogite is unique among the other Jericho eclogites by an extreme LREE enrichment in all phases, and garnet alteration rims that are more calcic than the garnet cores. Allanite is an abundant accessory phase, present as dull orange, subhedral crystals. Other minerals in the paragenesis are garnet, clinopyroxene, apatite and sulfides; two compositionally and texturally distinct generations of phlogopite constitute a secondary paragenesis where allanite is no longer stable. Allanite in this sample is La-, Ce- and Th- rich, with concentrations at the weight % level, while Y is only present at the relatively low concentration of ~100 ppm. Electron backscatter imaging reveals complex zonation within the allanite crystals that is off-centre, non-symmetric, and patchy. It is often asserted that eclogite xenoliths represent subducted oceanic lithosphere, despite significant differences in the composition and mineralogy between mantle-derived eclogite xenoliths and eclogite massif material. Both types of eclogite occurrences can contain quartz/coesite; massif eclogites often have small, sparse allanite inclusions, but allanite has never been reported in eclogite xenoliths in kimberlite. Allanite in massif eclogite is thought to form during subduction by the break-down of lawsonite and the incorporation of LREE into zoisite. Lawsonite breaks down into grossular and H20 at high pressures, which may explain the anomalous high-Ca rims measured in some garnets in this sample. This allanite-bearing eclogite may provide an unprecedented window for exploring a crucial stage of eclogite metamorphism and fluid mobilization in subduction zones. In addition, the U-Pb systematics currently under investigation may constrain the age of eclogitization.

  7. Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm

    NASA Astrophysics Data System (ADS)

    Roden, M.; Mosely, J.; Norris, J.

    2015-12-01

    Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.

  8. Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton

    NASA Astrophysics Data System (ADS)

    Menzies, Andrew; Westerlund, Kalle; Grütter, Herman; Gurney, John; Carlson, Jon; Fung, Agnes; Nowicki, Tom

    2004-09-01

    The composition, structure and thermal state of the lithosphere beneath the Slave craton have been studied by analysing over 300 peridotitic mantle xenoliths or multiphase xenocrysts entrained within kimberlites in the Lac de Gras area. These xenoliths are derived from seven kimberlites located on the Ekati Diamond Mine™ property and define a detailed stratigraphic profile through the central Slave lithosphere from less than 120 km down to ˜200 km. Two dominant peridotite types are present, namely garnet-bearing harzburgite and lherzolite with rare occurrences of chromite-facies peridotite, websterite and wehrlite. The pressures and temperatures ( P- T's) defined by the entire data-set range from 28 to 62 kbar and 650 to 1250 °C, respectively, and approximately intersect the diamond stability field at 900 °C and 42 kbar. There is no apparent change in the geotherm with depth that is discernable beyond the resolution of the various thermobarometers. The peridotites can be divided into two compositional zones—a shallow layer dominated by garnet harzburgite that straddles the diamond-graphite boundary and a deeper layer that is strongly dominated by garnet lherzolite. Compositionally, the harzburgites (and to a lesser extent, the shallow lherzolites) are ultra-depleted relative to the more fertile deeper layer, irrespective of whether they reside within the graphite or diamond stability field. This ultra-depleted layer beneath Ekati continues to ˜150 km.

  9. Neodymium Isotope Variability at the Grain Scale in the Sub-Continental Lithospheric Mantle: NdO+ Analyses of Individual Clinopyroxene Grains (<5 ng Nd aliquots) from a Kilbourne Hole Harzburgitic Xenolith.

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Honn, D.; Baxter, E. F.; Warren, J. M.; Hammond, S.; Walshaw, R.

    2014-12-01

    It is evident that at scales of 102 to 10-2 m there is significant isotopic heterogeneity in the mantle that is not always reflected in primitive melts. The "Os isotopic gap"[1] is one such manifestation of this phenomenon but a similar offset exists between the Nd isotope composition of abyssal peridotites and the mid-ocean ridge basalts that they are inferred to have produced[2]. This study takes advantage of recent advances in the analysis of Nd isotopes as NdO+[3,4] which permit the precise analysis of single clinopyroxene grains (<1 mg mass; <5 ng Nd) from a continental harzburgitic xenolith from Kilbourne Hole, NM. Analyses of aggregates of clinopyroxenes from 5 Kilbourne Hole xenoliths reveal a wide range of 143Nd/144Nd (0.513011 ± 28 to 0.513615 ±19)[5]. This study demonstrates significant grain-to-grain isotopic heterogeneity at a scale of 10-2 m (143Nd/144Nd = 0.513089 ± 78 to 0.513364 ± 74) which (i) is equivalent to the range of values for Pacific MORB[6] and (ii) is more primitive than local basalts with an asthenospheric signature[7]. This suggests that small-scale refractory domains exist within the mantle which are either not sampled during partial melting or whose presence is obscured by the melting of higher volumes of more fusible material. Ref:[1]Alard et al. (2005) Nature 436, 1005-1008 [2]Warren et al. (2009) JGR 114, B12203, doi:10.1029/2008JB006186 [3]Harvey and Baxter (2009) Chem. Geol. 258, 251-257 [4]Honn et al. (2013) AGU Fall abstr. V33-2722 [5]Harvey et al. (2012) J. Petrol. 53, 1709-1742 [6]Hofmann (1997) Nature 385, 219-229 [7]Thompson et al. (2005) J. Petrol. 46, 1603-1643

  10. Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: Textural and geochemical evidence for peridotite-melt reactions

    NASA Astrophysics Data System (ADS)

    Miller, C.; Zanetti, A.; Thöni, M.; Konzett, J.; Klötzli, U.

    2012-01-01

    Anhydrous spinel peridotite xenoliths in Quaternary nepheline-basanite and melilite- or sodalite-bearing lavas of the Wau-en-Namus volcano in S Libya range from lherzolites to harzburgites recording melt extraction in a shallow setting (≤ 2 GPa). Primary clinopyroxenes have distinct trace element characteristics documenting LILE (large ion lithophile element) depletion or enrichment events predating the formation of glass pockets and veins in the xenoliths. These glasses are aluminous and alkali-rich, range in composition from ultrabasic to silicic (43-67 wt.% SiO 2) and may contain empty vugs and micro-phenocrysts of olivine, clinopyroxene, spinel, plagioclase, sodalite, apatite that are similar in composition to phenocrysts in the host lavas. Reactions of infiltrating melt and xenolith minerals are documented by diffuse Fe-Ca-rich rims of olivine in contact with glass, and by spongy-textured reaction domains caused by incongruent dissolution of primary pyroxenes and spinel. Some glasses have trace element characteristics similar to that of the host Ne-basanite, suggesting they were derived from the same source during entrainment and transport to the surface. Incompatible element enrichment and Sr-Nd isotopic compositions of the analyzed host lava are similar to HIMU (high μ; μ = 238Pb/ 204Pb)-type magmas, but the Pb isotopic composition is less radiogenic compared to other intra-plate Neogene magmatic rocks from N Africa.

  11. Sr-Nd isotope characterization and U-Pb dating of mantle xenoliths from the Betic area (Spain): insights on the multi-stage evolution of the south Iberian lithosphere

    NASA Astrophysics Data System (ADS)

    Bianchini, Gianluca; Beccaluva, Luigi; Siena, Franca; Tiepolo, Massimo

    2010-05-01

    Mantle xenoliths from Tallante (Betic Cordillera, Spain) include samples recording a peculiar distinct style of metasomatism that induces orthopyroxene (opx), plagioclase (pl), phlogopite (ph) and amphibole (amph) crystallisation, forming mantle domains characterized by "hydrous" opx-rich peridotites, locally crosscut by felsic veinlets containing pl and opx + quartz + ph + amph, i.e. ph/amph-bearing anorthosites, diorites and gabbronorites (Beccaluva et al. 2004; Shimizu et al. (2004). This indicates that the causative agents were hydrous silica-oversaturated melts rich in alkalis, in turn related to the recycle - via subduction - of continental crust components within the mantle. To find new evidences we sampled and carefully sliced ca 250 xenoliths finding 10 samples with clear evidences of felsic (gabbroic) veins/lenses cross-cutting the peridotite matrix. These are extremely variable in size, from millimetric up to centimetric. In general, we observed that thinner lenses (possibly representing apophyses of bigger veins) tend to have more complex mineral parageneses, also including traces apatite, zircon, Ti (Nb) oxide (rutile), and crystals mainly made by thorium +cerium, lanthanum, phosphorous (huttonite/monazite mineral groups). Sr-Nd analyses are in progress at the IGG-CNR of Pisa on a) plagioclase carefully separated from distinct felsic veins and b) cpx separated from the surrounding peridotite matrix. The new data will be presented at the forthcoming EGU conference, in order to constrain a) the nature of the uprising magmas b) the magnitude of the related metasomatic aureola that surrounds the veins. In situ U-Pb datings have been performed at the IGG-CNR of Pavia on zircons from two different samples by laser-ablation microprobe (GeoLas200Q-Microlas) coupled to a magnetic sector HR-ICPMS (Element from ThermoFinnigan), suggesting that the age of the veining event ranges between 4.4 and 2.2 Ma, thus implying a clear relation with the Tertiary subduction

  12. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  13. Sulfides in diamonds and in xenoliths from kimberlite pipes of Yakutiia

    NASA Astrophysics Data System (ADS)

    Bulanova, Galina P.; Spetsius, Zdislav V.; Leskova, Nelli V.

    The characteristics of sulfides from diamonds and xenoliths are compared using literature data on the mineralogy of sulfides in diamonds and in deep-seated xenoliths from kimberlite pipes. Results are presented on the Fe-Ni-Cu-Co-S mineral systems of mantle associations, sulfide inclusions in diamonds and megacrystals of kimberlite rocks, and minerals of the Fe-Ni-Cu-Co-S system in mantle xenoliths from kimberlite pipes. Particular consideration is given to the nature of sulfide mineralization in mantle xenoliths and diamonds.

  14. Mantle metasomatism: the REE story.

    USGS Publications Warehouse

    Wilshire, H.G.

    1984-01-01

    Refractory rocks with light REE/heavy REE ratios > chondrites are common as xenoliths in basalts and kimberlites and are found in some oceanic peridotite massifs. Structural and major-element geochemical evidence from these rocks suggest that the metasomatic effects resulting in addition of light REE are local and are related to emplacement of partial melts. The melts are represented by dykes of pyroxenites, hydrous minerals and gabbro that were emplaced in mantle peridotites of various origins. Metasomatic interaction between dykes and peridotite wall rock results in light REE enrichment in peridotite and depletion in dykes relative to the original liquid. Differentiation of the intrusions and separation of residual liquids may further enhance the REE exchange and extend the volume of metasomatized peridotite. Differences in the relative abundances of altered peridotite in xenoliths and massifs are seen as a sampling problem rather than a difference in process.-L.diH.

  15. Xenoliths from the sub-volcanic lithosphere of Mt Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Gruender, Kerstin; Stewart, Robert B.; Foley, Stephen

    2010-02-01

    Mount Taranaki is located 140 km west of the Taupo Volcanic Zone and represents the most westerly expression of subduction-related volcanism on the North Island of New Zealand. Taranaki is a predominantly high-K arc volcano but compositions range from basaltic andesite to andesite with minor dacite and basalt. The sub-volcanic basement under Taranaki is thought to comprise calc-alkaline plutonic and metamorphic rocks of the Median Batholith, overlain by a sequence of Cretaceous and Tertiary sediments. Taranaki lavas contain abundant xenoliths that represent samples of the upper to lower crust beneath the volcano. The xenolith suite has been initially organised into six groups based on petrography, geochemistry and inferred genetic relationships: supracrustal sedimentary rocks (1), mafic hornfels (2), garnet gneiss (3), granite and granodiorite (4), finely banded amphibolitic gneiss (5) and gabbros and ultramafic rocks (6). Groups 1, 3 and 4 are derived from the Median Batholith basement and Cretaceous-Tertiary sediments of the Taranaki Basin while Groups 2, 5 and some fine grained gabbros from Group 6 could either be derived from the Median Batholith or be cognate xenoliths. Group 6 gabbros and ultramafic rocks are dominated by clinopyroxene, amphibole and plagioclase and are predominantly cumulate in origin. The Egmont xenoliths can also be classified into the Type I and Type II xenoliths defined by Frey and Prinz (1978). Type I dunite and wehrlite xenoliths are only present in basaltic andesite host rocks and are sourced from depleted upper mantle whereas Type II xenoliths predominate in the more siliceous andesites and are sourced from the lower crust. The separate source depths for the two rock types can be explained by the "hot zone" model where the andesites have much greater interaction with the lower crust than the basaltic andesites. Some xenoliths contain glass of rhyolitic to trachyitic compositions with up to 6% K 2O that represent partial melts of the

  16. The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages - Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Konzett, Jürgen; Krenn, Kurt; Rubatto, Daniela; Hauzenberger, Christoph; Stalder, Roland

    2014-12-01

    The composition of texturally primary fluid inclusions and their host phases clinopyroxene, K-richterite, and zircon were investigated in two MARID-type (mica-amphibole-rutile-ilmenite-diopside) mantle xenoliths sampled by the Kimberley cluster of Cretaceous kimberlites erupted in the central Kaapvaal Craton, South Africa. P-T conditions of crystallization for the MARID assemblages of 4.2 GPa and 960 °C were estimated based on Ca-in-opx thermometry and the assumption of a 40 mW/m2 geotherm applied to two orthopyroxene-bearing MARIDs collected from the same locality. Cooling/heating stage measurements and Raman spectroscopy indicate a fluid system dominated by H2O-NaCl-MgCl2 with variable total salinities in the range ⩽6.4-32.4 mass% and minor amounts of MgCl2, the latter inferred from the crystallization of MgCl2 × 12H2O during cooling of the inclusions. In addition to liquid and vapour, enstatite, baddeleyite, barite, calcite and a K-Ba-Fe-Cr-titanate were identified as solid phases in opened fluid inclusions, indicating high LIL-(HFS) element concentrations in the saline hydrous fluids prior to solid phase precipitation. The Cl contents of apatite (⩽0.35 wt.%), phlogopite (⩽0.09 wt.%) and K-richterite (⩽0.025 wt.%) follow the enrichment pattern Clap ≫ Clphl > ClKr which is typical for upper mantle rocks. Fluid inclusion-bearing clinopyroxenes show very low H2O contents of ∼45 μg/g which is consistent with a reduced aH2O of the fluids due to the presence of NaCl-MgCl2-SiO2-LILE combined with high fO2 and very low Al3+ contents of the clinopyoxenes. The zircons show a complex compositional zoning with variable and positively correlated Y (⩽1260 μg/g), P (⩽1870 μg/g) and Sc (⩽1373 μg/g) contents, indicating a pretulite-type substitution Si4+ + Zr4+ = P5+ + (Sc, Y, REE)3+. The Sc contents of the zircons are amongst the highest Sc concentrations reported so far for upper mantle silicates. Oxygen isotope analyses of selected zircons yields δ18O

  17. Petrology of ultramafic xenoliths in Cenozoic alkaline rocks of northern Madagascar (Nosy Be Archipelago)

    NASA Astrophysics Data System (ADS)

    Rocco, Ivana; Lustrino, Michele; Zanetti, Alberto; Morra, Vincenzo; Melluso, Leone

    2013-01-01

    Late Miocene basanites of Nosy Be and Nosy Sakatia islands (Nosy Be Archipelago, northern Madagascar) carry spinel-facies anhydrous ultramafic xenoliths (lherzolites, harzburgites and wehrlites). Geothermobarometric estimates indicate that these xenoliths derive from shallow mantle depths of 35-40 km, with those from Nosy Be island showing equilibration T (averages in the range of 945-985 °C) lower than the Nosy Sakatia analogues (averages ranging from 1010 to 1110 °C). One Nosy Sakatia mantle xenolith exhibits relatively fertile lherzolite composition, with trace and major element mineral chemistry consistent with a residual character after low degrees (1-2%) of mafic melt extraction. We interpret this composition as that resembling a depleted mantle (DM)-like lithospheric composition before metasomatic overprints. The other lherzolites and harzburgites display petrochemical characters consistent with variable extent of partial melting (up to 18%), associated with pronounced metasomatic overprints caused by migrating melts, as highlighted by enrichments in highly incompatible trace elements (e.g. light rare earth elements, LREE and Sr), together with the abundant occurrence of wehrlitic lithologies. The variability of petrochemical features points to different styles of metasomatism and metasomatic agents. The estimated composition of the parental melts of wehrlites matches that of host basanites. The combination of this evidence with the petrographic features, characterized by coarse-granular to porphyroclastic textures and by the presence of olivine without kink-banding, suggests that wehrlites are veins or pockets of high pressure cumulates within the mantle peridotite. The same melts also metasomatized via porous-flow percolation some lherzolites and harzburgites. Distinctly, a group of lherzolites and harzburgites was metasomatized by a different alkaline melt having markedly lower incompatible trace element contents. Late infiltration of metasomatic fluids

  18. Simultaneous Quantification of Temperature, Pyroxenite Abundance, and Upwelling Rates in the Iceland Mantle Source

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2014-12-01

    The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity

  19. Gold in the mantle: The role of pyroxenites

    NASA Astrophysics Data System (ADS)

    Saunders, J. Edward; Pearson, Norman J.; O'Reilly, Suzanne Y.; Griffin, William L.

    2016-02-01

    Mantle pyroxenites are the crystallised products of mafic silicate melts, which are commonly invoked as metasomatic agents in the upper mantle. This study has analysed the trace elements of sulfides, with a specific focus on gold, hosted in a suite of mantle pyroxenite xenoliths from Qilin in the Cathaysia Block, southeast China. These are compared with sulfides hosted in peridotite xenoliths from the same locality to assess the difference in the abundances of Au, and a suite of siderophile and chalcophile elements between the sulfides hosted in mobile melts in the upper mantle and their host "wall" rocks. Both the peridotite- and pyroxenite-hosted sulfides show a wide spectrum of trace element contents. The pyroxenite-hosted sulfides typically have PGE and Au concentrations that are an order of magnitude or more below those measured in the peridotite-hosted sulfides (lherzolite-hosted sulfides: total PGE = 95 ± 118 ppm, Au = 1.4 ± 2.6 ppm; pyroxenite-hosted sulfides: total PGE = 0.25 ± 0.70 ppm, Au = 0.14 ± 0.39 ppm). Furthermore, the Ir group PGE (Ir, Os and Ru) are present in lower concentrations than the Pd-group PGE (Pd, Pt and Rh). This may lead to a distinct signature if the melts from which these sulfides crystallise interact with lherzolitic sulfides. The overall low abundances of these elements within the pyroxenites suggests that the parent melts are an inefficient medium for enriching any of these elements in the upper mantle.

  20. A Disequilibrium Melting Spectrum: Partially Melted Crustal Xenoliths from the Wudalianchi Volcanic Field, NE China.

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; McGee, L. E.

    2015-12-01

    Disequilibrium melting has been established as a common process occurring during crustal anatexis and thus demonstrates that crustal assimilation by ascending mantle-derived magmas is likley not a closed system. Observations of extreme compositional heterogeneity within partial melts derived from crustal xenoliths have been documented in several recent examples, however, the retention or transfer of elements to and from residues and glasses, and their relative contributions to potential crustal contaminants warrants further investigation. Sampled lavas from the Huoshaoshan volcano in the Holocene Wudalianchi volcanic field of Northeast China contain crustal xenoliths which preserve a spectrum of partial melting both petrographically and geochemically, thus providing an excellent, natural example of crustal anatexis. Correlations exist between the volume of silicic glass preserved within the xenoliths and bulk rock SiO2 (70-83 wt%), Al2O3 (16-8 wt%), glass 87Sr/86Sr (0.715-0.908), abundances of elements common in feldspars and micas (Sr, Ba, Rb) and elements common in accessory minerals (Y, Zr, Nb). These correlations are likely associated with the consumption of feldspars and micas and the varying retention of accessory phases during partial melting. The xenoliths which contain the greater volumes of silicic glass and residual quartz (interpreted as being the most melted) were found within pahoehoe lava, whilst the least melted xenoliths were found within scoria of the summit cone of Huoshaoshan; thus it is interpreted that the extent of melting is linked to the immersion time in the lava. Small-scale (mm) mingling and transfer of material from the enclosing lava to the xenolith is observed, however, modelling of potential contaminant compositions is inconsistent with crustal contamination during lava petrogenesis. It is inferred that crustal contamination in sampled lavas is localized within the open magmatic system and most likely occurs at the contact zone

  1. X-Ray Tomography of the Most Diamondiferous Peridotite: A Unique Xenolith from Udachnaya, Siberia

    NASA Astrophysics Data System (ADS)

    Taylor, L. A.; Howarth, G. H.; Logvinova, A. M.; Reustsy, V.; Fedorova, E.; Ketcham, R. A.; Wirth, R.; Sobolev, N. V.

    2014-12-01

    The Udachnaya kimberlite pipe is dominated by ultramafic xenoliths; however, it is the diamondiferous eclogites that are most recovered, with precious few diamondiferous peridotites. A truly unique diamondiferous garnet-peridotite xenolith was recovered, consisting of equal amounts of enstatite (Mg# 92.7) and lherzolitic garnet (Mg# 83.8), with lesser unaltered olivine (Mg# 92-95). High-Resolution X-ray Computerized Tomography (HRXCT) of this strange xenolith produced numerous 2-D and 3-D images, revealing detailed relationship between the diamonds and the host minerals. The modal abundances of the minerals are: diamonds (9.5 vol%); enstatite (38 vol%); pyrope (35 vol%); sulfides (4 vol%; pyrrhotite, pentlandite, and chalcopyrite); and the remainder being mainly alteration products, consisting of "spinach" - probably serpentine - mostly in the interior of the peridotite, along with the majority of the diamonds. This 10.5 g peridotite contains >30,000 colorless, all euhedral, octahedral micro-diamonds, with sizes of 100 to 700 mm, many occurring in clusters. This is the absolute highest-yield of diamonds ever in a mantle xenolith - 106 cts/tonne - but tiny Ds. The δ13C isotopic composition in these crystals has a value of -22 ‰, not typical for diamonds of ultramafic paragenesis, which are usually in the narrow range in δ13C (-2 to -8 ‰), characteristic of the mantle (Cartigny, Elements, 2005). Diamonds with such light-isotopic carbon, as low as -44 ‰ typical for eclogitic diamonds, are considered as indicative of subduction of oceanic crust (Sobolev & Sobolev, Russ. G & G, 1980). The majority of diamonds are Type IIa; others are Type IaB. Nitrogen impurity is of the B form indicating a high-aggregation state, considered evidence for long mantle residence times at high temperatures. In some Ds, nano-size inclusions were discovered using TEM techniques and composed of Mg-Al silicate-rich phases, a Ca-carbonate phase, graphite, and fluid. These micro

  2. Trace element distribution in silicate phases from the cumulate mafic xenoliths of Puy Beaunit (French Massif Central): A LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Demaiffe, D.; Berger, J.; Femenias, O.; Coussaert, N.

    2003-04-01

    A large diversity of xenoliths is present in the scoria cones of the quaternary Puy Beaunit (French Massif Central). Mafic xenoliths are abundant, they are mainly gabbronorites with minor pyroxenites and anorthositic gabbros. It has been shown recently that they derived from a deep layered complex emplaced at the crust-mantle boundary during Late Permian (257+/- 6Ma). These rocks still partly show magmatic structures. However, sub-solidus recrystallisation and pyrometamorphic overprinting (while the xenoliths were taken up by the lava) have partly blurred the magmatic primary textures. The xenoliths now have polygonal and coronitic textures, so intercumulus phases cannot be easily identified. The abundance of orthopyroxene (generally missing in alkaline series), the low content of REE and trace elements and the nearly flat spidergram profiles suggest that these xenoliths are of subalkaline affinity. They commonly show mm- to cm- scale layering indicative of a cumulate origin. Positive (in whole rock plagioclase-rich gabbros) and negative (in pyroxene-rich gabbros) Eu anomalies also argue for a cumulate origin. The trace element contents (REE, Zr, Hf, Rb, Sr, Nb, Ta, Ba) of the main silicate phases (plagioclase, orthopyroxene, clinopyroxene and the very fine-grained coronites) have been obtained by LA-ICP-MS. Two processes control the REE content of these mafic xenoliths: 1) the degree of differentiation, which is indicated by the Mg# of the cumulus orthopyroxene; 2) the proportion of trapped interstitial liquid which is indicated by the content of highly incompatible elements (U, Th, Zr and Rb) in whole rock analyses. Plagioclases and orthopyroxenes have relatively low REE contents compared to clinopyroxene and coronitic association suggesting that they are the cumulus phases. High REE and trace element contents of clinopyroxenes and of the very fine-grained coronites point to an intercumulus origin. Moreover, in situ REE patterns show that the very fine

  3. Lithology and evolution of the crust-mantle boundary region in the southwestern Basin and Range province

    SciTech Connect

    Wilshire, H.G. )

    1990-01-10

    Seismic transects in this area show a strongly reflective Moho of generally low relief, which, in the area of modern transects, consists of a thin zone (< 2 km thick) of short reflectors. The upper mantle is transparent and has a P{sub n} of 7.8-8.0 km/s similar to much of the western US. A lower crustal zone, 2-13 km thick, has variable internal reflectivity and a relatively low velocity of 6.6-6.8 km/s. Upper mantle peridotite xenoliths show both ductile and brittle deformational features and have structures and composition affected by magmatic intrusion; intrusions form complex dike systems and extensive zones of grain boundary infiltration in peridotite xenoliths. Whereas melt infiltration preceded and followed ductile deformation, brittle deformation, represented by closely spaced joint systems and faults, followed ductile deformation and is related to the youngest magmatic episodes. Lower crustal xenoliths are dominantly igneous-textured pyroxenites and mafic to intermediate gabbros identical to the dikes in peridotite xenoliths. The crustal xenoliths also commonly are jointed, and in addition many show partial melting and have abundant cavities that probably were filled with CO{sub 2}-rich fluids. These rocks are interpreted as products of underplated magmas that were fed through the mantle dike systems and may represent the lowest crustal unit identified in the seismic records. The mafic compositions and high densities of the crustal xenoliths indicate that the low velocity of the lower crust mat be caused in part by fracture systems, partial melts, and high temperatures. The preferred model for the evolution of the lower lithosphere is one in which extension affects the upper mantle as well as the crust and is overlapped in time by multiple magmatic episodes. The earliest magmatic events preceded extension, and later events accompanied and followed extension.

  4. Pb isotopes in Ascension Island rocks: oceanic origin for the gabbroic to granitic plutonic xenoliths

    NASA Astrophysics Data System (ADS)

    Weis, D.

    1983-02-01

    The Pb isotopic compositions and U and Pb concentrations of the lava series (alkali basalt to comendite) and of their plutonic xenoliths (gabbro to alkaline granite) of Ascension Island are reported. The data are used to evaluate the source of the xenoliths which formed two differentiation suites: the acidic and intermediate xenoliths together with most of the lavas on the one hand, and the gabbroic xenoliths and a basaltic tuff on the other hand. The Pb isotopic compositions imply a mantle origin for the source magmas of the xenoliths and confirm the possibility of generating granitic rocks in an oceanic environment by fractional crystallization of a mantle-derived magma whose geochemical and isotopic characteristics are comparable to the source magmas of oceanic island basalts.

  5. Insights into the deep continental lithosphere from xenolith studies

    NASA Astrophysics Data System (ADS)

    Lee, C. A.; Rudnick, R. L.

    2006-12-01

    Studies of xenoliths provide a depth dimension to surface geology studies, and, in favorable circumstances, also provide the fourth dimension of time. In particular, geochemical studies of xenoliths provide insights into the processes that formed and modified the deep lithosphere (e.g., melting, metamorphism, fluid infiltration, basaltic underplating) and when they occurred. While xenoliths can provide a glimpse of the types of lithologies present at depth and how they formed, they cannot be assumed to be representative of the deep lithosphere, and inferences regarding the dominant lithologies present in the lower crust or upper mantle must be tempered by geophysical constraints on bulk physical properties of these regions. Mantle. Xenoliths from the lithospheric mantle are generally composed of peridotite, with lesser amounts of pyroxenite and/or eclogite. Equilibration T for these lithologies can generally be determined on the basis of two-pyroxene thermometery; precise depths of equilibration are much harder to estimate unless the samples contain garnet. The crystallization ages of mantle xenoliths are also usually difficult to constrain, as zircon is a rare phase in most upper mantle lithologies and most xenoliths have resided above the blocking temperature of other radiogenic isotope systems (Rb-Sr, Sm-Nd, Lu-Hf) for a significant fraction of their histories. The Re- Os isotope system provides arguably the best means of determining the crystallization age of mantle xenoliths, but, like most model age approaches, carries significant uncertainty. Crust. Xenoliths from the lower continental crust can be extremely heterogeneous in composition, but mafic compositions dominate in a number of regions. Equilibration T and P may determined from coexisting phases and, in some cases, thermal histories deduced from presence of frozen metamorphic reactions (e.g., coronas). The presence of zircon and other U-bearing accessory phases provides the opportunity to determine the

  6. Garnet-pyroxene-amphibole xenoliths from Chin Valley, Arizona, and implications for continental lithosphere below the Moho

    NASA Astrophysics Data System (ADS)

    Smith, Douglas; Arculus, Richard J.; Manchester, Janet E.; Tyner, G. Nell

    1994-01-01

    Garnet-pyroxene-amphibole xenoliths illustrate how P and T histories can be recorded in rocks from the crust-mantle transition and document the diversity of continental lithosphere below the Mohorovicic discontinuity. The xenoliths are from the Sullivan Buttes Latite in Chino Valley, Arizona, in the Transition Zone of the Colorado Plateau. The most definitive depth assignments depend upon garnet-pyroxene thermobarometry coupled with analysis of Ca and Al gradients in orthopyroxene. Websterites that record temperatures of 600-700C contain orthopyroxene zoned in Al but not Ca, and these rocks were carried up from depths of at least 43 km. Websterites that record temperatures of 800-900C contain more homogeneous orthopyroxene, and they were erupted from 70 to 80 km. Most eclogite and amphibole-rich xenoliths record temperatures in the range bracketed by websterites and so were probably erupted from similar depths. Element abundances and Sr, Nd, and Pb isotope ratios establish that protoliths of most xenoliths formed by crystal-melt fractionation from basaltic magmas. Diverse Sr and Nd isotopic compositions range from Nd-epsilon approximately equals +8 and Sr-87/Sr-86 approximately equals 0.7045 for two websterites to Nd-epsilon approximately equals -9 and Sr-87/Sr-86 approximately equals 0.7064 for both parts of a composite eclogite. Most xenoliths probably have Proterozoic protoliths, although many record more recent thermal and metasomatic events, and a few probably formed from Cenozoic magmas. Observations are consistent with a reconstruction of the lithosphere in which eclogite and amphibole-rich rock were volumetrically important to depths of at least 70-80 km at 25 Ma. Anhydrous peridotite may not dominate just below the Mohorovicic discountinuity beneath Chino Valley or beneath some other localities on the Colorado Plateau and elsewhere. No evidence was observed in the Chino Valley suite for replacement of continental lithosphere during Phanerozic tectonism or

  7. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  8. Thermobarometry for spinel lherzolite xenoliths in alkali basalts

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; Nagahara, Hiroko

    2016-04-01

    Application of geothermobarometers to peridotite xenoliths has been providing very useful information on thermal and chemical structure of lithospheric or asthenospheric mantle at the time of almost instantaneous sampling by the host magmas, based on which various thermal (e.g., McKenzie et al., 2005), chemical (e.g., Griffin et al., 2003), and rheological (e.g., Ave Lallemant et al., 1980) models of lithosphere have been constructed. Geothermobarometry for garnet or plagioclase-bearing lithologies provide accurate pressure estimation, but this is not the case for the spinel peridotites, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987). There are several geobarometers proposed for spinel lherzolite, such as single pyroxene geothermobarometer (Mercier, 1980) and geothermobarometer based on Ca exchange between olivine and clinopyroxene (Köhler and Brey, 1990), but they have essential problems and it is usually believed that appropriated barometers do not exist for spinel lherzolites (O'Reilly et al., 1997; Medaris et al., 1999). It is thus imperative to develop reliable barometry for spinel peridotite xenoliths. We have developed barometry for spinel peridotite xenoliths by exploiting small differences in pressure dependence in relevant reactions, whose calibration was made through careful evaluation of volume changes of the reactions. This is augmented with higher levels of care in application of barometer by choosing mineral domains and their chemical components that are in equilibrium as close as possible. This is necessary because such barometry is very sensitive to changes in chemical composition induced by transient state of the system possibly owing to pressure and temperature changes as well as chemical modification, forming chemical heterogeneity or zoning frequently reported from various mantle xenoliths (Smith, 1999). Thus very carful treatment of heterogeneity, which might be trivial for

  9. Crustal evolution and the eclogite to granulite phase transition in xenoliths from the West African Craton

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.; Hills, D. V.; Toft, P. B.

    1988-01-01

    A suite of eclogite and granulite facies xenoliths from kimberlite pipes in the Archean Man Shield of West Africa is described. The xenoliths include lithologies ranging in composition from komatiite to anorthosite and appear to be geochemically, petrologically, and geophysically related. The suite may represent fractionation of felsic material separated from ancient mantle and added to early Archean crust. The samples can be used to define a xenolith geotherm, which may represent an ancient episode of high heat flow. The samples also imply that the crust-mantle boundary is a gradational and possibly interlayered geochemical, mineralogical, and seismic transition. It is speculated that the depleted subcontinental mantle required by diamond bearing coalescence of smaller depletion cells formed by extraction of ancient crustal components. These depleted zones are surrounded by fertile asthenospheric mantle, which may have given rise to later flood basalts such as the Karroo and Parana Provinces.

  10. To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths

    NASA Astrophysics Data System (ADS)

    Gurenko, Andrey A.; Bindeman, Ilya N.; Sigurdsson, Ingvar A.

