Science.gov

Sample records for abundant native species

  1. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies.

  2. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  3. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  4. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for

  5. Models of Experimentally Derived Competitive Effects Predict Biogeographical Differences in the Abundance of Invasive and Native Plant Species

    PubMed Central

    Xiao, Sa; Ni, Guangyan; Callaway, Ragan M.

    2013-01-01

    Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4–9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact. PMID:24265701

  6. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    USGS Publications Warehouse

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  7. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin.

    PubMed

    Preston, Todd M

    2015-04-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82%. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts. PMID:25797884

  8. Distribution and abundance of forest birds in low-altitude habitat on Hawai'i Island: Evidence for range expansion of native species

    USGS Publications Warehouse

    Spiegel, C.S.; Hart, P.J.; Woodwort, B.L.; Tweed, E.J.; Leburn, J.J.

    2006-01-01

    The Hawaiian honeycreepers are thought to be limited primarily to middle- and high-altitude wet forests due to anthropogenic factors at lower altitudes, especially introduced mosquitotransmitted avian malaria. However, recent research has demonstrated that at least one native species, the Hawai'i 'Amakihi (Hemignathus virens virens), is common in areas of active malaria transmission. We examined the current distribution and abundance of native and exotic forest birds within approximately 640 km2 of low-altitude (0-326 m) habitat on south-eastern Hawai'i Island, using roadside variable circular plot (VCP) at 174 stations along eight survey transects. We also re-surveyed 90 stations near sea level that were last surveyed in 1994-1995. Overall, introduced species were more abundant than natives; 11 exotic species made up 87% of the total individuals detected. The most common exotic passerines were Japanese White-eye (Zosterops japonicus), House Finch (Carpodacus mexicanus) and Northern Cardinal (Cardinalis cardinalis). Two native species, Hawai'i 'Amakihi and 'Apapane (Himatione sanguina), comprised 13% of the bird community at low altitudes. Hawai'i 'Amakihi were the most common and widespread native species, being found at 47% of stations at a density of 4.98 birds/ha (95% CI 3.52-7.03). Amakihi were significantly associated with 'ohi'a (Metrosideros polymorpha)-dominated forest. 'Apapane were more locally distributed, being found at only 10% of stations. Re-surveys of 1994-1995 transects demonstrated a significant increase in 'Amakihi abundance over the past decade. This work demonstrates a widespread recovery of Hawai'i 'Amakihi at low altitude in southeastern Hawai'i. The changing composition of the forest bird community at low-altitudes in Hawai'i has important implications for the dynamics of avian malaria in low-altitude Hawai'i, and for conservation of Hawai'i's lowland forests. ?? 2006 BirdLife International.

  9. Unexpected spatiotemporal abundance of infected Culex restuans suggest a greater role as a West Nile virus vector for this native species.

    PubMed

    Johnson, Brian J; Robson, Mark G; Fonseca, Dina M

    2015-04-01

    Difficulties in correctly differentiating Culex restuans mosquitoes from Culex pipiens have left the spatiotemporal mechanisms underlying the epidemiology of West Nile virus (WNV) in the northeastern United States largely unresolved. We performed weekly surveys across a natural to urban gradient of sites in central New Jersey (USA) and used a rapid and cheap DNA extraction and a species-specific PCR assay to create single species pools for WNV testing. To assess seasonal trends we combined these results with WNV surveillance records generated from grouped Cx. restuans/Cx. pipiens pools tested in 2011-2012. Cx.restuans was found to be highly abundant within all sites and reached especially high abundance in urban wetland habitats greatly disturbed by human action. In contrast, the seasonal presence of Cx. pipiens was greatest in residential and urban habitats and its presence in natural areas was minimal throughout the season. WNV infection rates in both species were similar but Cx. restuans was consistently found infected first and more frequently, even as early as May, whereas WNV was first detected in Cx. pipiens in late July. WNV activity peaked during the month of August when WNV was commonly isolated from both species. The peak in WNV activity in August observed for both species was consistent with data from 2011 to 2012 when Cx. restuans and Cx. pipiens were grouped, although analyzing single species pools increased overall predicted infection levels. Our results support the preeminence of Cx. restuans as an enzootic vector of WNV and strongly suggest this species has become a "native invasive" exploiting human modified habitats and reaching very high abundance there. Importantly, high infection rates in disturbed wetland sites with high populations of Cx. restuans suggest this species may enable the introduction of WNV to urbanized environments where both Culex contribute to transmission potentiating disease risk. PMID:25599877

