Sample records for abundant marine cyanobacteria

  1. Origin of marine planktonic cyanobacteria.

    PubMed

    Sánchez-Baracaldo, Patricia

    2015-12-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).

  2. Origin of marine planktonic cyanobacteria

    PubMed Central

    Sánchez-Baracaldo, Patricia

    2015-01-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600–2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500–542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600–1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000–542 Mya). PMID:26621203

  3. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.

    PubMed

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-05-05

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.

  4. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade

    PubMed Central

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-01-01

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149

  5. Cyanobacteria abundance and its relationship to water quality in the Mid-Cross River floodplain, Nigeria.

    PubMed

    Okogwu, Okechukwu I; Ugwumba, Alex O

    2009-01-01

    The physicochemical variables and cyanobacteria of Mid-Cross River, Nigeria, were studied in six stations between March 2005 and August 2006 to determine the relationship between water quality and cyanobacteria abundance. Canonical Correspondence Analysis (CCA) showed that biological oxygen demand (BOD), dissolved oxygen, pH, water velocity, width and depth were important environmental factors that influenced cyanobacteria abundance. Trace metals, phosphate and nitrate increased significantly from values of previous studies indicating increased eutrophication of the river but were weakly correlated with cyanobacteria abundance and could be scarcely regarded as regulating factors. A higher cyanobacteria abundance was recorded during the wet season in most of the sampled stations. The dominant cyanobacteria included Microcystis aeruginosa, Aphanizomenon flos-aquae, Oscillatoria limnetica and Anabaena spiroides. The toxins produced by these species could degrade water quality. The factors favouring cyanobacteria abundance were identified as increased pH, width and depth. Increase in cyanobacteria abundance was associated with reduction in dissolved oxygen and increase in BOD values.

  6. Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria

    PubMed Central

    Gunasekera, Sarath P.; Gerwick, William H.

    2013-01-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747

  7. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake.

    PubMed

    Lee, Tammy A; Rollwagen-Bollens, Gretchen; Bollens, Stephen M; Faber-Hammond, Joshua J

    2015-04-01

    The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis

    PubMed Central

    Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário

    2012-01-01

    Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077

  9. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2.

    PubMed

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M; Belnap, Jayne; Evans, R David; Kuske, Cheryl R

    2012-12-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  11. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers.

    PubMed

    Cha, YoonKyung; Cho, Kyung Hwa; Lee, Hyuk; Kang, Taegu; Kim, Joon Ha

    2017-11-01

    Despite a growing awareness of the problems associated with cyanobacterial blooms in rivers, and particularly in regulated rivers, the drivers of bloom formation and abundance in rivers are not well understood. We developed a Bayesian hierarchical model to assess the relative importance of predictors of summer cyanobacteria abundance, and to test whether the relative importance of each predictor varies by site, using monitoring data from 16 sites in the four major rivers of South Korea. The results suggested that temperature and residence time, but not nutrient levels, are important predictors of summer cyanobacteria abundance in rivers. Although the two predictors were of similar significance across the sites, the residence time was marginally better in accounting for the variation in cyanobacteria abundance. The model with spatial hierarchy demonstrated that temperature played a consistently significant role at all sites, and showed no effect from site-specific factors. In contrast, the importance of residence time varied significantly from site to site. This variation was shown to depend on the trophic state, indicated by the chlorophyll-a and total phosphorus levels. Our results also suggested that the magnitude of weir inflow is a key factor determining the cyanobacteria abundance under baseline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    PubMed Central

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  13. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    PubMed

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  14. Floating cultivation of marine cyanobacteria using coal fly ash.

    PubMed

    Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T

    2000-01-01

    The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  15. Chemoecological Screening Reveals High Bioactivity in Diverse Culturable Portuguese Marine Cyanobacteria

    PubMed Central

    Leão, Pedro N.; Ramos, Vitor; Gonçalves, Patrício B.; Viana, Flávia; Lage, Olga M.; Gerwick, William H.; Vasconcelos, Vitor M.

    2013-01-01

    Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles. PMID:23609580

  16. Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria.

    PubMed

    Moss, Nathan A; Leao, Tiago; Glukhov, Evgenia; Gerwick, Lena; Gerwick, William H

    2018-01-01

    Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria. © 2018 Elsevier Inc. All rights reserved.

  17. Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance

    PubMed Central

    Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous

    2012-01-01

    The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria. PMID:22545008

  18. Meta-omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation.

    PubMed

    Celepli, Narin; Sundh, John; Ekman, Martin; Dupont, Chris L; Yooseph, Shibu; Bergman, Birgitta; Ininbergs, Karolina

    2017-02-01

    Cyanobacteria are important phytoplankton in the Baltic Sea, an estuarine-like environment with pronounced north to south gradients in salinity and nutrient concentrations. Here, we present a metagenomic and -transcriptomic survey, with subsequent analyses targeting the genetic identity, phylogenetic diversity, and spatial distribution of Baltic Sea cyanobacteria. The cyanobacterial community constituted close to 12% of the microbial population sampled during a pre-bloom period (June-July 2009). The community was dominated by unicellular picocyanobacteria, specifically a few highly abundant taxa (Synechococcus and Cyanobium) with a long tail of low abundance representatives, and local peaks of bloom-forming heterocystous taxa. Cyanobacteria in the Baltic Sea differed genetically from those in adjacent limnic and marine waters as well as from cultivated and sequenced picocyanobacterial strains. Diversity peaked at brackish salinities 3.5-16 psu, with low N:P ratios. A shift in community composition from brackish to marine strains was accompanied by a change in the repertoire and expression of genes involved in salt acclimation. Overall, the pre-bloom cyanobacterial population was more genetically diverse, widespread and abundant than previously documented, with unicellular picocyanobacteria being the most abundant clade along the entire Baltic Sea salinity gradient. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus

    PubMed Central

    Flombaum, Pedro; Gallegos, José L.; Gordillo, Rodolfo A.; Rincón, José; Zabala, Lina L.; Jiao, Nianzhi; Karl, David M.; Li, William K. W.; Lomas, Michael W.; Veneziano, Daniele; Vera, Carolina S.; Vrugt, Jasper A.; Martiny, Adam C.

    2013-01-01

    The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 1027 and 7.0 ± 0.3 × 1026 cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles. PMID:23703908

  20. 2-Methylhopanoids: Biomarkers for Cyanobacteria and for Oxygenic Photosynthesis

    NASA Technical Reports Server (NTRS)

    Summons, R. E.; Jahnke, L. L.; Hope, J. M.; Logan, G. A.

    1999-01-01

    This paper reports new biomarker and carbon isotopic data for cultured cyanobacteria, cyano-bacterially- dominated ecosystems and ancient sedi-ments and petroleum. We found that cyanobacteria are the predominant source of a distinctive membrane lipid biomarker, namely 2- methylbacteriohopanepolyol (2-Me-BHP). We then sought evidence for a geochemical record of the fossil hydrocarbon analogues of these compounds (2- methylhopanes) and found a trend toward their in-creased relative abundance in marine sediments going back through geological time to 2500 Ma. We conclude that cyanobacteria were the dominant form of phytoplankton and source of molecular oxygen in the Proterozoic ocean. Extending the geological record of cyanobacteria further to Archean times is now a matter of finding a suitably preserved rock record. Additional information is contained in the original extended abstract.

  1. Similarities in Photodegradation of Cyanobacteria-Derived and Marine Fluorescent Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Ianiri, H. L.; Timko, S.; Gonsior, M.

    2016-02-01

    Marine dissolved organic matter (DOM) is one of the largest reduced carbon reservoirs on Earth, yet we only have a limited understanding of its production, cycling, degradation, and overall structure. It was previously believed that a significant portion of refractory dissolved organic carbon (RDOC) in the ocean was derived from terrestrial sources, however recent studies indicated that the majority of marine DOM might be produced in situ by marine biota. Previous research has found that terrestrial and microbial DOM fluorescent signatures are similar, complicating the identification of the origins of marine fluorescent DOM (FDOM). However, photodegradation kinetics of terrestrial and microbial-derived DOM are expected to be different due to their assumed different chemical compositions. In this study we analyzed for the first time the photodegradation kinetics of microbial-derived DOM originating from different cyanobacteria strains. Cyanobacterial-derived DOM were exposed to simulated sunlight for a total of 20 hours while recording excitation emission matrix (EEM) fluorescence every twenty minutes to observe the photodegradation of this specific FDOM. Parallel Factor Analysis (PARAFAC) was applied to deconvolute the EEM matrices into six separate components. The photodegradation kinetics was then calculated for each component and compared with previously obtained photodegradation data of marine and terrestrial FDOM. This six component PARAFAC model was similar to those generated from open ocean data and global DOM data sets. The "humic-like" FDOM was also found in cyanobacteria FDOM and showed similar fluorescence intensities and percent fluorescence loss when compared to marine DOM. The degradation kinetics of the "humic-like" component of microbial-derived DOM was faster than that of terrestrial-derived DOM, and marine FDOM samples showed degradation kinetics more similar to microbial-derived FDOM. This indicates marine FDOM is more similar in chemical

  2. Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis

    PubMed Central

    Barnett, James P.; Millard, Andrew; Ksibe, Amira Z.; Scanlan, David J.; Schmid, Ralf; Blindauer, Claudia Andrea

    2012-01-01

    Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs). PMID:22514551

  3. Abundance and distribution of the highly iterated palindrome 1 (HIP1) among prokaryotes

    PubMed Central

    Moya, Andrés

    2011-01-01

    We have studied the abundance and phylogenetic distribution of the Highly Iterated Palindrome 1 (HIP1) among sequenced prokaryotic genomes. We show that an overrepresentation of HIP1 is exclusive of some lineages of cyanobacteria, and that this abundance was gained only once during evolution and was subsequently lost in the lineage leading to marine pico-cyanobacteria. We show that among cyanobacterial protein sequences with annotated Pfam domains, only OpcA (glucose 6-phosphate dehydrogenase assembly protein) has a phylogenetic distribution fully matching HIP1 abundance, suggesting a functional relationship; we also show that DAM methylase (an enzyme that has the four central nucleotides of HIP1 as is site of action) is present in all cyanobacterial genomes (independently of their HIP1 content) with the exception of marine pico-cyanobacteria whom might have lost this enzyme during the process of genome reduction. Our analyses also show that in some prokaryotic lineages (particularly in those species with large genomes), HIP1 is unevenly distributed between coding and non-coding DNA (being more common in coding regions; with the exception of Cyanobacteria Yellowstone B' and Synechococcus elongates where the reverse pattern is true). Finally, we explore the hypothesis that the HIP1 can be used as a molecular “water-mark” to identify horizontally transferred genes from cyanobacteria to other species. PMID:22312590

  4. Abundance and distribution of the highly iterated palindrome 1 (HIP1) among prokaryotes.

    PubMed

    Delaye, Luis; Moya, Andrés

    2011-09-01

    We have studied the abundance and phylogenetic distribution of the Highly Iterated Palindrome 1 (HIP1) among sequenced prokaryotic genomes. We show that an overrepresentation of HIP1 is exclusive of some lineages of cyanobacteria, and that this abundance was gained only once during evolution and was subsequently lost in the lineage leading to marine pico-cyanobacteria. We show that among cyanobacterial protein sequences with annotated Pfam domains, only OpcA (glucose 6-phosphate dehydrogenase assembly protein) has a phylogenetic distribution fully matching HIP1 abundance, suggesting a functional relationship; we also show that DAM methylase (an enzyme that has the four central nucleotides of HIP1 as is site of action) is present in all cyanobacterial genomes (independently of their HIP1 content) with the exception of marine pico-cyanobacteria whom might have lost this enzyme during the process of genome reduction. Our analyses also show that in some prokaryotic lineages (particularly in those species with large genomes), HIP1 is unevenly distributed between coding and non-coding DNA (being more common in coding regions; with the exception of Cyanobacteria Yellowstone B' and Synechococcus elongates where the reverse pattern is true). Finally, we explore the hypothesis that the HIP1 can be used as a molecular "water-mark" to identify horizontally transferred genes from cyanobacteria to other species.

  5. Ecogenomics and Taxonomy of Cyanobacteria Phylum

    PubMed Central

    Walter, Juline M.; Coutinho, Felipe H.; Dutilh, Bas E.; Swings, Jean; Thompson, Fabiano L.; Thompson, Cristiane C.

    2017-01-01

    Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches. PMID:29184540

  6. Ecogenomics and Taxonomy of Cyanobacteria Phylum.

    PubMed

    Walter, Juline M; Coutinho, Felipe H; Dutilh, Bas E; Swings, Jean; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.

  7. A Review Study on Macrolides Isolated from Cyanobacteria.

    PubMed

    Wang, Mengchuan; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-04-26

    Cyanobacteria are rich sources of structurally-diverse molecules with promising pharmacological activities. Marine cyanobacteria have been proven to be true producers of some significant bioactive metabolites from marine invertebrates. Macrolides are a class of bioactive compounds isolated from marine organisms, including marine microorganisms in particular. The structural characteristics of macrolides from cyanobacteria mainly manifest in the diversity of carbon skeletons, complexes of chlorinated thiazole-containing molecules and complex spatial configuration. In the present work, we systematically reviewed the structures and pharmacological activities of macrolides from cyanobacteria. Our data would help establish an effective support system for the discovery and development of cyanobacterium-derived macrolides.

  8. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds

    PubMed Central

    Costa, Margarida; Garcia, Mónica; Costa-Rodrigues, João; Costa, Maria Sofia; Ribeiro, Maria João; Fernandes, Maria Helena; Barros, Piedade; Barreiro, Aldo; Vasconcelos, Vitor; Martins, Rosário

    2013-01-01

    The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria. PMID:24384871

  9. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria

    PubMed Central

    Bauersachs, Thorsten; Speelman, Eveline N.; Hopmans, Ellen C.; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S. Sinninghe

    2010-01-01

    N2-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N2-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N2-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N2-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding “new” fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  10. Searching for Potential Silicon-associated Genes in Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Collier, J.; Brzezinski, M. A.; Baines, S. B.; Krause, J. W.; Ohnemus, D.; Twining, B. S.

    2016-02-01

    Recent studies have demonstrated the accumulation of Si in both wild cells and laboratory cultures of marine Synechococcus. Because of their abundance, the cellular Si quotas measured are sufficient to suggest a substantial, unrecognized role for these organisms in the marine Si cycle. Since there is no known role for Si in cyanobacteria, we are using sequenced cyanobacterial genomes to search for pathways of Si metabolism known from other organisms. Si transporters belonging to four different protein superfamilies have been identified in diverse Si-metabolizing organisms, including diatoms and other protists, plants, bacteria, and sponges. A homolog of ArsB/Lsi2, the arsenite-antimonite efflux porter that can also transport silicate in plants, can be found in many cyanobacteria. However, we have been unable to identify likely influx porter homologs in cyanobacteria, except for predicted proteins with similarity to diatom SIT but only half the length, as well as a few atypical members of the Major Intrinsic Protein (aquaporin) superfamily. Proteins catalyzing and/or controlling the polymerization of silica have been identified in diatoms and sponges. We have been unable to identify clear homologs of these proteins in cyanobacteria, although cathepsins (belonging to the same protein superfamily as silicateins) are broadly present in cyanobacteria. Proteins that may bind silica in other bacteria (CotB in Bacillus) also lack clear homologs in cyanobacteria. However, since the function of these proteins may depend largely on charge and protein folding characteristics, proteins involved in Si deposition may not be readily identifiable by primary sequence similarity. The broad diversity of proteins involved in Si metabolism in diverse organisms suggests that each had an independent evolutionary origin. Our results suggest that if Si-associated proteins exist in Synechococcus, they also may have a distinct evolutionary origin unrelated to known Si metabolic pathways.

  11. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    PubMed Central

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-01-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers. PMID:26996104

  12. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-03-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.

  13. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  14. Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance

    PubMed Central

    Engene, Niclas; Tronholm, Ana; Salvador-Reyes, Lilibeth A.; Luesch, Hendrik; Paul, Valerie J.

    2015-01-01

    Many tropical marine cyanobacteria are prolific producers of bioactive secondary metabolites with ecological relevance and promising pharmaceutical applications. One species of chemically rich, tropical marine cyanobacteria that was previously identified as Symploca hydnoides or Symploca sp. corresponds to the traditional taxonomic definition of Phormidium penicillatum. In this study, we clarified the taxonomy of this biomedically and ecologically important cyanobacterium by comparing recently collected specimens with the original type material and the taxonomic description of P. penicillatum. Molecular phylogenetic analyses of the 16S rRNA gene and the 16S-23S ITS regions showed that P. penicillatum formed an independent clade sister to the genus Symploca, and distantly related to Phormidium and Lyngbya. We propose the new genus Caldora for this clade, with Caldora penicillata comb. nov. as the type species and designate as the epitype the recently collected strain FK13-1. Furthermore, the production of bioactive secondary metabolites among various geographically dispersed collections of C. penicillata showed that this species consistently produced the metabolite dolastatin 10 and/or the related compound symplostatin 1, which appear to be robust autapomorphic characters and chemotaxonomic markers for this taxon. PMID:26327714

  15. Feeding by coral reef mesograzers: algae or cyanobacteria?

    NASA Astrophysics Data System (ADS)

    Cruz-Rivera, Edwin; Paul, Valerie J.

    2006-11-01

    Marine studies on herbivory have addressed the role of algae as food and shelter for small consumers, but the potential of benthic cyanobacteria to play similar roles is largely unknown. Here, feeding preferences were measured for eight invertebrate consumers from Guam, offered four common macroalgae and two cyanobacteria. The survivorship of another consumer raised on either macroalgae or cyanobacteria was also assessed. From the choices offered, the sacoglossans Elysia rufescens and E. ornata consumed the green macroalga Bryopsis pennata. The crab Menaethius monoceros preferred the red alga Acanthophora spicifera. The amphipods Parhyale hawaiensis and Cymadusa imbroglio consumed macroalgae and cyanobacteria in equivalent amounts, with C. imbroglio showing less selectivity among diets. In contrast to these patterns, in these assays the gastropods Stylocheilus striatus, Haminoea cymbalum, H. ovalis, and Haminoea sp. fed exclusively, or survived only, on cyanobacteria. Preferences for different cyanobacteria varied. Field surveys of cyanobacteria-associated species yielded 34 different invertebrate taxa and suggested different degrees of specificity in these associations. Tropical mesograzers exploit considerably different food resources, with some species adapted to consume cyanobacterial mats. Benthic cyanobacteria may play important roles as food and shelter for marine consumers and may indirectly influence local biodiversity through their associated fauna.

  16. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies

    PubMed Central

    Rastogi, Rajesh P.; Madamwar, Datta; Incharoensakdi, Aran

    2015-01-01

    Cyanobacteria are ecologically one of the most prolific groups of phototrophic prokaryotes in both marine and freshwater habitats. Both the beneficial and detrimental aspects of cyanobacteria are of considerable significance. They are important primary producers as well as an immense source of several secondary products, including an array of toxic compounds known as cyanotoxins. Abundant growth of cyanobacteria in freshwater, estuarine, and coastal ecosystems due to increased anthropogenic eutrophication and global climate change has created serious concern toward harmful bloom formation and surface water contamination all over the world. Cyanobacterial blooms and the accumulation of several cyanotoxins in water bodies pose severe ecological consequences with high risk to aquatic organisms and global public health. The proper management for mitigating the worldwide incidence of toxic cyanobacterial blooms is crucial for maintenance and sustainable development of functional ecosystems. Here, we emphasize the emerging information on the cyanobacterial bloom dynamics, toxicology of major groups of cyanotoxins, as well as a perspective and integrative approach to their management. PMID:26635737

  17. Patterns of rare and abundant marine microbial eukaryotes.

    PubMed

    Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon

    2014-04-14

    Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sequential webcam monitoring and modeling of marine debris abundance.

    PubMed

    Kako, Shin'ichiro; Isobe, Atsuhiko; Kataoka, Tomoya; Yufu, Kei; Sugizono, Shuto; Plybon, Charlie; Murphy, Thomas A

    2018-05-14

    The amount of marine debris washed ashore on a beach in Newport, Oregon, USA was observed automatically and sequentially using a webcam system. To investigate potential causes of the temporal variability of marine debris abundance, its time series was compared with those of satellite-derived wind speeds and sea surface height off the Oregon coast. Shoreward flow induced by downwelling-favorable southerly winds increases marine debris washed ashore on the beach in winter. We also found that local sea-level rise caused by westerly winds, especially at spring tide, moved the high-tide line toward the land, so that marine debris littered on the beach was likely to re-drift into the ocean. Seasonal and sub-monthly fluctuations of debris abundance were well reproduced using a simple numerical model driven by satellite-derived wind data, with significant correlation at 95% confidence level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea

    PubMed Central

    He, Yaodong; Sen, Biswarup; Zhou, Shuangyan; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Wang, Guangyi

    2017-01-01

    Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1–55.2% and 2.3–54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was

  20. C5 glycolipids of heterocystous cyanobacteria track symbiont abundance in the diatom Hemiaulus hauckii across the tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Bale, Nicole J.; Villareal, Tracy A.; Hopmans, Ellen C.; Brussaard, Corina P. D.; Besseling, Marc; Dorhout, Denise; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2018-03-01

    Diatom-diazotroph associations (DDAs) include marine heterocystous cyanobacteria found as exosymbionts and endosymbionts in multiple diatom species. Heterocysts are the site of N2 fixation and have thickened cell walls containing unique heterocyst glycolipids which maintain a low oxygen environment within the heterocyst. The endosymbiotic cyanobacterium Richelia intracellularis found in species of the diatom genus Hemiaulus and Rhizosolenia makes heterocyst glycolipids (HGs) which are composed of C30 and C32 diols and triols with pentose (C5) moieties that are distinct from limnetic cyanobacterial HGs with predominantly hexose (C6) moieties. Here we applied a method for analysis of intact polar lipids to the study of HGs in suspended particulate matter (SPM) and surface sediment from across the tropical North Atlantic. The study focused on the Amazon plume region, where DDAs are documented to form extensive surface blooms, in order to examine the utility of C5 HGs as markers for DDAs as well as their transportation to underlying sediments. C30 and C32 triols with C5 pentose moieties were detected in both marine SPM and surface sediments. We found a significant correlation between the water column concentration of these long-chain C5 HGs and DDA symbiont counts. In particular, the concentrations of both the C5 HGs (1-(O-ribose)-3,27,29-triacontanetriol (C5 HG30 triol) and 1-(O-ribose)-3,29,31-dotriacontanetriol (C5 HG32 triol)) in SPM exhibited a significant correlation with the number of Hemiaulus hauckii symbionts. This result strengthens the idea that long-chain C5 HGs can be applied as biomarkers for marine endosymbiotic heterocystous cyanobacteria. The presence of the same C5 HGs in surface sediment provides evidence that they are effectively transported to the sediment and hence have potential as biomarkers for studies of the contribution of DDAs to the paleo-marine N cycle.

  1. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae

    PubMed Central

    Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C

    2017-01-01

    Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI: http://dx.doi.org/10.7554/eLife.24214.001 PMID:28492366

  2. Re-examination of the relationship between marine virus and microbial cell abundances.

    PubMed

    Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S

    2016-01-25

    Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.

  3. INVESTIGATOIN OF CYANOBACTERIA TOXINS IN WATER

    EPA Science Inventory

    Introduction:

    Approximately 80 alkaloid and cyclic peptide toxins produced by various freshwater and marine cyanobacteria (blue-green algae) have been identified and their structures determined. The U. S. Environmental Protection Agency has identified two neurotoxin alkalo...

  4. Recent developments in therapeutic applications of Cyanobacteria.

    PubMed

    Raja, Rathinam; Hemaiswarya, Shanmugam; Ganesan, Venkatesan; Carvalho, Isabel S

    2016-05-01

    The cyanobacteria (blue-green algae) are photosynthetic prokaryotes having applications in human health with numerous biological activities and as a dietary supplement. It is used as a food supplement because of its richness in nutrients and digestibility. Many cyanobacteria (Microcystis sp, Anabaena sp, Nostoc sp, Oscillatoria sp., etc.) produce a great variety of secondary metabolites with potent biological activities. Cyanobacteria produce biologically active and chemically diverse compounds belonging to cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides. More than 50% of the marine cyanobacteria are potentially exploitable for extracting bioactive substances which are effective in killing cancer cells by inducing apoptotic death. Their role as anti-viral, anti-tumor, antimicrobial, anti-HIV and a food additive have also been well established. However, such products are at different stages of clinical trials and only a few compounds have reached to the market.

  5. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives.

    PubMed

    Sarsekeyeva, Fariza; Zayadan, Bolatkhan K; Usserbaeva, Aizhan; Bedbenov, Vladimir S; Sinetova, Maria A; Los, Dmitry A

    2015-08-01

    Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.

  6. The Hoiamides, Structurally Intriguing Neurotoxic Lipopeptides from Papua New Guinea Marine Cyanobacteria

    PubMed Central

    Choi, Hyukjae; Pereira, Alban R.; Cao, Zhengyu; Shuman, Cynthia F.; Engene, Niclas; Byrum, Tara; Matainaho, Teatulohi; Murray, Thomas F.; Mangoni, Alfonso; Gerwick, William H.

    2011-01-01

    Two related peptide metabolites, one a cyclic depsipeptide, hoiamide B (2), and the other a linear lipopeptide, hoiamide C (3), were isolated from two different collections of marine cyanobacteria obtained in Papua New Guinea. Their structures were elucidated by combining various techniques in spectroscopy, chromatography and synthetic chemistry. Both metabolites belong to the unique hoiamide structural class, characterized by possessing an acetate extended and S-adenosyl methionine modified isoleucine unit, a central triheterocyclic system comprised of two α-methylated thiazolines and one thiazole, as well as a highly oxygenated and methylated C-15 polyketide unit. In neocortical neurons, the cyclic depsipeptide 2 stimulated sodium influx and suppressed spontaneous Ca2+ oscillations with EC50 values of 3.9 μM and 79.8 nM, respectively, while 3 had no significant effects in these assays. PMID:20687534

  7. Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous North Atlantic marine cyanobacteria?

    PubMed

    Frazão, Bárbara; Martins, Rosário; Vasconcelos, Vitor

    2010-06-21

    Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.

  8. Are Known Cyanotoxins Involved in the Toxicity of Picoplanktonic and Filamentous North Atlantic Marine Cyanobacteria?

    PubMed Central

    Frazão, Bárbara; Martins, Rosário; Vasconcelos, Vitor

    2010-01-01

    Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast. PMID:20631874

  9. Controls of picophytoplankton abundance and composition in a highly dynamic marine system, the Northern Alboran Sea (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia

    2016-06-01

    The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate

  10. Marine bird abundance around the Pribilof Islands: A multi-year comparison

    NASA Astrophysics Data System (ADS)

    Jahncke, Jaime; Vlietstra, Lucy S.; Decker, Mary Beth; Hunt, George L., Jr.

    2008-08-01

    We examined trends in the abundance and distribution of 12 species of marine birds around the Pribilof Islands, southeastern Bering Sea, over the period from 1977 to 2004. We contrasted patterns among piscivores and planktivores and related these to known and hypothesized changes in the abundance and distribution of prey in the vicinity of the islands. Planktivorous and piscivorous species of marine birds showed different patterns of abundance over time. Planktivorous seabirds that breed away from the Pribilof Islands (e.g., short-tailed shearwaters [ Puffinus tenuirostris], fork-tailed storm-petrels [ Oceanodroma furcata] and red phalaropes [ Phalaropus fulicarius]) were scarce in the 1970s, were abundant in the 1980s, and declined in abundance in the 1990s and from 1999 to 2004. Planktivorous alcids combined (parakeet [ Aethia psittacula], crested [ A. cristatella] and least [ A. pusilla]) that breed on the Pribilof Islands showed a similar remarkable four-fold increase from the 1970s to the 1980s, but then a small increase into the 1990s followed by a rapid decline in the 2000s to numbers similar to those present during the 1970s. The abundance of piscivores kittiwakes ( Rissa spp.) and murres ( Una spp.) was high in the 1970s and declined through the 1980s, 1990s and 2000s. In 1999 and 2004, the total number of all seabirds at sea around the Pribilof Islands was well below the numbers seen at any other survey period. We hypothesize that changes in the abundances and types of seabirds present through time reflect changes in the structure of the marine ecosystem of the eastern Bering Sea shelf. We suggest that changes in pathways of energy flow may be responsible for these shifts, though the possibility that there has been a reduction in productivity cannot be ruled out given the scarcity of available data.

  11. Biological Targets and Mechanisms of Action of Natural Products from Marine Cyanobacteria

    PubMed Central

    Salvador-Reyes, Lilibeth A.

    2015-01-01

    Marine cyanobacteria are an ancient group of organisms and prolific producers of bioactive secondary metabolites. These compounds are presumably optimized by evolution over billions of years to exert high affinity for their intended biological target in the ecologically relevant organism but likely also possess activity in different biological contexts such as human cells. Screening of marine cyanobacterial extracts for bioactive natural products has largely focused on cancer cell viability; however, diversification of the screening platform led to the characterization of many new bioactive compounds. Targets of compounds have oftentimes been elusive if the compounds were discovered through phenotypic assays. Over the past few years, technology has advanced to determine mechanism of action (MOA) and targets through reverse chemical genetic and proteomic approaches, which has been applied to certain cyanobacterial compounds and will be discussed in this review. Some cyanobacterial molecules are the most-potent-in-class inhibitors and therefore may become valuable tools for chemical biology to probe protein function but also be templates for novel drugs, assuming in vitro potency translates into cellular and in vivo activity. Our review will focus on compounds for which the direct targets have been deciphered or which were found to target a novel pathway, and link them to disease states where target modulation may be beneficial. PMID:25571978

  12. Cyanobacteria toxins in the Salton Sea

    PubMed Central

    Carmichael, Wayne W; Li, RenHui

    2006-01-01

    laboratory strain of Synechococcus was identified by PCR as being closest to known marine forms of this genus. Analyses of affected grebe livers found microcystins at levels that may account for some of the acute mortalities. Conclusion The production of microcystins by a marine Synechococcus indicates that microcystins may be a more common occurrence in marine environments – a finding not recognized before this work. Further research should be done to define the distribution of microcystin producing marine cyanobacteria and to determine exposure/response effects of microcystins and possibly other cyanotoxins in the Salton Sea. Future efforts to reduce avian mortalities and remediate the Salton Sea should evaluate vectors by which microcystins enter avian species and ways to control and mitigate toxic cyanobacteria waterblooms at the Salton Sea. PMID:16623944

  13. Cyanobacteria toxins in the Salton Sea.

    PubMed

    Carmichael, Wayne W; Li, RenHui

    2006-04-19

    of Synechococcus was identified by PCR as being closest to known marine forms of this genus. Analyses of affected grebe livers found microcystins at levels that may account for some of the acute mortalities. The production of microcystins by a marine Synechococcus indicates that microcystins may be a more common occurrence in marine environments - a finding not recognized before this work. Further research should be done to define the distribution of microcystin producing marine cyanobacteria and to determine exposure/response effects of microcystins and possibly other cyanotoxins in the Salton Sea. Future efforts to reduce avian mortalities and remediate the Salton Sea should evaluate vectors by which microcystins enter avian species and ways to control and mitigate toxic cyanobacteria waterblooms at the Salton Sea.

  14. Cyanobacteria of Greece: an annotated checklist

    PubMed Central

    Ourailidis, Iordanis; Panou, Manthos; Pappas, Nikos

    2016-01-01

    Abstract Background The checklist of Greek Cyanobacteria was created in the framework of the Greek Taxon Information System (GTIS), an initiative of the LifeWatchGreece Research Infrastructure (ESFRI) that has resumed efforts to compile a complete checklist of species reported from Greece. This list was created from exhaustive search of the scientific literature of the last 60 years. All records of taxa known to occur in Greece were taxonomically updated. New information The checklist of Greek Cyanobacteria comprises 543 species, classified in 130 genera, 41 families, and 8 orders. The orders Synechococcales and Oscillatoriales have the highest number of species (158 and 153 species, respectively), whereas these two orders along with Nostocales and Chroococcales cover 93% of the known Greek cyanobacteria species. It is worth mentioning that 18 species have been initially described from Greek habitats. The marine epilithic Ammatoidea aegea described from Saronikos Gulf is considered endemic to this area. Our bibliographic review shows that Greece hosts a high diversity of cyanobacteria, suggesting that the Mediterranean area is also a hot spot for microbes. PMID:27956851

  15. Cyanobacteria of Greece: an annotated checklist.

    PubMed

    Gkelis, Spyros; Ourailidis, Iordanis; Panou, Manthos; Pappas, Nikos

    2016-01-01

    The checklist of Greek Cyanobacteria was created in the framework of the Greek Taxon Information System (GTIS), an initiative of the LifeWatchGreece Research Infrastructure (ESFRI) that has resumed efforts to compile a complete checklist of species reported from Greece. This list was created from exhaustive search of the scientific literature of the last 60 years. All records of taxa known to occur in Greece were taxonomically updated. The checklist of Greek Cyanobacteria comprises 543 species, classified in 130 genera, 41 families, and 8 orders. The orders Synechococcales and Oscillatoriales have the highest number of species (158 and 153 species, respectively), whereas these two orders along with Nostocales and Chroococcales cover 93% of the known Greek cyanobacteria species. It is worth mentioning that 18 species have been initially described from Greek habitats. The marine epilithic Ammatoidea aegea described from Saronikos Gulf is considered endemic to this area. Our bibliographic review shows that Greece hosts a high diversity of cyanobacteria, suggesting that the Mediterranean area is also a hot spot for microbes.

  16. Long-Term Changes in Cyanobacteria Populations in Lake Kinneret (Sea of Galilee), Israel: An Eco-Physiological Outlook

    PubMed Central

    Hadas, Ora; Kaplan, Aaron; Sukenik, Assaf

    2015-01-01

    The long-term record of cyanobacteria abundance in Lake Kinneret (Sea of Galilee), Israel, demonstrates changes in cyanobacteria abundance and composition in the last five decades. New invasive species of the order Nostocales (Aphanizomenon ovalisporum and Cylindrospermopsis raciborskii) became part of the annual phytoplankton assemblage during summer-autumn. Concomitantly, bloom events of Microcystis sp. (Chroococcales) during winter-spring intensified. These changes in cyanobacteria pattern may be partly attributed to the management policy in Lake Kinneret’s vicinity and watershed aimed to reduce effluent discharge to the lake and partly to climate changes in the region; i.e., increased water column temperature, less wind and reduced precipitation. The gradual decrease in the concentration of total and dissolved phosphorus and total and dissolved nitrogen and an increase in alkalinity, pH and salinity, combined with the physiological features of cyanobacteria, probably contributed to the success of cyanobacteria. The data presented here indicate that the trend of the continuous decline of nutrients may not be sufficient to reduce and to control the abundance and proliferation of toxic and non-toxic cyanobacteria. PMID:25664964

  17. Spatial Variability of Cyanobacteria and Heterotrophic Bacteria in Lake Taihu (China).

    PubMed

    Qian, Haifeng; Lu, Tao; Song, Hao; Lavoie, Michel; Xu, Jiahui; Fan, Xiaoji; Pan, Xiangliang

    2017-09-01

    Cyanobacterial blooms frequently occur in Lake Taihu (China), but the intertwined relationships between biotic and abiotic factors modulating the frequency and duration of the blooms remain enigmatic. To better understand the relationships between the key abiotic and biotic factors and cyanobacterial blooms, we measured the abundance and diversity of prokaryotic organisms by high-throughput sequencing, the abundance of key genes involved in microcystin production and nitrogen fixation or loss as well as several physicochemical parameters at several stations in Lake Taihu during a cyanobacterial bloom of Microcystis sp.. Measurements of the copy number of denitrification-related genes and 16S rRNA analyses show that denitrification potential and denitrifying bacteria abundance increased in concert with non-diazotrophic cyanobacteria (Microcystis sp.), suggesting limited competition between cyanobacteria and heterotrophic denitrifiers for nutrients, although potential bacteria-mediated N loss may hamper Microcystis growth. The present study provides insight into the importance of different abiotic and biotic factors in controlling cyanobacteria and heterotrophic bacteria spatial variability in Lake Taihu.

  18. [Cyanobacteria populations in rice soils: rotation effects].

    PubMed

    Sánchez, Cecilia I; Benintende, María C; Benintende, Silvia M

    2018-04-21

    The aim of this study was to evaluate the effect of different rice rotations on cyanobacteria populations during the growing season. The study was conducted in Entre Ríos (Argentina). Four crop rotations were evaluated: rice-soybean (AS); rice-soybean-corn-soybean (ASMS); rice-rice (AA) and rice-pasture (AP). Soil and water samples were collected in 4 stages: implantation, tillering, booting and physiological maturity. The potential number of cyanobacteria population was lowerin relation to other rice sites previously reported. The lowest counts were recorded during implantation whereas the highest counts were obtained during booting. The statistical analysis showed no effect of rotation on the variable number of cyanobacteria, although AA was the most abundant. A total of 13 taxa were identified: Lyngbya, Oscillatoria, Plectonema, Spirulina, Anabaena, Nostoc, Aulosira, Calothrix, Gloeotrichia, Aphanocapsa, Croococcus, Mycrocystis and Gloeocapsa. AP rotation recorded the lowest number of genera. AS and AA had a higher proportion of filamentous cyanobacteria. Simpson's index was low. It was concluded that crop rotations had a differential effect on some aspects of cyanobacteria population such as the proportion of unicellular to filamentous cyanobacteria, genera presence and richness. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge

    PubMed Central

    Martins, Joana; Vasconcelos, Vitor

    2015-01-01

    Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential. PMID:26580631

  20. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge.

    PubMed

    Martins, Joana; Vasconcelos, Vitor

    2015-11-13

    Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential.

  1. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.

    PubMed

    Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song

    2012-11-16

    Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins

  2. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    PubMed Central

    2012-01-01

    Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All

  3. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates.

    PubMed

    Hackett, Jeremiah D; Wisecaver, Jennifer H; Brosnahan, Michael L; Kulis, David M; Anderson, Donald M; Bhattacharya, Debashish; Plumley, F Gerald; Erdner, Deana L

    2013-01-01

    Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some

  4. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  5. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  6. Marine aerosol as a possible source for endotoxins in coastal areas.

    PubMed

    Lang-Yona, Naama; Lehahn, Yoav; Herut, Barak; Burshtein, Noa; Rudich, Yinon

    2014-11-15

    Marine aerosols, that are very common in the highly populated coastal cities and communities, may contain biological constituents. Some of this biological fraction of marine aerosols, such as cyanobacteria and plankton debris, may influence human health by inflammation and allergic reactions when inhaled. In this study we identify and compare sources for endotoxins sampled on filters in an on-shore and more-inland site. Filter analysis included endotoxin content, total bacteria, gram-negative bacteria and cyanobacteria genome concentrations as well as ion content in order to identify possible sources for the endotoxins. Satellite images of chlorophyll-a levels and back trajectory analysis were used to further study the cyanobacteria blooms in the sea, close to the trajectory of the sampled air. The highest endotoxin concentrations found in the shoreline site were during winter (3.23±0.17 EU/m(3)), together with the highest cyanobacteria genome (1065.5 genome/m(3)). The elevated endotoxin concentrations were significantly correlated with cyanobacterial levels scaled to the presence of marine aerosol (r=0.90), as well as to chlorophyll-a (r=0.96). Filters sampled further inland showed lower and non-significant correlation between endotoxin and cyanobacteria (r=0.70, P value=0.19), suggesting decrease in marine-originated endotoxin, with possible contributions from other sources of gram-negative non-cyanobacteria. We conclude that marine cyanobacteria may be a dominant contributor to elevated endotoxin levels in coastal areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid.

    PubMed

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S; Morrison, Louise F; Codd, Geoffrey A; Bergman, Birgitta

    2005-04-05

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, beta-N-methylamino-L-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure.

  8. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid

    PubMed Central

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J.; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S.; Morrison, Louise F.; Codd, Geoffrey A.; Bergman, Birgitta

    2005-01-01

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, β-N-methylamino-l-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure. PMID:15809446

  9. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast.

    PubMed

    Brito, Ângela; Ramos, Vitor; Mota, Rita; Lima, Steeve; Santos, Arlete; Vieira, Jorge; Vieira, Cristina P; Kaštovský, Jan; Vasconcelos, Vitor M; Tamagnini, Paula

    2017-06-01

    Aiming at increasing the knowledge on marine cyanobacteria from temperate regions, we previously isolated and characterized 60 strains from the Portuguese foreshore and evaluate their potential to produce secondary metabolites. About 15% of the obtained 16S rRNA gene sequences showed less than 97% similarity to sequences in the databases revealing novel biodiversity. Herein, seven of these strains were extensively characterized and their classification was re-evaluated. The present study led to the proposal of five new taxa, three genera (Geminobacterium, Lusitaniella, and Calenema) and two species (Hyella patelloides and Jaaginema litorale). Geminobacterium atlanticum LEGE 07459 is a chroococcalean that shares morphological characteristics with other unicellular cyanobacterial genera but has a distinct phylogenetic position and particular ultrastructural features. The description of the Pleurocapsales Hyella patelloides LEGE 07179 includes novel molecular data for members of this genus. The filamentous isolates of Lusitaniella coriacea - LEGE 07167, 07157 and 06111 - constitute a very distinct lineage, and seem to be ubiquitous on the Portuguese coast. Jaaginema litorale LEGE 07176 has distinct characteristics compared to their marine counterparts, and our analysis indicates that this genus is polyphyletic. The Synechococcales Calenema singularis possess wider trichomes than Leptolyngbya, and its phylogenetic position reinforces the establishment of this new genus. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The future of genomics in polar and alpine cyanobacteria

    PubMed Central

    Anesio, Alexandre M; Sánchez-Baracaldo, Patricia

    2018-01-01

    Abstract In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria. Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine cyanobacteria that cannot readily be cultured. PMID:29506259

  11. Estimating Cyanobacteria Community Dynamics and its Relationship with Environmental Factors

    PubMed Central

    Luo, Wenhuai; Chen, Huirong; Lei, Anping; Lu, Jun; Hu, Zhangli

    2014-01-01

    The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method. The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 108 cells L-1 and 1.92 × 108 cells L-1 in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies. PMID:24448632

  12. Monitoring the abundance of plastic debris in the marine environment.

    PubMed

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  13. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  14. Evolution of Saxitoxin Synthesis in Cyanobacteria and Dinoflagellates

    PubMed Central

    Hackett, Jeremiah D.; Wisecaver, Jennifer H.; Brosnahan, Michael L.; Kulis, David M.; Anderson, Donald M.; Bhattacharya, Debashish; Plumley, F. Gerald; Erdner, Deana L.

    2013-01-01

    Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some

  15. Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.

    PubMed

    Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina

    2016-01-01

    Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.

  16. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists

    PubMed Central

    Beier, Sara; Grabherr, Manfred

    2017-01-01

    ABSTRACT Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species

  17. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists.

    PubMed

    Osman, Omneya Ahmed; Beier, Sara; Grabherr, Manfred; Bertilsson, Stefan

    2017-04-01

    Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas , Stenotrophomonas , Acinetobacter , and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses

  18. Iron-Tolerant Cyanobacteria: Ecophysiology and Fingerprinting

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Lindsey, J.; McKay, D. S.

    2006-01-01

    Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs. Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe(3+) (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe(3+) (0.02-0.4 mM). Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe(3+) from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm. Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.

  19. Stable Isotope Evidence of Variation in Nitrogen Fixation by Cyanobacteria in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paul, V.; Clementz, M.

    2006-12-01

    Increased nutrient loading via both natural and anthropogenic factors has been reported as one possible mechanism for the recent increase in the occurrence and intensity of harmful algal blooms (HAB) in coastal ecosystems. Influx of iron, phosphorous, and organic carbon have proven to be significant stimulating factors for HAB, since the benthic cyanobacteria that often make up these blooms are capable of nitrogen-fixation and require these nutrients for this process as well as photosynthesis. These cyanobacteria can switch to direct uptake of dissolved inorganic nitrogen (DIN), however, when concentrations are high enough to energetically favor this source, suggesting that high nitrogen input may also stimulate HAB. Given the distinct isotope differences between atmospheric N2 (0‰) and anthropogenic sources of DIN (>6‰), measurement of the δ15N composition of cyanobacteria can provide a means of gauging the relative significance of anthropogenic versus atmospheric nitrogen to the growth of these blooms. Likewise, the δ13C composition of these primary producers is controlled by the δ13C composition of the DIC, and can be a second tracer of anthropogenic influx into marine ecosystems. A combined approach using both isotope tracers was employed to determine the significance of anthropogenic nitrogen on HAB in subtropical/tropical coastal marine ecosystems. Samples of cyanobacteria and associated macroalgae were collected from three coastal sites in Guam (Facpi Point, Tanguisson, and Ypao Beach), one locality in Hawaii, and three sites in southern Florida (Pepper Park, Fort Lauderdale, Florida Keys). Following removal of marine carbonates via an acid rinse, the δ13C and δ15N values were determined for each species. Cyanobacterial δ15N values ranged from -2.3‰ to 7.7‰ with the highest values reported from sites in Guam. Only cyanobacteria sampled from Hawaii showed no isotope evidence of an anthropogenic source for nitrogen. A strong negative correlation

  20. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  1. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future

    PubMed Central

    Mazard, Sophie; Penesyan, Anahit; Ostrowski, Martin; Paulsen, Ian T.; Egan, Suhelen

    2016-01-01

    Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects. PMID:27196915

  2. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future.

    PubMed

    Mazard, Sophie; Penesyan, Anahit; Ostrowski, Martin; Paulsen, Ian T; Egan, Suhelen

    2016-05-17

    Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.

  3. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    PubMed Central

    Rogers, Matthew B; Patron, Nicola J; Keeling, Patrick J

    2007-01-01

    Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA) are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes) of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group. PMID:17584924

  4. Addressing public health risks for cyanobacteria in recreational freshwaters: the Oregon and Vermont framework.

    PubMed

    Stone, David; Bress, William

    2007-01-01

    Toxigenic cyanobacteria, commonly known as blue green algae, are an emerging public health issue. The toxins produced by cyanobacteria have been detected across the United States in marine, freshwater and estuarine systems and associated with adverse health outcomes. The intent of this paper is to focus on how to address risk in a recreational freshwater scenario when toxigenic cyanobacteria are present. Several challenges exist for monitoring, assessing and posting water bodies and advising the public when toxigenic cyanobacteria are present. These include addressing different recreational activities that are associated with varying levels of risk, the dynamic temporal and spatial aspects of blooms, data gaps in toxicological information and the lack of training and resources for adequate surveillance. Without uniform federal guidance, numerous states have taken public health action for cyanobacteria with different criteria. Vermont and Oregon independently developed a tiered decision-making framework to reduce risk to recreational users when toxigenic cyanobacteria are present. This framework is based on a combination of qualitative and quantitative information.

  5. Codon usage analysis of photolyase encoding genes of cyanobacteria inhabiting diverse habitats.

    PubMed

    Rajneesh; Pathak, Jainendra; Kannaujiya, Vinod K; Singh, Shailendra P; Sinha, Rajeshwar P

    2017-07-01

    Nucleotide and amino acid compositions were studied to determine the genomic and structural relationship of photolyase gene in freshwater, marine and hot spring cyanobacteria. Among three habitats, photolyase encoding genes from hot spring cyanobacteria were found to have highest GC content. The genomic GC content was found to influence the codon usage and amino acid variability in photolyases. The third position of codon was found to have more effect on amino acid variability in photolyases than the first and second positions of codon. The variation of amino acids Ala, Asp, Glu, Gly, His, Leu, Pro, Gln, Arg and Val in photolyases of three different habitats was found to be controlled by first position of codon (G1C1). However, second position (G2C2) of codon regulates variation of Ala, Cys, Gly, Pro, Arg, Ser, Thr and Tyr contents in photolyases. Third position (G3C3) of codon controls incorporation of amino acids such as Ala, Phe, Gly, Leu, Gln, Pro, Arg, Ser, Thr and Tyr in photolyases from three habitats. Photolyase encoding genes of hot spring cyanobacteria have 85% codons with G or C at third position, whereas marine and freshwater cyanobacteria showed 82 and 60% codons, respectively, with G or C at third position. Principal component analysis (PCA) showed that GC content has a profound effect in separating the genes along the first major axis according to their RSCU (relative synonymous codon usage) values, and neutrality analysis indicated that mutational pressure has resulted in codon bias in photolyase genes of cyanobacteria.