    2015-05-01

    We have studied glass-bearing leucocratic (granitic to Qz-monzonitic) crustal xenoliths from the Tindfjöll Pleistocene volcanic complex, SW Iceland. The xenoliths consist of strongly resorbed relicts of anorthitic plagioclase, K-rich feldspar and rounded quartz in colorless through pale to dark-brown interstitial glass. Spongy clinopyroxene and/or rounded or elongated crystals of orthopyroxene are in subordinate amount. Magnetite, ilmenite, zircon, apatite, allanite and/or chevkinite are accessory minerals. The xenoliths more likely are relicts of earlier-formed, partially melted Si-rich rocks or quartz-feldspar-rich crystal segregations, which suffered latter interaction with hotter and more primitive magma(s). Icelandic lavas are typically low in δ 18O compared to mantle-derived, "MORB"-like rocks (~5.6 ± 0.2 ‰), likely due to their interaction with, or contamination by, the upper-crustal rocks affected by rain and glacial melt waters. Surprisingly, many quartz and feldspar crystals and associated colorless to light-colored interstitial glasses of the studied xenoliths are not low but high in δ 18O (5.1-7.2 ‰, excluding three dark-brown glasses of 4-5 ‰). The xenoliths contain abundant, low- to high- δ 18O (2.4-6.3 ‰) young zircons (U-Pb age 0.2-0.27 ± 0.03 Ma; U-Th age 0.16 ± 0.07 Ma), most of them in oxygen isotope equilibrium with interstitial glasses. The δ 18O values >5.6 ‰ recorded in the coexisting zircon, quartz, feldspar and colorless interstitial glass suggest crystallization from melts produced by fusion of crustal rocks altered by seawater, also reflecting multiple melting and crystallization events. This suggests that "normal"- δ 18O silicic magmas may not be ultimately produced by crystallization of mafic, basaltic magmas. Instead, our new single-crystal laser fluorination and ion microprobe O-isotope data suggest addition of diverse partial crustal melts, probably originated from variously altered and preconditioned crust.

  11. Ultra-depleted isotopic compositions in fertile asthenosphere-derived peridotites: constraints on the composition of the upper mantle

    NASA Astrophysics Data System (ADS)

    Byerly, B. L.; Lassiter, J. C.

    2012-12-01

    Recent studies of abyssal peridotites (AP) and OIB xenoliths have reported refractory, isotopically ultra-depleted domains within the convecting upper mantle with Nd- and Hf-isotope compositions that extend far beyond the MORB field. These results have important implications regarding the average composition of the depleted upper mantle and the genetic relationship between MORB and AP. However, the abundance of ultra-depleted domains in the mantle is unclear. In addition, recent melt extraction processes at mid-ocean ridges make it difficult to evaluate the compositions of ultra-depleted domains prior to exhumation and thus evaluate their role in melt generation. To better constrain the abundance and composition of typical convecting upper mantle, we examined a suite of spinel peridotite xenoliths from the central Rio Grande Rift (RGR) where most of the preexisting lithosphere has been convectively removed and replaced with depleted upper mantle. Seismic tomography indicates that the lithosphere beneath the RGR has been substantially removed (Gao, 2004), and geochemical evidence supports this. Two distinct populations of xenoliths are observed from Elephant Butte, central RGR. One population, interpreted to derive from residual Proterozoic lithospheric mantle, is refractory (bulk Al2O3 <2.3 wt.%), LREE- and LILE-enriched, has enriched Sr, Nd, and Pb isotopic compositions and along with xenoliths from the Eastern Colorado Plateau define a strong Lu/Hf-176Hf/177Hf "pseudo-isochron" with an apparent age of ~1.6 Ga. In contrast, the majority of the RGR xenoliths have fertile major element compositions (bulk Al2O3 ~ 4.0 wt %), low spinel Cr# (~10), and LREE-depleted trace element patterns, and overlap with composition estimates for the depleted mantle (Workman & Hart, 2005). We interpret these xenoliths to reflect recent replacement of the pre-existing lithosphere with material from the convecting upper mantle. The fertile xenoliths have cpx Sr-, Nd-, and Hf

  12. Craton vs. rift uppermost mantle contributions to magnetic anomalies in the United States interior

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Feinberg, J. M.; Ferré, E. C.; Demory, F.; Martín-Hernández, F.; Conder, J. A.; Rochette, P.

    2014-06-01

    The interpretation of satellite magnetic information (Magsat, Oersted, CHAMP, Swarm) requires the understanding of the mineralogy of crustal and mantle sources. Also, spectral analysis of magnetic data over forearcs and cratons calls for upper mantle contribution. The prospect of such a contribution contradicts the view that the mantle is too hot and its magnetism is too weak to influence magnetic anomalies. Here we examine the rock magnetic properties of fresh mantle xenoliths from four settings across the United States: phlogopite-spinel dunites from the Bearpaw Mountains, Montana, and lherzolites/harzburgites from San Carlos, Arizona; Kilbourne Hole, New Mexico; and Knippa, Texas. Paleomagnetic results show single-component natural remanent magnetizations (NRMs), which, combined with optical and secondary electron microscopy support the lack of post-eruption alteration and absence of host-rock contamination. The NRM carriers include magnetite at Bearpaw Mountain and San Carlos, and pyrrhotite at Kilbourne Hole and Knippa. These four areas show continental crust of distinct thicknesses and various geotherms. The potential mantle contribution to magnetic anomalies is forward modeled using crustal thickness, current geotherm and average magnetic properties of xenoliths. The San Carlos and Kilbourne Hole mantle, situated near the Rio Grande Rift is too hot and its magnetism is too weak to contribute to anomalies. The sulfide-dominated assemblage at Knippa does not support magnetization at mantle depths. In contrast, the Bearpaw Mountains combine a relatively cold geotherm (craton) and abundance of magnetite formed at mantle depth. This cratonic mantle, metasomatized by fluids from the Farallon plate, may contribute to long wavelength magnetic anomalies.

  13. New constraints on the textural and geochemical evolution of the upper mantle beneath the Styrian basin

    NASA Astrophysics Data System (ADS)

    Aradi, Laszlo; Hidas, Károly; Zanetti, Alberto; János Kovács, István; Patkó, Levente; Szabó, Csaba

    2016-04-01

    Plio-Pleistocene alkali basaltic volcanism sampled sporadically the upper mantle beneath the Carpathian-Pannonian Region (CPR, e.g. [1]). Lavas and pyroclasts often contain mantle derived xenoliths, and the majority of them have been extensively studied [1], except the westernmost Styrian Basin Volcanic Field (SBVF, Eastern Austria and Slovenia). In the SBVF only a few volcanic centers have been studied in details (e.g. Kapfenstein & Tobaj). Based on these studies, the upper mantle beneath the SBVF is consists of dominantly high temperature, texturally and geochemically homogeneous protogranular spinel lherzolite. New major and trace element data from rock-forming minerals of ultramafic xenoliths, coupled with texture and deformation analysis from 12 volcanic outcrops across the SBVF, suggest that the lithospheric roots of the region are more heterogeneous than described previously. The studied xenoliths are predominantly lherzolite, amphibole is a common phase that replaces pyroxenes and spinels and proves modal metasomatism. Phlogopite coupled with apatite is also present in amphibole-rich samples. The texture of the xenoliths is usually coarse-grained and annealed with low abundance of subgrain boundaries in both olivine and pyroxenes. Olivine crystal preferred orientation (CPO) varies between the three most abundant one: [010]-fiber, orthogonal and [100]-fiber symmetry [2]. The CPO of pyroxenes is usually coherent with coeval deformation with olivine, however the CPO of amphibole is suggesting postkinematic epitaxial overgrowth on the precursor pyroxenes. According to equilibrium temperatures, the studied xenolith suite samples a broader temperature range (850-1100 °C) than the literature data, corresponding to mantle depths between 30 and 60 km, which indicates that the xenolith suite only represents the shallower part of the recent 100 km thick lithospheric mantle beneath the SBVF. The equilibrium temperatures show correlation with the varying CPO symmetries

  14. Lithospheric Mantle heterogeneities beneath northern Santa Cruz province, Argentina

    NASA Astrophysics Data System (ADS)

    Mundl, Andrea; Ntaflos, Theodoros; Bjerg, Ernesto

    2013-04-01

    Mantle xenoliths from Don Camilo, an area located on the North margin of the Deseado Masiff in Patagonia, comprise spinel bearing lherzolites, harburgites and dunites, wehrlites, clinopyroxenites and gabbros. The most common rock type in our collection is spinel-lherzolite followed by dunites. Harzurgites, wehrlites and gabbros are less widespread. Spinel-lherzolites and harzburgites have protogranular textures whereas dunites have equigranular to equigranular tabular textures. There are two kinds of dunites: mantle dunites and cumulate dunites. The olivine mg# in the mantle dunites vary within a narrow range, from 90.5 to 91.5 and the NiO content from 0.39 to 0.42 wt%, whereas in the cumulate dunites the mg# ranges from 87 to 90.5 and the NiO content from 0.22 to 0.40 wt%. Both types of dunites contain fine grained interstitial diopside. Hydrous phases, besides one sample that contains amphibole, were so far not found. The spinel peridotites have whole rock REE abundances depleted in LREE [(La/Yb)N=0.34-0.85)] and the dunitesare LREE enriched [(La/Yb)N=3.49]. LA-ICP-MS analyses of cpx show that a number of the studied spinel peridotite xenoliths experienced cryptic metasomatism. Three groups of xenoliths have been recognized according to REE and other incompatible trace element patterns in cpx: group I has depleted LREE abundances, group II is highly enriched in LREE (La=20-30 x C1) and group 3 has moderate LREE enrichments. The core of some clinopyroxenes in group II has depleted LREE similar to those in group I, apparently representing relictic cores not affected by metasomatism. In addition the metasomatized clinopyroxenes are significantly enriched in Sr, Th and U. Evidently, the metasomatic agent was a H2O-rich fluid (high LREE, Sr, Th and U). Clinopyroxene Sr and Nd isotopic ratios vary largely from 0.702671 to 0.705788 and from 0.51229 to 0.513251 respectively. Mantle and cumulate dunites have experienced modal metasomatism. In both types of dunites the

  15. Metasomatic processes within the fertile lithospheric Mantle beneath Don Camilo, Santa Cruz, Argentina

    NASA Astrophysics Data System (ADS)

    Ntaflos, Th.; Mundl, A.; Bjerg, E. A.; Tschegg, C.; Kosler, J.

    2009-04-01

    Mantle xenoliths in alkalibasalts from Don Camilo, an area located at the North margin of the Deseado Massif in Patagonia, comprise mainly spinel-bearing lherzolites and dunites as well as less common harburgites, wehrlites, clinopyroxenites and gabbros. Spinel-lherzolites and harzburgites have protogranular textures whereas dunites have equigranular to equigranular tabular textures. There are two kinds of dunites: mantle and cumulate dunites. The olivine mg# in the mantle dunites vary within a narrow range from 90.5 to 91.5 and the NiO content from, 0.39 to 0.42 wt. %, whereas in the cumulate dunites the mg# ranges from 87 to 90.5 and the NiO content from 0.22 to 0.40 wt. %. Both types of dunite contain fine grained interstitial diopside. Hydrous phases, besides one sample that contains amphibole, were so far not found. The spinel peridotites have Primitive Mantle normalized (PM) whole rock REE abundances depleted in LREE [(La/Yb)N=0.34-0.85)] and the dunites are LREE enriched [(La/Yb)N=3.49]. LA-ICP-MS analyses of cpx show that a number of the studied spinel peridotite xenoliths experienced cryptic metasomatism. Three groups of xenoliths have been recognized according to their PM normalized REE and other incompatible trace element patterns in cpx: group I has depleted LREE abundances and group II is highly enriched in LREE (20-30 x PM) and group III has moderate LREE enrichments. Cores of some clinopyroxenes in group II have depleted LREE similar to those in group I, apparently representing relictic cores not affected by metasomatism. In addition, the metasomatized clinopyroxenes are significantly enriched in Sr, Th and U. Evidently, the metasomatic agent was a H2O-rich fluid (high LREE, Sr, Th and U). Mantle and cumulate dunites have experienced modal metasomatism. In both types of dunite interstitial clinopyroxene appear to be of metasomatic origin. The clinopyroxene from cumulate dunites depleted LREE abundances and low HREE indicating that they have been

  16. Petrology, mineralogy and geochemistry of oxide minerals in polymict xenoliths from the Bultfontein kimberlites, South Africa: implication for low bulk-rock oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Fu; Menzies, Martin A.; Mattey, Dave P.; Hinton, Richard W.; Gurney, John J.

    2001-06-01

    Polymict mantle xenoliths from the Bultfontein kimberlites, South Africa, contain abundant ilmenites (30% in BD2666, 15% in JJG1414, 3% each in BD2394 and BD344). These ilmenites occur as disrupted veins or layers, coarse discrete grains, small segregations interstitial to other silicate minerals, and tiny irregular grains disseminated in the subgrains of enstatites. The vein-like ilmenite usually shows a textural zonation across the vein, in rare cases along veins. This textural zonation is coincident with chemical and oxygen isotopic variations, with the margins being finer in grain sizes and richer in incompatible elements. The chemical and isotopic compositions also vary between different occurrences of ilmenite grains. In general, the smaller grains are richer in Cr, LREE and LILE and lighter in oxygen isotopes. Thus, chemical and oxygen isotopic disequilibria are well preserved in these ilmenites, which are also seen in the silicate minerals. These features suggest that ilmenites from the polymict xenoliths formed by magmatic and/or metasomatic processes. The invasion of the Fe-Ti-Cr-rich melt with low oxygen isotopic ratio can account for the observed low bulk oxygen isotopic ratios in the polymict xenoliths. This Fe-Ti-rich melt with high ilmenite normative could be produced by melt immiscibility during the migration of an initially homogeneous high-Ti silicate melt.

  17. Lower crustal xenoliths, Chinese Peak lava flow, central Sierra Nevada.

    USGS Publications Warehouse

    Dodge, F.C.W.; Calk, L.C.; Kistler, R.W.

    1986-01-01

    This assemblage of pyroxenite, peridotite and mafic granulite xenoliths in the toe of a 10 m.y. trachybasalt flow remnant overlying late Cretaceous granitic rocks, indicates the presence of a mafic-ultramafic complex beneath this part of central California; orthopyroxenites, websterites and clinopyroxenites are dominant. A few of the xenoliths contain ovoid opaque patches that are apparently pseudomorphs after garnet and have pyralspite garnet compositions; using a garnet-orthopyroxene geobarometer, they indicate a lower crustal depth of approx 40 km. Abundant mafic granulites can be subdivided into those with Al2O3 = or 15% and showing considerable scatter on oxide variation diagrams. The high-alumina granulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr, whereas the low-alumina and ultramafic xenoliths have a wide range of 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicate roughly the same age as that of overlying granitic plutons (approx 100 m.y.). However, the granitic rocks have initial 87Sr/86Sr ratios intermediate between those of the high-alumina and ultramafic xenoliths, suggesting that they result from the mixing of basaltic magma (represented by the ultramafic rocks) and crustal materials, with subsequent crystal fractionation.-R.A.H.

  18. Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites

    NASA Astrophysics Data System (ADS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2012-12-01

    Volatile elements have influenced the differentiation and eruptive behavior of Martian magmas and played an important role in the evolution of Martian climate and near-surface environments. However, the abundances of volatiles, and in particular the amount of water in the Martian interior, are disputed. A record of volatile reservoirs is contained in primitive Martian basalts (shergottites). Olivine-hosted melt inclusions from a geochemically depleted shergottite (Yamato 980459, representing a very primitive Martian melt) possess undegassed water with a chondritic and Earth-like D/H ratio (δD≤275‰). Based on volatile measurements in these inclusions, the water content of the depleted shergottite mantle is calculated to be 15-47 ppm, which is consistent with the dry mantle hypothesis. In contrast to D/H in the depleted shergottite, melt from an enriched shergottite (Larkman Nunatak 06319), which either formed by melting of an enriched mantle or by assimilation of crust, exhibits an extreme δD of ˜5000‰, indicative of a surface reservoir (e.g., the Martian atmosphere or crustal hydrosphere). These data provide strong evidence that the Martian mantle had retained the primordial low-δD component until at least the time of shergottite formation, and that young Martian basalts assimilated old Martian crust.

  19. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Jie; Zhang, Hong-Fu; Ying, Ji-Feng; Su, Ben-Xun

    2013-03-01

    Studies of mantle xenoliths have confirmed that Archean subcontinental lithospheric mantle (SCLM) is highly depleted in basaltic components (such as Al, Ca and Na) due to high-degree extraction of mafic and ultramafic melts and thus is refractory and buoyant, which made it chronically stable as tectonically independent units. However, increasing studies show that ancient SCLM can be refertilized by episodic rejuvenation events like infiltration of upwelling fertile material. The North China Craton is one of the most typical cases for relatively complete destruction of its Archean keel since the eruption of Paleozoic kimberlites, as is evidenced by a dramatic change in the compositions of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, reflecting significant lithospheric thinning and the change in the character of the SCLM. The compositional change has been interpreted as the result of refertilization of Archean SCLM via multiple-stage peridotite-melt reactions, suggested by linear correlations between MgO and indices of fertility, covariations of Al2O3 with CaO, La/Yb, 87Sr/86Sr, 143Nd/144Nd, 187Os/188Os and Re-depletion ages (TRD), high Re abundances, scatter in Re-Os isotopic plot, variable in situ TRD ages of sulfides, and correlation between TRD ages and olivine Fo of peridotite xenoliths in Paleozoic kimberlites and Cenozoic basalts on the craton. By integrating major and trace element, Sr, Nd and Os isotopic compositions of peridotite xenoliths and orogenic massif peridotites from the continents of Europe, Asia, America, Africa and Australia, together with previous studies of petrology and geochemistry of global peridotites, we suggest that (1) refertilization of cratonic and circum-cratonic lithospheric mantle is widespread; (2) Archean SCLM worldwide has experienced a multi-stage history of melt depletion and refertilization since segregation from the convecting mantle; (3) cratonic SCLM may be more susceptible to compositional change caused by

  20. Origin of ultramafic xenoliths containing exsolved pyroxenes from Hualalai Volcano, Hawaii

    USGS Publications Warehouse

    Bohrson, W.A.; Clague, D.A.

    1988-01-01

    Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225?? to 1350?? C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045?? and 1090?? C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155??-230?? C of cooling which took place over about 120 ka - the age of the youngest Hualalai tholeiitic basalt - yield maximum cooling rates of 1.3??10-3-1.91??10-3 ??C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel

  1. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.

    PubMed

    Pearson, D G; Nowell, G M

    2002-11-15

    The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that

  2. Erupted frothy xenoliths may explain lack of country-rock fragments in plutons

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Schmeling, Harro; Koyi, Hemin; Blythe, Lara

    2016-01-01

    Magmatic stoping is discussed to be a main mechanism of magma emplacement. As a consequence of stoping, abundant country-rock fragments should occur within, and at the bottom of, magma reservoirs as “xenolith graveyards”, or become assimilated. However, the common absence of sufficient amounts of both xenoliths and crustal contamination have led to intense controversy about the efficiency of stoping. Here, we present new evidence that may explain the absence of abundant country-rock fragments in plutons. We report on vesiculated crustal xenoliths in volcanic rocks that experienced devolatilisation during heating and partial melting when entrained in magma. We hypothesise that the consequential inflation and density decrease of the xenoliths allowed them to rise and become erupted instead of being preserved in the plutonic record. Our thermomechanical simulations of this process demonstrate that early-stage xenolith sinking can be followed by the rise of a heated, partially-molten xenolith towards the top of the reservoir. There, remnants may disintegrate and mix with resident magma or erupt. Shallow-crustal plutons emplaced into hydrous country rocks may therefore not necessarily contain evidence of the true amount of magmatic stoping during their emplacement. Further studies are needed to quantify the importance of frothy xenolith in removing stoped material. PMID:27804996

  3. Erupted frothy xenoliths may explain lack of country-rock fragments in plutons

    NASA Astrophysics Data System (ADS)

    Burchardt, Steffi; Troll, Valentin R.; Schmeling, Harro; Koyi, Hemin; Blythe, Lara

    2016-11-01

    Magmatic stoping is discussed to be a main mechanism of magma emplacement. As a consequence of stoping, abundant country-rock fragments should occur within, and at the bottom of, magma reservoirs as “xenolith graveyards”, or become assimilated. However, the common absence of sufficient amounts of both xenoliths and crustal contamination have led to intense controversy about the efficiency of stoping. Here, we present new evidence that may explain the absence of abundant country-rock fragments in plutons. We report on vesiculated crustal xenoliths in volcanic rocks that experienced devolatilisation during heating and partial melting when entrained in magma. We hypothesise that the consequential inflation and density decrease of the xenoliths allowed them to rise and become erupted instead of being preserved in the plutonic record. Our thermomechanical simulations of this process demonstrate that early-stage xenolith sinking can be followed by the rise of a heated, partially-molten xenolith towards the top of the reservoir. There, remnants may disintegrate and mix with resident magma or erupt. Shallow-crustal plutons emplaced into hydrous country rocks may therefore not necessarily contain evidence of the true amount of magmatic stoping during their emplacement. Further studies are needed to quantify the importance of frothy xenolith in removing stoped material.

  4. Erupted frothy xenoliths may explain lack of country-rock fragments in plutons.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Schmeling, Harro; Koyi, Hemin; Blythe, Lara

    2016-11-02

    Magmatic stoping is discussed to be a main mechanism of magma emplacement. As a consequence of stoping, abundant country-rock fragments should occur within, and at the bottom of, magma reservoirs as "xenolith graveyards", or become assimilated. However, the common absence of sufficient amounts of both xenoliths and crustal contamination have led to intense controversy about the efficiency of stoping. Here, we present new evidence that may explain the absence of abundant country-rock fragments in plutons. We report on vesiculated crustal xenoliths in volcanic rocks that experienced devolatilisation during heating and partial melting when entrained in magma. We hypothesise that the consequential inflation and density decrease of the xenoliths allowed them to rise and become erupted instead of being preserved in the plutonic record. Our thermomechanical simulations of this process demonstrate that early-stage xenolith sinking can be followed by the rise of a heated, partially-molten xenolith towards the top of the reservoir. There, remnants may disintegrate and mix with resident magma or erupt. Shallow-crustal plutons emplaced into hydrous country rocks may therefore not necessarily contain evidence of the true amount of magmatic stoping during their emplacement. Further studies are needed to quantify the importance of frothy xenolith in removing stoped material.

  5. Mantle in the Manihiki Plateau source with ultra-depleted incompatible element abundances but FOZO-like isotopic signature

    NASA Astrophysics Data System (ADS)

    Golowin, R.; Hoernle, K.; Portnyagin, M.; Hauff, F.; Gurenko, A.; Garbe-Schoenberg, C. D.; Werner, R.

    2014-12-01

    The ~120Ma Manihiki Plateau basement consists of high-Ti tholeiitic basalts with EM-I type isotopic signatures, similar to the Singgalo basalts at Ontong Java, and low-Ti tholeiitic basalts with FOZO (Kwaimbaita/Kroenke) to HIMU-type isotopic compositions, similar to late stage volcanism on Hikurangi and Manihiki Plateaus (Hoernle et al. 2010; Timm et al. 2011). The low-Ti basalts have affinities to boninites and have been interpreted to be derived from residual mantle wedge mantle (Ingle et al. 2007). New major, volatile and trace element and radiogenic isotope data have been generated from fresh low-Ti glass samples recovered during R/V Sonne cruises SO193 and SO225. The low-Ti samples have distinctly lower Ti/V ratios compared to lavas from Ontong Java Plateau (Kwaimbaita-Kroenke and Singgalo), but similar to boninitic rocks. Glasses and melt inclusions in olivine have low volatile contents (0.12-0.25 wt% H2O). Olivine chemistry points to derivation from peridotite source. Therefore we interpret the low-Ti lavas to have formed through melting of dry and depleted peridotite at high temperatures, consistent with Timm et al (2011). The low-Ti group is characterized by U-shaped trace element patterns. The glass samples form linear mixing arrays on radiogenic isotope diagrams, pointing to the involvement of two components: 1) a component ultra-depleted in highly incompatible elements (UDC) but with intermediate Pb, Sr and Nd isotopic compositions, being similar to Kwaimbaita/Kroenke lavas from Ontong Java, and 2) an enriched component with HIMU-type incompatible element and isotopic characteristics, similar to late-stage volcanism on Manihiki, Hikurangi and Ontong Java (e.g. Hoernle et al. 2010). The ultra-depleted, FOZO-like mantle component could represent second stage melting of FOZO type mantle or re-melting of young recycled oceanic lithosphere within the plume head. Enrichment with HIMU type melts is required to explain the enrichment in the most incompatible

  6. Lower crustal xenoliths from Queensland, Australia: Evidence for deep crustal assimilation and fractionation of continental basalts

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; McDonough, W. F.; McCulloch, M. T.; Taylor, S. R.

    1986-06-01

    A suite of mafic, granulite facies xenoliths from north Queensland possesses petrographic and geochemical features of basaltic cumulates crystallized at lower crustal pressures. Negative correlations between incompatible trace elements and Mg# and positive correlations between compatible trace elements and Mg# suggest the xenoliths are genetically related and crystallized from a continuously evolving melt. Zr, Hf, Y, HREE, Ti and V do not correlate with Mg#, but show excellent negative correlations with Al 2O 3 content, reflecting the proportion of cumulate plagioclase to clinopyroxene. These chemical trends also suggest the trace element concentrations have not been affected by subsolidus recrystallization. The xenoliths have a large range in Sr and Nd isotopic compositions ( 87Sr /86Sr = 0.70239 to 0.71467 , ɛNd = +9.5 to -6.1) which cannot be produced by crystal fractionation alone, and excellent correlations between isotope ratios and Mg# suggest the variable isotope compositions are not due to mantle source heterogeneities. These mafic xenoliths are proposed to be cumulate products from a melt undergoing simultaneous assimilation and fractional crystallization (AFC). The data illustrate that only a few percent AFC in lower crustal environments can dramatically change the Sr and Nd isotopic composition of a basaltic melt, and suggest the use of caution when inferring mantle source isotopic compositions from continental basalts. Additionally, the Nd isotopic data plot on a positive trend on an Sm-Nd isochron diagram with an age of ~570 Ma. However, if these xenoliths formed by AFC, the positive trend reflects mixing between two isotopic end members and has no age significance. The correlations between Sr and Nd isotopic compositions with Mg# degrade as the isotopic ratios are back-calculated to earlier times, suggesting the xenoliths are relatively young; the xenoliths may be related to the Cenozoic igneous activity which occurs throughout eastern Australia.

  7. Mantle hydrocarbons: Abiotic or biotic?

    SciTech Connect

    Sugisaki, Ryuichi; Mimura, Koichi

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) and peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro and granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from field contamination; these compounds found in the mantle-derived rocks are called here {open_quotes}mantle hydrocarbons.{close_quotes} The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) {delta}{sup 13}C of the mantle hydrocarbons is uniform (about {minus}27{per_thousand}). Possible origins for the mantle hydrocarbons are as follows. (1) They were inorganically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH{sub 4} at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C{sub 4}H{sub 10}. 76 refs., 5 figs., 3 tabs.

  8. Mantle hydrocarbons: abiotic or biotic?

    PubMed

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  9. Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis M.; Boyce, Jeremy W.; Srinivasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-11-01

    We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl-rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36-73 ppm H2O and the depleted source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust-mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has 1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of 229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.

  10. Isotopic characterisation of the sub-continental lithospheric mantle beneath Zealandia, a rifted fragment of Gondwana

    NASA Astrophysics Data System (ADS)

    Waight, Tod E.; Scott, James M.; van der Meer, Quinten H. A.

    2013-04-01

    The greater New Zealand region, known as Zealandia, represents an amalgamation of crustal fragments accreted to the paleo-Pacific Gondwana margin and which underwent significant thinning during the subsequent split from Australia and Antarctica in the mid-Cretaceous following opening of the Tasman Sea and the Southern Ocean. We present Sr, Nd and Pb isotopes and laser ablation trace element data for a comprehensive suite of clinopyroxene separates from spinel peridotite xenoliths (lherzolite to harzburgite) from the sub-continental lithospheric mantle across southern New Zealand. These xenoliths were transported to the surface in intra-plate alkaline volcanics that erupted across the region in the Eocene and Miocene (33-10 m.y.a.). Most of the volcanic suites have similar geochemical and isotopic properties that indicate melting of an OIB-like mantle source in the garnet stability zone and that contained a HIMU component. The volcanics have tapped two adjacent but chemically contrasting upper mantle domains: a fertile eastern domain and an extremely depleted western domain. Both domains underlie Mesozoic metasedimentary crust. Radiogenic isotope compositions of the clinopyroxene have 87Sr/86Sr between 0.7023 to 0.7035, 143Nd/144Nd between 0.5128 and 0.5132 (corresponding to ?Nd between +3 and +13) with a few samples extending to even more depleted compositions, 206Pb/204 Pb between ca. 19.5 to 21.5 and 208Pb/204 Pb between ca. 38.5 to 40.5. No correlations are observed between isotopic composition, age or geographical separation. These isotopic compositions indicate that the sub-continental lithospheric mantle under southern New Zealand has a regionally distinct and pervasive FOZO to HIMU - like signature. The isotopic signatures are also similar to those of the alkaline magmas that transported the xenoliths and suggest that most of the HIMU signature observed in the volcanics could be derived from a major source component in the sub-continental lithospheric mantle

  11. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton

    PubMed Central

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M.; Xiao, Yan

    2014-01-01

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ7Li in Archean lithospheric mantle. The δ7Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from −27 to +21, in marked deviation from the δ7Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1–2 ppm). The Li abundances and δ7Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ7Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ7Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust. PMID:24589693

  12. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    PubMed

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  13. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; Warren, Jessica M.

    2017-03-01

    Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history. Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ± 21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ± 20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ± 25), and 186Os

  14. Petrology, geochemistry, and petrogenesis of ultramafic xenoliths from 1800-1801 Kaupulehu flow, Hualalai Volcano, Hawaii

    SciTech Connect

    Chen, C.H.

    1986-01-01

    The 1800-1801 Kaupulehu alkalic flow on Hualalai Volcano, Hawaii, contains abundant xenoliths of dunite, wehrlite, and olivine-clinopyroxenite with minor gabbro, troctolite, anorthosite, and websterite. The petrography and mineral chemistry of forty-six dunite, wehrlite, and olivine-clinopyroxenite xenoliths have been studied; eight were selected for determination of trace element concentrations and isotopic ratios of separated clinopyroxenes. Temperatures of equilibrium obtained from both olivine-spinel and pyroxene geo-thermometers range from 1000 C to 1200 C for these ultramafic xenoliths. A depth of 8-25 km is suggested for the formation of these ultramafic xenoliths. The rarity of othopyroxene, presence of clinopyroxene, Fe-rich olivine and clinopyroxene compositions, and high TiO content in spinel and clinopyroxene indicate that these xenoliths have a cumulate origin and are not residues from partial melting. Sr and Nd isotopic ratios from clinopyroxene are different from those of most Mid-Ocean Ridge Basalts. Rare earth element (REE) concentrations in liquid that equilibrated with xenolith clinopyroxenes have light rare earth element (LREE) enriched patterns with (Ce/Yb)n between 4 and 10. Similar olivine, spinel, and clinopyroxene compositions in xenoliths and Hawaiian basalts as well as good agreement of their Sr and Nd isotopic ratios suggests a genetic relationship between Hualalai ultramafic xenoliths and Hawaiian basalts. Some xenoliths possibly are cumulates from alkalic or tholeiitic basalts. However, Hualalai tholeiitic basalts are excluded due to their different /sup 3/He//sup 4/He values and REE patterns. The magmas that crystallized the Mg-rich (>Fo/sub 87/) dunites with high REE contents are similar in Sr and Nd isotopic values to Hualalai 1800-1801 alkalic basalts but have higher REE and Sr contents.

  15. Gabbroic xenoliths from the northern Gorda Ridge: implications for magma chamber processes under slow spreading centers

    USGS Publications Warehouse

    Davis, A.S.; Clague, D.A.

    1990-01-01

    Abundant gabbroic xenoliths in porphyritic pillow basalt were dredged from the northern Gorda Ridge. The host lava is a moderately fractionated, normal mid-ocean ridge basalt with a heterogeneous glass rind (Mg numbers 56-60). Other lavas in the vicinity range from near primary (Mg number 69) to fractionated (Mg number 56). On the basis of textures and mineral compositions, the xenoliths are divided into five types. The xenoliths are not cognate to the host lava, but they are genetically related. Chemistry of mineral phases in conjunction with textural features suggests that the xenoliths formed in different parts of a convecting magma chamber that underwent a period of closed system fractionation. The chamber was filled with a large proportion of crystalline mush when new, more primitive, and less dense magma was injected and mixed incompletely with the contents in the chamber, forming the hybrid host lava. -from Authors

  16. Petrochemical and petrophysical characterization of the lower crust and the Moho beneath the West African Craton, based on Xenoliths from Kimberlites

    NASA Technical Reports Server (NTRS)

    Haggerty, Stephen E.; Toft, Paul B.

    1988-01-01

    Additional evidence to the composition of the lower crust and uppermost mantle was presented in the form of xenolith data. Xenoliths from the 2.7-Ga West African Craton indicate that the Moho beneath this shield is a chemically and physically gradational boundary, with intercalations of garnet granulite and garnet eclogite. Inclusions in diamonds indicate a depleted upper mantle source, and zenolith barometry and thermometry data suggest a high mantle geotherm with a kink near the Moho. Metallic iron in the xenoliths indicates that the uppermost mantle has a significant magnetization, and that the depth to the Curie isotherm, which is usually considered to be at or above the Moho, may be deeper than the Moho.

  17. Carbon isotopes in xenoliths from the Hualalai Volcano, Hawaii, and the generation of isotopic variability

    SciTech Connect

    Pineau, F. ); Mathez, E.A. )

    1990-01-01

    The isotopic composition of carbon has been determined in a suite of xenoliths from lava of the 1800-1801 Kaupulehu eruption of Hualalai Volcano, Hawaii. Several lithologies are represented in the suite, including websterite, dunite, wehrlite, pyroxenite, and gabbro. In addition, there are composite xenoliths in which contacts between lithologies are preserved. Most of the xenoliths represent deformed cumulates. The contact relations in the composite samples indicate that the lithologies originated from the same source region, which, based on pressures determined from fluid inclusions, is estimated to be at a depth of {approx}20 km, or near the crust-mantle boundary. The observations and isotopic results demonstrate that isotopic variability can be generated by multistage fractionation processes such as degassing of CO{sub 2} from magma and precipitation of CO{sub 2}-rich fluids to form graphitic compounds. Such processes operated over regions the scales of which were determined by style and intensity of deformation and by lithology.

  18. Application of Markov Chain Monte Carlo Method to Mantle Melting: An Example from REE Abundances in Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    LIU, B.; Liang, Y.