  10. Ecological impacts of non-native species

    USGS Publications Warehouse

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  11. Invasive non-native species' provision of refugia for endangered native species.

    PubMed

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species. PMID:20184648

  12. Invasive non-native species' provision of refugia for endangered native species.

    PubMed

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  13. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  14. Invasive lionfish reduce native fish abundance on a regional scale.

    PubMed

    Ballew, Nicholas G; Bacheler, Nathan M; Kellison, G Todd; Schueller, Amy M

    2016-01-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990-2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began. Tomtate served as a model native fish species in our analysis, and as such, it is likely that the lionfish invasion has had similar impacts on other species, some of which may be of economic importance. Barring the development of a control strategy that reverses the lionfish invasion, the abundance of lionfish in the Atlantic, Caribbean, and Gulf of Mexico will likely remain at or above current levels. Consequently, the effect of lionfish on native fish abundance will likely continue for the foreseeable future. PMID:27578096

  15. Invasive lionfish reduce native fish abundance on a regional scale

    PubMed Central

    Ballew, Nicholas G.; Bacheler, Nathan M.; Kellison, G. Todd; Schueller, Amy M.

    2016-01-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990–2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began. Tomtate served as a model native fish species in our analysis, and as such, it is likely that the lionfish invasion has had similar impacts on other species, some of which may be of economic importance. Barring the development of a control strategy that reverses the lionfish invasion, the abundance of lionfish in the Atlantic, Caribbean, and Gulf of Mexico will likely remain at or above current levels. Consequently, the effect of lionfish on native fish abundance will likely continue for the foreseeable future. PMID:27578096

  16. Higher parasite richness, abundance and impact in native versus introduced cichlid fishes.

    PubMed

    Roche, Dominique G; Leung, Brian; Franco, Edgar F Mendoza; Torchin, Mark E

    2010-11-01

    Empirical studies suggest that most exotic species have fewer parasite species in their introduced range relative to their native range. However, it is less clear how, ecologically, the loss of parasite species translates into a measurable advantage for invaders relative to native species in the new community. We compared parasitism at three levels (species richness, abundance and impact) for a pair of native and introduced cichlid fishes which compete for resources in the Panama Canal watershed. The introduced Nile tilapia, Oreochromis niloticus, was infected by a single parasite species from its native range, but shared eight native parasite species with the native Vieja maculicauda. Despite acquiring new parasites in its introduced range, O. niloticus had both lower parasite species richness and lower parasite abundance compared with its native competitor. There was also a significant negative association between parasite load (abundance per individual fish) and host condition for the native fish, but no such association for the invader. The effects of parasites on the native fish varied across sites and types of parasites, suggesting that release from parasites may benefit the invader, but that the magnitude of release may depend upon interactions between the host, parasites and the environment. PMID:20600073

  17. Climate modifies response of non-native and native species richness to nutrient enrichment.

    PubMed

    Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T

    2016-05-19

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. PMID:27114575

  18. Climate modifies response of non-native and native species richness to nutrient enrichment.

    PubMed

    Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T

    2016-05-19

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.

  19. Review of the negative influences of non-native salmonids on native fish species

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.