  6. Genes, Genomes, and Assemblages of Modern Anoxygenic Photosynthetic Cyanobacteria as Proxies for Ancient Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grim, S. L.; Dick, G.

    2015-12-01

    Oxygenic photosynthetic (OP) cyanobacteria were responsible for the production of O2 during the Proterozoic. However, the extent and degree of oxygenation of the atmosphere and oceans varied for over 2 Ga after OP cyanobacteria first appeared in the geologic record. Cyanobacteria capable of anoxygenic photosynthesis (AP) may have altered the trajectory of oxygenation, yet the scope of their role in the Proterozoic is not well known. Modern cyanobacterial populations from Middle Island Sinkhole (MIS), Michigan and a handful of cultured cyanobacterial strains, are capable of OP and AP. With their metabolic versatility, these microbes may approximate ancient cyanobacterial assemblages that mediated Earth's oxygenation. To better characterize the taxonomic and genetic signatures of these modern AP/OP cyanobacteria, we sequenced 16S rRNA genes and conducted 'omics analyses on cultured strains, lab mesocosms, and MIS cyanobacterial mat samples collected over multiple years from May to September. Diversity in the MIS cyanobacterial mat is low, with one member of Oscillatoriales dominating at all times. However, Planktothrix members are more abundant in the cyanobacterial community in late summer and fall. The shift in cyanobacterial community composition may be linked to seasonally changing light intensity. In lab mesocosms of MIS microbial mat, we observed a shift in dominant cyanobacterial groups as well as the emergence of Chlorobium, bacteria that specialize in AP. These shifts in microbial community composition and metabolism are likely in response to changing environmental parameters such as the availability of light and sulfide. Further research is needed to understand the impacts of the changing photosynthetic community on oxygen production and the entire microbial consortium. Our study connects genes and genomes of AP cyanobacteria to their environment, and improves understanding of cyanobacterial metabolic strategies that may have shaped Earth's redox evolution.

  7. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    PubMed

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Global Diversity of Desert Hypolithic Cyanobacteria.

    PubMed

    Lacap-Bugler, Donnabella C; Lee, Kevin K; Archer, Stephen; Gillman, Len N; Lau, Maggie C Y; Leuzinger, Sebastian; Lee, Charles K; Maki, Teruya; McKay, Christopher P; Perrott, John K; de Los Rios-Murillo, Asunción; Warren-Rhodes, Kimberley A; Hopkins, David W; Pointing, Stephen B

    2017-01-01

    Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nif H genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes

  9. Global Diversity of Desert Hypolithic Cyanobacteria

    PubMed Central

    Lacap-Bugler, Donnabella C.; Lee, Kevin K.; Archer, Stephen; Gillman, Len N.; Lau, Maggie C.Y.; Leuzinger, Sebastian; Lee, Charles K.; Maki, Teruya; McKay, Christopher P.; Perrott, John K.; de los Rios-Murillo, Asunción; Warren-Rhodes, Kimberley A.; Hopkins, David W.; Pointing, Stephen B.

    2017-01-01

    Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nifH genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes

  10. Morphology and Elemental Composition of Recent and Fossil Cyanobacteria

    NASA Technical Reports Server (NTRS)

    SaintAmand, Ann; Hoover, Richard B.; Jerman, Gregory; Rozanov, Alexei Yu.

    2005-01-01

    Cyanobacteria (cyanophyta, cyanoprokaryota, and blue-green algae) are an ancient, diverse and abundant group of photosynthetic oxygenic microorganisms. Together with other bacteria and archaea, the cyanobacteria have been the dominant life forms on Earth for over 3.5 billion years. Cyanobacteria occur in some of our planets most extreme environments - hot springs and geysers, hypersaline and alkaline lakes, hot and cold deserts, and the polar ice caps. They occur in a wide variety of morphologies. Unlike archaea and other bacteria, which are typically classified in pure culture by their physiological, biochemical and phylogenetic properties, the cyanobacteria have historically been classified based upon their size and morphological characteristics. These include the presence or absence of heterocysts, sheath, uniseriate or multiseriate trichomes, true or false branching, arrangement of thylakoids, reproduction by akinetes, binary fission, hormogonia, fragmentation, presence/absence of motility etc. Their antiquity, distribution, structural and chemical differentiation, diversity, morphological complexity and large size compared to most other bacteria, makes the cyanobacteria ideal candidates for morphological biomarkers in returned Astromaterials. We have obtained optical (nomarski and phase contrast)/fluorescent (blue and green excitation) microscopy images using an Olympus BX60 compound microscope and Field Emission Scanning Electron Microscopy images and EDAX elemental compositions of living and fossil cyanobacteria. The S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM) has been used to investigate microfossils in freshly fractured interior surfaces of terrestrial rocks and the cells, hormogonia, sheaths and trichomes of recent filamentous cyanobacteria. We present Fluorescent and FESEM Secondary and Backscattered Electron images and associated EDAX elemental analyses of recent and fossil cyanobacteria, concentrating on representatives of the

  11. Morphology and elemental composition of recent and fossil cyanobacteria

    NASA Astrophysics Data System (ADS)

    St. Amand, Ann; Hoover, Richard B.; Jerman, Gregory A.; Coston, James; Rozanov, Alexei Y.

    2005-09-01

    Cyanobacteria (cyanophyta, cyanoprokaryota, and blue-green algae) are an ancient, diverse and abundant group of photosynthetic oxygenic microorganisms. Together with other bacteria and archaea, the cyanobacteria have been the dominant life forms on Earth for over 3.5 billion years. Cyanobacteria occur in some of our planets most extreme environments - hot springs and geysers, hypersaline and alkaline lakes, hot and cold deserts, and the polar ice caps. They occur in a wide variety of morphologies. Unlike archaea and other bacteria, which are typically classified in pure culture by their physiological, biochemical and phylogenetic properties, the cyanobacteria have historically been classified based upon their size and morphological characteristics. These include the presence or absence of heterocysts, sheath, uniseriate or multiseriate trichomes, true or false branching, arrangement of thylakoids, reproduction by akinetes, binary fission, hormogonia, fragmentation, presence/absence of motility etc. Their antiquity, distribution, structural and chemical differentiation, diversity, morphological complexity and large size compared to most other bacteria, makes the cyanobacteria ideal candidates for morphological biomarkers in returned Astromaterials. We have obtained optical (nomarski and phase contrast)/fluorescent (blue and green excitation) microscopy images using an Olympus BX60 compound microscope and Field Emission Scanning Electron Microscopy images and EDAX elemental compositions of living and fossil cyanobacteria. The S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM) has been used to investigate microfossils in freshly fractured interior surfaces of terrestrial rocks and the cells, hormogonia, sheaths and trichomes of recent filamentous cyanobacteria. We present Fluorescent and FESEM Secondary and Backscattered Electron images and associated EDAX elemental analyses of recent and fossil cyanobacteria, concentrating on representatives of the

  12. DNA extraction from benthic Cyanobacteria: comparative assessment and optimization.

    PubMed

    Gaget, V; Keulen, A; Lau, M; Monis, P; Brookes, J D

    2017-01-01

    Benthic Cyanobacteria produce toxic and odorous compounds similar to their planktonic counterparts, challenging the quality of drinking water supplies. The biofilm that benthic algae and other micro-organisms produce is a complex and protective matrix. Monitoring to determine the abundance and identification of Cyanobacteria, therefore, relies on molecular techniques, with the choice of DNA isolation technique critical. This study investigated which DNA extraction method is optimal for DNA recovery in order to guarantee the best DNA yield for PCR-based analysis of benthic Cyanobacteria. The conventional phenol-chloroform extraction method was compared with five commercial kits, with the addition of chemical and physical cell-lysis steps also trialled. The efficacy of the various methods was evaluated by measuring the quantity and quality of DNA by UV spectrophotometry and by quantitative PCR (qPCR) using Cyanobacteria-specific primers. The yield and quality of DNA retrieved with the commercial kits was significantly higher than that of DNA obtained with the phenol-chloroform protocol. Kits including a physical cell-lysis step, such as the MO BIO Power Soil and Biofilm kits, were the most efficient for DNA isolation from benthic Cyanobacteria. These commercial kits allow greater recovery and the elimination of dangerous chemicals for DNA extraction, making them the method of choice for the isolation of DNA from benthic mats. They also facilitate the extraction of DNA from benthic Cyanobacteria, which can help to improve the characterization of Cyanobacteria in environmental studies using qPCRs or population composition analysis using next-generation sequencing. © 2016 The Society for Applied Microbiology.

  13. Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria

    PubMed Central

    Cai, Fei; Axen, Seth D.; Kerfeld, Cheryl A.

    2013-01-01

    Members of the phylum Cyanobacteria inhabit ecologically diverse environments. However, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR associated genes), an extremely adaptable defense system, has not been surveyed in this phylum. We analyzed 126 cyanobacterial genomes and, surprisingly, found CRISPR-Cas in the majority except the marine subclade (Synechococcus and Prochlorococcus), in which cyanophages are a known force shaping their evolution. Multiple observations of CRISPR loci in the absence of cas1/cas2 genes may represent an early stage of losing a CRISPR-Cas locus. Our findings reveal the widespread distribution of their role in the phylum Cyanobacteria and provide a first step to systematically understanding CRISPR-Cas systems in cyanobacteria. PMID:23628889

  14. Cyanobacteria

    MedlinePlus

    ... Name By Syndrome Life Cycle Impacts Human Health Wildlife Ecosystems Socioeconomic Freshwater Regions Distribution - U.S. Distribution - World ... Poisoning Paralytic Shellfish Poisoning Cyanobacteria Medical Community ... cyanobacteria blooms are ...

  15. Toolboxes for cyanobacteria: Recent advances and future direction.

    PubMed

    Sun, Tao; Li, Shubin; Song, Xinyu; Diao, Jinjin; Chen, Lei; Zhang, Weiwen

    2018-05-03

    Photosynthetic cyanobacteria are important primary producers and model organisms for studying photosynthesis and elements cycling on earth. Due to the ability to absorb sunlight and utilize carbon dioxide, cyanobacteria have also been proposed as renewable chassis for carbon-neutral "microbial cell factories". Recent progresses on cyanobacterial synthetic biology have led to the successful production of more than two dozen of fuels and fine chemicals directly from CO 2 , demonstrating their potential for scale-up application in the future. However, compared with popular heterotrophic chassis like Escherichia coli and Saccharomyces cerevisiae, where abundant genetic tools are available for manipulations at levels from single gene, pathway to whole genome, limited genetic tools are accessible to cyanobacteria. Consequently, this significant technical hurdle restricts both the basic biological researches and further development and application of these renewable systems. Though still lagging the heterotrophic chassis, the vital roles of genetic tools in tuning of gene expression, carbon flux re-direction as well as genome-wide manipulations have been increasingly recognized in cyanobacteria. In recent years, significant progresses on developing and introducing new and efficient genetic tools have been made for cyanobacteria, including promoters, riboswitches, ribosome binding site engineering, clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease (CRISPR/Cas) systems, small RNA regulatory tools and genome-scale modeling strategies. In this review, we critically summarize recent advances on development and applications as well as technical limitations and future directions of the genetic tools in cyanobacteria. In addition, toolboxes feasible for using in large-scale cultivation are also briefly discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Health effects associated with cyanobacteria exposure among beach attendees in Puerto Rico

    EPA Science Inventory

    Cyanobacteria and their toxins are associated with adverse human health effects, although among marine waters, the pyrrhophyta, including dinoflagellates are more recognized as health hazards. We recruited beach attendees during summer 2009, at Boquerón Beach, Puerto Rico...

  17. Preliminary Assessment of Cyanobacteria Diversity and Toxic Potential in Ten Freshwater Lakes in Selangor, Malaysia.

    PubMed

    Sinang, Som Cit; Poh, Keong Bun; Shamsudin, Syakirah; Sinden, Ann

    2015-10-01

    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.

  18. Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat

    NASA Astrophysics Data System (ADS)

    Ince, Rebecca; Hyndes, Glenn A.; Lavery, Paul S.; Vanderklift, Mathew A.

    2007-08-01

    Beach-cast wrack is a prominent feature of beaches of south-western Australia. We examined the fauna of these beaches to explore the generalisation [Polis, G.A., Hurd, S.D., 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Ecology 92, 4382-4386] that beach-cast wrack from highly productive marine ecosystems subsidises low productivity of terrestrial ecosystems, to establish whether this generalisation is relevant to oligotrophic marine systems. We sampled three beaches with high and three beaches with low volumes of beach-cast wrack to determine if: (1) the presence of wrack influences the abundance of macroinvertebrates; (2) wrack acts as a food source for beach macroinvertebrates; and (3) the influence of wrack varies between zones above the high water mark. We measured wrack volume and composition, sediment characteristics, the abundance of different epibenthic and infaunal macroinvertebrates taxa, and δ13C and δ15N of macrophytes and macroinvertebrates. The mean volume of wrack on high-wrack beaches was 0.27-1.07 m 3 wrack m -2 compared to 0.00-0.09 m 3 wrack m -2 on low-wrack beaches. There were no significant differences in sediment grain size, moisture content or loss on ignition between the two types of beaches or zones. Epibenthic fauna and infauna were consistently abundant on high-wrack beaches (20-291 and 0.5-3.5 individuals 0.64 m -2, respectively), but either absent or extremely rare in low-wrack beaches (0-3 and 0-0.1 individuals 0.64 m -2, respectively). Within high-wrack beaches, there were no significant differences in the abundance of epifauna or infauna among beaches or between zones. The δ13C values of macroinvertebrates at all sites were most similar to red and brown algae, with the exception of beetles from two beaches, which were closest to seagrasses. Mixing model (Isosource) results for mesograzing amphipods and dipteran flies suggested carbon

  19. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    PubMed Central

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  20. Identifying ecological "sweet spots" underlying cyanobacteria functional group dynamics from long-term observations using a statistical machine learning approach

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Munoz-Carpena, R.; Phlips, E. J.

    2017-12-01

    Diversity in the eco-physiological adaptations of cyanobacteria genera creates challenges for water managers who are tasked with developing appropriate actions for controlling not only the intensity and frequency of cyanobacteria blooms, but also reducing the potential for blooms of harmful taxa (e.g., toxin producers, N2 fixers). Compounding these challenges, the efficacy of nutrient management strategies (phosphorus-only versus nitrogen-and-phosphorus) for cyanobacteria bloom abatement is the subject of an ongoing debate, which increases uncertainty associated with bloom mitigation decision-making. In this work, we analyze a unique long-term (17-year) dataset composed of monthly observations of cyanobacteria genera abundances, zooplankton abundances, water quality, and flow from Lake George, a bloom-impacted flow-through lake of the St. Johns River (FL, USA). Using the Random Forests machine learning algorithm, an assumption-free ensemble modeling approach, the dataset was evaluated to quantify and characterize relationships between environmental conditions and seven cyanobacteria groupings: five genera (Anabaena, Cylindrospermopsis, Lyngbya, Microcystis, and Oscillatoria) and two functional groups (N2 fixers and non-fixers). Results highlight the selectivity of nitrogen in describing genera and functional group dynamics, and potential for physical effects to limit the efficacy of nutrient management as a mechanism for cyanobacteria bloom mitigation.

  1. Fluorescence probes for real-time remote cyanobacteria monitoring: A review of challenges and opportunities.

    PubMed

    Bertone, Edoardo; Burford, Michele A; Hamilton, David P

    2018-05-10

    In recent years, there has been a widespread deployment of submersible fluorescence sensors by water utilities. They are used to measure diagnostic pigments and estimate algae and cyanobacteria abundance in near real-time. Despite being useful and promising tools, operators and decision-makers often rely on the data provided by these probes without a full understanding of their limitations. As a result, this may lead to wrong and misleading estimations which, in turn, means that researchers and technicians distrust these sensors. In this review paper, we list and discuss the main limitations of such probes, as well as identifying the effect of environmental factors on pigment production, and in turn, the conversion to cyanobacteria abundance estimation. We argue that a comprehensive calibration approach to obtain reliable readings goes well beyond manufacturers' recommendations, and should involve several context-specific experiments. We also believe that if such a comprehensive set of experiments is conducted, the data collected from fluorescence sensors could be used in artificial intelligence modelling approaches to reliably predict, in near real-time, the presence and abundance of different cyanobacteria species. This would have significant benefits for both drinking and recreational water management, given that cyanobacterial toxicity, and taste and odour compounds production, are species-dependent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  3. Grassystatins A–C from Marine Cyanobacteria, Potent Cathepsin E Inhibitors that Reduce Antigen Presentation

    PubMed Central

    Kwan, Jason C.; Eksioglu, Erika A.; Liu, Chen; Paul, Valerie J.; Luesch, Hendrik

    2009-01-01

    In our efforts to explore marine cyanobacteria as a source of novel bioactive compounds we discovered a statine unit-containing linear decadepsipeptide, grassystatin A (1), which we screened against a diverse set of 59 proteases. We describe the structure determination of 1 and two natural analogs, grassystatins B (2) and C (3), using NMR, MS, and chiral HPLC techniques. Compound 1 selectively inhibited cathepsins D and E with IC50s of 26.5 nM and 886 pM, respectively. Compound 2 showed similar potency and selectivity against cathepsins D and E (IC50s 7.27 nM and 354 pM, respectively), whereas the truncated peptide analog grassystatin C (3), which consists of two fewer residues than 1 and 2, was less potent against both but still selective for cathepsin E. The selectivity of compounds 1–3 for cathepsin E over D (20- to 38-fold) suggests that these natural products may be useful tools to probe cathepsin E function. We investigated the structural basis of this selectivity using molecular docking. We also show that 1 can reduce antigen presentation by dendritic cells, a process thought to rely on cathepsin E. PMID:19715320

  4. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed.

    PubMed

    Bothe, Hermann; Tripp, H James; Zehr, Jonathan P

    2010-10-01

    Some unicellular N(2)-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N(2)-fixation. Since their photosystem II is inactive, they can perform N(2)-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N(2)-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.

  5. Seasonal trends in abundance and composition of marine debris in selected public beaches in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Mobilik, Julyus-Melvin; Ling, Teck-Yee; Husain, Mohd-Lokman Bin; Hassan, Ruhana

    2015-09-01

    The abundance and composition of marine debris were investigated at Saujana (in the state of Negeri Sembilan) and Batu Rakit (in the state of Terengganu) beaches during surveys conducted in December 2012 (northeast monsoon), May 2013 (intermediate monsoon) and July 2013 (southwest monsoon). A total of 4,682 items of debris weighing 231.4 kg were collected and sorted. Batu Rakit received substantially greater quantities of debris (815±717 items/km or 40.4±13.0 kg/km) compared to Saujana (745±444 items/km or 36.7±18.0 kg/km). Total debris item was more abundant during the southwest monsoon (SWM) (1,122±737 items/km) compared to the northeast monsoon (NEM) (825±593 items/ km) and the intermediate monsoon (IM) (394±4 items/km) seasons. Plastic category (88%) was the most numerous items collected and object items contributed 44.18% includes packaging, plastic fragments, cups, plastic shopping bags, plastic food wrapper, clear plastic bottles from the total debris items collected. Object items associated with common source (47%) were the highest debris accumulated, followed by terrestrial (30%) and marine (23%) sources. The high percentage of common and terrestrial sources during SWM season requires immediate action by marine environment stakeholders to develop and introduce strategies to reduce if not totally eliminates the marine debris in the marine environment. Awareness should be continued and focused on beach users and vessels' crew to alert them on the alarming accumulation rate of marine debris and its pathways into the marine environment.

  6. Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content

    NASA Astrophysics Data System (ADS)

    Saito, M. A.; Bertrand, E. M.; Bulygin, V.; Moran, D.; Waterbury, J. B.

    2008-12-01

    The proteome of the marine cyanobacterium Synechococcus WH8102 was analyzed by nanospray liquid chromatography mass spectrometry (nLC-MS) with two major goals: to provide a first examination of the relative abundance of the most abundant proteins in this important microbe and to provide the necessary mass spectra for future quantification of biogeochemically significant proteins. Analyses of 37 nLC-MS runs of whole cell tryptic digestions and SDS-PAGE gel separated tryptic digestions resulted in a total of 636 proteins identified, 376 identified with two or more tryptic peptides. The identifications used the Sequest algorithm with stringent data filters on 54003 observed peptides, 3066 of which were unique, with a false positive rate of 2.2%. These measured proteins represent ~ 25.2% (14.8% with >= 2 peptides) of the open reading frames (ORFs) in the genome, similar to or higher than the percentage found in other cyanobacterial proteome studies thus far. The relative abundance of the more abundant proteins in the proteome was examined using the exponentially modified protein abundance index from a single nLC-MS run that identified 372 proteins (14.7% of the ORFs) from 7743 observed peptides (1224 unique peptides). Estimates of the relative abundance showed the photosynthesis and respiration category contributing approximately 32% of the total detected protein, hypothetical proteins contributing about 16%, and translation about 12%. Of biogeochemical interest, multiple types of nitrogen assimilation systems were observed to be simultaneously expressed as proteins, only 5 of the 21 B12 biosynthesis proteins were identified likely due to low abundance, and the metalloproteins metallothionein and nickel superoxide dismutase were relatively abundant. In contrast to previous predictions of a high photosystem I: photosystem II ratio of approximately 3 in the cyanobacteria and a resultant high cellular iron content, the ratio of the average relative abundances of all

  7. Phylogeography and pigment type diversity of Synechococcus cyanobacteria in surface waters of the northwestern pacific ocean.

    PubMed

    Xia, Xiaomin; Partensky, Frédéric; Garczarek, Laurence; Suzuki, Koji; Guo, Cui; Yan Cheung, Shun; Liu, Hongbin

    2017-01-01

    The widespread unicellular cyanobacteria Synechococcus are major contributors to global marine primary production. Here, we report their abundance, phylogenetic diversity (as assessed using the RNA polymerase gamma subunit gene rpoC1) and pigment diversity (as indirectly assessed using the laterally transferred cpeBA genes, encoding phycoerythrin-I) in surface waters of the northwestern Pacific Ocean, sampled over nine distinct cruises (2008-2015). Abundance of Synechococcus was low in the subarctic ocean and South China Sea, intermediate in the western subtropical Pacific Ocean, and the highest in the Japan and East China seas. Clades I and II were by far the most abundant Synechococcus lineages, the former dominating in temperate cold waters and the latter in (sub)tropical waters. Clades III and VI were also fairly abundant in warm waters, but with a narrower distribution than clade II. One type of chromatic acclimater (3dA) largely dominated the Synechococcus communities in the subarctic ocean, while another (3dB) and/or cells with a fixed high phycourobilin to phycoerythrobilin ratio (pigment type 3c) predominated at mid and low latitudes. Altogether, our results suggest that the variety of pigment content found in most Synechococcus clades considerably extends the niches that they can colonize and therefore the whole genus habitat. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance.

    PubMed

    Matteson, Audrey R; Rowe, Janet M; Ponsero, Alise J; Pimentel, Tiana M; Boyd, Philip W; Wilhelm, Steven W

    2013-05-01

    The distribution of cyanomyoviruses was estimated using a quantitative PCR (qPCR) approach that targeted the g20 gene as a proxy for phage. Samples were collected spatially during a > 3000 km transect through the Sargasso Sea and temporally during a gyre-constrained phytoplankton bloom within the southern Pacific Ocean. Cyanomyovirus abundances were lower in the Sargasso Sea than in the southern Pacific Ocean, ranging from 2.75 × 10(3) to 5.15 × 10(4) mL(-1) and correlating with the abundance of their potential hosts (Prochlorococcus and Synechococcus). Cyanomyovirus abundance in the southern Pacific Ocean (east of New Zealand) followed Synechococcus host populations in the system: this included a decrease in g20 gene copies (from 4.3 × 10(5) to 9.6 × 10(3) mL(-1) ) following the demise of a Synechococcus bloom. When compared with direct counts of viruses, observations suggest that the cyanomyoviruses comprised 0.5 to >25% of the total virus community. We estimated daily lysis rates of 0.2-46% of the standing stock of Synechococcus in the Pacific Ocean compared with c. < 1.0% in the Sargasso Sea. In total, our observations confirm this family of viruses is abundant in marine systems and that they are an important source of cyanobacterial mortality. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs

    PubMed Central

    Mariani, Maria Antonietta; Padedda, Bachisio Mario; Kaštovský, Jan; Buscarinu, Paola; Sechi, Nicola; Virdis, Tomasa; Lugliè, Antonella

    2015-01-01

    The aim of our study was to evaluate the abundance of cyanobacteria and microcystins in four Sardinian reservoirs (Italy) characterised by different trophic status to define a reference picture for future changes. Increasing levels of eutrophication and the abundance of cyanobacteria are expected to occur due to climate change, especially in the southern Mediterranean. Consequently, an in-depth study of the occurrence of harmful cyanobacteria is important to develop appropriate management strategies for water resources at a local scale. Monthly samples were collected at one station in each reservoir over an 18-month period. The Analysis of similarity indicated that cyanobacterial abundance and species composition differed significantly among the reservoirs. The Redundancy analysis highlighted their relationship to trophic, hydrological and seasonal patterns. Spearman’s analysis indicated that there were significant correlations among the most important species (Planktothrix agardhii–rubescens group, Aphanizomenon flos-aquae and Dolichospermum planctonicum), nutrients and microcystins. We highlighted that the species composition during periods of maximum microcystin concentrations differed from those typically reported for other Mediterranean sites. We found new potential microcystin producers (Aphanizomenon klebahnii, Dolichospermum macrosporum and Dolichospermum viguieri), which emphasised the high diversity of cyanobacteria in the Mediterranean area and the need for detailed research at the local scale. PMID:26648532

  10. Cyanobacteria, neurotoxins and water resources: are there implications for human neurodegenerative disease?

    PubMed

    Metcalf, James S; Codd, Geoffrey A

    2009-01-01

    Cyanobacteria are cosmopolitan microbes that inhabit marine, freshwater and terrestrial environments. Under favourable conditions in waterbodies, they can form massive populations (blooms and scums), which present hazards to human and animal health. Such cyanobacteria often contain a variety of toxic substances (cyanotoxins) that can exist as both cell-associated and free forms in the surrounding water. Some cyanotoxins are highly neurotoxic and act through a variety of mechanisms. Recent findings of the production of the neurotoxin beta-N-methylamino-L-alanine (BMAA) by cyanobacteria in aquatic environments, and of BMAA in brain and cerebrospinal fluid samples of amyotrophic lateral sclerosis and Alzheimer's disease victims, raises the possibility that people may be exposed to waterborne BMAA of cyanobacterial origin and that this may contribute to human neurodegenerative disease. An understanding of the risks presented by waterborne BMAA and of available mitigation strategies to reduce this potential exposure is needed.

  11. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments.

    PubMed

    Currie, Ashleigh R; Tait, Karen; Parry, Helen; de Francisco-Mora, Beatriz; Hicks, Natalie; Osborn, A Mark; Widdicombe, Steve; Stahl, Henrik

    2017-01-01

    Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO 2 ) and elevated temperature (ambient +4°C) on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase ( amoA ) and bacterial nitrite reductase ( nirS ) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO 2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes ( amoA and nirS ) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  12. Alkynyl-Containing Peptides of Marine Origin: A Review

    PubMed Central

    Chai, Qiu-Ye; Yang, Zhen; Lin, Hou-Wen; Han, Bing-Nan

    2016-01-01

    Since the 1990s, a number of terminal alkynyl residue-containing cyclic/acyclic peptides have been identified from marine organisms, especially cyanobacteria and marine mollusks. This review has presented 66 peptides, which covers over 90% marine peptides with terminal alkynyl fatty acyl units. In fact, more than 90% of these peptides described in the literature are of cyanobacterial origin. Interestingly, all the linear peptides featured with terminal alkyne were solely discovered from marine cyanobacteria. The objective of this article is to provide an overview on the types, structural characterization of these unusual terminal alkynyl fatty acyl units, as well as the sources and biological functions of their composed peptides. Many of these peptides have a variety of biological activities, including antitumor, antibacterial, antimalarial, etc. Further, we have also discussed the evident biosynthetic origin responsible for formation of terminal alkynes of natural PKS (polyketide synthase)/NRPS (nonribosome peptide synthetase) hybrids. PMID:27886049

  13. Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms

    PubMed Central

    Huertas, María José; López-Maury, Luis; Giner-Lamia, Joaquín; Sánchez-Riego, Ana María; Florencio, Francisco Javier

    2014-01-01

    Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803. PMID:25501581

  14. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    PubMed

    Stal, Lucas J

    2009-07-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A-C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.

  15. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    PubMed

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ( 14 C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  16. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    PubMed Central

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2016-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339

  17. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades.

    PubMed

    Brown, Mark V; Ostrowski, Martin; Grzymski, Joseph J; Lauro, Federico M

    2014-06-01

    Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa. Copyright © 2014. Published by Elsevier B.V.

  18. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits.

    PubMed

    Larsson, John; Nylander, Johan Aa; Bergman, Birgitta

    2011-06-30

    Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme

  19. Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off?

    PubMed

    Cebrian, Emma; Uriz, Maria Jesus; Garrabou, Joaquim; Ballesteros, Enric

    2011-01-01

    Mass mortality events are increasing dramatically in all coastal marine environments. Determining the underlying causes of mass mortality events has proven difficult in the past because of the lack of prior quantitative data on populations and environmental variables. Four-year surveys of two shallow-water sponge species, Ircinia fasciculata and Sarcotragus spinosulum, were carried out in the western Mediterranean Sea. These surveys provided evidence of two severe sponge die-offs (total mortality ranging from 80 to 95% of specimens) occurring in the summers of 2008 and 2009. These events primarily affected I. fasciculata, which hosts both phototrophic and heterotrophic microsymbionts, while they did not affect S. spinosulum, which harbors only heterotrophic bacteria. We observed a significant positive correlation between the percentage of injured I. fasciculata specimens and exposure time to elevated temperature conditions in all populations, suggesting a key role of temperature in triggering mortality events. A comparative ultrastructural study of injured and healthy I. fasciculata specimens showed that cyanobacteria disappeared from injured specimens, which suggests that cyanobacterial decay could be involved in I. fasciculata mortality. A laboratory experiment confirmed that the cyanobacteria harbored by I. fasciculata displayed a significant reduction in photosynthetic efficiency in the highest temperature treatment. The sponge disease reported here led to a severe decrease in the abundance of the surveyed populations. It represents one of the most dramatic mass mortality events to date in the Mediterranean Sea.

  20. Energy limitation of cyanophage development: implications for marine carbon cycling.

    PubMed

    Puxty, Richard J; Evans, David J; Millard, Andrew D; Scanlan, David J

    2018-05-01

    Marine cyanobacteria are responsible for ~25% of the fixed carbon that enters the ocean biosphere. It is thought that abundant co-occurring viruses play an important role in regulating population dynamics of cyanobacteria and thus the cycling of carbon in the oceans. Despite this, little is known about how viral infections 'play-out' in the environment, particularly whether infections are resource or energy limited. Photoautotrophic organisms represent an ideal model to test this since available energy is modulated by the incoming light intensity through photophosphorylation. Therefore, we exploited phototrophy of the environmentally relevant marine cyanobacterium Synechococcus and monitored growth of a cyanobacterial virus (cyanophage). We found that light intensity has a marked effect on cyanophage infection dynamics, but that this is not manifest by a change in DNA synthesis. Instead, cyanophage development appears energy limited for the synthesis of proteins required during late infection. We posit that acquisition of auxiliary metabolic genes (AMGs) involved in light-dependent photosynthetic reactions acts to overcome this limitation. We show that cyanophages actively modulate expression of these AMGs in response to light intensity and provide evidence that such regulation may be facilitated by a novel mechanism involving light-dependent splicing of a group I intron in a photosynthetic AMG. Altogether, our data offers a mechanistic link between diurnal changes in irradiance and observed community level responses in metabolism, i.e., through an irradiance-dependent, viral-induced release of dissolved organic matter (DOM).

  1. Uncovering cyanobacteria ecological networks from long-term monitoring data using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Munoz-Carpena, R.; Kaplan, D. A.; Phlips, E. J.

    2016-12-01

    In many aquatic systems, cyanobacteria form harmful blooms capable of producing toxins, prompting hypoxia, and/or introducing internal nitrogen loads via N2-fixation, among other impacts. Traditionally, system-specific cyanobacteria drivers are determined by performing controlled experiments and bioassays, but these approaches may neglect the influences of confounding factors and over assign importance to only those variables considered within experimental designs. For example, a bioassay may conclude that the cyanobacteria in a particular system are limited by phosphorus, but will not explicitly take into account the role of flow as a control on phosphorus delivery. This study aims to address this analytical gap by identifying environmental controls on cyanobacteria while removing the effects of potentially confounding variables. In the present work, we evaluate a unique long-term (17 year) dataset composed of monthly observations of phytoplankton and zooplankton species abundances, water quality constituents, and hydrologic variables from Lake George, a flow-through lake of the St. Johns River (FL) impacted by cyanobacterial blooms. Using conditional Granger causality analysis, a time series approach that infers causality while removing the effects of confounding variables, data were evaluated to identify biological and physicochemical drivers of cyanobacteria. The analysis was performed for three response variable sets: total cyanobacteria, N2-fixers and non-fixers, and cyanobacteria genera. Results depicted increasing levels of ecological complexity as subdivisions of cyanobacteria became more detailed; whereas causal networks produced from analyses of cyanobacteria genera provided novel insights relevant for management (i.e. nutrients, flow), the total cyanobacteria network only included water temperature as a significant driver. Additionally, the more detailed cyanobacteria subdivisions uncovered that N2-fixation was only evident with the earliest season

  2. Structural Diversity, Biological Properties and Applications of Natural Products from Cyanobacteria. A Review †

    PubMed Central

    Shah, Sayed Asmat Ali; Akhter, Najeeb; Auckloo, Bibi Nazia; Khan, Ishrat; Lu, Yanbin; Wang, Kuiwu; Wu, Bin

    2017-01-01

    Nowadays, various drugs on the market are becoming more and more resistant to numerous diseases, thus declining their efficacy for treatment purposes in human beings. Antibiotic resistance is one among the top listed threat around the world which eventually urged the discovery of new potent drugs followed by an increase in the number of deaths caused by cancer due to chemotherapy resistance as well. Accordingly, marine cyanobacteria, being the oldest prokaryotic microorganisms belonging to a monophyletic group, have proven themselves as being able to generate pharmaceutically important natural products. They have long been known to produce distinct and structurally complex secondary metabolites including peptides, polyketides, alkaloids, lipids, and terpenes with potent biological properties and applications. As such, this review will focus on recently published novel compounds isolated from marine cyanobacteria along with their potential bioactivities such as antibacterial, antifungal, anticancer, anti-tuberculosis, immunosuppressive and anti-inflammatory capacities. Moreover, various structural classes, as well as their technological uses will also be discussed. PMID:29125580

  3. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates.

    PubMed

    Reisser, Julia; Shaw, Jeremy; Hallegraeff, Gustaaf; Proietti, Maira; Barnes, David K A; Thums, Michele; Wilcox, Chris; Hardesty, Britta Denise; Pattiaratchi, Charitha

    2014-01-01

    Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7-24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded 'epiplastic' coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated.

  4. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    PubMed Central

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  5. Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey.

    PubMed

    Boyd, Charlotte; Castillo, Ramiro; Hunt, George L; Punt, André E; VanBlaricom, Glenn R; Weimerskirch, Henri; Bertrand, Sophie

    2015-11-01

    Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey. We analysed contemporaneous data on the diving locations of two seabird species, the shallow-diving Peruvian Booby (Sula variegata) and deeper diving Guanay Cormorant (Phalacrocorax bougainvilliorum), and the abundance and depth distribution of their main prey, Peruvian anchoveta (Engraulis ringens). Based on this unique data set, we developed resource selection functions to test the hypothesis that the probability of seabird diving behaviour at a given location is a function of the relative abundance of prey in the upper water column. For both species, we show that the probability of diving behaviour is mostly explained by the distribution of prey at shallow depths. While the probability of diving behaviour increases sharply with prey abundance at relatively low levels of abundance, support for including abundance in addition to the depth distribution of prey is weak, suggesting that prey abundance was not a major factor determining the location of diving behaviour during the study period. The study thus highlights the importance of the depth distribution of prey for two species of seabird with different diving capabilities. The results complement previous research that points towards the importance of oceanographic processes that enhance the accessibility of prey to seabirds. The implications are that locations where prey is predictably found at accessible depths may be more important for surface foragers, such as seabirds, than locations where prey is predictably abundant. Analysis of the relative

  6. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  7. Epiphytic Cyanobacteria on Chara vulgaris Are the Main Contributors to N2 Fixation in Rice Fields

    PubMed Central

    Ariosa, Yoanna; Quesada, Antonio; Aburto, Juan; Carrasco, David; Carreres, Ramón; Leganés, Francisco; Fernández Valiente, Eduardo

    2004-01-01

    The distribution of nitrogenase activity in the rice-soil system and the possible contribution of epiphytic cyanobacteria on rice plants and other macrophytes to this activity were studied in two locations in the rice fields of Valencia, Spain, in two consecutive crop seasons. The largest proportion of photodependent N2 fixation was associated with the macrophyte Chara vulgaris in both years and at both locations. The nitrogen fixation rate associated with Chara always represented more than 45% of the global nitrogenase activity measured in the rice field. The estimated average N2 fixation rate associated with Chara was 27.53 kg of N ha−1 crop−1. The mean estimated N2 fixation rates for the other parts of the system for all sampling periods were as follows: soil, 4.07 kg of N ha−1 crop−1; submerged parts of rice plants, 3.93 kg of N ha−1 crop−1; and roots, 0.28 kg of N ha−1 crop−1. Micrographic studies revealed the presence of epiphytic cyanobacteria on the surface of Chara. Three-dimensional reconstructions by confocal scanning laser microscopy revealed no cyanobacterial cells inside the Chara structures. Quantification of epiphytic cyanobacteria by image analysis revealed that cyanobacteria were more abundant in nodes than in internodes (on average, cyanobacteria covered 8.4% ± 4.4% and 6.2% ± 5.0% of the surface area in the nodes and internodes, respectively). Epiphytic cyanobacteria were also quantified by using a fluorometer. This made it possible to discriminate which algal groups were the source of chlorophyll a. Chlorophyll a measurements confirmed that cyanobacteria were more abundant in nodes than in internodes (on average, the chlorophyll a concentrations were 17.2 ± 28.0 and 4.0 ± 3.8 μg mg [dry weight] of Chara−1 in the nodes and internodes, respectively). These results indicate that this macrophyte, which is usually considered a weed in the context of rice cultivation, may help maintain soil N fertility in the rice field

  8. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria.

    PubMed

    Vijayakumar, S; Manogar, P; Prabhu, S

    2016-10-01

    Cyanobacteria find several applications in pharmacology as potential candidates for drug design. The need for new compounds that can be used as drugs has always been on the rise in therapeutics. Cyanobacteria have been identified as promising targets of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structures. Cyanobacteria is now recognized as a vital source of bioactive molecules like Curacin A, Largazole and Apratoxin which have succeeded in reaching Phase II and Phase III into clinical trials. The discovery of several new clinical cannabinoid drugs in the past decade from diverse marine life should translate into a number of new drugs for cannabinoid in the years to come. Conventional cannabinoid drugs have high toxicity and as a result, they affect the efficacy of chemotherapy and patients' life very much. The present review focuses on how potential, safe and affordable drugs used for cannabinoid treatment could be developed from cyanobacteria. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia.

    PubMed

    Mohamed, Zakaria A

    2008-01-01

    Toxic cyanobacteria are well reported in rivers, lakes and even marine environments, but the toxin production of cyanobacteria in hot springs is largely unexplored. Therefore, the present study investigated the presence of toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. The results of an enzyme-linked immunosorbent assay (ELISA) revealed that Saudi spring cyanobacterial mats contained microcystins (MCYSTs) at concentrations ranging from 468 to 512.5 microg g(-1). The Limulus amebocyte lystae (LAL) assay detected lipopolysaccharide (LPS) endotoxins in these mats at concentrations ranging from 433.3 to 506.8 EU g(-1). MCYSTs and endotoxins were also detected in spring waters at levels of 5.7 microg l(-1) and 640 EU ml(-1), respectively, exceeding WHO's provisional guideline value for MCYST-LR in drinking-water. High-performance liquid chromatography (HPLC) analysis revealed that only Oscillatoria limosa and Synechococcus lividus can produce MCYSTs with a profile consisting of MCYST-RR and -LR. Based on the LAL assay, 12 out of 17 cyanobacterial species contained LPS at concentrations ranging from 0.93 to 21.06 EU g(-1). However, not all LPS of these species were toxic to mice. This study suggests that the hot springs in the world including Saudi Arabia should be screened for toxic cyanobacteria to avoid the exposure of people recreating and bathing in spring waters to cyanobacterial toxins.

  10. Cosmopolitan Cyanobacteria

    ERIC Educational Resources Information Center

    Furey, Paula C.

    2003-01-01

    In this article, the author presents a poem on the distribution and adaptation of blue-green algae (Cyanobacteria). The poem describes some of the diverse habitats of cyanobacteria including examples from extreme and unique environments such as hot springs, and polar bear hair. The poem also describes some of the adaptations of cyanobacteria…

  11. Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs.

    PubMed

    Amarouche-Yala, Samia; Benouadah, Ali; El Ouahab Bentabet, Abd; López-García, Purificación

    2014-11-01

    Geothermal springs in Algeria have been known since the Roman Empire. They mainly locate in Eastern Algeria and are inhabited by thermophilic organisms, which include cyanobacteria forming mats and concretions. In this work, we have investigated the cyanobacterial diversity of these springs. Cyanobacteria were collected from water, concretions and mats in nine hot springs with water temperatures ranging from 39 to 93 °C. Samples were collected for isolation in culture, microscopic morphological examination, and molecular diversity analysis based on 16S rRNA gene sequences. Nineteen different cyanobacterial morphotypes were identified, the most abundant of which were three species of Leptolyngbya, accompanied by members of the genera Gloeocapsa, Gloeocapsopsis, Stigonema, Fischerella, Synechocystis, Microcoleus, Cyanobacterium, Chroococcus and Geitlerinema. Molecular diversity analyses were in good general agreement with classical identification and allowed the detection of additional species in three springs with temperatures higher than 50 °C. They corresponded to a Synechococcus clade and to relatives of the intracellularly calcifying Candidatus Gloeomargarita lithophora. The hottest springs were dominated by members of Leptolyngbya, Synechococcus-like cyanobacteria and Gloeomargarita, whereas Oscillatoriales other than Leptolyngbya, Chroococcales and Stigonematales dominated lower temperature springs. The isolation of some of these strains sets the ground for future studies on the biology of thermophilic cyanobacteria.

  12. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits

    PubMed Central

    2011-01-01

    Background Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. Results A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. Conclusions The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few

  13. The Role of Endolithic Cyanobacteria in the Formation of Lithified Laminae in Bahamian Stromatolites

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, L.; Macintyre, I.; Reid, R. P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The microboring activity of endolithic cyanobacteria plays a major role in the formation of lithified laminae in modern marine stromatolites in the Exuma Cays, Bahamas. These stromatolites are composed primarily of fine grained carbonate sand that is trapped and bound by the filamentous cyanobacteria Schizothrix sp. Periodic introduction of coccoid endolithic cyanobacteria, Solentia sp., results in formation of lithified horizons, 200 to 1000 micron thick. We used SEM and petrographic analyses to examine both naturally occurring lithified layers dominated by endoliths and fused oolitic crusts generated in the laboratory by activity of endolithic cyanobacteria (Solentia sp.). Fused grain crusts consist of micritized grains that are welded together at point contacts. Micritization results from extensive microboring and rapid (days to weeks) carbonate precipitation within the bore holes. This precipitation appears to occur concurrently with further endolithic activity within the grain, Infilling of bore holes that cross from one grain to another at point contacts results in grain welding, Thus, while microboring destroys original grain textures, at the same time the endolith activity plays a constructional role in stromatolite growth by forming lithified layers of welded grains. These framework structures help to stabilize and preserve the stromatolite deposits.

  14. Genetically Engineered Cyanobacteria

    NASA Technical Reports Server (NTRS)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  15. Probabilisitc Geobiological Classification Using Elemental Abundance Distributions and Lossless Image Compression in Recent and Modern Organisms

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.

    2005-01-01

    Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable

  16. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  17. Assessing the exoproteome of marine bacteria, lesson from a RTX-toxin abundantly secreted by Phaeobacter strain DSM 17395.

    PubMed

    Durighello, Emie; Christie-Oleza, Joseph Alexander; Armengaud, Jean

    2014-01-01

    Bacteria from the Roseobacter clade are abundant in surface marine ecosystems as over 10% of bacterial cells in the open ocean and 20% in coastal waters belong to this group. In order to document how these marine bacteria interact with their environment, we analyzed the exoproteome of Phaeobacter strain DSM 17395. We grew the strain in marine medium, collected the exoproteome and catalogued its content with high-throughput nanoLC-MS/MS shotgun proteomics. The major component represented 60% of the total protein content but was refractory to either classical proteomic identification or proteogenomics. We de novo sequenced this abundant protein with high-resolution tandem mass spectra which turned out being the 53 kDa RTX-toxin ZP_02147451. It comprised a peptidase M10 serralysin domain. We explained its recalcitrance to trypsin proteolysis and proteomic identification by its unusual low number of basic residues. We found this is a conserved trait in RTX-toxins from Roseobacter strains which probably explains their persistence in the harsh conditions around bacteria. Comprehensive analysis of exoproteomes from environmental bacteria should take into account this proteolytic recalcitrance.

  18. Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    PubMed Central

    Bienfang, P. K.; DeFelice, S. V.; Laws, E. A.; Brand, L. E.; Bidigare, R. R.; Christensen, S.; Trapido-Rosenthal, H.; Hemscheidt, T. K.; McGillicuddy, D. J.; Anderson, D. M.; Solo-Gabriele, H. M.; Boehm, A. B.; Backer, L. C.

    2011-01-01

    This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment. PMID:20976073

  19. Overview for the reanalysis of Mariner 9 UV spectrometer data for ozone, cloud, and dust abundances, and their interaction over climate timescales

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    Mariner 9 UV spectrometer data were reinverted for the ozone abundance, cloud abundance, dust abundance, and polar-cap albedo. The original reduction of the spectra ignored the presence of atmospheric dust and clouds, even though their abundance is substantial and can mask appreciable amounts of ozone if not accounted for (Lindner, 1988). The Mariner 9 ozone data has been used as a benchmark in all theoretical models of atmospheric composition, escape, and photochemistry. A second objective is to examine the data for the interrelationship of the ozone cycle, dust cycle, and cloud cycle, on an annual, inter-annual, and climatic basis, testing predictions by Lindner (1988). This also has implications for many terrestrial ozone studies, such as the ozone hole, acid rain, and ozone-smog. A third objective is to evaluate the efficacy of the reflectance spectroscopy technique at retrieving the ozone abundance on Mars. This would be useful for planning ozone observations on future Mars missions or the terrestrial troposphere.

  20. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates

    PubMed Central

    Reisser, Julia; Shaw, Jeremy; Hallegraeff, Gustaaf; Proietti, Maira; Barnes, David K. A.; Thums, Michele; Wilcox, Chris; Hardesty, Britta Denise; Pattiaratchi, Charitha

    2014-01-01

    Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7–24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded ‘epiplastic’ coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated. PMID:24941218

  1. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle

    NASA Astrophysics Data System (ADS)

    Van Mooy, B. A. S.; Krupke, A.; Dyhrman, S. T.; Fredricks, H. F.; Frischkorn, K. R.; Ossolinski, J. E.; Repeta, D. J.; Rouco, M.; Seewald, J. D.; Sylva, S. P.