    2015-12-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications, such as nuclear physics, computational biology, financial engineering, among others. In Earth sciences applications of MCMC are primarily in the field of geophysics [1]. The purpose of this study is to introduce MCMC to geochemical inverse problems related to trace element fractionation during concurrent melting, melt transport and melt-rock reaction in the mantle. MCMC method has several advantages over linearized least squares methods in inverting trace element patterns in basalts and mantle rocks. First, MCMC can handle equations that have no explicit analytical solutions which are required by linearized least squares methods for gradient calculation. Second, MCMC converges to global minimum while linearized least squares methods may be stuck at a local minimum or converge slowly due to nonlinearity. Furthermore, MCMC can provide insight into uncertainties of model parameters with non-normal trade-off. We use MCMC to invert for extent of melting, amount of trapped melt, and extent of chemical disequilibrium between the melt and residual solid from REE data in abyssal peridotites from Central Indian Ridge and Mid-Atlantic Ridge. In the first step, we conduct forward calculation of REE evolution with melting models in a reasonable model space. We then build up a chain of melting models according to Metropolis-Hastings algorithm to represent the probability of specific model. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites. In the future, MCMC will be applied to more realistic but also more complicated melting models in which partition coefficients, diffusion coefficients, as well as melting and melt suction rates vary as functions of temperature, pressure and mineral compositions. [1]. Sambridge & Mosegarrd [2002] Rev. Geophys.

  19. Millennia of magmatism recorded in crustal xenoliths from Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs; Waight, Tod; Nielsen, Troels

    2016-04-01

    Eruption of CO2-rich ultramafic magma involves rapid ascent of mantle-derived magmas loaded with mantle xenoliths and xenocrysts (>30 vol%). The dynamics and duration of such eruptions are increasingly well constrained; the causes are nevertheless largely unclear. To address this issue, we performed a petrological and speedometric analysis of well-preserved crustal xenoliths from aillikite dikes at Sisimiut and Sarfartôq alkaline provinces, W Greenland. The xenoliths represent mafic granulites, scavenged from c. 25-36 km depth within the mid-to-lower crust. The rocks are infiltrated by various types of melt in grain boundaries, cracks and veins. Zirconium-in rutile thermometry and Fe-in-rutile speedometry indicate melt temperature of c. 1,015 °C and melt exposure time of a few hours for the host aillikite, implying an average ascent rate of c. 2 m/s. This is slower than average ascent rates of mantle cargo (4-40 m/s [1]), suggesting a slowing-down of transport at shallow levels. Local diffusive zoning in garnet indicates up to several millenia of melt-assisted mass transport. This demonstrates a two-stage magmatic process of rapid melt ascent preceded by a previously unrecognized long magmatic episode. Melt infiltration at Sismiut lasted 10 times longer than at Sarfartôq, and unlike at Sarfartôq was initially associated with carbonate- and sulfide-rich melt. This contrast reflects a fundamental difference in the devolatilization efficiency of parental carbonatite magma. The rapid development of the Sarfartôq system is ascribed to the local lithospheric mantle being highly depleted [2] and rich in the decarbonation reactant orthopyroxene [3]. A link is also proposed between this feature, and the occurrence of REE-carbonatite and diamond-bearing mantle cargo at that particular location. References [1] Sparks, R.S.J. et al., 2006. J. Volcanol. Geotherm. Res. 155, 8-48. [2] Bizzarro, M. and Stevenson, R.K., 2003. Contrib. Mineral. Petrol. 146, 223-240. [3] Russell

  20. Carbonate assimilation during magma evolution at Nisyros (Greece), South Aegean Arc: Evidence from clinopyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Spandler, Carl; Martin, Lukas H. J.; Pettke, Thomas

    2012-08-01

    To contribute to the understanding of magma evolution in arc settings we investigate the oldest volcanic unit (Kanafià Synthem) of Nisyros volcano, located in the eastern Aegean Sea (Greece). The unit consists of porphyritic pillow lavas of basaltic andesite composition with trace element signatures that are characteristic of island-arc magmas. Two lava types are distinguished on the basis of geochemistry and the presence or absence of xenoliths, with the xenolith-bearing lavas having distinctly elevated Sr, MREE/HREE and MgO/Fe2O3 compared to the xenolith-free lavas. Xenoliths include relatively rare quartzo-feldspathic fragments that represent continental-type material, and coarse clinopyroxenite xenoliths that consist largely of aluminous and calcic clinopyroxene, and accessory aluminous spinel. Anorthite-diopside reaction selvages preserved around the clinopyroxenite xenoliths demonstrate disequilibrium between the xenoliths and the host magma. The xenolith clinopyroxene is distinctly enriched in most lithophile trace elements compared to clinopyroxene phenocrysts in the host magmas. A notable exception is the Sr concentration, which is similar in both clinopyroxene types. The high Al and low Na contents of the clinopyroxenites preclude a cumulate, deep metamorphic, or mantle origin for these xenoliths. Instead, their composition and mineralogy are diagnostic of skarn rocks formed by magma-carbonate interaction in the mid/upper crust. The Kanafià lavas are interpreted to have undergone crystal fractionation, magma mixing/mingling and crustal assimilation while resident in the upper crust. We show that magma-carbonate reaction and associated skarn formation does not necessarily result in easily recognised modification of the melt composition, with the exception of increasing Sr contents. Carbonate assimilation also releases significant CO2, which will likely form a free vapour phase due to the low CO2 solubility of arc magmas. In the broader context, we stress

  1. Water Distribution in the Continental and Oceanic Upper Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  2. Nickeliferous sulfides in xenoliths, olivine megacrysts and basaltic glass

    NASA Astrophysics Data System (ADS)

    Fleet, Michael E.; Stone, William E.

    1990-11-01

    The composition of olivine and nickeliferous sulfide inclusions from a selection of mafic and ultramafre rocks, xenoliths and megacrysts, including picritic basalts from Kilauea Volcano, Hawaii, kimberlite from Fayette County, Pennsylvania, and megacrysts from Mount Shasta, California are compared with the mean experimental value of the distribution coefficient for Ni/Fe exchange (KD3=32). Only nine of the forty five olivipe/bulk-sulfide pairs investigated have compositions consistent with equilibration at high temperature, yielding calculated KD3 values in the range 22 to 41. The remaining pairs have calculated KD3 values which range from 0 to 19. Bulk-sulfides in disequilibrated assem-blages are consistently depleted in nickel and within both indivudual associations and individual petrographic sections they exhibit a wide variation in NiS content. The bulk copper contents of olivine-and groundmass-hosted sulfides from Kilauea Volcano range from 0.5 to 43 at%, and samples from the Kilauea Iki lava lake are more Fe-and Cu-rich and generally have lower KD3 values than those from the eruption itself. As with magmatic Ni-Cu sulfide deposits, most nickeliferous sulfide inclusions in mantle-related rocks and xenoliths and in volcanic rocks do not have pristine early-magmatic bulk compositions, and it would seem to be premature to attribute these sulfides solely to either a mantle or an early-magnatic origin.

  3. Thorium abundances of basalt ponds in South Pole-Aitken basin: Insights into the composition and evolution of the far side lunar mantle

    USGS Publications Warehouse

    Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R.

    2011-01-01

    Imbrian-aged basalt ponds, located on the floor of South Pole-Aitken (SPA) basin, are used to provide constraints on the composition and evolution of the far side lunar mantle. We use forward modeling of the Lunar Prospector Gamma Ray Spectrometer thorium data, to suggest that at least five different and distinct portions of the far side lunar mantle contain little or no thorium as of the Imbrian Period. We also use spatial correlations between local thorium enhancements and nonmare material on top of the basalt ponds to support previous assertions that lower crustal materials exposed in SPA basin have elevated thorium abundances, consistent with noritic to gabbronoritic lithologies. We suggest that the lower crust on the far side of the Moon experienced multiple intrusions of thorium-rich basaltic magmas, prior to the formation of SPA basin. The fact that many of the ponds on the lunar far side have elevated titanium abundances indicates that the far side of the Moon experienced extensive fractional crystallization that likely led to the formation of a KREEP-like component. However, because the Imbrian-aged basalts contain no signs of elevated thorium, we propose that the SPA impact event triggered the transport of a KREEP-like component from the lunar far side and concentrated it on the nearside of the Moon. Because of the correlation between basaltic ponds and basins within SPA, we suggest that Imbrian-aged basaltic volcanism on the far side of the Moon was driven by basin-induced decompressional melting. Copyright ?? 2011 by the American Geophysical Union.

  4. Isotopic constraints of mantle derived carbonatitic melts from Calatrava, Spain

    NASA Astrophysics Data System (ADS)

    Humphreys, E. R.; Bailey, K.; Hawkesworth, C. J.; Wall, F.; Avanzinelli, R.

    2010-12-01

    Carbonatite volcanism is typically associated both spatially and temporally with alkaline, ultramafic volcanism (Woolley & Church, 2005). Recent discoveries in Calatrava, Spain illustrate the activity of carbonatite in the source melts of leucitite volcanism. Melilitite pyroclastic lapilli tuffs also show a clear association with volcanic carbonate. Carbonatitic activity has been shown to initiate at depths greater than 100km (Humphreys et al., 2010) despite a maximum estimate of lithospheric thickness of 80km. The presence of aragonite and abundant mantle xenoliths in many deposits are clear indication of the rapid emplacement rates of such magmas. Carbonatitic activity in the source of the leucitite melts is indicated by carbonate inclusions within olivine xenocrysts and the presence of occasional carbonatite lenses. The composition of lead and strontium isotope ratios in the bulk rock, and spatially resolved analysis of carbonate from the groundmass and from inclusions demonstrates a genetic affinity between the inclusions and the related bulk rock composition. Lead and strontium isotopic analysis suggest that such melts do not represent the composition of convecting asthenospheric mantle. 87Sr/86Sr (0.7055-0.7068) values are higher than those of MORB and most OIB. Lead isotope ratios show a trend displaced to higher 207Pb/204Pb relative to MORB and OIB. Carbonate inclusions have less radiogenic lead values than the more radiogenic bulk rocks. Our data indicate that carbonatitic activity in the mantle is intrinsic in the generation of the leucitite lava. However, petrographic and isotopic evidence suggest a complex melt history. Olivine xenocrysts are not in equilibrium with the host leucitite, despite inclusions within olivine showing an isotopic affinity to the bulk rock. We suggest that in this example, alkaline magmatism was induced by the presence of CO2 in the mantle source. Isotopic evidence shows that the mantle producing such melts was not

  5. Distribution and transport of hydrogen in the lithospheric mantle: A review

    NASA Astrophysics Data System (ADS)

    Demouchy, Sylvie; Bolfan-Casanova, Nathalie

    2016-01-01

    The minerals constituting the Earth's upper mantle are nominally anhydrous silicates (NAMs). However they do contain hydrogen as a trace element, decorating point defects in their crystalline structure. Experimental petrology and mineralogy have quantified the maximum concentration under several compositional and thermodynamic conditions, but systematic studies on the hydrogen concentration in minerals from mantle-derived rocks have only recently been carried out. Here, we have compiled the distribution of hydrogen in upper mantle peridotite xenoliths, from which several conclusions can be drawn. NAMs from peridotite xenoliths contain a few ppm wt. H2O in their structure. From the current database, the hydrogen concentrations in olivine regularly increase with increasing depth. The amount of hydrogen in NAMs from peridotite xenoliths from subduction contexts is not higher than in other geological context for similar temperature and pressure conditions. The highest hydrogen concentrations is found in peridotitic olivines from cratonic mantle, and are likely due to the depth of origin. The increasing hydrogen concentration in olivine with increasing depth is likely controlled by the increase of H partitioning into olivine at the expense of orthopyroxene as imposed by a decrease in Al content in opx with depth. However, the sparse data could also indicate that the bulk hydrogen concentration slightly increases with depth > 150 km. In this case, it would suggest, locally (Udachnaya for example), a possible increase in water fugacity due to fluid saturation. Even if the most abundant mineral in mantle rocks is olivine, the bulk hydrogen concentration in peridotites is controlled by the amount of hydrogen stored in pyroxenes. However, hydrogen concentration in olivine remains crucial for consequences on physical properties such as rheology and electrical conductivity. Kinetics of hydrogen transport is reviewed and hydrous melt/fluid percolation appears necessary to

  6. Molybdenum isotope fractionation in the mantle

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    concentrations of all the ultramafic xenoliths of 40-400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113-180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal-silicate fractionation. An identical isotopic composition might result from core-mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.

  7. Crust Formation and Stabilization of the Western Archean Kaapvaal Craton: Evidence from U-Pb Geochronology of Basement Blocks and Deep Crustal Xenoliths from the Kimberley Region, South Africa

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Bowring, S. A.

    2001-05-01

    The kimberlites of the Kimberley region of South Africa have yielded one of the most abundantly sampled and studied suites of lithospheric mantle xenoliths in the world, providing a detailed picture of the composition and thermal evolution of the continental mantle beneath the western Kaapvaal craton. Surprisingly however, little published data exist regarding the nature of the basement and deeper crustal rocks in the western craton, with which to contrast the evolution of the crustal and mantle portions of this Archean cratonic region. Crustal xenoliths collected in the various mine dumps around Kimberley are predominantly large blocks of near-surface basement lithologies, including deformed granitic to tonalitic gneisses and amphibolites, weakly deformed pegmatoids, and non-deformed biotite granite. U-Pb zircon geochronological data for a number of xenoliths have been used to develop a preliminary framework for the age and evolution of the Archean crust of the Kimberley region. The youngest component of the Kimberley basement is a non-deformed sample of biotite granite with an age of 2724+/-2 Ma. A major episode of metamorphism and crustal anatexis is recorded by 2928+/-2 Ga metamorphic zircon growth in amphibolitic and tonalitic components of banded gneisses, and igneous zircons of identical age in weakly deformed cross-cutting pegmatoids. Zircons from these same pegmatoids also have inherited cores which yield 207Pb/206Pb dates as old as 3265 Ma. These inherited zircons, as well as cores of zircons from a foliated granodioritic xenolith with 207Pb/206Pb dates as old as 3184 Ma, indicate the antiquity of the oldest crustal components of the Kimberley basement. These data are consistent with cursory SHRIMP U-Pb zircon geochronological information reported for lithologies collected in situ in the diamond mine walls of Kimberley. Two important implications of this data are considered: first, we interpret the major metamorphism and crustal anatexis at 2.93 Ga as

  8. High-K andesite petrogenesis and crustal evolution: Evidence from mafic and ultramafic xenoliths, Egmont Volcano (Mt. Taranaki) and comparisons with Ruapehu Volcano, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Price, Richard C.; Smith, Ian E. M.; Stewart, Robert B.; Gamble, John A.; Gruender, Kerstin; Maas, Roland

    2016-07-01

    compositions approximating the solid material extracted during these processes. Some Group 2 xenoliths have relatively unevolved Sr and Nd isotopic compositions and they are interpreted to have derived as crystal cumulates from a more primitive parental basalt or through metasomatic alteration of other xenolith types by isotopically less evolved fluids or melts. Some Group 3 xenoliths could have originally been pyroxene cumulates but the granoblastic textures of others are more consistent with an origin as restites generated during anatexis of amphibolite. Group 4 xenoliths have textures similar to those of mantle-derived peridotite xenoliths found in intraplate basalts. The geochemical variation is consistent with a system fed by mantle-derived magmas that underplated and intruded the lower crust. At this level AFC and FC and crustal anatexis generated cumulates and pyroxene restite represented by the mafic and ultramafic xenoliths. The magmas segregating at these deep levels moved higher into the crust where a complex dispersed magma storage and plumbing system formed. Here magmas evolved further through AFC and FC with the formation of cumulates and crystal mushes that are represented by some Group 1 and Group 2 xenoliths. Xenoliths were further modified by interaction with host magmas or by alteration at the side walls of magma storages and conduits.

  9. Stable isotopic (O, H) evidence for hydration of the central Colorado Plateau lithospheric mantle by slab-derived fluids

    NASA Astrophysics Data System (ADS)

    Marshall, E. W.; Barnes, J.; Lassiter, J. C.

    2013-12-01

    The Colorado Plateau is a tectonically stable, relatively undeformed Proterozoic lithospheric province in the North America Cordillera. Although the stability of the Colorado Plateau suggests that it is rheologically strong, evidence from xenoliths show that the lithospheric mantle is extensively hydrated (e.g., presence of hydrous minerals, 'high' water contents in nominally anhydrous minerals), and therefore weakened. In addition, LREE enrichments in clinopyroxene (cpx) imply that the lithospheric mantle has been metasomatized ([1],[2]). Here we analyze mineral separates from spinel and garnet peridotite xenoliths from the Navajo Volcanic Field (NVF), located in the center of the Plateau, for their oxygen and hydrogen isotope compositions. These compositions are compared to those of xenoliths at the margins of the Plateau: spinel peridotites from the Grand Canyon Volcanic Field (GCVF) in the west and Zuni-Bandera Volcanic Field (ZBVF) in the east. NVF xenoliths are significantly more hydrous than the xenoliths on the margins of the Colorado Plateau based on modal abundances of hydrous minerals and structural water in olivine (e.g. [3]). All hydrous phases have high δD values (antigorite = -71 to -46‰ (n = 6 xenoliths); chlorite = -49 to -31‰ (n=3); amphibole = -47‰ (n=1)) compared to normal mantle (~-80‰), suggesting the addition of a fluid that is enriched in D compared to typical mantle. δ18O values for the same hydrous minerals range from 6.0 to 6.6‰ (n=6). δ18O values of olivine from NVF spinel peridotites have a narrow range, 5.0 to 5.4‰ (n = 4), near mantle olivine values (~5.2‰). Olivines from spinel peridotites from the GCVF and ZBVF also have mantle-like δ18O values (5.1 to 5.2‰ (n=3) and 5.1 to 5.4‰ (n=7), respectively). However, olivines and orthopyroxenes (opx) from NVF garnet peridotites have a slightly larger range and some record 18O enrichment (olivine = 5.1 to 5.6‰ (n = 3); opx = 5.9‰ (n=1)). The high δ18O values of

  10. Metasomatically altered peridotite xenoliths from the Hessian Depression (Northwest Germany)

    SciTech Connect

    Hartmann, G.; Wedepohl, K.H. )

    1990-01-01

    A set of 36 spinel lherzolite and spinel harzburgite xenoliths from 7 occurrences of Tertiary alkali olivine basalt and olivine nephelinite have been investigated for modal composition, major elements, and 39 minor elements. The periodotites were depleted during former partial melting events. The proportion of clinopyroxene, elements indicating depletion, and compatible trace elements are on average close to the means of the worldwide subcontinental lithosphere. The metasomatic alteration of the sampled mantle varies in a complicated three-dimensional pattern without vertical layering. Mobilization of elements in mantle fluids and accumulation in certain peridotites is a complex open-system process. The exceptional behavior of high field-strength elements might be controlled by the formation of Ti minerals. The metasomatic transport can be explained by extraction of the incompatible elements either from mantle minerals or from subducted crustal sources into water-rich fluids. Chlorine in phlogopite has equilibrated with fluids containing chloride concentrations close to seawater. Values of {delta}{sup 18}O in bulk peridotites and in phlogopite exceeding typical mantle compositions probably reflect a crustal contribution to the metasomatic fluids. Nd and Sr isotopic ratios of both peridotites and alkali basalts received a crustal signature from an environment with time-integrated LREE accumulation and Rb depletion.

  11. An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences

    NASA Astrophysics Data System (ADS)

    Luguet, A.; Jaques, A. L.; Pearson, D. G.; Smith, C. B.; Bulanova, G. P.; Roffey, S. L.; Rayner, M. J.; Lorand, J.-P.

    2009-11-01

    An integrated study of the petrology and Re-Os geochemistry of a suite of peridotite xenoliths, some carrying abundant diamonds, from the richly diamondiferous Argyle AK1 lamproite pipe provides definitive evidence for a depleted lithospheric root of Neoarchean age (T RD eruption ˜ 2.2-3.1 Ga) beneath the Proterozoic Halls Creek Orogen at the margin of the Kimberley Craton, Western Australia. The microdiamonds from the peridotitic xenoliths are similar in their properties to the minor population of small, commercial sized, peridotitic diamonds from Argyle, both formed in the Archean from isotopically mantle-like carbon. The major element bulk chemistry and mineral chemistry of the Argyle peridotites are slightly less depleted than Archean cratonic peridotites as a whole but similar to those reported from Neoarchean-Paleoproterozoic cratonic provinces. The Argyle peridotite xenoliths were derived from within the diamond stability field (1050-1300 °C and 4.9-5.9 GPa) near the base of the lithosphere (typically 160-200 km depth) with a geothermal gradient of 41.5 mW/m 2. This thick diamondiferous lithosphere, estimated at up to 225 km thick from present day seismic S-wave tomography, appears to have persisted since the time of eruption of the Argyle lamproite (˜ 1180 Ma). The existence of late Archean age lithosphere beneath the Argyle diamond pipe, in a region where no crustal rocks of Archean age are known, suggests a decoupling of the crust and mantle in the region of the Halls Creek Orogen, perhaps as a consequence of Paleoproterozoic (˜ 1.85 Ga) reworking and/or subduction at the margin of the Kimberley Craton. The confirmation of an Archean lithospheric root beneath the Argyle pipe at the margin of the Kimberley Craton seemingly conforms with "Clifford's Rule", regarding the restriction of economic diamond deposits to those underlain by Archean cratons. However, Argyle owes its rich diamond grades not to its Neoarchean mantle roots but to the presence of

  12. Diffusive fractionation of noble gases in mantle with magma channels: Origin of low He/Ar in mantle-derived rocks

    NASA Astrophysics Data System (ADS)

    Yamamoto, Junji; Nishimura, Koshi; Sugimoto, Takeshi; Takemura, Keiji; Takahata, Naoto; Sano, Yuji

    2009-04-01

    By crushing olivine and pyroxene phenocrysts in volcanic rocks from Kyushu Island, Japan, we determined 3He/ 4He of 3-7 Ra and 40Ar/ 36Ar of up to 1750. These values are lower than those of MORB. 4He/ 40Ar* (down to 0.1) is much lower than the production ratio of 4He/ 40Ar* (1-5), where an asterisk denotes correction for the atmospheric contribution. Such values are typical of mantle-derived samples from the island arcs and active continental margins. Although the origin of the low 3He/ 4He and 40Ar/ 36Ar of subcontinental mantle has been widely discussed, low 4He/ 40Ar* has been given little attention. Actually, 3He/ 4He and 4He/ 40Ar* of phenocrysts overlap with those of subcontinental mantle xenoliths. Although noble gas compositions of phenocrysts are affected considerably by diffusive fractionation in ascending magma, they have little effect on the noble gases in the mantle xenoliths because it takes 100 years for He/Ar fractionation of ca. 15% for a mantle xenolith with 5 cm diameter. Therefore, the low 4He/ 40Ar* of the mantle xenoliths is inferred to result from another kinetic fractionation in the mantle. During generation and migration of magma in the mantle, lighter noble gases diffuse rapidly out into the magma. This diffusive fractionation can explain low 4He/ 40Ar* and somewhat low 3He/ 4He in the residual mantle. Furthermore, the combination of the diffusive fractionation and subsequent radiogenic ingrowth explain the fact that data from subcontinental mantle xenoliths have extremely low 3He/ 4He and various 4He/ 40Ar*. Consequently, 4He/ 40Ar* and 3He/ 4He in mantle-derived materials are proposed as indicators of the degree of noble gas depletion of the source mantle.

  13. Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran

    NASA Astrophysics Data System (ADS)

    Saadat, Saeed; Stern, Charles R.

    2012-05-01

    A small isolated Neogene, possibly Quaternary, monogenetic alkali olivine basalt cone in northeastern Iran contains both mantle peridotite and crustal gabbroic xenoliths, as well as plagioclase megacrysts. The basaltic magma rose to the surface along pathways associated with local extension at the junction between the N-S right-lateral and E-W left-lateral strike slip faults that form the northeastern boundary of the Lut microcontinental block. This basalt is enriched in LREE relative to HREE, and has trace-element ratios similar to that of oceanic island basalts (OIB). Its 87Sr/86Sr (0.705013 to 0.705252), 143Nd/144Nd (0.512735 to 0.512738), and Pb isotopic compositions all fall in the field of OIB derived from enriched (EM-2) mantle. It formed by mixing of small melt fractions from both garnet-bearing asthenospheric and spinel-facies lithospheric mantle. Plagioclase (An26-32) megacrysts, up to 4 cm in length, have euhedral crystal faces and show no evidence of reaction with the host basalt. Their trace-element concentrations suggest that these megacrysts are co-genetic with the basalt host, although their 87Sr/86Sr (0.704796) and 143Nd/144Nd (0.512687) ratios are different than this basalt. Round to angular, medium-grained granoblastic meta-igneous gabbroic xenoliths, ranging from ~ 1 to 6 cm in dimension, are derived from the lower continental crust. Spinel-peridotite xenoliths equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965 °C to 1065 °C. These xenoliths do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran, and clinopyroxenes separated from two different mantle xenoliths have 87Sr/86Sr (0.704309 and 0.704593) and 143Nd/144Nd (0.512798) ratios which are less radiogenic than either their host alkali basalt or Damavand basalts, implying significant regional variations in the composition and extent of

  14. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites

    PubMed

    Kelley; Wartho

    2000-07-28

    Kimberlite eruptions bring exotic rock fragments and minerals, including diamonds, from deep within the mantle up to the surface. Such fragments are rapidly absorbed into the kimberlite magma so their appearance at the surface implies rapid transport from depth. High spatial resolution Ar-Ar age data on phlogopite grains in xenoliths from Malaita in the Solomon Islands, southwest Pacific, and Elovy Island in the Kola Peninsula, Russia, indicate transport times of hours to days depending upon the magma temperature. In addition, the data show that the phlogopite grains preserve Ar-Ar ages recorded at high temperature in the mantle, 700 degrees C above the conventional closure temperature.

  15. The Paradox of a Wet (High H2O) and Dry (Low H2O/Ce) Mantle: High Water Concentrations in Mantle Garnet Pyroxenites from Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2013-01-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of Mid-Ocean Ridge Basalt (MORB) and Oceanic Island Basalt (OIB). but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. Here, we analyzed by FTIR water in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than cpx/opx equilibrium from experimental data. The pyroxenite cpx and opx H2O concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between H2O in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between H2O concentrations and or the presence of phlogopite. These data imply that cpx and opx may be at water saturation, far lower than experimental data suggest. Reconstructed bulk rock pyroxenite H2O ranges from 200-460 ppm (average 331 +/- 75 ppm), 2 to 8 times higher than H2O estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas. The average bulk rock pyroxenite H2O/Ce is 69

  16. Nd-isotopes in selected mantle-derived rocks and minerals and their implications for mantle evolution

    USGS Publications Warehouse

    Basu, A.R.; Tatsumoto, M.

    1980-01-01

    The Sm-Nd systematics in a variety of mantle-derived samples including kimberlites, alnoite, carbonatite, pyroxene and amphibole inclusions in alkali basalts and xenolithic eclogites, granulites and a pyroxene megacryst in kimberlites are reported. The additional data on kimberlites strengthen our earlier conclusion that kimberlites are derived from a relatively undifferentiated chondritic mantle source. This conclusion is based on the observation that the e{open}Nd values of most of the kimberlites are near zero. In contrast with the kimberlites, their garnet lherzolite inclusions show both time-averaged Nd enrichment and depletion with respect to Sm. Separated clinopyroxenes in eclogite xenoliths from the Roberts Victor kimberlite pipe show both positive and negative e{open}Nd values suggesting different genetic history. A whole rock lower crustal scapolite granulite xenolith from the Matsoku kimberlite pipe shows a negative e{open}Nd value of -4.2, possibly representative of the base of the crust in Lesotho. It appears that all inclusions, mafic and ultramafic, in kimberlites are unrelated to their kimberlite host. The above data and additional Sm-Nd data on xenoliths in alkali basalts, alpine peridotite and alnoite-carbonatites are used to construct a model for the upper 200 km of the earth's mantle - both oceanic and continental. The essential feature of this model is the increasing degree of fertility of the mantle with depth. The kimberlite's source at depths below 200 km in the subcontinental mantle is the most primitive in this model, and this primitive layer is also extended to the suboceanic mantle. However, it is clear from the Nd-isotopic data in the xenoliths of the continental kimberlites that above 200 km the continental mantle is distinctly different from their suboceanic counterpart. ?? 1980 Springer-Verlag.

  17. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology

    NASA Astrophysics Data System (ADS)

    Mather, Kathy A.; Pearson, D. Graham; McKenzie, Dan; Kjarsgaard, Bruce A.; Priestley, Keith

    2011-07-01

    Despite the relatively long-standing availability of numerical approaches for estimating palaeogeotherms using peridotite xenolith Pressure-Temperature (P-T) data, the practise of fitting xenolith P-T arrays to simple models of lithospheric heat generation, in a non-quantitative manner, remains widespread. The lack of quantification in both the magnitude and uncertainty of heat flow and lithosphere thickness estimates leads to difficulty in evaluating proposed models for lithosphere evolution on a local and regional scale. Here, we explore the advantages of using a numerical approach to palaeogeotherm fitting, in terms of the ability to make objective comparisons of the effect that differing thermobarometer combinations and varying states of mineral and textural equilibrium have on the shape of the palaeogeotherm, and the resulting estimates of lithospheric thickness and heat flow. We also make quantitative comparisons between lithospheric mantle properties estimated using peridotite xenoliths versus single mineral xenocrysts. Using two reference peridotite xenolith databases from Bultfontein (S. Africa) and Somerset Island (Canada) we show that the same lithospheric mantle properties are predicted using harzburgite versus lherzolite thermobarometry methods. Filtering mineral data for the effects of inter-mineral disequilibrium does not produce significantly different palaeogeotherms but does increase the quality of fit of the palaeogeotherm to the P-T data, allowing more confidence to be placed in comparisons between locations. Palaeogeotherms calculated using xenocryst data, screened for peridotitic affinities, show misfits that are 2-3 times greater than those obtained using xenoliths. Lithospheric properties calculated from the Somerset Island xenocryst-based geotherm yield results that are within error of the xenolith estimate. A mutually consistent and quantitative palaeogeotherm fitting approach is used to evaluate existing hypotheses for the evolution of

  18. H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Bizimis, M.

    2014-01-01

    Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s.

  19. Coronitic textures in mafic xenoliths from Puy Beaunit (French Massif Central): Evidence for pyrometamorphism on cumulate rocks from a deep layered complex

    NASA Astrophysics Data System (ADS)

    Berger, J.; Femenias, O.; Demaiffe, D.

    2003-04-01

    The Puy Beaunit quaternary maar (Chaîne des Puys) is well known for its large diversity of xenoliths. Besides the typical crustal (granites and granulites) and mantle-derived (peridotites sensu lato) xenoliths, we have also identified magmatic mafic xenoliths, some of them displaying mm- to cm- scale layering. These mafic rocks are mainly gabbronorites with minor pyroxenites and anorthositic gabbros. It has been proposed that these mafic xenoliths are derived from a differentiated complex emplaced at the crust-mantle boundary during Permian times (257+/- 6Ma, zircon U-Pb SIMS data). These xenoliths have undergone a pyrometamorphic (HT-BP) event while they were brought up to the surface by the quaternary lava. Beside the classical polygonal texture, the xenoliths display four types of coronitic and symplectitic textures: 1) plag-opx-oxide symplectite between plagioclase and clinopyroxene; 2) brown-orange glass with skeletal and euhedral olivine around orthopyroxene; 3) poikilitic clinopyroxene with numerous inclusions of euhedral plagioclase and oxide (this texture is also observed around some clinopyroxene); 4) plag-opx-cpx-oxide symplectite around amphibole relics. Mafic samples with coronites are relatively poor in SiO2 (41 to 47wt% SiO2) when compared to polygonal mafic xenoliths (49 to 51wt% SiO2). It appears that the type of corona in a given sample depends on the composition of the primary (=magmatic) pyroxenes, plagioclase and ghost phase (amphibole?). Xenoliths with primary Fe-rich pyroxenes (opx: En59-67, cpx: En36-39) show poikilitic clinopyroxene textures. Xenoliths with primary An-poor plagioclase (An55) show coronas with olivine-bearing glass around orthopyroxene. Xenoliths with primary highly calcic plagioclase (An85-95) show plag-opx-oxide symplectite. Xenoliths with polygonal texture contain Mg-rich orthopyroxene (En70-80) and labrador plagioclase (An65-70). Thermobarometers based on the composition of amphibole relics give magmatic P

  20. Two diamond-bearing peridotite xenoliths from the finsch kimberlite, South Africa

    NASA Astrophysics Data System (ADS)

    Shee, S. R.; Gurney, J. J.; Robinson, D. N.

    1982-12-01

    Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at ˜1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the “wet” peridotite solidus.

  1. Sources and fate of xenoliths in the Wooley Creek batholith-a geochemical perspective

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.; Coint, N.; Rämö, O. T.; Barnes, M. A.

    2011-12-01

    xenoliths of diverse lithologic types underwent partial melting, resulting in pyroxene-rich assemblages. Among mafic xenoliths derived from the RCt, lower Zr and higher Sr contents than the protolith suggest that plagioclase was residual during partial melting. In contrast, metasedimentary xenoliths from the eHt have somewhat higher Zr contents compared to their protoliths. These xenoliths contain detrital zircons plus zircons whose U-Pb age is the same as the emplacement age, an indication that zircon was residual in the xenoliths during partial melting. Clearly, partial melts from xenoliths could not uniformly contaminate the host magma. The Nd isotope data suggest that the source terranes of xenoliths in the WCb can be clearly identified. If so, the data indicate that a faint, yet discernable ghost stratigraphy exists in the pluton and that stoping was an important mechanism of magma emplacement. Moreover, the lithologic diversity of the host terranes is NOT preserved in the xenolith suite, which is biased against Sr-rich rocks of the wHt and the abundant ultramafic rocks of the RCt.