    2015-05-01

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle.

  2. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  3. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    NASA Astrophysics Data System (ADS)

    Cushing, Daniel A.; Roby, Daniel D.; Irons, David B.

    2018-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989-2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  4. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    USGS Publications Warehouse

    Cushing, Daniel; Roby, Daniel D.; Irons, David B.

    2017-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989–2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  5. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect.

    PubMed

    Murik, Omer; Oren, Nadav; Shotland, Yoram; Raanan, Hagai; Treves, Haim; Kedem, Isaac; Keren, Nir; Hagemann, Martin; Pade, Nadin; Kaplan, Aaron

    2017-02-01

    Filamentous cyanobacteria are the main founders and primary producers in biological desert soil crusts (BSCs) and are likely equipped to cope with one of the harshest environmental conditions on earth including daily hydration/dehydration cycles, high irradiance and extreme temperatures. Here, we resolved and report on the genome sequence of Leptolyngbya ohadii, an important constituent of the BSC. Comparative genomics identified a set of genes present in desiccation-tolerant but not in dehydration-sensitive cyanobacteria. RT qPCR analyses showed that the transcript abundance of many of them is upregulated during desiccation in L. ohadii. In addition, we identified genes where the orthologs detected in desiccation-tolerant cyanobacteria differs substantially from that found in desiccation-sensitive cells. We present two examples, treS and fbpA (encoding trehalose synthase and fructose 1,6-bisphosphate aldolase respectively) where, in addition to the orthologs present in the desiccation-sensitive strains, the resistant cyanobacteria also possess genes with different predicted structures. We show that in both cases the two orthologs are transcribed during controlled dehydration of L. ohadii and discuss the genetic basis for the acclimation of cyanobacteria to the desiccation conditions in desert BSC. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    NASA Technical Reports Server (NTRS)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  7. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  8. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    PubMed Central

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  9. Predictive modelling of habitat use by marine predators with respect to the abundance and depth distribution of pelagic prey

    USGS Publications Warehouse

    Boyd, Charlotte; Castillo, Ramiro; Hunt, George L.; Punt, André E..; VanBlaricom, Glenn R.; Weimerskirch, Henri; Bertrand, Sophie

    2015-01-01

    Analysis of the relative importance of abundance and accessibility is essential for the design and evaluation of effective management responses to reduced prey availability for seabirds and other top predators in marine systems.

  10. Assessing the Exoproteome of Marine Bacteria, Lesson from a RTX-Toxin Abundantly Secreted by Phaeobacter Strain DSM 17395

    PubMed Central

    Durighello, Emie; Christie-Oleza, Joseph Alexander; Armengaud, Jean

    2014-01-01

    Bacteria from the Roseobacter clade are abundant in surface marine ecosystems as over 10% of bacterial cells in the open ocean and 20% in coastal waters belong to this group. In order to document how these marine bacteria interact with their environment, we analyzed the exoproteome of Phaeobacter strain DSM 17395. We grew the strain in marine medium, collected the exoproteome and catalogued its content with high-throughput nanoLC-MS/MS shotgun proteomics. The major component represented 60% of the total protein content but was refractory to either classical proteomic identification or proteogenomics. We de novo sequenced this abundant protein with high-resolution tandem mass spectra which turned out being the 53 kDa RTX-toxin ZP_02147451. It comprised a peptidase M10 serralysin domain. We explained its recalcitrance to trypsin proteolysis and proteomic identification by its unusual low number of basic residues. We found this is a conserved trait in RTX-toxins from Roseobacter strains which probably explains their persistence in the harsh conditions around bacteria. Comprehensive analysis of exoproteomes from environmental bacteria should take into account this proteolytic recalcitrance. PMID:24586966

  11. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  12. Reanalysis of Mariner 9 UV spectrometer data for ozone, cloud, and dust abundances, and their interaction over climate timescales

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    Research activities to date are discussed. Selected Mariner 9 UV spectra were obtained. Radiative transfer models were updated and then exercised to simulate spectra. Simulated and observed spectra compare favorably. It is noted that large amounts of ozone are currently not retrieved with reflectance spectroscopy, raising large doubts about earlier published ozone abundances. As these published abundances have been used as a benchmark for all theoretical photochemical models of Mars, this deserves further exploration. Three manuscripts were published, and one is in review. Papers were presented and published at three conferences, and are planned for five more conferences in the next six months. The research plan for the next reporting period is discussed and involves continuing studies of reflectance spectroscopy, further examination of Mariner 9 data, and climate change studies of ozone.

  13. *CYANOBACTERIA AND THEIR TOXINS

    EPA Science Inventory

    Cyanobacteria, or blue-green algae, are naturally-occurring contaminants of surface waters worldwide. These photosynthesizing prokaryotes thrive in warm, shallow, nutrient-rich waters. Many produce potent toxins as secondary metabolites. Cyanobacteria toxins have been document...

  14. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    PubMed

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  15. Marine debris in beaches of the Southwestern Atlantic: An assessment of their abundance and mass at different spatial scales in northern coastal Argentina.

    PubMed

    Becherucci, Maria Eugenia; Rosenthal, Alan Federico; Seco Pon, Juan Pablo

    2017-06-15

    Argentina is currently undergoing an intensive development of coastal-oriented tourism due to the temperate climate and coastal sceneries of the Southwestern Atlantic and particularly its wide ocean-open sandy beaches, which may turn into an important contributor of marine debris to the beaches. This study was designed to assess at four spatial scales (i) the variation of the abundance and mass of marine debris and (ii) the composition and sources of these items in sandy-tourist beaches of coastal zones of the province of Buenos Aires, in northern Argentina. The abundance and mass of marine debris shifted between sampling localities (separated by ~1.5×10 5 m) and beaches (~3×10 4 m). Debris was primarily from recreational and fishing activities and over 20mm in size. Tackling the complications associated with marine debris in northern Argentina may include intensive educational and advertising campaigns oriented chiefly to beach users and fisherman. Copyright © 2017. Published by Elsevier Ltd.

  16. CYANOBACTERIA AND THEIR TOXINS

    EPA Science Inventory

    Science Questions

    Harmful algal blooms (HAB) of cyanobacteria, also known as blue-green algae, have recently become more spatially and temporally prevalent in the US and worldwide. Cyanobacteria and their highly potent toxins are a significant hazard for human health and ...

  17. CYANOBACTERIA AND THEIR TOXINS.

    EPA Science Inventory

    Science Questions

    Harmful algal blooms (HAB) of cyanobacteria, also known as blue-green algae, have recently become more spatially and temporally prevalent in the US and worldwide. Cyanobacteria and their highly potent toxins are a significant hazard for human health and ...

  18. Cyanobacteria facilitate parasite epidemics in Daphnia.

    PubMed

    Tellenbach, C; Tardent, N; Pomati, F; Keller, B; Hairston, N G; Wolinska, J; Spaak, P

    2016-12-01

    The seasonal dominance of cyanobacteria in the phytoplankton community of lake ecosystems can have severe implications for higher trophic levels. For herbivorous zooplankton such as Daphnia, cyanobacteria have poor nutritional value and some species can produce toxins affecting zooplankton survival and reproduction. Here we present another, hitherto largely unexplored aspect of cyanobacteria, namely that they can increase Daphnia susceptibility to parasites. In a 12-yr monthly time-series analysis of the Daphnia community in Greifensee (Switzerland), we observed that cyanobacteria density correlated significantly with the epidemics of a common gut parasite of Daphnia, Caullerya mesnili, regardless of what cyanobacteria species was present or whether it was colonial or filamentous. The temperature from the previous month also affected the occurrence of Caullerya epidemics, either directly or indirectly by the promotion of cyanobacterial growth. A laboratory experiment confirmed that cyanobacteria increase the susceptibility of Daphnia to Caullerya, and suggested a possible involvement of cyanotoxins or other chemical traits of cyanobacteria in this process. These findings expand our understanding of the consequences of toxic cyanobacterial blooms for lake ecosystems and might be relevant for epidemics experienced by other aquatic species. © 2016 by the Ecological Society of America.

  19. Versatility of hydrocarbon production in cyanobacteria.

    PubMed

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  20. Toxins and bioactive compounds from cyanobacteria and their implications on human health.

    PubMed

    Rao, P V Lakshmana; Gupta, Nidhi; Bhaskar, A S B; Jayaraj, R

    2002-07-01

    Many species of cyanobacteria (blue-green algae) produce secondary metabolites with potent biotoxic or cytotoxic properties. These metabolites differ from the intermediates and cofactor compounds that are essential for cell structural synthesis and energy transduction. The mass growth of cyanobacteria which develop in fresh, brackish and, marine waters commonly contain potent toxins. Cyanobacterial toxins or cyanotoxins are responsible for or implicated in animal poisoning, human gastroenteritis, dermal contact irritations and primary liver cancer in humans. These toxins (microcystins, nodularins, saxitoxins, anatoxin-a, anatoxin-a(s), cylindrospermopsin) are structurally diverse and their effects range from liver damage, including liver cancer to neurotoxicity. Several incidents of human illness and more recently, the death of 60 haemodialysis patients in Caruaru, Brazil, have been linked to the presence of microcystins in water. In response to the growing concern about the non-lethal acute and chronic effects of microcystins, World Health Organization has recently set a new provisional guideline value for microcystin-LR of 1.0 microg/L in drinking water. Cyanobacteria including microcystin-producing strains produce a large number of peptide compounds, e.g. micropeptins, cyanopeptolins, microviridin, circinamide, aeruginosin, with varying bioactivities and potential pharmacological application. This article discusses briefly cyanobacterial toxins and their implications on human health.

  1. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms.

    PubMed

    Groendahl, Sophie; Fink, Patrick

    2017-05-18

    Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.

  2. Bryophyte-Cyanobacteria Associations during Primary Succession in Recently Deglaciated Areas of Tierra del Fuego (Chile)

    PubMed Central

    Arróniz-Crespo, María; Pérez-Ortega, Sergio; De los Ríos, Asunción; Green, T. G. Allan; Ochoa-Hueso, Raúl; Casermeiro, Miguel Ángel; de la Cruz, María Teresa; Pintado, Ana; Palacios, David; Rozzi, Ricardo; Tysklind, Niklas; Sancho, Leopoldo G.

    2014-01-01

    Bryophyte establishment represents a positive feedback process that enhances soil development in newly exposed terrain. Further, biological nitrogen (N) fixation by cyanobacteria in association with mosses can be an important supply of N to terrestrial ecosystems, however the role of these associations during post-glacial primary succession is not yet fully understood. Here, we analyzed chronosequences in front of two receding glaciers with contrasting climatic conditions (wetter vs drier) at Cordillera Darwin (Tierra del Fuego) and found that most mosses had the capacity to support an epiphytic flora of cyanobacteria and exhibited high rates of N2 fixation. Pioneer moss-cyanobacteria associations showed the highest N2 fixation rates (4.60 and 4.96 µg N g−1 bryo. d−1) very early after glacier retreat (4 and 7 years) which may help accelerate soil development under wetter conditions. In drier climate, N2 fixation on bryophyte-cyanobacteria associations was also high (0.94 and 1.42 µg N g−1 bryo. d−1) but peaked at intermediate-aged sites (26 and 66 years). N2 fixation capacity on bryophytes was primarily driven by epiphytic cyanobacteria abundance rather than community composition. Most liverworts showed low colonization and N2 fixation rates, and mosses did not exhibit consistent differences across life forms and habitat (saxicolous vs terricolous). We also found a clear relationship between cyanobacteria genera and the stages of ecological succession, but no relationship was found with host species identity. Glacier forelands in Tierra del Fuego show fast rates of soil transformation which imply large quantities of N inputs. Our results highlight the potential contribution of bryophyte-cyanobacteria associations to N accumulation during post-glacial primary succession and further describe the factors that drive N2-fixation rates in post-glacial areas with very low N deposition. PMID:24819926

  3. Bryophyte-cyanobacteria associations during primary succession in recently Deglaciated areas of Tierra del Fuego (Chile).

    PubMed

    Arróniz-Crespo, María; Pérez-Ortega, Sergio; De Los Ríos, Asunción; Green, T G Allan; Ochoa-Hueso, Raúl; Casermeiro, Miguel Ángel; de la Cruz, María Teresa; Pintado, Ana; Palacios, David; Rozzi, Ricardo; Tysklind, Niklas; Sancho, Leopoldo G

    2014-01-01

    Bryophyte establishment represents a positive feedback process that enhances soil development in newly exposed terrain. Further, biological nitrogen (N) fixation by cyanobacteria in association with mosses can be an important supply of N to terrestrial ecosystems, however the role of these associations during post-glacial primary succession is not yet fully understood. Here, we analyzed chronosequences in front of two receding glaciers with contrasting climatic conditions (wetter vs drier) at Cordillera Darwin (Tierra del Fuego) and found that most mosses had the capacity to support an epiphytic flora of cyanobacteria and exhibited high rates of N2 fixation. Pioneer moss-cyanobacteria associations showed the highest N2 fixation rates (4.60 and 4.96 µg N g-1 bryo. d-1) very early after glacier retreat (4 and 7 years) which may help accelerate soil development under wetter conditions. In drier climate, N2 fixation on bryophyte-cyanobacteria associations was also high (0.94 and 1.42 µg N g-1 bryo. d-1) but peaked at intermediate-aged sites (26 and 66 years). N2 fixation capacity on bryophytes was primarily driven by epiphytic cyanobacteria abundance rather than community composition. Most liverworts showed low colonization and N2 fixation rates, and mosses did not exhibit consistent differences across life forms and habitat (saxicolous vs terricolous). We also found a clear relationship between cyanobacteria genera and the stages of ecological succession, but no relationship was found with host species identity. Glacier forelands in Tierra del Fuego show fast rates of soil transformation which imply large quantities of N inputs. Our results highlight the potential contribution of bryophyte-cyanobacteria associations to N accumulation during post-glacial primary succession and further describe the factors that drive N2-fixation rates in post-glacial areas with very low N deposition.

  4. Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix.

    PubMed

    Berrendero Gómez, Esther; Johansen, Jeffrey R; Kaštovský, Jan; Bohunická, Markéta; Čapková, Kateřina

    2016-08-01

    Historically, the genus Calothrix included all noncolonial, tapered, heterocytous filaments within the cyanobacteria. However, recent molecular phylogenies show that "Calothrix" defined in this sense represents five distinct clades. The type species of Calothrix is marine, with solitary basal heterocytes, no akinetes, and distal ends tapering abruptly into short hairs. We examined the morphology and phylogeny of 45 tapering cyanobacteria in the Rivulariaceae, including freshwater and marine representatives of both Calothrix (35 strains) and its sister taxon Rivularia (10 strains). The marine Calothrix fall into two lineages, but we lack the generitype and so cannot identify the clade corresponding to the type species. The freshwater and soil Calothrix fall into the C. parietina clade and are characterized by having a basal heterocyte, no akinetes, and gradual tapering-but not into a long hyaline hair. Macrochaete gen. nov. is a freshwater taxon sister to the Calothrix lineages but clearly separated from Rivularia. The species in this genus differ morphologically from Calothrix by their ability to produce two heteromorphic basal heterocytes and specific secondary structures of the 16S-23S ITS. An additional feature present in most species is the presence of a distal, long hyaline hair, but this character has incomplete penetrance due to its expression only under specific environmental conditions (low phosphate), and in one species appears to be lost. We recognize three species: M. psychrophila (type species) from cold environments (high mountains, Antarctica), M. santannae from wet walls of subtropical South America, and M. lichenoides, a phycobiont of lichens from Europe. © 2016 Phycological Society of America.

  5. Marine-influenced microbial communities inhabit terrestrial hot springs on a remote island volcano.

    PubMed

    Stewart, Lucy C; Stucker, Valerie K; Stott, Matthew B; de Ronde, Cornel E J

    2018-07-01

    Raoul Island is a subaerial island volcano approximately 1000 km northeast of New Zealand. Its caldera contains a circumneutral closed-basin volcanic lake and several associated pools, as well as intertidal coastal hot springs, all fed by a hydrothermal system sourced from both meteoric water and seawater. Here, we report on the geochemistry, prokaryotic community diversity, and cultivatable abundance of thermophilic microorganisms of four terrestrial features and one coastal feature on Raoul. Hydrothermal fluid contributions to the volcanic lake and pools make them brackish, and consequently support unusual microbial communities dominated by Planctomycetes, Chloroflexi, Alphaproteobacteria, and Thaumarchaeota, as well as up to 3% of the rare sister phylum to Cyanobacteria, Candidatus Melainabacteria. The dominant taxa are mesophilic to moderately thermophilic, phototrophic, and heterotrophic marine groups related to marine Planctomycetaceae. The coastal hot spring/shallow hydrothermal vent community is similar to other shallow systems in the Western Pacific Ocean, potentially due to proximity and similarities of geochemistry. Although rare in community sequence data, thermophilic methanogens, sulfur-reducers, and iron-reducers are present in culture-based assays.

  6. Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria.

    PubMed

    Compaoré, Justine; Stal, Lucas J

    2010-01-01

    Cyanobacteria capable of fixing dinitrogen exhibit various strategies to protect nitrogenase from inactivation by oxygen. The marine Crocosphaera watsonii WH8501 and the terrestrial Gloeothece sp. PCC6909 are unicellular diazotrophic cyanobacteria that are capable of aerobic nitrogen fixation. These cyanobacteria separate the incompatible processes of oxygenic photosynthesis and nitrogen fixation temporally, confining the latter to the dark. Although these cyanobacteria thrive in fully aerobic environments and can be cultivated diazotrophically under aerobic conditions, the effect of oxygen is not precisely known due to methodological limitations. Here we report the characteristics of nitrogenase activity with respect to well-defined levels of oxygen to which the organisms are exposed, using an online and near real-time acetylene reduction assay combined with sensitive laser-based photoacoustic ethylene detection. The cultures were grown under an alternating 12-12 h light-dark cycle and acetylene reduction was recorded continuously. Acetylene reduction was assayed at 20%, 15%, 10%, 7.5%, 5% and 0% oxygen and at photon flux densities of 30 and 76 mumol m(-2) s(-1) provided at the same light-dark cycle as during cultivation. Nitrogenase activity was predominantly but not exclusively confined to the dark. At 0% oxygen nitrogenase activity in Gloeothece sp. was not detected during the dark and was shifted completely to the light period, while C. watsonii did not exhibit nitrogenase activity at all. Oxygen concentrations of 15% and higher did not support nitrogenase activity in either of the two cyanobacteria. The highest nitrogenase activities were at 5-7.5% oxygen. The highest nitrogenase activities in C. watsonii and Gloeothece sp. were observed at 29 degrees C. At 31 degrees C and above, nitrogenase activity was not detected in C. watsonii while the same was the case at 41 degrees C and above in Gloeothece sp. The differences in the behaviour of nitrogenase activity

  7. Marine litter in the upper São Vicente submarine canyon (SW Portugal): Abundance, distribution, composition and fauna interactions.

    PubMed

    Oliveira, Frederico; Monteiro, Pedro; Bentes, Luis; Henriques, Nuno Sales; Aguilar, Ricardo; Gonçalves, Jorge M S

    2015-08-15

    Marine litter has become a worldwide environmental problem, tainting all ocean habitats. The abundance, distribution and composition of litter and its interactions with fauna were evaluated in the upper S. Vicente canyon using video images from 3 remote operated vehicle exploratory dives. Litter was present in all dives and the abundance was as high as 3.31 items100m(-1). Mean abundance of litter over rock bottom was higher than on soft substrate. Mean litter abundance was slightly higher than reported for other canyons on the Portuguese margin, but lower in comparison to more urbanized coastal areas of the world. Lost fishing gear was the prevalent type of litter, indicating that the majority of litter originates from maritime sources, mainly fishing activity. Physical contact with sessile fauna and entanglement of specimens were the major impacts of lost fishing gear. Based on the importance of this region for the local fishermen, litter abundance is expected to increase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reanalysis of Mariner 9 UV Spectrometer Data for Ozone, Cloud, and Dust Abundances, and Their Interaction Over Climate Timescales

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1994-01-01

    Mariner 9 UV spectrometer data have been reinverted for the ozone abundance. The spectra were fit by models which covered the full range in observed solar zenith angle, cloud, dust and ozone amount, ice albedo and look angles. Errors in ozone retrieval with this data are tabulated over a range in theses conditions and are shown graphically. This work shows that significant underestimation of ozone occurred in earlier analysis of Mariner 9 data, and that much of the observed variability in Mars ozone is due to masking of ozone by clouds and dust. An in-situ measurement by balloon is recommended as it is the only technique capable of accurately inferring the ozone abundance in all conditions. Recommendations for future research are also presented. 7 manuscripts have been published in refereed journals, and three are in review. A review of these publications and presentations is in the report.

  9. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    NASA Astrophysics Data System (ADS)

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-06-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.

  10. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    PubMed Central

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  11. Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia

    NASA Astrophysics Data System (ADS)

    Pollard, Peter C.; Young, Loretta M.

    2010-01-01

    Globally, cyanobacterial blooms are increasing along with observations of the controlling influence of viruses. Our aim here was to test whether viruses from an Australian freshwater lake could lyse the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. C. raciborskii was selectively isolated from Lake Samsonvale southeast Queensland Australia using a Modified Jaworski Medium (without any form of inorganic nitrogen). Microscopy confirmed the resulting culture of a single cyanobacterial species. Natural viral-like particles (VLPs) were incubated with C. raciborskii cells, the host abundance decreased by 86% in 5 days, while the number of VLPs increased stepwise. As a cell lysed, the filaments of cells split into smaller, but viable, fragments. This process may help disperse the cyanobacterium in the wild. Hence the use of this virus to control blooms may inadvertently encourage the dispersal of toxic filamentous cyanobacteria. The cyanophage (virus infecting cyanobacteria) replication time was 21 h, with an average burst size of 64 viruses cell -1. Transmission Electron Microscopy showed this cyanophage for C. raciborskii, with its long, non-contractile tail and a capsid diameter of 70 nm, belongs to the Siphoviridae family of viruses. This cyanophage can affect the abundance and distribution of the cyanobacterium C. raciborskii in this Australian freshwater lake.

  12. The Production and Release of Microcystin Related to Phytoplankton Biodiversity and Water Salinity in Two Cyanobacteria Blooming Lakes.

    PubMed

    Jia, Junmei; Chen, Qiuwen; Wang, Min; Zhang, Jianyun; Yi, Qitao; Hu, Liuming

    2018-06-20

    To find the connections between microcystins (MCs) and phytoplankton community coupled with environmental factors, two cyanobacteria blooming lakes, Lake Taihu and Lake Yanghe, were investigated. Two years data, including water quality, phytoplankton, MCs and the congeners in both algal cells and water, were collected from the two lakes during 2013 and 2014. The results showed that the MC quota and MC release percentage were positively correlated with biodiversity of phytoplankton and the ratio of Chlorophyta/phytoplankton, but were negatively correlated with cyanobacteria abundance and the ratio of cyanobacteria/phytoplankton; the MC quota and MC release percentage were closely related to the intensity of competition between cyanobacteria and other phytoplankton; meanwhile, MCs played a role in competition between cyanobacteria and other phytoplankton. The salinity had significantly negative relationships with cellular MCs and total MCs, but had significantly positive relationships with MCs releasing percentage, indicating that the increase of salinity inhibited the MCs production but promoted the MCs releasing into aquatic environment. In addition, the average MCs in Lake Yanghe was several times higher than the provisional guideline value adopted by the World Health Organization, which could pose health risk to local people. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. A low-cost solution for documenting distribution and abundance of endangered marine fauna and impacts from fisheries

    PubMed Central

    Das, Himansu; Davis, Patricia; Hines, Ellen; Kwan, Donna; Marsh, Helene; Ponnampalam, Louisa; Reynolds, John

    2017-01-01

    Fisheries bycatch is a widespread and serious issue that leads to declines of many important and threatened marine species. However, documenting the distribution, abundance, population trends and threats to sparse populations of marine species is often beyond the capacity of developing countries because such work is complex, time consuming and often extremely expensive. We have developed a flexible tool to document spatial distribution and population trends for dugongs and other marine species in the form of an interview questionnaire supported by a structured data upload sheet and a comprehensive project manual. Recognising the effort invested in getting interviewers to remote locations, the questionnaire is comprehensive, but low cost. The questionnaire has already been deployed in 18 countries across the Indo-Pacific region. Project teams spent an average of USD 5,000 per country and obtained large data sets on dugong distribution, trends, catch and bycatch, and threat overlaps. Findings indicated that >50% of respondents had never seen dugongs and that 20% had seen a single dugong in their lifetimes despite living and fishing in areas of known or suspected dugong habitat, suggesting that dugongs occurred in low numbers. Only 3% of respondents had seen mother and calf pairs, indicative of low reproductive output. Dugong hunting was still common in several countries. Gillnets and hook and line were the most common fishing gears, with the greatest mortality caused by gillnets. The questionnaire has also been used to study manatees in the Caribbean, coastal cetaceans along the eastern Gulf of Thailand and western Peninsular Malaysia, and river dolphins in Peru. This questionnaire is a powerful tool for studying distribution and relative abundance for marine species and fishery pressures, and determining potential conservation hotspot areas. We provide the questionnaire and supporting documents for open-access use by the scientific and conservation communities. PMID

  14. A low-cost solution for documenting distribution and abundance of endangered marine fauna and impacts from fisheries.

    PubMed

    Pilcher, Nicolas J; Adulyanukosol, Kanjana; Das, Himansu; Davis, Patricia; Hines, Ellen; Kwan, Donna; Marsh, Helene; Ponnampalam, Louisa; Reynolds, John

    2017-01-01

    Fisheries bycatch is a widespread and serious issue that leads to declines of many important and threatened marine species. However, documenting the distribution, abundance, population trends and threats to sparse populations of marine species is often beyond the capacity of developing countries because such work is complex, time consuming and often extremely expensive. We have developed a flexible tool to document spatial distribution and population trends for dugongs and other marine species in the form of an interview questionnaire supported by a structured data upload sheet and a comprehensive project manual. Recognising the effort invested in getting interviewers to remote locations, the questionnaire is comprehensive, but low cost. The questionnaire has already been deployed in 18 countries across the Indo-Pacific region. Project teams spent an average of USD 5,000 per country and obtained large data sets on dugong distribution, trends, catch and bycatch, and threat overlaps. Findings indicated that >50% of respondents had never seen dugongs and that 20% had seen a single dugong in their lifetimes despite living and fishing in areas of known or suspected dugong habitat, suggesting that dugongs occurred in low numbers. Only 3% of respondents had seen mother and calf pairs, indicative of low reproductive output. Dugong hunting was still common in several countries. Gillnets and hook and line were the most common fishing gears, with the greatest mortality caused by gillnets. The questionnaire has also been used to study manatees in the Caribbean, coastal cetaceans along the eastern Gulf of Thailand and western Peninsular Malaysia, and river dolphins in Peru. This questionnaire is a powerful tool for studying distribution and relative abundance for marine species and fishery pressures, and determining potential conservation hotspot areas. We provide the questionnaire and supporting documents for open-access use by the scientific and conservation communities.

  15. Proteomic analysis of post translational modifications in cyanobacteria.

    PubMed

    Xiong, Qian; Chen, Zhuo; Ge, Feng

    2016-02-16

    Cyanobacteria are a diverse group of Gram-negative bacteria and the only prokaryotes capable of oxygenic photosynthesis. Recently, cyanobacteria have attracted great interest due to their crucial roles in global carbon and nitrogen cycles and their ability to produce clean and renewable biofuels. To survive in various environmental conditions, cyanobacteria have developed a complex signal transduction network to sense environmental signals and implement adaptive changes. The post-translational modifications (PTMs) systems play important regulatory roles in the signaling networks of cyanobacteria. The systematic investigation of PTMs could contribute to the comprehensive description of protein species and to elucidate potential biological roles of each protein species in cyanobacteria. Although the proteomic studies of PTMs carried out in cyanobacteria were limited, these data have provided clues to elucidate their sophisticated sensing mechanisms that contribute to their evolutionary and ecological success. This review aims to summarize the current status of PTM studies and recent publications regarding PTM proteomics in cyanobacteria, and discuss the novel developments and applications for the analysis of PTMs in cyanobacteria. Challenges, opportunities and future perspectives in the proteomics studies of PTMs in cyanobacteria are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optical propagation analysis in photobioreactor measurements on cyanobacteria

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2017-12-01

    Biotechnology applications are nowadays increasing in many areas, from agriculture to biochemistry, or even biomedicine. Knowledge on biological processes is becoming essential in order to be able to adequately estimate and control the production of these elements. Cyanobacteria present the capability of producing oxygen and biomass, from CO2 and light irradiation. Therefore, they could be fundamental for human subsistence in adverse environments, as basic needs of breathing and food would be guaranteed. Cyanobacteria cultivation, as other microorganisms, is carried out in photo-bioreactors. The adequate design of photobioreactors greatly influences elements production throughput. This design includes optical illumination and optical measurement of cyanobacteria growth. In this work an analysis of optical measurement of cyanobacteria growth in a photobioreactor is made. As cyanobacteria are inhomogeneous elements, the influence of light scattering is significant. Several types of cyanobacteria are considered, as long as several spatial profiles and irradiances of the incident light. Depending on cyanobacteria optical properties, optical distribution of transmitted light can be estimated. These results allow an appropriate consideration, in the optical design, of the relationship between detected light and cyanobacteria growth. As a consequence, the most adequate conditions of elements production from cyanobacteria could be estimated.

  17. Identifying Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Hargraves, Paul E.

    Until recently, anyone who needed to accurately identify marine phytoplankton had one of four choices: use the outdated Englishlanguage volumes by E. E. Cupp and N. I. Hendey plus the more recent book by J. Dodge, acquire a working knowledge of German and use the old volumes by Schiller and Hustedt, spend huge amounts of time in an exceedingly well-equipped marine science library trying in vain to keep up with the rapidly evolving field of phytoplankton systematics and taxonomy, or track down one of the rarest of endangered species—a phytoplankton taxonomist—and beg for help.To these unfortunate choices is added one considerably more hopeful: Identifying Marine Phytoplankton. This volume, which has seven contributing authors, contains most of the taxonomic groups that make up the planktonic autotrophs and some heterotrophs of the seas, coasts, and estuaries of the world (missing are cyanobacteria and some of the picoplankton groups).

  18. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates.

    PubMed

    Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W

    2018-02-20

    The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  19. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria.

    PubMed

    Gaudana, Sandeep B; Zarzycki, Jan; Moparthi, Vamsi K; Kerfeld, Cheryl A

    2015-10-01

    Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.

  20. Epiphytic cyanobacteria of the seagrass Cymodocea rotundata: diversity, diel nifH expression and nitrogenase activity.

    PubMed

    Hamisi, Mariam; Díez, Beatriz; Lyimo, Thomas; Ininbergs, Karolina; Bergman, Birgitta

    2013-06-01

    Seagrasses are photoautotrophic, ecologically important components of many globally widespread coastal ecosystems, in which combined nitrogen may limit their production. We examined the biodiversity and diazotrophic capacity of microbial epiphytes associated with the phyllosphere of the seagrass Cymodocea rotundata of the Western Indian Ocean. Light microscopy, 16S rRNA and nifH gene analysis revealed the dominance of cyanobacteria in the epiphytic microbial community. Most phylotypes were related to free-living uncultured benthic cyanobacteria, while some to cyanobacterial endosymbionts of marine diatoms. Novel and potentially diazotrophic species, some of known pantropical distribution, were also discovered. Significant diel nitrogenase activities (acetylene reduction assay) were recorded (up to 358 ± 232 nmol C2H4 g(-1) of seagrass FW h(-1)). The nifH gene expression patterns showed that heterocystous phylotypes may be the dominant diazotrophs during the day and non-heterocystous at night. These data show that C. rotundata is colonized by diverse diazotrophic cyanobacteria species and suggest that these may be beneficial partners of seagrasses in nitrogen-depleted waters. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. MCEARD - CYANOBACTERIA AND THEIR TOXINS

    EPA Science Inventory

    Harmful algal blooms (HAB) of cyanobacteria, also known as blue-green algae, have recently become more spatially and temporally prevalent in the US and worldwide. Waterborne cyanobacteria and their highly potent toxins are a significant hazard for human health and the ecosystem....

  2. One Health and Toxic Cyanobacteria

    EPA Science Inventory

    One Health and toxic cyanobacteria Blooms of toxic freshwater blue-green algae or cyanobacteria (HABs) have been in the news after HABs associated with human and animal health problems have been reported in Florida, California and Utah during 2016. HABs occur in warm, slow moving...

  3. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    NASA Astrophysics Data System (ADS)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  4. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    PubMed Central

    Klisch, Manfred; Häder, Donat-P.

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. PMID:18728764

  5. Genes and Structural Proteins of the Phage Syn5 of the Marine Cyanobacteria Synechococcus

    DTIC Science & Technology

    2005-09-01

    typhimurium phage P22, a podoviridae, was shown to possess extensive genomic similarity to coliphage lambda, a siphoviridae (Botstein and Herskowitz...are found among cyanobacteria in the surface waters during the winter. Temperature influences the number of infectious particles produced during lytic...grids and stained with 1% uranyl acetate for 15 minutes, washed three times in double-distilled water , stained in 1% lead citrate for 4 minutes, and

  6. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi.

    PubMed

    Cao, Xin; Wang, Yiqi; He, Jian; Luo, Xingzhang; Zheng, Zheng

    2016-12-01

    This study was focused on the phosphorus mobility among sediments, water and cyanobacteria in eutrophic Lake Dianchi. Four conditions lake water, water and algae, water and sediments, and three objects together were conducted to investigate the effects of cyanobacteria growth on the migration and transformation of phosphorus. Results showed a persistent correlation between the development of cyanobacterial blooms and the increase of soluble reactive phosphorus (SRP) in the lake water under the condition of three objects together. Time-course assays measuring different forms of phosphorus in sediments indicated that inorganic phosphorus (IP) and NaOH-P were relatively more easier to migrate out of sediment to the water and cyanobacteria. Further studies on phosphorus mobility showed that up to 70.2% of the released phosphorus could be absorbed by cyanobacteria, indicating that sediment is a major source of phosphorus when external loading is reduced. Time-course assays also showed that the development of cyanobacterial blooms promoted an increase in pH and a decrease in the redox potential of the lake water. The structure of the microbial communities in sediments was also significantly changed, revealed a great impaction of cyanobacterial blooms on the microbial communities in sediments, which may contribute to phosphorus release. Our study simulated the cyanobacterial blooms of Lake Dianchi and revealed that the cyanobacterial blooms is a driving force for phosphorus mobility among sediments, water and cyanobacteria. The outbreak of algal blooms caused deterioration in water quality. The P in the sediments represented a significant supply for the growth of cyanobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    PubMed

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  8. EnviroAtlas Cyanobacteria Assessment Network (CyAN) ...

    EPA Pesticide Factsheets

    Economic, health, and environmental impacts of cyanobacteria and associated harmful algal blooms are increasingly recognized by policymakers, managers, and scientific researchers. However, spatially-distributed, long-term data on cyanobacteria blooms are largely unavailable. The multiagency Cyanobacteria Assessment Network (CyAN) project helps address this data need by providing remote-sensing derived information on the concentration of cyanobacteria in fresh water bodies of the Continental United States. CyAN provides data for >1 ,800 lakes using 300x300 meter MERIS and Sentinel-3 satellite image data processed using a second-derivative spectral-shape cyanobacteria algorithm. CyAN includes weekly information for over 200,000 km2 of surface water for 2008-2012, a breadth of spatiotemporal information unprecedented in cyanobacteria research. Online distribution and effective communication of CyAN issues are high priorities for the project and sharing these data offer exceptional opportunities for research, management, and public awareness of cyanobacteria. Challenges that these data pose for webbased data visualization include uneven sampling intervals due to cloud cover, inconsistent spatial data coverage associated with spectral interference and lake "edge effects," and widely varying lake sizes prohibiting presentation of data at the waterbody scale. We present an approach that overcomes these challenges by incorporating a variety of data visualization techniq

  9. Significant Change in Marine Plankton Structure and Carbon Production After the Addition of River Water in a Mesocosm Experiment.

    PubMed

    Fouilland, E; Trottet, A; Alves-de-Souza, C; Bonnet, D; Bouvier, T; Bouvy, M; Boyer, S; Guillou, L; Hatey, E; Jing, H; Leboulanger, C; Le Floc'h, E; Liu, H; Mas, S; Mostajir, B; Nouguier, J; Pecqueur, D; Rochelle-Newall, E; Roques, C; Salles, C; Tournoud, M-G; Vasseur, C; Vidussi, F

    2017-08-01

    Rivers are known to be major contributors to eutrophication in marine coastal waters, but little is known on the short-term impact of freshwater surges on the structure and functioning of the marine plankton community. The effect of adding river water, reducing the salinity by 15 and 30%, on an autumn plankton community in a Mediterranean coastal lagoon (Thau Lagoon, France) was determined during a 6-day mesocosm experiment. Adding river water brought not only nutrients but also chlorophyceans that did not survive in the brackish mesocosm waters. The addition of water led to initial increases (days 1-2) in bacterial production as well as increases in the abundances of bacterioplankton and picoeukaryotes. After day 3, the increases were more significant for diatoms and dinoflagellates that were already present in the Thau Lagoon water (mainly Pseudo-nitzschia spp. group delicatissima and Prorocentrum triestinum) and other larger organisms (tintinnids, rotifers). At the same time, the abundances of bacterioplankton, cyanobacteria, and picoeukaryote fell, some nutrients (NH 4 + , SiO 4 3- ) returned to pre-input levels, and the plankton structure moved from a trophic food web based on secondary production to the accumulation of primary producers in the mesocosms with added river water. Our results also show that, after freshwater inputs, there is rapid emergence of plankton species that are potentially harmful to living organisms. This suggests that flash flood events may lead to sanitary issues, other than pathogens, in exploited marine areas.

  10. Diversity and abundance of nitrate assimilation genes in the northern South china sea.

    PubMed

    Cai, Haiyuan; Jiao, Nianzhi

    2008-11-01

    Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.

  11. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  12. Breakthrough of cyanobacteria in bank filtration.

    PubMed

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p < 0.00001). A strong correlation was observed between the cyanobacterial concentrations in the lake water and in the well water as measured by the phycocyanin probe (p < 0.001, 0.73 ≤ r(2) ≤ 0.94). Log removals from bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p < 0.05) than larger cells. Travel times from the lakes to the wells were estimated as 2 days for Lake B and 10 days for Lake A. Cyanobacterial species in the wells were most closely related to species found in Lake B. Thus, a travel time of less than 1 week permitted the breakthrough of cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle.

    PubMed

    Van Mooy, B A S; Krupke, A; Dyhrman, S T; Fredricks, H F; Frischkorn, K R; Ossolinski, J E; Repeta, D J; Rouco, M; Seewald, J D; Sylva, S P

    2015-05-15

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle. Copyright © 2015, American Association for the Advancement of Science.

  14. Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors.

    PubMed

    Feng, Lijun; Liu, Shiyou; Wu, Wenxian; Ma, Jiawen; Li, Pei; Xu, Hailing; Li, Na; Feng, Yaoyu

    2016-07-01

    Cyanobacterial blooms in freshwaters have become one of the most widespread of environmental problems and threaten water resources worldwide. Previous studies on cyanobacteria in Lake Taihu often collected samples from one site (like Meiliang Bay or Zhushan Bay) and focused on the variation in patterns or abundance of Microcystis during the blooming season. However, the distribution of cyanobacteria in Lake Taihu shows differing pattern in various seasons. In this study, water samples were collected monthly for one year at five sites in Lake Taihu with different trophic status and a physicochemical analysis and denaturing gradient gel electrophoresis (DGGE) were conducted. DGGE fingerprint analysis showed that Microcystis (7/35 bands) and Synechococcus (12/35 bands) were the two most dominant genera present during the study period at all five sites. Cyanobium (3/35 bands) was the third most common genus which has seldom been previously reported in Lake Taihu. Redundancy analysis (RDA) indicated that the cyanobacterial community structure was significantly correlated with NO3 (-)-N, CODMn, and NH4 (+)-N in the winter and spring, whereas it was correlated with water temperature in the summer and autumn. Limiting the nutrient input (especially of N and C loading) in Lake Taihu would be a key factor in controlling the growth of different genera of cyanobacteria.

  15. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide.

    PubMed

    Matthijs, Hans C P; Visser, Petra M; Reeze, Bart; Meeuse, Jeroen; Slot, Pieter C; Wijn, Geert; Talens, Renée; Huisman, Jef

    2012-04-01

    Although harmful cyanobacteria form a major threat to water quality, few methods exist for the rapid suppression of cyanobacterial blooms. Since laboratory studies indicated that cyanobacteria are more sensitive to hydrogen peroxide (H(2)O(2)) than eukaryotic phytoplankton, we tested the application of H(2)O(2) in natural waters. First, we exposed water samples from a recreational lake dominated by the toxic cyanobacterium Planktothrix agardhii to dilute H(2)O(2). This reduced the photosynthetic vitality by more than 70% within a few hours. Next, we installed experimental enclosures in the lake, which revealed that H(2)O(2) selectively killed the cyanobacteria without major impacts on eukaryotic phytoplankton, zooplankton, or macrofauna. Based on these tests, we introduced 2 mg L(-1) (60 μM) of H(2)O(2) homogeneously into the entire water volume of the lake with a special dispersal device, called the water harrow. The cyanobacterial population as well as the microcystin concentration collapsed by 99% within a few days. Eukaryotic phytoplankton (including green algae, cryptophytes, chrysophytes and diatoms), zooplankton and macrofauna remained largely unaffected. Following the treatment, cyanobacterial abundances remained low for 7 weeks. Based on these results, we propose the use of dilute H(2)O(2) for the selective elimination of harmful cyanobacteria from recreational lakes and drinking water reservoirs, especially when immediate action is urgent and/or cyanobacterial control by reduction of eutrophication is currently not feasible. A key advantage of this method is that the added H(2)O(2) degrades to water and oxygen within a few days, and thus leaves no long-term chemical traces in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Importance of N2-Fixation on the Productivity at the North-Western Azores Current/Front System, and the Abundance of Diazotrophic Unicellular Cyanobacteria.

    PubMed

    Riou, Virginie; Fonseca-Batista, Debany; Roukaerts, Arnout; Biegala, Isabelle C; Prakya, Shree Ram; Magalhães Loureiro, Clara; Santos, Mariana; Muniz-Piniella, Angel E; Schmiing, Mara; Elskens, Marc; Brion, Natacha; Martins, M Ana; Dehairs, Frank

    2016-01-01

    To understand the impact of the northwestern Azores Current Front (NW-AzC/AzF) system on HCO3--and N2-fixation activities and unicellular diazotrophic cyanobacteria (UCYN) distribution, we combined geochemical and biological approaches from the oligotrophic surface to upper mesopelagic waters. N2-fixation was observed to sustain 45-85% of the HCO3--fixation in the picoplanktonic fraction performing 47% of the total C-fixation at the deep chlorophyll maximum north and south of the AzF. N2-fixation rates as high as 10.9 μmol N m-3 d-1 and surface nitrate δ15N as low as 2.7‰ were found in the warm (18-24°C), most saline (36.5-37.0) and least productive waters south of the AzF, where UCYN were the least abundant. However, picoplanktonic UCYN abundances up to 55 cells mL-1 were found at 45-200m depths in the coolest nutrient-rich waters north of the AzF. In this area, N2-fixation rates up to 4.5 μmol N m-3 d-1 were detected, associated with depth-integrated H13CO3--fixation rates at least 50% higher than observed south of the AzF. The numerous eddies generated at the NW-AzC/AzF seem to enhance exchanges of plankton between water masses, as well as vertical and horizontal diapycnal diffusion of nutrients, whose increase probably enhances the growth of diazotrophs and the productivity of C-fixers.

  17. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario

    PubMed Central

    Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders

    2016-01-01

    Lake restoration practices based on reducing fish predation and promoting the dominance of large-bodied Daphnia grazers (i.e., biomanipulation) have been the focus of much debate due to inconsistent success in suppressing harmful cyanobacterial blooms. While most studies have explored effects of large-bodied Daphnia on cyanobacterial growth at the community level and/or on few dominant species, predictions of such restoration practices demand further understanding on taxa-specific responses in diverse cyanobacterial communities. In order to address these questions, we conducted three grazing experiments during summer in a eutrophic lake where the natural phytoplankton community was exposed to an increasing gradient in biomass of the large-bodied Daphnia magna. This allowed evaluating taxa-specific responses of cyanobacteria to Daphnia grazing throughout the growing season in a desired biomanipulation scenario with limited fish predation. Total cyanobacterial and phytoplankton biomasses responded negatively to Daphnia grazing both in early and late summer, regardless of different cyanobacterial densities. Large-bodied Daphnia were capable of suppressing the abundance of Aphanizomenon, Dolichospermum, Microcystis and Planktothrix bloom-forming cyanobacteria. However, the growth of the filamentous Dolichospermum crassum was positively affected by grazing during a period when this cyanobacterium dominated the community. The eutrophic lake was subjected to biomanipulation since 2005 and nineteen years of lake monitoring data (1996–2014) revealed that reducing fish predation increased the mean abundance (50%) and body-size (20%) of Daphnia, as well as suppressed the total amount of nutrients and the growth of the dominant cyanobacterial taxa, Microcystis and Planktothrix. Altogether our results suggest that lake restoration practices solely based on grazer control by large-bodied Daphnia can be effective, but may not be sufficient to control the overgrowth of all

  18. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea.

    PubMed

    Liu, Jiaxing; Zhou, Linbin; Ke, Zhixin; Li, Gang; Shi, Rongjun; Tan, Yehui

    2018-04-01

    Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Recovery Trends in Marine Mammal Populations

    PubMed Central

    Magera, Anna M.; Mills Flemming, Joanna E.; Kaschner, Kristin; Christensen, Line B.; Lotze, Heike K.

    2013-01-01

    Marine mammals have greatly benefitted from a shift from resource exploitation towards conservation. Often lauded as symbols of conservation success, some marine mammal populations have shown remarkable recoveries after severe depletions. Others have remained at low abundance levels, continued to decline, or become extinct or extirpated. Here we provide a quantitative assessment of (1) publicly available population-level abundance data for marine mammals worldwide, (2) abundance trends and recovery status, and (3) historic population decline and recent recovery. We compiled 182 population abundance time series for 47 species and identified major data gaps. In order to compare across the largest possible set of time series with varying data quality, quantity and frequency, we considered an increase in population abundance as evidence of recovery. Using robust log-linear regression over three generations, we were able to classify abundance trends for 92 spatially non-overlapping populations as Significantly Increasing (42%), Significantly Decreasing (10%), Non-Significant Change (28%) and Unknown (20%). Our results were comparable to IUCN classifications for equivalent species. Among different groupings, pinnipeds and other marine mammals (sirenians, polar bears and otters) showed the highest proportion of recovering populations, likely benefiting from relatively fast life histories and nearshore habitats that provided visibility and protective management measures. Recovery was less frequent among cetaceans, but more common in coastal than offshore populations. For marine mammals with available historical abundance estimates (n = 47), larger historical population declines were associated with low or variable recent recoveries so far. Overall, our results show that many formerly depleted marine mammal populations are recovering. However, data-deficient populations and those with decreasing and non-significant trends require attention. In particular, increased

  20. Declining Abundance of Beaked Whales (Family Ziphiidae) in the California Current Large Marine Ecosystem

    PubMed Central

    Moore, Jeffrey E.; Barlow, Jay P.

    2013-01-01

    Beaked whales are among the most diverse yet least understood groups of marine mammals. A diverse set of mostly anthropogenic threats necessitates improvement in our ability to assess population status for this cryptic group. The Southwest Fisheries Science Center (NOAA) conducted six ship line-transect cetacean abundance surveys in the California Current off the contiguous western United States between 1991 and 2008. We used a Bayesian hidden-process modeling approach to estimate abundance and population trends of beaked whales using sightings data from these surveys. We also compiled records of beaked whale stranding events (3 genera, at least 8 species) on adjacent beaches from 1900 to 2012, to help assess population status of beaked whales in the northern part of the California Current. Bayesian posterior summaries for trend parameters provide strong evidence of declining beaked whale abundance in the study area. The probability of negative trend for Cuvier's beaked whale (Ziphius cavirostris) during 1991–2008 was 0.84, with 1991 and 2008 estimates of 10771 (CV = 0.51) and ≈7550 (CV = 0.55), respectively. The probability of decline for Mesoplodon spp. (pooled across species) was 0.96, with 1991 and 2008 estimates of 2206 (CV = 0.46) and 811 (CV = 0.65). The mean posterior estimates for average rate of decline were 2.9% and 7.0% per year. There was no evidence of abundance trend for Baird's beaked whale (Berardius bairdii), for which annual abundance estimates in the survey area ranged from ≈900 to 1300 (CV≈1.3). Stranding data were consistent with the survey results. Causes of apparent declines are unknown. Direct impacts of fisheries (bycatch) can be ruled out, but impacts of anthropogenic sound (e.g., naval active sonar) and ecosystem change are plausible hypotheses that merit investigation. PMID:23341907

  1. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  2. Degradation of textile dyes by cyanobacteria.

    PubMed

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  4. Secondary metabolites of cyanobacteria Nostoc sp.

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  5. Indicators: Cyanobacteria

    EPA Pesticide Factsheets

    Cyanobacteria, also referred to as blue-green algae, naturally occur in all freshwater ecosystems. However, too many nutrients such as phosphorus and nitrogen in the waterway can result in conditions that lead to cyanobacterial blooms.

  6. Changes in Reef Fish Abundances Associated with the Introduction of Indo-Pacific Lionfish to the Florida Keys National Marine Sanctuary: a Twenty Year Time Series.

    NASA Astrophysics Data System (ADS)

    Hepner, M.; Muller-Karger, F. E.; Gittings, S.; Stallings, C.

    2016-02-01

    The Marine Biodiversity Observation Network (MBON) is a partnership between academic, private, and government researchers seeking to understand how marine biodiversity changes over long periods of time. In this context, a study of the multi-agency Reef Visual Census (RVC) data, collected over twenty years in the Florida Keys National Marine Sanctuary (FKNMS), was analyzed to measure possible changes in reef fish abundances as a result of possible predation by lionfish predation or due to related trophic cascading. Lionfish were first sighted in the FKNMS in January 2009, with abundances and frequency of occurrence increasing three to six fold throughout the sanctuary by 2011. Their high consumption rates of smaller fish, coupled with their rapidly increasing densities may be having a significant effect on coral reef fish communities. The study compares the natural variability in reef fish abundances from 1994-2009 in the FKNMS, 15 years prior to the first lionfish detected in the sanctuary, to changes in reef fish abundances 5 years after the invasion. The MBON project also aims to develop environmental DNA (eDNA) technology for conducting biodiversity assessments. eDNA is an emerging technique that seeks to quantify biodiversity in an area by obtaining genetic material directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material. All marine organisms shed DNA into their surrounding habitat, leaving a "fingerprint." Similar to forensic science, the DNA can be collected from seawater and analyzed to determine what species were recently present. The MBON team is evaluating whether eDNA can be used to adequately monitor reef fish biodiversity in coral reef ecosystems. We will compare species detected in our samples to the taxonomic composition of reef fish communities at the sample site as recorded over the past twenty years in the Reef Visual Census data.

  7. Microfossils of Cyanobacteria in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  8. Spatial analysis of freshwater lake cyanobacteria blooms, 2008-2011

    EPA Science Inventory

    Background/Question/Methods Cyanobacteria and associated harmful algal blooms cause significant social, economic, and environmental impacts. Cyanobacteria synthesize hepatotoxins, neurotoxins, and dermatotoxins, affecting the health of humans and other species. The Cyanobacteria ...

  9. Phylogenetic and Chemical Diversity of Three Chemotypes of Bloom-Forming Lyngbya Species (Cyanobacteria: Oscillatoriales) from Reefs of Southeastern Florida▿

    PubMed Central

    Sharp, Koty; Arthur, Karen E.; Gu, Liangcai; Ross, Cliff; Harrison, Genelle; Gunasekera, Sarath P.; Meickle, Theresa; Matthew, Susan; Luesch, Hendrik; Thacker, Robert W.; Sherman, David H.; Paul, Valerie J.

    2009-01-01

    The cyanobacterial genus Lyngbya includes free-living, benthic, filamentous cyanobacteria that form periodic nuisance blooms in lagoons, reefs, and estuaries. Lyngbya spp. are prolific producers of biologically active compounds that deter grazers and help blooms persist in the marine environment. Here, our investigations reveal the presence of three distinct Lyngbya species on nearshore reefs in Broward County, FL, sampled in 2006 and 2007. With a combination of morphological measurements, molecular biology techniques, and natural products chemistry, we associated these three Lyngbya species with three distinct Lyngbya chemotypes. One species, identified as Lyngbya cf. confervoides via morphological measurements and 16S rRNA gene sequencing, produces a diverse array of bioactive peptides and depsipeptides. Our results indicate that the other two Lyngbya species produce either microcolins A and B or curacin D and dragonamides C and D. Results from screening for the biosynthetic capacity for curacin production among the three Lyngbya chemotypes in this study correlated that capacity with the presence of curacin D. Our work on these bloom-forming Lyngbya species emphasizes the significant phylogenetic and chemical diversity of the marine cyanobacteria on southern Florida reefs and identifies some of the genetic components of those differences. PMID:19270119

  10. A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece.

    PubMed

    Bravakos, Panos; Kotoulas, Georgios; Skaraki, Katerina; Pantazidou, Adriani; Economou-Amilli, Athena

    2016-05-01

    Strains of Cyanobacteria isolated from mats of 9 thermal springs of Greece have been studied for their taxonomic evaluation. A polyphasic taxonomic approach was employed which included: morphological observations by light microscopy and scanning electron microscopy, maximum parsimony, maximum likelihood and Bayesian analysis of 16S rDNA sequences, secondary structural comparisons of 16S-23S rRNA Internal Transcribed Spacer sequences, and finally environmental data. The 17 cyanobacterial isolates formed a diverse group that contained filamentous, coccoid and heterocytous strains. These included representatives of the polyphyletic genera of Synechococcus and Phormidium, and the orders Oscillatoriales, Spirulinales, Chroococcales and Nostocales. After analysis, at least 6 new taxa at the genus level provide new evidence in the taxonomy of Cyanobacteria and highlight the abundant diversity of thermal spring environments with many potential endemic species or ecotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  12. Author Correction: Re-examination of the relationship between marine virus and microbial cell abundances.

    PubMed

    Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S

    2017-11-01

    The original publication of this Article included analysis of virus and microbial cell abundances and virus-to-microbial cell ratios. Data in the Article came from 25 studies intended to be exclusively from marine sites. However, 3 of the studies included in the original unified dataset were erroneously classified as marine sites during compilation. The records with mis-recorded longitude and latitude values were, in fact, taken from inland, freshwater sources. The three inland, freshwater datasets are ELA, TROUT and SWAT. The data from these three studies represent 163 of the 5,671 records in the original publication. In the updated version of the Article, all analyses have been recalculated using the same statistical analysis pipeline released via GitHub as part of the original publication. Removal of the three studies reduces the unified dataset to 5,508 records. Analyses involving all grouped datasets have been updated with changes noted in each figure. All key results remain qualitatively unchanged. All data and scripts used in this correction have been made available as a new, updated GitHub release to reflect the updated dataset and figures.

  13. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  14. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

    PubMed Central

    Agrawal, Shivankar; Acharya, Debabrata; Adholeya, Alok; Barrow, Colin J.; Deshmukh, Sunil K.

    2017-01-01

    Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs. PMID:29209209

  15. Photoautotrophic organisms control microbial abundance and diversity in biological soil crusts

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Maier, Stefanie; Wu, Dianming; Caesar, Jennifer; Hoffman, Timm; Grube, Martin; Weber, Bettina

    2017-04-01

    Vascular vegetation is typically quite sparse or even absent in dryland ecosystems all over the world, but the ground surface is not bare and largely covered by biological soil crusts (referred to as biocrusts hereafter). These biocrust communities generally comprise poikilohydric organisms. They are usually dominated by photoautotrophic cyanobacteria, lichens and mosses, growing together with heterotrophic fungi, bacteria and archaea in varying composition. Cyanobacteria-, lichen- and moss-dominated biocrusts are known to stabilize the soil and to influence the water budgets and plant establishment. The autotrophic organisms take up atmospheric CO2, and (cyano-)bacteria fix atmospheric nitrogen. The intention of the present project was to study the relevance of the dominating photoautotrophic organisms for biocrust microbial composition and physiology. High-throughput sequencing revealed that soil microbiota of biocrusts largely differ from the bacterial community in bare soil. We observed that bacterial and fungal abundance (16S and 18S rRNA gene copy numbers) as well as alpha diversity was lowest in bare soil, and increasing from cyanobacteria-, and chlorolichen- to moss-dominated biocrusts. CO2 gas exchange measurements revealed large respiration rates of the soil in moss-dominated biocrusts, which was not observed for cyanobacteria- and chlorolichen-dominated biocrusts. Thus, soil respiration of moss-dominated biocrusts is mainly due to the activity of the microbial communities, whereas the microorganisms in the other biocrust types are either dormant or feature functionally different microbial communities. Our results indicate that biocrust type determines the pattern of microbial communities in the underlying soil layer.

  16. Optical researches for cyanobacteria bloom monitoring in Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny A.; Budylin, Gleb B.; Yakimov, Boris P.; Voloshina, Olga V.; Karabashev, Genrik S.; Evdoshenko, Marina A.; Fadeev, Victor V.

    2016-04-01

    Cyanobacteria bloom is a great ecological problem of Curonian Lagoon and Baltic Sea. The development of novel methods for the on-line control of cyanobacteria concentration and, moreover, for prediction of bloom spreading is of interest for monitoring the state of ecosystem. Here, we report the results of the joint application of hyperspectral measurements and remote sensing of Curonian Lagoon in July 2015 aimed at the assessment of cyanobacteria communities. We show that hyperspectral data allow on-line detection and qualitative estimation of cyanobacteria concentration, while the remote sensing data indicate the possibility of cyanobacteria bloom detection using the spectral features of upwelling irradiation.

  17. Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus

    PubMed Central

    Dolman, Andrew M.; Rücker, Jacqueline; Pick, Frances R.; Fastner, Jutta; Rohrlack, Thomas; Mischke, Ute; Wiedner, Claudia

    2012-01-01

    The importance of nitrogen (N) versus phosphorus (P) in explaining total cyanobacterial biovolume, the biovolume of specific cyanobacterial taxa, and the incidence of cyanotoxins was determined for 102 north German lakes, using methods to separate the effects of joint variation in N and P concentration from those of differential variation in N versus P. While the positive relationship between total cyanobacteria biovolume and P concentration disappeared at high P concentrations, cyanobacteria biovolume increased continually with N concentration, indicating potential N limitation in highly P enriched lakes. The biovolumes of all cyanobacterial taxa were higher in lakes with above average joint NP concentrations, although the relative biovolumes of some Nostocales were higher in less enriched lakes. Taxa were found to have diverse responses to differential N versus P concentration, and the differences between taxa were not consistent with the hypothesis that potentially N2-fixing Nostocales taxa would be favoured in low N relative to P conditions. In particular Aphanizomenon gracile and the subtropical invasive species Cylindrospermopsis raciborskii often reached their highest biovolumes in lakes with high nitrogen relative to phosphorus concentration. Concentrations of all cyanotoxin groups increased with increasing TP and TN, congruent with the biovolumes of their likely producers. Microcystin concentration was strongly correlated with the biovolume of Planktothrix agardhii but concentrations of anatoxin, cylindrospermopsin and paralytic shellfish poison were not strongly related to any individual taxa. Cyanobacteria should not be treated as a single group when considering the potential effects of changes in nutrient loading on phytoplankton community structure and neither should the N2-fixing Nostocales. This is of particular importance when considering the occurrence of cyanotoxins, as the two most abundant potentially toxin producing Nostocales in our study were

  18. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus.

    PubMed

    Dolman, Andrew M; Rücker, Jacqueline; Pick, Frances R; Fastner, Jutta; Rohrlack, Thomas; Mischke, Ute; Wiedner, Claudia

    2012-01-01

    The importance of nitrogen (N) versus phosphorus (P) in explaining total cyanobacterial biovolume, the biovolume of specific cyanobacterial taxa, and the incidence of cyanotoxins was determined for 102 north German lakes, using methods to separate the effects of joint variation in N and P concentration from those of differential variation in N versus P. While the positive relationship between total cyanobacteria biovolume and P concentration disappeared at high P concentrations, cyanobacteria biovolume increased continually with N concentration, indicating potential N limitation in highly P enriched lakes. The biovolumes of all cyanobacterial taxa were higher in lakes with above average joint NP concentrations, although the relative biovolumes of some Nostocales were higher in less enriched lakes. Taxa were found to have diverse responses to differential N versus P concentration, and the differences between taxa were not consistent with the hypothesis that potentially N(2)-fixing Nostocales taxa would be favoured in low N relative to P conditions. In particular Aphanizomenon gracile and the subtropical invasive species Cylindrospermopsis raciborskii often reached their highest biovolumes in lakes with high nitrogen relative to phosphorus concentration. Concentrations of all cyanotoxin groups increased with increasing TP and TN, congruent with the biovolumes of their likely producers. Microcystin concentration was strongly correlated with the biovolume of Planktothrix agardhii but concentrations of anatoxin, cylindrospermopsin and paralytic shellfish poison were not strongly related to any individual taxa. Cyanobacteria should not be treated as a single group when considering the potential effects of changes in nutrient loading on phytoplankton community structure and neither should the N(2)-fixing Nostocales. This is of particular importance when considering the occurrence of cyanotoxins, as the two most abundant potentially toxin producing Nostocales in our study

  19. The toxins of Cyanobacteria.

    PubMed

    Patocka, J

    2001-01-01

    Cyanobacteria, formerly called "blue-green algae", are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera of Cyanobacteria are known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.

  20. Estimates of global cyanobacterial biomass and its distribution

    USGS Publications Warehouse

    Garcia-Pichel, Ferran; Belnap, Jayne; Neuer, Susanne; Schanz, Ferdinand

    2003-01-01

    We estimated global cyanobacterial biomass in the main reservoirs of cyanobacteria on Earth: marine and freshwater plankton, arid land soil crusts, and endoliths. Estimates were based on typical population density values as measured during our research, or as obtained from literature surveys, which were then coupled with data on global geographical area coverage. Among the marine plankton, the global biomass of Prochlorococcus reaches 120 × 1012 grams of carbon (g C), and that of Synechoccus some 43 × 1012 g C. This makes Prochlorococcus and Synechococcus, in that order, the most abundant cyanobacteria on Earth. Tropical marine blooms of Trichodesmium account for an additional 10 × 1012 g C worldwide. In terrestrial environments, the mass of cyanobacteria in arid land soil crusts is estimated to reach 54 × 1012 g C and that of arid land endolithic communities an additional 14 × 1012 g C. The global biomass of planktic cyanobacteria in lakes is estimated to be around 3 × 1012 g C. Our conservative estimates, which did not include some potentially significant biomass reservoirs such as polar and subarctic areas, topsoils in subhumid climates, and shallow marine and freshwater benthos, indicate that the total global cyanobacterial biomass is in the order of 3 × 1014 g C, surpassing a thousand million metric tons (1015 g) of wet biomass.

  1. Ammonium photo-production by heterocytous cyanobacteria: potentials and constraints.

    PubMed

    Grizeau, Dominique; Bui, Lan Anh; Dupré, Catherine; Legrand, Jack

    2016-08-01

    Over the last decades, production of microalgae and cyanobacteria has been developed for several applications, including novel foods, cosmetic ingredients and more recently biofuel. The sustainability of these promising developments can be hindered by some constraints, such as water and nutrient footprints. This review surveys data on N2-fixing cyanobacteria for biomass production and ways to induce and improve the excretion of ammonium within cultures under aerobic conditions. The nitrogenase complex is oxygen sensitive. Nevertheless, nitrogen fixation occurs under oxic conditions due to cyanobacteria-specific characteristics. For instance, in some cyanobacteria, the vegetative cell differentiation in heterocyts provides a well-adapted anaerobic microenvironment for nitrogenase protection. Therefore, cell cultures of oxygenic cyanobacteria have been grown in laboratory and pilot photobioreactors (Dasgupta et al., 2010; Fontes et al., 1987; Moreno et al., 2003; Nayak & Das, 2013). Biomass production under diazotrophic conditions has been shown to be controlled by environmental factors such as light intensity, temperature, aeration rate, and inorganic carbon concentration, also, more specifically, by the concentration of dissolved oxygen in the culture medium. Currently, there is little information regarding the production of extracellular ammonium by heterocytous cyanobacteria. This review compares the available data on maximum ammonium concentrations and analyses the specific rate production in cultures grown as free or immobilized filamentous cyanobacteria. Extracellular production of ammonium could be coupled, as suggested by recent research on non-diazotrophic cyanobacteria, to that of other high value metabolites. There is little information available regarding the possibility for using diazotrophic cyanobacteria as cellular factories may be in regard of the constraints due to nitrogen fixation.

  2. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    PubMed Central

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  3. Flexibility-Rigidity Coordination of the Dense Exopolysaccharide Matrix in Terrestrial Cyanobacteria Acclimated to Periodic Desiccation.

    PubMed

    Liu, Wen; Cui, Lijuan; Xu, Haiyan; Zhu, Zhaoxia; Gao, Xiang

    2017-11-15

    A dense exopolysaccharide (EPS) matrix is crucial for cyanobacterial survival in terrestrial xeric environments, in which cyanobacteria undergo frequent expansion and shrinkage processes during environmental desiccation-rehydration cycles. However, it is unclear how terrestrial cyanobacteria coordinate the structural dynamics of the EPS matrix upon expansion and shrinkage to avoid potential mechanical stress while benefiting from the matrix. In the present study, we sought to answer this question by investigating the gene expression, protein dynamics, enzymatic characteristics, and biological roles of WspA, an abundantly secreted protein, in the representative terrestrial cyanobacterium Nostoc flagelliforme The results demonstrated that WspA is a novel β-galactosidase that facilitates softening of the EPS matrix by breaking the polysaccharide backbone under substantial moisture or facilitates the thickening and relinkage of the broken matrix during the drying process, and thus these regulations are well correlated with moisture availability or desiccation-rehydration cycles. This coordination of flexibility and rigidity of the cyanobacterial extracellular matrix may contribute to a favorable balance of cell growth and stress resistance in xeric environments. IMPORTANCE How the exopolysaccharide matrix is dynamically coordinated by exoproteins to cope with frequent expansion and shrinkage processes in terrestrial colonial cyanobacteria remains unclear. Here we elucidated the biochemical identity and biological roles of a dominant exoprotein in these regulation processes. Our study thus gained insight into this regulative mechanism in cyanobacteria to combat periodic desiccation. In addition, the filamentous drought-adapted cyanobacterium Nostoc flagelliforme serves as an ideal model for us to explore this issue in this study. Copyright © 2017 American Society for Microbiology.

  4. Engineering cyanobacteria for fuels and chemicals production.

    PubMed

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  5. Engineering cyanobacteria as photosynthetic feedstock factories

    PubMed Central

    Hays, Stephanie G.; Ducat, Daniel C.

    2018-01-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels and reduction of carbon emissions. Cyanobacteria possess a number of features that make them well-suited as an alternative feedstock crop in comparison to traditional, terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chasses. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application. PMID:24526260

  6. Light scattering influence in cyanobacteria suspensions inside a photobioreactor

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    The application of biotechnology is increasing in areas such as agriculture, biochemistry or biomedicine. Growing bacteria or algae could be beneficial for supplying fuel, drugs, food or oxygen, among other products. An adequate knowledge of biological processes is becoming essential to estimate and control products production. Cyanobacteria are particularly appropriate for producing oxygen and biomass, by consuming mainly carbon dioxide and light irradiation. These capacities could be employed to provide human subsistence in adverse environments, as basic breathing and food needs would be satisfied. Cyanobacteria growing is carried out in bioreactors. As light irradiation is quite relevant for their behavior, photobioreactors are needed. Photobioreactors are designed to supply and control the amounts of elements they need, in order to maximize growth. The adequate design of photobioreactors greatly influences production throughput. This design includes, on the optical side, optical illumination and optical measurement of cyanobacteria growth. The influence of optical scattering is fundamental for maximizing cyanobacteria growing, as long as for adequately measure this growth. In this work, optical scattering in cyanobacteria suspensions is analyzed. Optical properties of cyanobacteria and its relationship with concentration is taken into account. Several types of cyanobacteria are considered. The influence of different beam spatial profiles and irradiances is studied by a Monte Carlo approach. The results would allow the consideration of the influence of optical scattering in the detected optical signal employed for growth monitoring, as a function of cyanobacteria type and optical beam parameters.

  7. Modern Methods for Isolation, Purification, and Cultivation of Soil Cyanobacteria.

    PubMed

    Temraleeva, A D; Dronova, S A; Moskalenko, S V; Didovich, S V

    2016-07-01

    Up-to-date methods for isolation of cyanobacteria from soil samples, removal of accompanying microflora, obtaining axenic strains, and -conditions and media for subsequnt cultivation are reviewed. Char acterization of soil as a specific habitat for cyanobacteria is provided. Comparative analysis of pH and ele- mental composition of the liquid phase of most soil types with the media for cultivating cyanobacteria is car- ried out. The functional role of the major components required for the cultivation of cyanobacteria is de- scribed. The problems associated with isolation, purification, and cultivation of soil cyanobacteria, as well as the relevant solutions, are discussed.

  8. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  9. The origin of multicellularity in cyanobacteria

    PubMed Central

    2011-01-01

    Background Cyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45 - 2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms. Results We conducted and compared phylogenetic analyses of 16S rDNA sequences from a large sample of taxa representing the morphological and genetic diversity of cyanobacteria. We reconstructed ancestral character states on 10,000 phylogenetic trees. The results suggest that the majority of extant cyanobacteria descend from multicellular ancestors. Reversals to unicellularity occurred at least 5 times. Multicellularity was established again at least once within a single-celled clade. Comparison to the fossil record supports an early origin of multicellularity, possibly as early as the "Great Oxygenation Event" that occurred 2.45 - 2.22 billion years ago. Conclusions The results indicate that a multicellular morphotype evolved early in the cyanobacterial lineage and was regained at least once after a previous loss. Most of the morphological diversity exhibited in cyanobacteria today —including the majority of single-celled species— arose from ancient multicellular lineages. Multicellularity could have conferred a considerable advantage for exploring new niches and hence facilitated the diversification of new lineages. PMID:21320320

  10. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  11. Anticancer drugs from marine flora: an overview.

    PubMed

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  12. Evolutionary significance of osmoregulatory mechanisms in cyanobacteria

    NASA Technical Reports Server (NTRS)

    Yopp, J. H.; Pavlicek, J. H.; Sibley, M. H.

    1986-01-01

    Physiological processes of all life forms on this planet are intrinsically related to their intracellular water potential. The overall goal was the elucidation of the mechanism(s) whereby the first oxygenic phtoautotrophs (the cyanobacteria) adjust their water potential to that of a changing external water potential (that is, osmoregulate). Osmoregulation is achieved by intracellular adjustment of inorganic and/or organic solutes (osmolytes) involving specific biochemical mechanisms. Structural and biochemical evolution within the cyanobacteria is believed completed (and fixed in present day forms) by the end of the Precambrain eon. Therefore, research using cyanobacteria of all three structural types (unicellular, filamentous, and branched), each grown in the photoautotrophic (PA), photoheterotrophic (PG), and chemotrophic (CH) modes of nutrition, should provide insight into the origin and evolution of the photosynthetically related osmoregulatory mechanisms of eukaryotic organisms. The chloroplasts of these organisms are phylogenetically related to the cyanobacteria.

  13. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products

    PubMed Central

    Lau, Nyok-Sean; Matsui, Minami; Abdullah, Amirul Al-Ashraf

    2015-01-01

    Cyanobacteria are widely distributed Gram-negative bacteria with a long evolutionary history and the only prokaryotes that perform plant-like oxygenic photosynthesis. Cyanobacteria possess several advantages as hosts for biotechnological applications, including simple growth requirements, ease of genetic manipulation, and attractive platforms for carbon neutral production process. The use of photosynthetic cyanobacteria to directly convert carbon dioxide to biofuels is an emerging area of interest. Equipped with the ability to degrade environmental pollutants and remove heavy metals, cyanobacteria are promising tools for bioremediation and wastewater treatment. Cyanobacteria are characterized by the ability to produce a spectrum of bioactive compounds with antibacterial, antifungal, antiviral, and antialgal properties that are of pharmaceutical and agricultural significance. Several strains of cyanobacteria are also sources of high-value chemicals, for example, pigments, vitamins, and enzymes. Recent advances in biotechnological approaches have facilitated researches directed towards maximizing the production of desired products in cyanobacteria and realizing the potential of these bacteria for various industrial applications. In this review, the potential of cyanobacteria as sources of energy, bioactive compounds, high-value chemicals, and tools for aquatic bioremediation and recent progress in engineering cyanobacteria for these bioindustrial applications are discussed. PMID:26199945

  14. Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity

    PubMed Central

    Voigt, Karsten; Sharma, Cynthia M; Mitschke, Jan; Joke Lambrecht, S; Voß, Björn; Hess, Wolfgang R; Steglich, Claudia

    2014-01-01

    Prochlorococcus is a genus of abundant and ecologically important marine cyanobacteria. Here, we present a comprehensive comparison of the structure and composition of the transcriptomes of two Prochlorococcus strains, which, despite their similarities, have adapted their gene pool to specific environmental constraints. We present genome-wide maps of transcriptional start sites (TSS) for both organisms, which are representatives of the two most diverse clades within the two major ecotypes adapted to high- and low-light conditions, respectively. Our data suggest antisense transcription for three-quarters of all genes, which is substantially more than that observed in other bacteria. We discovered hundreds of TSS within genes, most notably within 16 of the 29 prochlorosin genes, in strain MIT9313. A direct comparison revealed very little conservation in the location of TSS and the nature of non-coding transcripts between both strains. We detected extremely short 5′ untranslated regions with a median length of only 27 and 29 nt for MED4 and MIT9313, respectively, and for 8% of all protein-coding genes the median distance to the start codon is only 10 nt or even shorter. These findings and the absence of an obvious Shine–Dalgarno motif suggest that leaderless translation and ribosomal protein S1-dependent translation constitute alternative mechanisms for translation initiation in Prochlorococcus. We conclude that genome-wide antisense transcription is a major component of the transcriptional output from these relatively small genomes and that a hitherto unrecognized high degree of complexity and variability of gene expression exists in their transcriptional architecture. PMID:24739626

  15. Distribution and abundance of anthropogenic marine debris along the shelf and slope of the US West Coast.

    PubMed

    Keller, Aimee A; Fruh, Erica L; Johnson, Melanie M; Simon, Victor; McGourty, Catherine

    2010-05-01

    As marine debris levels continue to grow worldwide, defining sources, composition, and distribution of debris, as well as potential effects, becomes increasingly important. We investigated composition and abundance of man-made, benthic marine debris at 1347 randomly selected stations along the US West Coast during Groundfish Bottom Trawl Surveys in 2007 and 2008. Anthropogenic debris was observed in 469 tows at depths of 55-1280 m. Plastic and metallic debris occurred in the greatest number of hauls followed by fabric and glass. Mean density was 67.1 items km(-2) throughout the study area but was significantly higher south of 36 degrees 00'N latitude. Mean density significantly increased with depth, ranging from 30 items km(-2) in shallow (55-183 m) water to 128 items km(-2) in the deepest depth stratum (550-1280 m). Debris densities observed along the US West Coast were comparable to those seen elsewhere and provide a valuable backdrop for future comparisons. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    PubMed

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  17. Recent advances in synthetic biology of cyanobacteria.

    PubMed

    Sengupta, Annesha; Pakrasi, Himadri B; Wangikar, Pramod P

    2018-05-09

    Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this "green" chassis.

  18. Pathological effects of cyanobacteria on sea fans in southeast Florida.

    PubMed

    Kiryu, Y; Landsberg, J H; Peters, E C; Tichenor, E; Burleson, C; Perry, N

    2015-07-01

    In early August 2008, observations by divers indicated that sea fans, particularly Gorgonia ventalina, Gorgonia flabellum, and Iciligorgia schrammi, were being covered by benthic filamentous cyanobacteria. From August 2008 through January 2009 and again in April 2009, tissue samples from a targeted G. ventalina colony affected by cyanobacteria and from a nearby, apparently healthy (without cyanobacteria) control colony, were collected monthly for histopathological examination. The primary cellular response of the sea fan to overgrowth by cyanobacteria was an increase in the number of acidophilic amoebocytes (with their granular contents dispersed) that were scattered throughout the coenenchyme tissue. Necrosis of scleroblasts and zooxanthellae and infiltration of degranulated amoebocytes were observed in the sea fan surface tissues at sites overgrown with cyanobacteria. Fungal hyphae in the axial skeleton were qualitatively more prominent in cyanobacteria-affected sea fans than in controls. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Bioactive secondary metabolites from marine microbes for drug discovery.

    PubMed

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Cutaneous hypersensitivity reactions to freshwater cyanobacteria – human volunteer studies

    PubMed Central

    Stewart, Ian; Robertson, Ivan M; Webb, Penelope M; Schluter, Philip J; Shaw, Glen R

    2006-01-01

    Background Pruritic skin rashes associated with exposure to freshwater cyanobacteria are infrequently reported in the medical and scientific literature, mostly as anecdotal and case reports. Diagnostic dermatological investigations in humans are also infrequently described. We sought to conduct a pilot volunteer study to explore the potential for cyanobacteria to elicit hypersensitivity reactions. Methods A consecutive series of adult patients presenting for diagnostic skin patch testing at a hospital outpatient clinic were invited to participate. A convenience sample of volunteers matched for age and sex was also enrolled. Patches containing aqueous suspensions of various cyanobacteria at three concentrations were applied for 48 hours; dermatological assessment was made 48 hours and 96 hours after application. Results 20 outpatients and 19 reference subjects were recruited into the study. A single outpatient produced unequivocal reactions to several cyanobacteria suspensions; this subject was also the only one of the outpatient group with a diagnosis of atopic dermatitis. No subjects in the reference group developed clinically detectable skin reactions to cyanobacteria. Conclusion This preliminary clinical study demonstrates that hypersensitivity reactions to cyanobacteria appear to be infrequent in both the general and dermatological outpatient populations. As cyanobacteria are widely distributed in aquatic environments, a better appreciation of risk factors, particularly with respect to allergic predisposition, may help to refine health advice given to people engaging in recreational activities where nuisance cyanobacteria are a problem. PMID:16584576

  1. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.

    PubMed

    Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark

    2014-11-01

    Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Marine Synechococcus Aggregation

    NASA Astrophysics Data System (ADS)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  3. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    NASA Technical Reports Server (NTRS)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  4. Re-constructing historical Adélie penguin abundance estimates by retrospectively accounting for detection bias.

    PubMed

    Southwell, Colin; Emmerson, Louise; Newbery, Kym; McKinlay, John; Kerry, Knowles; Woehler, Eric; Ensor, Paul

    2015-01-01

    Seabirds and other land-breeding marine predators are considered to be useful and practical indicators of the state of marine ecosystems because of their dependence on marine prey and the accessibility of their populations at breeding colonies. Historical counts of breeding populations of these higher-order marine predators are one of few data sources available for inferring past change in marine ecosystems. However, historical abundance estimates derived from these population counts may be subject to unrecognised bias and uncertainty because of variable attendance of birds at breeding colonies and variable timing of past population surveys. We retrospectively accounted for detection bias in historical abundance estimates of the colonial, land-breeding Adélie penguin through an analysis of 222 historical abundance estimates from 81 breeding sites in east Antarctica. The published abundance estimates were de-constructed to retrieve the raw count data and then re-constructed by applying contemporary adjustment factors obtained from remotely operating time-lapse cameras. The re-construction process incorporated spatial and temporal variation in phenology and attendance by using data from cameras deployed at multiple sites over multiple years and propagating this uncertainty through to the final revised abundance estimates. Our re-constructed abundance estimates were consistently higher and more uncertain than published estimates. The re-constructed estimates alter the conclusions reached for some sites in east Antarctica in recent assessments of long-term Adélie penguin population change. Our approach is applicable to abundance data for a wide range of colonial, land-breeding marine species including other penguin species, flying seabirds and marine mammals.

  5. Geographical Patterns in Cyanobacteria Distribution: Climate Influence at Regional Scale

    PubMed Central

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-01

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies. PMID:24476711

  6. Assessment of the effects of As(III) treatment on cyanobacteria lipidomic profiles by LC-MS and MCR-ALS.

    PubMed

    Marques, Aline S; Bedia, Carmen; Lima, Kássio M G; Tauler, Romà

    2016-08-01

    Cyanobacteria are a group of photosynthetic, nitrogen-fixing bacteria present in a wide variety of habitats such as freshwater, marine, and terrestrial ecosystems. In this work, the effects of As(III), a major toxic environmental pollutant, on the lipidomic profiles of two cyanobacteria species (Anabaena and Planktothrix agardhii) were assessed by means of a recently proposed method based on the concept of regions of interest (ROI) in liquid chromatography mass spectroscopy (LC-MS) together with multivariate curve resolution alternating least squares (MCR-ALS). Cyanobacteria were exposed to two concentrations of As(III) for a week, and lipid extracts were analyzed by ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in full scan mode. The data obtained were compressed by means of the ROI strategy, and the resulting LC-MS data sets were analyzed by the MCR-ALS method. Comparison of profile peak areas resolved by MCR-ALS in control and exposed samples allowed the discrimination of lipids whose concentrations were changed due to As(III) treatment. The tentative identification of these lipids revealed an important reduction of the levels of some galactolipids such as monogalactosyldiacylglycerol, the pigment chlorophyll a and its degradation product, pheophytin a, as well as carotene compounds such as 3-hydroxycarotene and carotene-3,3'-dione, all of these compounds being essential in the photosynthetic process. These results suggested that As(III) induced important changes in the composition of lipids of cyanobacteria, which were able to compromise their energy production processes. Graphical abstract Steps of the proposed LC-MS + MCR-ALS procedure.

  7. Occurrence of cyanobacteria, microcystin, and taste-and-odor compounds in Cheney Reservoir, Kansas, 2001-16

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.; Williams, Thomas J.; Kramer, Ariele R.; Harris, Theodore D.

    2017-03-31

    Cheney Reservoir, located in south-central Kansas, is one of the primary drinking-water supplies for the city of Wichita and an important recreational resource. Since 1990, cyanobacterial blooms have been present occasionally in Cheney Reservoir, resulting in increased treatment costs and decreased recreational use. Cyanobacteria, the cyanotoxin microcystin, and the taste-and-odor compounds geosmin and 2-methylisoborneol have been measured in Cheney Reservoir by the U.S. Geological Survey, in cooperation with the city of Wichita, for about 16 years. The purpose of this report is to describe the occurrence of cyanobacteria, microcystin, and taste-and-odor compounds in Cheney Reservoir during May 2001 through June 2016 and to update previously published logistic regression models that used continuous water-quality data to estimate the probability of microcystin and geosmin occurrence above relevant thresholds.Cyanobacteria, microcystin, and geosmin were detected in about 84, 52, and 31 percent of samples collected in Cheney Reservoir during May 2001 through June 2016, respectively. 2-methylisoborneol was less common, detected in only 3 percent of samples. Microcystin and geosmin concentrations exceeded advisory values of concern more frequently than cyanobacterial abundance; therefore, cyanobacteria are not a good indicator of the presence of these taste-and-odor compounds in Cheney Reservoir. Broad seasonal patterns in cyanobacteria and microcystin were evident, though abundance and concentration varied by orders of magnitude across years. Cyanobacterial abundances generally peaked in late summer or early fall (August through October), and smaller peaks were observed in winter (January through February). In a typical year, microcystin was first detected in June or July, increased to its seasonal maxima in the summer (July through September), and then decreased. Seasonal patterns in geosmin were less consistent than cyanobacteria and microcystin, but geosmin

  8. Screening of Norharmane from Seven Cyanobacteria by High-performance Liquid Chromatography.

    PubMed

    Karan, Tunay; Erenler, Ramazan

    2017-10-01

    Cyanobacteria, including pharmaceutically and medicinally valuable compounds attract the great attention lately. Norharmane (9H-pyrido (3,4-b) indole found in some cyanobacteria revealed a great number of biological effects. Seven cyanobacteria were isolated and identified from Yesilirmak River and Gaziosmanpasa University Campus to determine the norharmane content. Cyanobacteria collected from Tokat, Turkey were isolated and identified by morphologically. Norharmane (9H-pyrido [3,4-b] indole) quantities were presented for seven cyanobacteria, Chroococcus minutus (Kütz.) Nägeli, Geitlerinema carotinosum (Geitler) Anagnostidis, Nostoc linckia Bornet ex Bornet and Flahault, Anabaena oryzae F. E. Fritsch, Oscillatoria limnetica Lemmermann, Phormidium sp . Kützing ex Gomont, and Cylindrospermum sp . Kutzing ex E. Bornet and C. Flahault by high-performance liquid chromatography. The norharmane amount indicated for cyanobacterial culture media altered in a species-dependent kind in the range of 0.81-10.87 μg/g. C. minutus produced the most norharmane among the investigated cyanobacteria as 10.87 μg/g. Cyanobacteria could be an important source of norharmane as well as pharmaceutically valuable compounds. Seven cyanobacteria were isolated and identified from Yesilirmak RiverQuantitative analysis of norharmane was executed on isolated cyanobacteriaFour cyanobecteria species included the norharmane Chroococcus minutus contained the most norharmane (10.87 μg/g). Abbreviations used: HPLC: High performance liquid chromatograph.

  9. Screening of Norharmane from Seven Cyanobacteria by High-performance Liquid Chromatography

    PubMed Central

    Karan, Tunay; Erenler, Ramazan

    2017-01-01

    Background: Cyanobacteria, including pharmaceutically and medicinally valuable compounds attract the great attention lately. Norharmane (9H-pyrido (3,4-b) indole found in some cyanobacteria revealed a great number of biological effects. Objective: Seven cyanobacteria were isolated and identified from Yesilirmak River and Gaziosmanpasa University Campus to determine the norharmane content. Materials and Methods: Cyanobacteria collected from Tokat, Turkey were isolated and identified by morphologically. Norharmane (9H-pyrido [3,4-b] indole) quantities were presented for seven cyanobacteria, Chroococcus minutus (Kütz.) Nägeli, Geitlerinema carotinosum (Geitler) Anagnostidis, Nostoc linckia Bornet ex Bornet and Flahault, Anabaena oryzae F. E. Fritsch, Oscillatoria limnetica Lemmermann, Phormidium sp. Kützing ex Gomont, and Cylindrospermum sp. Kutzing ex E. Bornet and C. Flahault by high-performance liquid chromatography. Results: The norharmane amount indicated for cyanobacterial culture media altered in a species-dependent kind in the range of 0.81–10.87 μg/g. C. minutus produced the most norharmane among the investigated cyanobacteria as 10.87 μg/g. Conclusion: Cyanobacteria could be an important source of norharmane as well as pharmaceutically valuable compounds. SUMMARY Seven cyanobacteria were isolated and identified from Yesilirmak RiverQuantitative analysis of norharmane was executed on isolated cyanobacteriaFour cyanobecteria species included the norharmaneChroococcus minutus contained the most norharmane (10.87 μg/g). Abbreviations used: HPLC: High performance liquid chromatograph. PMID:29142439

  10. The marine mixotroph, Mesodinium rubrum is far more than a greenhouse ciliate

    NASA Astrophysics Data System (ADS)

    Yih, W.; Myung, G.; Kim, H. S.; Yoo, Y. D.; Rho, J. R.

    2016-02-01

    Permanent symbiosis between the mixotrophic ciliate Mesodinium rubrum and the cryptomonad symbionts has long been assumed since 1908, when Hans Lohmann firstly described the reddish-brown globules inside M. rubrum ("Halteria rubra") cells as symbiotic algae ("Erythromonas haltericola"). Thus, M. rubrum was envisioned as a host greenhouse where numerous cryptomonad symbionts could be farmed. During last two decades, however, information on the species interaction among marine protists including M. rubrum was so impressively accumulated that the more real picture of the `symbiotic relationship' could be revealed. In addition to the obligate replacement of the selected organelles from a `symbiont', multiple donor strains for the klepto-organelles of M. rubrum was also explored. Hence, experimentally designed organelle trades for M. rubrum is not impossible today. This unique mixotrophic ciliate must be a pivotal member of marine plankton ecosystem with its superior klepto-organelles, motility, growth rate, and linkablilty to higher trophic levels. M. rubrum can link marine heterotrophic bacteria and cyanobacteria to its own predators which in turn could be consumed by other carnivores. Supported by the klepto-organelles and vitamins from prey cryptomonads as well as N(from cyanobacteria) and P(from heterotrophic bacteria) nutrients, M. rubrum thrives at diverse marine environments. Bacterivory by the protistan members of `Mesodinium food chain' may need to be further studied before we can better understand the superiority of the unique ciliate species in the sea.

  11. An Expanded Genomic Representation of the Phylum Cyanobacteria

    PubMed Central

    Soo, Rochelle M.; Skennerton, Connor T.; Sekiguchi, Yuji; Imelfort, Michael; Paech, Samuel J.; Dennis, Paul G.; Steen, Jason A.; Parks, Donovan H.; Tyson, Gene W.; Hugenholtz, Philip

    2014-01-01

    Molecular surveys of aphotic habitats have indicated the presence of major uncultured lineages phylogenetically classified as members of the Cyanobacteria. One of these lineages has recently been proposed as a nonphotosynthetic sister phylum to the Cyanobacteria, the Melainabacteria, based on recovery of population genomes from human gut and groundwater samples. Here, we expand the phylogenomic representation of the Melainabacteria through sequencing of six diverse population genomes from gut and bioreactor samples supporting the inference that this lineage is nonphotosynthetic, but not the assertion that they are strictly fermentative. We propose that the Melainabacteria is a class within the phylogenetically defined Cyanobacteria based on robust monophyly and shared ancestral traits with photosynthetic representatives. Our findings are consistent with theories that photosynthesis occurred late in the Cyanobacteria and involved extensive lateral gene transfer and extends the recognized functionality of members of this phylum. PMID:24709563

  12. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.

    PubMed

    Sabehi, Gazalah; Shaulov, Lihi; Silver, David H; Yanai, Itai; Harel, Amnon; Lindell, Debbie

    2012-02-07

    Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.

  13. Heparin-like entities from marine organisms.

    PubMed

    Colliec-Jouault, S; Bavington, C; Delbarre-Ladrat, C

    2012-01-01

    Polysaccharides are ubiquitous in animals and plant cells where they play a significant role in a number of physiological situations e.g. hydration, mechanical properties of cell walls and ionic regulation. This review concentrates on heparin-like entities from marine procaryotes and eukaryotes. Carbohydrates from marine prokaryotes offer a significant structural chemodiversity with novel material and biological properties. Cyanobacteria are Gram-negative photosynthetic prokaryotes considered as a rich source of novel molecules, and marine bacteria are a rich source of polysaccharides with novel structures, which may be a good starting point from which to synthesise heparinoid molecules. For example, some sulphated polysaccharides have been isolated from gamma-proteobacteria such as Alteromonas and Pseudoalteromonas sp. In contrast to marine bacteria, all marine algae contain sulphated wall polysaccharides, whereas such polymers are not found in terrestrial plants. In their native form, or after chemical modifications, a range of polysaccharides isolated from marine organisms have been described that have anticoagulant, anti-thrombotic, anti-tumour, anti-proliferative, anti-viral or anti-inflammatory activities.In spite of the enormous potential of sulphated oligosaccharides from marine sources, their technical and pharmaceutical usage is still limited because of the high complexity of these molecules. Thus, the production of tailor-made oligo- and polysaccharidic structures by biocatalysis is also a growing field of interest in biotechnology.

  14. Cyanobacteria: Promising biocatalysts for sustainable chemical production.

    PubMed

    Knoot, Cory J; Ungerer, Justin; Wangikar, Pramod P; Pakrasi, Himadri B

    2018-04-06

    Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO 2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential of these microbial biofactories for sustainable production of chemicals conventionally produced from fossil fuels. Here, we present an overview of the unique chemistry that cyanobacteria have been co-opted to perform. We highlight key lessons learned from these engineering efforts and discuss advantages and disadvantages of various approaches. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Cyanobacteria reduce quagga mussel (Dreissena rostriformis bugensis) spawning and fertilization success

    USGS Publications Warehouse

    Boegehold, Anna G; Johnson, Nicholas; Ran, Jeffrey L; Kashian, Donna R

    2018-01-01

    exposure to cyanobacteria can inhibit quagga mussel spawning and fertilization. We assessed spawning in the presence of serotonin, a known spawning inducer, where adult quagga mussels placed in individual vials were exposed to 13 cyanobacteria cultures and purified algal toxin (microcystin-LR) with artificial lake water as the control. Fertilization success was evaluated by combining eggs with sperm in conjunction with cyanobacteria, and enumerating zygote formation marked by cellular cleavage. Several cyanobacterial strains reduced spawning and fertilization success, but microcystin-LR had no effect. Fertilization was more sensitive to cyanobacteria than gamete release. Only 1 culture, Aphanizomenon flos-aquae, inhibited spawning, whereas 6 cultures consisting of Anabaena flos-aquae, Dolichospermum lemmermanii, Gloeotrichia echinulata, Lyngbya wollei, and 2 Microcystis aeruginosa isolates reduced fertilization rates by up to 44%. The effects of cyanobacteria on reproduction in invasive freshwater mussels in the wild have not yet been identified. However, our laboratory studies show that concentrations of cyanobacteria that are possible during bloom conditions probably limit reproduction. Reproductive consequences on wild populations may become more prevalent as cyanobacteria blooms occur earlier in the year, making overlap between blooms and mussel spawning more common. Describing the mechanism by which cyanobacteria inhibit spawning and fertilization could reveal novel control methods to limit reproduction of this invasive species.

  16. [Microcystin safety study during Cyanobacteria removal by pressure enhanced coagulation process].

    PubMed

    Jiang, Xin-Yue; Luan, Qing; Cong, Hai-Bing; Xu, Si-Tao; Liu, Yu-Jiao; Zhu, Xue-Yuan

    2014-11-01

    Pressure enhanced coagulation and sedimentation technique is an effective way for blue algae treatment. It is not clear whether Cyanobacteria balloon rupture will cause Cyanobacteria cells rupture, resulting in high intracellular concentrations of microcystin LR leak into the water, affecting drinking water safety. Therefore, in this study experimental comparative study of pressure and pre-oxidation of water containing Cyanobacteria was carried out to examine the microcystin LR concentration changes and Cyanobacteria removal efficiency. The results showed that microcystin concentration increase was not significant by the pre-treatment with Cyanobacteria water pressure, while the pre-oxidation process caused a significant increase in the concentration of microcystin. After 0.5-0.8 MPa pressure coagulation and sedimentation, removal of Cyanobacteria basically was over 90%, up to 93.5%, while the removal rate by pre-oxidation was low and unstable. Effluent turbidity is also significantly better in the pre-pressure method than the pre-oxidation. The results indicated that pressure enhanced coagulation is a safe and reliable method for Cyanobacteria removal.