  2. Surface and Mantle Expression of the Early Permian Tarim Mantle Plume

    NASA Astrophysics Data System (ADS)

    Chen, Mimi; Tian, Wei

    2015-04-01

    The mantle process during the Early Permian Tarim plume event is revealed by flood basalt and mantle xenoliths. Permian Tarim flood basalts have typical two pulses' eruption. The first pulse of the Tarim flood basalt was erupted at 291-290Ma, characterized by OIB-like Zr/Nb (~5.83), Nb/La and Ce/Pb ratios, and PUM-like initial 187Os/188Os ratios (0.1308-0.1329). They're plotted along a 290±11Ma isochron, implying a pristine "plume mantle" source. The second pulse of the Tarim flood basalt was erupted at 283-281 Ma, with Zr/Nb (~13.6), Nb/La and Ce/Pb ratios similar or close to the lower crust and initial 187Os/188Os ratios (0.1743~19.6740) that deviated from the ~290 Ma isochron line, indicative of significant crustal assimilation. Mantle-derived peridotite and pyroxenite xenoliths hosted in Cenozoic alkali basalts (~20 Ma) are found in the Xikeer, western Tarim Block. Based on their petrographic and geochemical characteristics, peridotite xenoliths can be divided into three groups. Group 1 peridotites, with the presence of the high Mg-number of olivines (91-93) and spinel-pyroxenes clusters, experienced high-degree melt extraction (~17% fractional melting) from garnet- to spinel-stable field. Groups 2 and 3 peridotites, characterized by the clinopyroxenes with spoon-shaped and highly fractionated REE patterns respectively, underwent extensive silicate melt metasomatism at low melt/rock ratios (15) and that the host basanite is incapable of being the metasomatic agent. The Re-Os isotopic systematics of the Xikeer peridotites and pyroxenites yield an isochron of 290±11 Ma, virtually identical to the age of Tarim flood basalts. Their PUM-like Os initial ratios and convecting mantle-like ɛNd(t=290 Ma) strongly suggest that the Xikeer mantle xenoliths derive from the plume mantle. We propose that the Xikeer xenolith suite recorded mantle 'auto-refertilization' process, i.e., they may have been initially formed by melt extraction from the convecting mantle and

  3. Softening of sub-continental lithosphere prior rifting: Evidence from clinopyroxene chemistry in peridotite xenoliths from Natash volcanic province, SE Egypt

    NASA Astrophysics Data System (ADS)

    Abu El-Rus, M. A.; Chazot, G.; Vannucci, R.; Gahlan, H. A.; Boghdady, G. Y.; Paquette, J.-L.

    2016-11-01

    Major and trace element compositions were determined for well-preserved diopside relics in highly altered mantle xenoliths from Natash volcanic province, south Eastern Desert of Egypt, to unravel the major magmatic processes that occurred within the lithospheric mantle long time before the Red Sea rift. The diopside shows a limited compositional range as for mg# (0.89-0.92), Al2O3 (3.52-5.60 wt%), andTiO2 (0.15-0.35 wt%), whereas it is characterised by a larger variability as for Na2O (0.23-1.83 wt%) and, in particular the trace elements. The latter identify two main diopside types: 1) CPX-I has low abundances of incompatible elements, spoon-like REE patterns, small negative anomalies in Ti and Zr and a positive anomaly in Sr; and 2) CPX-II has high abundances in incompatible elements, REE patterns with steady enrichment from HREE to LREE patterns and marked negative anomalies in Ti and Zr. The range of REE patterns in the mantle section can be explained by 7-22% batch melting of the primitive mantle followed by varying degrees of trace element chromatographic exchange. CPX-I underwent only small-scale reactive porous flow metasomatism at the percolation front, whereas CPX-II resulted from large-scale rock-melt interaction close to the melt source. Trace element abundances of CPX-II suggest equilibration with carbonatite-like melts that bear close similarities with the carbonatites that enriched the lithosphere in the southern part of the Arabian plate. The similarity of the P-T gradients recorded by the Natash and southern part of Arabian lithospheres, as well as their re-fertilisation by similar, carbonatite-like agents, is consistent with the presence of a mantle plume at the base of the lithosphere after accretion of the Arabian-Nubian Shield in Late Precambrian. The plume material was fossilized due to secular cooling and became part of the lithospheric mantle before the eruption of the Natash volcanic in Late Cretaceous.

  4. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.

  5. The role of mantle CO2 in volcanism

    USGS Publications Warehouse

    Barnes, I.; Evans, William C.; White, L.D.

    1988-01-01

    Carbon dioxide is the propellant gas in volcanic eruptions and is also found in mantle xenoliths. It is speculated that CO2 occurs as a free gas phase in the mantle because there is no reason to expect CO2 to be so universally associated with volcanic rocks unless the CO2 comes from the same source as the volcanic rocks and their xenoliths. If correct, the presence of a free gas in the mantle would lead to physical instability, with excess gas pressure providing the cause of both buoyancy of volcanic melts and seismicity in volcanic regions. Convection in the mantle and episodic volcanic eruptions are likely necessary consequences. This suggestion has considerable implications for those responsible for providing warnings of impending disasters resulting from volcanic eruptions and earthquakes in volcanic regions. ?? 1988.

  6. Magnetic mineralogy of pyroxenite xenoliths from Hannuoba basalts, northern North China Craton: Implications for magnetism in the continental lower crust

    NASA Astrophysics Data System (ADS)

    Li, Zhiyong; Zheng, Jianping; Zeng, Qingli; Liu, Qingsheng; Griffin, W. L.

    2014-02-01

    Studies of the petrology, mineral chemistry, and rock magnetic properties of nine pyroxenite xenoliths from Hannuoba basalts, northern North China Craton, have been made to determine the magnetization signature of the continental lower crust. These pyroxenites are weakly magnetic with low average susceptibility (χ) and saturation isothermal remanent magnetization (Mrs) of 39.59 × 10-8 m3 kg-1 and 12.05 × 10-3 Am2 kg-1, respectively. The magnetic minerals are mainly magnetite, pyrrhotite, and Fe-rich spinel, which significantly contribute to χ and natural remanent magnetization. Magnetite occurs as interstitial microcrystals together with zeolite aggregates, indicating a secondary origin in a supergene environment. In contrast, pyrrhotite and Fe-rich spinel were formed prior to the xenoliths' ascent to the surface, as evidenced by their dominant occurrence as tiny inclusions and thin exsolution lamellae in pyroxene. The Fe-rich spinel has ~ 50% mole fraction of Fe3O4 and corresponds to the strongest magnetization, and its coexistence with Mg-rich spinel implies a reheating event due to the underplating of basaltic magma. Besides, armalcolite and ilmenite were found in the reaction rims between xenoliths and the basalt, but they contribute little to the whole rock magnetization. However, these pyroxenite xenoliths would be nonmagnetic at in situ depths, as well as peridotite and mafic granulite xenoliths derived from the crust-mantle transition zone (~ 32-42 km). Therefore, we suggest the limiting depth of magnetization at the boundary between weakly magnetic deep-seated (lower crust and upper mantle) xenoliths and strongly magnetic Archean granulite facies rocks (~ 32 km) in Hannuoba, northern North China Craton.

  7. Thermal history of Colorado plateau lithoshere from Sm-Nd mineral geochronology of xenoliths

    SciTech Connect

    Wendlandt, E.; DePaolo, D.J.; Baldridge, W.S.

    1996-07-01

    The thermal history of the lower crust and upper mantle of the Colorado Plateau region is reconstructed on the basis of Nd and Sr isotopes in minerals and whole rock xenoliths hosted by Tertiary minette and kimberlite. Whole rock data indicate that the crustal rocks were extracted from the mantle at ca. 1900 Ma. The mineral ages, which are 30-100 m.y. younger than crystallization ages of Proterozoic `anorogenic` granitoids from regions bordering the Colorado Plateau, are interpreted as cooling ages set following the crustal thermal maximum at 1380-1440 Ma. The eclogite mineral ages are probably the ages of the host Garnet Ridge and Moses Rock diatremes, and require that Nd isotopes were maintained in equilibrium right up to the time of entrainment. The isotopic data and the mineral textures suggest that the eclogites were undergoing active recrystallization at 21 Ma. The contrast in mineral ages between granulite and eclogite xenoliths indicates that the equilibration temperatures of the two rock types reflect different times of equilibration, and therefore cannot be considered as evidence for a negative thermal gradient at depth. The Rb-Sr mineral data from the xenoliths give variable early Paleozoic and Proterozoic ages that cannot easily be assigned to geologic events. 55 refs., 9 figs., 2 tabs.

  8. A study of REE and Pb, Sr and Nd isotopes in garnet-lherzolite xenoliths from Mingxi, Fujian Province

    USGS Publications Warehouse

    Wankang, H.; Junwen, W.; Basu, A.R.; Tatsumoto, M.

    1993-01-01

    The REE and Pb, Sr, Nd isotopes in three xenoliths from limburgite and scoria-breccias, including spinel-lherzolite, spinel-garnet-lherzolite and phlogopite-gamet-lherzolite, were analysed. The REE contents of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE patterns characterized by weak LREE depletion. The143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with ??Nd=+ 8.2- +15.8,206Pb/204 Pb < 18.673, and207Pb/204Pb < 15.574. All this goes to show that the upper mantle in Mingxi at the depth of 67-82 km is a depleted mantle of MORB type, with87Sr/86 Sr ratios 0.70237-0.70390. In Nd-Sr diagram the data points of whole rocks are all out of the mantle array, implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array. ?? 1993 Institute of Geochemistry, Chinese Academy of Sciences.

  9. Hydrous metasomatism and melt percolation in the lithospsheric mantle wedge underneath Comallo, Rio Negro Province, Argentina

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Martha; Ntaflos, Theodoros; Bjerg, Ernesto; Gregoire, Michel; Hauzenberger, Christoph

    2015-04-01

    Xenoliths from Comallo, N. Patagonia, are sp-lherzolites, sp-harzburgites, dunites, wehrlites and clinopyroxenites. The rock-forming minerals are olivine, ortho- and clinopyroxene and spinel. Amphibole and phlogopite are present as relicts, suggesting that the region was affected by modal metasomatism. The majority of xenoliths show a dominant well-equilibrated equigranular texture. Small rounded spinels and sulfides enclosed within olivine as well as amphiboles enclosed in clinopyroxenes indicate that these xenoliths are recrystallized. The recrystallized samples show secondary protogranular textures. The amphibole inclusions in clinopyroxenes indicate that the peridotite has experienced a dehydration reaction during the recrystallization process. Amphibole and phlogopite, where present, have been destabilized and show breakdown reactions at the margin, forming secondary ol, cpx and sp. The clinopyroxene REE patterns display a concave-up shape in LREE and MREE whereas the HREE abundances are low. Depending on the presence or not of amphibole and/or phlogopite the cpx REE patterns can be divided into two different groups, both of which show absence of Sr- and weak Zr, Hf and Ti-negative anomalies. These features combined with the REE patterns highlight a cryptic metasomatism due to melt infiltration of alkali basaltic composition. The differences occuring between the two groups may indicate a differentiation at distance from the percolation front. A third group with steep patterns, negative slope and slightly positive Eu anomaly shows a progression from LREE enrichments to depleted HREE. A carbonatitic metasomatism is evidenced by the LREE enrichment as well as a positive Eu-anomaly combined with a negative Ti-anomaly. Calculated equilibrium temperatures at 1.5GPa using the cores of crystals range between 790 and 950°C, whereas the estimated temperatures using rims are ~70°C higher. Such temperatures are relatively low for the lithospheric mantle below Comallo

  10. Sr and Nd isotope composition of deformed peridotite xenoliths from Udachnaya kimberlite pipe

    NASA Astrophysics Data System (ADS)

    Surgutanova, E. A.; Agashev, A. M.; Demonterova, E. I.; Golovin, A. V.; Pokhilenko, N. P.

    2016-11-01

    New results of Rb-Sr and Sm-Nd isotope analyses have been obtained on samples of deformed peridotite xenoliths collected from the Udachnaya kimberlite pipe (Yakutia). The data obtained imply two main stages of metasomatic alteration of the lithospheric mantle base matter in the central part of the Siberian Craton. Elevated ratios of Sr isotopes may be considered as evidence of an ancient stage of metasomatic enrichment by a carbonatite melt. The acquired Nd isotope composition together with the geochemistry of the deformed peridotite xenoliths suggests that the second stage of metasomatic alteration took place shortly before formation of the kimberlite melt. The metasomatic agent of this stage had a silicate character and arrived from an asthenosphere source, common for the normal OIB type (PREMA) and the Group-I kimberlite.

  11. Millennia of magmatism recorded in crustal xenoliths from alkaline provinces in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs A.; Waight, Tod E.; Nielsen, Troels F. D.

    2016-10-01

    Mantle-derived CO2-rich magma ascends rapidly through the lithospheric column, supporting upward transport of large mantle-xenoliths and xenocryst (>30 vol%) loads to the (sub-)surface within days. The regional magmatism during which such pulses occur is typically well characterized in terms of general duration and regional compositional trends. In contrast, the time-resolved evolution of individual ultramafic dyke and pipe systems is largely unknown. To investigate this evolution, we performed a geochemical and speedometric analysis of xenoliths from ultramafic (aillikite) dykes in two Neoproterozoic alkaline provinces in West Greenland: 1) Sarfartôq, which overlies Archean ultra-depleted SCLM and yielded ultra-deep mineral indicators, and 2) Sisimiut, where the SCLM is refertilized and deep xenoliths (>120 km) are lacking. We focused on the rare and understudied crustal xenoliths, which preserve a rich record of melt injection. The xenoliths are derived from 25-36 km depth and were transported to the sub-surface within 4 ± 1h (Fe-in-rutile speedometry), during which they were exposed to the magmatic temperature of 1 , 015 ± 50°C (Zr-in-rutile thermometry). Garnet major-element speedometry shows that before the xenolith-ascent stage the lower crust had already been exposed to a variety of magmas for 700 (Sarfartôq) and 7,100 (Sisimiut) years. The Sisimiut samples contain exotic carbonate- and sulfide-rich assemblages, which occurred during the early stages of melt infiltration. Absence of such exotic assemblages and the faster magmatic development at Sarfartôq are tentatively linked to higher decarbonation kinetics in the more depleted SCLM at this location. The data reveal the so far unrecognized pre-eruptive development of ultramafic systems. This stage involves non-steady state melt-silicate interaction between ascending magmas and the immediate SCLM wall-rock, during which the composition of both is modified. The progress and duration of this interaction

  12. Multi-Isotopic evidence from West Eifel Xenoliths

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Sprung, P.

    2015-12-01

    Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.

  13. Controls on volatile content and distribution in the continental upper mantle of Southern Gondwana (Patagonia & W. Antarctica)

    NASA Astrophysics Data System (ADS)

    Rooks, Eve; Gibson, Sally; Petrone, Chiara; Leat, Phillip

    2015-04-01

    Water content is known to affect many physical and chemical properties of the upper mantle, including melting temperature and viscosity. Water is hosted by hydrous phases, such as amphibole and phlogopite, and also by more dominant, nominally-anhydrous mantle minerals (e.g. olivine and pyroxene). The latter have the potential to incorporate hundreds of ppm of water in point defects, and may explain geophysical observations such as seismic and conductivity anomalies in the upper mantle [1]. However, the significance of the reported concentrations of H2O in nominally anhydrous minerals in mantle xenoliths is still a subject of debate primarily due to the effects of post-entrainment loss [1,2]. Unlike H2O and Li, F is less susceptible to post entrainment loss and can potentially be used to constrain the source of volatiles. We present high-precision SIMS analyses of H2O, Li and F in mantle xenoliths hosted by recently-erupted (5-10 Ka) alkali basalts from south Patagonia and the Antarctic Peninsula. These two regions formed part of the southern margin of the Gondwana supercontinent, prior to break-up, and were located above long-lived subduction zones for at least 200 M.yr., making them highly-appropriate to investigating long term evolution of the sub-continental lithospheric mantle in this setting. The xenoliths are well characterised peridotites, sourced from the off-craton spinel- and spinel-garnet facies lithospheric mantle (40-80 km). Samples are relatively dry: H2O contents of olivine span 0-49 ppm, orthopyroxene 150-235 ppm and clinopyroxene 100-395 ppm. West Antarctic samples are more hydrated than Patagonian samples, on average. These H2O concentrations fall within the global measured range for off-craton mantle minerals [4]. We attribute low H2O concentrations in olivine to diffusive loss, either by exchange with the host magma, shallow level degassing or during cooling [2]. F shows less variability than H2O and is most highly concentrated in clinopyroxenes

  14. Multi-stage metasomatism revealed by trace element and Li isotope distributions in minerals of peridotite xenoliths from Allègre volcano (French Massif Central)

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyan; Deloule, Etienne; France, Lydéric; Ingrin, Jannick

    2016-11-01

    The modal, chemical, and isotopic compositions of mantle peridotite are largely modified by metasomatic processes, which may affect them repeatedly. Xenoliths are commonly used to characterize those metasomatic processes along with the structure, and chemical and isotopic compositions of mantle domains. Nevertheless, the original mantle signatures born by mantle xenoliths are potentially obscured by the interactions occurring between the host magma and the xenolith itself. Here we attempt to identify to which degree the original Li content and isotopic composition, as well as other trace element contents of mantle xenoliths, can be modified by interaction with the host magma. Peridotite xenoliths that have suffered extensive exchange with the entraining magma were sampled in the solidified lava lake of Allègre, Southern French Massif Central, in order to decipher the signature related to peridotite-melt interaction, and to further unravel the evolution of the sub-continental lithospheric mantle. In-situ trace element analyses of clinopyroxene (Cpx) were performed via LA-ICP-MS, and the Li content and isotopic composition of pyroxene and olivine (Ol) via SIMS. Negative HFSE anomalies (Ti/Eu ratios as low as 437) and markedly high LREE/HREE ratios ((La/Yb)N as high as 79) are characteristic of mantle metasomatism at depth. Lithium isotope systematics indicates that at least two different metasomatic events affected the peridotite. Exceptionally high Li contents in Cpx (up to 50 ppm) and slight Li enrichment of Ol rims are ascribed to diffusive Li influx with a positive δ7Li value (+ 3.2‰) from the host magma after entrainment. Conversely, Ol cores preserve extremely light Li isotopic compositions (δ7Li as low as - 25‰) with high Li contents (up to 4.4 ppm) compared to normal mantle, indicating a metasomatic event that occurred before xenolith entrainment. The negative δ7Li signature of this early metasomatism may be related to subduction-related fluids

  15. Determining the geochemical structure of the mantle from surface isotope distribution patterns? Insights from Ne and He isotopes and abundance ratios

    NASA Astrophysics Data System (ADS)

    Stroncik, N.; Niedermann, S.; Schnabel, E.; Erzinger, J.

    2011-12-01

    It is a common procedure among geochemists to use surface distribution patterns of e.g. Sr, Nd, Pb or He isotopes of lavas erupted at oceanic islands to map the geochemical structure of the Earth's mantle. Advances in noble gas mass spectrometry within the last decade resulting in an increasing availability of Ne isotope data sets allow us to test the strength of this approach. 4He and 21Ne are coupled through the same parent nuclides and therefore should show analogous isotope distribution patterns. Here we present He and Ne fusion data of fresh olivines derived from Big Island, Hawaii, together with He and Ne fusion data of fresh glasses from the Easter Seamount Chain (ESC), indicating that the observed isotope distribution patterns are mainly controlled by melting and shallow mixing processes. He isotopic ratios of the investigated olivines vary from MORB-like (8 ± 1 RA) to ratios more typical for a primitive mantle source (up to 20 and 26 RA for Hawaii and the ESC, respectively; RA = atmospheric 3He/4He ratio of 1.39 x 10-6). In contrast, all Ne isotope data plot within error limits along the Loihi-Kilauea line in a Ne three-isotope diagram. The Loihi-Kilauea line is regarded to be typical for a primitive mantle source. Thus, the Ne isotope data are inconsistent with any kind of zoned plume model or even a heterogeneous mantle source. The combined He and Ne data show that these He and Ne isotope systematics are produced by a pre-degassing fractionation process and subsequent melt mixing. Basically, this process causes a He deficit in melts generated by the plume, as shown by 3He/22NeS below current estimates of solar or planetary composition and 4He/21Ne* lower than the production ratio, making the He isotopic composition more susceptible to changes than the Ne isotopic composition. This can best be explained by a model in which He is fractionated from Ne during formation of melts from a plume (or enriched parts of a plume) at low melting degrees, which

  16. First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths.

    PubMed

    Korsakov, Andrey V; Golovin, Alexander V; De Gussem, Kris; Sharygin, Igor S; Vandenabeele, Peter

    2009-08-01

    For the first time burkeite was observed as a daughter phase in the melt inclusions in olivine by Raman spectroscopy. The olivine comes from sheared lherzolite xenoliths from the Udachnaya-East kimberlite pipe (Yakutia, Russia). This anhydrous sulfate-carbonate mineral (Na(6)(CO(3))(SO(4))(2)) is generally considered to be a characteristic mineral in saline soils or in continental lacustrine evaporite deposits. Recently, however, this mineral was identified in hydrothermal fluids. Our observations indicate that burkeite can also be formed from a mantle-derived melt.

  17. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust

    NASA Astrophysics Data System (ADS)

    Cooper, George F.; Davidson, Jon P.; Blundy, Jon D.

    2016-10-01

    The Lesser Antilles Volcanic Arc is remarkable for the abundance and variety of erupted plutonic xenoliths. These samples provide a window into the deeper crust and record a more protracted crystallisation history than is observed from lavas alone. We present a detailed petrological and in situ geochemical study of xenoliths from Martinique in order to establish their petrogenesis, pre-eruptive storage conditions and their contribution to construction of the sub-volcanic arc crust. The lavas from Martinique are controlled by crystal-liquid differentiation. Amphibole is rarely present in the erupted lavas, but it is a very common component in plutonic xenoliths, allowing us to directly test the involvement of amphibole in the petrogenesis of arc magmas. The plutonic xenoliths provide both textural and geochemical evidence of open system processes and crystal `cargos'. All xenoliths are plagioclase-bearing, with variable proportions of olivine, spinel, clinopyroxene, orthopyroxene and amphibole, commonly with interstitial melt. In Martinique, the sequence of crystallisation varies in sample type and differs from other islands of the Lesser Antilles arc. The compositional offset between plagioclase (~An90) and olivine (~Fo75), suggests crystallisation under high water contents and low pressures from an already fractionated liquid. Texturally, amphibole is either equant (crystallising early in the sequence) or interstitial (crystallising late). Interstitial amphibole is enriched in Ba and LREE compared with early crystallised amphibole and does not follow typical fractionation trends. Modelling of melt compositions indicates that a water-rich, plagioclase-undersaturated reactive melt or fluid percolated through a crystal mush, accompanied by the breakdown of clinopyroxene, and the crystallisation of amphibole. Geothermobarometry estimates and comparisons with experimental studies imply the majority of xenoliths formed in the mid-crust. Martinique cumulate xenoliths are

  18. Geochemical constraints on the origin of serpentinization of oceanic mantle

    NASA Astrophysics Data System (ADS)

    Li, Z.; Lee, C. A.

    2004-12-01

    The lower seismic zone of double seismic zones in subducting oceanic lithosphere is suggested to be a result of serpentine or chlorite dehydration in the lithospheric mantle (Hacker et al., 2003). However, the mechanism by which oceanic lithospheric mantle is serpentinized is unclear. One way is through hydrothermal circulation where the lithospheric mantle represents part of the circuit through which seawater passes and then returns to the ocean. Another way is to inject seawater into the lithospheric mantle through fractures in the overlying crust without having a return path of water to the ocean. The two mechanisms differ in that the former is an open system process whereas the latter is a closed system process in which the mantle serves as a ¡°sponge¡± for water. Identifying the dominant process is important. For example, if the mantle is part of a hydrothermal circulation cell, the interaction of seawater with the mantle will influence the composition of seawater. This also has important implications for the heat flow out of seafloor. On the other hand, if serpentinization occurs by a closed system process, there will be no influence on seawater composition. Previous studies have suggested that serpentinization of ophiolite bodies was an isochemical process, hence closed system, but it was not clear in these studies whether serpentinization occurred in situ in the oceanic lithosphere. To better understand serpentinization processes in the oceanic lithosphere, we investigated a continuous transition zone of relatively unaltered harzburgite to completely serpentinized harzburgite in the Feather River Ophiolite in northern California. These samples are highly enriched in Na, K, Rb, Cs, U, and Sr, which strongly suggests that serpentinization occurred while the oceanic lithosphere was beneath the ocean. All samples (n=19) have Al2O3 contents ranging from 0.6 to 2.5 wt.% and have extremely depleted light rare-earth element abundances, indicating that these

  19. The role of carbonatitic volcanism in the degassing of mantle CO2

    NASA Astrophysics Data System (ADS)

    Bailey, K.; Humphreys, E. R.

    2010-12-01

    It has long been known that regions of central Europe, such as the Eifel, Germany and Massif central, France are areas where significant volumes of CO2 are liberated. Many of these areas are exploited to produce bottled, carbonated mineral water. Areas with a high CO2 output are not just confined to Europe, but occur in many continental regions around the world. One characteristic association is that of alkaline ultramafic magmatism, which in many European provinces is of Miocene to quaternary age, and although volcanism is no longer active, carbon dioxide emissions are still prolific. The recent discovery of extrusive carbonatitic activity in alkaline volcanic provinces adds to their complexity, but also hints at the role of CO2 in the genesis of such melts. Carbonatites are now documented from Spain, France, Italy and Germany, with potential examples in many other regions. Recent discoveries by Humphreys et al. (2010) from Calatrava, Spain, show that volcanism is derived from below the depth of the lithospheric mantle (~80km) and that CO2 is an essential component of the mantle melt. The presence of aragonite, abundant mantle xenolithic debris and the physical morphology of the typical diatremic volcanoes are evidence of deep-derived, rapidly erupted mantle melts. In all volcanic provinces where carbon isotopes have been measured from CO2 emissions, they are indicative of a mantle origin. Together with evidence for CO2 in the source of many volcanics and our recent evidence of their sublithospheric mantle origin, we suggest that CO2 in these provinces represents an important component of direct mantle degassing. The volumes of CO2 and rates of emission are yet to be quantified in most regions, but importantly outlast volcanic activity by millions of years in some cases. We suggest that intraplate alkaline-ultramafic volcanic areas represent a long-term flux of CO2 derived directly from the mantle. Humphreys et al., 2010. Aragonite in olivine from Calatrava, Spain

  20. Petrology of ultramafic, mafic, and felsic xenoliths from Ruddon's Point basanite, Fife, Scotland, UK - preliminary results.

    NASA Astrophysics Data System (ADS)

    Sobczak, Paweł; Matusiak-Malek, Magdalena; Puziewicz, Jacek; Upton, Brian

    2016-04-01

    Numerous dykes of Carboniferous alkaline volcanic rocks occur in the county of Fife, Scotland, United Kingdom. Basanitic dyke from Ruddon's Point encloses mafic, ultramafic, and felsic xenoliths as well as megacryts of alkali feldspar and xenoliths of felsic rocks. The studied set of rocks comprises wehrlite, clinopyroxenites, gabbro, anorthosite, and anorthoclasite. Wehrlite contains pseudomorphs after biotite, the Mg# of clinopyroxene varies from 0.78 to 0.81, the Fo content in olivine is 0.68-0.71. Clinopyroxenites have cumulative textures and are typically olivine± sulfides bearing. Most of them contained biotite which is now replaced by brownish aggregates formed of chlorite with scarce biotite intergrowths. The Mg# of clinopyroxene (Al, Ti - augite) varies from 0.77 to 0.84. The Fo content in olivine is 0.81-0.85 in plagioclase-free clinopyroxenites, but in xenolith where minor amounts of plagioclase (Ab48-51An47-48) occur, the Fo content is 0.70 - 0.72. Biotite's Mg# is ~70%. Gabbro is titanite-bearing and contains trace amounts of amphibole. Diopside forming the gabbro is characterized by Mg#=0.56-0.64, plagioclase is potassium-free (Ab14-22An77-86). Anorthosite also encloses brownish post-biotitic aggregates. Plagioclase has composition of Ab35-43An54-64. Anorthoclasite (Or65-72 Ab65-72) is characterized by unusual mineral composition - it contains corundum, zircon, apatite, and niobates. Previous study on the felsic xenoliths from Scotland showed their lower crustal origin, but with possible ultramafic affinity (e.g. Upton et al., 2009, Min.Mag., 73, 943-956). Crystallization from met- and peraluminous melts was also suggested. Mantle-derived xenoliths from Scotland are from almost primitive to strongly depleted (Upton et al.; 2010, J. Geol. Soc. London, 168, 873-886), but more data from individual localities are necessary for precise description and interpretation of mantle and lower crustal processes beneath Scotland. This study was possible thanks to

  1. Eclogites, pyroxene geotherm, and layered mantle convection.

    PubMed

    Basu, A R; Ongley, J S; Macgregor, I D

    1986-09-19

    Temperatures of equilibration for the majority (81 percent) of the eclogite xenoliths of the Roberts Victor kimberlite pipe in South Africa range between 1000 degrees and 1250 degrees C, falling essentially on the gap of the lower limb of the subcontinental inflected geotherm derived from garnet peridotite xenoliths. In view of the Archean age (>2.6 x 10(9) years) of these eclogites and their stratigraphic position on the geotherm, it is proposed that the inflected part of the geotherm represents the convective boundary layer beneath the conductive lid of the lithospheric plate. The gradient of 8 Celsius degrees per kilometer for the inflection is characteristic of a double thermal boundary layer and suggests layered convection rather than whole mantle convection for the earth.

  2. Petrology of gabbroic xenoliths in 1960 Kilauea basalt: crystalline remnants of prior (1955) magmatism

    USGS Publications Warehouse

    Fodor, R.V.; Moore, R.B.

    1994-01-01

    The 1960 Kapoho lavas of Kilauea's east rift zone contain 1-10 cm xenoliths of olivine gabbro, olivine gabbro-norite, and gabbro norite. Textures are poikilitic (ol+sp+cpx in pl) and intergranular (cpx+pl??ol??opx). Poikilitic xenoliths, which we interpret as cumulates, have the most primitive mineral compositions, Fo82.5, cpx Mg# 86.5, and An80.5. Many granular xenoliths (ol and noritic gabbro) contain abundant vesicular glass that gives them intersertal, hyaloophitic, and overall 'open' textures to suggest that they represent 'mush' and 'crust' of a magma crystallization environment. Their phase compositions are more evolved (Fo80-70, cpx Mg# 82-75, and An73-63) than those of the poikilitic xenoliths. Associated glass is basaltic, but evolved (MgO 5 wt%; TiO2 3.7-5.8 wt%). The gabbroic xenolith mineral compositions fit existing fractional crystallization models that relate the origins of various Kilauea lavas to one another. FeO/MgO crystal-liquid partitioning is consistent with the poikilitic ol-gabbro assemblage forming as a crystallization product from Kilauea summit magma with ???8 wt% MgO that was parental to evolved lavas on the east rift zone. For example, least squares calculations link summit magmas to early 1955 rift-zone lavas (???5 wt% MgO) through ???28-34% crystallization of the ol+sp+cpx+pl that comprise the poikilitic ol-gabbros. The other ol-gabbro assemblages and the olivine gabbro-norite assemblages crystallized from evolved liquids, such as represented by the early 1955 and late 1955 lavas (???6.5 wt% MgO) of the east rift zone. The eruption of 1960 Kapoho magmas, then, scoured the rift-zone reservoir system to entrain portions of cumulate and solidification zones that had coated reservoir margins during crystallization of prior east rift-zone magmas. ?? 1994 Springer-Verlag.

  3. Birch's Mantle

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Francis Birch's 1952 paper started the sciences of mineral physics and physics of the Earth's interior. Birch stressed the importance of pressure, compressive strain and volume in mantle physics. Although this may seem to be an obvious lesson many modern paradoxes in the internal constitution of the Earth and mantle dynamics can be traced to a lack of appreciation for the role of compression. The effect of pressure on thermal properties such as expansivity can gravitational stratify the Earth irreversibly during accretion and can keep it chemically stratified. The widespread use of the Boussinesq approximation in mantle geodynamics is the antithesis of Birchian physics. Birch pointed out that eclogite was likely to be an important component of the upper mantle. Plate tectonic recycling and the bouyancy of oceanic crust at midmantle depths gives credence to this suggestion. Although peridotite dominates the upper mantle, variations in eclogite-content may be responsible for melting- or fertility-spots. Birch called attention to the Repetti Discontinuity near 900 km depth as an important geodynamic boundary. This may be the chemical interface between the upper and lower mantles. Recent work in geodynamics and seismology has confirmed the importance of this region of the mantle as a possible barrier. Birch regarded the transition region (TR ; 400 to 1000 km ) as the key to many problems in Earth sciences. The TR contains two major discontinuities ( near 410 and 650 km ) and their depths are a good mantle thermometer which is now being exploited to suggest that much of plate tectonics is confined to the upper mantle ( in Birch's terminology, the mantle above 1000 km depth ). The lower mantle is homogeneous and different from the upper mantle. Density and seismic velocity are very insensitive to temperature there, consistent with tomography. A final key to the operation of the mantle is Birch's suggestion that radioactivities were stripped out of the deeper parts of

  4. Xenoliths of mafic/ultramafic igneous rocks as carriers of information on lower crust beneath Złotoryja - Jawor volcanic complex (SW Poland).

    NASA Astrophysics Data System (ADS)

    Dajek, Michał; Matusiak-Malek, Magdalena; Puziewicz, Jacek; Lipa, Danuta; Ntaflos, Theodors

    2016-04-01

    The Cenozoic alkaline volcanic rocks in Lower Silesia (SW Poland) are known for their mantle peridotite xenoliths. However, the mafic and ultramafic xenoliths with cumulative textures and of composition of olivine- or hornblende clinopyroxenite, clinopyroxenite, websterite, norite and gabbro occur in some of the lavas (6 sites) of the Złotoryja-Jawor volcanic complex. The xenoliths are anhydrous, only in Wilcza Góra minor amount of amphibole occurs. The Mg# of clinopyroxene varies from 0.54 (Ostrzyca Proboszczowicka clinopyroxenite) to 0.89 (Góra Świątek clinopyroxenite). Forsterite content in olivine varies from 64% (Winna Góra gabbro) to 86% (Wilcza Góra hornblende clinopyroxenite). Anortite content in plagioclase in nortite and gabbros is 33-56%. The Mg# in amphibole is 0.43 to 0.76. Clinopyroxene trace element composition is typically LREE enriched, but in Wilcza Góra norite and Mnisza Góra clinopyroxenite it is LREE-depleted. The calculated pressures of clinopyroxene crystallization (calculated by the algorithm of Nimis and Ulmer, 1998, CMP, 1998, 122-135, assuming all Fe to be 2+) is from 0.45 to 0.96 GPa pointing to crystallization of the pyroxenitic rocks in lower crust or at crust/mantle boundary. Theoretical melts in equilibrium with clinopyroxene enriched in LREE resemble the alkaline lavas from the area and we suggest they are cognate with host magmas. We explain variations in composition of mafic xenoliths from Wilcza Góra, Winna Góra and Grodziec to be a result of magma fractionation. Xenoliths containing clinopyroxene impoverished in LREE may represent lithologies inherited from Variscan oceanic crust. Megacrysts of clinopyroxene present in some of the localities cannot result from disintegration of mafic xenoliths This study was possible thanks to project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science.