  17. Role of Spermidine in Overwintering of Cyanobacteria

    PubMed Central

    Zhu, Xiangzhi; Li, Qiong; Yin, Chuntao; Fang, Xiantao

    2015-01-01

    ABSTRACT Polyamines are found in all groups of cyanobacteria, but their role in environmental adaptation has been barely investigated. In Synechocystis sp. strain PCC 6803, inactivation of spermidine synthesis genes significantly reduced the survivability under chill (5°C)-light stress, and the survivability could be restored by addition of spermidine. To analyze the effects of spermidine on gene expression at 5°C, lacZ was expressed from the promoter of carboxy(nor)spermidine decarboxylase gene (CASDC) in Synechocystis. Synechocystis 6803::PCASDC-lacZ pretreated at 15°C showed a high level of LacZ activity for a long period of time at 5°C; without the pretreatment or with protein synthesis inhibited at 5°C, the enzyme activity gradually decreased. In a spermidine-minus mutant harboring PCASDC-lacZ, lacZ showed an expression pattern as if protein synthesis were inhibited at 5°C, even though the stability of its mRNA increased. Four other genes, including rpoA that encodes the α subunit of RNA polymerase, showed similar expression patterns. The chill-light stress led to a rapid increase of protein carbonylation in Synechocystis. The protein carbonylation then quickly returned to the background level in the wild type but continued to slowly increase in the spermidine-minus mutant. Our results indicate that spermidine promotes gene expression and replacement of damaged proteins in cyanobacteria under the chill-light stress in winter. IMPORTANCE Outbreak of cyanobacterial blooms in freshwater lakes is a worldwide environmental problem. In the annual cycle of bloom-forming cyanobacteria, overwintering is the least understood stage. Survival of Synechocystis sp. strain PCC 6803 under long-term chill (5°C)-light stress has been established as a model for molecular studies on overwintering of cyanobacteria. Here, we show that spermidine, the most common polyamine in cyanobacteria, promotes the survivability of Synechocystis under long-term chill-light stress and

  18. Marine and giant viruses as indicators of a marine microbial community in a riverine system.

    PubMed

    Dann, Lisa M; Rosales, Stephanie; McKerral, Jody; Paterson, James S; Smith, Renee J; Jeffries, Thomas C; Oliver, Rod L; Mitchell, James G

    2016-12-01

    Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure.

    PubMed

    Henderson, Peter A; Magurran, Anne E

    2010-05-22

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.

  20. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388

  1. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes.

    PubMed

    Genuário, Diego Bonaldo; Andreote, Ana Paula Dini; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2017-04-01

    Studies investigating the diversity of cyanobacteria from tropical environments are scarce, especially those devoted to the isolation and molecular characterization of the isolated strains. Among the Brazilian biomes, Pantanal has mainly been examined through microscopic observation of environmental samples, resulting in lists of morphotypes without any genetic information. Recently, two studies were conducted evaluating the morphologic and genetic diversity of cultured non-heterocytous cyanobacteria in this biome, which resulted in the separation and description of two novel genera. In order to complement the diversity of cultured cyanobacteria from saline-alkaline lakes in Pantanal, the present study is dedicated to the examination of cultured nitrogen-fixing heterocytous cyanobacteria from this extreme and underexplored environment. A total of fourteen cyanobacterial strains were isolated. According to morphological examination they belong to the order Nostocales and to the subsections IV.I and IV.II, according to the International Code of Nomenclature for Algae, Fungi and Plants and the Bergey's Manual of Systematic Bacteriology, respectively. Phylogenetic evaluation of their 16S rRNA gene sequences resulted in the formation of five clusters. Among them, one is clearly related to the genus Anabaenopsis whilst the remaining clusters may represent new genetic lineages. These novel sequences aid in the delimitation of problematic groups, especially those containing sequences belonging to mixed genera. The application of both morphologic and phylogenetic studies has proven to be an important tool in resolving problematic groups in cyanobacteria systematics. This strategy is essential in order to detect novel cyanobacteria genera from other tropical environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cyanobacteria and cyanotoxins at the river-estuarine transition.

    PubMed

    Bukaveckas, Paul A; Franklin, Rima; Tassone, Spencer; Trache, Brendan; Egerton, Todd

    2018-06-01

    We examined seasonal and longitudinal patterns in the occurrence of toxic cyanobacteria in the James River Estuary (Virginia). Highest chlorophyll and cyanobacteria levels were observed in the tidal freshwater segment, particularly during dry summers when freshwater replacement time was long. Cyanobacteria accounted for a small proportion of phytoplankton biomass (7-15%), and Microcystis comprised a small proportion of the cyanobacteria (<1%). Despite this, measureable levels of microcystin were commonly observed in water (>85% of samples in July, August and September), fish tissues (87% of planktivorous fishes) and shellfish (83% of individuals). Generic indicators of algal blooms (chlorophyll and algal biomass) had limited utility for predicting microcystin concentrations. However, chlorophyll was found to be a useful predictor for the probability of exceeding specific toxin thresholds. Tissue microcystin concentrations were highest in fish and shellfish collected from the tidal fresh segment, but were detectable in biota collected from the oligohaline at distances 50 km seaward. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Determination of the Glycogen Content in Cyanobacteria.

    PubMed

    De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-07-17

    Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.

  4. Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria.

    PubMed

    Gentili, Francesco; Nilsson, Marie-Charlotte; Zackrisson, Olle; DeLuca, Thomas H; Sellstedt, Anita

    2005-12-01

    Cyanobacteria colonizing the feather moss Pleurozium schreberi were isolated from moss samples collected in northern Sweden and subjected to physiological and molecular characterization. Morphological studies of isolated and moss-associated cyanobacteria were carried out by light microscopy. Molecular tools were used for cyanobacteria identification, and a reconstitution experiment of the association between non-associative mosses and cyanobacteria was conducted. The influence of temperature on N2 fixation in the different cyanobacterial isolates and the influence of light and temperature on N2-fixation rates in the moss were studied using the acetylene reduction assay. Two different cyanobacteria were effectively isolated from P. schreberi: Nostoc sp. and Calothrix sp. A third genus, Stigonema sp. was identified by microscopy, but could not be isolated. The Nostoc sp. was found to fix N2 at lower temperatures than Calothrix sp. Nostoc sp. and Stigonema sp. were the predominant cyanobacteria colonizing the moss. The attempt to reconstitute the association between the moss and cyanobacteria was successful. The two isolated genera of cyanobacteria in feather moss samples collected in northern Sweden differ in their temperature optima, which may have important ecological implications.

  5. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    PubMed

    Bibby, Thomas S; Zhang, Yinan; Chen, Min

    2009-01-01

    Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron-limited, high-nutrient low-chlorophyll region of

  6. Grazing livestock are exposed to terrestrial cyanobacteria.

    PubMed

    McGorum, Bruce C; Pirie, R Scott; Glendinning, Laura; McLachlan, Gerry; Metcalf, James S; Banack, Sandra A; Cox, Paul A; Codd, Geoffrey A

    2015-02-25

    While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins β-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.

  7. Terpenoids and Their Biosynthesis in Cyanobacteria

    PubMed Central

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  8. Cyanobacteria reduce quagga mussel (Dreissena rostriformis bugensis) spawning and fertilization success

    USGS Publications Warehouse

    Boegehold, Anna G.; Johnson, Nicholas; Ran, Jeffrey L.; Kashian, Donna R.

    2018-01-01

    Quagga mussels (Dreissena rostriformis bugensis) are highly fecund broadcast spawners invasive to freshwaters of North America and western Europe. We hypothesized that environmental cues from phytoplankton can trigger gamete release in quagga mussels. Nutritious algae may stimulate dreissenid spawning, but less palatable food, such as bloom-forming cyanobacteria, could be a hindrance. The objective of our study was to test whether exposure to cyanobacteria can inhibit quagga mussel spawning and fertilization. We assessed spawning in the presence of serotonin, a known spawning inducer, where adult quagga mussels placed in individual vials were exposed to 13 cyanobacteria cultures and purified algal toxin (microcystin-LR) with artificial lake water as the control. Fertilization success was evaluated by combining eggs with sperm in conjunction with cyanobacteria, and enumerating zygote formation marked by cellular cleavage. Several cyanobacterial strains reduced spawning and fertilization success, but microcystin-LR had no effect. Fertilization was more sensitive to cyanobacteria than gamete release. Only 1 culture, Aphanizomenon flos-aquae, inhibited spawning, whereas 6 cultures consisting of Anabaena flos-aquae, Dolichospermum lemmermanii, Gloeotrichia echinulata, Lyngbya wollei, and 2 Microcystis aeruginosa isolates reduced fertilization rates by up to 44%. The effects of cyanobacteria on reproduction in invasive freshwater mussels in the wild have not yet been identified. However, our laboratory studies show that concentrations of cyanobacteria that are possible during bloom conditions probably limit reproduction. Reproductive consequences on wild populations may become more prevalent as cyanobacteria blooms occur earlier in the year, making overlap between blooms and mussel spawning more common. Describing the mechanism by which cyanobacteria inhibit spawning and fertilization could reveal novel control methods to limit reproduction of this invasive

  9. Electrochemical inactivation of cyanobacteria and microcystin degradation using a boron-doped diamond anode - A potential tool for cyanobacterial bloom control.

    PubMed

    Meglič, Andrej; Pecman, Anja; Rozina, Tinkara; Leštan, Domen; Sedmak, Bojan

    2017-03-01

    Cyanobacterial blooms are global phenomena that can occur in calm and nutrient-rich (eutrophic) fresh and marine waters. Human exposure to cyanobacteria and their biologically active products is possible during water sports and various water activities, or by ingestion of contaminated water. Although the vast majority of harmful cyanobacterial products are confined to the interior of the cells, these are eventually released into the surrounding water following natural or artificially induced cell death. Electrochemical oxidation has been used here to damage cyanobacteria to halt their proliferation, and for microcystin degradation under in-vitro conditions. Partially spent Jaworski growth medium with no addition of supporting electrolytes was used. Electrochemical treatment resulted in the cyanobacterial loss of cell-buoyancy regulation, cell proliferation arrest, and eventual cell death. Microcystin degradation was studied separately in two basic modes of treatment: batch-wise flow, and constant flow, for electrolytic-cell exposure. Batch-wise exposure simulates treatment under environmental conditions, while constant flow is more appropriate for the study of boron-doped diamond electrode efficacy under laboratory conditions. The effectiveness of microcystin degradation was established using high-performance liquid chromatography-photodiode array detector analysis, while the biological activities of the products were estimated using a colorimetric protein phosphatase-1 inhibition assay. The results indicate potential for the application of electro-oxidation methods for the control of bloom events by taking advantage of specific intrinsic ecological characteristics of bloom-forming cyanobacteria. The applicability of the use of boron-doped diamond electrodes in remediation of water exposed to cyanobacteria bloom events is discussed. Copyright © 2016. Published by Elsevier B.V.

  10. Expression of foreign genes in filamentous cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuritz, T.; Wolk, C.P.

    1993-06-01

    Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganisms, such as cyanobacteria, whose metabolism is dependent on the presence of chloride in the medium. Transcription of fcbAB under the control of a variety of promoters was monitored by placing luxAB (encoding luciferase) downstream from fcbAB, and by measuring light emission from luciferase. They believemore » that the system that they have described has value as a means to screen for factors influencing transcription of foreign genes in cyanobacteria.« less

  11. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    PubMed

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria

    NASA Astrophysics Data System (ADS)

    Thacker, R.; Ginsburg, D.; Paul, V.

    2001-05-01

    Although phase shifts on coral reefs from coral-dominated to algal-dominated communities have been attributed to the effects of increased nutrient availability due to eutrophication and reduced herbivore abundance due to overfishing and disease, these factors have rarely been manipulated simultaneously. In addition, few studies have considered the effects of these factors on benthic, filamentous cyanobacteria (blue-green algae) as well as macroalgae. We used a combination of herbivore-exclusion cages and nutrient enrichment to manipulate herbivore abundance and nutrient availability, and measured the impacts of these treatments on macroalgal and cyanobacterial community structure. In the absence of cages, surface cover of the cyanobacterium Tolypothrix sp. decreased, while surface cover of the cyanobacteria Oscillatoria spp. increased. Cyanobacterial cover decreased in partial cages, and Tolypothrix sp. cover decreased further in full cages. Lower cyanobacterial cover and biomass were correlated with higher macroalgal cover and biomass. Dictyota bartayresiana dominated the partial cages, while Padina tenuis and Tolypiocladia glomerulata recruited into the full cages. Palatability assays demonstrated that herbivore-exclusion shifted macroalgal species composition from relatively unpalatable to relatively palatable species. Nutrient enrichment interacted with herbivore exclusion to increase the change in cover of D. bartayresiana in the uncaged and fully caged plots, but did not affect the final biomass of D. bartayresiana among treatments. Nutrient enrichment did not significantly affect the cover or biomass of any other taxa. These results stress the critical role of herbivory in determining coral reef community structure and suggest that the relative palatabilities of dominant algae, as well as algal growth responses to nutrient enrichment, will determine the potential for phase shifts to algal-dominated communities.

  13. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    PubMed

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-29

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  14. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    PubMed

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Copyright © 2015. Published by Elsevier Ltd.

  15. Nitrogen Fixed By Cyanobacteria Is Utilized By Deposit-Feeders

    PubMed Central

    Karlson, Agnes M. L.; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ15N close to -2‰, we expected the δ15N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ15N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and intra- and

  16. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.

    PubMed

    Karlson, Agnes M L; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ(15)N close to -2‰, we expected the δ(15)N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ(15)N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and

  17. Limited Multiplication of Symbiotic Cyanobacteria of Azolla spp. on Artificial Media

    PubMed Central

    Tang, L. F.; Watanabe, I.; Liu, C. C.

    1990-01-01

    We examined various media and conditions to isolate symbiotic cyanobacteria from the leaf cavities of Azolla spp. Cyanobacteria survived and multiplied to a limited extent on a medium with fructose, Casamino Acids, yeast extract, and NaNO3 under 1% O2. These cyanobacteria were antigenically identical to the endosymbionts. Images PMID:16348366

  18. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula.

    PubMed

    Compte-Port, Sergi; Subirats, Jèssica; Fillol, Mireia; Sànchez-Melsió, Alexandre; Marcé, Rafael; Rivas-Ruiz, Pedro; Rosell-Melé, Antoni; Borrego, Carles M

    2017-11-01

    Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.

  19. Cyanobacteria blooms: effects on aquatic ecosystems.

    PubMed

    Havens, Karl E

    2008-01-01

    Cyanobacteria become increasingly dominant as concentrations of TP and TN increase during eutrophication of lakes, rivers and estuaries. Temporal dynamics of cyanobacteria blooms are variable--in some systems persistent blooms occur in summer to fall, whereas in other systems blooms are more sporadic. Cyanobacteria blooms have a wide range of possible biological impacts including potential toxic effects on other algae, invertebrates and fish, impacts to plants and benthic algae due to shading, and impacts to food web function as large inedible algae produce a bottleneck to C and energy flow in the plankton food web. In lakes with dense blooms of cyanobacteria, accumulation of organic material in lake sediments and increased bacterial activity also may lead to anoxic conditions that alter the structure of benthic macro-invertebrates. Diffusive internal P loading may increase, and hypolimnetic anoxia may lead to a loss of piscivorous fish that require a summer cold water refuge in temperate lakes. Ecosystem changes associated with frequent blooms may result in delayed response of lakes, rivers and estuaries to external nutrient load reduction. Despite numerous case studies and a vast literature on species-specific responses, community level effects of cyanobacterial blooms are not well understood--in particular the realized impacts of toxins and changes in food web structure/function. These areas require additional research given the prevalence of toxic blooms in the nation's lakes, rivers and coastal waters--systems that provide a wide range of valued ecosystem services.

  20. Biotransformation of Hg(II) by cyanobacteria.

    PubMed

    Lefebvre, Daniel D; Kelly, David; Budd, Kenneth

    2007-01-01

    The biotransformation of Hg(II) by cyanobacteria was investigated under aerobic and pH-controlled culture conditions. Mercury was supplied as HgCl(2) in amounts emulating those found under heavily impacted environmental conditions where bioremediation would be appropriate. The analytical procedures used to measure mercury within the culture solution, including that in the cyanobacterial cells, used reduction under both acid and alkaline conditions in the presence of SnCl(2). Acid reduction detected free Hg(II) ions and its complexes, whereas alkaline reduction revealed that meta-cinnabar (beta-HgS) constituted the major biotransformed and cellularly associated mercury pool. This was true for all investigated species of cyanobacteria: Limnothrix planctonica (Lemm.), Synechococcus leopoldiensis (Racib.) Komarek, and Phormidium limnetica (Lemm.). From the outset of mercury exposure, there was rapid synthesis of beta-HgS and Hg(0); however, the production rate for the latter decreased quickly. Inhibitory studies using dimethylfumarate and iodoacetamide to modify intra- and extracellular thiols, respectively, revealed that the former thiol pool was required for the conversion of Hg(II) into beta-HgS. In addition, increasing the temperature enhanced the amount of beta-HgS produced, with a concomitant decrease in Hg(0) volatilization. These findings suggest that in the environment, cyanobacteria at the air-water interface could act to convert substantial amounts of Hg(II) into beta-HgS. Furthermore, the efficiency of conversion into beta-HgS by cyanobacteria may lead to the development of applications in the bioremediation of mercury.

  1. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    USGS Publications Warehouse

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  2. The RNase P RNA from cyanobacteria: short tandemly repeated repetitive (STRR) sequences are present within the RNase P RNA gene in heterocyst-forming cyanobacteria.

    PubMed Central

    Vioque, A

    1997-01-01

    The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA. PMID:9254706

  3. The Cyanobacteria-Dominated Sponge Dactylospongia elegans in the South China Sea: Prokaryotic Community and Metagenomic Insights.

    PubMed

    Gao, Zhao-Ming; Zhou, Guo-Wei; Huang, Hui; Wang, Yong

    2017-01-01

    The South China Sea is a special reservoir of sponges of which prokaryotic communities are less studied. Here, a new record of the sponge Dactylospongia elegans is reported near the coast of Jinqing Island in the South China Sea, and its prokaryotic community is comprehensively investigated. Sponge specimens displayed lower microbial diversity compared with surrounding seawater. At the phylum level, prokaryotic communities were consistently dominated by Proteobacteria, followed by Cyanobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Gemmatimonadetes, Thaumarchaeota, and Poribacteria. Operational taxonomic unit (OTU) analysis alternatively showed that the most abundant symbiont was the sponge-specific cyanobacterial species " Candidatus Synechococcus spongiarum," followed by OTUs belonging to the unidentified Chloroflexi and Acidobacteria. Phylogenetic tree based on 16S-23S internal transcribed spacer regions indicated that the dominated cyanobacterial OTU represented a new clade of " Ca . Synechococcus spongiarum." More reliable metagenomic data further revealed that poribacterial symbionts were highly abundant and only secondary to the cyanobacterial symbiont. One draft genome for each of the Cyanobacteria, Chloroflexi and Acidobacteria and three poribacterial genomes were extracted from the metagenomes. Among them, genomes affiliated with the Chloroflexi and Acidobacteria were reported for the first time in sponge symbionts. Eukaryotic-like domains were found in all the binned genomes, indicating their potential symbiotic roles with the sponge host. The high quality of the six recovered genomes of sponge symbionts from the sponge D. elegans makes it possible to understand their symbiotic roles and interactions with the sponge host as well as among one another.

  4. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria

    NASA Technical Reports Server (NTRS)

    Golubic, S.; Sergeev, V. N.; Knoll, A. H.

    1995-01-01

    The genus Archaeoellipsoides Horodyski & Donaldson comprises large (up to 135 micrometers long) ellipsoidal and rod-shaped microfossils commonly found in silicified peritidal carbonates of Mesoproterozoic age. Based on morphometric and sedimentary comparisons with the akinetes of modern bloom-forming Anabaena species, Archaeoellipsoides is interpreted as the fossilized remains of akinetes produced by planktic heterocystous cyanobacteria. These fossils set a minimum date for the evolution of derived cyanobacteria capable of marked cell differentiation, and they corroborate geochemical evidence indicating that atmospheric oxygen levels were well above 1% of present day levels 1,500 million years ago.

  5. Nitrogen fixation and hydrogen metabolism in cyanobacteria.

    PubMed

    Bothe, Hermann; Schmitz, Oliver; Yates, M Geoffrey; Newton, William E

    2010-12-01

    This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.

  6. A simple recovery process for biodegradable plastics accumulated in cyanobacteria treated with ionic liquids.

    PubMed

    Kobayashi, Daigo; Fujita, Kyoko; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2015-02-01

    Here, we proposed a simple recovery process for poly(3-hydroxybutyrate) (PHB) accumulated in cyanobacteria by using ionic liquids (ILs), which dissolve cyanobacteria but not PHB. First, we investigated the effects of IL polarity on hydrogen-bonding receipt ability (β value) and hydrogen-bonding donating ability (α value) and evaluated the subsequent dissolution of cyanobacteria. We found that ILs having α values higher than approximately 0.4 and β values of approximately 0.9 were suitable for dissolution of cyanobacteria. In particular, 1-ethyl-3-methylimidazolium methylphosphonate ([C2mim][MeO(H)PO2]) was found to dissolve cyanobacteria components, but not PHB. Thus, we verified that PHB produced in cyanobacteria could be separated and recovered by simple filtering after dissolution of cyanobacteria in [C2mim][MeO(H)PO2]. Using this technique, more than 98 % of PHB was obtained on the filter as residues separated from cyanobacteria. Furthermore, [C2mim][MeO(H)PO2] maintained the ability to dissolve cyanobacteria after a simple recycling procedure.

  7. Growth, physiochemical and antioxidant responses of overwintering benthic cyanobacteria to hydrogen peroxide.

    PubMed

    Chen, Chao; Yang, Zhen; Kong, Fanxiang; Zhang, Min; Yu, Yang; Shi, Xiaoli

    2016-12-01

    The recruitment of overwintering benthic cyanobacteria from the sediment surface is important for the development of cyanobacterial blooms during warm spring seasons. Thus, controlling the growth of cyanobacteria at the benthic stage to inhibit their recruitment is vital to control or delay the formation of summer blooms. In this study, overwintering benthic cyanobacteria were exposed to ascending hydrogen peroxide (H 2 O 2 ) concentrations (0, 1, 5, and 20 mg/L) in a simulated overwintering environment. Photosynthetic pigments, physiochemical features, and antioxidant responses were evaluated to determine the inhibitory effects of H 2 O 2 on the growth of benthic cyanobacteria and to identify the potential mechanisms thereof. These H 2 O 2 -treated cyanobacteria were then collected through filtration and transferred to an optimum environment to evaluate their recovery capacity. The results showed that chlorophyll a and phycocyanin contents, photosynthetic yield, and esterase activity decreased significantly in H 2 O 2 treated groups compared to the control. The activities of superoxide dismutase (SOD) and catalase (CAT) in benthic cyanobacteria were inhibited after 72 h exposure to H 2 O 2 , while the malondialdehyde (MDA) contents were stimulated at the same time. These results indicate that H 2 O 2 can inhibit the growth of benthic cyanobacteria, and H 2 O 2 -induced oxidative damage might be one of the mechanisms involved. The recovery experiment showed that the impairment of benthic cyanobacteria was temporary at a low dose of 1 mg/L H 2 O 2 , but permanent damage was induced when H 2 O 2 concentrations were increased to 5 and 20 mg/L. Overall, our results highlight that H 2 O 2 is a potential cyanobacteria inhibitor and can be used to decreasing the biomass of overwintering cyanobacteria, and could further control the intensity of cyanobacteria during the growth seasons. Copyright © 2016. Published by Elsevier Ltd.

  8. Ecosystem consequences of cyanobacteria in the northern Baltic Sea.

    PubMed

    Karjalainen, Miina; Engström-Ost, Jonna; Korpinen, Samuli; Peltonen, Heikki; Pääkkönen, Jari-Pekka; Rönkkönen, Sanna; Suikkanen, Sanna; Viitasalo, Markku

    2007-04-01

    Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective

  9. Chemodiversity in Freshwater and Terrestrial Cyanobacteria – a Source for Drug Discovery

    PubMed Central

    Chlipala, George E.; Mo, Shunyan; Orjala, Jimmy

    2011-01-01

    Cyanobacteria are considered a promising source for new pharmaceutical lead compounds and a large number of chemically diverse and bioactive metabolites have been obtained from cyanobacteria over the last few decades. This review highlights the structural diversity of natural products from freshwater and terrestrial cyanobacteria. The review is divided into three areas: cytotoxic metabolites, protease inhibitors, and antimicrobial metabolites. The first section discusses the potent cytotoxins cryptophycin and tolytoxin. The second section covers protease inhibitors from freshwater and terrestrial cyanobacteria and is divided in five subsections according to structural class: aeruginosins, cyanopeptolins, microviridins, anabaenopeptins, and microginins. Structure activity relationships are discussed within each protease inhibitor class. The third section, antimicrobial metabolites from freshwater and terrestrial cyanobacteria, is divided by chemical class in three subsections: alkaloids, peptides and terpenoids. These examples emphasize the structural diversity and drug development potential of natural products from freshwater and terrestrial cyanobacteria. PMID:21561419

  10. Draft Genome Sequence of Muricauda sp. Strain K001 Isolated from a Marine Cyanobacterial Culture.

    PubMed

    Vizzotto, Carla S; Lopes, Fabyano A C; Green, Stefan J; Steindorff, Andrei S; Walter, Juline M; Thompson, Fabiano L; Krüger, Ricardo H

    2018-05-31

    We report the whole-genome sequence of Muricauda sp. strain K001 isolated from a marine cyanobacterial culture. This genome sequence will improve our understanding of the influence of heterotrophic bacteria on the physiology of cyanobacteria and may contribute to the development of new natural products. Copyright © 2018 Vizzotto et al.

  11. Utilization of the terrestrial cyanobacteria

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yokoshima, Mika; Yamaguchi, Yuji; Takenaka, Hiroyuki

    The terrestrial, N _{2}-fixing cyanobacterium, Nostoc commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. Previously, the first author indicated that desiccation related genes were analyzed and the suggested that the genes were related to nitrogen fixation and metabolisms. In this report, we suggest possibility of agriculture, using the cyanobacterium. Further, we also found radioactive compounds accumulated N. commune (cyanobacterium) in Fukushima, Japan after nuclear accident. Thus, it is investigated to decontaminate radioactive compounds from the surface soil by the cyanobacterium and showed to accumulate radioactive compounds using the cyanobacterium. We will discuss utilization of terrestrial cyanobacteria under closed environment. Keyword: Desiccation, terrestrial cyanobacteria, bioremediation, agriculture

  12. Positive relationships between genetic diversity and abundance in fishes.

    PubMed

    McCusker, Megan R; Bentzen, Paul

    2010-11-01

    Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and 'abundance' compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out. © 2010 Blackwell Publishing Ltd.

  13. Marine litter abundance and distribution on beaches on the Isle of Rügen considering the influence of exposition, morphology and recreational activities.

    PubMed

    Hengstmann, Elena; Gräwe, Dennis; Tamminga, Matthias; Fischer, Elke Kerstin

    2017-02-15

    The abundance, weight and composition of marine debris were determined at the northwest coast of the Isle of Rügen in 2015. A total number of 1115 macrolitter items were registered, resulting in an abundance of 304±88.96 items per 100m of beach length and therefore being greater than the abundances found for other beaches at the Baltic Sea. Macrolitter items were predominantly composed of plastic, on average 83%. The four beaches under investigation have different exposition as well as touristic levels. The differing influence of wind and water currents as well as recreational activities on the macrolitter at these beaches was detectable. The distribution of items within a beach segment was analyzed by implementing D-GPS and drone aerial photography. The results of this analysis suggested that the identity of the substrate as well as the presence of vegetation are both major influencing factors in the macrolitter distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Metabolic engineering tools in model cyanobacteria.

    PubMed

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement.

    PubMed

    Lee, On On; Chung, Hong Chun; Yang, Jiangke; Wang, Yong; Dash, Swagatika; Wang, Hao; Qian, Pei-Yuan

    2014-07-01

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups.

  16. Human Health and Toxic Cyanobacteria – What do we know? ...

    EPA Pesticide Factsheets

    Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and climate change. We present the evidence for adverse human health effects associated with exposure to cyanobacteria and their toxins in drinking water, recreational water and via medical procedures. We will discuss the range of effects reported to be associated with exposure, and the current state of the epidemiology of toxic cyanobacteria. This is a description of a proposed presentation and does not necessarily reflect EPA policy. Abstract will be presented at the Water and Health conference during a session on water quality challenges in North Carolina. This summary of existing published scientific reports on the associations between adverse human health effects and toxic cyanobacteria will be of interest to the public health and water researchers in the audience. This work fits topically in the Task: SSWR 4.01B

  17. Marine Viruses: Truth or Dare

    NASA Astrophysics Data System (ADS)

    Breitbart, Mya

    2012-01-01

    Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.

  18. A feasibility study of large-scale photobiological hydrogen production utilizing mariculture-raised cyanobacteria.

    PubMed

    Sakurai, Hidehiro; Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito

    2010-01-01

    In order to decrease CO(2) emissions from the burning of fossil fuels, the development of new renewable energy sources sufficiently large in quantity is essential. To meet this need, we propose large-scale H(2) production on the sea surface utilizing cyanobacteria. Although many of the relevant technologies are in the early stage of development, this chapter briefly examines the feasibility of such H(2) production, in order to illustrate that under certain conditions large-scale photobiological H(2) production can be viable. Assuming that solar energy is converted to H(2) at 1.2% efficiency, the future cost of H(2) can be estimated to be about 11 (pipelines) and 26.4 (compression and marine transportation) cents kWh(-1), respectively.

  19. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community

    PubMed Central

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  20. Mars ozone: Mariner 9 revisited

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1994-01-01

    The efficacy of the UV spectroscopy technique used by Mariner 9 to remotely measure ozone abundance at Mars is discussed. Previously-inferred ozone abundances could be underestimated by as much as a factor of 3, and much of the observed variability in the ozone abundance could be due to temporal and spatial variability in cloud and dust amount.

  1. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-10-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.

  2. Rehabilitating the cyanobacteria - niche partitioning, resource use efficiency and phytoplankton community structure during diazotrophic cyanobacterial blooms.

    PubMed

    Olli, Kalle; Klais, Riina; Tamminen, Timo

    2015-09-01

    Blooms of nitrogen-fixing cyanobacteria are recurrent phenomena in marine and freshwater habitats, and their supplying role in aquatic biogeochemical cycles is generally considered vital. The objective of this study was to analyse whether an increasing proportion of nitrogen-fixing cyanobacteria affects (i) the composition of the non-diazotrophic component of ambient phytoplankton communities and (ii) resource use efficiency (RUE; ratio of Chl a to total nutrients) - an important ecosystem function. We hypothesize that diazotrophs increase community P use and decrease N use efficiencies, as new N is brought into the system, relaxing N, and concomitantly aggravating P limitation. We test this by analysing an extensive data set from the Baltic Sea (> 3700 quantitative phytoplankton samples), known to harbour conspicuous and recurrent blooms of Nodularia spumigena and Aphanizomenon sp.System-level phosphorus use efficiency (RUE P ) was positively related to high proportion of diazotrophic cyanobacteria, suggesting aggravation of phosphorus limitation. However, concomitant decrease of nitrogen use efficiency (RUE N ) was not observed. Nodularia spumigena , a dominant diazotroph and a notorious toxin producer, had a significantly stronger relationship with RUE P , compared to the competing non-toxic Aphanizomenon sp., confirming niche differentiation in P acquisition strategies between the major bloom-forming cyanobacterial species in the Baltic Sea. Nodularia occurrences were associated with stronger temperature stratification in more offshore environments, indicating higher reliance on in situ P regeneration.By using constrained and unconstrained ordination, permutational multivariate analysis of variance and local similarity analysis, we show that diazotrophic cyanobacteria explained no more than a few percentage of the ambient phytoplankton community variation. The analyses furthermore yielded rather evenly distributed negative and positive effects on individual

  3. Seasonal variation in the abundance of marine plastic debris in the estuary of a subtropical macro-scale drainage basin in South China.

    PubMed

    Cheung, Pui Kwan; Cheung, Lewis Ting On; Fok, Lincoln

    2016-08-15

    Marine plastic debris, including microplastic debris (0.315-5mm) and large plastic debris (>5mm), was collected from 25 beaches in Hong Kong during a wet summer season (June-August 2014) and the following dry winter season (January-March 2015). Wilcoxon signed rank tests were used to compare the abundances and weights of seven categories of plastic debris between the two seasons. The results showed that the abundances and weights were significantly higher (p<0.05) in the wet season than in the dry season. Additionally, seasonal differences were detected only at the sites that were located on the west coast of Hong Kong and not at the sites on the east coast. These results suggest that the Pearl River Estuary on the west of Hong Kong plays a prominent role in the abundance and distribution of plastic debris in Hong Kong. In addition, the study indicates that estimates of microplastic abundance may be biased if samples are collected only during the wet or dry season if the sample locations are strongly influenced by a seasonal variation of riverine inputs, such as from the Pearl River. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  5. Tropical dermatology: marine and aquatic dermatology.

    PubMed

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  6. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp.

    PubMed Central

    Dias, Elsa; Oliveira, Micaela; Jones-Dias, Daniela; Vasconcelos, Vitor; Ferreira, Eugénia; Manageiro, Vera; Caniça, Manuela

    2015-01-01

    Freshwater is a vehicle for the emergence and dissemination of antibiotic resistance. Cyanobacteria are ubiquitous in freshwater, where they are exposed to antibiotics and resistant organisms, but their role on water resistome was never evaluated. Data concerning the effects of antibiotics on cyanobacteria, obtained by distinct methodologies, is often contradictory. This emphasizes the importance of developing procedures to understand the trends of antibiotic susceptibility in cyanobacteria. In this study we aimed to evaluate the susceptibility of four cyanobacterial isolates from different genera (Microcystis aeruginosa, Aphanizomenon gracile, Chrisosporum bergii, Planktothix agradhii), and among them nine isolates from the same specie (M. aeruginosa) to distinct antibiotics (amoxicillin, ceftazidime, ceftriaxone, kanamycine, gentamicine, tetracycline, trimethoprim, nalidixic acid, norfloxacin). We used a method adapted from the bacteria standard broth microdilution. Cyanobacteria were exposed to serial dilution of each antibiotic (0.0015–1.6 mg/L) in Z8 medium (20 ± 1°C; 14/10 h L/D cycle; light intensity 16 ± 4 μEm−2s−1). Cell growth was followed overtime (OD450nm/microscopic examination) and the minimum inhibitory concentrations (MICs) were calculated for each antibiotic/isolate. We found that β-lactams exhibited the lower MICs, aminoglycosides, tetracycline and norfloxacine presented intermediate MICs; none of the isolates were susceptible to trimethoprim and nalidixic acid. The reduced susceptibility of all tested cyanobacteria to some antibiotics suggests that they might be naturally non-susceptible to these compounds, or that they might became non-susceptible due to antibiotic contamination pressure, or to the transfer of genes from resistant bacteria present in the environment. PMID:26322027

  7. Genetic engineering of cyanobacteria as biodiesel feedstock.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne.; Trahan, Christine Alexandra; Jones, Howland D. T.

    2013-01-01

    Algal biofuels are a renewable energy source with the potential to replace conventional petroleum-based fuels, while simultaneously reducing greenhouse gas emissions. The economic feasibility of commercial algal fuel production, however, is limited by low productivity of the natural algal strains. The project described in this SAND report addresses this low algal productivity by genetically engineering cyanobacteria (i.e. blue-green algae) to produce free fatty acids as fuel precursors. The engineered strains were characterized using Sandias unique imaging capabilities along with cutting-edge RNA-seq technology. These tools are applied to identify additional genetic targets for improving fuel production in cyanobacteria. This proof-of-concept studymore » demonstrates successful fuel production from engineered cyanobacteria, identifies potential limitations, and investigates several strategies to overcome these limitations. This project was funded from FY10-FY13 through the President Harry S. Truman Fellowship in National Security Science and Engineering, a program sponsored by the LDRD office at Sandia National Laboratories.« less

  8. Responses to Oxidative and Heavy Metal Stresses in Cyanobacteria: Recent Advances

    PubMed Central

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2014-01-01

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. PMID:25561236

  9. Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume

    PubMed Central

    Hilton, Jason A; Satinsky, Brandon M; Doherty, Mary; Zielinski, Brian; Zehr, Jonathan P

    2015-01-01

    Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities. PMID:25514535

  10. Monitoring Cyanobacteria with Satellites Webinar

    EPA Pesticide Factsheets

    real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.

  11. Marine litter on the beaches of the Adriatic and Ionian Seas: An assessment of their abundance, composition and sources.

    PubMed

    Vlachogianni, Thomais; Fortibuoni, Tomaso; Ronchi, Francesca; Zeri, Christina; Mazziotti, Cristina; Tutman, Pero; Varezić, Dubravka Bojanić; Palatinus, Andreja; Trdan, Štefan; Peterlin, Monika; Mandić, Milica; Markovic, Olivera; Prvan, Mosor; Kaberi, Helen; Prevenios, Michael; Kolitari, Jerina; Kroqi, Gulielm; Fusco, Marina; Kalampokis, Evangelos; Scoullos, Michael

    2018-06-01

    The abundance, composition and sources of marine litter were determined on beaches located in the seven countries of the Adriatic-Ionian macroregion, namely Albania, Bosnia and Herzegovina, Croatia, Greece, Italy, Montenegro and Slovenia. A total of 70,581 marine litter items were classified and recorded through one-year long surveys carried out in 31 sites. The average litter density of 0.67 items/m 2 found within this study is considered to be relatively high. The beaches investigated differed in terms of human-induced pressures; their majority is classified either as semi-urban or semi-rural, while very few beaches could be characterized as urban or remote/natural. The majority of litter items were made of artificial/anthropogenic polymer materials accounting for 91.1% of all litter. Litter from shoreline sources accounted for 33.4% of all litter collected. The amount of litter from sea-based sources ranged in the different countries from 1.54% to 14.84%, with an average of 6.30% at regional level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Human Health and Toxic Cyanobacteria – What do we know?

    EPA Science Inventory

    Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and clima...

  13. The Cyanobacteria-Dominated Sponge Dactylospongia elegans in the South China Sea: Prokaryotic Community and Metagenomic Insights

    PubMed Central

    Gao, Zhao-Ming; Zhou, Guo-Wei; Huang, Hui; Wang, Yong

    2017-01-01

    The South China Sea is a special reservoir of sponges of which prokaryotic communities are less studied. Here, a new record of the sponge Dactylospongia elegans is reported near the coast of Jinqing Island in the South China Sea, and its prokaryotic community is comprehensively investigated. Sponge specimens displayed lower microbial diversity compared with surrounding seawater. At the phylum level, prokaryotic communities were consistently dominated by Proteobacteria, followed by Cyanobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Gemmatimonadetes, Thaumarchaeota, and Poribacteria. Operational taxonomic unit (OTU) analysis alternatively showed that the most abundant symbiont was the sponge-specific cyanobacterial species “Candidatus Synechococcus spongiarum,” followed by OTUs belonging to the unidentified Chloroflexi and Acidobacteria. Phylogenetic tree based on 16S-23S internal transcribed spacer regions indicated that the dominated cyanobacterial OTU represented a new clade of “Ca. Synechococcus spongiarum.” More reliable metagenomic data further revealed that poribacterial symbionts were highly abundant and only secondary to the cyanobacterial symbiont. One draft genome for each of the Cyanobacteria, Chloroflexi and Acidobacteria and three poribacterial genomes were extracted from the metagenomes. Among them, genomes affiliated with the Chloroflexi and Acidobacteria were reported for the first time in sponge symbionts. Eukaryotic-like domains were found in all the binned genomes, indicating their potential symbiotic roles with the sponge host. The high quality of the six recovered genomes of sponge symbionts from the sponge D. elegans makes it possible to understand their symbiotic roles and interactions with the sponge host as well as among one another. PMID:28790992

  14. Is Monoglucosyldiacylglycerol a Precursor to Monogalactosyldiacylglycerol in All Cyanobacteria?

    PubMed

    Sato, Naoki

    2015-10-01

    Monogalactosyldiacylglycerol (MGDG) is ubiquitous in the photosynthetic membranes of cyanobacteria and chloroplasts. It is synthesized by galactosylation of diacylglycerol (DAG) in the chloroplasts, whereas it is produced by epimerization of monoglucosyldiacylglycerol (GlcDG) in at least several cyanobacteria that have been analyzed such as Synechocystis sp. PCC 6803. A previous study, however, showed that the mgdE gene encoding the epimerase is absent in some cyanobacteria such as Gloeobacter violaceus, Thermosynechococcus elongatus and Acaryochloris marina. In addition, the N-terminal 'fatty acid hydroxylase' domain is lacking in the MgdE protein of Prochlorococcus marinus. These problems may cast doubt upon the general (or exclusive) role of MgdE in the epimerization of GlcDG to MGDG in cyanobacteria. In addition, GlcDG is usually present at a very low level, and the structural determination of endogenous GlcDG has not been accomplished with cyanobacterial samples. In this study, I determined the structure of GlcDG from Anabaena variabilis by (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy. I then showed that G. violaceus, T. elongatus, A. marina and P. marinus contain GlcDG. In all cases, GlcDG consisted of fewer unsaturated molecular species than MGDG, providing further evidence that GlcDG is a precursor to MGDG. The conversion of GlcDG to MGDG was also demonstrated by radiolabeling and chase experiments in G. violaceus and P. marinus. These results demonstrate that all the analyzed cyanobacteria contain GlcDG, which is converted to MGDG, and suggest that an alternative epimerase is required for MGDG synthesis in these cyanobacteria. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. A marine sink for chlorine in natural organic matter [Natural chlorination of marine organic matter

    DOE PAGES

    Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.; ...

    2015-07-06

    Chloride, Cl –, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl – is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.

  16. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    PubMed

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  17. How Close We Are to Achieving Commercially Viable Large-Scale Photobiological Hydrogen Production by Cyanobacteria: A Review of the Biological Aspects

    PubMed Central

    Sakurai, Hidehiro; Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito

    2015-01-01

    Photobiological production of H2 by cyanobacteria is considered to be an ideal source of renewable energy because the inputs, water and sunlight, are abundant. The products of photobiological systems are H2 and O2; the H2 can be used as the energy source of fuel cells, etc., which generate electricity at high efficiencies and minimal pollution, as the waste product is H2O. Overall, production of commercially viable algal fuels in any form, including biomass and biodiesel, is challenging, and the very few systems that are operational have yet to be evaluated. In this paper we will: briefly review some of the necessary conditions for economical production, summarize the reports of photobiological H2 production by cyanobacteria, present our schemes for future production, and discuss the necessity for further progress in the research needed to achieve commercially viable large-scale H2 production. PMID:25793279

  18. One Health and Toxic Cyanobacteria | Science Inventory | US ...

    EPA Pesticide Factsheets

    One Health and toxic cyanobacteria Blooms of toxic freshwater blue-green algae or cyanobacteria (HABs) have been in the news after HABs associated with human and animal health problems have been reported in Florida, California and Utah during 2016. HABs occur in warm, slow moving or stagnant surface waters that are enriched with nutrients such as nitrogen and phosphorous. People are exposed to potentially toxic HABs during recreation in contaminated water, after exposure to contaminated drinking water or to blue-green algae supplements. Animals may be exposed to toxic HABs after drinking contaminated surface waters or coming into contact with HABs then ingesting cyanobacteria from their bodies during self-grooming activities. As HABs are being reported more frequently in the US, it is important for veterinarians to secure good exposure histories and to recognize the potential signs and health consequences of HAB exposures. We will review the current knowledge about human and animal health effects associated with freshwater HABs and scenarios that pose the highest risks for illnesses and deaths. This abstract does not necessarily reflect EPA policy. This is a summary of One Health and Cyanobacteria for public health and public practice veterinarians at the American Veterinary Medical Association annual convention. This product is associated with SSWR 4.01B

  19. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2016-03-01

    This work studies how extracellular electron transfer (EET) from cyanobacteria-dominated marine microbial biofilms to solid electrodes is affected by the availability of inorganic carbon (Ci). The EET was recorded chronoamperometrically in the form of electrical current by a potentiostat in two identical photo-electrochemical cells using carbon electrodes poised at a potential of +0.6 V versus standard hydrogen electrode under 12/12 h illumination/dark cycles. The Ci was supplied by the addition of NaHCO3 to the medium and/or by sparging CO2 gas. At high Ci conditions, EET from the microbial biofilm to the electrodes was observed only during the dark phase, indicating the occurrence of a form of night-time respiration that can use insoluble electrodes as the terminal electron acceptor. At low or no Ci conditions, however, EET also occurred during illumination suggesting that, in the absence of their natural electron acceptor, some cyanobacteria are able to utilise solid electrodes as an electron sink. This may be a natural survival mechanism for cyanobacteria to maintain redox balance in environments with limiting CO2 and/or high light intensity.

  20. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  1. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity

    PubMed Central

    Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.

    2017-01-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321

  2. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.

    PubMed

    Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D

    2017-10-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

  3. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a modelmore » in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.« less

  4. Control of cytokinin and auxin homeostasis in cyanobacteria and algae.

    PubMed

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre I; Přibyl, Pavel; Šimura, Jan; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [ 3 H]trans-zeatin (transZ) and auxin ([ 3 H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [ 3 H]transZ and [ 3 H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [ 3 H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both

  5. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    PubMed Central

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre I.; Přibyl, Pavel; Šimura, Jan; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Background and Aims The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [3H]trans-zeatin (transZ) and auxin ([3H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. Methods Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography–electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [3H]transZ and [3H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. Key Results The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [3H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly

  6. Diel fluctuations in the abundance and community diversity of coastal bacterioplankton assemblages over a tidal cycle.

    PubMed

    Olapade, Ola A

    2012-01-01

    The diel change in abundance and community diversity of the bacterioplankton assemblages within the Pacific Ocean at a fixed location in Monterey Bay, California (USA) were examined with several culture-independent (i.e., nucleic acid staining, fluorescence in situ hybridization {FISH}, and 16S ribosomal RNA gene libraries) approaches over a tidal cycle. FISH analyses revealed the quantitative predominance of bacterial members belonging to the Cytophaga-Flavobacterium cluster as well as two Proteobacteria (α- and γ-) subclasses within the bacterioplankton assemblages, especially during high tide (HT) and outgoing tide (OT) than the other tidal events. While the clone libraries showed that majority of the sequences were similar to the 16S rRNA gene sequences of unknown bacteria (32% to 73%), however, the operational taxonomic units from members of the α-Proteobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria were also well represented during the four tidal events examined. Comparatively, sequence diversity was highest in OT, lowest in low tide, and very similar between HT and incoming tide. The results indicate that the dynamics of bacterial occurrence and diversity appeared to be more pronounced during HT and OT, further indicative of the ecological importance of several environmental variables including temperature, light intensity, and nutrient availability that are also concurrently fluctuating during these tidal events in marine systems.

  7. Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea.

    PubMed

    Montalvão, Sofia; Demirel, Zeliha; Devi, Prabha; Lombardi, Valter; Hongisto, Vesa; Perälä, Merja; Hattara, Johannes; Imamoglu, Esra; Tilvi, Supriya Shet; Turan, Gamze; Dalay, Meltem Conk; Tammela, Päivi

    2016-05-25

    Marine organisms constitute approximately one-half of the total global biodiversity, being rich reservoirs of structurally diverse biofunctional components. The potential of cyanobacteria, micro- and macroalgae as sources of antimicrobial, antitumoral, anti-inflammatory, and anticoagulant compounds has been reported extensively. Nonetheless, biological activities of marine fauna and flora of the Aegean Sea have remained poorly studied when in comparison to other areas of the Mediterranean Sea. In this study, we screened the antimicrobial, antifouling, anti-inflammatory and anticancer potential of in total 98 specimens collected from the Aegean Sea. Ethanol extract of diatom Amphora cf capitellata showed the most promising antimicrobial results against Candida albicans while the extract of diatom Nitzschia communis showed effective results against Gram-positive bacterium, S. aureus. Extracts from the red alga Laurencia papillosa and from three Cystoseira species exhibited selective antiproliferative activity against cancer cell lines and an extract from the brown alga Dilophus fasciola showed the highest anti-inflammatory activity as measured in primary microglial and astrocyte cell cultures as well as by the reduction of proinflammatory cytokines. In summary, our study demonstrates that the Aegean Sea is a rich source of species that possess interesting potential for developing industrial applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inferring Properties of Ancient Cyanobacteria from Biogeochemical Activity and Genomes of Siderophilic Cyanobacteria

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Brown, I. I.; Tringe, S. G.; Thomas-Keprta, K. E.; Bryant, D. A.; Sarkisova, S. S.; Malley, K.; Sosa, O.; Klatt, C. G.; McKay, D. S.

    2010-01-01

    Interrelationships between life and the planetary system could have simultaneously left landmarks in genomes of microbes and physicochemical signatures in the lithosphere. Verifying the links between genomic features in living organisms and the mineralized signatures generated by these organisms will help to reveal traces of life on Earth and beyond. Among contemporary environments, iron-depositing hot springs (IDHS) may represent one of the most appropriate natural models [1] for insights into ancient life since organisms may have originated on Earth and probably Mars in association with hydrothermal activity [2,3]. IDHS also seem to be appropriate models for studying certain biogeochemical processes that could have taken place in the late Archean and,-or early Paleoproterozoic eras [4, 5]. It has been suggested that inorganic polyphosphate (PPi), in chains of tens to hundreds of phosphate residues linked by high-energy bonds, is environmentally ubiquitous and abundant [6]. Cyanobacteria (CB) react to increased heavy metal concentrations and UV by enhanced generation of PPi bodies (PPB) [7], which are believed to be signatures of life [8]. However, the role of PPi in oxygenic prokaryotes for the suppression of oxidative stress induced by high Fe is poorly studied. Here we present preliminary results of a new mechanism of Fe mineralization in oxygenic prokaryotes, the effect of Fe on the generation of PPi bodies in CB, as well as preliminary analysis of the diversity and phylogeny of proteins involved in the prevention of oxidative stress in phototrophs inhabiting IDHS.

  9. In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria.

    PubMed

    Motwalli, Olaa; Essack, Magbubah; Jankovic, Boris R; Ji, Boyang; Liu, Xinyao; Ansari, Hifzur Rahman; Hoehndorf, Robert; Gao, Xin; Arold, Stefan T; Mineta, Katsuhiko; Archer, John A C; Gojobori, Takashi; Mijakovic, Ivan; Bajic, Vladimir B

    2017-01-05

    Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. To our knowledge FFASC is the first

  10. CyanoBase: the cyanobacteria genome database update 2010.

    PubMed

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.

  11. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems.

    PubMed

    Rousk, Kathrin; Jones, Davey L; Deluca, Thomas H

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  12. Occurrence of Harmful Cyanobacteria in Drinking Water from a Severely Drought-Impacted Semi-arid Region

    PubMed Central

    Walter, Juline M.; Lopes, Fabyano A. C.; Lopes-Ferreira, Mônica; Vidal, Lívia M.; Leomil, Luciana; Melo, Fabiana; de Azevedo, Girlene S.; Oliveira, Rossandra M. S.; Medeiros, Alba J.; Melo, Adriana S. O.; De Rezende, Carlos E.; Tanuri, Amilcar; Thompson, Fabiano L.

    2018-01-01

    Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%), followed by Boqueirão (lethality average of 62.5 ± 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health. PMID:29541063

  13. Adventures with Cyanobacteria: A Personal Perspective

    PubMed Central

    Govindjee; Shevela, Dmitriy

    2011-01-01

    Cyanobacteria, or the blue-green algae as they used to be called until 1974, are the oldest oxygenic photosynthesizers. We summarize here adventures with them since the early 1960s. This includes studies on light absorption by cyanobacteria, excitation energy transfer at room temperature down to liquid helium temperature, fluorescence (kinetics as well as spectra) and its relationship to photosynthesis, and afterglow (or thermoluminescence) from them. Further, we summarize experiments on their two-light reaction – two-pigment system, as well as the unique role of bicarbonate (hydrogen carbonate) on the electron-acceptor side of their photosystem II, PSII. This review, in addition, includes a discussion on the regulation of changes in phycobilins (mostly in PSII) and chlorophyll a (Chl a; mostly in photosystem I, PSI) under oscillating light, on the relationship of the slow fluorescence increase (the so-called S to M rise, especially in the presence of diuron) in minute time scale with the so-called state-changes, and on the possibility of limited oxygen evolution in mixotrophic PSI (minus) mutants, up to 30 min, in the presence of glucose. We end this review with a brief discussion on the position of cyanobacteria in the evolution of photosynthetic systems. PMID:22645530

  14. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond.

    PubMed

    Yang, Zhen; Buley, Riley P; Fernandez-Figueroa, Edna G; Barros, Mario U G; Rajendran, Soorya; Wilson, Alan E

    2018-05-12

    Controlling blooms of toxigenic phytoplankton, including cyanobacteria, is a high priority for managers of aquatic systems that are used for drinking water, recreation, and aquaculture production. Although a variety of treatment approaches exist, hydrogen peroxide (H 2 O 2 ) has the potential to be an effective and ecofriendly algaecide given that this compound may select against cyanobacteria while not producing harmful residues. To broadly evaluate the effectiveness of H 2 O 2 on toxigenic phytoplankton, we tested multiple concentrations of H 2 O 2 on (1) four cyanobacterial cultures, including filamentous Anabaena, Cylindrospermopsis, and Planktothrix, and unicellular Microcystis, in a 5-day laboratory experiment and (2) a dense cyanobacterial bloom in a 7-day field experiment conducted in a nutrient-rich aquaculture pond. In the laboratory experiment, half-maximal effective concentrations (EC 50 ) were similar for Anabaena, Cylindrospermopsis, and Planktothrix (average EC 50  = 0.41 mg L -1 ) but were ∼10x lower than observed for Microcystis (EC 50  = 5.06 mg L -1 ). Results from a field experiment in an aquaculture pond showed that ≥1.3 and ≥ 6.7 mg L -1 of H 2 O 2 effectively eliminated Planktothrix and Microcystis, respectively. Moreover, 6.7 mg L -1 of H 2 O 2 reduced microcystin and enhanced phytoplankton diversity, while causing relatively small negative effects on zooplankton abundance. In contrast, 20 mg L -1 of H 2 O 2 showed the greatest negative effect on zooplankton. Our results demonstrate that H 2 O 2 can be an effective, rapid algaecide for controlling toxigenic cyanobacteria when properly dosed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. BMAA extraction of cyanobacteria samples: which method to choose?

    PubMed

    Lage, Sandra; Burian, Alfred; Rasmussen, Ulla; Costa, Pedro Reis; Annadotter, Heléne; Godhe, Anna; Rydberg, Sara

    2016-01-01

    β-N-Methylamino-L-alanine (BMAA), a neurotoxin reportedly produced by cyanobacteria, diatoms and dinoflagellates, is proposed to be linked to the development of neurological diseases. BMAA has been found in aquatic and terrestrial ecosystems worldwide, both in its phytoplankton producers and in several invertebrate and vertebrate organisms that bioaccumulate it. LC-MS/MS is the most frequently used analytical technique in BMAA research due to its high selectivity, though consensus is lacking as to the best extraction method to apply. This study accordingly surveys the efficiency of three extraction methods regularly used in BMAA research to extract BMAA from cyanobacteria samples. The results obtained provide insights into possible reasons for the BMAA concentration discrepancies in previous publications. In addition and according to the method validation guidelines for analysing cyanotoxins, the TCA protein precipitation method, followed by AQC derivatization and LC-MS/MS analysis, is now validated for extracting protein-bound (after protein hydrolysis) and free BMAA from cyanobacteria matrix. BMAA biological variability was also tested through the extraction of diatom and cyanobacteria species, revealing a high variance in BMAA levels (0.0080-2.5797 μg g(-1) DW).

  16. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard.

    PubMed

    Zeng, Yin-Xin; Yan, Ming; Yu, Yong; Li, Hui-Rong; He, Jian-Feng; Sun, Kun; Zhang, Fang

    2013-05-01

    Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.

  17. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  18. Expanding models of lake trophic state to predict cyanobacteria in lakes

    EPA Science Inventory

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chlor...

  19. Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum

    NASA Astrophysics Data System (ADS)

    Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.

  20. Monitoring indicators of harmful cyanobacteria in Texas

    USGS Publications Warehouse

    Kiesling, Richard L.; Gary, Robin H.; Gary, Marcus O.

    2008-01-01

    Harmful algal blooms can occur when certain types of microscopic algae grow quickly in water, forming visible patches that might harm the health of the environment, plants, or animals. In freshwater, species of Cyanobacteria (also known as bluegreen algae) are the dominant group of harmful, bloom-forming algae. When Cyanobacteria form a harmful algal bloom, potential impairments include restricted recreational activities because of algal scums or algal mats, potential loss of public water supply because of taste and odor compounds (for example, geosmin), and the production of toxins (for example, microcystin) in amounts capable of threatening human health and wildlife.

  1. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria.

    PubMed

    Soo, Rochelle M; Hemp, James; Parks, Donovan H; Fischer, Woodward W; Hugenholtz, Philip

    2017-03-31

    The origin of oxygenic photosynthesis in Cyanobacteria led to the rise of oxygen on Earth ~2.3 billion years ago, profoundly altering the course of evolution by facilitating the development of aerobic respiration and complex multicellular life. Here we report the genomes of 41 uncultured organisms related to the photosynthetic Cyanobacteria (class Oxyphotobacteria ), including members of the class Melainabacteria and a new class of Cyanobacteria (class Sericytochromatia ) that is basal to the Melainabacteria and Oxyphotobacteria All members of the Melainabacteria and Sericytochromatia lack photosynthetic machinery, indicating that phototrophy was not an ancestral feature of the Cyanobacteria and that Oxyphotobacteria acquired the genes for photosynthesis relatively late in cyanobacterial evolution. We show that all three classes independently acquired aerobic respiratory complexes, supporting the hypothesis that aerobic respiration evolved after oxygenic photosynthesis. Copyright © 2017, American Association for the Advancement of Science.

  2. Flow cytometry microscopy and hyperspectral imaging of microcystis, cyanobacteria and algae

    EPA Science Inventory

    The detection of algae and cyanobacteria is an important step in assessing water quality. Studies were initiated using microscopy, flow cytometry and hyperspectral imaging with two fresh water species that could be grown in the laboratory: Microcystis Aeruginosa (cyanobacteria),...

  3. CyanoBase: the cyanobacteria genome database update 2010

    PubMed Central

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly. PMID:19880388

  4. Singular over-representation of an octameric palindrome, HIP1, in DNA from many cyanobacteria.

    PubMed

    Robinson, N J; Robinson, P J; Gupta, A; Bleasby, A J; Whitton, B A; Morby, A P

    1995-03-11

    An octameric palindrome (5'-GCGATCGC-3') is abundant in cyanobacterial sequences within databases (GenBank/EMBL) and was designated HIP1 (highly iterated palindrome). The frequency of occurrence of all 256 octameric palindromes has now been determined in sub-databases revealing large and unique over-representation of HIP1 in cyanobacterial entries. DNA sequences from other bacteria were searched for any over-represented octameric palindromes analogous to HIP1. Only two sequences were identified, in the genomes of a thermophile and halophilic archaebacteria, although these were less abundant than HIP1 in cyanobacteria and relate to codon usage. To test the proposed widespread distribution of HIP1 in DNA from the cyanobacterium Synechococcus PCC 6301, randomly selected genomic clones were partly sequenced. HIP1 constituted 2.5% of the novel sequences, equivalent to a site on average once every 320 nucleotides. An oligonucleotide including HIP1 was also tested in PCR. Multiple products were obtained using template DNA from cyanobacterial strains in which HIP1 is abundant in known sequences, and some strains generated characteristic HIP-PCR banding patterns. However, analysis of DNA from one strain (not previously represented in databases) by random sequencing, HIP-PCR and Pvul digestion, confirms that not all cyanobacterial genomes are rich in HIP1.

  5. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria

    PubMed Central

    Hilton, Jason A.; Meeks, John C.; Zehr, Jonathan P.

    2016-01-01

    Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in

  6. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria.

    PubMed

    Hilton, Jason A; Meeks, John C; Zehr, Jonathan P

    2016-01-01

    Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in

  7. Possible association of diazotrophs with marine zooplankton in the Pacific Ocean.

    PubMed

    Azimuddin, Kazi Md; Hirai, Junya; Suzuki, Shotaro; Haider, Md Nurul; Tachibana, Aiko; Watanabe, Keigo; Kitamura, Minoru; Hashihama, Fuminori; Takahashi, Kazutaka; Hamasaki, Koji

    2016-12-01

    Dinitrogen fixation, the biological reduction in N 2 gas to ammonia contributes to the supply of new nitrogen in the surface ocean. To understand the diversity and abundance of potentially diazotrophic (N 2 fixing) microorganisms associated with marine zooplankton, especially copepods, the nifH gene was studied using zooplankton samples collected in the Pacific Ocean. In total, 257 nifH sequences were recovered from 23 nifH-positive DNA extracts out of 90 copepod samples. The nifH genes derived from cyanobacteria related to Trichodesmium, α- and γ-subdivisions of proteobacteria, and anaerobic euryarchaeota related to Methanosaeta concilii were detected. Our results indicated that Pleuromamma, Pontella, and Euchaeta were the major copepod genera hosting dinitrogen fixers, though we found no species-specific association between copepods and dinitrogen fixers. Also, the digital PCR provided novel data on the number of copies of the nifH gene in individual copepods, which we report the range from 30 to 1666 copies per copepod. This study is the first systematic study of zooplankton-associated diazotrophs, covering a large area of the open ocean, which provide a clue to further study of a possible new hotspot of N 2 fixation. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Spatial and temporal variation in marine birds in the north Gulf of Alaska: The value of marine bird monitoring within Gulf Watch Alaska

    USGS Publications Warehouse

    Kuletz, Kathy J.; Esler, Daniel N.

    2015-01-01

    Birds offer useful insights into marine ecosystems. Marine birds are responsive to spatial and temporal variation in the environment, that often originates with fluctuations in oceanographic and climatic drivers and permeates up through food webs to conspicuous top predators such as seabirds (Coyle and Pinchuk 2005, Speckman et al. 2005, Gonzales-Solis et al. 2009, Cushing et al., this report). In that way, marine birds are excellent assimilators, samplers, and indicators of the status of marine environments (Montevecchi 1993, Piatt et al. 2007b, Zador et al. 2013). Marine bird responses to dynamic marine ecosystems can be detected in a variety of metrics, including abundance, distribution, and productivity. For example, in the northern Gulf of Alaska (GOA), decadal-scale variation in oceanographic conditions has been associated with dramatic shifts in prey composition and abundance (Anderson and Piatt 1999). In turn, these shifts were more closely correlated with changes in abundance of fish-eating birds of Prince William Sound (PWS), such as pigeon guillemots (Golet et al. 2002) and marbled and Kittlitz’s murrelets (Kuletz et al. 2011a, 2011b), than in the abundance of species that primarily consume plankton or benthic prey (Agler et al. 1999, Cushing et al., this report). Birds also are responsive to anthropogenic influences in marine environments, including commercial fishing, contamination, introduction of non-native species, coastal development, offshore resource extraction, and vessel traffic. A major anthropogenic perturbation in the northern GOA was the 1989 Exxon Valdez oil spill, in which marine birds suffered high immediate mortality (Piatt and Ford 1996). Additionally, several species showed long-term evidence of declines in the oiled areas of PWS (Lance et al. 2001), as well as impacts to reproductive success years later (Golet et al. 2002). However, the degree of direct impact and vulnerability to chronic injury, which was related to exposure to

  9. Monitoring Cyanobacteria Bloom in Taihu Lake by High-Resolution Geostationary Satellite GF4

    NASA Astrophysics Data System (ADS)

    Liu, J.

    2018-04-01

    The high-resolution remote-sensing satellite, GF4 PMS, of China's geosynchronous earth orbit was successfully launched on December 29, 2015. Its high spatial resolution and high temporal resolution allow GF4 PMS to play a very important role in water environment monitoring, especially in the dynamic monitoring of lake and reservoir cyanobacteria blooms. As GF4 PMS has just been launched, there is still relatively little related research, and the practical application effect of GF4 PMS in the extraction of cyanobacteria blooms remains to be further tested. Therefore, in this study, the method and effect of GF4 PMS application in cyanobacteria bloom monitoring were studied in Taihu. It turned that GF4 PMS can be applied to the dynamic monitoring of the distribution of cyanobacteria blooms in Taihu, thereby finding the temporal and spatial variation of the distribution of cyanobacteria blooms.

  10. Small eukaryotic phytoplankton communities in tropical waters off Brazil are dominated by symbioses between Haptophyta and nitrogen-fixing cyanobacteria.

    PubMed

    Gérikas Ribeiro, Catherine; Lopes Dos Santos, Adriana; Marie, Dominique; Pereira Brandini, Frederico; Vaulot, Daniel

    2018-05-01

    Symbioses between eukaryotic algae and nitrogen-fixing cyanobacteria have been recognized in recent years as a key source of new nitrogen in the oceans. We investigated the composition of the small photosynthetic eukaryote communities associated with nitrogen-fixing cyanobacteria in the Brazilian South Atlantic Bight using a combination of flow cytometry sorting and high throughput sequencing of two genes: the V4 region of 18S rRNA and nifH. Two distinct eukaryotic communities were often encountered, one dominated by the Mamiellophyceae Bathycoccus and Ostreococcus, and one dominated by a prymnesiophyte known to live in symbiosis with the UCYN-A1 nitrogen-fixing cyanobacterium. Among nifH sequences, those from UCYN-A1 were most abundant but three other UCYN-A clades (A2, A3, A4) were also found. Network analysis confirmed the relation between A1 and A2 clades and their hypothesized hosts and pointed out to the potential association between novel clade A4 with Braarudosphaera bigelowii, previously hypothesized to host A2.

  11. Measuring N2 Pressure Using Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Kopf, S.; Gordon, R.; Bebout, B.; Som, S.

    2017-11-01

    We have shown that cyanobacteria can record information about N2 partial pressure both morphologically and isotopically, and thus may serve as useful geobarometers to help us better understand Earth's ancient atmosphere.

  12. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  13. Immense essence of excellence: marine microbial bioactive compounds.

    PubMed

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  14. The Impact of Fish Predation and Cyanobacteria on Zooplankton Size Structure in 96 Subtropical Lakes

    PubMed Central

    Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; XueZhen Zhang; Zhang, Lu

    2013-01-01

    Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread

  15. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes.

    PubMed

    Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; Xuezhen Zhang; Zhang, Lu

    2013-01-01

    Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread

  16. TOXINS FROM CYANOBACTERIA IN WATER

    EPA Science Inventory

    This project is part of a larger U. S. Environmental Protection Agency (EPA) effort, which includes the Office of Water, to investigate algal toxins in surface water supplies and drinking water. Toxins produced by cyanobacteria (blue-green algae) are among the most potent known ...

  17. Genetic and genomic analysis of RNases in model cyanobacteria.

    PubMed

    Cameron, Jeffrey C; Gordon, Gina C; Pfleger, Brian F

    2015-10-01

    Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.

  18. Carbon Acquisition by Cyanobacteria: Mechanisms, Comparative Genomics, and Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Aaron; Hagemann, Martin; Bauwe, Hermann

    2008-01-01

    In this chapter we mainly focus on the mechanisms of inorganic carbon uptake, photorespiration, and the regulation between the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. We identify the genes involved, their regulation and phylogeny. Living in an environment where the CO₂ concentration is considerably lower than required to saturate their carboxylating enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), cyanobacteria acquired the CO₂ concentrating mechanism (CCM) that enables them to accumulate CO₂ at the carboxylation site. All the cyanobacteria examined to date are able to fix CO₂ into carbohydrates. However, in addition to variance in the range of physical growthmore » conditions, cyanobacteria also vary substantially in their ability to consume organic carbon from their surroundings. Many strains are obligate photoautotrophs where the sole carbon source is CO₂, while others are able to perform photomixotrophic or even heterotrophic growth using a wide variety of organic substances (c.f. Rippka et al., 1979; Stal and Moezelaar, 1997b). Cyanobacteria constitute a unique case where the anabolic and catabolic carbohydrate metabolisms function in the same cellular compartment. In addition, the photosynthetic and respiratory electron transport pathways share components in the thylakoid membranes. Despite its importance to our understanding of cyanobacterial metabolism, little is known about the mechanisms involved in the shifts between photoautotrophic, heterotrophic and photomixotrophic modes of growth, and their regulation; between the different pathways of carbohydrate breakdown- glycolysis, fermentation, the oxidative pentose phosphate, the Krebs cycle and the photorespiratory pathways. In this chapter we shall briefly focus on recent advances in our understanding of the CCM and carbon metabolism in cyanobacteria.« less

  19. Carbon acquisition by Cyanobacteria: Mechanisms, Comparative Genomics and Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Aaron; Hagemann, Martin; Bauwe, Hermann

    2008-01-01

    In this chapter we mainly focus on the mechanisms of inorganic carbon uptake, photorespiration, and the regulation between the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. We identify the genes involved, their regulation and phylogeny. Living in an environment where the CO₂ concentration is considerably lower than required to saturate their carboxylating enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), cyanobacteria acquired the CO₂ concentrating mechanism (CCM) that enables them to accumulate CO₂ at the carboxylation site. All the cyanobacteria examined to date are able to fix CO₂ into carbohydrates. However, in addition to variance in the range of physical growthmore » conditions, cyanobacteria also vary substantially in their ability to consume organic carbon from their surroundings. Many strains are obligate photoautotrophs where the sole carbon source is CO₂, while others are able to perform photomixotrophic or even heterotrophic growth using a wide variety of organic substances (c.f. Rippka et al., 1979; Stal and Moezelaar, 1997b). Cyanobacteria constitute a unique case where the anabolic and catabolic carbohydrate metabolisms function in the same cellular compartment. In addition, the photosynthetic and respiratory electron transport pathways share components in the thylakoid membranes. Despite its importance to our understanding of cyanobacterial metabolism, little is known about the mechanisms involved in the shifts between photoautotrophic, heterotrophic and photomixotrophic modes of growth, and their regulation; between the different pathways of carbohydrate breakdown- glycolysis, fermentation, the oxidative pentose phosphate, the Krebs cycle and the photorespiratory pathways. In this chapter we shall briefly focus on recent advances in our understanding of the CCM and carbon metabolism in cyanobacteria.« less

  20. Synthetic biology of cyanobacteria: unique challenges and opportunities

    PubMed Central

    Berla, Bertram M.; Saha, Rajib; Immethun, Cheryl M.; Maranas, Costas D.; Moon, Tae Seok; Pakrasi, Himadri B.

    2013-01-01

    Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as “chassis” strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a “green E. coli.” In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints. PMID:24009604

  1. Using the urtA Gene to Profile Nitrogen Stress Adaptation and Spatio-Temporal Abundance of Synechococcus Clades in the California Current System

    NASA Astrophysics Data System (ADS)

    Chatterjee, T.; Shilova, I. N.; Zehr, J. P.

    2015-12-01

    Among the planet's most abundant photosynthetic groups, the picocyanobacteria Synechococcus contributes nearly a quarter of our global oxygen supply. Urea, from both natural and anthropogenic sources, is an important alternative to the preferred yet limited sources of reduced nitrogen for cyanobacteria in the marine environment. While urea uptake activity has been observed during nitrogen (N) limitation, this stress adaptation is not well-studied in natural habitats. We propose the urtAgene, which encodes the substrate-binding subunit of the urea-uptake ABC transporter, as a molecular marker to profile cell abundance and stress response in relation to N fluctuation. Strains prevalent in temperate waters of the California Current System - Synechococcus CC9311 (clade I), CC9605 (clade II) and CC9902/BL107 (clade IV) - were targeted by clade-specific qPCR assays to measure urtA gene copy abundance in samples from different geographical stations and a time-series. Spatial and seasonal patterns in clade abundance resembled those previously reported by studies using other Synechococcus marker genes, thus validating urtA as a strong marker. Synechococcus clades I and IV were most abundant in coastal and transitional stations, while the more oligotrophic clade II was detected near open waters. Synechococcus abundances were highest before and after the annual upwelling season, as supported by a non clade-specific rbcL-qPCR assay. A lack of correlation between abundance and nitrate availability indicated utilization of alternative nitrogen sources like urea, which was further evidenced by the detection of clade IV urtA transcripts at the station closest to shore. Urea concentrations tend to be highest in coastal environments due to fertilizer runoff, which can stimulate phytoplankton blooms including harmful algal blooms. This study adds to insight on how such environmental factors are related to N-cycling and patterns of urea-assimilating microbial populations like

  2. North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton.

    PubMed

    Kamenos, Nicholas A

    2010-12-28

    Modeling and measurements show that Atlantic marine temperatures are rising; however, the low temporal resolution of models and restricted spatial resolution of measurements (i) mask regional details critical for determining the rate and extent of climate variability, and (ii) prevent robust determination of climatic impacts on marine ecosystems. To address both issues for the North East Atlantic, a fortnightly resolution marine climate record from 1353-2006 was constructed for shallow inshore waters and compared to changes in marine zooplankton abundance. For the first time summer marine temperatures are shown to have increased nearly twice as much as winter temperatures since 1353. Additional climatic instability began in 1700 characterized by ∼5-65 year climate oscillations that appear to be a recent phenomenon. Enhanced summer-specific warming reduced the abundance of the copepod Calanus finmarchicus, a key food item of cod, and led to significantly lower projected abundances by 2040 than at present. The faster increase of summer marine temperatures has implications for climate projections and affects abundance, and thus biomass, near the base of the marine food web with potentially significant feedback effects for marine food security.

  3. Benthic marine litter in four Gulfs in Greece, Eastern Mediterranean; abundance, composition and source identification

    NASA Astrophysics Data System (ADS)

    Koutsodendris, Andreas; Papatheodorou, George; Kougiourouki, Ourania; Georgiadis, Michalis

    2008-04-01

    The types, abundance, distribution and sources of benthic marine litter found in four Greek Gulfs (Patras, Corinth, Echinades and Lakonikos) were studied using bottom trawl nets. Mean distribution and weight densities range between 72-437 Item/km 2 and 6.7-47.4 kg/km 2. Litter items were sorted into material and usage categories. Plastic litter (56%) is the most dominant material category followed by metal (17%) and glass (11%). Beverage packaging (32%) is the dominant usage category followed by general packaging (28%) and food packaging (21%). Based on the typological results three dominant litter sources were identified; land-based, vessel-based and fishery-based. Application of factor analysis (R- and Q-mode) conducted on both material and usage litter datasets confirmed the existence of the three dominant litter sources. Q-mode analysis further resulted in the quantification of the litter sources; land-based ones provided the majority (69%) of the total litter items followed by vessel-based (26%) and fishery-based (5%) sources. Diverse environmental parameters influence significantly these amounts among the four Gulfs.

  4. Detection of Microcystin-Producing Cyanobacteria in Missisquoi Bay, Quebec, Canada, Using Quantitative PCR▿

    PubMed Central

    Fortin, Nathalie; Aranda-Rodriguez, Rocio; Jing, Hongmei; Pick, Frances; Bird, David; Greer, Charles W.

    2010-01-01

    Toxic cyanobacterial blooms, as well as their increasing global occurrence, pose a serious threat to public health, domestic animals, and livestock. In Missisquoi Bay, Lake Champlain, public health advisories have been issued from 2001 to 2009, and local microcystin concentrations found in the lake water regularly exceeded the Canadian drinking water guideline of 1.5 μg liter−1. A quantitative PCR (Q-PCR) approach was developed for the detection of blooms formed by microcystin-producing cyanobacteria. Primers were designed for the β-ketoacyl synthase (mcyDKS) and the first dehydratase domain (mcyDDH) of the mcyD gene, involved in microcystin synthesis. The Q-PCR method was used to track the toxigenic cyanobacteria in Missisquoi Bay during the summers of 2006 and 2007. Two toxic bloom events were detected in 2006: more than 6.5 × 104 copies of the mcyDKS gene ml−1 were detected in August, and an average of 4.0 × 104 copies ml−1 were detected in September, when microcystin concentrations were more than 4 μg liter−1 and approximately 2 μg liter−1, respectively. Gene copy numbers and total microcystin concentrations (determined by enzyme-linked immunosorbent assay [ELISA]) were highly correlated in the littoral (r = 0.93, P < 0.001) and the pelagic station (r = 0.87, P < 0.001) in 2006. In contrast to the situation in 2006, a cyanobacterial bloom occurred only in late summer-early fall of 2007, reaching only 3 × 102 mcyDKS copies ml−1, while the microcystin concentration was barely detectable. The Q-PCR method allowed the detection of microcystin-producing cyanobacteria when toxins and toxigenic cyanobacterial abundance were still below the limit of detection by high-pressure liquid chromatography (HPLC) and microscopy. Toxin gene copy numbers grew exponentially at a steady rate over a period of 7 weeks. Onshore winds selected for cells with a higher cell quota of microcystin. This technique could be an effective approach for the routine monitoring

  5. Sponges-Cyanobacteria associations: Global diversity overview and new data from the Eastern Mediterranean

    PubMed Central

    Konstantinou, Despoina; Gerovasileiou, Vasilis; Voultsiadou, Eleni

    2018-01-01

    Sponge-cyanobacteria associations have attracted research interest from an ecological, evolutionary and biotechnological perspective. Current knowledge is, in its majority, “hidden” in metagenomics research studying the entire microbial communities of sponges, while knowledge on these associations is totally missing for certain geographic areas. In this study, we (a) investigated the occurrence of cyanobacteria in 18 sponge species, several of which are studied for the first time for their cyanobionts, from a previously unexplored eastern Mediterranean ecoregion, the Aegean Sea, (b) isolated sponge-associated cyanobacteria, and characterized them based on a polyphasic (morphological-morphometric and molecular phylogenetic analysis) approach, and (c) conducted a meta-analysis on the global diversity of sponge species hosting cyanobacteria, as well as the diversity of cyanobacterial symbionts. Our research provided new records for nine sponge species, previously unknown for this association, while the isolated cyanobacteria were found to form novel clades within Synechococcus, Leptolyngbyaceae, Pseudanabaenaceae, and Schizotrichaceae, whose taxonomic status requires further investigation; this is the first report of a Schizotrichaceae cyanobacterium associated with sponges. The extensive evaluation of the literature along with the new data from the Aegean Sea raised the number of sponge species known for hosting cyanobacteria to 320 and showed that the cyanobacterial diversity reported from sponges is yet underestimated. PMID:29596453

  6. Seasonal distribution and abundance of cetaceans within French waters- Part I: The North-Western Mediterranean, including the Pelagos sanctuary

    NASA Astrophysics Data System (ADS)

    Laran, Sophie; Pettex, Emeline; Authier, Matthieu; Blanck, Aurélie; David, Léa; Dorémus, Ghislain; Falchetto, Hélène; Monestiez, Pascal; Van Canneyt, Olivier; Ridoux, Vincent

    2017-07-01

    The biodiversity of the Mediterranean Sea is undergoing important changes. Cetaceans, as top predators, are an important component of marine ecosystems. The seasonal distribution and abundance of several cetacean species were studied with a large aerial survey over the North-Western Mediterranean Sea, including the international Pelagos sanctuary, the largest Marine Protected Area (MPA) designed for marine mammals in the Mediterranean. A total of 8 distinct species of cetaceans were identified, and their occurrence within the sanctuary was investigated. Abundance estimates were obtained for three groups of species: the small delphinids (striped dolphins mainly), the bottlenose dolphin and the fin whale. There was a seasonal variation in striped dolphin abundance between winter (57,300 individuals, 95% CI: 34,500-102,000) and summer (130,000, 95% CI: 76,800-222,100). In contrast, bottlenose dolphin winter abundance was thrice that of summer. It was also the only species to exhibit any preference for the Pelagos sanctuary. Fin whale abundance had the reverse pattern with winter abundance (1000 individuals, 95% CI: 500-2500) and summer (2500 individuals, 95% CI: 1500-4300), without any preference for the sanctuary. Risso's dolphins, pilot whales and sperm whales did not exhibit strong seasonal pattern in their abundance. These results provide baseline estimates which can be used to inform conservation policies and instruments such as the Habitats Directive or the recent European Marine Strategy Framework Directive.

  7. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.

    PubMed

    Hogfors, Hedvig; Motwani, Nisha H; Hajdu, Susanna; El-Shehawy, Rehab; Holmborn, Towe; Vehmaa, Anu; Engström-Öst, Jonna; Brutemark, Andreas; Gorokhova, Elena

    2014-01-01

    It is commonly accepted that summer cyanobacterial blooms cannot be efficiently utilized by grazers due to low nutritional quality and production of toxins; however the evidence for such effects in situ is often contradictory. Using field and experimental observations on Baltic copepods and bloom-forming diazotrophic filamentous cyanobacteria, we show that cyanobacteria may in fact support zooplankton production during summer. To highlight this side of zooplankton-cyanobacteria interactions, we conducted: (1) a field survey investigating linkages between cyanobacteria, reproduction and growth indices in the copepod Acartia tonsa; (2) an experiment testing relationships between ingestion of the cyanobacterium Nodularia spumigena (measured by molecular diet analysis) and organismal responses (oxidative balance, reproduction and development) in the copepod A. bifilosa; and (3) an analysis of long term (1999-2009) data testing relationships between cyanobacteria and growth indices in nauplii of the copepods, Acartia spp. and Eurytemora affinis, in a coastal area of the northern Baltic proper. In the field survey, N. spumigena had positive effects on copepod egg production and egg viability, effectively increasing their viable egg production. By contrast, Aphanizomenon sp. showed a negative relationship with egg viability yet no significant effect on the viable egg production. In the experiment, ingestion of N. spumigena mixed with green algae Brachiomonas submarina had significant positive effects on copepod oxidative balance, egg viability and development of early nauplial stages, whereas egg production was negatively affected. Finally, the long term data analysis identified cyanobacteria as a significant positive predictor for the nauplial growth in Acartia spp. and E. affinis. Taken together, these results suggest that bloom forming diazotrophic cyanobacteria contribute to feeding and reproduction of zooplankton during summer and create a favorable growth

  8. Bloom-Forming Cyanobacteria Support Copepod Reproduction and Development in the Baltic Sea

    PubMed Central

    Hogfors, Hedvig; Motwani, Nisha H.; Hajdu, Susanna; El-Shehawy, Rehab; Holmborn, Towe; Vehmaa, Anu; Engström-Öst, Jonna; Brutemark, Andreas; Gorokhova, Elena

    2014-01-01

    It is commonly accepted that summer cyanobacterial blooms cannot be efficiently utilized by grazers due to low nutritional quality and production of toxins; however the evidence for such effects in situ is often contradictory. Using field and experimental observations on Baltic copepods and bloom-forming diazotrophic filamentous cyanobacteria, we show that cyanobacteria may in fact support zooplankton production during summer. To highlight this side of zooplankton-cyanobacteria interactions, we conducted: (1) a field survey investigating linkages between cyanobacteria, reproduction and growth indices in the copepod Acartia tonsa; (2) an experiment testing relationships between ingestion of the cyanobacterium Nodularia spumigena (measured by molecular diet analysis) and organismal responses (oxidative balance, reproduction and development) in the copepod A. bifilosa; and (3) an analysis of long term (1999–2009) data testing relationships between cyanobacteria and growth indices in nauplii of the copepods, Acartia spp. and Eurytemora affinis, in a coastal area of the northern Baltic proper. In the field survey, N. spumigena had positive effects on copepod egg production and egg viability, effectively increasing their viable egg production. By contrast, Aphanizomenon sp. showed a negative relationship with egg viability yet no significant effect on the viable egg production. In the experiment, ingestion of N. spumigena mixed with green algae Brachiomonas submarina had significant positive effects on copepod oxidative balance, egg viability and development of early nauplial stages, whereas egg production was negatively affected. Finally, the long term data analysis identified cyanobacteria as a significant positive predictor for the nauplial growth in Acartia spp. and E. affinis. Taken together, these results suggest that bloom forming diazotrophic cyanobacteria contribute to feeding and reproduction of zooplankton during summer and create a favorable growth

  9. Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau

    NASA Astrophysics Data System (ADS)

    Beman, J. M.

    2016-02-01

    Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.

  10. A Novel Anoxic Pathway for Urea and Cyanate in Marine Oxygen Deficient Zones Revealed by Combined Microbiological and Biogeochemical Tools

    NASA Astrophysics Data System (ADS)

    Widner, B.; Fuchsman, C. A.; Babbin, A. R.; Ji, Q.; Mulholland, M. R.

    2016-02-01

    Urea and cyanate are reduced nitrogen compounds that can serve as nitrogen and carbon sources for marine microbes, and cyanate forms from decomposition of urea. Some marine bacteria, including cyanobacteria, possess genes encoding an ABC-type cyanate transporter and an intracellular cyanate hydratase, and genes for urea uptake and assimilation are widespread. To investigate cyanate distribution and availability in the ocean, we recently developed a nanomolar cyanate assay specific to seawater. In an oxygenated water column, urea and cyanate concentrations are generally low in surface waters and exhibit a concentration maximum near the base of the euphotic zone likely due to production from organic matter degradation. Below the euphotic zone, urea and cyanate concentrations decrease, likely due to oxidation reactions. It has been suggested that simple organic nitrogen compounds may support anaerobic ammonium oxidation (anammox) in oxygen deficient zones (ODZs). We mapped urea and cyanate distributions and used stable isotope-labeled urea and cyanate to measure their potential support of anammox and their uptake within the Eastern Tropical North and South Pacific ODZs. We also employed metagenomic techniques to determine the abundance and distribution of genes for the uptake and assimilation of urea and cyanate. The combined data indicate that, in ODZs, urea is used primarily as a nitrogen source while cyanate is used as both a nitrogen source and to generate energy.

  11. Marine predator surveys in Glacier Bay National Park and Preserve

    USGS Publications Warehouse

    Bodkin, James L.; Kloecker, Kimberly A.; Coletti, Heather A.; Esslinger, George G.; Monson, Daniel H.; Ballachey, Brenda E.

    2002-01-01

    Since 1999, vessel based surveys to estimate species composition, distribution and relative abundance of marine birds and mammals have been conducted along coastal and pelagic (offshore) transects in Glacier Bay, Alaska. Surveys have been conducted during winter (November-March) and summer (June). This annual report presents the results of those surveys conducted in March and June of 2001. Following completion of surveys in 2002 we will provide a final report of the results of all surveys conducted between 1999 and 2002.Glacier Bay supports diverse and abundant assemblages of marine birds and mammals. In 2001 we identified 58 species of bird, 7 species of marine mammal, and 6 species of terrestrial mammal on transects sampled during winter and summer. Of course all species are not equally abundant. Among all taxa, in both seasons, sea ducks were the numerically dominant group. In their roles as consumers and because of their generally large size, marine mammals are also likely important in the consumption of energy produced in the Glacier Bay ecosystem. Most common and abundant marine birds and mammals can be placed in either a fish based (e.g. alcids and pinnipeds), or a benthic invertebrate (e.g. sea ducks and sea otters) based food web.Distinct differences in the species composition and abundance of marine birds were observed between winter and summer surveys. Winter marine bird assemblages were dominated numerically (> 11,000; 65% of all birds) by a relatively few species of sea ducks (scoters, goldeneye, Bufflehead, Harlequin and Long-tailed ducks). The sea ducks were distributed almost exclusively along near shore habitats. The prevalence of sea ducks during the March surveys indicates the importance of Glacier Bay as a wintering area for this poorly understood group of animals that occupy a high trophic position in a principally benthic invertebrate (mussel and clam) food web. Marine mammal assemblages were generally consistent between seasons, although

  12. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia)

    NASA Astrophysics Data System (ADS)

    Agha, Ramsy; Saebelfeld, Manja; Manthey, Christin; Rohrlack, Thomas; Wolinska, Justyna

    2016-10-01

    Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.

  13. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  14. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria.

    PubMed

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei; Xu, Shiguo; Luo, Feng

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.

  15. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria

    PubMed Central

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP. PMID:28078293

  16. Detection of bioactive exometabolites produced by the filamentous marine cyanobacterium Geitlerinema sp.

    PubMed

    Caicedo, Nelson H; Kumirska, Jolanta; Neumann, Jennifer; Stolte, Stefan; Thöming, Jorg

    2012-08-01

    Marine cyanobacteria are noted for their ability to excrete metabolites with biotic properties. This paper focuses on such exometabolites obtained from the culture of the marine filamentous cyanobacterium Geitlerinema sp. strain, their purification and subsequent analyses. By this means the recoveries of the active compounds, a prerequisite for properly determining their concentration, are quantified here for the first time. We demonstrate a new procedure using Amberlite XAD-1180 resin in combination with the eluent isopropanol for extraction of the culture media and gas chromatography as simplified chemical analysis. This procedure reduced necessary bacteria cultivation time (from 150 to 21 days) at low volumes of culture media (300 mL) required for identification of two selected bioactive compounds: 4,4'-dihydroxybiphenyl and harmane.

  17. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.

    PubMed

    Shuryak, Igor

    2018-06-05

    Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 10 7 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 10 4 -10 5  μGy/h for phytoplankton, and 10 3 -10 4  μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information

  18. Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins.

    PubMed

    Lürling, Miquel; Faassen, Elisabeth J

    2012-04-01

    Sediment dredging and Phoslock(®) addition were applied individually and in combination in an enclosure experiment in a Dutch hypertrophic urban pond. These measures were applied to control eutrophication and reduce the risk of exposure to cyanobacterial toxins. Over the 58 days course of the experiment, cyanobacteria (predominantly Microcystis aeruginosa) gradually decreased until they dropped below the level of detection in the combined treated enclosures, they were reduced in dredged enclosures, but remained flourishing in controls and Phoslock(®) treated enclosures. Cyanobacteria were, however, less abundant in the enclosures (medians chlorophyll-a 30-87 μg l(-1)) than in the pond (median chlorophyll-a 162 μg l(-1)), where also a thick surface scum covered one-third of the pond for many weeks. Soluble reactive phosphorus (SRP), total phosphorus and total nitrogen concentrations were significantly lower in the combined dredged and Phoslock(®) treated enclosures than in controls. Median SRP concentrations were 24 μg P l(-1) in the combined treatment, 58 μg P l(-1) in dredged enclosures, and 90 μg P l(-1) in controls and 95 μg P l(-1) in Phoslock(®) treated enclosures. Hence, the combined treatment was most effective in decreasing SRP and TP, and in lowering cyanobacterial biomass. Microcystin (MC) concentrations were analyzed by LC-MS/MS. MC concentrations and cyanobacterial biomass were positively correlated in all treatments. Mean MC concentrations in controls (71 μg l(-1)), Phoslock(®) treated enclosures (37 μg l(-1)) and dredged enclosures (25 μg l(-1)) exceeded the provisional guideline of 20 μg l(-1), whereas mean MC concentrations were 13 μg l(-1) in the combined treated enclosures. All samples contained the MC variants dmMC-RR, MC-RR, MC-YR, dmMC-LR and MC-LR; traces of MC-LY and nodularin were detected in few samples. The different treatments did not change the relative contribution of the variants to the MC pool; MC profiles in all

  19. Determination of Oxygen Production by Cyanobacteria in Desert Environment Soil

    NASA Astrophysics Data System (ADS)

    Bueno Prieto, J. E.

    2009-12-01

    The cyanobacteria have been characterized for being precursor in the production of oxygen. By means of photosynthetic reactions, they provide oxygen to the environment that surrounds them and they capture part of surrounding dioxide of carbon. This way it happened since the primitive Earth until today. Besides, these microorganisms can support the harmful effects of ultraviolet radiation. The presence of cyanobacterias in an environment like a dry tropical bioma, such as the geographical location called Desert of The Tatacoa (Huila - Colombia), is determinant to establish parameters in the search of biological origin of atmospheric oxygen detected in Mars. In that case, I work with a random sample of not rhizospheric soil, taken to 15 cm of depth. After determining the presence of cyanobacterias in the sample, this one was in laboratory to stimulate the oxygen production. The presence of oxygen in Mars is very interesting. Since oxygen gas is very reactive, it disappear if it is not renewed; the possibility that this renovation of oxygen has a biological origin is encouraging, bearing in mind that in a dry environment and high radiation such as the studied one, the production of oxygen by cyanobacterias is notable. Also it is necessary to keep in mind that the existence of cyanobacterias would determine water presence in Mars subsoil and the nutrients cycles renovation. An interesting exploration possibility for some future space probe to Mars might be the study of worldwide distribution of oxygen concentration in this planet and this way, indentify zones suitable for microbian life.

  20. Critical assessment of chitosan as coagulant to remove cyanobacteria.

    PubMed

    Lürling, Miquel; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; Mucci, Maíra; van Oosterhout, Frank; Huszar, Vera L M; Marinho, Marcelo Manzi

    2017-06-01

    Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial blooms, as well as high alkalinity may hamper the coagulation of chitosan and thus impair its ability to effectively remove positively buoyant cyanobacteria from the water column. The underlying mechanism is likely a shielding of the protonated groups by anions. Inasmuch as there are many chitosan formulations, thorough testing of each chitosan prior to its application is essential. Results obtained in glass tubes were similar to those from standard jar tests demonstrating that glass tube tests can be used for testing effects of coagulants and ballasts in cyanobacteria removal whilst allowing far more replicates. There was no relation between zeta potential and precipitated cyanobacteria. Given the well-known antibacterial activity of chitosan and recent findings of anti-cyanobacterial effects, pre-application tests are needed to decipher if chitosan may cause cell leakage of cyanotoxins. Efficiency- and side-effect testing are crucial for water managers to determine if the selected approach can be used in tailor-made interventions to control cyanobacterial blooms and to mitigate eutrophication. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Risk Levels of Toxic Cyanobacteria in Portuguese Recreational Freshwaters

    PubMed Central

    Menezes, Carina; Dias, Elsa

    2017-01-01

    Portuguese freshwater reservoirs are important socio-economic resources, namely for recreational use. National legislation concerning bathing waters does not include mandatory levels or guidelines for cyanobacteria and cyanotoxins. This is an issue of concern since cyanotoxin-based evidence is insufficient to change the law, and the collection of scientific evidence has been hampered by the lack of regulatory levels for cyanotoxins in bathing waters. In this work, we evaluate the profile of cyanobacteria and microcystins (MC) in eight freshwater reservoirs from the center of Portugal, used for bathing/recreation, in order to determine the risk levels concerning toxic cyanobacteria occurrence. Three of the reservoirs did not pose a risk of MC contamination. However, two reservoirs presented a high risk in 7% of the samples according to the World Health Organization (WHO) guidelines for MC in bathing waters (above 20 µg/L). In the remaining three reservoirs, the risk concerning microcystins occurrence was low. However, they exhibited recurrent blooms and persistent contamination with MC up to 4 µg/L. Thus, the risk of exposure to MC and potential acute and/or chronic health outcomes should not be disregarded in these reservoirs. These results contribute to characterize the cyanobacterial blooms profile and to map the risk of toxic cyanobacteria and microcystins occurrence in Portuguese inland waters. PMID:29057822

  2. Epidemiology of recreational exposure to freshwater cyanobacteria – an international prospective cohort study

    PubMed Central

    Stewart, Ian; Webb, Penelope M; Schluter, Philip J; Fleming, Lora E; Burns, John W; Gantar, Miroslav; Backer, Lorraine C; Shaw, Glen R

    2006-01-01

    Background Case studies and anecdotal reports have documented a range of acute illnesses associated with exposure to cyanobacteria and their toxins in recreational waters. The epidemiological data to date are limited; we sought to improve on the design of some previously conducted studies in order to facilitate revision and refinement of guidelines for exposure to cyanobacteria in recreational waters. Methods A prospective cohort study was conducted to investigate the incidence of acute symptoms in individuals exposed, through recreational activities, to low (cell surface area <2.4 mm2/mL), medium (2.4–12.0 mm2/mL) and high (>12.0 mm2/mL) levels of cyanobacteria in lakes and rivers in southeast Queensland, the central coast area of New South Wales, and northeast and central Florida. Multivariable logistic regression analyses were employed; models adjusted for region, age, smoking, prior history of asthma, hay fever or skin disease (eczema or dermatitis) and clustering by household. Results Of individuals approached, 3,595 met the eligibility criteria, 3,193 (89%) agreed to participate and 1,331 (37%) completed both the questionnaire and follow-up interview. Respiratory symptoms were 2.1 (95%CI: 1.1–4.0) times more likely to be reported by subjects exposed to high levels of cyanobacteria than by those exposed to low levels. Similarly, when grouping all reported symptoms, individuals exposed to high levels of cyanobacteria were 1.7 (95%CI: 1.0–2.8) times more likely to report symptoms than their low-level cyanobacteria-exposed counterparts. Conclusion A significant increase in reporting of minor self-limiting symptoms, particularly respiratory symptoms, was associated with exposure to higher levels of cyanobacteria of mixed genera. We suggest that exposure to cyanobacteria based on total cell surface area above 12 mm2/mL could result in increased incidence of symptoms. The potential for severe, life-threatening cyanobacteria-related illness is likely to be

  3. Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community

    PubMed Central

    Kicklighter, Cynthia E.; Kamio, Michiya; Nguyen, Linh; Germann, Markus W.; Derby, Charles D.