  5. The really "stealth" mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna; Wojtulek, Piotr

    2015-04-01

    The Lower Silesian/Upper Lusatian domain of European subcontinental lithospheric mantle is dominated by two kinds of harzburgites: A - not affected or slightly affected by silicate melt metasomatism related to migration of lavas during formation of Cenozoic Central European Volcanic Province, and B - strongly overprinted by those lavas (Puziewicz et al. 2015, IJES, DOI 10.1007/s00531-014-1134-2). The study of Matusiak-Małek et al. (2014, J Petrol 55, 1799-1828) shows that the A harzburgites untouched by metasomatic events contain no clinopyroxene. Part of the A harzburgites contains clinopyroxene which has "primary" appearance but was added to the host during metasomatic event(s) overprinting the primary mineral assemblage. The metasomatic nature of this clinopyroxene can be recognized by its major and trace element chemical composition, and the mineral is a good example of the "stealth" metasomatic phase (O'Reilly & Griffin 2013, Springer). One of the typical features of this kind of clinopyroxene are LREE enriched REE patterns. We have discovered single xenoliths containing clinopyroxene with LREE depleted patterns in Steinberg near Görlitz (Lower Silesian/Upper Lusatian Region) and in Feldstein near Suhl (Heldburger Gangschar in Thuringia). Usually these kind of REE patterns is considered to be a relic of primary mineral assemblage subjected to strong melt-depletion. However, clinopyroxene from Steinberg is texturally late phase. Its major element chemical composition suggests that it is not a residue after partial melting, but a late silicate-melt metasomatic addition to the host rock which preceded the xenolith entrainment in the erupting lava. Thus, the metasomatising melt must have had characteristics enabling the precipitation of LREE depleted clinopyroxene. The existence of such the melts is clearly shown by the clinopyroxene from websterite cumulate from Dobkovičky in Eger Rift (Ackerman et al. 2012, J Geosci 58, 199-219), which has LREE depleted

  6. The Role of the Mantle Lithosphere in Continent Stability

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Ancuta, L. D.; Fouch, M. J.; Idleman, B. D.; Ionov, D. A.; James, D. E.; Meltzer, A.; Pearson, G.; Shirey, S. B.; Zeitler, P. K.

    2012-12-01

    Most Archean cratons are underlain by up to 200 km thick sections of mantle characterized by high seismic velocities. Xenoliths from cratonic mantle lithosphere show them to consist of refractory peridotites that are the residues of very high degrees of partial melt removal leaving the majority with less than 2% Al2O3. The partial melt removal leaves the lithospheric mantle compositionally buoyant, strong, and with very little internal radioactive heat generating capacity so that even after cooling it contributes to the strength, longevity, and relative geologic inactivity of the overlying crust. Re-Os studies, particularly in the Kaapvaal Craton of southern Africa, show a strong correspondence between the ages of melt depletion of the cratonic mantle and significant crust building events. The main age peak in the Kaapvaal lithospheric mantle is 2.9 Ga, coincident with assembly of the western and eastern blocks of the craton. The only significant disruption to this age pattern is seen below the 2 Ga Bushveld intrusion where the mantle lithosphere is characterized by slower seismic velocities and xenolith ages closer to 2 than 3 Ga. The surrounding Proterozoic mobile belts have even slower seismic velocities and xenolith ages generally less than 1.5 Ga. An interesting contrast to this picture of cold, old, stable cratonic lithosphere is that displayed by central Mongolia. This area, more or less in the middle of the huge Asian continental plate, is far removed from plate boundary processes yet in the Hangay Mountains shows elevations approaching 4 km along with extensive late Cenozoic basaltic volcanism. In contrast to cratonic lithosphere, mantle xenoliths from the Hangay region are dominantly fertile peridotite. Fifty-six percent of a large collection of peridotites from 4 Mongolian localities have more than 3.5% Al2O3 and only 4% have Al2O3 contents of less than 2%. Cenozoic basalts from the region have subchondritic 143Nd/144Nd and MORB-like He isotopic

  7. Contrasting styles of Pre-Cenozoic and mid-Tertiary crustal evolution in northern Mexico: Evidence from deep crustal xenoliths from La Olivina

    SciTech Connect

    Cameron, K.L.; Robinson, J.V.; Kuentz, D.C.; Collerson, K.D.; Niemeyer, S.; Harmon, R.S.; Bohlen, S.R.

    1992-11-10

    The principal deep crustal rock types found at the La Olivina xenolith locality in southeastern Chihuahua, Mexico, are mafic granulites, paragneisses, and intermediate- to silicic-composition orthogneisses. These granulite facies xenoliths are interpreted in terms of two age groups, pre-Cenozoic and mid-Tertiary, based on previous ion probe dating of zircons from the xenoliths and on isotopic comparisons of the xenoliths to rocks of known age. The mafic granulites have Pb, Nd, and Sr isotopic compositions identical to those of Oligocene volcanic rocks from the La Olivina region. Compositionally, they are olivine-normative gabbroic cumulates, and they precipitated from two or more mid-Tertiary basalt to dacite or rhyolite assimilation/fractional crystallization series. Mineral assemblages in the xenoliths record pressures of {le} 7.2 kbar or depths of < 25 km. If these are the maximum pressures the rocks experienced and if the crust was > 35 km thick in Oligocene time as inferred from regional tectonic considerations, then the mafic granulites cannot be samples of basaltic magmas underplated near the crust-mantle boundary. The cumulate protoliths for the mafic granulites probably formed in magma chambers well above the Moho. The mafic granulites are plausibly ignimbrite fields of Mexico. Pre-Cenozoic and mid-Tertiary crustal evolution followed very different paths in northern Mexico. For example, Nd isotopic evidence for crustal recycling is much more evident in rocks associated with the Paleozoic convergence than in rocks produced during mid-Tertiary magmatism. Furthermore, mafic rocks are very rare in the pre-Cenozoic xenolith suite, but they dominate the mid-Tertiary one. The rarity of pre-Cenozoic mafic xenoliths suggests that Proterozoic and Paleozoic lower crust may have delaminated in response to crustal overthickening associated with the Ouachita collision event. 97 refs., 14 figs., 5 tabs.

  8. Carbonaceous chondrites. I - Characterization and significance of carbonaceous chondrite /CM/ xenoliths in the Jodzie howardite

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Chang, S.; Frick, U.; Neil, J.; Moreland, G.

    1979-01-01

    Mineralogical, chemical, textural, and isotopic studies of the abundant carbonaceous inclusions in the Jodzie howardite which are consistent with carbonaceous chondrite (CM) characteristics are examined. These CM xenoliths show regolith alteration comparable to the Murray and Murchison meteorites but less than Nogoya, flow-oriented development of phyllosilicates and 'poorly characterized phases', and partial oxidation of sulfides. Temperature-programmed pyrolysis mass spectrometry indicates that gas release patterns of volatiles and hydrocarbons, and N, C, and S contents are typical of CM meteorites. The fact that the Ne content is typical for 'solar' values and the isotopic structure of Xe is 'planetary' indicates that these gases were entrapped by different mechanisms, and cosmic ray exposure ages for the xenoliths agree with the reported exposure age for the eucritic host.

  9. Carbonate-rich melt infiltration in peridotite xenoliths from the Eurasian-North American modern plate boundary (Chersky Range, Yakutia)

    NASA Astrophysics Data System (ADS)

    Tschegg, Cornelius; Ntaflos, Theodoros; Akinin, Vyacheslav V.; Hauzenberger, Christoph

    2012-09-01

    A suite of mainly spinel peridotite and subordinate pyroxenite xenoliths and megacrysts were studied in detail, enabling us to characterize upper mantle conditions and processes beneath the modern North American-Eurasian continental plate boundary. The samples were collected from 37-Ma-old basanites cropping out in the Main Collision Belt of the Chersky Range, Yakutia Republic (Russian Far East). The spinel lherzolites reflect a mantle sequence, equilibrated at temperatures of 890-1,025 °C at pressures of 1.1-2 GPa, with melt extraction estimated to be around 2-6 %. The spinel harzburgites are characterized by lower P-T equilibration conditions and estimated melt extraction up to 12 %. Minor cryptic metasomatic processes are recorded in the clinopyroxene trace elements, revealing that percolating hydrous fluid-rich melts and basaltic melts affected the peridotites. One of the lherzolites preserves a unique melt droplet with primary dolomite in perfect phase contact with Na-rich aluminosilicate glass and sodalite. On the basis of the well-constrained P-T frame of the xenolith suite, as well as the rigorously documented melt extraction and metasomatic history of this upper mantle section, we discuss how a carbonated silicate melt infiltrated the lherzolite at depth and differentiated into an immiscible carbonate and silicate liquid shortly before the xenolith was transported to the surface by the host basalt. Decreasing temperatures triggered crystallization of primary dolomite from the carbonate melt fraction and sodalite as well as quenched glass from the Na-rich aluminosilicate melt fraction. Rapid entrainment and transport to the Earth's surface prevented decarbonatization processes as well as reaction phenomena with the host lherzolite, preserving this exceptional snapshot of upper mantle carbonatization and liquid immiscibility.

  10. U-Pb Thermochronology of lower crustal xenoliths: creating a temporal record of lithosphere thermal evolution

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Schoene, B.; Dudas, F. O.; Mahan, K. H.

    2009-12-01

    Lower crustal xenoliths often contain U-bearing accessory minerals (titanite, apatite, rutile) with a range of closure temperatures for Pb-diffusion (~400-700 °C). These minerals record a time-temperature path which can be then be related to the thermal history of the underlying lithosphere mantle from igneous crystallization through multiple periods of metamorphism and thermal relaxation. In this study, we constrain the age and evolution of lithospheric thermal structure of Medicine Hat Block beneath Montana using geochronology, thermochronology, and thermal/diffusion modeling of lower crustal xenoliths. The cooling history of individual xenoliths is recorded by the Pb diffusion profiles within xenolithic rutile and titanite grains. Pb diffusion profiles can be inferred by making multiple measurements of grains with varying diffusion domain sizes (grain size). These analyses yield a dispersion in measured U-Pb dates that when plotted on a U-Pb Concordia diagram define a linear array. Xenoliths derived from depths between 20 and 30km have Proterozoic upper intercept dates and lower intercepts 700-900 Ma younger. This extreme discordance indicates a loss of equilibrium within the U-Pb system that could potentially be interpreted as the result of two different t-T paths: 1) reheating and 2) slow-cooling. To test the validity of each model, finite-difference approximations to the diffusion equation allow us to determine Pb diffusion profiles, and thus modeled U-Pb dates for any pre-assumed t-T path. Forward modeling of slow-cooling and reheating t-T paths reveals that each t-T path has a very unique data topology that allows us to distinguish between extreme examples of each case. This technique has been applied to accessory minerals from xenoliths from the Sweet Grass Hills, Montana where an Eocene minette that has exhumed lower crustal xenoliths from the Archean Medicine Hat Block. Rutile U-Pb thermochronologic analyses from three xenoliths that record metamorphic

  11. Xenoliths of Phl- Ol breccia and lamproite- like dykes in Udachanaya pipe

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Ntaflos, Theodoros; Samsonov, Gerasim; Mityukhin, Sergei; Khmelnikova, Olga

    2013-04-01

    Several xenoliths of the unusual fine grained essentially Phl-Ol rocks there were found in the Udachnaya Vostochnaya kimberlite pipe. There two varieties. The fist type ids composed mainly from Phl, and Ol and Chromites with Phl-Ol, Chromite while the other contain more ilmenites and phlogopites and rare. Among the xenocrysts the rounding Ol xenocrysts and mantle xenoliths including dunite, sheared peridotites, Mg- ilmenites, prevail. In the second type Ol -pyroxenites and xenocrysts of low Cr garnets occur (surrounded by thick kelyphite). The first type contain Ol (Fe#~15), Na -Ti-rich kersutite and low. In intergranular space Sr -apitite, Ba selestine as well as barites. Sulfides are pyrotites . chalcopyrite, pentlandite. Such a mineralogy are typical of the lamproite but the bulk rock composition gives relatively low Na (1.3%) and K (2.8%) and Al2O3 contents with ~32% of MgO and 11 % Fe due to abundant Ol xenocrysts. This allow to interpreted rock Ol breccia cemented by the lamprorite magma. the Ol xenocryst are zonal with Mg - rich cores 8-10% and Fe(14%) rims. The Chromite xenocrysts and phenocrsts show 50 -22 % Cr2O3 compositional range. and pressure range 5.0 -2.0 GPa The second type represent the zonal rocks with the Cpx outer xone the essentally Phl zone and then fine grained material of Phl. Ol, Cr-low Cpx, and ilmenites. Variation o Cpx from the contact to the inner part show an essential increase of Fe (4 - 7 %) TiO2 And Al2O3 as well as CaO suggesting the crystallization differentiation of magma. Starting parameters of the xenocrysts crystallization of the Ilm-Phl-Ol rock refer to the basement of the lithosphere beneath Udachnaya ~6.0 -5.5 GPa. But the final stage of crystallization was near Moho 1.2 -1.5 GPa according to Cpx barometry Ashchepkov et al ., 2011. and T 1100-1250 oC. The Ol-Chr sample possibly was crystallizing upper. The trace elements were measured by the LAM ICP MS method in IGM SD RAS using Finnigan ELEMENT with the YAG Nd 266 Laser

  12. Petrogenesis of pelitic xenoliths at the Babbitt CuNi deposit, Duluth Complex, Minnesota, U.S.A.

    NASA Astrophysics Data System (ADS)

    Ripley, Edward M.; Alawi, Jomaah A.

    1988-02-01

    The Babbitt deposit consists of disseminated CuFeNi sulfides found within mafic rocks of the Duluth Complex, generally near contacts with underlying metasedimentary rock types. Host rocks for the deposit include troctolites, olivine gabbros, gabbronorites, norites, and occasionally country rock hornfels. Xenoliths of country rocks are abundant in the deposit, and suggest a relationship between sulfide mineralization and country rock contamination. Country rocks in the Babbitt area include those of the middle Precambrian Biwabik Iron Formation, and both calcareous and non-calcareous pelites of the Virginia Formation. Xenoliths contain the assemblage cordierite-plagioclase-biotite-orthopyroxene, and are thought to have been derived from Virginia Formation protoliths. Comparison of protoliths and xenoliths using composition-volume, element ratio and mass-balance techniques suggests that xenoliths have been strongly depleted in volatiles, alkalis and Si. Footwall rocks show only a depletion in volatiles. Neither fluid-phase transport nor diffusion through an intergranular fluid can account for the mass of material transferred. Extensive partial melting of xenoliths, with residual enrichment of FeO, MgO and Al 2O 3, is the most viable transfer process. The lack of SiO 2 concentration gradients around xenoliths and anomalous igneous rock compositions suggest that desilicification occurred at a time when physical mixing of extracted partial melt and host magma was possible, and prior to final emplacement. Sulfide saturation may have been initiated due to Si assimilation with an auxiliary magma chamber. However, the composition of ores in the Babbitt deposit is consistent with saturation being achieved by addition of sediment-derived volatile sulfur, independent of major-element assimilation.

  13. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Goldstein, Steven L.

    1990-05-01

    Pb isotopic compositions for three suites of well-characterized granulite facies xenoliths from a diversity of crustal settings (the Chudleigh and McBride volcanic provinces, Queensland, Australia and the Eifel volcanics, West Germany) are presented here. All three suites plot to the right of the 4.57 Ga geochron, similar to the published Pb results of other mafic granulite xenoliths. Correlations between Sr, Nd and Pb isotopes in the three suites measured here point to an origin by mixing of mantle-derived basaltic magmas with lower crust at the time of basaltic underplating (i.e., < 100 Ma for Chudleigh, ˜ 300 Ma for McBride, ˜ 450 Ma for Eifel). Because the Pb concentration of the continental crust is much greater than that of mantle-derived basaltic magmas, the Pb isotopic compositions of the magmas are shifted dramatically by the mixing, allowing delineation of the isotopic characteristics of the lower crust. In all three cases, this lower crust had radiogenic Pb and Sr isotopic compositions and unradiogenic Nd isotopic compositions, yielding Proterozoic Nd model ages. Such radiogenic lower crust contrasts markedly with the Pb isotopic characteristics of most Precambrian granulite facies terrains. Whereas the Nd isotopes reflect the average age of crust formation, the Pb isotopic characteristics of the lower crust appear to be a function of the tectonothermal age of the crust: unradiogenic Pb can only develop in regions which have remained stable for long time periods (e.g., cratons), whereas in areas where orogenies have occurred subsequent to crustal formation, the Pb isotopic composition of the lower crust is "rejuvenated" through mixing with radiogenic Pb from upper crust and mantle-derived magmas. Thus, after orogeny, the Pb isotopic composition of the lower crust resembles that of the upper crust. On the basis of this proposed orogenic age-Pb isotope correlation, we estimate the Pb isotopic composition of the lower crust using the data for granulite

  14. Geochemistry of Eclogite Xenoliths from Kimberlite Pipe Udachnaya

    NASA Astrophysics Data System (ADS)

    Agashev, Aleksey; Pokhilenko, Ludmila; Pokhilenko, Nikolai

    2016-04-01

    A suite of 17 unique big (1 to 20 kg) and fresh ecligite xenoliths from Udachnaya kimberlite pipe have been studied for their whole-rock and minerals major and trace elements composition.Whole rock major elements composition of the Udachnaya eclogite xenoliths suite have a great variability in their MgO contents (9-19Wt%). Based on major elements composition Udachnaya eclogites can be subdivided in two subsets, high magnesian (Mg# 68.8-81.9) and low magnesian (Mg# 56.8-59). High variations also shown by Al2O3 and Na2O concentrations and high Mg# samples tend to contain less of those oxides then low Mg# samples with some exceptions. Two eclogitic groups are clearly different in style of inter-elements correlations. FeO and CaO contents are positively correlate with MgO in low Mg# group of eclogites but negatively in high Mg# group. The same relations present between Al2O3 contents of eclogite group with their Mg#. Compared to present day MORB composition eclogite samples have similar contents of most of elements with some depletion in TiO2 and P2O5 and enrichment in MgO and K2O. The variability of these elements concentrations can be related to melt extraction while elevated K2O can indicate late metasomatic enrichment. In terms of trace elements composition Udachnaya eclogites are enriched over PM but comparable to that of MORB composition, except significant enrichment in LILE elements (Rb, Ba, K, Sr). The records of both subduction related processes and mantle metasomatism could be find in geochemical features of these rocks. Most of the eclogites show positive Eu anomaly which is direct evidence of plagioclase accumulation in eglogites protolith. Variation of La/Yb ratio (1-11), in majority of samples are the range 2-4 indicates different degrees of samples metasomatic enrichment in LREE. Udachnaya eclogites have range of Sm/Nd ratio from 0.25 to 0.5 (MORB is 0.32) which positive covariates with Nd content. This trend could not be a result of melt extraction nor

  15. Multi stage peridotite-melt reaction evidenced by xenolith suite from Wilcza Góra basanite (SW Poland)

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros; Grégoire, Michel; Wojtulek, Piotr

    2015-04-01

    Presence of hydrous phases in Earth's lithospheric mantle is a typical manifestation of modal metasomatism. Mantle xenoliths occurring in Northern margin of the Bohemian Massif usually contain no hydrous phases (Puziewicz et al., 2015). The latter, if present, form small and scarce crystals of pargasitic amphibole (e.g. Nowak et al., 2010, EGU abstracts; Matusiak-Małek et al., 2010, Lithos). The exception are xenoliths from Wilcza Góra basanite (SW Poland). The xenoliths have composition of harzburgite, scarce dunitic and wehrlitic ones occur as well. Pyroxenites of cumulative textures occur also in the Wilcza Góra.Pargasitic amphibole occurs in all the types of the xenoliths. Amphibole forms: 1) large (up to 1 cm) subhedral crystals, 2) exsolution lamellae in pyroxenes, and 3) cores of secondary clinopyroxenes in integranular aggregates. Composition of amphibole varies in wide ranges between xenoliths (e.g. mg# 0.73-0.95). The mineral is in equilibrium with coexisting clinopyroxene (mg#=0.79-0.93) in terms of major and trace elements. Variations in Mg and Fe contents in olivine and orthopyroxene are significant and continuous (Fo=77-92 and mg#=0.85-0.92, respectively). Enrichment of peridotites in Fe may result from: (1) cumulative origin, or (2) metasomatic enrichment due to reaction with mafic silicate melt. But, as was discussed in Matusiak-Małek et al. (2014), features like: lack of cumulative textures, high NiO in olivine (0.25-0.43 wt.%) promotes the second possibility. As clinopyroxene and spinel record no melting (e.g. lack of Al-Na positive and cr#-mg# negative correlations, respectively), they cannot be a primary phase and must have been introduced into peridotite by metasomatic reactions ("stealth" metasomatism; O'Reillly and Griffin, 2013, Springer). Trace element composition of clinopyroxene and amphibole and their equilibrium suggest their crystallization from the fractionating mafic silicate melt, possibly the same which caused enrichment of

  16. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  17. Chemical Exchange Between the Core and the Convecting Mantle of the Earth: Evidence from Highly Siderophile Elements (HSE)

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Palme, H.; Kratz, K. L.

    1995-09-01

    Core formation is a major physical and chemical event in the evolution of a differentiated planet. The core is the dominant repository of HSE in the Earth. Element ratios of HSE in peridotites provide insights into the accretion processes of the Earth and the effect of core formation. Depletion of HSE in the Earth's mantle results from core formation. Refractory siderophile elements are about a factor of > 100 depleted in the Earth's mantle compared to CI carbonaceous chondrites. Nevertheless, the concentrations of PGE, Re and Au (7.1 +/- 0.8 x 10^-3 CI chondrite abundances) are higher than would be expected from metal-silicate partitioning during core formation [1]. Several different explanations have been suggested to explain the low absolute abundances of these elements. (1) Os, Re, Ir, Ru, Rh, Pd, Pt, and Au were added with a late chondritic veneer containing less than 1% of a CI component [2-9]. (2) Insufficient core formation, i.e. some metallic Fe-Ni was retained in the upper mantle during core formation [10]. (3) Disequilibrium during core formation; Segregation of metal from the upper mantle in later stages of accretion was so rapid that equilibrium was not attained [4,11,12]. (4) There was continuous formation of the core during accretion; Equilibrium between sinking metal grains and a molten magma ocean at high temperatures (3000-3500 K) [13]. (5) Increase in silicate/metal partition coefficients by pressure, temperature, or high f(O2) [5,14]; Solution of FeO in the core raises the f(O2) conditions at the core-mantle interface sufficiently to increase the equilibrium concentrations of the siderophile elements in the mantle [15]. Studies of mantle-derived samples such as massif peridotites and peridotite xenoliths provide direct information on the nature and composition of the upper mantle. Massive peridotitic rocks from Zabargad island (Red Sea), Lanzo (Italy), Ronda (Spain) and peridotitic xenoliths from Mongolia were analysed for Os, Re, Ir, Ru, Rh, Pd

  18. Evidence from xenoliths for a dynamic lower crust, eastern Mojave Desert, California

    USGS Publications Warehouse

    Hanchar, John M.; Miller, Calvin F.; Wooden, Joseph L.; Bennett, Victoria C.; Staude, John-Mark G.

    1994-01-01

    Garnet-rich xenoliths in a Tertiary dike in the eastern Mojave Desert, California, preserve information about the nature and history of the lower crust. These xenoliths record pressures of ∼ 10–12 kbar and temperatures of ∼ 750–800°C. Approximately 25% have mafic compositions and bear hornblende + plagioclase + clinopyroxene + quartz in addition to garnet. The remainder, all of which contain quartz, include quartzose, quartzofeldspathic, and aluminous (kyanite±sillimanite-bearing) varieties. Most xenoliths have identifiable protoliths—mafic from intermediate or mafic igneous rocks, quartzose from quartz-rich sedimentary rocks, aluminous from Al-rich graywackes or pelites, and quartzofeldspathic from feldspathic sediments and/or intermediate to felsic igneous rocks. However, many have unusual chemical compositions characterized by high FeO(t), FeO(t)/MgO, Al2O3, and Al2O3/CaO, which correspond to high garnet abundance. The mineralogy and major-and trace-element compositions are consistent with the interpretation that the xenoliths are the garnet-rich residues of high-pressure crustal melting, from which granitic melt was extracted. High 87Sr/86Sr and low 143Nd/144Nd, together with highly discordant zircons from a single sample with Pb/Pb ages of ∼ 1.7 Ga, demonstrate that the crustal material represented by the xenoliths is at least as old as Early Proterozoic. This supracrustal-bearing lithologic assemblage may have been emplaced in the lower crust during either Proterozoic or Mesozoic orogenesis, but Sr and Nd model ages> 4 Ga require late Phanerozoic modification of parent/daughter ratios, presumably during the anatectic event. Pressures of equilibration indicate that peak metamorphism and melting occurred before the Mojave crust had thinned to its current thickness of <30 km. The compositions of the xenoliths suggest that the lower crust here is grossly similar to estimated world-wide lower-crustal compositions in terms of silica and mafic content

  19. An experimental study of Li partitioning between olivine and diopside at mantle conditions

    NASA Astrophysics Data System (ADS)

    Yakob, J. L.; Feineman, M. D.; Penniston-Dorland, S. C.; Eggler, D. H.

    2010-12-01

    . 139, 356-371. Brenan, J.M., Ryerson, F.J., Shaw, H.F. (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models. Geochim. Cosmochim. Acta 62, 3337-3347. Caciagli-Warman, N. (2010) Experimental constraints on lithium exchange between clinopyroxene, olivine and aqueous fluids at high pressures and temperatures. Unpublished PhD thesis, University of Toronto. Ionov, D.A. and Seitz, H.M. (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: Mantle sources vs. eruption histories. Earth Planet. Sci. Lett. 266, 316-331. Jeffcoate, A.B., Elliot, T., Kasemann, S.A., Ionov, D., Cooper, K., Brooker, R. (2007) Li isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta 71, 202-218. Rudnick, R.L. and Ionov, D.A. (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock reaction, Earth Planet. Sci. Lett. 256, 278-293.

  20. The paradox of a wet (high H2O) and dry (low H2O/Ce) mantle: High water concentrations in mantle garnet pyroxenites from Hawaii

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Peslier, A. H.

    2013-12-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of MORB and OIB [1], but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. We analyzed by FTIR water concentrations in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt. H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than experimental cpx/opx equilibrium data. These pyroxenite cpx and opx water concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and megacrysts from kimberites [2] and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between water in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between water concentrations and the presence of phlogopite. These data imply that cpx and opx water concentrations may be buffered by phlogopite crystallization. Reconstructed bulk rock pyroxenite water concentrations (not including phlogopite, i.e. minimum) range from 200-460 ppm (average 331× 75 ppm), significantly higher than water estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian

  1. Cloning and characterization of an mRNA encoding a novel G protein alpha-subunit abundant in mantle and gill of pearl oyster Pinctada fucata.

    PubMed

    Chen, Lei; Xie, Liping; Dai, Yiping; Xiong, Xunhao; Fan, Weimin; Zhang, Rongqing

    2004-12-01

    Nacre formation is an ideal model to study biomineralization processes. Although much has been done about biomineralization mechanism of nacre, little is known as to how cellular signaling regulates this process. We are interested in whether G protein signaling plays a role in mineralization. Degenerate primers against conserved amino acid regions of G proteins were employed to amplify cDNA from the pearl oyster Pinctada fucata. As a result, the cDNA encoding a novel G(s)alpha (pfG(s)alpha) from the pearl oyster was isolated. The G(s)alpha cDNA encodes a polypeptide of 377 amino acid residues, which shares high similarity to the octopus (Octopus vulgaris) G(s)alpha. The well-conserved A, C, G (switch I), switch II functional domains and the carboxyl terminus that is a critical site for interaction with receptors are completely identical to those from other mollusks. However, pfG(s)alpha has a unique amino acid sequence, which encodes switch III and interaction sites of adenylyl cyclase respectively. In situ hybridization and Northern blotting analysis revealed that the oyster G(s)alpha mRNA is widely expressed in a variety of tissues, with highest levels in the outer fold of mantle and epithelia of gill, the regions essential for biomineralization. We also show that overexpression of the pfG(s)alpha in mammalian MC3T3-E1 cells resulted in increased cAMP levels. Mutant pfG(s)alpha that has impaired CTX substrate diminished its ability to induce cAMP production. Furthermore, the alkaline phosphatase (ALP) activity, an indicator for mineralization, is induced by the G(s)alpha in MC3T3-E1 cells. These results indicated that G(s)alpha may be involved in regulation of physiological function, particularly in biological biomineralization.

  2. Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland

    NASA Astrophysics Data System (ADS)

    Wittig, N.; Pearson, D. G.; Webb, M.; Ottley, C. J.; Irvine, G. J.; Kopylova, M.; Jensen, S. M.; Nowell, G. M.

    2008-09-01

    A critical examination of the extent to which geodynamic information on the initial mantle depletion and accretion event(s) is preserved in kimberlite-borne cratonic SCLM peridotite xenoliths is attempted by using new major and trace element data of whole-rock peridotites ( n = 55) sampled across the North Atlantic Craton (NAC; West Greenland). We also present additional whole-rock trace element data of mantle xenoliths from Somerset Island, the Slave and Kaapvaal cratons for comparison. Peridotites comprising the West Greenland SCLM are distinctly more olivine-rich and orthopyroxene-poor than most other cratonic peridotites, in particular those from the Kaapvaal craton. The West Greenland peridotites have higher Mg/Si but lower Al/Si, Al 2O 3 and CaO than cratonic mantle from the Kaapvaal Craton. We suggest that the more orthopyroxene depleted, harzburgite to dunite character of the NAC peridotites reflects more of the original melting history than peridotites from other cratons and in that sense may be more typical of cratonic lithosphere compositions prior to extensive modification. Despite this, some modal and cryptic metasomatism has clearly taken place in the West Greenland lithosphere. The insensitivity of major elements to pressure of melting at high degrees of melt extraction combined with the ease with which these elements may be changed by modal metasomatism mean that we cannot confidently constrain the depth of melting of peridotites using this approach. Mildly incompatible trace elements offer much more promise in terms of providing geodynamic information about the original Archean melting regime. The very low, systematically varying heavy REE abundances in NAC whole-rock peridotites and in peridotites from all other cratons where high-quality data are available provide ubiquitous evidence for a shallow melting regime in the absence of, or to the exhaustion of garnet. This finding explicitly excludes large extents of deep (iso- and polybaric) melting

  3. Large-scale pattern of mantle evolution through rifting in hyper-extended margins

    NASA Astrophysics Data System (ADS)

    Picazo, Suzanne; Müntener, Othmar; Manatschal, Gianreto; Bauville, Arthur

    2016-04-01

    New ideas and concepts have been developed to understand and be able to give a simplified large-scale view of the evolution of the mantle lithosphere in hyper-extended magma-poor rifted margins based on the ancient Alpine Tethys rifted margin. In contrast to the classical assumption assuming a simple, isotropic mantle lithosphere, these new models integrate observations from exposed and drilled mantle rocks and propose that the mantle lithosphere evolved and was modified during an extensional cycle from post-orogenic collapse through several periods of rifting to embryonic oceanic (ultra-) slow seafloor spreading. But it is, at present, unclear how far these ideas can be generalized at Atlantic type rifted margins. In our presentation, we review the available mantle data from dredged samples in the North Atlantic and from ophiolite massifs and xenoliths in preserved and reactivated passive margins i.e. the Alpine Tethys, the Pyrenean domain, and the Dinarides and Hellenides. We revisit the available terminology concerning mantle massifs and xenoliths and compile the available data to identify different mantle domains. We define chemical and petrological characteristics of mantle domains based on clinopyroxene and spinel compositions and compile them on present-day and paleo-geographic maps of Western Europe. Finally we link the observed distribution of mantle domains to the post-Variscan extensional cycle and link domains to processes related to the late post-Variscan extension, the rift evolution and refertilization associated to hyper-extension and the development of embryonic oceanic domains.

  4. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    NASA Astrophysics Data System (ADS)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  5. Pressure and temperature evolution of upper mantle under the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Kil, Y.; Wendlandt, R. F.

    2004-11-01

    Spinel peridotite xenoliths associated with the Rio Grande Rift axis (Potrillo and Elephant Butte volcanic fields) and the western rift shoulder (Adam’s Diggings) have been investigated to correlate pre-eruptive pressure and temperature conditions with xenolith deformation textures and rift location. Temperatures of xenolith equilibration at the rift shoulder are 100 250°C cooler for a given pressure than the temperatures at the rift axis. Undeformed xenoliths (protogranular texture) are derived from higher temperature and higher pressure conditions than deformed xenoliths (porphyroclastic and equigranular textures) in the rift axis. Exsolution lamellae in pyroxenes, small decreases in Al contents of orthopyroxenes from core to rim, and small differences in porphyroclastic orthopyroxene compositions versus neoblastic orthopyroxene compositions indicate high temperatures followed by cooling and a larger cooling interval in deformed rocks than in undeformed rocks. These features, along with thermal histories based on calcium zoning in olivine rims, indicate that the upper mantle under Adam’s Diggings and Elephant Butte has undergone cooling from an initial high temperature state followed by a late heating event, and the upper mantle under Potrillo has undergone cooling, reheating, and late heating events.

  6. Shear zones in the upper mantle - relation between geochemical enrichment and deformation in mantle peridotites

    SciTech Connect

    Downes, H. )

    1990-04-01

    Textural variations in mantle-derived spinel peridotites have previously been interpreted as evidence of the existence of asthenospheric mantle diapirs, indicating deformational heterogeneity on a large lateral scale (kilometers to tens of kilometers). However, many volcanic vents entrain both deformed and undeformed xenoliths, and field relations in peridotite massifs show the scale of alternation between deformed and undeformed peridotite to be small (centimeters to meters) because of the presence of numerous lithospheric shear zones. Some rare xenoliths contain both deformed and undeformed peridotite. These is also an apparent relation between deformation and the growth of metasomatic minerals; amphibole is often concentrated in strongly deformed zones in peridotite massifs and deformed xenoliths, although it is also found in crosscutting veins and aureoles around such veins. A relation can also be seen between deformation and indicators of geochemical enrichment. Clinopyroxenes from many deformed spinel peridotites show light rate earth element (REE) enrichment, whereas clinopyroxenes from undeformed spinel peridotites commonly have mid-ocean ridge basalt (MORB)-type light REE-depleted patterns. Sr and Nd radiogenic isotopic compositions of undeformed peridotites are generally MORB-like, and have low {epsilon}Sr and high {epsilon}Nd. In contrast, deformed peridotites, with or without amphibole, often have higher {epsilon}Sr and low {epsilon}Nd values, indicating geochemical enrichment by large ion lithophile (LIL)- and light REE-enriched fluids or melts. These observations can be used to infer that the shallow mantle contains lithospheric ductile shear zones in which metasomatic fluids precipitated amphibole and clinopyroxene.

  7. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe

  8. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton

    NASA Astrophysics Data System (ADS)

    Smith, Chris B.; Pearson, D. Graham; Bulanova, Galina P.; Beard, Andrew D.; Carlson, Richard W.; Wittig, Nadine; Sims, Keith; Chimuka, Lovemore; Muchemwa, Ellah

    2009-11-01

    Inclusion-bearing diamonds, mantle xenoliths, and kimberlite concentrates from the Cambrian-aged Murowa and Sese kimberlites have been studied to characterise the nature of the lithospheric mantle beneath the southern Zimbabwe Craton. The diamonds are mostly octahedral, moderately rich in nitrogen with moderate to high aggregation, and contain mainly dunite-harzburgite mineral inclusions. Similarly, dunite xenoliths predominate over harzburgite and lherzolite and carry olivines with Mg/Mg + Fe (Mg#) values of 0.92-0.95, spanning the average signatures for Kaapvaal Craton peridotites. Eclogitic xenoliths are extremely rare, in contrast to the Kaapvaal mantle lithosphere. The Zimbabwe mantle assemblage has been only slightly affected by later silicic metasomatism and re-fertilisation with re-introduction of pyroxenes in contrast to the Kaapvaal and many cratonic lithospheric blocks elsewhere where strong metasomatism and re-fertilisation is widespread. Pyroxene, garnet and spinel thermobarometry suggests an ambient 40 mW m - 2 geotherm, with the lithosphere extending down to 210 km at the time of kimberlite eruption. Whole rock peridotite Re-Os isotope analyses yield T RD model ages of 2.7 to 2.9 Ga, providing minimum estimates of the time of melt depletion, are slightly younger in age than the basement greenstone formation. These model ages coincide with the mean T RD age of > 200 analyses of Kaapvaal Craton peridotites, whereas the average Re-Os model age for the Zimbabwe peridotites is 3.2 Ga. The Os data and low Yb n/Lu n ratios suggest a model whereby thick lithospheric mantle was stabilised during the early stages of crustal development by shallow peridotite melting required for formation of residues with sufficiently high Cr/Al to stabilise chromite which then transforms to low Ca, high Cr garnet. Sulphide inclusions in diamond produce minimum T RD model ages of 3.4 Ga indicating that parts of the lithosphere were present at the earliest stages of crust

  9. Mineral Chemistry of Silicate Phases From the Summit Creek Stock, Southeastern British Columbia: Evidence for Associated "Xenolith" Origin and Dyke Emplacement

    NASA Astrophysics Data System (ADS)

    Morrison, C. A.; Owen, J. P.

    2009-05-01

    The Summit Creek stock is a Mid-Cretaceous aged granitic intrusion that is located within the Cordilleran Omineca belt in the southeastern corner of British Columbia. Included within the stock are numerous xenoliths of intermediate composition that range in size from 5cm to 2m, as well as a prominent 1m-wide mafic dyke. According to the QAP diagram, the stock is classified as a muscovite-biotite monzogranite, with a typical sample containing 35% quartz, 25% plagioclase, 30% K-feldspar, 7% biotite, 2% muscovite, and 1% accessory phases. Minor accessory phases identified in this study include pyrite, molybdenite, apatite, magnetite, ilmenite, monazite, and zircon. Samples collected from the stock proper are predominantly equigranular; however the xenoliths are porphyritic and contain phenocrysts of both quartz and plagioclase, as well as glomerophyric aggregates of biotite. New investigation into the mineral chemistry of the stock, xenoliths, and dyke indicates that the xenoliths have a strong geochemical similarity to the main body of the stock. Plagioclase feldspar compositions from the xenolith overlap with those from the stock, and REE abundances in the stock and the xenoliths are indistinguishable (LREE 100x chondrite; HREE 10x chondrite). In thin section, the boundary between the xenoliths and the stock is very irregular, and protruding grains of plagioclase and biotite can be found piercing into both the granitic host, as well as into the xenolith itself. This evidence suggests that these inclusions are better termed autoliths rather than xenoliths, as it appears that they are derivatives of the same parent magma as the main stock. The mafic dyke differs in both mineralogy and geochemistry from the stock, and is characterized by low SiO2 content (48.98 wt.%), high REE abundances (30-40x chondrite), presence of rare euhedral hornblende, and greater variation in mineral chemistry. Samples from the dyke contain plagioclase with cores ranging from bytownite to

  10. Back-arc Mantle Evolution inferred from Peridotite Xenotlishs from the Japan Sea

    NASA Astrophysics Data System (ADS)

    Morishita, T.; Ichiyama, Y.; Tamura, A.; Arai, S.

    2014-12-01

    Peridotite xenoliths are recovered in basaltic to andesitic lavas from several localities in the Japan Sea, a Miocene back-arc basin of the Western Pacific region. These peridotites are classified into two groups: two-pyroxene peridotitess and dunite-wehrlite groups. Although slight chemical modifications are observed in these peridotite samples, two-pyroxene peridotite group has retained their original residual mantle geochemical signatures left after partial melting. The dunite-wehrlite group is, on the other hand, probably formed by extensive interaction of the two-pyroxene peridotite group. We examined trace element characteristics of clinopyroxene in these xenoliths. Light REE-depleted clinopyroxenes that are usually interpreted as a simple residual mantle after anhydrous partial melting are similar to those of abyssal peridotite recovered from mid-ocean ridges and back-arc basins. Other samples show LREE-enriched patterns that are residues after influx melting caused by hydrous melt/supercritical fluids released from the subducted slab at high pressure conditions. The geotectonic and geochemical variations of the peridotite xenoliths from the Japan Sea (Shirabeshi Seamount, Seifu Seamount and Oshima-Oshima Island) suggest that the mantle beneath the Japan Sea are suffered from hydrous to anhydrous melting as the Japan Sea forms. This is consistent with the geochemical and isotopic results from Miocene basaltic rocks formed during opening of the Japan Sea (Sato et al., Jour. Petrol., 2013). The Japan Sea peridotite xenoliths also shed lights on the origin of ophiolites.

  11. The Moho as a magnetic boundary. [Earth crust-mantle boundary

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Thomas, H. H.; Mayhew, M. A.

    1979-01-01

    Magnetism in the crust and the upper mantle and magnetic results indicating that the seismic Moho is a magnetic boundary are considered. Mantle derived rocks - peridotites from St. Pauls rocks, dunite xenoliths from the Kaupulehu flow, and peridotite, dunite, and eclogite xenoliths from Roberts Victor and San Carlos diatremes - are weakly magnetic with saturation magnetization values from 0.013 emu/gm to less than 0.001 emu/gm which is equivalent to 0.01 to 0.001 wt% Fe304. Literature on the minerals in mantle xenoliths shows that metals and primary Fe304 are absent, and that complex Cr, Mg, Al, and Fe spinels are dominant. These spinels are non-magnetic at mantle temperatures, and the crust/mantle boundary can be specified as a magnetic mineralogy discontinuity. The new magnetic results indicate that the seismic Moho is a magnetic boundary, the source of magnetization is in the crust, and the maximum Curie isotherm depends on magnetic mineralogy and is located at depths which vary with the regional geothermal gradient.

  12. Thermal and metasomatic rejuvenation and dunitization in lithospheric mantle beneath Central Europe - The Grodziec (SW Poland) case study

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Ćwiek, Mateusz; Puziewicz, Jacek; Ntaflos, Theodoros

    2017-04-01

    The 32 Ma Grodziec nephelinite (Lower Silesia, SW Poland) contains xenolith of peridotite (mostly lherzolite) and clinopyroxenite/olivine clinopyroxenite composition. The forsterite content in olivine classifies these rocks into three groups: groups A and B consist of peridotites, while group C xenoliths are pyroxenitic cumulates. Group A xenoliths contain olivine Fo 87.90-91.8% and pyroxenes with high Mg# ( 0.91-0.92); clinopyroxene is strongly LREE-enriched (LaN/LuN = 2.19-17.74) and strongly impoverished in Zr, Hf and Ti relative to primitive mantle. The group B xenoliths (dunites and wehrlite) are orthopyroxene-free, olivine and clinopyroxene are less magnesian than those in the A group (Fo = 85.2-87.2%, Mg# = 0.86-0.88), clinopyroxene is less LREE-enriched (LaN/LuN = 4.07-4.15) and only slightly impoverished in Zr, Hf and Ti. Group C xenoliths contain olivine with forsterite content from 78.6 to 86.6% and clinopyroxene of Mg# from 0.84 to 0.85, with LREE/trace element characteristics similar to those of B group (LaN/LuN = 1.96-3.10). Group A xenoliths from Grodziec record migration of mixed carbonatite-alkaline silicate melts through the subcontinental lithospheric mantle beneath Lower Silesia, which preceded the migration of melts similar to the Grodziec nephelinite. The peridotitic protoliths were dunitized at the direct contacts with the migrating nephelinite melt and are now represented by group B. Group C pyroxenites originated in mantle conditions by crystal settling in places of transient nephelinite melt stagnation. The mantle section beneath Grodziec was reheated to ca 1000-1100 °C. The Grodziec scenario is similar to that of Księginki (northern extension of Eger Rift, SW Poland), which shares a similar age of xenolith entrainment. Both sites show that the processes of mantle metasomatism and thermal rejuvenation of subcontinental lithospheric mantle were more intense during the Lower Oligocene volcanic climax compared to those recorded in younger

  13. Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hui; Zhou, Xin-Hua

    2005-06-01

    The North China Craton (NCC) lost its Archean keels in the Phanerozoic. Prevalent and intensive magmatism, mineralization, and development of extensional basins in the late Mesozoic NCC imply that the late Mesozoic could be the key stage for this transformation. Ultramafic xenoliths in the Early Cretaceous high-Mg diorites of Shandong province might provide key information about the transformation of subcontinental lithospheric mantle (SCLM) beneath the NCC. Here we present a unique composite dunite-orthopyroxenite xenolith from Tietonggou, one of the high-Mg diorite-dominated plutons in Laiwu, Shandong province. The petrography and mineral chemistry of the xenolith suggest complicated metasomatic processes, which occurred before its entrainment in the host magma. Early stage metasomatism includes the growth of intergranular phlogopite and clinopyroxene and the development of a phlogopite- and amphibole-bearing clinopyroxenite veinlet. Late-stage metasomatism (termed Si (Na) metasomatism) is characterized by the growth of secondary orthopyroxene, Na-rich plagioclase and amphibole with resorption of olivine and clinopyroxene, and the decomposition of phlogopite. The xenolith has exceptionally high concentrations of Na2O and Al2O3 and shows enrichments in Cs, Rb, Th, U, K, and the light rare earth elements. It also shows positive Pb and Sr anomalies and negative Nb, Ta, P, and Ti anomalies in a primitive mantle normalized spider gram. The geochemistry, as well as the elevated δ18O, suggests that this Si (Na) metasomatism is associated with subduction. The secondary orthopyroxene in the orthopyroxenite portion of the xenolith has exceptionally low Mg# values, which may be the result of reaction between silica-rich melts and olivine with high melt:rock ratios. Mg-Fe disequilibrium of the minerals in the orthopyroxenite indicates that Si (Na) metasomatism may have been introduced shortly before entrainment of the xenolith in the host magma. Correlation of the Sr

  14. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  15. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  16. Mantle garnets: A cracking yarn

    NASA Astrophysics Data System (ADS)

    Matthews, M.; Harte, B.; Prior, D.

    1992-07-01

    Garnets showing variation in chemical composition occur in the metasomatised peridotitic wallrocks to intrusive pyroxenitic "dikes" in mantle xenoliths from the Matsoku kimberlite pipe. They have been examined by scanning electron microscope (SEM) and imaged using both high contrast and electron channelling backscattered electron (BSE) methods. The images revealed intricate variation in the backscatter coefficient, η, across garnets. The pattern of variation is one of very slightly diffuse "brightwhite" (high η) lines surrounded by paler diffuse auras, grading into darker (lower η.) areas away from the bright lines. The bright lines are usually irregular in detail and show branching and braiding; but in some cases they form regularly spaced parallel to subparallel sets which reflect crystallographic orientation. Electron and ion microprobe analyses, including a highly exhaustive 40,000 data point electron microprobe survey across one garnet, have correlated the change in the backscatter coefficient with compositional variation. The compositional changes largely involve enrichment in Fe and Ti and decrease in Mg of the garnet forming the bright lines and pale auras and are consistent with those of metasomatic garnets identified by previous work on an extensive suite of Matsoku xenoliths. The high Ti and Fe garnet is also enriched in Y, Zr, MREEs and HREEs and is considered to have formed by direct crystallisation from the melt causing metasomatism, whilst areas away from the high η lines show compositions similar to those of garnets in unmetasomatised rock. The bright (high η) lines are interpreted as delineating a pattern of fractures along which the metasomatising melt was able to penetrate the garnet and from this melt new garnet crystallised to heal the fractures and form the high Fe-Ti garnet. Diffusion of elements outward from these melt-filled and subsequently healed fractures into the main body of the garnet produced the more diffuse zonation pattern

  17. Metasomatic enrichment of Proterozoic mantle south of the Kaapvaal Craton, South Africa: origin of sinusoidal REE patterns in clinopyroxene and garnet

    NASA Astrophysics Data System (ADS)

    le Roex, Anton; Class, Cornelia

    2016-02-01

    Xenoliths of mantle peridotite have been sampled from four kimberlite intrusions, Melton Wold, Hebron, Uintjiesberg and Markt, emplaced through the Mesoproterozoic Namaqua-Natal Belt, along the southern border of the Kaapvaal Craton. Although many of the xenoliths are heavily altered, constituent clinopyroxene, garnet and phlogopite are fresh and have been analysed by electron microprobe for major elements and by laser ablation ICP-MS for trace elements. Primitive mantle-normalised REE abundances in clinopyroxene are all strongly LREE enriched and show a range of patterns including uniformly MREE-HREE sloped (referred to here as `normal'), sinusoidal and humped sinusoidal patterns. HREE abundances are extremely low (Yb = 0.3-0.06 × PM). REEN patterns in coexisting garnets show a similar range of patterns. When normalised to primitive mantle values, trace element patterns in some clinopyroxenes show strong relative depletion in Rb-Ba, Ta-Nb and Ti, with some samples also being relatively depleted in Zr-Hf. These trace element characteristics are indistinguishable from those found in clinopyroxene and garnet from peridotites from the adjacent cratonic mantle. Numerical modelling of reactive porous flow of an enriched metasomatic melt through a geochemically depleted peridotite matrix can account for the full range in observed REEN patterns. The relative depletion in Rb-Ba, Ta-Nb and Ti can be accounted for by an early crystallisation of phlogopite from the percolating melt. The relative depletion in Zr-Hf in some clinopyroxenes requires either zircon to crystallise in the proximal metasomatic assemblage, or metasomatism by a carbonatitic melt. Modelling results, together with the absence of clinopyroxene with depleted or even partially enriched REEN patterns, suggest that all clinopyroxene has been modally introduced through metasomatism into an initially highly depleted harzburgitic protolith. The range in Sr and Pb isotopic composition of the clinopyroxenes

  18. Constraining late stage melt-peridotite interaction in the lithospheric mantle of southern Ethiopia: evidence from lithium elemental and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael

    2017-02-01

    Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new

  19. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  20. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-06-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  1. Constraints on plateau architecture and assembly from deep crustal xenoliths, northern Altiplano (SE Peru)

    NASA Astrophysics Data System (ADS)

    Chapman, Alan; Ducea, Mihai; McQuarrie, Nadine; Coble, Matthew; Petrescu, Lucian; Hoffman, Derek

    2016-04-01

    Newly discovered xenoliths within Pliocene and Quaternary intermediate volcanic rocks from southern Peru permit examination of lithospheric processes by which thick crust (60-70 km) and high average elevations (3-4 km) resulted within the Altiplano, the second most extensive orogenic plateau on Earth. The most common petrographic groups of xenoliths studied here are igneous or meta-igneous rocks with radiogenic isotopic ratios consistent with recent derivation from asthenospheric mantle (87Sr/ 86Sr = 0.704-0.709, 143Nd/144Nd = 0.5126-0.5129). A second group, consisting of felsic granulite xenoliths exhibiting more radiogenic compositions (87Sr/86Sr = 0.711-0.782, 143Nd/144Nd = 0.5121-0.5126), is interpreted as supracrustal rocks that underwent metamorphism at ~9 kbar (~30-35 km paleodepth, assuming a mean crustal density of 2.8 g/cm3) and ~750 °C. These rocks are correlated with nonmetamorphosed rocks of the Mitu Group and assigned a Mesozoic (Upper Triassic or younger) age based on detrital zircon U-Pb ages. A felsic granulite Sm-Nd garnet whole-rock isochron of 42 ± 2 Ma demonstrates that garnet growth took place in Eocene time. Monazite grains associated with quenched anatectic melt networks in the same rocks yield ion microprobe U-Pb ages ranging from 3.2 ± 0.2 to 4.4 ± 0.3 Ma (2σ). These disparate geochronologic data sets are reconciled by a model wherein Mesozoic cover rocks were transferred to >30 km depth beneath the plateau in the Eocene and progressively heated until at least Pliocene time. Isothermal decompression and partial melting ensued as these rocks were entrained as xenoliths in volcanic host magmas and transported toward the surface. Mafic granulites and peridotites from the same xenolith suite comprise the basement of the metasedimentary sequence, exhibiting isotopic characteristics of Central Andean crust. Calculated equilibrium pressures for these basement rocks are >11 kbar, suggesting that the basement-cover interface lies beneath the

  2. Mapping Mantle Mixing and the Extent of Superplume Influence Using He-Ne-Ar-CO2-N2 Isotopes: The Case of the East Africa Rift System

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Halldorsson, S. A.; Scarsi, P.; Castillo, P.; Abebe, T.; Kulongoski, J. T.

    2014-12-01

    Earth's mantle possesses distinct and variable volatile characteristics as sampled by magmatic activity in different tectonic environments. In general, trace element depleted mid-ocean ridge basalts, with low Sr and Pb isotope values (but high ɛNd and ɛHf), release mantle-derived noble gases characterised by 3He/4He ~8 ± 1RA, (21Ne/22Ne)ex ~0.06 and 40Ar/36Ar ≥ 10,000 with CO2 and N2 having δ13C~-5‰ and δ15N ~-5‰, respectively. In contrast, enriched intraplate lavas possess higher 3He/4He (up to 50RA), lower (21Ne/22Ne)ex ~0.035 and 40Ar/36Ar ≤ 10,000 with generally higher but variable δ13C and δ15N. These isotopic attributes of mantle-derived volatiles can be exploited to map the extent, and mixing characteristics, of enriched (plume) mantle with depleted asthenospheric mantle ± the effects of over-riding lithosphere and/or crust. The East African Rift System (EARS) is superimposed upon two massive plateaux - the Ethiopia and Kenya domes - regarded as geophysical manifestations of a superplume source, a huge thermochemical anomaly originated at the core-mantle boundary and providing dynamic support for the plateaux. We present new volatile isotopic and relative abundance data (on the same samples) for geothermal fluids (He-CO2-N2), lavas (He-Ne-Ar) and xenoliths (He-Ne-Ar-CO2-N2) which provide an unprecedented overview of the distribution of mantle volatiles of the Ethiopia Dome, from the Red Sea via the Afar region and Main Ethiopian Rift (MER) to the Turkana Depression. Notably, peaks in geothermal fluid 3He/4He (16RA) and δ15N (+6.5‰) are coincident within the MER but the maximum δ13C (-0.78‰) lies ~100 km to the south. Highs in 3He/4He (14RA), δ13C (~-1‰) and δ15N (+3.4‰) for mafic crystals occur in the Afar region ~ 500km to the north. We assess the significance of the off-set in these volatile isotope signals, for sampling volatile heterogeneity in the plume source and/or the relative sensitivity of different volatiles to

  3. Petrology and Geochemistry of a Mg- and Al-Rich Orthopyroxenite Xenolith in the EETA79001 Shergottite: Implications for Mars Crustal Evolution

    NASA Technical Reports Server (NTRS)

    Berkley, John L.

    1999-01-01

    EETA79001 is a Mars meteorite (SNC) consisting of multiple rock types, including two basalt types, olivine and pyroxene xenocrysts, and ultramafic xenoliths. This study is focused on the petrology and geochemistry of one orthopyroxenite xenolith in PTS 68, designated X-1. It consists of chemically homogeneous orthopyroxene cores with exceptionally high Mg/Fe (mg#=85) and Al. Cores are permeated by minute high-Si+Al glassy inclusions, some with augite microlites. Magnesian core areas are mantled by more Fe-rich orthopyroxene rims grading to pigeonite away from cores. The xenolith is transected by cross-cutting shear planes, some of pre-incorporation origin. Major and minor element composition and variation suggest that core areas are primarily igneous, crystallized from a high temperature mafic melt. However, nearly constant mg# across cores suggest metamorphic equilibration. Si+Al inclusions may result from, among other processes, exsolution of feldspathic material during subsolidus cooling, or may be solid materials (alkali feldspar) poikilitically enclosed by growing igneous orthopyroxene crystals. Late reaction with more fractionated melts produced Fe-rich mantles, the whole assemblage later cut by tectonic micro-shear planes. Raw electron microprobe data produced during this study are available on request from the author.

  4. Origin of salts and alkali carbonates in the Udachnaya East kimberlite: Insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths

    NASA Astrophysics Data System (ADS)

    Kopylova, M. G.; Gaudet, M.; Kostrovitsky, S. I.; Polozov, A. G.; Yakovlev, D. A.

    2016-11-01

    The Udachnaya East kimberlite is characterized by the presence of chlorides, sulfates and alkali carbonates. This highly atypical mineralogy underpinned a model for an anhydrous alkali-rich primary kimberlite melt, despite the absence of petrographic studies providing textural context to the exotic minerals. The present work documents the petrography of the Udachnaya East kimberlite in order to address this problem. The pipe comprises two varieties of Fort-a-la-Corne type pyroclastic kimberlite, olivine-rich and magmaclast-rich, and coherent kimberlite. These kimberlites entrain xenoliths of limestones, altered shales and siltstones, halite-dominated rocks, dolomites, and coarse calcite rocks. The distinct varieties of the Udachnaya East kimberlite carry different populations of crustal xenoliths, which partially control the mineralogy of the host kimberlite. In magmaclast-rich pyroclastic kimberlite, where halite is absent from the crustal xenoliths, it is not observed in the interclast matrix, or within the magmaclasts. Halite occurs in the interclast matrix of olivine-rich pyroclastic kimberlite, where halite xenoliths are common. Large, 30 cm halite xenoliths are uniquely restricted to the coherent kimberlite and show a strong reaction with it. The halite xenoliths are sourced from depths of - 1500 to - 630 m, where carbonate beds host multiple karst cavities filled with halite and gypsum and occasional sedimentary evaporites. The style of secondary mineralization at Udachnaya depends on whether the kimberlite is coherent or pyroclastic. Shortite, pirssonite and other alkali carbonates replacing calcite and possibly serpentine are abundant only in porous pyroclastic kimberlites of both types and in their shale/siltstone xenoliths. The lower porosity of the coherent kimberlite prevented the interaction of kimberlite with Na brines. Serpentinization localized around halite xenoliths started at temperatures above 500 °C, as indicated by its association with high

  5. Geochemical evolution of lithospheric mantle underlying Intrasudetic Fault (SW Poland).

    NASA Astrophysics Data System (ADS)

    Ćwiek, Mateusz; Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros

    2015-04-01

    alkaline silicate melt. Xenolith where clinopyroxene shows constant enrichment in LREE may represent a part of mantle affected by pure carbonatitic metasomatism. Xenoliths with the lowest Fo content in olivine are probably cumulates of mafic silicate melt. Intergranular aggregates originated during reaction between primary phases and infiltrating, possibly mafic melt. The "glassy patch" might be a product of complete breakdown of amphibole in upper mantle conditions (Shaw, 2009, Lithos). However, presence of rhönite in host basanite suggests that some amphibole might have been broken also in lower pressures. Chemical composition of peridotites from Pilchowice resembles that recorded by group A mantle xenoliths from Krzeniów (Matusiak-Małek et al., 2014, JoP). In Pilchowice we have described the first xenolith affected by purely carbonatitic metasomatism. We also suggest that hydrous phases might have been present in upper mantle beneath this Pilchowice, which is believed to be nominally anhydrous (Puziewicz et al., 2015, IJES, DOI 10.1007/s00531-014-1134-2). This study was a part of MSc thesis of the first author and was possible thanks to the project NCN 2011/03/B/ST10/06248 of Polish National Centre for Science.

  6. Xenoliths of Cerro las Mercedes, Costa Rica: a Geochemical Record of Arc History?

    NASA Astrophysics Data System (ADS)

    Lindsay, F. N.; Gazel, E.; Herzberg, C. T.; Carr, M. J.; Feigenson, M. D.

    2006-12-01

    Over 70 ultramafic xenoliths, many with diameters of at least 3cm, open a window into the mantle beneath Cerro las Mercedes, Costa Rica. This quaternary vent is 70km behind the active volcanic front and near the northern boundary of the Caribbean Plateau. Both xenoliths and host lava remain well preserved in spite of substantial soil development in a rain forest environment. We analyzed the host lava and a subset of 30 rocks for bulk and mineral chemistry, which include both peridotite and pyroxenite populations. The host rock is Plio-Quaternary potassic alkaline basalt; depleted in SiO2 and Al2O3 and enriched in MgO and P2O5 relative to both present day and Miocene volcanics. In terms of trace elements, the host basalt has enriched LREEs and relative depletion of HFSEs, typical of island-arc basalt, both present and past. The coarse-grained pyroxenites have trace element chemistry akin to the volcanic front lavas of Costa Rica, although they are closer to chondritic values. Truly, they are more similar to basalts from Sarapiquí Miocene arc than to present day volcanic front basalts. Although there is enrichment in incompatible elements such as Ba and U and depletions in HFSEs, common in island arc basalts, the pyroxenites have a strong positive Pb anomaly that is characteristic only of the Miocene arc, not present day lavas. We interpret the pyroxenites as cumulates. The peridotite population includes dunites, spinel lherzolites and lherzolites. These rocks have Mg-numbers ranging from 87 to 92 and Cr-numbers ranging from 6 to 61. Whole rock geochemistry indicates that the peridotite xenoliths are fragments of mantle associated with the western Caribbean Plateau. SiO2, FeO, Al2O3 and MgO contents of several Cerro Mercedes peridotites are similar to those expected of hot residues that would form in a plume environment. Trace elements reveal some samples with enrichment of Ba and U, and depletion in Nb and Ta indicating variable extents of melt-rock reaction and

  7. Fertile Lithospheric Mantle beneath Far East Russia; evidence for Lithospheric delamination

    NASA Astrophysics Data System (ADS)

    Ntaflos, T.; Koutsovitis, P.; Aschchepkov, I.; Hauzenberger, C. A.; Prikhodko, V.; Barkar, A.

    2012-12-01

    In the back-arc environment of Far East Russia, mantle xenoliths from Sikhoti-Alin( Komku area, KO) and Primorie (Sviyaginsky area, SV), Far East Russia are fertile spinel lherzolites with traces of amphibole, phlogopite and hyalophane in some of the studied samples. Though samples from both localities are fertile there is a systematic difference in their fertility. The KO samples have mg# varying from 0.891 to 0.899 and are slightly more fertile than the SV samples that have mg# ranging from 0.898 to 0.904. LA-ICP-MS analyses on clinopyroxenes confirm this trend as the (La/Yb)N in KO samples range from 1.49 to 5.4 and in SV samples from 0.15 to 1.73. The estimated equilibration temperatures for the KO suite range from 940 °C to 1035 °C and for the SV suite from 770 to 945. The differences in the estimated equilibrium temperatures between the KO and SV suites suggest that the less fertile SV suite originated in shallower depths than the more fertile KO suite. Kaersutite, and extremely Ti-rich phlogopite, up to 14 wt% TiO2, are associated with intergranular glass indicating clearly metasomatism of undersaturated alkaline melts. Pargasitic amphibole occurs as inclusion in clinopyroxene. Incompatible element abundances, besides Ba, Sr and Ti that are slightly enriched in the amphibole, are similar in both phases suggesting minor metasomatism due to percolation of small amounts of water-rich fluids. The lithospheric mantle beneath the studied area represents the residue after partial melting of up to 2 % of a primitive mantle and is comparable to that of Mongolia. Despite the fact that the studied area experienced several subducting episodes, the lithospheric mantle appears to be unaffected from the upwelling fluids/melts of the subducted slab(s). Since there is no indication for plume activity, and/or evidence for refertilization, it is likely that the lithospheric mantle has been delaminated as the result of tectonic events (lithospheric attenuation, inverse

  8. Mantle cryptology

    SciTech Connect

    Zindler, A.; Jagoutz, E.

    1988-02-01

    A group of anhydrous peridotites from Peridot Mesa, Arizona, document isotopic and trace element heterogeneity in the source mantle. LREE enrichments in two spinel periodotites may have occurred immediately prior to entrainment through interaction with a melt similar to the hose basanite. Detailed characterization of inclusion-free peridotite phases, and washed and unwahsed whole-rock samples, verifies the presence of a ubiquitous secondary contaminant which derives from interaction of the peridotites with local ground waters and host magma. Once the veil of this contamination is removed, coexisting phases are found to be in isotopic equilibrium. Further, a comparison of washed whole rocks and calculated clean-bulk compositions documents the occurrence of an important intragranular fluid-hosted trace element component. For the very incompatible elements (K, Rb, Cs, and Ba, and probably U, Th, Pb and gaseous components as well) this component dominates the nodule budget for two of the three samples studied in detail. Production of basaltic magmas from fertile but incompatible-element-depleted peridotite requires the action of melting processes such as those recently proposed by McKenzie (1985) and O'Hara (1985). The distinctive feature of these models is that they call on effectively larger source volumes for more incompatible elements. In this context, depletions of incompatible trace elements in MORB source mantle will be more extreme than has heretofore been suspected. This would essentially preclude the long-term total isolation of a MORB source mantle above the 670 km seismic discontinuity.

  9. Compositional Variation of Terrestrial Mantle Apatites and Implications for the Halogen and Water Budgets of the Terrestrial Mantle

    NASA Astrophysics Data System (ADS)

    Roden, M.; Patino Douce, A. E.; Chaumba, J. B.; Fleisher, C.; Yogodzinski, G. M.

    2011-12-01

    Apatite in ultramafic xenoliths from various tectonic enviroments including arc (Kamchatka), plume (Hawaii), and intraplate (Lunar Crater, Nunivak, Colorado Plateau) were analyzed by electron microprobe with the aim of characterizing the Cl and F contents, and from these measured compositions to infer the nature of fluids/melts that the apatites equilibrated with. The impetus for the study derived from the generalization of O'Reilly and Griffin (1) that mantle-derived metasomatic apatites tend to be Cl-rich and mantle-derived igneous apatites tend to be F-rich. Our work largely corroborates their generalization with Cl- and/or H2O-rich compositions characterizing the apatites from Nunivak and Kamchatka while apatites from igneous or Group II xenoliths tend to be Cl-poor and be either nearly pure fluorapatite or a mix of hydroxylapatite and fluorapatite. We attribute the Cl-rich nature of the Kamchatka apatites to formation from Cl-rich fluids generated from subducted lithosphere; however the Nunivak occurrence is far removed from subducted lithosphere and may reflect a deep seated source for Cl as also indicated by brine inclusions in diamonds, Cl-rich apatites in carbonate-bearing xenoliths and a Cl-rich signature in some plumes such as Iceland, Azores and Samoa. One curious aspect of mantle-derived apatite compositions is that xenoliths with evidence of carbonatitic metasomatism commonly have Cl-rich apatites while apatites from carbonatites are invariably Cl-poor - perhaps reflecting loss of Cl in fluids evolved from the carbonatitic magma. Apatites from Group II xenoliths at Hawaii are solid solutions between fluorapatite and hydroxylapatite and show no evidence for deep-seated Cl at Hawaii. Samples of the terrestrial mantle are almost uniformly characterized by mineral assemblages with a single Ca-rich phosphate phase but the mantles of Mars, Vesta and the Moon have two Ca-rich phosphates, apatite and volatile-poor merrillite - apatite compositions existing

  10. Retrograded eclogite xenoliths from mid-Tertiary potassic lavas along the southwest margin of the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Schroeder, T. J.; Riggs, N.; Ort, M. H.

    2010-12-01

    A suite of xenolith-bearing, alkalic volcanic rocks erupted in small domes and plugs along the southwest margin of the Colorado Plateau (current Transition Zone) in Arizona between 30 Ma and 22 Ma. The onset of volcanic activity slightly precedes the earliest phase of mid-Tertiary extension and metamorphic core complex denudation in western/southern Arizona (27-25 Ma), which occurred along detachment faults that dip gently beneath the CP margin. Lavas are highly potassic (up to 6% Wt. K2O) and rich in incompatible trace elements (Ba up to 1900 ppm and Sr up to 1250 ppm), suggesting an enriched mantle melting source. Xenoliths are dominantly eclogite and pyroxenite that have been slightly to completely retrograded to amphibolite assemblages. The most common xenolith mineral assemblage consists of: 1) omphacite that has been completely replaced by an irregular symplectite of cpx and low-Ca plagioclase, 2) garnet that is partially replaced and rimmed by a fine, lamellar symplectite of high-Ca plagioclase, pargasitic amphibole, and Fe-Ti oxides, 3) coarse pargasitic amphibole that has overgrown or partially replaced the cpx-plag symplectite, 4) rutile that has been partially replaced by ilmenite and magnetite, and 4) apatite, zircon, and other accessory minerals. Xenoliths contain evidence for melt interaction prior to entrainment, including plagioclase veins containing hercynite and hogbomite that are cut by sharp contacts with the host lava. Results of this and other studies suggest that these veins formed by reactions between the eclogite assemblage (likely including spinel) and a locally derived melt. However, textural relations and geochemical differences suggest that this melt was not the host melt that entrained the xenoliths. Pyroxene and garnet thermobarometry from this and other studies on the primary eclogitic assemblages indicate temperatures from 500 to 900C at 11 to 20 kb. Mineral chemistry analyses of amphibole, plagioclase, hornblende, and garnet in the

  11. Recognizing Mantle Domains Related to an Extensional Cycle: the Record from Western Europe

    NASA Astrophysics Data System (ADS)

    Picazo, S.; Muntener, O.; Manatschal, G.