    2011-01-01

    Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)—N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)—as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems. PMID:21709250

  4. Impact of Vitamin B12 and Nitrate on Transcript and Metabolite Abundances in Marine Diatoms.

    NASA Astrophysics Data System (ADS)

    Pound, H. L.; Schanke, N. L.; Penta, W. B.; Zavala, J.; Casu, F.; Bearden, D. W.; Lee, P. A.

    2016-02-01

    Phytoplankton play countless roles in the support and regulation of marine ecosystems, as well as in global biogeochemical cycling processes. They are also, to varying extents, reliant on other physical and biological processes to supply their nutrient demands, such as the production of vitamin B12 by bacteria and archaea or the regeneration and upwelling of nitrate. One such process in the global biogeochemical sulfur cycle is the pathway that begins with the production of dimethylsulfoniopropionate (DMSP) by marine phytoplankton and leads to the atmospheric formation of sulfate-based cloud condensation nuclei, which contribute to the Earth's albedo. Nutrient limitation is thought to play a major role in the amount of DMSP produced by phytoplankton. Vitamin B12 and nitrate are of particular interest due to their involvement as a co-factor and nitrogen source, respectively, in the synthesis of methionine, the precursor for DMSP. Laboratory-based nutrient limitation experiments have been performed on cultures of the diatom Phaeodactylum tricornutum. In addition to the B12-dependent methionine synthase (MetH) P. tricornutum has a unique B12-independent methionine synthase gene (MetE). Based on classic techniques, B12 limitation had little impact on cell growth, whereas nitrate limitation had a significant effect on both culture health and DMSP concentration. Yet, targeted transcriptomic analysis (using Nanostring nCounter technology) and metabolomics analysis (using Nuclear Magnetic Resonance (NMR)) revealed complex changes in transcript abundance towards upregulated gene expression associated with the MetE gene in B12 limited cultures, and shifts away from nitrogen-based metabolites towards DMSP in nitrate-limited cultures. These experiments help verify the role of B12 in DMSP production and link the underlying metabolic pathways that drive the cellular portion of the sulfur cycle to ecosystem and global scale processes.

  5. Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts.

    PubMed

    Canfora, Loredana; Vendramin, Elisa; Vittori Antisari, Livia; Lo Papa, Giuseppe; Dazzi, Carmelo; Benedetti, Anna; Iavazzo, Pietro; Adamo, Paola; Jungblut, Anne D; Pinzari, Flavia

    2016-06-01

    The interface between biological and geochemical components in the surface crust of a saline soil was investigated using X-ray diffraction, and variable pressure scanning electron microscopy in combination with energy dispersive X-ray spectrometry. Mineral compounds such as halite and gypsum were identified crystallized around filaments of cyanobacteria. A total of 92 genera were identified from the bacterial community based on 16S gene pyrosequencing analysis. The occurrence of the gypsum crystals, their shapes and compartmentalization suggested that they separated NaCl from the immediate microenvironment of the cyanobacteria, and that some cyanobacteria and communities of sulfur bacteria may had a physical control over the distinctive halite and gypsum structures produced. This suggests that cyanobacteria might directly or indirectly promote the formation of a protective envelope made of calcium and sulfur-based compounds. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Short-term N2 fixation kinetics in a moss-associated cyanobacteria.

    PubMed

    Jean, Marie-Eve; Cassar, Nicolas; Setzer, Cameron; Bellenger, Jean-Philippe

    2012-08-21

    N(2) fixation by moss-associated cyanobacteria plays an important role in the nitrogen cycling of terrestrial ecosystems. Recent studies have mainly focused on boreal ecosystems; little is known about such association in other ecosystems. Moss-associated cyanobacteria are subject to rapid changes (hourly or less) in environmental conditions that may affect N(2) fixation kinetics. Using a recently developed method (Acetylene Reduction Assays by Cavity ring-down laser Absorption Spectroscopy, ARACAS) with higher sensitivity and sampling frequency than the conventional method, we characterize short-term kinetics of N(2) fixation by cyanobacteria on moss carpets from warm and cold temperate forests. We report the identification of a heretofore unknown multispecies true-moss-cyanobacteria diazotrophic association. We demonstrate that short-term change in abiotic variables greatly influences N(2) fixation. We also show that difference in relative proportion of two epiphytic diazotrophs is consistent with divergent influences of temperature on their N(2) fixation kinetics. Further research is needed to determine whether this difference is consistent with a latitudinal trend.

  7. Microplastics as contaminants in the marine environment: a review.

    PubMed

    Cole, Matthew; Lindeque, Pennie; Halsband, Claudia; Galloway, Tamara S

    2011-12-01

    Since the mass production of plastics began in the 1940s, microplastic contamination of the marine environment has been a growing problem. Here, a review of the literature has been conducted with the following objectives: (1) to summarise the properties, nomenclature and sources of microplastics; (2) to discuss the routes by which microplastics enter the marine environment; (3) to evaluate the methods by which microplastics are detected in the marine environment; (4) to assess spatial and temporal trends of microplastic abundance; and (5) to discuss the environmental impact of microplastics. Microplastics are both abundant and widespread within the marine environment, found in their highest concentrations along coastlines and within mid-ocean gyres. Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota. We conclude by highlighting key future research areas for scientists and policymakers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Ecological and evolutionary genomics of marine photosynthetic organisms.

    PubMed

    Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric

    2013-02-01

    Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.

  9. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes.

    PubMed

    Hasan, Kamrul; Bekir Yildiz, Huseyin; Sperling, Eva; Conghaile, Peter Ó; Packer, Michael A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2014-12-07

    Photosynthetic microbial fuel cells (PMFCs) are an emerging technology for renewable solar energy conversion. Major efforts have been made to explore the electrogenic activity of cyanobacteria, mostly using practically unsustainable reagents. Here we report on photocurrent generation (≈8.64 μA cm(-2)) from cyanobacteria immobilized on electrodes modified with an efficient electron mediator, an Os(2+/3+) redox polymer. Upon addition of ferricyanide to the electrolyte, cyanobacteria generate the maximum current density of ≈48.2 μA cm(-2).

  10. Study of carotenoids in cyanobacteria by Raman spectroscopy.

    PubMed

    de Oliveira, Vanessa End; Neves Miranda, Marcela A C; Soares, Maria Carolina Silva; Edwards, Howell G M; de Oliveira, Luiz Fernando Cappa

    2015-01-01

    Cyanobacteria have established dominant aquatic populations around the world, generally in aggressive environments and under severe stress conditions, e.g., intense solar radiation. Several marine strains make use of compounds such as the polyenic molecules for their damage protection justifying the range of colours observed for these species. The peridinin/chlorophyll-a/protein complex is an excellent example of essential structures used for self-prevention; their systems allow to them surviving under aggressive environments. In our simulations, few protective dyes are required to the initial specimen defense; this is an important data concern the synthetic priority in order to supply adequate damage protection. Raman measurements obtained with 1064 and 514.5 nm excitations for Cylindrospermopsis raciborskii and Microcystis aeruginosa strains shows bands assignable to the carotenoid peridinin. It was characterized by bands at 1940, 1650, 1515, 1449, 1185, 1155 and 1000 cm(-1) assigned to ν(C=C=C) (allenic vibration), ν(C=C/CO), ν(C=C), δ(C-H, C-18/19), δ(C-H), ν(C-C), and ρ(C-CH3), respectively. Recognition by Raman spectroscopy proved to be an important tool for preliminaries detections and characterization of polyene molecules in several algae, besides initiate an interesting discussion about their synthetic priority. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  12. Silica sol-gel encapsulation of cyanobacteria: lessons for academic and applied research.

    PubMed

    Dickson, David J; Ely, Roger L

    2013-03-01

    Cyanobacteria inhabit nearly every ecosystem on earth, play a vital role in nutrient cycling, and are useful as model organisms for fundamental research in photosynthesis and carbon and nitrogen fixation. In addition, they are important for several established biotechnologies for producing food additives, nutritional and pharmaceutical compounds, and pigments, as well as emerging biotechnologies for biofuels and other products. Encapsulation of living cyanobacteria into a porous silica gel matrix is a recent approach that may dramatically improve the efficiency of certain production processes by retaining the biomass within the reactor and modifying cellular metabolism in helpful ways. Although encapsulation has been explored empirically in the last two decades for a variety of cell types, many challenges remain to achieving optimal encapsulation of cyanobacteria in silica gel. Recent evidence with Synechocystis sp. PCC 6803, for example, suggests that several unknown or uncharacterized proteins are dramatically upregulated as a result of encapsulation. Also, additives commonly used to ease stresses of encapsulating living cells, such as glycerol, have detrimental impacts on photosynthesis in cyanobacteria. This mini-review is intended to address the current status of research on silica sol-gel encapsulation of cyanobacteria and research areas that may further the development of this approach for biotechnology applications.

  13. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  14. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  15. The chemical ecology of cyanobacteria

    PubMed Central

    Leão, Pedro N.; Engene, Niclas; Antunes, Agostinho; Gerwick, William H.; Vasconcelos, Vitor

    2014-01-01

    This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed. PMID:22237837

  16. Environmental factors that influence cyanobacteria and geosmin occurrence in reservoirs

    USGS Publications Warehouse

    Journey, Celeste A.; Beaulieu, Karen M.; Bradley, Paul M.; Bradley, Paul M.

    2013-01-01

    Phytoplankton are small to microscopic, free-floating algae that inhabit the open water of freshwater, estuarine, and saltwater systems. In freshwater lake and reservoirs systems, which are the focus of this chapter, phytoplankton communities commonly consist of assemblages of the major taxonomic groups, including green algae, diatoms, dinoflagellates, and cyanobacteria. Cyanobacteria are a diverse group of single-celled organisms that can exist in a wide range of environments, not just open water, because of their adaptability. It is the adaptability of cyanobacteria that enables this group to dominate the phytoplankton community and even form nuisance or harmful blooms under certain environmental conditions. In fact, cyanobacteria are predicted to adapt favorably to future climate change in freshwater systems compared to other phytoplankton groups because of their tolerance to rising temperatures, enhanced vertical thermal stratification of aquatic ecosystems, and alterations in seasonal and interannual weather patterns. Understanding those environmental conditions that favor cyanobacterial dominance and bloom formation has been the focus of research throughout the world because of the concomitant production and release of nuisance and toxic cyanobacterial-derived compounds. However, the complex interaction among the physical, chemical, and biological processes within lakes, reservoirs, and large rivers often makes it difficult to identify primary environmental factors that cause the production and release of these cyanobacterial by-products.

  17. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria

    PubMed Central

    Dufresne, Alexis; Ostrowski, Martin; Scanlan, David J; Garczarek, Laurence; Mazard, Sophie; Palenik, Brian P; Paulsen, Ian T; de Marsac, Nicole Tandeau; Wincker, Patrick; Dossat, Carole; Ferriera, Steve; Johnson, Justin; Post, Anton F; Hess, Wolfgang R; Partensky, Frédéric

    2008-01-01

    Background The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this ecologically important group. Results Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages. Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in common, given their phylogenetic distance. Conclusion We propose that while members of a given marine Synechococcus lineage may have the same broad geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial systematics based on genome-derived parameters combined with ecological and physiological data. PMID:18507822

  18. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions.

    PubMed

    Ogawa, Takako; Misumi, Masahiro; Sonoike, Kintake

    2017-09-01

    Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v /F m , some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

  19. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces

    NASA Astrophysics Data System (ADS)

    Pfannkuche, Olaf; Lochte, Karin

    1993-04-01

    Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.

  20. Predictive Spatial Analysis of Marine Mammal Habitats

    DTIC Science & Technology

    2010-01-01

    Therefore, it would be desirable to focus on biological components of their habitat to describe their patterns of distribution and abundance . For...difficult (and often impossible) to determine prey abundance and distribution in the ocean, even with commercially important species. We currently do...not have the tools to determine the distribution and abundance of these prey species at scales that are relevant to either marine mammals or the

  1. Electricity generation from digitally printed cyanobacteria.

    PubMed

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  2. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site.

    PubMed

    Stingl, Ulrich; Tripp, Harry James; Giovannoni, Stephen J

    2007-08-01

    The introduction of high-throughput dilution-to-extinction culturing (HTC) of marine bacterioplankton using sterilized natural sea water as media yielded isolates of many abundant but previously uncultured marine bacterial clades. In early experiments, bacteria from the SAR11 cluster (class Alphaproteobacteria), which are presumed to be the most abundant prokaryotes on earth, were cultured. Although many additional attempts were made, no further strains of the SAR11 clade were obtained. Here, we describe improvements to the HTC technique, which led to the isolation of 17 new SAR11 strains from the Oregon coast and the Sargasso Sea, accounting for 28% and 31% of all isolates in these experiments. Phylogenetic analysis of the internal transcribed spacer (ITS) region showed that the isolates from the Oregon coast represent three different subclusters of SAR11, while isolates from the Sargasso Sea were more uniform and represented a single ITS cluster. A PCR assay proved the presence of proteorhodopsin (PR) in nearly all SAR11 isolates. Analysis of PR amino-acid sequences indicated that isolates from the Oregon coast were tuned to either green or blue light, while PRs from strains obtained from the Sargasso Sea were exclusively tuned to maximum absorbance in the blue. Interestingly, phylogenies based on PR and ITS did not correlate, suggesting lateral gene transfer. In addition to the new SAR11 strains, many novel strains belonging to clusters of previously uncultured or undescribed species of different bacterial phyla, including the first strain of the highly abundant alphaproteobacterial SAR116 clade, were isolated using the modified methods.

  3. Effect of aluminum phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria.

    PubMed

    Ramalingam, N; Prasanna, B Gowtham

    2006-09-01

    The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h(-1) mg(-1) protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.

  4. Measuring Ancient Air Pressure Using Fossilized Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.

    2016-12-01

    The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2

  5. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  6. Deciphering the factors associated with the colonization of rice plants by cyanobacteria.

    PubMed

    Bidyarani, Ngangom; Prasanna, Radha; Chawla, Gautam; Babu, Santosh; Singh, Rajendra

    2015-04-01

    Cyanobacteria-rice plant interactions were analyzed using a hydroponics experiment. The activity of plant defense and pathogenesis-related enzymes, scanning electron microscopy, growth, nitrogen fixation (measured as ARA), and DNA fingerprinting assays proved useful in illustrating the nature of associations of cyanobacteria with rice plants. Microscopic analyses revealed the presence of short filaments and coiled masses of filaments of cyanobacteria near the epidermis and cortex of roots and shoot tissues. Among the six cyanobacterial strains employed, Calothrix sp. (RPC1), Anabaena laxa (RPAN8), and Anabaena azollae (C16) were the best performing strains, in terms of colonization in roots and stem. These strains also enhanced nitrogen fixation and stimulated the activity of plant defense/cell wall-degrading enzymes. A significantly high correlation was also recorded between the elicited plant enzymes, growth, and ARA. DNA fingerprinting using highly iterated palindromic sequences (HIP-TG) further helped in proving the establishment of inoculated organisms in the roots/shoots of rice plants. This study illustrated that the colonization of cyanobacteria in the plant tissues is facilitated by increased elicitation of plant enzymes, leading to improved plant growth, nutrient mobilization, and enhanced plant fitness. Such strains can be promising candidates for developing "cyanobacteria colonized-nitrogen-fixing rice plants" in the future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria.

    PubMed

    Ma, Amy T; Beld, Joris; Brahamsha, Bianca

    2017-05-15

    Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae , which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs. IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also

  8. An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria

    PubMed Central

    Beld, Joris; Brahamsha, Bianca

    2017-01-01

    ABSTRACT Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs. IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is

  9. Hydrogenases and Hydrogen Metabolism of Cyanobacteria

    PubMed Central

    Tamagnini, Paula; Axelsson, Rikard; Lindberg, Pia; Oxelfelt, Fredrik; Wünschiers, Röbbe; Lindblad, Peter

    2002-01-01

    Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect—the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included. PMID:11875125

  10. Environmental factors that influence cyanobacteria and geosmin occurrence in reservoirs

    USGS Publications Warehouse

    Journey, Celeste A.; Beaulieu, Karen M.; Bradley, Paul M.

    2013-01-01

    Phytoplankton are small to microscopic, free-floating algae that inhabit the open water of freshwater, estuarine, and saltwater systems. In freshwater lake and reservoirs systems, which are the focus of this chapter, phytoplankton communities commonly consist of assemblages of the major taxonomic groups, including green algae, diatoms, dinoflagellates, and cyanobacteria. Cyanobacteria are a diverse group of single-celled organisms that can exist in a wide range of environments, not just open water, because of their adaptability [1-3]. It is the adaptability of cyanobacteria that enables this group to dominate the phytoplankton community and even form nuisance or harmful blooms under certain environmental conditions [3-6]. In fact, cyanobacteria are predicted to adapt favorably to future climate change in freshwater systems compared to other phytoplankton groups because of their tolerance to rising temperatures, enhanced vertical thermal stratification of aquatic ecosystems, and alterations in seasonal and interannual weather patterns [7, 8]. Understanding those environmental conditions that favor cyanobacterial dominance and bloom formation has been the focus of research throughout the world because of the concomitant production and release of nuisance and toxic cyanobacterial-derived compounds [4-6, 7-10]. However, the complex interaction among the physical, chemical, and biological processes within lakes, reservoirs, and large rivers often makes it difficult to identify primary environmental factors that cause the production and release of these cyanobacterial by-products.

  11. Environmental factors that influence cyanobacteria and geosmin occurrence in reservoirs

    USGS Publications Warehouse

    Journey, Celeste A.; Beaulieu, Karen M.; Bradley, Paul M.; Bradley, Paul M.

    2013-01-01

    Phytoplankton are small to microscopic, free-floating algae that inhabit the open water of freshwater, estuarine, and saltwater systems. In freshwater lake and reservoirs systems, which are the focus of this chapter, phytoplankton communities commonly consist of assemblages of the major taxonomic groups, including green algae, diatoms, dinoflagellates, and cyanobacteria. Cyanobacteria are a diverse group of single-celled organisms that can exist in a wide range of environments, not just open water, because of their adaptability [1-3]. It is the adaptability of cyanobacteria that enables this group to dominate the phytoplankton community and even form nuisance or harmful blooms under certain environmental conditions [3-6]. In fact, cyanobacteria are predicted to adapt favorably to future climate change in freshwater systems compared to other phytoplankton groups because of their tolerance to rising temperatures, enhanced vertical thermal stratification of aquatic ecosystems, and alterations in seasonal and interannual weather patterns [7, 8]. Understanding those environmental conditions that favor cyanobacterial dominance and bloom formation has been the focus of research throughout the world because of the concomitant production and release of nuisance and toxic cyanobacterial-derived compounds [4-6, 7-10]. However, the complex interaction among the physical, chemical, and biological processes within lakes, reservoirs, and large rivers often makes it difficult to identify primary environmental factors that cause the production and release of these cyanobacterial by-products [9].

  12. Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview.

    PubMed

    Wang, Da-Zhi; Zhang, Shu-Fei; Zhang, Yong; Lin, Lin

    2016-03-01

    Paralytic shellfish toxins (PSTs) are a group of water soluble neurotoxic alkaloids produced by two different kingdoms of life, prokaryotic cyanobacteria and eukaryotic dinoflagellates. Owing to the wide distribution of these organisms, these toxic secondary metabolites account for paralytic shellfish poisonings around the world. On the other hand, their specific binding to voltage-gated sodium channels makes these toxins potentially useful in pharmacological and toxicological applications. Much effort has been devoted to the biosynthetic mechanism of PSTs, and gene clusters encoding 26 proteins involved in PST biosynthesis have been unveiled in several cyanobacterial species. Functional analysis of toxin genes indicates that PST biosynthesis in cyanobacteria is a complex process including biosynthesis, regulation, modification and export. However, less is known about the toxin biosynthesis in dinoflagellates owing to our poor understanding of the massive genome and unique chromosomal characteristics [1]. So far, few genes involved in PST biosynthesis have been identified from dinoflagellates. Moreover, the proteins involved in PST production are far from being totally explored. Thus, the origin and evolution of PST biosynthesis in these two kingdoms are still controversial. In this review, we summarize the recent progress on the characterization of genes and proteins involved in PST biosynthesis in cyanobacteria and dinoflagellates, and discuss the standing evolutionary hypotheses concerning the origin of toxin biosynthesis as well as future perspectives in PST biosynthesis. Paralytic shellfish toxins (PSTs) are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells and result in paralytic shellfish poisonings (PSPs) around the world. Two different kingdoms of life, cyanobacteria and dinoflagellates are able to produce PSTs. However, in contrast with cyanobacteria, our understanding of PST biosynthesis in

  13. Ecology of selected marine communities in Glacier Bay: Zooplankton, forage fish, seabirds and marine mammals

    USGS Publications Warehouse

    Robards, Martin D.; Drew, Gary S.; Piatt, John F.; Anson, Jennifer Marie; Abookire, Alisa A.; Bodkin, James L.; Hooge, Philip N.; Speckman, Suzann G.

    2003-01-01

    We studied oceanography (including primary production), secondary production, small schooling fish (SSF), and marine bird and mammal predators in Glacier Bay during 1999 and 2000. Results from these field efforts were combined with a review of current literature relating to the Glacier Bay environment. Since the conceptual model developed by Hale and Wright (1979) ‘changes and cycles’ continue to be the underlying theme of the Glacier Bay ecosystem. We found marked seasonality in many of the parameters that we investigated over the two years of research, and here we provide a comprehensive description of the distribution and relative abundance of a wide array of marine biota. Glacier Bay is a tidally mixed estuary that leads into basins, which stratify in summer, with the upper arms behaving as traditional estuaries. The Bay is characterized by renewal and mixing events throughout the year, and markedly higher primary production than in many neighboring southeast Alaska fjords (Hooge and Hooge, 2002). Zooplankton diversity and abundance within the upper 50 meters of the water column in Glacier Bay is similar to communities seen throughout the Gulf of Alaska. Zooplankton in the lower regions of Glacier Bay peak in abundance in late May or early June, as observed at Auke Bay and in the Gulf of Alaska. The key distinction between the lower Bay and other estuaries in the Gulf of Alaska is that a second smaller peak in densities occurs in August. The upper Bay behaved uniformly in temporal trends, peaking in July. Densities had begun to decline in August, but were still more than twice those observed in that region in May. The highest density of zooplankton observed was 17,870 organisms/m3 in Tarr Inlet during July. Trends in zooplankton community abundance and diversity within the lower Bay were distinct from upper-Glacier Bay trends. Whereas the lower Bay is strongly influenced by Gulf of Alaska processes, local processes are the strongest influence in the upper

  14. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    PubMed Central

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  15. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure.

    PubMed

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.

  16. Effects of toxic cyanobacteria and ammonia on flesh quality of blunt snout bream (Megalobrama amblycephala).

    PubMed

    Wang, Li; Chen, Chuanyue; Liu, Wanjing; Xia, Hu; Li, Jian; Zhang, Xuezhen

    2017-03-01

    Toxic cyanobacterial blooms result in the production of an organic biomass containing cyanotoxins (e.g. microcystins) and an elevated ammonia concentration in the water environment. The ingestion of toxic cyanobacteria and exposure to ammonia are grave hazards for fish. The present study assessed the effects of dietary toxic cyanobacteria and ammonia exposure on the flesh quality of blunt snout bream (Megalobrama amblycephala). Dietary toxic cyanobacteria and ammonia exposure had no impact on fish growth performance, fillet proximate composition and drip loss, whereas it significantly decreased fillet total amino acids, total essential amino acids, hardness and gumminess, and increased fillet ultimate pH as well as malondialdehyde content. However, there was no significant interaction between dietary toxic cyanobacteria and ammonia exposure on these parameters. Additionally, dietary toxic cyanobacteria significantly increased fillet initial pH, thaw loss and protein carbonyl content, whereas ammonia exposure did not. The results of the present study indicate that dietary toxic cyanobacteria and ammonia exposure reduced the quality of blunt snout bream fillet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Fish mitigate trophic depletion in marine cave ecosystems.

    PubMed

    Bussotti, Simona; Di Franco, Antonio; Bianchi, Carlo Nike; Chevaldonné, Pierre; Egea, Lea; Fanelli, Emanuela; Lejeusne, Christophe; Musco, Luigi; Navarro-Barranco, Carlos; Pey, Alexis; Planes, Serge; Vieux-Ingrassia, Jean Vincent; Guidetti, Paolo

    2018-06-15

    Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitats.

  18. The structure of winter phytoplankton in Lake Nero, Russia, a hypertrophic lake dominated by Planktothrix-like Cyanobacteria

    PubMed Central

    2013-01-01

    Background The permanent dominance of Planktothrix-like сyanobacteria has been often reported for shallow eutrophic\\hypertrophic lakes in central Europe in summer\\autumn. However studies on phytoplankton growth under ice cover in nutrient-rich lakes are very scarce. Lake Nero provides a good example of the contrasting seasonal extremes in environmental conditions. Moreover, the ecosystem underwent a catastrophic transition from eutrophic to hypertrophic 2003–05, with dominance of filamentous cyanobacteria in summer\\autumn. Towards the end of the period of ice cover, there is an almost complete lack of light and oxygen but abundance in nutrients, especially ammonium nitrogen, soluble reactive phosphorus and total phosphorus in lake Nero. The aim of the present study was to describe species composition and abundance of the phytoplankton, in relation to the abiotic properties of the habitat to the end of winters 1999–2010. We were interested if Planktothrix-like сyanobacteria kept their dominant role under the ice conditions or only survived, and how did the under-ice phytoplankton community differ from year to year. Results Samples collected contained 172 algal taxa of sub-generic rank. Abundance of phytoplankton varied widely from very low to the bloom level. Cyanobacteria (Limnothrix, Pseudanabaena, Planktothrix) were present in all winter samples but did not always dominate. Favourable conditions included low winter temperature, thicker ice, almost complete lack of oxygen and high ammonium concentration. Flagellates belonging to Euglenophyta and Cryptophyta dominated in warmer winters, when phosphorus concentrations increased. Conclusion A full picture of algal succession in the lake may be obtained only if systematic winter observations are taken into account. Nearly anoxic conditions, severe light deficiency and high concentration of biogenic elements present a highly selective environment for phytoplankton. Hypertrophic water bodies of moderate zone

  19. Regulation of nitrate assimilation in cyanobacteria.

    PubMed

    Ohashi, Yoshitake; Shi, Wei; Takatani, Nobuyuki; Aichi, Makiko; Maeda, Shin-ichi; Watanabe, Satoru; Yoshikawa, Hirofumi; Omata, Tatsuo

    2011-02-01

    Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.

  20. Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment

    PubMed Central

    Ogata, Hiroyuki; Ray, Jessica; Toyoda, Kensuke; Sandaa, Ruth-Anne; Nagasaki, Keizo; Bratbak, Gunnar; Claverie, Jean-Michel

    2011-01-01

    MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses (‘giruses') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from ‘Candidatus Amoebophilus asiaticus', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world. PMID:21248859

  1. Microfossils in cherts from the Middle Riphean (Mesoproterozoic) Avzyan Formation, southern Ural Mountains, Russian Federation

    NASA Technical Reports Server (NTRS)

    Sergeev, V. N.; Knoll, A. H. (Principal Investigator)

    1994-01-01

    A diverse assemblage of well-preserved microorganisms has been detected in black cherts from the approximately 1200 Ma-old Avzyan Formation (Suite) of the southern Ural Mountains, Russian Federation. The lower Kataskin Member contains a diverse, abundant microbiota dominated by mat-forming filamentous cyanobacteria, several types of colonial unicells, and morphologically distinctive stalked cyanobacteria. The upper Revet Member contains a less diverse biota dominated by unicellular cyanobacteria. Palaeoecological evidence indicates that the microbial community of the Kataskin Member inhabited a shallow water, presumably marine, carbonate environment. Revet microorganisms possibly lived in restricted peritidal environments. The biostratigraphic significance of the Avzyan microbiota is limited. Many of the taxa are long-ranging; they were already abundant in Palaeoproterozoic successions and continue into the Neoproterozoic. Nevertheless, in many respects, the Kataskin assemblage is comparable to those reported from the Middle-Late Riphean deposits of Northern America, Australia and Eurasia. The following taxa are here described: Chroococcaceae-Eogloeocapsa avzyanica Sergeev, Gloeodiniopsis lamellosa Schopf emend. Knoll et Golubic; Entophysalidaceae-Eoentophysalis belcherensis Hofmann; Dermocarpaceae-Polybessurus bipartitus Fairchild ex Green et al.; Nostocaceae-Eosphaeronostoc kataskinicum Sergeev; Nostocaceae or Oscillatoriaceae-Siphonophycus robustum (Schopf) emend. Knoll et Golubic emend. Knoll et al., Siphonophycus sp.; Incertae sedis-Eosynechococcus amadeus Knoll et Golubic.

  2. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    PubMed

    Formighieri, Cinzia; Melis, Anastasios

    2015-11-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to divert intermediate terpenoid metabolites and to generate the monoterpene β-phellandrene during photosynthesis. However, terpene synthases, including the PHLS, have a slow Kcat (low Vmax) necessitating high levels of enzyme concentration to enable meaningful rates and yield of product formation. Here, a novel approach was applied to increase the PHLS protein expression alleviating limitations in the rate and yield of β-phellandrene product generation. Different PHLS fusion constructs were generated with the Synechocystis endogenous cpcB sequence, encoding for the abundant in cyanobacteria phycocyanin β-subunit, expressed under the native cpc operon promoter. In one of these constructs, the CpcB·PHLS fusion protein accumulated to levels approaching 20% of the total cellular protein, i.e., substantially higher than expressing the PHLS protein alone under the same endogenous cpc promoter. The CpcB·PHLS fusion protein retained the activity of the PHLS enzyme and catalyzed β-phellandrene synthesis, yielding an average of 3.2 mg product g(-1) dry cell weight (dcw) versus the 0.03 mg g(-1)dcw measured with low-expressing constructs, i.e., a 100-fold yield improvement. In conclusion, the terpene synthase fusion-protein approach is promising, as, in this case, it substantially increased the amount of the PHLS in cyanobacteria, and commensurately improved rates and yield of β-phellandrene hydrocarbons production in these photosynthetic microorganisms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria.

    PubMed

    Pisciotta, John M; Zou, Yongjin; Baskakov, Ilia V

    2011-07-01

    Certain anaerobic bacteria, termed electrogens, produce an electric current when electrons from oxidized organic molecules are deposited to extracellular metal oxide acceptors. In these heterotrophic "metal breathers", the respiratory electron transport chain (R-ETC) works in concert with membrane-bound cytochrome oxidases to transfer electrons to the extracellular acceptors. The diversity of bacteria able to generate an electric current appears more widespread than previously thought, and aerobic phototrophs, including cyanobacteria, possess electrogenic activity. However, unlike heterotrophs, cyanobacteria electrogenic activity is light dependent, which suggests that a novel pathway could exist. To elucidate the electrogenic mechanism of cyanobacteria, the current studies used site-specific inhibitors to target components of the photosynthetic electron transport chain (P-ETC) and cytochrome oxidases. Here, we show that (1) P-ETC and, particularly, water photolysed by photosystem II (PSII) is the source of electrons discharged to the environment by illuminated cyanobacteria, and (2) water-derived electrons are transmitted from PSII to extracellular electron acceptors via plastoquinone and cytochrome bd quinol oxidase. Two cyanobacterial genera (Lyngbya and Nostoc) displayed very similar electrogenic responses when treated with P-ETC site-specific inhibitors, suggesting a conserved electrogenic pathway. We propose that in cyanobacteria, electrogenic activity may represent a form of overflow metabolism to protect cells under high-intensity light. This study offers insight into electron transfer between phototrophic microorganisms and the environment and expands our knowledge into biologically based mechanisms for harnessing solar energy.

  4. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    PubMed

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    PubMed Central

    Coma, Rafel; Serrano, Eduard; Linares, Cristina; Ribes, Marta; Díaz, David; Ballesteros, Enric

    2011-01-01

    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem. PMID:21789204

  6. Does a No-Take Marine Protected Area Benefit Seahorses?

    PubMed Central

    Harasti, David; Martin-Smith, Keith; Gladstone, William

    2014-01-01

    Seahorses are iconic charismatic species that are often used to ‘champion’ marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White's seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance. PMID:25137253

  7. Does a no-take marine protected area benefit seahorses?

    PubMed

    Harasti, David; Martin-Smith, Keith; Gladstone, William

    2014-01-01

    Seahorses are iconic charismatic species that are often used to 'champion' marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White's seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance.

  8. Human health effects and remotely sensed cyanobacteria

    EPA Science Inventory

    Cyanobacteria blooms (HAB) pose a potential health risk to beachgoers, including HAB-associated gastrointestinal, respiratory and dermal illness. We conducted a prospective study of beachgoers at a Great Lakes beach during July – September, 2003. We recorded each participan...

  9. Polyhydroxybutyrate production from marine source and its application.

    PubMed

    Kavitha, Ganapathy; Rengasamy, Ramasamy; Inbakandan, Dhinakarasamy

    2018-05-01

    The increasing significance of non-degradable plastic wastes is an emerging concern. As a substitute, researches are being endeavoured from existing reserve to yield bioplastics based on their properties of biodegradability. Owing to their cost, now the experts are quest for a substitute source like bacteria, microalgae, actinomycetes, cyanobacteria and plants. PHB is biodegradable, environmental friendly and biocompatible thermoplastics. Varying in toughness and flexibility, depending on their formulation, they are used in various ways similar to many non-biodegradable petrochemical plastics currently in use. Promising strategies contain genetic engineering of microorganisms to introduce production pathways examined for the past two decades. Such kind of researches focusing on the use of unconventional substrates, novel extraction methods, and genetically enhanced species with assessment to make PHB from marine microbes are commercially attractive field. Hence, this biopolymer synthesis may displayed as one of the survival mechanisms of endosymbiotic, macroalgae, or sponge-associated bacteria, which exist in a highly competitive and stressful marine microenvironment. This review throws light on the promising and growing awareness of using marine microbes as PHB source, along with their applications in different fields of aquaculture, medicine, antifouling and tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event.

    PubMed

    Schirrmeister, Bettina E; de Vos, Jurriaan M; Antonelli, Alexandre; Bagheri, Homayoun C

    2013-01-29

    Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45-2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE.

  11. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event

    PubMed Central

    Schirrmeister, Bettina E.; de Vos, Jurriaan M.; Antonelli, Alexandre; Bagheri, Homayoun C.

    2013-01-01

    Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE. PMID:23319632

  12. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    PubMed

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Human health effects associated with exposure to toxic Cyanobacteria – what is the evidence?

    EPA Science Inventory

    Reports of toxic cyanobacteria blooms are increasing worldwide, as warming water and eutrophic surface water systems support the development of blooms. As awareness of toxic cyanobacteria blooms increases, reports of associated human and animal illnesses have also increased, but ...

  14. [Investigation of algae pollution in Xiliu Lake and identification of toxic cyanobacteria by whole-cell PCR].

    PubMed

    Ban, Hai-qun; Zhuang, Dong-gang; Zhu, Jing-yuan; Ba, Yue

    2006-03-01

    To investigate the contaminative condition of the floating algae (especially toxic cyanobacteria) in Xiliu Lake, and establish a whole-cell PCR method for identifying the toxic cyanobacteria. The surface water of Xiliu Lake was sampled by plastic sampler from March, 2004, and the number of algae was counted by using blood cell counter. The phycocyanin intergenic spacer region (PC-IGS) and microcystin synthetase gene B (mcyB) were identified by whole-cell PCR in water samples, and the amplified product of mcyB was inserted into T vector and sequenced. Cyanobacteria, Chlorophyta, Bacillariophyta and Euglenophyta were main algae, and cyanobacteria was the dominant algae in summer and autumn. From July 7 to September 27,2 004, PC-IGS was detected positively in 11 samples, and from July 29 to September 27, mcyB was-detieted positively in 9 samples. Compared with the reported mcyB of Microcystis aeruginosa in Genbank, the homology of gene sequence was more than 97 t he homology of amino acid sequence was more than 94%. In summer and autumn toxic cyanobacteria could be detected in Xiliu Lake. Toxic cyanobacteria could be identified successfully by whole-cell PCR.

  15. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex.

    PubMed

    Lengke, Maggy F; Ravel, Bruce; Fleet, Michael E; Wanger, Gregory; Gordon, Robert A; Southam, Gordon

    2006-10-15

    The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.

  16. Growth and abundance of Pacific Sand Lance, Ammodytes hexapterus, under differing oceanographic regimes

    USGS Publications Warehouse

    Robards, Martin D.; Gray, Floyd; Piatt, John F.

    2002-01-01

    Dramatic changes in seabird and marine mammal stocks in the Gulf of Alaska have been linked to shifts in abundance and composition of forage fish stocks over the past 20 years. The relative value (e.g., size and condition of individual fish, abundance) of specific forage fish stocks to predators under temporally changing oceanographic regimes is also expected to vary. We inferred potential temporal responses in abundance, growth, and age structure of a key forage fish, sand lance, by studying across spatially different oceanographic regimes. Marked meso-scale differences in abundance, growth, and mortality existed in conjunction with these differing regimes. Growth rate within stocks (between years) was positively correlated with temperature. However, this relationship did not exist among stocks (locations) and differing growth rates were better correlated to marine productivity. Sand lance were least abundant and grew slowest at the warmest site (Chisik Island), an area of limited habitat and low food abundance. Abundance and growth of juvenile sand lance was highest at the coolest site (Barren Islands), an area of highly productive upwelled waters. Sand lance at two sites located oceanographically between the Barren Islands and Chisik Island (inner- and outer-Kachemak Bay) displayed correspondingly intermediate abundance and growth. Resident predators at these sites are presented with markedly different numbers and quality of this key prey species. Our results suggest that at the decadal scale, Gulf of Alaska forage fish such as sand lance are probably more profoundly affected by changes in abundance and quality of their planktonic food, than by temperature alone.

  17. Single-virus genomics reveals hidden cosmopolitan and abundant viruses

    PubMed Central

    Martinez-Hernandez, Francisco; Fornas, Oscar; Lluesma Gomez, Monica; Bolduc, Benjamin; de la Cruz Peña, Maria Jose; Martínez, Joaquín Martínez; Anton, Josefa; Gasol, Josep M.; Rosselli, Riccardo; Rodriguez-Valera, Francisco; Sullivan, Matthew B.; Acinas, Silvia G.; Martinez-Garcia, Manuel

    2017-01-01

    Microbes drive ecosystems under constraints imposed by viruses. However, a lack of virus genome information hinders our ability to answer fundamental, biological questions concerning microbial communities. Here we apply single-virus genomics (SVGs) to assess whether portions of marine viral communities are missed by current techniques. The majority of the here-identified 44 viral single-amplified genomes (vSAGs) are more abundant in global ocean virome data sets than published metagenome-assembled viral genomes or isolates. This indicates that vSAGs likely best represent the dsDNA viral populations dominating the oceans. Species-specific recruitment patterns and virome simulation data suggest that vSAGs are highly microdiverse and that microdiversity hinders the metagenomic assembly, which could explain why their genomes have not been identified before. Altogether, SVGs enable the discovery of some of the likely most abundant and ecologically relevant marine viral species, such as vSAG 37-F6, which were overlooked by other methodologies. PMID:28643787

  18. Single-virus genomics reveals hidden cosmopolitan and abundant viruses

    DOE PAGES

    Martinez-Hernandez, Francisco; Fornas, Oscar; Lluesma Gomez, Monica; ...

    2017-06-23

    Microbes drive ecosystems under constraints imposed by viruses. However, a lack of virus genome information hinders our ability to answer fundamental, biological questions concerning microbial communities. Here we apply single-virus genomics (SVGs) to assess whether portions of marine viral communities are missed by current techniques. The majority of the here-identified 44 viral single-amplified genomes (vSAGs) are more abundant in global ocean virome data sets than published metagenome-assembled viral genomes or isolates. This indicates that vSAGs likely best represent the dsDNA viral populations dominating the oceans. Species-specific recruitment patterns and virome simulation data suggest that vSAGs are highly microdiverse and thatmore » microdiversity hinders the metagenomic assembly, which could explain why their genomes have not been identified before. Altogether, SVGs enable the discovery of some of the likely most abundant and ecologically relevant marine viral species, such as vSAG 37-F6, which were overlooked by other methodologies.« less

  19. Single-virus genomics reveals hidden cosmopolitan and abundant viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Hernandez, Francisco; Fornas, Oscar; Lluesma Gomez, Monica

    Microbes drive ecosystems under constraints imposed by viruses. However, a lack of virus genome information hinders our ability to answer fundamental, biological questions concerning microbial communities. Here we apply single-virus genomics (SVGs) to assess whether portions of marine viral communities are missed by current techniques. The majority of the here-identified 44 viral single-amplified genomes (vSAGs) are more abundant in global ocean virome data sets than published metagenome-assembled viral genomes or isolates. This indicates that vSAGs likely best represent the dsDNA viral populations dominating the oceans. Species-specific recruitment patterns and virome simulation data suggest that vSAGs are highly microdiverse and thatmore » microdiversity hinders the metagenomic assembly, which could explain why their genomes have not been identified before. Altogether, SVGs enable the discovery of some of the likely most abundant and ecologically relevant marine viral species, such as vSAG 37-F6, which were overlooked by other methodologies.« less

  20. Cyanobacteria as efficient producers of mycosporine-like amino acids.

    PubMed

    Jain, Shikha; Prajapat, Ganshyam; Abrar, Mustari; Ledwani, Lalita; Singh, Anoop; Agrawal, Akhil

    2017-09-01

    Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Farley, Edward V.; Murphy, J.M.; Adkison, Milo D.; Eisner, Lisa B.; Helle, J.H.; Moss, J.H.; Nielsen, Jennifer L.

    2007-01-01

    We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.

  2. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis.

    PubMed

    Warshan, Denis; Espinoza, Josh L; Stuart, Rhona K; Richter, R Alexander; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; C Kyrpides, Nikos; Barry, Kerrie; Singan, Vasanth; Lindquist, Erika; Ansong, Charles; Purvine, Samuel O; M Brewer, Heather; Weyman, Philip D; Dupont, Christopher L; Rasmussen, Ulla

    2017-12-01

    Dinitrogen (N 2 )-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss-cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria-plant symbioses, with Nostoc retaining motility, and lacking modulation of N 2 -fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant-cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria-feathermoss symbiosis.

  3. Diversity and Physiology of Siderophilic Cyanobacteria: Implication for the Bioenergetics

    NASA Technical Reports Server (NTRS)

    Brown, Igor; Sarkisova, Svetlana; Thomas-Kerprta, Kathie; McKay, David S.

    2008-01-01

    Prior to 2.4 Ga, global oceans were likely significantly enriched in soluble iron (Rouxel, Bekker, Edwards, 2005), a condition that is not conducive to the growth of most contemporary mesophilic cyanobacteria (CB). Recent studies of the mechanisms of iron-deficiency stress in CB suggest that contemporary mesophilic freshwater and marine B underwent long-term adaptation to a permanent decrease in soluble iron in the ocean environment (Boyer, et al., 1987; Braun, Hantke, and Koster, 1998). Of all extant environments, iron-depositing hot springs may constitute the most appropriate natural models for analysis of the transition of ancestral cyanobacteria (CB) or protocyanobacteria (PCB) (Olson, 2001) from anoxygenic photosynthesis to oxygenic one and biogeochemical processes in the late Archean and early Paleoproterozoic eras. In particular, Olson (2001) proposed the definition for PCB and postulated that the common ancestor of PCB and CB might well have used Fe(OH)+ as the principal electron donor for CO2 fixation (Widdel, et al., 1993; Ehrenreich and Widdel, 1994; Pierson and Olson, 1989; Olson, 2006). Olson (2001) proposed that the driving force for the evolution of RC2, in addition to RC1, was the necessity to use Fe(OH)+ effectively for CO2 fixation in the absence of reduced sulfur compounds. The global decrease of dissolved environmental reduced iron could have been the driving force for the transition from anoxygenic to oxygenic photosynthesis (Brown et al., 2007). Despite the insights into the ecology, evolutionary biology, paleogeobiochemistry, and astrobiology the examination of iron depositing hot springs (IDHS) could potentially provide, very few studies dedicated to the diversity and physiology of cyanobacteria inhabiting IDHS have been conducted. Here we describe the phylogeny, physiology and ultrastructure and biogeochemical activity of several recent CB isolates from two different greater Yellowstone area IDHS, e.g. LaDuke and Chocolate Pots

  4. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review.

    PubMed

    Johnson, Tylor J; Gibbons, Jaimie L; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2016-11-01

    The rapid increase in worldwide population coupled with the increasing demand for fossil fuels has led to an increased urgency to develop sustainable sources of energy and chemicals from renewable resources. Using microorganisms to produce high-value chemicals and next-generation biofuels is one sustainable option and is the focus of much current research. Cyanobacteria are ideal platform organisms for chemical and biofuel production because they can be genetically engineered to produce a broad range of products directly from CO 2 , H 2 O, and sunlight, and require minimal nutrient inputs. The purpose of this review is to provide an overview on advances that have been or could be made to improve strains of cyanobacteria for industrial purposes. First, the benefits of using cyanobacteria as a platform for chemical and biofuel production are discussed. Next, an overview of cyanobacterial strain improvements by genetic engineering is provided. Finally, mutagenesis techniques to improve the industrial potential of cyanobacteria are described. Along with providing an overview on various areas of research that are currently being investigated to improve the industrial potential of cyanobacteria, this review aims to elucidate potential targets for future research involving cyanobacteria as an industrial microorganism. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1357-1371, 2016. © 2016 American Institute of Chemical Engineers.

  5. Antimicrobial assay and genetic screening of selected freshwater Cyanobacteria and identification of a biomolecule dihydro-2H-pyran-2-one derivative.

    PubMed

    Srivastava, A; Singh, V K; Patnaik, S; Tripathi, J; Singh, P; Nath, G; Asthana, R K

    2017-04-01

    Explorations of freshwater Cyanobacteria as antimicrobial (bacteria, fungi and methicillin-resistant Staphylococcus aureus (MRSA) strains) drug resource using bioassay, NRPS (non-ribosomal polypeptide synthetase) and PKS (polyketide synthase) genes, as well as in silico approach. We have bioassayed the extracts of Phormidium CCC727, Geitlerinema CCC728, Arthrospira CCC729, Leptolyngbya CCC732, Phormidium CCC730, Phormidium CCC731 against six pathogenic bacteria comprising Gram (+ve): S. aureus including seven clinical MRSA and Enterococcus faecalis, Gram (-ve): Escherichia coli, Salmonella Typhimurium, Klebsiella pneumoniae and Shigella boydii along with non-pathogenic Enterobacter aerogenes as well as fungal strains (Cryptococcus neoformans and Candida albicans, C. krusei, C. tropicalis and Aspergillus niger) exhibiting antimicrobial potential. The NRPS and PKS genes of the target strains were also amplified and sequenced. The putative protein structures were predicted using bioinformatics approach. PKS gene expression indicated β keto-acyl synthase as one of the important active domains in the biomolecules related to antitumour and antifungal group. The simultaneous identification of the biomolecule (dihydro-2H-pyran-2-one derivative) was also inferred spectroscopically. Freshwater Cyanobacteria are prolific producers of secondary metabolite(s) that may act as the antimicrobial drug resource in addition to their much explored marine counterpart. © 2016 The Society for Applied Microbiology.