    2015-12-01

    Most of the studies on rifted margins have shown that the classical predictions of models assuming a "homogeneous" mantle lithosphere without some inheritance are unable to capture the observed large variety of magmatic budgets as a function of extension. More recently, new ideas and concepts have been developed to understand the evolution of the mantle lithosphere in hyper-extended magma-poor rifted margins that are mainly based on observations from the present-day Iberia-Newfoundland and ancient Alpine Tethys rifted margins and the Pyrenean systems. In contrast to the classical assumption assuming a simple, isotropic mantle lithosphere, these new models integrate observations from exposed and drilled mantle rocks and propose that the mantle lithosphere evolved and was modified during an extensional cycle from post-orogenic collapse through several periods of rifting to embryonic oceanic (ultra-) slow seafloor spreading. But it is, at present, unclear how far these ideas can be generalized and if they can explain the nature of mantle rocks observed across Western Europe and, in a more general way, at Atlantic type rifted margins. We review the available mantle data from Western Europe, i.e. ophiolite massifs, xenoliths and dredged samples, revisit the available terminology concerning mantle massifs and xenoliths and compile the available data to identify different mantle domains. We define chemical and petrological characteristics of mantle domains based on clinopyroxene and spinel compositions and compile them on present-day and paleo-geographic maps of Western Europe. Finally we link the observed distribution of mantle domains to the post-Variscan extensional cycle and link domains to processes related to the late post-Variscan extension, the rift evolution and refertilization associated to hyper-extension and the development of embryonic oceanic domains.

  12. Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: Product of melt-rock interaction

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Teng, Fang-Zhen; Zhang, Hong-Fu; Yang, Wei

    2013-08-01

    To investigate the effects of melt-rock interaction on Mg isotope fractionation and mantle Mg isotopic heterogeneity, we report high-precision Mg isotopic data of olivine (Ol), orthopyroxene (Opx), clinopyroxene (Cpx) and spinel (Spl) for 25 peridotite xenoliths from the eastern North China craton. These xenoliths range from lherzolites, Cpx-rich lherzolites to wehrlites, and are variably metasomatised. The lherzolites have Ol with Fo contents from 89 to 90 and have a homogeneous Mg isotopic composition (δ26Mg = -0.26 to -0.20), similar to the typical mantle value. By contrast, Cpx-rich lherzolites and wehrlites have lower Ol with Fo contents (78-88) and exhibit larger Mg isotopic variations, with δ26Mg ranging from -0.39 to +0.09. The δ26Mg values of minerals in these xenoliths are also variable and range from -0.45 to -0.03 in Ol, from -0.26 to -0.01 in Opx, from -0.34 to +0.22 in Cpx and from -0.16 to +0.25 in Spl. Inter-mineral fractionations between coexisting pyroxene and Ol in lherzolites and most isotopically light wehrlites (Δ26MgOpx-Ol = -0.04 to +0.09‰; Δ26MgCpx-Ol = + 0.02 to +0.25‰) vary as a function of temperature and are consistent with equilibrium inter-mineral isotope fractionations. By contrast, large disequilibrium Mg isotope fractionation occurs between coexisting pyroxene and Ol in the majority of Cpx-rich lherzolites (Δ26MgOpx-Ol = +0.16 to +0.32‰; Δ26MgCpx-Ol = +0.04 to +0.34‰). Both types of isotope fractionations also occur between Spl and Ol, with Spl being consistently heavier than Ol (Δ26MgSpl-Ol = +0.15 to +0.55‰). Overall, the isotopically equilibrated but light wehrlites may result from mantle metasomatism by isotopically light melt, whereas large disequilibrium isotope fractionations in Cpx-rich peridotites likely reflect kinetic isotope fractionation during melt-peridotite interaction. Both processes result in the heterogeneous Mg isotopic composition of the lithospheric mantle beneath the eastern North China

  13. Asthenosphere-lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah

    NASA Astrophysics Data System (ADS)

    Konrad, Kevin; Graham, David W.; Thornber, Carl R.; Duncan, Robert A.; Kent, Adam J. R.; Al-Amri, Abdullah M.

    2016-04-01

    volcanic field situated above thinned lithosphere beneath the Makkah-Medinah-Nafud volcanic lineament. Previous work established that spinel lherzolites at Hutaymah are sourced near the lithosphere-asthenosphere boundary (LAB), while other xenolith types there are derived from shallower depths within the lithosphere itself (Thornber, 1992). Helium isotopes are consistent with melts originating near the LAB beneath many of the Arabian harrats, and any magma derived from the Afar mantle plume currently appears to be of minor importance.

  14. Peridotite xenoliths from the Chersky belt (Yakutia): Infiltrated carbonate-rich melts leaving no metasomatic record

    NASA Astrophysics Data System (ADS)

    Tschegg, C.; Ntaflos, Th.

    2012-04-01

    The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and it remains a matter of debate, how the extent of the Mid-Arctic Ocean spreading influenced the North Asian continent in this region since the Eocene. We constrained a model (Tschegg et al. 2011, Lithos) showing that volcanism in the Chersky area was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This implicates that the rift tectonics of the Mid-Arctic Ocean, at that time, affected the North Asian continent causing volcanic activity. Luckily, the basanites that were studied for these purposes host a representative number of peridotite xenoliths, which allow further constraints on the evolution of this area. The suite of spinel peridotites (lherzolites and harzburgites), pyroxenites and mega-crysts enable to characterize upper mantle conditions as well as to observe different processes within the lithospheric mantle beneath the Chersky belt. Equilibration temperatures of the spinel lherzolites reveal approx. 900-1000 °C at pressures of 1-2 GPa, with melt extraction volumes around 4 %. The analyzed spinel harzburgites reflect equilibration at lower P-T conditions and around 8 % higher melt extraction rates. We were able to find a completely preserved interstitial melt droplet in a lherzolite, in which a primary dolomite is in perfect phase contact with Na-rich alumosilicate glass and sodalite. Based on detailed and integrated investigations, we reconstructed origin and evolution of this spectacular carbonatic liquid that at depth differentiated from a carbonated silicate melt to an immiscible carbonate and silicate liquid, entered the lherzolite and quenched shortly before it was transported in the xenolith to the earth surface. To our surprise, the carbonate-rich melt infiltration did not

  15. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths.

    PubMed

    Liu, Yongsheng; He, Detao; Gao, Changgui; Foley, Stephen; Gao, Shan; Hu, Zhaochu; Zong, Keqing; Chen, Haihong

    2015-06-23

    Carbon in rocks and its rate of exchange with the exosphere is the least understood part of the carbon cycle. The amount of carbonate subducted as sediments and ocean crust is poorly known, but essential to mass balance the cycle. We describe carbonatite melt pockets in mantle peridotite xenoliths from Dalihu (northern China), which provide firsthand evidence for the recycling of carbonate sediments within the subduction system. These pockets retain the low trace element contents and δ(18)OSMOW = 21.1 ± 0.3 of argillaceous carbonate sediments, representing wholesale melting of carbonates instead of filtered recycling of carbon by redox freezing and melting. They also contain microscopic diamonds, partly transformed to graphite, indicating that depths >120 km were reached, as well as a bizarre mixture of carbides and metal alloys indicative of extremely reducing conditions. Subducted carbonates form diapirs that move rapidly upwards through the mantle wedge, reacting with peridotite, assimilating silicate minerals and releasing CO2, thus promoting their rapid emplacement. The assimilation process produces very local disequilibrium and divergent redox conditions that result in carbides and metal alloys, which help to interpret other occurrences of rock exhumed from ultra-deep conditions.

  16. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths

    PubMed Central

    Liu, Yongsheng; He, Detao; Gao, Changgui; Foley, Stephen; Gao, Shan; Hu, Zhaochu; Zong, Keqing; Chen, Haihong

    2015-01-01

    Carbon in rocks and its rate of exchange with the exosphere is the least understood part of the carbon cycle. The amount of carbonate subducted as sediments and ocean crust is poorly known, but essential to mass balance the cycle. We describe carbonatite melt pockets in mantle peridotite xenoliths from Dalihu (northern China), which provide firsthand evidence for the recycling of carbonate sediments within the subduction system. These pockets retain the low trace element contents and δ18OSMOW = 21.1 ± 0.3 of argillaceous carbonate sediments, representing wholesale melting of carbonates instead of filtered recycling of carbon by redox freezing and melting. They also contain microscopic diamonds, partly transformed to graphite, indicating that depths >120 km were reached, as well as a bizarre mixture of carbides and metal alloys indicative of extremely reducing conditions. Subducted carbonates form diapirs that move rapidly upwards through the mantle wedge, reacting with peridotite, assimilating silicate minerals and releasing CO2, thus promoting their rapid emplacement. The assimilation process produces very local disequilibrium and divergent redox conditions that result in carbides and metal alloys, which help to interpret other occurrences of rock exhumed from ultra-deep conditions. PMID:26100577

  17. Copper systematics during mantle melting and crustal differentiation in arcs: implications for S and Pb budgets of the continental crust

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chin, E. J.; Dasgupta, R.; Luffi, P. I.; Le Roux, V.

    2010-12-01

    During mid-ocean ridge melting, Cu behaves like Sc and is therefore moderately incompatible, as evidenced by the twofold increase in Cu content in MORBs compared to the mantle. However, Cu content in the continental crust is comparable to that of the mantle, implying that during continental crust formation, Cu becomes effectively compatible. Cu is one of the only elements that exhibits Jekyll and Hyde behavior. This switch to being compatible is consistent with the observation that for the majority of arc magmas (as well as MORBs), Cu decreases with increasing SiO2 and decreasing MgO. Using natural samples, we infer new partition coefficients that indicate Cu is incompatible in olivine, pyroxenes, amphiboles, and biotite. The only mineral to exert significant control on Cu partitioning is sulfide. Cu behaves incompatibly during mantle melting because the modal abundance of sulfides relative to silicate minerals is extremely low. The monotonic decrease in Cu in most differentiating arc magmas requires sulfide saturation. In addition, the similar abundances of Cu in many primitive arc magmas compared to MORBs suggests that mantle melting in both environments occurs not only at sulfide saturation but without the need for excess Cu (or S). In a few cases, however, primitive arc magmas begin with high Cu or show increases in Cu with differentiation, which most likely requires unusually high oxygen fugacities in the source or magmatic evolution towards high oxygen fugacity. Such cases may be important for the origin of Cu porphyry deposits, but are generally rare. Because of the close link between Cu and sulfide during magma differentiation, Cu can be used as a proxy for the pre-degassed S content of arc magmas. The S content of continental crust, like many volatile elements, is basically unconstrained, but it can be inferred from Cu, which is much better constrained. Finally, the fact that the continental crust is highly depleted in Cu implies that there is a missing

  18. Two unusual Type B refractory inclusions in the Ningqiang carbonaceous chondrite: - Evidence for relicts, xenoliths and multi-heating

    NASA Astrophysics Data System (ADS)

    Lin, Yangting; Kimura, Makoto

    2000-12-01

    Two Type B refractory inclusions, consisting mainly of melilite, fassaite and spinel ± anorthite, were found in the anomalous Ningqiang carbonaceous chondrite. The composition of melilite varies from Åk 4-15 near the diopside rims to Åk 80-90 in the centers of these inclusions. In addition, melilite exhibits intergrowths with fassaite and/or anorthite in the centers of the inclusions. These observations suggest that both inclusions were once molten. The Na 2O content of melilite is positively correlated with the Åk content for Åk <70, but the correlation becomes negative for more Åkermanitic grains. These are the most Åkermanitic compositions reported in Type B refractory inclusions, and they could be related to a secondary heating of the inclusions. Beyond crystallization from melts, the Ningqiang Type B refractory inclusions contain possible relict fassaite fragments. These fragments are embedded in gehlenitic melilite and have corroded outlines surrounded by highly TiO 2-enriched fringes, as distinguished from the fassaites intergrown with melilite in the centers of the inclusions. In inclusion NQJ331, most grains of anorthite occur as irregular coarse-grained fragments, distinct from those intergrown with melilite. Toward these anorthite fragments, melilite shows a steep decrease in Åk content. We propose that these anorthite fragments are xenoliths and were probably injected into the host while the latter was crystallizing. Palisades occur only in NQJ331, and are probably relicts too. Distinctly low V 2O 3 concentrations of the spinels from the palisade bodies and the presence of palisade bodies consisting of one or more corroded crystals of fassaite ± anorthite are new lines of the evidence for a relict origin of palisades. The other Type B refractory inclusion, NQJ354, contains a spherule consisting of a grossite core and a spinel mantle enclosing laths of hibonite. The modal abundance and mineral chemistry of the spinel-hibonite spherule are

  19. Osmium isotope variations in the Pacific mantle: implications for the distribution of heterogeneity in the convecting mantle

    NASA Astrophysics Data System (ADS)

    Ishikawa, A.; Senda, R.; Suzuki, K.; Tani, K.; Ishii, T.

    2015-12-01

    Recent accumulation of Os isotope data obtained either from abyssal peridotites or from ocean island peridotite xenoliths has clearly demonstrated that the modern convecting mantle is substantially heterogeneous in Os-isotope composition. Unlike other radiogenic isotope heterogeneities observed in oceanic basalts, largely controlled by incorporation of recycled crustal materials, it seems likely that the observed range of Os-isotope compositions in oceanic peridotites directly reflect varying degrees of ancient melt extraction from peridotitic mantle. Hence, global variations of Os-isotope compositions in oceanic peridotites may provide an important piece of information in unraveling the geochemical and geodynamic evolution of the convecting mantle. Here we present the Os-isotope variations in peridotite-serpentinite recovered from the Pacific area because the number of data available is yet scarce when compared with data from other oceans (Atlantic, Arctic and Indian Ocean). Our primary purpose is to test whether mantle domains underlying four major oceans are distinct in terms of Os isotope variations, reflecting the pattern of mantle convection or mixing efficiency. We examined 187Os/188Os ratios and highly siderophile element concentrations in serpentinized harzburgite recovered from Hess Deep in the East Pacific Rise, a mantle section in the Taitao ophiolite, Chile (Schulte et al., 2009), serpentinized harzburgite bodies in the Izu-Ogasawara and Tonga forearc (Parkinson et al., 1998), peridotite xenoliths from the Pali-Kaau vent in O'ahu island, Hawaii (Bizimis et al., 2007), and low-temperature type peridotite xenoliths from Malaita, Solomon Islands (Ishikawa et al., 2011). The results demonstrate that samples from each area display very similar Os-isotope variations with a pronounced peak in 187Os/188Os = 0.125-0.128. Moreover, the relatively larger datasets obtained from Hess Deep, Taitao and Malaita clearly exhibit the presence of secondary peak in 187Os

  20. Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Creighton, Steven; Stachel, Thomas; Eichenberg, Dave; Luth, Robert W.

    2010-05-01

    Oxygen fugacity ( fO2) conditions were determined for 29 peridotite xenoliths from the A154-North and A154-South kimberlites of the Diavik diamond mine using the newly developed flank method modified specifically for measuring Fe3+ in mantle-derived pyropic garnets. The results indicate that the garnet-bearing lithospheric mantle beneath the central Slave craton is vertically layered with respect to oxidation state. The shallow (<140 km), “ultra-depleted” layer is the most oxidized section of garnet-bearing subcratonic mantle thus far measured, up to one log unit more oxidizing relative to the FMQ buffer [Δlog fO2 (FMQ) + 1]. The lower, more fertile layer has fO2 conditions that extend down to Δlog fO2 (FMQ) - 3.8, consistent with xenolith suites from other localities worldwide. Based on trace element concentrations in garnets, two distinct metasomatic events affected the mantle lithosphere at Diavik. An oxidized fluid imparted sinusoidal chondrite-normalized REE patterns on garnets throughout the entire depth range sampled. In contrast, a reducing melt metasomatic event affected only the lower portion of the lithospheric mantle. The fO2 state of the Diavik mantle sample suggests that diamond formation occurred by reduction of carbonate by fluids arising from beneath the lithosphere.

  1. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  2. Unearthing the basement of the Central Andes: insights from crustal xenoliths

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; Davidson, J. P.; Nowell, G.; de Silva, S. L.

    2011-12-01

    The continental crust of the Central Andes is the thickest at any subduction on Earth today reaching an estimated 80 km in thickness (Zandt et al., 1994). However, little is known about the nature and geological evolution of the crustal basement upon which the Central Andes sit due to the extensive sedimentary cover sequences which blanket the region today. Crustal xenoliths entrained within Plio-Pleistocene andesitic-dacitic lavas on the Bolivian Altiplano offer a rare insight into the nature of the poorly exposed Central Andean basement. The samples are lithologically diverse ranging from almost pure quartzite to garnet-mica schists, with rarer granulites and several igneous lithologies including diorites and microgranites. This diversity is reflected in their significant geochemical heterogeneity (87Sr/86Sr: 0.7105-0.7445; 143Nd/144Nd: 0.5118-0.5123; 208Pb/204Pb: 17.25-18.93). Relative trace element abundances and P-T estimates are consistent with sampling of the upper continental crust at ~23 km depth. Additionally these xenoliths provide key crustal end-member compositions for modelling the petrogenesis of Central Andean volcanic rocks. It is hoped that in-situ U-Pb analysis of zircon within this rock suite will provide further insights into the nature and evolution of the Central Andean continental crust. References Zandt, G., Velasco, A. A., and Beck, S. L., (1994). Composition and thickness of southern Altiplano crust, Bolivia. Geology v. 22, pp: 1003-1006.

  3. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts

    NASA Astrophysics Data System (ADS)

    Williams, Helen M.; Bizimis, Michael

    2014-10-01

    Mineralogical variations in the Earth's mantle and the relative proportions of peridotitic versus enriched and potentially crustally-derived pyroxenitic domains within the mantle have important implications for mantle dynamics, magma generation, and the recycling of surface material back into the mantle. Here we present iron (Fe) stable isotope data (δ57Fe, deviation in 57Fe/54Fe from the IRMM-014 standard in parts per thousand) for peridotite and garnet-pyroxenite xenoliths from Oahu, Hawaii and explore Fe isotopes as tracer of both peridotitic and pyroxenitic components in the source regions of oceanic basalts. The pyroxenites have δ57Fe values that are heavy (0.10 to 0.27‰) relative to values for mid-ocean ridge and ocean island basalts (MORB; OIB; δFe57∼0.16‰) and the primitive mantle (PM; δFe57∼0.04‰). Pyroxenite δ57Fe values are positively correlated with bulk pyroxenite titanium and heavy rare earth element (REE) abundances, which can be interpreted in terms of stable isotope fractionation during magmatic differentiation and pyroxene cumulate formation. In contrast, the peridotites have light δ57Fe values (-0.34 to 0.14‰) that correlate negatively with degree of melt depletion and radiogenic hafnium isotopes, with the most depleted samples possessing the most radiogenic Hf isotope compositions and lightest δ57Fe values. While these correlations are broadly consistent with a scenario of Fe isotope fractionation during partial melting, where isotopically heavy Fe is extracted into the melt phase, leaving behind low-δ57Fe peridotite residues, the extent of isotopic variation is far greater than predicted by partial melting models. One possibility is derivation of the samples from a heterogeneous source containing both light-δ57Fe (relative to PM) and heavy-δ57Fe components. While pyroxenite is a viable explanation for the heavy-δ57Fe component, the origin of the depleted light-δ57Fe component is more difficult to explain, as melting

  4. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  5. Nickel isotopic composition of the mantle

    NASA Astrophysics Data System (ADS)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  6. Diamonds in an upper mantle peridotite nodule from kimberlite in southern wyoming

    USGS Publications Warehouse

    McCallum, M.E.; Eggler, D.H.

    1976-01-01

    Diamonds in a serpentinized garnet peridotite nodule from a diatreme in southern Wyoming are the first known occurrence in an upper mantle peridotite xenolith from a kimberlite intrusion in North America as well as the second authenticated occurrence of diamonds from kimberlite pipes in North America. The nodule is believed to have come from a section of depleted (partially melted) Iherzolite at a depth of 130 to 180 kilometers.

  7. Diamonds in an upper mantle peridotite nodule from kimberlite in southern wyoming.

    PubMed

    McCallum, M E; Eggler, D H

    1976-04-16

    Diamonds in a serpentinized garnet peridotite nodule from a diatreme in southern Wyoming are the first known occurrence in an upper mantle peridotite xenolith from a kimberlite intrusion in North America as well as the second authenticated occurrence of diamonds from kimberlite pipes in North America. The nodule is believed to have come from a section of depleted (partially melted) lherzolite at a depth of 130 to 180 kilometers.

  8. Density heterogeneity of the cratonic mantle and dynamic topography in southern Africa

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Vinnik, Lev

    2016-04-01

    An unusually high topography in southern Africa may be caused by the dynamic support of the mantle below the lithosphere base and/or by a low density (high depletion) of the cratonic lithospheric mantle. We use free-board constraints to examine the relative contributions of the both factors to surface topography and present the model of density structure of the lithospheric mantle in southern Africa. The results indicate that 0.5-1.0 km of topography requires contribution from the sublithospheric mantle because it cannot be explained by the lithosphere structure within the petrologically permitted range of mantle densities. We propose that this additional topography may be associated with the low-density region below the depth of isostatic compensation (LAB). A likely candidate is the low velocity layer between the lithospheric base and the mantle transition zone, where a temperature anomaly of 100-200 deg may produce the required extra contribution to regional topographic uplift. The calculated lithospheric mantle density values are in an overall agreement with xenolith-based data for lithospheric terranes of different ages and show an overall trend in mantle density increase from Archean to younger lithospheric terranes. A significant anomaly in mantle depletion beneath the Limpopo belt and the Bushveld Complex may result from regional melt-metasomatism. Density anomalies in the lithospheric mantle show an overall inverse correlation with seismic Vp, Vs velocities at 100-150 km depth; however, density-velocity relationship is strongly non-unique. Manuscripts in revision, Gondwana Research (2016)

  9. The various styles of metasomatism in the lithospheric mantle beneath SW Poland: the Krzeniów basanite case

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros; Grégoire, Michel; Klügel, Andreas

    2013-04-01

    Abundant mafic rocks of Central European Volcanic Province (CEVP) occur in SW Poland. A Miocene basanite volcanic plug occurring near Krzeniów village encloses scarce peridotite (spinel harzburgite and spinel dunite) xenoliths, which are usually up to 4 cm in diameter. The peridotites are have protogranular to porphyroclastic textures. Clinopyroxene occurs in small amounts (< 4.5 vol. %) only in some of the xenoliths. The forsterite contents in olivine define two groups of peridotites: A - Fo90.4-91.7 and B - Fo88.2-89.8. The group A orthopyroxene is more magnesian (mg# 0.913-0.921) than that of group B (mg# 0.899-0.920). The major and trace element composition in clinopyroxene defines subgroups A1, A2 and A3 in the group A peridotites; the subgroup A3 comprises the clinopyroxene-free xenoliths. The A1 clinopyroxene is characterized by varying REE contents with relative enrichment of lighter REE and concave downward patterns. The most REE-poor clinopyroxene is highly magnesian (mg# 0.936-0.945) and impoverished in aluminium (Al 0.065 atoms pfu). REE-rich A1 clinopyroxene is also rich in magnesium (mg# 0.924-0.936), but the Al and Na contents are elevated in comparison to REE-poor clinopyroxene. All the A1 xenoliths contain low- Al orthopyroxene (0.055-0.090 a pfu). A2 clinopyroxene displays s-shaped REE patterns with increase from La to Nd and decrease to Lu. It is less magnesian than A1 clinopyroxene (mg# 0.918-0.924) and richer in Al and Na (0.148-0.158 and 0.079-0.098 a pfu, respectively). The Al content in A2 orthopyroxene is 0.102 a pfu while in A3 orthopyroxene varies from 0.021 to 0.095 a pfu. Major element composition of group B clinopyroxene is variable (mg# 0.903-0.924, Al 0.074 to 0.095 a pfu), but REE composition remains constant and mimics that of group A2. Orthopyroxene contains 0.035-0.074 atoms of Al pfu. The trend of decreasing Ca-contents with increasing Al contents occurs in group A1 clinopyroxenes. In this group the clinopyroxene REE change

  10. Origin and significance of spinel pyroxene symplectite in lherzolite xenoliths from Tallante, SE Spain

    NASA Astrophysics Data System (ADS)

    Shimizu, Yohei; Arai, Shoji; Morishita, Tomoaki; Ishida, Yoshito

    2008-09-01

    We found spinel pyroxene symplectites in lherzolite xenoliths from Tallante, SE Spain, and investigated their petrographical and geochemical signatures. The spinel pyroxene symplectites are divided into two types, a spinel-type (= opx + cpx + sp) and a plagioclase-type (= opx + cpx + sp + pl) symplectites. The symplectites are always surrounded by lenticular aggregates of coarser-grained spinel pyroxene. The petrography and major-element chemistry of bulk symplectites indicate an origin through subsolidus reaction between olivine and garnet like at Horoman (Japan; Morishita and Arai, Contrib Mineral Petrol 144:509 522, 2003). The spinel pyroxene symplectites at Tallante were of garnet origin. However, the bulk Tallante spinel pyroxene symplectites show a relatively flat rare earth element (REE) distribution with slight light REE (LREE) enrichment, i.e. there was no trace-element signature typical of mantle garnet. They also differ from the Horoman symplectites that occasionally preserve a garnet trace-element signature, i.e. depletion of LREE and enrichment of heavy REE. These conflicting results indicate that the symplectites record slight enrichment in pyroxene compositions during or after depletion by melt extraction and breakdown of garnet by decompression, and all the minerals including symplectite constituents have been homogenized in the stability field of spinel to plagioclase lherzolite, with the assistance of some melt (possibly an alkaline silicate melt; Downes, J Petrol 42:233 250, 2001). Moreover, some of the spinel-type symplectites experienced heating by injection of Si-rich melt, and consequently have been transformed to the plagioclase-type symplectite. The Tallante spinel pyroxene symplectites developed from garnet + olivine and were carried from the garnet lherzolite stability field to the spinel and to the plagioclase lherzolite stability fields. Our data indicates mantle upwelling (mantle diapirism) beneath the Betic Rif zone in southern Spain.

  11. Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary-metasomatic mineralogy

    SciTech Connect

    Harte, B. ); Gurney, J.J. ); Winterburn, P.A. Isotope Geochemistry Facility, Pretoria )

    1990-02-01

    The geochemistry and textures of peridotite xenoliths from the Jagersfontein kimberlite pipe are reported. The xenoliths have a primary mineralogy of olivine {plus minus} orthopyroxene {plus minus} clinopyroxene {plus minus} garnet {plus minus} spinel. They are subdivided into coarse and deformed xenoliths corresponding to high- and low-temperature estimates, respectively. Coarse-grained xenoliths are further subdivided into low- and medium-temperature groups. Mineral chemistry of these two groups is distinct, e.g., clinopyroxene 100 Al/(Al + Cr) 24 to 60 and 60 to 70 in the medium- and low-temperature groups, respectively. Low-temperature xenoliths have undergone exsolution of pyroxene, spinel, and garnet in their pyroxenes. Primary modal metasomatism has occurred in the coarse xenoliths with the replacement of orthopyroxene by edenitic amphibole in the low-temperature xenoliths and of clinopyroxene by low-Ti phlogopite in the medium-temperature xenoliths. The amphibole stability limit confines it to shallower depths. Metasomatized xenoliths have been enriched in K, Na, Al, and Ca, and trace incompatible elements. Metasomatism is considered to have occurred at round 1 Ga by the infiltration of, and reaction with, ascending H{sub 2}O-rich fluids with Sr and Nd isotopic characteristics similar to group II kimberlites. The widespread chemical equilibrium seen in metasomatized xenoliths suggests that the particularly distinctive features of the low-temperature Jagersfontein xenoliths, namely exsolution and very low equilibration temperatures, may also be a result of the primary metasomatism.

  12. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?

    PubMed

    Giuliani, Andrea; Phillips, David; Woodhead, Jon D; Kamenetsky, Vadim S; Fiorentini, Marco L; Maas, Roland; Soltys, Ashton; Armstrong, Richard A

    2015-04-17

    Kimberlites and orangeites (previously named Group-II kimberlites) are small-volume igneous rocks occurring in diatremes, sills and dykes. They are the main hosts for diamonds and are of scientific importance because they contain fragments of entrained mantle and crustal rocks, thus providing key information about the subcontinental lithosphere. Orangeites are ultrapotassic, H2O and CO2-rich rocks hosting minerals such as phlogopite, olivine, calcite and apatite. The major, trace element and isotopic compositions of orangeites resemble those of intensely metasomatized mantle of the type represented by MARID (mica-amphibole-rutile-ilmenite-diopside) xenoliths. Here we report new data for two MARID xenoliths from the Bultfontein kimberlite (Kimberley, South Africa) and we show that MARID-veined mantle has mineralogical (carbonate-apatite) and geochemical (Sr-Nd-Hf-O isotopes) characteristics compatible with orangeite melt generation from a MARID-rich source. This interpretation is supported by U-Pb zircon ages in MARID xenoliths from the Kimberley kimberlites, which confirm MARID rock formation before orangeite magmatism in the area.

  13. Pervasive, tholeiitic refertilisation and heterogeneous metasomatism in Northern Victoria Land lithospheric mantle (Antarctica)

    NASA Astrophysics Data System (ADS)

    Pelorosso, Beatrice; Bonadiman, Costanza; Coltorti, Massimo; Faccini, Barbara; Melchiorre, Massimiliano; Ntaflos, Theodoros; Gregoire, Michel

    2016-04-01

    The petrology of peridotite xenoliths in the Cenozoic volcanics from Greene Point (Northern Victoria Land, Antarctica) provides new constraints on the characterisation of the lithospheric mantle beneath the West Antarctic Rift. Based on mineral major and trace element models, this mantle domain is proposed to represent a residuum after 10% and 20% partial melting. Moreover, melting models and isotopic results for Sr and Nd systematics highlight the substantial contribution of tholeiitic melts percolating through peridotites. Close correlation with trace element contents in clinopyroxene phenocrysts from Ferrar and Karoo tholeiites allows us to ascribe this refertilisation event to the Jurassic. This asthenospheric melt was also able to transfer a garnet signature to the Northern Victoria Land mantle segment. The rare presence of glass and secondary phases indicate that Greene Point xenoliths were heterogeneously affected by alkaline metasomatism, probably related to the West Antarctic Rift System opening; this has also been widely observed in other Northern Victoria Land localities (i.e., Baker Rocks). Temperature and fO2 were calculated (950 °C; Δlog fO2 (QFM), - 1.70 to - 0.39) at a fixed pressure of 15 kbar, confirming the tendency of the anhydrous Greene Point xenolith population to have higher equilibration temperatures and comparable redox conditions, compared to the nearby amphibole-bearing peridotites from Baker Rocks.

  14. The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc)

    NASA Astrophysics Data System (ADS)

    Vannucci, R.; Tiepolo, M.; Defant, M. J.; Kepezhinskas, P.

    2007-11-01

    The composition and geochemical signatures of the mantle wedge beneath the Lesser Antilles arc are documented by the ultramafic xenoliths included in alkali basalts (M-series) on Grenada. Xenoliths consist of harzburgites, lherzolites, dunites and subordinate wehrlites and pyroxenites. Primary minerals phases are olivine, low-Al and high-Al orthopyroxene, clinopyroxene and Cr-Spinel. In addition to the primary assemblage, Grenada xenoliths contain metasomatic phases such as Al-rich clinopyroxene, plagioclase, Al-rich spinel, pargasitic amphibole and Si- and Al-rich glasses. The trace-element signatures of pyroxenes and glasses have been determined on selected samples by LA-ICP-MS. Pyroxenes from both lherzolite and harzburgite xenoliths have U-shaped rare earth element (REE) profiles, unusually high Th, U and Sr concentrations and large negative Nb, Ta and Zr, and Hf anomalies. The geochemical signatures of metasomatic clinopyroxene are different from those reported for clinopyroxene from fluid-metasomatised mantle wedge, and are clearly distinct from those of clinopyroxene in equilibrium with host lavas. Si-rich glasses show a narrow compositional range, with trace-element characteristics closely similar to those of reacted pyroxenes. This, along with the general lack of chemical gradients of LILE and LREE over more compatible elements suggests dacitic glasses represent the products of in-situ melting caused by temperature increase before and during the uptake of xenoliths by host lavas. Dacitic melts are believed to represent local re-melts of regions metasomatically enriched by earlier arc magmas that had stalled, fractionated, and solidified in the upper mantle. These local re-melts thus reflect the metasomatic component formed by earlier arc-related metasomatic agents and liable to be re-mobilised. This also appears to be the easiest way to explain the compositional similarities between erupted arc lavas and the metasomatised peridotites. The results of this

  15. Asthenosphere–lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah

    USGS Publications Warehouse

    Konrad, Kevin;; Graham, David W; Thornber, Carl; Duncan, Robert A; Kent, Adam J.R.; Al-Amri, Abdulla

    2016-01-01

    Elevated 3He/4He in the western harrats has been observed only at Rahat (up to 11.8 RA; Murcia et al., 2013), a volcanic field situated above thinned lithosphere beneath the Makkah-Medinah-Nafud volcanic lineament. Previous work established that spinel lherzolites at Hutaymah are sourced near the lithosphere-asthenosphere boundary (LAB), while other xenolith types there are derived from shallower depths within the lithosphere itself (Thornber, 1992). Helium isotopes are consistent with melts originating near the LAB beneath many of the Arabian harrats, and any magma derived from the Afar mantle plume currently appears to be of minor importance.

  16. Subduction signature in backarc mantle?

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Snow, J. E.; Brandon, A. D.; Ohara, Y.