  6. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function

    USGS Publications Warehouse

    Antoninka, Anita; Bowker, Matthew A.; Reed, Sasha C.; Doherty, Kyle

    2016-01-01

    Mosses are an often-overlooked component of dryland ecosystems, yet they are common members of biological soil crust communities (biocrusts) and provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and housing of N2 fixing cyanobacteria. Mosses are able to survive long dry periods, respond rapidly to precipitation, and reproduce vegetatively. With these qualities, dryland mosses have the potential to be an excellent dryland restoration material. Unfortunately, dryland mosses are often slow growing in nature, and ex situ cultivation methods are needed to enhance their utility. Our goal was to determine how to rapidly produce, vegetatively, Syntrichia caninervis and S. ruralis, common and abundant moss species in drylands of North America and elsewhere, in a greenhouse. We manipulated the length of hydration on a weekly schedule (5, 4, 3, or 2 days continuous hydration per week), crossed with fertilization (once at the beginning, monthly, biweekly, or not at all). Moss biomass increased sixfold for both species in 4 months, an increase that would require years under dryland field conditions. Both moss species preferred short hydration and monthly fertilizer. Remarkably, we also unintentionally cultured a variety of other important biocrust organisms, including cyanobacteria and lichens. In only 6 months, we produced functionally mature biocrusts, as evidenced by high productivity and ecosystem-relevant levels of N2 fixation. Our results suggest that biocrust mosses might be the ideal candidate for biocrust cultivation for restoration purposes. With optimization, these methods are the first step in developing a moss-based biocrust rehabilitation technology.

  7. Nanoplankton and picoplankton in the Western English Channel: abundance and seasonality from 2007-2013

    NASA Astrophysics Data System (ADS)

    Tarran, Glen A.; Bruun, John T.

    2015-09-01

    The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box-Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.

  8. Planktonic Marine Iron-Oxidizers Drive Iron(III) Mineralization Under Low Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Field, E.; Findlay, A.; MacDonald, D. J.; Chan, C. S. Y.; Kato, S.

    2016-02-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive banded iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypotheses was that cyanobacteria produced oxygen that oxidized iron(II) abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron(II)-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron-oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to iron deposits, but there is currently little evidence for planktonic marine iron-oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron-oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 µM O2, <0.2 µM H2S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Instead, cyanobacteria may be providing oxygen for microaerophilic iron(II) oxidation through a symbiotic relationship that promotes oxygen consumption rather than build-up. Our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron(II)-oxidizers were likely important drivers of iron(III) mineralization in ancient oceans.

  9. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites.

    PubMed

    Engene, Niclas; Rottacker, Erin C; Kaštovský, Jan; Byrum, Tara; Choi, Hyukjae; Ellisman, Mark H; Komárek, Jiří; Gerwick, William H

    2012-05-01

    The filamentous cyanobacterial genus Moorea gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus Moorea are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll a), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25-80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus Lyngbya, this group has often been incorrectly cited in the literature. We here describe two species of the genus Moorea: Moorea producens sp. nov. (type species of the genus) with 3L(T) as the nomenclature type, and Moorea bouillonii comb. nov. with PNG5-198(R) as the nomenclature type.

  10. Analysis of photosystem II biogenesis in cyanobacteria.

    PubMed

    Heinz, Steffen; Liauw, Pasqual; Nickelsen, Jörg; Nowaczyk, Marc

    2016-03-01

    Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  12. [Community structure and phylogenetic analysis of cyanobacteria in cryoconite from surface of the Glacier No. 1 in the Tianshan Mountains].

    PubMed

    Ni, Xuejiao; Qi, Xing'e; Gu, Yanling; Zheng, Xiaoji; Dong, Juan; Ni, Yongqing; Cheng, Guodong

    2014-11-04

    The purpose of this study is to characterize the community composition and phylogenetic analysis of cyanobacteria from supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains, China. We amplified 16S rRNA genes from the extracted cryoconite DNA by PCR with 2 pairs of cyanobacteria-specific primers. Amplificon was used to construct 16S rRNA genes clone library. The estimation of species richness, diversity indices, and rarefaction curve of the 16S rRNA genes library were determined based on representative phylotypes (OTUs). Analysis of 16S rRNA gene sequences allowed grouping of 101 clones into 12 phylotypes (OTUs) using a cut-off of 97% identity. The phylogenetic analysis revealed that most of sequences affiliated to the order Oscillatoriales and Chroococcales except that three were unclassified. The clone library was dominated by representatives of the order Oscillatoriales (81% of the total clones), and the most abundant organisms within this order were in the genus Phormidium (68 clones) including clones grouping into four phylotypes. The only clone of Chroococcales was closely related to the genus Chamaesiphon with 97% similarity. In addition, comparison of soil chemical properties between different habitats indicated that supraglacial cryoconite supported significantly higher the content of available phosphorus and potassium, nitrate nitrogen and organic matter compared with the forefield of the Glacier No. 1. The diversity index of cyanobacteria were relatively high in supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains. The community structure was dominated by members of the genus Phormidium. This study may enrich our knowledge on biogeochemical processes and ecological distribution of cyanobacterial populations in glacial ecosystem.

  13. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism

    NASA Astrophysics Data System (ADS)

    Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J.; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi

    2016-03-01

    Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.

  14. Application of plow-tillage as an innovative technique for eliminating overwintering cyanobacteria in eutrophic lake sediments.

    PubMed

    Zhou, Qilin; Liu, Cheng; Fan, Chengxin

    2016-12-01

    Surface sediment in eutrophic lakes is both a destination and a habitat for overwintering cyanobacteria. The resuspension and recovery of viable, overwintering cyanobacteria from the surface sediment during warm spring weather is usually the primary stage of cyanobacterial blooms (CBs) in shallow eutrophic lakes. Therefore, the elimination of overwintering cyanobacteria in sediment is vital to control CBs. In the present study, sediment plow-tillage (PT) was introduced as an innovative technique for eliminating overwintering cyanobacteria in sediments from Lake Chaohu. Four depths of PT (2, 5, 10, and 15 cm) were tested during the 42-day experiment. The results showed that rapid cell death during the first 0-7 d after PT was accompanied by high oxygen uptake rates. The viable cells in deeper sediment died more quickly and at a higher rate after PT. A PT depth of >10 cm effectively eliminated viable cyanobacteria (with a removal rate of 82.8%) from the sediment and prevented their resuspension. The activity of the viable cyanobacteria also decreased quickly as cyanobacteria were eliminated. It appears that the dark, anoxic environment of the deeper sediment after PT was responsible for the elimination of viable cells. Although high release rates of nitrogen and phosphorus were found to accompany the dying and decomposition of cyanobacteria during days 0-7 of the experiment, greater depth of PT was found to decrease nutrient concentrations in the overlying water. In conclusion, we recommend sediment PT as a new technique for eliminating overwintering algae in sediments. However, the release of nutrients from the sediment and the in situ control of CBs in lakes after PT should be further studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    PubMed

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Planktonic food web structure at a coastal time-series site: I. Partitioning of microbial abundances and carbon biomass

    NASA Astrophysics Data System (ADS)

    Caron, David A.; Connell, Paige E.; Schaffner, Rebecca A.; Schnetzer, Astrid; Fuhrman, Jed A.; Countway, Peter D.; Kim, Diane Y.

    2017-03-01

    Biogeochemistry in marine plankton communities is strongly influenced by the activities of microbial species. Understanding the composition and dynamics of these assemblages is essential for modeling emergent community-level processes, yet few studies have examined all of the biological assemblages present in the plankton, and benchmark data of this sort from time-series studies are rare. Abundance and biomass of the entire microbial assemblage and mesozooplankton (>200 μm) were determined vertically, monthly and seasonally over a 3-year period at a coastal time-series station in the San Pedro Basin off the southwestern coast of the USA. All compartments of the planktonic community were enumerated (viruses in the femtoplankton size range [0.02-0.2 μm], bacteria + archaea and cyanobacteria in the picoplankton size range [0.2-2.0 μm], phototrophic and heterotrophic protists in the nanoplanktonic [2-20 μm] and microplanktonic [20-200 μm] size ranges, and mesozooplankton [>200 μm]. Carbon biomass of each category was estimated using standard conversion factors. Plankton abundances varied over seven orders of magnitude across all categories, and total carbon biomass averaged approximately 60 μg C l-1 in surface waters of the 890 m water column over the study period. Bacteria + archaea comprised the single largest component of biomass (>1/3 of the total), with the sum of phototrophic protistan biomass making up a similar proportion. Temporal variability at this subtropical station was not dramatic. Monthly depth-specific and depth-integrated biomass varied 2-fold at the station, while seasonal variances were generally <50%. This study provides benchmark information for investigating long-term environmental forcing on the composition and dynamics of the microbes that dominate food web structure and function at this coastal observatory.

  17. Placing Marine Protected Areas Within a Broader Marine Landscape: the Role of Science in the Northward Expansion of Two West-Coast National Marine Sanctuaries

    NASA Astrophysics Data System (ADS)

    Largier, J. L.; Brown, M.; Howard, D.

    2016-12-01

    Off San Francisco, the coastal waters in the Gulf of Farallones and over Cordell Bank have long been valued as a key marine ecosystem. Two National Marine Sanctuaries were established to protect and steward the remarkable marine resources in this region: the Cordell Bank NMS in 1989 and the Gulf of Farallones NMS in 1981. There is an abundance of birds, fish, sharks, whales and other mammals that reside in or visit this region. Fed by the bounty of plankton served up by coastal upwelling, this is one of the most productive marine ecosystems on the planet. In contrast to terrestrial systems, the components of marine systems are connected by water circulation - in the case of these west coast sanctuaries, this meant that the planktonic bounty was being imported from adjacent waters not protected by the sanctuary. In analogy to river systems, the headwaters were not included in the watershed plan. The Point Arena upwelling center represents a perennial supply of nutrients that are carried south into sanctuary waters, developing dense blooms of phytoplankton as they travel south, and in turn supporting an abundance of zooplankton and forage fish. With sanctuary waters derived from the Point Arena upwelling cell more than 90% of the time, this "food machine" is the foundation of the upper-trophic-level fame of the sanctuary waters. The northward expansion of these sanctuaries in 2015 emerged when local politics met local science, allowing for an integration of science and management that reached to Washington DC. In an ocean where everything is connected, one cannot protect everything - by using science to understand landscapes, we can identify the primary source waters that are the very foundation of protected ecosystems. Linking to the theme of the session, this landscape also includes runoff that connects estuaries and watersheds to ocean waters. Too little attention has been given to the role of runoff in marine protected areas, both federal sanctuaries and marine

  18. Placing Marine Protected Areas Within a Broader Marine Landscape: the Role of Science in the Northward Expansion of Two West-Coast National Marine Sanctuaries

    NASA Astrophysics Data System (ADS)

    Largier, J. L.; Brown, M.; Howard, D.

    2016-02-01

    Off San Francisco, the coastal waters in the Gulf of Farallones and over Cordell Bank have long been valued as a key marine ecosystem. Two National Marine Sanctuaries were established to protect and steward the remarkable marine resources in this region: the Cordell Bank NMS in 1989 and the Gulf of Farallones NMS in 1981. There is an abundance of birds, fish, sharks, whales and other mammals that reside in or visit this region. Fed by the bounty of plankton served up by coastal upwelling, this is one of the most productive marine ecosystems on the planet. In contrast to terrestrial systems, the components of marine systems are connected by water circulation - in the case of these west coast sanctuaries, this meant that the planktonic bounty was being imported from adjacent waters not protected by the sanctuary. In analogy to river systems, the headwaters were not included in the watershed plan. The Point Arena upwelling center represents a perennial supply of nutrients that are carried south into sanctuary waters, developing dense blooms of phytoplankton as they travel south, and in turn supporting an abundance of zooplankton and forage fish. With sanctuary waters derived from the Point Arena upwelling cell more than 90% of the time, this "food machine" is the foundation of the upper-trophic-level fame of the sanctuary waters. The northward expansion of these sanctuaries in 2015 emerged when local politics met local science, allowing for an integration of science and management that reached to Washington DC. In an ocean where everything is connected, one cannot protect everything - by using science to understand landscapes, we can identify the primary source waters that are the very foundation of protected ecosystems. Linking to the theme of the session, this landscape also includes runoff that connects estuaries and watersheds to ocean waters. Too little attention has been given to the role of runoff in marine protected areas, both federal sanctuaries and marine

  19. Molecular diversity and distribution of marine fungi across 130 European environmental samples.

    PubMed

    Richards, Thomas A; Leonard, Guy; Mahé, Frédéric; Del Campo, Javier; Romac, Sarah; Jones, Meredith D M; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-11-22

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. © 2015 The Authors.

  20. Molecular diversity and distribution of marine fungi across 130 European environmental samples

    PubMed Central

    Richards, Thomas A.; Leonard, Guy; Mahé, Frédéric; del Campo, Javier; Romac, Sarah; Jones, Meredith D. M.; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-01-01

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030

  1. Variability of subseafloor viral abundance at the geographically and geologically distinct continental margins.

    PubMed

    Yanagawa, Katsunori; Morono, Yuki; Yoshida-Takashima, Yukari; Eitoku, Masamitsu; Sunamura, Michinari; Inagaki, Fumio; Imachi, Hiroyuki; Takai, Ken; Nunoura, Takuro

    2014-04-01

    We studied the relationship between viral particle and microbial cell abundances in marine subsurface sediments from three geographically distinct locations in the continental margins (offshore of the Shimokita Peninsula of Japan, the Cascadia Margin off Oregon, and the Gulf of Mexico) and found depth variations in viral abundances among these sites. Viruses in sediments obtained offshore of the Shimokita and in the Cascadia Margin generally decreased with increasing depth, whereas those in sediments from the Gulf of Mexico were relatively constant throughout the investigated depths. In addition, the abundance ratios of viruses to microbial cells notably varied among the sites, ranging between 10(-3) and 10(1) . The subseafloor viral abundance offshore of the Shimokita showed a positive relationship with the microbial cell abundance and the sediment porosity. In contrast, no statistically significant relationship was observed in the Cascadia Margin and the Gulf of Mexico sites, presumably due to the long-term preservation of viruses from enzymatic degradation within the low-porosity sediments. Our observations indicate that viral abundance in the marine subsurface sedimentary environment is regulated not only by in situ production but also by the balance of preservation and decay, which is associated with the regional sedimentation processes in the geological settings. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview.

    PubMed

    Macedo, Maria Filomena; Miller, Ana Zélia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2009-11-01

    The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.

  4. Inoculation of soil native cyanobacteria to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Raúl Román Fernández, José; Roncero Ramos, Beatriz; Chamizo de la Piedra, Sonia; Rodríguez Caballero, Emilio; Ángeles Muñoz Martín, M.; Mateo, Pilar; Cantón Castilla, Yolanda

    2017-04-01

    Restoration projects in semiarid lands often yield poor results. Water scarcity, low soil fertility, and poor soil structure strongly limit the survival and growth of planted seedlings in these areas. Under these conditions, a previous stage that improves edaphic conditions would turn out to a successful plant restoration. By successfully colonizing arid soils, cyanobacteria naturally provide suitable edaphic conditions, enhancing water availability, soil fertility and soil stability. Furthermore, cyanobacteria can be easily isolated and cultured ex-situ to produce high quantities of biomass, representing a potential tool to restore large areas efficiently. The objective of this study was to test the effect of inoculated cyanobacteria on degraded soils at three different semiarid areas from southeast Spain: Tabernas badlands, a limestone quarry located in Gádor, and grazed grassland in Las Amoladeras (Cabo de Gata). Soil native cyanobacteria belonging to three representative N-fixing genera (Nostoc, Scytonema and Tolypothrix) were isolated from such soils and cultured in BG110 medium. Each strain was inoculated (6 g m-2), separately and mixed (all in the same proportion), on Petri dishes with 80 g of each soil. Biocrust development was monitored during 3 months in these soils under laboratory conditions, at a constant temperature of 25oC. During the experiment, two irrigation treatments were applied simulating a dry (180 mm) and a wet (360 mm) rainfall year (average recorded in the study sites). After 3 months, net CO2 flux, spectral response and soil surface microtopography (1 mm spatial resolution) of inoculated and control soils was measured under wet conditions, all of them as a surrogate of biocrust development. Samples of the surface crust were collected in order to determine total soil organic carbon (SOC) content. The inoculated soils showed positive values of net CO2 flux, thus indicating a net CO2 uptake, whereas control soils showed CO2 fluxes closed to

  5. Veligers of the invasive Asian clam Corbicula fluminea in the Columbia River Basin: Broadscale distribution, abundance, and ecological associations

    USGS Publications Warehouse

    Hassett, Whitney; Bollens, Stephen M.; Counihan, Timothy D.; Rollwagen-Bollens, Gretchen; Zimmerman, Julie; Emerson, Joshua E.

    2017-01-01

    The invasive Asian clam Corbicula fluminea was introduced to North America in the 1930s and now inhabits most regions of the conterminous United States; however, the distribution and ecology of C. fluminea in the Columbia River Basin is poorly understood. During 2013 and 2014, 5 Columbia-Snake River reservoirs were sampled monthly from May through September, along with 23 additional lakes and reservoirs sampled once each summer. Associations among C. fluminea veligers, other components of the plankton, and environmental variables were analyzed using non-metric multidimensional scaling and canonical correspondence analysis. Corbicula fluminea veligers were found in high abundances in all mainstem Columbia-Snake River reservoirs, with an annual mean abundance of 71.2 individuals per cubic meter (inds./m3). Only 3 of 23 lakes and (non-mainstem) reservoirs contained C. fluminea, with abundances considerably lower (maximum = 21.2 inds./m3) than in the mainstem reservoirs. A diatom-dominated community preceded the spawning of C. fluminea in early summer at all sites. Corbicula fluminea veligers characterized the plankton community in late summer and were associated with cyanobacteria and high water temperatures. A third community, characterized by cyanobacteria, was apparent in non-mainstem sites in July and August. Our analyses describe the relationship of C. fluminea to the plankton community and environment, which contributes to our understanding of the possible effects of C. fluminea infestations and which waterbodies in the Columbia River Basin are at risk for infestation. Understanding the effects and environmental determinants of invasive mollusks will be increasingly important in the future with the possible arrival of zebra (Dreissena polymorpha) or quagga (D. bugensis) mussels to the region.

  6. The Northeast Cyanobacteria Monitoring Program: One Program, Three Opportunities for You To Get Involved!

    EPA Science Inventory

    If you ever have noticed a waterbody with a layer of green scum coating its surface or a slick green film resembling a paint spill, you likely have witnessed a cyanobacteria bloom. Cyanobacteria, sometimes referred to as blue-green algae, are tiny organisms found naturally in aqu...

  7. Marine mammals of Puerto Rico: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, S.F.

    1981-08-01

    This bibliography is the product of a literature survey on marine mammals at a proposed OTEC site near Punta Tuna, Puerto Rico. Included are reports of mammal sightings and strandings from Puerto Rico and adjacent Caribbean islands, reports containing information on distribution and abundance migration routes, and feeding ecology of those species known from the area. A few works on the general biology of marine mammals are also included. 96 references.

  8. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.

    2007-01-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014

    USGS Publications Warehouse

    Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.

    2017-06-05

    Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms

  10. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia.

    PubMed

    Tracy, Christopher R; Streten-Joyce, Claire; Dalton, Robert; Nussear, Kenneth E; Gibb, Karen S; Christian, Keith A

    2010-03-01

    Hypolithic microbes, primarily cyanobacteria, inhabit the highly specialized microhabitats under translucent rocks in extreme environments. Here we report findings from hypolithic cyanobacteria found under three types of translucent rocks (quartz, prehnite, agate) in a semiarid region of tropical Australia. We investigated the photosynthetic responses of the cyanobacterial communities to light, temperature and moisture in the laboratory, and we measured the microclimatic variables of temperature and soil moisture under rocks in the field over an annual cycle. We also used molecular techniques to explore the diversity of hypolithic cyanobacteria in this community and their phylogenetic relationships within the context of hypolithic cyanobacteria from other continents. Based on the laboratory experiments, photosynthetic activity required a minimum soil moisture of 15% (by mass). Peak photosynthetic activity occurred between approximately 8 degrees C and 42 degrees C, though some photosynthesis occurred between -1 degrees C and 51 degrees C. Maximum photosynthesis rates also occurred at light levels of approximately 150-550 micromol m(-2) s(-1). We used the field microclimatic data in conjunction with these measurements of photosynthetic efficiency to estimate the amount of time the hypolithic cyanobacteria could be photosynthetically active in the field. Based on these data, we estimated that conditions were appropriate for photosynthetic activity for approximately 942 h (approximately 75 days) during the year. The hypolithic cyanobacteria community under quartz, prehnite and agate rocks was quite diverse both within and between rock types. We identified 115 operational taxonomic units (OTUs), with each rock hosting 8-24 OTUs. A third of the cyanobacteria OTUs from northern Australia grouped with Chroococcidiopsis, a genus that has been identified from hypolithic and endolithic communities from the Gobi, Mojave, Atacama and Antarctic deserts. Several OTUs identified

  11. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia

    USGS Publications Warehouse

    Tracy, Christopher R.; Streten-Joyce, Claire; Dalton, Robert; Nussear, Kenneth E.; Gibb, Karen S.; Christian, Keith A.

    2010-01-01

    Hypolithic microbes, primarily cyanobacteria, inhabit the highly specialized microhabitats under translucent rocks in extreme environments. Here we report findings from hypolithic cyanobacteria found under three types of translucent rocks (quartz, prehnite, agate) in a semiarid region of tropical Australia. We investigated the photosynthetic responses of the cyanobacterial communities to light, temperature and moisture in the laboratory, and we measured the microclimatic variables of temperature and soil moisture under rocks in the field over an annual cycle. We also used molecular techniques to explore the diversity of hypolithic cyanobacteria in this community and their phylogenetic relationships within the context of hypolithic cyanobacteria from other continents. Based on the laboratory experiments, photosynthetic activity required a minimum soil moisture of 15% (by mass). Peak photosynthetic activity occurred between approximately 8°C and 42°C, though some photosynthesis occurred between −1°C and 51°C. Maximum photosynthesis rates also occurred at light levels of approximately 150–550 μmol m−2 s−1. We used the field microclimatic data in conjunction with these measurements of photosynthetic efficiency to estimate the amount of time the hypolithic cyanobacteria could be photosynthetically active in the field. Based on these data, we estimated that conditions were appropriate for photosynthetic activity for approximately 942 h (∼75 days) during the year. The hypolithic cyanobacteria community under quartz, prehnite and agate rocks was quite diverse both within and between rock types. We identified 115 operational taxonomic units (OTUs), with each rock hosting 8–24 OTUs. A third of the cyanobacteria OTUs from northern Australia grouped with Chroococcidiopsis, a genus that has been identified from hypolithic and endolithic communities from the Gobi, Mojave, Atacama and Antarctic deserts. Several OTUs identified from northern Australia have

  12. The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent.

    PubMed

    Hochmuth, Jennifer D; De Schamphelaere, Karel A C

    2014-10-01

    In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures. © 2014 SETAC.

  13. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    PubMed

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-06

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  14. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform

    PubMed Central

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G.; Abell, Chris

    2015-01-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production. PMID:25878135

  15. Expanding Models of Lake Trophic State to Predict Cyanobacteria in Lakes: A Data Mining Approach

    EPA Science Inventory

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chloro...

  16. Winter marine bird and sea otter abundance of Prince William Sound, Alaska: Trends following the t/v Exxon Valdez oil spill from 1990-94. Restoration project 94159. Exxon Valdez oil spill restoration project final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agler, B.A.; Seiser, P.E.; Kendall, S.J.

    1995-05-01

    We conducted small boat surveys to determine population abundance of marine birds and sea otters (Enhydra lutris) in Prince William Sound, Alaska during March 1994. We observed 45 bird and 8 mammal species in Prince William Sound, and we estimated that 320,470 + or - 63,640 marine birds were present. We estimated trends in the March population estimates from 1990-94 by determining whether estimates in the oiled zone changed at the same rate as those in the unoiled zone. For Prince William Sound as a whole, we also examined the population trends from 1990-94 using regression analyses. We found significantmore » positive trends for harlequin duck (Histrionicus), goldeneye, merganser, bald eagle (Haliaeetus leucocephalus), black-legged kittiwake (Rissa tridactyla) and gull (Larus and Rissa spp.) populations. We also examined the relative abundance of marine bird species groups from 1972 to 1994. During March 1994, we estimated that the sea otter population was 7,746 + or - 2,073 otters. We found no difference in the rate of change between the oiled and unoiled zones from 1990-94, and there was no significant trend in the total number of sea otters in Prince William Sound from 1990-94.« less

  17. Modelled and Measured Abundances of Free Radicals in the Marine Boundary Layer During NEAQS 2004 and TEXAQS 2006

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Brown, S. S.; Roberts, J. M.; Monks, P. S.; Parker, A. E.; Osthoff, H. D.; Ravishankara, A. R.; Trainer, M.

    2006-12-01

    Chemistry of free radicals in the marine boundary layer was investigated during two cruises of the NOAA Research Vessel Ronald H. Brown as parts of the NEAQS-ITCT 2004 and TexAQS-GoMACCS 2006 campaigns. The nitrate radical (NO{_3}) and dinitrogen pentoxide (N{_2}O{_5}) were measured during the NEAQS campaign by Cavity Ring-Down Spectroscopy (CaRDS). NO{_3} abundances measured under the conditions encountered during the cruise were investigated using a zero-dimensional model based upon the Master Chemical Mechanism (MCMv3.1, http://mcm.leeds.ac.uk). The model was constrained to measurements of chemical and physical parameters taken during the campaign. The high level of chemical detail in the MCM allowed us to calculate abundances of the alkyl peroxy radicals that were to be expected and to study the interactions during the night between these alkyl peroxy radicals (RO{_2}) and NO{_3}. In particular, the importance of the reaction between RO{_2} and NO{_3} as a sink for NO{_3} under different conditions was assessed. CaRDS NO{_3} measurements during TexAQS campaign were made in conjunction with measurements of total peroxy radicals (HO{_2}+RO{_2}) by a chemical amplification technique (PERCA), allowing for experimental verification of the relationships between these radicals at night. The preliminary measurements taken during TeXAQS 2006 will be presented and they will be used to investigate the night-time chemistry of the peroxy radicals, and especially the interactions between NO{_3} and peroxy radical in a polluted nighttime environment.

  18. Modeling Filamentous Cyanobacteria Reveals the Advantages of Long and Fast Trichomes for Optimizing Light Exposure

    PubMed Central

    Tamulonis, Carlos; Postma, Marten; Kaandorp, Jaap

    2011-01-01

    Cyanobacteria form a very large and diverse phylum of prokaryotes that perform oxygenic photosynthesis. Many species of cyanobacteria live colonially in long trichomes of hundreds to thousands of cells. Of the filamentous species, many are also motile, gliding along their long axis, and display photomovement, by which a trichome modulates its gliding according to the incident light. The latter has been found to play an important role in guiding the trichomes to optimal lighting conditions, which can either inhibit the cells if the incident light is too weak, or damage the cells if too strong. We have developed a computational model for gliding filamentous photophobic cyanobacteria that allows us to perform simulations on the scale of a Petri dish using over 105 individual trichomes. Using the model, we quantify the effectiveness of one commonly observed photomovement strategy—photophobic responses—in distributing large populations of trichomes optimally over a light field. The model predicts that the typical observed length and gliding speeds of filamentous cyanobacteria are optimal for the photophobic strategy. Therefore, our results suggest that not just photomovement but also the trichome shape itself improves the ability of the cyanobacteria to optimize their light exposure. PMID:21789215

  19. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria.

    PubMed

    Sangolkar, Lalita N; Maske, Sarika S; Chakrabarti, Tapan

    2006-11-01

    Episodes of cyanobacterial toxic blooms and fatalities to animals and humans due to cyanobacterial toxins (CBT) are known worldwide. The hepatotoxins and neurotoxins (cyanotoxins) produced by bloom-forming cyanobacteria have been the cause of human and animal health hazards and even death. Prevailing concentration of cell bound endotoxin, exotoxin and the toxin variants depend on developmental stages of the bloom and the cyanobacterial (CB) species involved. Toxic and non-toxic strains do not show any predictable morphological difference. The current instrumental, immunological and molecular methods applied for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria are reviewed.

  20. Mineralized Remains of Morphotypes of Filamentous Cyanobacteria in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The quest for conclusive evidence of microfossils in meteorites has been elusive. One difficulty arises from the fact than many abiotic or inorganic microstructures, mineral grains, and coating artifacts can mimic the smaller representatives of the microbial world that possess very simple morphologies (unicellular cocci or bacilli). However, there exist a wide variety of large, filamentous trichomic prokaryotic microorganisms (cyanobacteria and sulfur bacteria) with sufficiently well known and complex morphologies that they can be recognized and are known to be of unquestionable biogenic origin. The taphonomic modes of fossilization and their of their life habits and processes frequently result in distinctive chemical biosignatures associated with carbonization, silicification, calcification, phosphatization and metal-binding properties of their cell-walls, trichomes, sheaths and extracellular polymeric substances (EPS). Strong differences of mineral concentrations in closely associated and visibly differentiated cellular microstructures provide strong evidence of biogenicity. This evidence is further enhanced by the detection of recognizable and distinct microstructures (e.g., uniseriate or multiseriate filaments, trichomes, sheaths, cells of proper sizes and size distributions) and growth characteristics (e.g., basal or apical cells, true or false branching of trichomes, tapered or uniform filaments, robust or thin sheaths) and reproductive and nitrogen fixation habits (e.g., baeocytes, hormogonia, akinetes and heterocysts), Microfossils of cyanobacteria and cyanobacterial mats and stromatolites have been recognized a described from many of the most ancient rocks on Earth. The crucial problem lies in developing valid protocols and methodologies for establishing that the putative microfossils are truly indigenous and not merely recent microbial contaminants. During the past several years, we have conducted Field Emission Scanning Electron Microscopy (FESEM

  1. Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.

    PubMed

    Johnson, Tylor J; Hildreth, Michael B; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2015-06-01

    Filamentous cyanobacteria are currently being engineered to produce long-chain organic compounds, including 3rd generation biofuels. Because of their filamentous morphology, standard methods to quantify viability (e.g., plate counts) are not possible. This study investigated a dual-fluorescence assay based upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit to quantify the percent viability of filamentous cyanobacteria using a microplate reader in a high throughput 96-well plate format. The manufacturer's protocol calls for an optical density normalization step to equalize the numbers of viable and non-viable cells used to generate calibration curves. Unfortunately, the isopropanol treatment used to generate non-viable cells released a blue pigment that altered absorbance readings of the non-viable cell solution, resulting in an inaccurate calibration curve. Thus we omitted this optical density normalization step, and carefully divided cell cultures into two equal fractions before the isopropanol treatment. While the resulting calibration curves had relatively high correlation coefficients, their use in various experiments resulted in viability estimates ranging from below 0% to far above 100%. We traced this to the apparent inaccuracy of the propidium iodide (PI) dye that was to stain only non-viable cells. Through further analysis via microplate reader, as well as confocal and wide-field epi-fluorescence microscopy, we observed non-specific binding of PI in viable filamentous cyanobacteria. While PI will not work for filamentous cyanobacteria, it is possible that other fluorochrome dyes could be used to selectively stain non-viable cells. This will be essential in future studies for screening mutants and optimizing photobioreactor system performance for filamentous cyanobacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Coral decline threatens fish biodiversity in marine reserves.

    PubMed

    Jones, Geoffrey P; McCormick, Mark I; Srinivasan, Maya; Eagle, Janelle V

    2004-05-25

    The worldwide decline in coral cover has serious implications for the health of coral reefs. But what is the future of reef fish assemblages? Marine reserves can protect fish from exploitation, but do they protect fish biodiversity in degrading environments? The answer appears to be no, as indicated by our 8-year study in Papua New Guinea. A devastating decline in coral cover caused a parallel decline in fish biodiversity, both in marine reserves and in areas open to fishing. Over 75% of reef fish species declined in abundance, and 50% declined to less than half of their original numbers. The greater the dependence species have on living coral as juvenile recruitment sites, the greater the observed decline in abundance. Several rare coral-specialists became locally extinct. We suggest that fish biodiversity is threatened wherever permanent reef degradation occurs and warn that marine reserves will not always be sufficient to ensure their survival.

  3. Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study

    NASA Astrophysics Data System (ADS)

    Liang, Hualei; Zhou, Wenshan; Zhang, Yulei; Qiao, Qin; Zhang, Xuezhen

    2015-10-01

    Toxic cyanobacterial blooms, which produce cyclic heptapeptide toxins known as microcystins, are worldwide environmental problems. On the other hand, the cyanobacteria protein (30-50%) has been recommended as substitute protein for aquaculture. The present laboratory study verified the feasibility of cyanobacteria protein substitution and risk assessment. Goldfish were fed diets supplemented lyophilised cyanobacteria powder for 16 weeks with the various doses: 0% (control), 10%, 20%, 30% and 40%. Low doses (10% and 20%) promoted growth whereas high doses (30% and 40%) inhibited growth. In cyanobacteria treated fish, the proximate composition of ash, crude fat content and crude protein content decreased in 16 weeks; the saturated fatty acid (SFA) content significantly increased; the n-3 polyunsaturated fatty acid content, collagen content and muscle pH significantly decreased; cooking loss percents increased significantly. Muscle fiber diameter and myofibril length were negatively correlation. Additionally, flavour compounds (e.g., amino acids, nucleotides, organic acids and carnosine) changed significantly in the treated fish, and odour compounds geosmin and 2-methylisoborneol increased significantly. The estimated daily intake (EDI) of microcystins in muscle was close to or exceeded the World Health Organization (WHO) tolerable daily intake (TDI), representing a great health risk. Cyanobacterie is not feasible for protein sources use in aquaculture.

  4. Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study.

    PubMed

    Liang, Hualei; Zhou, Wenshan; Zhang, Yulei; Qiao, Qin; Zhang, Xuezhen

    2015-10-16

    Toxic cyanobacterial blooms, which produce cyclic heptapeptide toxins known as microcystins, are worldwide environmental problems. On the other hand, the cyanobacteria protein (30-50%) has been recommended as substitute protein for aquaculture. The present laboratory study verified the feasibility of cyanobacteria protein substitution and risk assessment. Goldfish were fed diets supplemented lyophilised cyanobacteria powder for 16 weeks with the various doses: 0% (control), 10%, 20%, 30% and 40%. Low doses (10% and 20%) promoted growth whereas high doses (30% and 40%) inhibited growth. In cyanobacteria treated fish, the proximate composition of ash, crude fat content and crude protein content decreased in 16 weeks; the saturated fatty acid (SFA) content significantly increased; the n-3 polyunsaturated fatty acid content, collagen content and muscle pH significantly decreased; cooking loss percents increased significantly. Muscle fiber diameter and myofibril length were negatively correlation. Additionally, flavour compounds (e.g., amino acids, nucleotides, organic acids and carnosine) changed significantly in the treated fish, and odour compounds geosmin and 2-methylisoborneol increased significantly. The estimated daily intake (EDI) of microcystins in muscle was close to or exceeded the World Health Organization (WHO) tolerable daily intake (TDI), representing a great health risk. Cyanobacterie is not feasible for protein sources use in aquaculture.

  5. Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study

    PubMed Central

    Liang, Hualei; Zhou, Wenshan; Zhang, Yulei; Qiao, Qin; Zhang, Xuezhen

    2015-01-01

    Toxic cyanobacterial blooms, which produce cyclic heptapeptide toxins known as microcystins, are worldwide environmental problems. On the other hand, the cyanobacteria protein (30–50%) has been recommended as substitute protein for aquaculture. The present laboratory study verified the feasibility of cyanobacteria protein substitution and risk assessment. Goldfish were fed diets supplemented lyophilised cyanobacteria powder for 16 weeks with the various doses: 0% (control), 10%, 20%, 30% and 40%. Low doses (10% and 20%) promoted growth whereas high doses (30% and 40%) inhibited growth. In cyanobacteria treated fish, the proximate composition of ash, crude fat content and crude protein content decreased in 16 weeks; the saturated fatty acid (SFA) content significantly increased; the n-3 polyunsaturated fatty acid content, collagen content and muscle pH significantly decreased; cooking loss percents increased significantly. Muscle fiber diameter and myofibril length were negatively correlation. Additionally, flavour compounds (e.g., amino acids, nucleotides, organic acids and carnosine) changed significantly in the treated fish, and odour compounds geosmin and 2-methylisoborneol increased significantly. The estimated daily intake (EDI) of microcystins in muscle was close to or exceeded the World Health Organization (WHO) tolerable daily intake (TDI), representing a great health risk. Cyanobacterie is not feasible for protein sources use in aquaculture. PMID:26470644

  6. Viewing Marine Bacteria, Their Activity and Response to Environmental Drivers from Orbit

    PubMed Central

    Grimes, D. Jay; Ford, Tim E.; Colwell, Rita R.; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G.

    2014-01-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions. PMID:24477922

  7. Historical Changes in Water Quality, Temperature Regimes, and Cyanobacteria Densities of 20 Midwestern USA Reservoirs

    EPA Science Inventory

    Water quality and cyanobacteria densities from 1989-2015 were compiled for 20 Midwestern USA reservoirs. Maximum summer cyanobacteria densities increased over the last 7-15 years of the record, with greatest increases typically observed in reservoirs with low watershed forest cov...

  8. Agencies collaborate, develop a cyanobacteria assessment network

    USGS Publications Warehouse

    Schaeffer, Blake A.; Loftin, Keith A.; Stumpf, Richard P.; Werdell, P. Jeremy

    2015-01-01

    Satellite remote sensing tools may enable policy makers and environmental managers to assess the sustainability of watershed ecosystems and the services they provide, now and in the future. Satellite technology allows us to develop early-warning indicators of cyanobacteria blooms at the local scale while maintaining continuous national coverage.

  9. Identification of a new-to-science cyanobacterium, Toxifilum mysidocida gen. nov. & sp. nov. (Cyanobacteria, Cyanophyceae).

    PubMed

    Zimba, Paul V; Huang, I-Shuo; Foley, Jennifer E; Linton, Eric W

    2017-02-01

    Cyanobacteria occupy many niches within terrestrial, planktonic, and benthic habitats. The diversity of habitats colonized, similarity of morphology, and phenotypic plasticity all contribute to the difficulty of cyanobacterial identification. An unknown marine filamentous cyanobacterium was isolated from an aquatic animal rearing facility having mysid mortality events. The cyanobacterium originated from Corpus Christi Bay, TX. Filaments are rarely solitary, benthic mat forming, unbranched, and narrowing at the ends. Cells are 2.1 × 3.1 μm (width × length). Thylakoids are peripherally arranged on the outer third of the cell; cyanophycin granules and polyphosphate bodies are present. Molecular phylogenetic analysis in addition to morphology (transmission electron microscopy and scanning electron microscopy) and chemical composition all confirm it as a new genus and species we name Toxifilum mysidocida. At least one identified Leptolyngbya appears (based on genetic evidence and TEM) to belong to this new genus. © 2016 Phycological Society of America.

  10. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  11. Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR.

    PubMed

    Lane, Courtney E; Benton, Michael G

    2015-12-01

    A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton.

    PubMed

    Zhao, Dayong; Shen, Feng; Zeng, Jin; Huang, Rui; Yu, Zhongbo; Wu, Qinglong L

    2016-12-15

    Association network approaches have recently been proposed as a means for exploring the associations between bacterial communities. In the present study, high-throughput sequencing was employed to investigate the seasonal variations in the composition of bacterioplankton communities in six eutrophic urban lakes of Nanjing City, China. Over 150,000 16S rRNA sequences were derived from 52 water samples, and correlation-based network analyses were conducted. Our results demonstrated that the architecture of the co-occurrence networks varied in different seasons. Cyanobacteria played various roles in the ecological networks during different seasons. Co-occurrence patterns revealed that members of Cyanobacteria shared a very similar niche and they had weak positive correlations with other phyla in summer. To explore the effect of environmental factors on species-species co-occurrence networks and to determine the most influential environmental factors, the original positive network was simplified by module partitioning and by calculating module eigengenes. Module eigengene analysis indicated that temperature only affected some Cyanobacteria; the rest were mainly affected by nitrogen associated factors throughout the year. Cyanobacteria were dominant in summer which may result from strong co-occurrence patterns and suitable living conditions. Overall, this study has improved our understanding of the roles of Cyanobacteria and other bacterioplankton in ecological networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Evans, Mary Anne; Kennedy, Robert J.; Bailey, Sean; Loftin, Keith A.; Laughrey, Zachary; Femmer, Robin; Schaeffer, Jeff; Richardson, William B.; Wynne, Timothy; Nelson, J. C.; Duris, Joseph W.

    2018-01-01

    Large lakes provide a variety of ecological services to surrounding cities and communities. Many of these services are supported by ecological processes that are threatened by the increasing prevalence of cyanobacterial blooms which occur as aquatic ecosystems experience cultural eutrophication. Over the past 10 yr, Lake Erie experienced cyanobacterial blooms of increasing severity and frequency, which have resulted in impaired drinking water for the surrounding communities. Cyanobacterial blooms may impact ecological processes that support other services, but many of these impacts have not been documented. Secondary production (production of primary consumers) is an important process that supports economically important higher trophic levels. Cyanobacterial blooms may influence secondary production because cyanobacteria are a poor‐quality food resource and cyanotoxins may be harmful to consumers. Over 3 yr at 34 sites across the western basin of Lake Erie, we measured three indices of secondary production that focus on the dominant bivalve taxa: (1) growth of a native unionid mussel, (2) the size of young‐of‐year dreissenid mussels, and (3) the mass of colonizing animals on a Hester‐Dendy sampler. Associations between these indices and cyanobacterial data were estimated to assess whether cyanobacteria are associated with variation in secondary production in the western basin of Lake Erie. The results suggest cyanobacterial abundance alone is only weakly associated with secondary production, but that cyanotoxins have a larger effect on secondary production. Given recurring late‐summer cyanobacterial blooms, this impact on secondary production has the potential to undermine Lake Erie's ability to sustain important ecosystem services.

  14. The role of the bidirectional hydrogenase in cyanobacteria.

    PubMed

    Carrieri, Damian; Wawrousek, Karen; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching

    2011-09-01

    Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the hox-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA).

    PubMed

    Sukenik, Assaf; Viner-Mozzini, Yehudit; Tavassi, Mordechay; Nir, Shlomo

    2017-09-01

    Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment is essential. The capacity of nano-composites of Octadecyltrimethyl-ammonium (ODTMA) complexed with clay to remove cyanobacterial and their toxins from laboratory cultures and from lake water, was evaluated. Column filters packed with micelles of ODTMA complexed with bentonite and granulated were shown to significantly reduce the number of cyanobacteria cells or filaments and their corresponding toxins from laboratory cultures. Fluorescence measurements demonstrated that cyanobacteria cells lost their metabolic activity (photosynthesis) upon exposure to the micelle (ODTMA)-bentonite complex, or ODTMA monomers. The complex efficiently removed cyanobacteria toxins with an exceptional high removal rate of microcystins. The effectiveness of the complex in elimination of cyanobacteria was further demonstrated with lake water containing cyanobacteria and other phytoplankton species. These results and model calculations suggest that filters packed with granulated composites can secure the safety of drinking water in case of a temporary bloom event of toxic cyanobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. EnviroAtlas Cyanobacteria Assessment Network (CyAN) Dashboard: A Tool for Data Visualization and Exploratory Analysis

    EPA Science Inventory

    Economic, health, and environmental impacts of cyanobacteria and associated harmful algal blooms are increasingly recognized by policymakers, managers, and scientific researchers. However, spatially-distributed, long-term data on cyanobacteria blooms are largely unavailable. The ...

  17. Optimizing N-Fixing cyanobacteria culture to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Roncero-Ramos, Beatriz; Román, Raúl; Gómez, Cintia; Chamizo, Sonia; Rodriguez-Caballero, Emilio; Cantón, Yolanda

    2017-04-01

    Cyanobacteria present several metabolic activities and mechanisms of adaptation which enable them to colonize different habitats, in almost all biome and continents, especially under extreme environmental conditions, as on the surface of the most arid soils and under the highest temperatures. In drylands, they are usually found among plants, cohabiting with organisms such as algae, lichens, mosses, bacteria and fungi, and in association with soil surface particles, forming communities known as biocrusts. Because they can survive under water stress and are considered ecosystem engineers, facilitating the establishment of other organisms, they can play a key role in the development of a successful restoration approach to recover the functionality of soils in arid and semiarid regions. In addition cyanobacteria can be cultured "ex-situ" obtaining high quantities of biomass to be used as soil inoculum at large scale. For these reasons, the inoculation of degrades soils with cyanobacteria can be considered an alternative to traditional restoration. This approach is expected to promote: the stabilization of the soil surface and the decrease of water and wind erosion; the increase of soil fertility by fixing N and C; and the succession of more developed organisms as mosses or vascular and annual plants. The objectives were: to evaluate the potential of a soil native cyanobacteria strain to be artificially cultured and the optimization of the process, and to analyze the effects of the inoculation of the biomass on soil under laboratory conditions. Cyanobacteria were isolated from biocrusts sampled on a limestone quarry located at the southeastern edge of the Sierra de Gádor massif (Spain). It was genetically and morphological identified as belonging to the nitrogen-fixing genera Nostoc. Essays were accomplished in bubble columns reactors (0.25 L), using different culture media: BG11+N, BG110, and two media made with fertilizers. Illumination simulated a circadian cycle

  18. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  19. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments

    PubMed Central

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan DW

    2008-01-01

    Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments. PMID:18717988

  20. Effect of temperature on the accumulation of marine biogenic gels in the surface microlayer near the outlet of nuclear power plants and adjacent areas in the Daya Bay, China.

    PubMed

    Yue, Wei-Zhong; Sun, Cui-Ci; Shi, Ping; Engel, Anja; Wang, You-Shao; He, Wei-Hong

    2018-01-01

    The surface microlayer (SML) in marine systems is often characterized by an enrichment of biogenic, gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and the protein-containing Coomassie stainable particles (CSP). This study investigated the distribution of TEP and CSP, in the SML and underlying water, as well as their bio-physical controlling factors in Daya Bay, an area impacted by warm discharge from two Nuclear power plants (Npp's) and aquaculture during a research cruise in July 2014. The SML had higher proportions of cyanobacteria and of pico-size Chl a contrast to the underlayer water, particularly at the nearest outlet station characterized by higher temperature. Diatoms, dinoflagellates and chlorophyll a were depleted in the SML. Both CSP and TEP abundance and total area were enriched in the SML relative to the underlying water, with enrichment factors (EFs) of 1.5-3.4 for CSP numbers and 1.32-3.2 for TEP numbers. Although TEP and CSP showed highest concentration in the region where high productivity and high nutrient concertation were observed, EFs of gels and of dissolved organic carbon (DOC) and dissolved acidic polysaccharide (> 1 kDa), exhibited higher values near the outlet of the Npp's than in the adjacent waters. The positive relation between EF's of gels and temperature and the enrichment of cyanobacteria in the SML may be indicative of future conditions in a warmer ocean, suggesting potential effects on adjusting phytoplankton community, biogenic element cycling and air-sea exchange processes.