    2013-12-01

    Abyssal peridotites exposed during seafloor extension provide a rare glimpse into the processes occurring within the oceanic mantle. Whole rock and mineral-scale major element data from abyssal peridotites record processes intimately associated with melt-depletion and melt-rock interaction occurring just prior to exposure of the mantle at the surface. Isotopic data, however, can provide insight into the long-term evolution of the oceanic mantle. A number of studies of mantle material exposed along mid-ocean ridges have demonstrated that abyssal peridotites from Mid-Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge commonly display a range of whole rock Os isotopic ratios (187Os/188Os = 0.118- 0.130; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008). The range of isotopic values in each region demonstrates that the oceanic mantle does not melt uniformly over time. Instead, anciently depleted regions (187Os/188Os ≈ 0.118) are juxtaposed against relatively fertile regions (187Os/188Os ≈ 0.130) that are isotopically similar to established primitive mantle values (187Os/188Os = 0.1296; Meisel et al. 2001). Abyssal peridotites from the Godzilla Megamullion and Chaotic Terrain in the backarc Parece Vela Basin (Philippine Sea) display a range of Os isotopic values extending to similar unradiogenic values. However, some of the backarc basin abyssal peridotites record more radiogenic 187Os/188Os values (0.135-0.170) than mid-ocean ridge peridotites. Comparable radiogenic signatures are reported only in highly weathered abyssal peridotites (187Os/188Os ≤ 0.17, Standish et al., 2002) and subduction-related volcanic arc peridotites (187Os/188Os ≤ 0.16, Brandon et al., 1996; Widom et al., 2003). In both the weathered peridotites and arc peridotites, the 187Os/188Os value is negatively correlated with Os abundance: the most radiogenic value has the lowest Os abundance (< 1 ppb) making them highly susceptible to

  17. Compositionally Controlled Volatile Content of Nominally Volatile-Free Minerals in the Continental Upper Mantle of Southern Gondwana (Patagonia & W. Antarctica)

    NASA Astrophysics Data System (ADS)

    Rooks, E. E.; Gibson, S. A.; Leat, P. T.; Petrone, C. M.

    2015-12-01

    H2O and F contents affect many physical and chemical properties of the upper mantle, including melting temperature and viscosity. These elements are hosted by hydrous and F-rich phases, and by modally abundant, nominally-anhydrous/halogen-free mantle minerals, which can potentially accommodate the entire volatile budget of the upper mantle. We present high-precision SIMS analyses of H2O, and F in mantle xenoliths hosted by recently-erupted (5-10 Ka) alkali basalts from south Patagonia (Pali Aike) and older (c. 25 Ma) alkali basalts from localities along the Antarctic Peninsula. Samples are well characterised peridotites and pyroxenites, from a range of depths in the off-craton lithospheric mantle. Minerals are relatively dry: H2O contents of olivine span 0-49 ppm, orthopyroxene 150-235 ppm and clinopyroxene 100-395 ppm, with highest concentrations found in spinel-garnet lherzolites from Pali Aike. These H2O concentrations fall within the global measured range for off-craton mantle minerals. H2O and F are correlated, and the relative compatibility of F in mantle phases is clinopyroxene>orthopyroxene>olivine. However, elevated F concentrations of 100-210 ppm are found in pyroxenites from two Antarctic localities. This elevated F content is not correlated with high H2O, suggesting that these rocks interacted with a F-rich melt. In clinopyroxenes, F concentration is correlated with Ti, and the ratio of M1Ti to M1Al + M1Cr, suggesting a charge balanced substitution. Consistency between samples (excepting high-F pyroxenites) suggests a constant F-budget, and that concentrations in clinopyroxenes are controlled by mineral chemistry. In orthopyroxene, F correlates with CaO, but no other major or minor elements. Large variability of H2O concentrations within samples is attributed to diffusive loss during ascent. Cl is negligible in all samples, indicating little or no influence of slab fluids from this long-lived subduction zone.

  18. Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: new contributions from Hyblean peridotite xenoliths (southeastern Sicily)

    NASA Astrophysics Data System (ADS)

    Manuella, Fabio Carmelo; Ottolini, Luisa; Carbone, Serafina; Scavo, Lidia

    2016-11-01

    We studied a partially serpentinized peridotite xenolith, found in the diatreme tuff-breccia deposit at Valle Guffari (Hyblean Plateau, southeastern Sicily, Italy), which is representative of the Hyblean peridotite xenolith suite. We also considered all published (21) whole-rock analyses of Hyblean peridotites, to investigate the metasomatizing effects of seawater-related hydrothermal fluids in the Hyblean basement, an in-situ remnant of the ultraslow-spreading Permian Tethys. In detail, we analyzed the serpentine veins by different techniques (scanning electron microscopy-SEM, electron-probe microanalysis-EPMA, micro-Raman spectroscopy, X-ray powder diffraction-XRPD) to determine the crystal-chemical composition and the structure of the veins. In addition, secondary ion mass spectrometry (SIMS) was applied to measure the abundance of trace elements. Serpentine veins are made up of two Fe-rich polytypes, chrysotile 2Mc1 and lizardite 1T. The chondrite-normalized rare earth element compositions of both serpentine polytypes are lower than 1, except for a modest light rare earth element (LREE) enrichment, and also in some fluid-mobile elements (FME: B, Rb, Sr, U). Conversely, the whole-rock composition of the studied peridotite xenolith is enriched with LREE and other trace elements (B, Sr, P, Th, U, Pb), like most Hyblean peridotites. The REE and multi-element patterns of Hyblean peridotites are akin to those of hydrothermal sediments from the Mid-Atlantic Ridge and St. Demetrio hill (northern Hyblean Plateau), and abyssal peridotites (serpentinites) whose trace element abundance is generally ascribed to melt-rock interaction. The integrated interpretation of the data and the documentation of hydrothermal minerals [(Na,S)-rich apatite, carbonates] in serpentine veins indicate that serpentinization-related hydrothermal fluids do have a primary role in metasomatism (mainly for the abundance of LREE and high field strength elements-HFSE) of ancient (Permian Tethys) and

  19. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    USGS Publications Warehouse

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.

    1992-01-01

    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host

  20. Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: Evidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton

    NASA Astrophysics Data System (ADS)

    Moyen, J.-F.; Paquette, J.-L.; Ionov, D. A.; Gannoun, A.; Korsakov, A. V.; Golovin, A. V.; Moine, B. N.

    2017-01-01

    Cratons represent the oldest preserved lithospheric domains. Their lithosphere (lithospheric mantle welded to overlying Precambrian crystalline basement) is considered to be particularly robust and long-lived due to the protecting presence of buoyant and rigid "keels" made up of residual harzburgites. Although the cratons are mostly assumed to form in the Archaean, the timing of their formation remains poorly constrained. In particular, there are very few datasets describing concurrently the age of both the crustal and mantle portions of the lithosphere. In this study, we report new U-Pb ages and Hf isotope compositions for zircons in crustal xenoliths from the Udachnaya kimberlite in the central Siberian craton; this dataset includes samples from both the upper and lower portions of the crust. The zircon ages agree well with model melt-extraction Re-Os ages on refractory peridotite xenoliths from the same pipe; taken together they allow an integrated view of lithosphere formation. Our data reveal that the present day upper crust is Archaean, whereas both the lower crust and the lithospheric mantle yield Paleoproterozoic ages. We infer that the deep lithosphere beneath the Siberian craton was not formed in a single Archaean event, but grew in at least two distinct events, one in the late Archaean and the other in the Paleoproterozoic. Importantly, a complete or large-scale delamination and rejuvenation of the Archaean lower lithosphere (lower crust and lithospheric mantle) took place in the Paleoproterozoic. This further demonstrates that craton formation can be a protracted, multi-stage process, and that the present day crust and mantle may not represent complementary reservoirs formed through the same tectono-magmatic event. Further, deep cratonic lithosphere may be less robust and long living than often assumed, with rejuvenation and replacement events throughout its history.

  1. Composition and structure of mantle lithosphere in the Russian Far East according to xenolths study.

    NASA Astrophysics Data System (ADS)

    Prikhodko, V.; Ashchepkov, I.; Ntaflos, T.; Barkar, A.; Vysotsky, S.; Esin, S.; Kutolin, V.; Prussevich, A.

    2012-04-01

    Lherzolitic mantle xenoliths from the Pliocene - basalts of Russian Primorie referred to the different volcanic regions (plateaus) show spatial -temporal variations of thee mineral chemistry determined for 550 xenoliths and TRE in IGM Novosibirsk but rather similar bulk rock compositions. In the N Eastern volcanic zone in Sovgavan plateau the xenoliths bearing basalts occur in late stages of the Miocen - Pleocene basalt plateau (Tuttochi), in the late extrusions (necks) and dykes and the post erosion enclosed valley flows (Sunku and Kamky) scoria cones (MountKurgan) where amphiboles occurred in hybrid websterites. In Southern Sikhote Alin in Shkotkov plteau Fe- lherzolites with amphiboles and mica dominate in the basement lavas. The Pliocene Pogelbanochny neck and lava flow contain y large xenoliths (to 1 m) (Scheka , 1981) sapphires and some other gems (Vysotsky et al ., 2009). The xenolith in the western volcanic zones - Lesozovoskaya, Medvezhy contains kelyphites after garnets and Phl veins The Cr- diopsides in Tuttochi are more (Na, Al , Ti) depleted and dispersed, in Kamky flow Fe-rich trends is found similar to relation for CPx in Sunku flow and Mount Kurgan. The early stage Nelma and Shkotov palateu Cr-Di show high dispersion and Fe-metasomatism. Mesozoic Anyui Cpx are less Na-Ti-Al riched. The Sp refer to most Al rich OSMA part with are Cr-picotites equilibrated with garnets (16-24% Cr2O3). Calculated PT geotherms ~90 mWm-2 everywhere starts near Gar stability at18kabrs. The Western fields show lower mantle thermal gradients. In basaltic plateau P-Fe# trends show percolation trends increasing P-Fe# with Cpx pressure lower then Opx. Those from latest scoria cones demonstrates sub adiabatic PT trajectories (MountKurgan) or Fe# rising to bottom (Medvezhy) formed by melt interaction. The basement plateau Shkotov xenolith reveal first thermal plum impact and subvertical magma channel trend TRE determined by LAMICP IGM for Sovgavan Cr- diopsides (Sanky

  2. Probing Archean lithosphere using the Lu-Hf isotope systematics of peridotite xenoliths from Somerset Island kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, Stefanie S.; Simonetti, Antonio; Francis, Don; Gariépy, Clément

    2002-04-01

    A knowledge of the Hf isotopic composition of the subcontinental lithosphere beneath Archean cratons is essential to constrain the Hf isotope budget of the Earth's mantle. Hf isotopic measurements were obtained by MC-ICP-MS for a suite of refractory peridotite xenoliths and constituent garnets from the Nikos kimberlite (100 Ma) on Somerset Island in order to constrain the isotopic composition and age of the lithosphere beneath the northern Canadian craton. The low-temperature Nikos peridotites (<1100°C), which represent the shallow Somerset lithosphere, are characterized by higher 176Lu/ 177Hf ratios (0.03-0.05) and Hf isotopic values ( 176Hf/ 177Hf (0.1Ga)=0.28296-0.28419) than the deep-seated high-temperature peridotites (>1100°C; 0.004-0.03, 0.28265-0.28333, respectively). These differences in Hf isotope signatures suggest that shallow and deep subcontinental lithosphere beneath Somerset Island represent isotopically distinct domains and do not share a common petrogenetic history. The Lu-Hf isotope systematics of the shallow low-temperature peridotites define a positively sloped line that plot along a 2.8 Ga reference isochron. A number of these peridotites are characterized by highly radiogenic Hf isotopic compositions suggestive of long-term radiogenic ingrowth (billions of years). These findings are consistent with an interpretation that the shallow Somerset lithosphere (to depths of ˜150 km) stabilized in the Archean. The majority of the high-temperature peridotites plot closer to the composition of the host kimberlite. Although the observed isotopic variation may be attributed in part to kimberlite-related Hf addition, it is possible that these deep-seated xenoliths represent younger mantle. The superchondritic 176Lu/ 177Hf ratios observed for a number of the shallow low-temperature peridotites indicate strong fractionation of Lu and Hf, suggesting mantle root formation in the garnet stability field (depths >80 km). The Hf isotope compositions for the

  3. Mantle density beneath the Siberian craton based on free board constrains

    NASA Astrophysics Data System (ADS)

    Cherepanova, Yulia; Artemieva, Irina

    2014-05-01

    We present the mantle density model of the Archean-Proterozoic Siberian Craton (SC). The density model is constrained by free-board (buoyancy) modeling (Lachenbruch and Morgan, 1990). The approach assumes isostatic compensation of the region, and is justified by the near-zero free-air gravity for most of the region, except for the flanking orogenic belts with high topography. Despite a relatively uniform topography of the SC (ca. 400 m for most of the region and reaching 700 m in the shields), the craton has a strongly heterogeneous crustal structure with large regional variations in Moho and average crustal Vp (Cherepanova et al., 2013) which reflects its complex tectonic evolution. Formed by amalgamation of several Archean terranes, the craton has been significantly affected by Proterozoic collisional and extensional events, the late- Proterozoic rifting at its margins, the Devonian rifting of the Vilyui rift, several pulses of kimberlite magmatism, and the Permo-Triassic trap basalt magmatism. The strong lateral and vertical heterogeneity of the lithospheric mantle has been documented so far in the studied of the mantle xenoliths from kimberlite pipes and in a limited number of geophysical studies. Here we extend geophysical analysis of mantle compositional heterogeneity by evaluating mantle density structure and interpreting its regional variations in terms of mantle mg#. We link regional large-amplitude variations in mantle depletion to the tectonic evolution of the craton and compare these results with geophysical models and petrologic data. We speculate on the origin of compositional heterogeneity of the lithospheric mantle, which is in overall agreement with results of a joint analysis of seismic and thermal data (Artemieva, 2009) and mantle xenolith studies which provide information on metasomatic enrichment of the depleted lithospheric mantle by the tectonic events. The results indicate the heterogeneous structure of mantle density, with the average

  4. Chemical equilibration of the Earth's core and upper mantle

    USGS Publications Warehouse

    Brett, R.

    1984-01-01

    The oxygen fugacity (fO2) of the Earth's upper mantle appears to lie somewhat above that of the iron-wu??stite buffer, its fO2 is assumed to have been similar to the present value at the time of core formation. In the upper mantle, the Fe-rich liquid protocore that would form under such conditions of fO2 at elevated temperatures would lie predominantly in the system Fe-S-O. Distribution coefficients for Co, Cu, Ni, Ir, Au, Ir, W, Re, Mo, Ag and Ga between such liquids and basalt are known and minimum values are known for Ge. From these coefficients, upper mantle abundances for the above elements can be calculated by assuming cosmic abundances for the whole Earth and equilibrium between the Fe-S-O protocore and upper mantle. These calculated abundances are surprisingly close to presently known upper mantle abundances; agreements are within a factor of 5, except for Cu, W, and Mo. Therefore, siderophile element abundances in the upper mantle based on known distribution coefficients do not demand a late-stage meteoritic bombardment, and a protocore formed from the upper mantle containing S and O seems likely. As upper mantle abundances fit a local equilibrium model, then either the upper mantle has not been mixed with the rest of the mantle since core formation, or else partition coefficients between protocore and mantle were similar for the whole mantle regardless of P, T, and fO2. The latter possibility seems unlikely over such a P-T range. ?? 1984.

  5. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab

    PubMed Central

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-01-01

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure–temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge. PMID:23716664

  6. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    PubMed

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  7. Oxidation state of the lithospheric mantle beneath the Massif Central,France

    NASA Astrophysics Data System (ADS)

    Uenver-Thiele, L.; Woodland, A. B.; Downes, H.; Altherr, R.

    2012-04-01

    The Tertiary and Quaternary volcanism of the French Massif Central sampled the underlying subcontinental lithospheric mantle (SCLM) in the form of xenoliths over a wide geographic area of ~20.000km2. Such an extensive distribution of xenoliths provides an unique opportunity to investigate regional variations in mantle structure and composition. On the basis of textural and geochemical differences, Lenoir et al. (2000) and later Downes et al. (2003) identified two distinct domains in the SCLM lying north and south of latitude 45° 30' N, respectively. The northern domain is relatively refractory, but has experienced pervasive enrichment of LREE. The southern domain is generally more fertile, exhibiting depletion in LREE. A metasomatic overprint has developed to variable extents in many xenolith suites. The different histories of these two juxtaposed blocks of SCLM should also be reflected in their oxidation state, with local variations also to be expected due to metasomatic interactions. For example, if carbonate-melt metasomatism played a role in the LREE enrichment of the northern domain (Lenoir et al. 2000; Downes et al. 2003), then such mantle should be relatively oxidised. Since surprisingly little redox data are currently available, we are undertaking a study to determine the oxidation state of the SCLM beneath the Massif Central over the largest geographical area possible. All xenoliths investigated are spinel peridotites, mostly with protogranular textures (although some samples are porphyroclastic or equigranular). Most samples are nominally anhydrous although minor amphibole is present in some xenolith suites. Major element compositions of the individual minerals were determined by microprobe. Two-pyroxene temperatures (BKN) range from 750° to ~1200° C. Ferric iron contents of spinel were determined by Mössbauer spectroscopy and gave a range of Fe3+/ Fetot from 0.191 to 0.418, with a conservative uncertainty of ±0.02. These data were used to calculate

  8. Oceanic mantle rocks reveal evidence for an ancient, 1.2-1.3 Ga global melting event

    NASA Astrophysics Data System (ADS)

    Dijkstra, A. H.; Sergeev, D.; McTaminey, L.; Dale, C. W.; Meisel, T. C.

    2011-12-01

    It is now increasingly being recognized that many oceanic peridotites are refertilized harzburgites, and that the refertilization often masks an extremely refractory character of the original mantle rock 'protolith'. Oceanic peridotites are, when the effects of melt refertilization are undone, often too refractory to be simple mantle melting residues after the extraction of mid-ocean ridge basalts at a spreading center. Rhenium-osmium isotope analysis is a powerful method to look through the effects of refertilization and to obtain constraints on the age of the melting that produced the refractory mantle protolith. Rhenium-depletion model ages of such anomalously refractory oceanic mantle rocks - found as abyssal peridotites or as mantle xenoliths on ocean islands - are typically >1 Ga, i.e., much older than the ridge system at which they were emplaced. In my contribution I will show results from two case studies of refertilized anciently depleted mantle rocks (Macquarie Island 'abyssal' peridotites and Lanzarote mantle xenoliths). Interestingly, very refractory oceanic mantle rocks from sites all around the world show recurring evidence for a Mesoproterozoic (~1.2-1.3 Ga) melting event [1]. Therefore, oceanic mantle rocks seem to preserve evidence for ancient melting events of global significance. Alternatively, such mantle rocks may be samples of rafts of ancient continental lithospheric mantle. Laser-ablation osmium isotope 'dating' of large populations of individual osmium-bearing alloys from mantle rocks is the key to better constrain the nature and significance of these ancient depletion events. Osmium-bearing alloys form when mantle rocks are melted to high-degrees. We have now extracted over >250 detrital osmium alloys from placer gold occurrences in the river Rhine. These alloys are derived from outcrops of ophiolitic mantle rocks in the Alps, which include blocks of mantle rocks emplaced within the Tethys Ocean, and ultramafic lenses of unknown

  9. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia

    NASA Astrophysics Data System (ADS)

    Alifirova, T. A.; Pokhilenko, L. N.; Korsakov, A. V.

    2015-06-01

    Eclogite mantle xenoliths from the central part of Siberian craton (Udachnaya and Zarnitsa kimberlite pipes) as well as from the northeastern edge of the craton (Obnazhennaya kimberlite) were studied in detail. Garnet and clinopyroxene show evident exsolution textures. Garnet comprises rutile, ilmenite, apatite, and quartz/coesite oriented inclusions. Clinopyroxene contains rutile (± ilmenite) and apatite precipitates. Granular inclusions of quartz in kyanite and garnet usually retain features of their high-pressure origin. According to thermobarometric calculations, the studied eclogitic suite was equilibrated within lithospheric mantle at 3.2-4.9 GPa and 813-1080 °C. The precursor composition of garnets from Udachnaya and Zarnitsa eclogites suggests their stability at depths 210-260 km. Apatite precipitation in clinopyroxenes of Udachnaya and Zarnitsa allows us to declare that original pyroxenes could have been indicative of their high P-T stability. Raman spectroscopic study of quartz and coesite precipitates in garnet porphyroblasts confirms our hypothesis on the origin of the exsolution textures during pressure-temperature decrease. With respect to mineralogical data, we suppose the rocks to be subjected to stepwise decompression and cooling within mantle reservoir.

  10. A 'hidden' 18O-enriched reservoir in the sub-arc mantle.

    PubMed

    Liu, Chuan-Zhou; Wu, Fu-Yuan; Chung, Sun-Lin; Li, Qiu-Li; Sun, Wei-Dong; Ji, Wei-Qiang

    2014-02-28

    Plate subduction continuously transports crustal materials with high-δ(18)O values down to the mantle wedge, where mantle peridotites are expected to achieve the high-δ(18)O features. Elevated δ(18)O values relative to the upper mantle value have been reported for magmas from some subduction zones. However, peridotites with δ(18)O values significantly higher than the well-defined upper mantle values have never been observed from modern subduction zones. Here we present in-situ oxygen isotope data of olivine crystals in Sailipu mantle xenoliths from South Tibet, which have been subjected to a long history of Tethyan subduction before the India-Asia collision. Our data identify for the first time a metasomatized mantle that, interpreted as the sub-arc lithospheric mantle, shows anomalously enriched oxygen isotopes (δ(18)O = +8.03 ± 0.28 ‰). Such a high-δ(18)O mantle commonly does not contribute significantly to typical island arc basalts. However, partial melting or contamination of such a high-δ(18)O mantle is feasible to account for the high-δ(18)O signatures in arc basalts.

  11. Dikes, joints, and faults in the upper mantle

    USGS Publications Warehouse

    Wilshire, H.G.; Kirby, S.H.

    1989-01-01

    Three different types of macroscopic fractures are recognized in upper-mantle and lower-crustal xenoliths in volcanic rocks from around the world: 1. (1) joints that are tensile fractures not occupied by crystallized magma products 2. (2) dikes that are tensile fractures occupied by mafic magmas crystallized to pyroxenites, gabbros or hydrous-mineral-rich rocks, 3. (3) faults that are unfilled shear fractures with surface markings indicative of shear displacement. In addition to intra-xenolith fractures, xenoliths commonly have polygonal or faceted shapes that represent fractures exploited during incorporation of the xenoliths into the host magma that brought them to the surface. The various types of fractures are considered to have formed in response to the pressures associated with magmatic fluids and to the ambient tectonic stress field. The presence of fracture sets and crosscutting relations indicate that both magma-filled and unfilled fractures can be contemporaneous and that the local stress field can change with time, leading to repeated episodes of fracture. These observations give insight into the nature of deep fracture processes and the importance of fluid-peridotite interactions in the mantle. We suggest that unfilled fractures were opened by volatile fluids exsolved from ascending magmas to the tops of growing dikes. These volatile fluids are important because they are of low viscosity and can rapidly transmit fluid pressure to dike and fault tips and because they lower the energy and tectonic stresses required to extend macroscopic cracks and to allow sliding on pre-existing fractures. Mantle seismicity at depths of 20-65 km beneath active volcanic centers in Hawaii corresponds to the depth interval where CO2-rich fluids are expected to be liberated from ascending basaltic magmas, suggesting that such fluids play an important role in facilitating earthquake instabilities in the presence of tectonic stresses. Other phenomena related to the fractures

  12. Hotspots and the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    Trace element patterns show that continental and ocean island basalts are complementary to mid-ocean ridge basalts (MORB). The relative sizes of the two source regions can be estimated from enrichment/depletion patterns. Their combined volume, computed from estimates of whole mantle abundances, occupies the entire upper mantle. The source regions appear to be the result of an early differentiation of the mantle. The MORB source evolved from the melt fraction which lost its late stage enriched fluids to the overlying plume source. The MORB source is primarily garnet and clinopyroxene, consistent with it being an eclogite cumulate.

  13. Hydrogen storage in Earth's mantle and core

    NASA Technical Reports Server (NTRS)

    Prewitt, Charles T.

    1994-01-01

    Two different approaches to explaining how hydrogen might be stored in the mantle are illustrated by a number of papers published over the past 25-30 years, but there has been little attempt to provide objective comparisons of the two. One approach invokes the presence in the mantle of dense hydrous magnesium silicates (DHMS) stable at elevated pressures and temperatures. The other involves nominally anhydrous minerals (NAM) that contain hydrogen as a minor constituent on the ppm level. Experimental studies on DHMS indicate these phases may be stable to pressures and temperatures as high at 16 GPa and 1200 C. This temperature is lower than that indicated by a mantle geotherm at 16 GPa, but may be reasonable for a subducting slab. It is possible that other DHMS could be stable to even higher pressures, but little is known about maximum temperature limits. For NAM, small amounts of hydrogen (up to several hundred ppm) have been detected in olivine, orthopyroxene, clinopyroxene, and garnet recovered from xenoliths in kimberlites, eclogites, and alkali basalts; it has been demonstrated that synthetic wadsleyite and perovskite can accommodate significant amounts of hydrogen. A number of problems are associated with each possibility. For NAM originating in the mantle, one would like to assume that the hydrogen measured in samples recovered on Earth's surface was incorporated when the phase-crystallized at high temperatures and pressures, but it could have been introduced during transport to the surface. Major problems for the DHMS proponents are that none of these phases have been found as minerals and little is yet known about their stabilities in systems containing other cations such as Fe, Al, and Ca.

  14. Nitrogen isotopes of the mantle: Insights from mineral separates

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Takahata, Naoto; Sano, Yuji; Sumino, Hirochika; Hilton, David R.

    2005-06-01

    We present the first nitrogen (N) isotope measurements determined by in-vacuo crushing of mineral separates from arc lavas, OIBs (Ocean Island Basalts), and mantle xenoliths. Measured OIB δ15N values range from ~-8‰ for the northern rift zone in Iceland to +3.1‰ for a dunite nodule from Hawaii. Most arc-related olivines show distinctly positive values - up to +6.2‰ (Cerro Negro, Nicaragua). The measured N isotope values in olivine separates are similar to gas samples collected at the same localities, suggesting that both media (olivines and gases) sample volatiles primarily derived from the magma. This observation also implies that N isotope fractionation does not occur during magma degassing, a notion supported by 4He/40Ar* data. Our results indicate a heterogeneous mantle source region, in terms of N isotopic composition, that may have resulted from surface recycling of N at some localities.

  15. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Logvinova, A. M.; Zedgenizov, D. A.; Pokhilenko, N. P.; Malygina, E. V.; Kuzmin, D. V.; Sobolev, A. V.

    2009-11-01

    Peridotite xenoliths and diamonds from kimberlites represent an important source of information about the composition of the continental lithosphere at depths exceeding 120-150 km. Ultramafic (or peridotitic) U(P)-type of geological environment is dominating at these depths compared to eclogitic (E-type). Olivine is the most typical mineral both of peridotite xenoliths and as diamond inclusions in most kimberlites worldwide. In spite of its simple chemical composition it contains a number of petrogenetically significant minor elements such as Ti, Al, Mn, Ca, Cr, Ni, Co in low concentrations, mostly below 0.1 wt.% of oxide except of NiO. More than 500 industrial quality diamonds of size range between 0.8 and 3 mm containing olivine inclusions sometimes associated with enstatite, pyrope, chrome diopside and chromite were selected from current diamond production of nine major Siberian diamond mines. This collection also includes revised olivine diamond inclusions from Arkhangelsk (Russia), Majhgawan (India) diamond mines and Urals (Russia) alluvial mines. More than 30% of studied samples were prepared for analysis of olivines on a single polished surface with diamond. More than 300 peridotite xenoliths were selected for olivine studies from a representative collection from unaltered kimberlites of Udachnaya diamond mine. These xenoliths include low-temperature coarse lherzolites, harzburgites and dunites which are represented by spinel, garnet-spinel and garnet varieties. More than 70 xenoliths of high-temperature porphyroclastic (sheared) lherzolites from Udachnaya are also included in the examined collection. Olivines were analyzed for major and minor elements with a JEOL JXA 8200 electron microprobe at the Max-Planck Institute of Chemistry, Mainz. Special efforts were made to obtain high precision and accuracy in electron microprobe analyses, especially, for Ti, Al, Ni, Co, Ca, Mn and Cr. These elements were analyzed by using long counting time and high beam

  16. Measured and calculated elastic wave speeds in partially equilibrated mafic granulite xenoliths: Implications for the properties of an underplated lower continental crust

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Jackson, Ian

    1995-06-01

    Ultrasonic compressional wave velocities measured at 1.0 GPa and room temperature are compared with calculated velocities (based on single-crystal data and modal mineralogy) for a suite of mafic granulite xenoliths from the Chudleigh volcanic province, north Queensland, Australia. The xenoliths have nearly constant major element compositions but widely variable modal mineralogy, reflecting recrystallization under variable pressure-temperature conditions at depth in the continental crust (20-45 km). They thus provide an excellent opportunity to investigate velocity variation with depth in a mafic lower crust. Measured P wave velocities, corrected for the decompression-induced breakdown of garnet, range from 6.9 to 7.6 km/sec and correlate with derivation depth. These velocities are 5-12% lower than the calculated velocities (7.5-8.0 km/sec), apparently as a result of grain boundary alteration as well as irreversible changes that occurred in the xenoliths during rapid decompression. Calculated P wave velocities are similar to those estimated by Furlong and Fountain (1986) and Sobolev and Babeyko (1989) for mafic granulites formed through basaltic underplating of the continental crust. Depending upon in situ temperature, P wave velocities in the deepest samples may be interpreted as crustal (e.g., 7.3-7.6 km/sec, if heat flow is high) or mantle (7.7-7.8 km/sec, in areas of low heat flow). The range of velocities in the xenolith suite is larger than predicted for a fully equilibrated underplated basaltic layer, highlighting the importance of kinetic effects in determining the ultimate velocity profile of magmatically underplated crust. Comparison of our results with seismic profiles illustrates that the lower crust rarely reaches such high velocities, suggesting quartz-bearing rocks (country rocks?) are present within magmatically underplated layers of the deep crust.

  17. Significance of ancient sulfide PGE and Re-Os signatures in the mantle beneath Calatrava, Central Spain

    NASA Astrophysics Data System (ADS)

    González-Jiménez, José María; Villaseca, Carlos; Griffin, William L.; O'Reilly, Suzanne Y.; Belousova, Elena; Ancochea, Eumenio; Pearson, Norman J.

    2014-08-01

    Spinel lherzolite and wehrlite xenoliths from the Cenozoic Calatrava volcanic field carry the geochemical imprint of metasomatic agents that have affected the subcontinental lithospheric mantle beneath Central Iberia. Some xenoliths (mainly wehrlites) were enriched in REE, Sr, P, and CO2 by silicic-carbonate-rich metasomatic melts/fluids, while others record the effects of subduction-related hydrous silicate fluids that have precipitated amphibole and induced high Ti/Eu in primary clinopyroxene. The petrographic observations and geochemical data suggest that interstitial glass in the xenoliths represent the quenched products of Si-rich melts that infiltrated the mantle peridotite shortly before the entrainment of the xenoliths in the host magmas that erupted ca 2 million years ago. During their infiltration, the metasomatic melts reacted with peridotite, resulting in silica enrichment, while remobilizing grains of iron-rich monosulfide solid solution (Fe-rich Mss) initially enclosed in, or intergranular to, primary olivine and pyroxenes. In situ laser ablation inductively coupled plasma-mass spectrometry analysis of single sulfide grains reveals that the Fe-rich Mss in glass shows platinum-group element (PGE) patterns and 187Os/188Os compositions identical to the Fe-rich Mss occurring as inclusions in, or at grain boundaries of primary silicates. Moreover, independent of its microstructural position, Fe-rich Mss exhibits PGE and 187Os/188Os signatures typical of Mss either residual after partial melting or crystallized directly from sulfide melts. Our findings reveal that young metasomatic melt(s)/fluid(s) may carry remobilized sulfides with PGE and Os-isotopic signatures identical to those of texturally older sulfides in the peridotite xenolith. These sulfides thus still provide useful information about the timing and nature of older magmatic events in the subcontinental mantle.

  18. Petrology and geochemistry of mafic and ultramafic cumulates occurring as xenoliths in volcanic rocks from Polish part of Central European Volcanic Province.

    NASA Astrophysics Data System (ADS)

    Dajek, Michał; Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros

    2015-04-01

    of diopside, but its mg# is lower than in other rocks (0.68-0.88). It is always LREE enriched and shows negative Eu, Ti and Sr anomalies. Orthopyroxene occurs only in norite from Wilcza Góra. It composition is strongly heterogenous and the mg# vary from 0.60 to 0.75. Fo- and NiO-poor (62-69% and 0.04-0.10 wt.%, respectively) olivine is present in gabbro from Winna Góra. Feldspar is typically plagioclase (An30-60), but in rims the composition grades toward ternary feldspar (Or up to 45%). Plagioclase is LREE enriched and shows strong positive Eu anomaly. It is enriched in Sr and depleted in Zr-Hf. Composition of opaques is similar to that in plagioclase-free rocks. Modelling based on the trace element composition of clinopyroxene suggest that all the studied xenoliths are precipitates from alkaline silicate magmas, usually similar to the host volcanic-rock. Relatively high content of iron in silicates suggest crystallization at crustal depths or at crust/mantle boundary, but ratios between AIV and AlVI in clinopyroxene suggest that plagioclase¬-bearing rocks crystalized in different conditions than pyroxenites (Aoki and Shiba, 1976). Origin of xenoliths from Złotoryja-Jawor Volcanic Complex is different than that of clinopyroxene-rich mafic rocks from Lutynia basanite (Lądek Zdrój Volcanic Complex (Ackerman et al., 2012; J. of Geosciences). This study was possible thanks to the project NCN 2011/03/B/ST10/06248 of Polish National Centre for Science.

  19. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    USGS Publications Warehouse

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    unique peraluminous composition. It has the lowest εNd and εHf values of the suite. Its isotopic compositions indicate that it is significantly older than the other granulites. Broken zircon cores encased by younger overgrowths suggest that this granulite includes a large component of pre-existing sedimentary rocks. Two distinct populations of zircons from S69-5 were dated by sensitive high-resolution io