    2013-01-01

    Non-native salmonids are often introduced into areas containing species of concern, yet a comprehensive overview of the short- and long-term consequences of these introductions is lacking in the Great Plains. Several authors have suggested that non-native salmonids negatively inflfluence species of concern. The objective of this paper is to review known interactions between non-native salmonids and native fifishes, with a focus on native species of concern. After an extensive search of the literature, it appears that in many cases non-native salmonids do negatively inflfl uence species of concern (e.g., reduce abundance and alter behavior) via different mechanisms (e.g., predation and competition). However, there are some instances in which introduced salmonids have had no perceived negative inflfl uence on native fifi shes. Unfortunately, the majority of the literature is circumstantial, and there is a need to experimentally manipulate these interactions.

  20. Core-satellite species hypothesis and native versus exotic species in secondary succession

    USGS Publications Warehouse

    Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.

    2015-01-01

    A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.

  1. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico.

    PubMed

    Arias Garcia, Andrea; Chinea, J Danilo

    2014-09-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.

  2. Effects of flooding on abundance of native and nonnative fishes downstream from a small impoundment

    USGS Publications Warehouse

    Schultz, A.A.; Maughan, O.E.; Bonar, Scott A.; Matter, W.J.

    2003-01-01

    Flooding can benefit native fishes in southwestern streams by disproportionately displacing nonnative fishes. We examined how the presence of an upstream impoundment affected this relationship in lower Sonoita Creek, Arizona. Nonnative species not found in the reservoir decreased in abundance in lower Sonoita Creek after flooding. The catch and relative abundance of some nonnative species found in both the reservoir and the creek increased in lower Sonoita Creek after flooding. Movement of nonnative fishes out of the reservoir via the spillway during periods of high water probably contributes to the persistence and abundance of these species downstream. Both preventing nonnative fishes from escaping reservoirs and the release of flushing flows would aid conservation of native southwestern fishes downstream.

  3. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature.

  4. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. PMID:25959973

  5. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  6. 78 FR 37568 - Draft Environmental Impact Statement for Proposed Strategies To Benefit Native Species by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... would employ a range of methods to minimize by- catch mortality of non-target fish species. Annual lake... of a proposal to benefit native fish populations in the Flathead Basin by reducing non-native lake trout abundance in Flathead Lake. Direction to manage non-native fish populations to improve...

  7. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks

    PubMed Central

    Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.

    2015-01-01

    Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to

  8. Songbird abundance in native and planted grassland varies with type and amount of grassland in the surrounding landscape

    USGS Publications Warehouse

    Davis, Stephen K.; Fisher, Ryan; Skinner, Susan; Shaffer, Terry L.; Brigham, R. Mark

    2013-01-01

    Agriculture and wildlife conservation programs have converted vast amounts of cropland into grasslands planted with exotic species. Understanding how landscape context influences avian use of native and planted grasslands is essential for developing effective conservation strategies in agricultural landscapes. Our primary objective was to determine the extent to which the amount and type of grassland in the surrounding landscape influences the abundance of grassland songbird species on native and planted grassland parcels in southern Saskatchewan and Alberta, Canada. Bird abundance was more strongly influenced by the amount and type of grassland within 400 m of breeding parcels than at larger spatial scales. Grassland specialists responded similarly to habitat and landscape type over both years and provinces. Sprague's pipit (Anthus spragueii) and Baird's sparrow (Ammodramus bairdii) were most common in native grassland parcels surrounded by native grassland and were more likely to occur in planted grasslands surrounded by native grassland. Bobolinks (Dolichonyx oryzivorus) were most common in planted grassland parcels, but their abundance increased with the amount of native grassland surrounding these parcels. Our findings indicate that the suitability of planted grasslands for these species is influenced by their proximity to native grassland. Grassland generalists showed mixed responses to habitat and landscape type over the 2 years (Le Conte's sparrow [Ammodramus leconteii]) and between provinces (Savannah sparrow [Passerculus sandwichensis] and western meadowlark [Sturnella neglecta]). Management to benefit grassland specialists should therefore consider the landscape context when seeding cultivated land to non-native grassland and conserve extant native grassland.

  9. One-Time Herbicide use Causes Local Extinction of Native Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species are depleting the World’s native biota. When ecosystems become invaded, ecosystem managers face a difficult dilemma. They can use aggressive practices to reduce invader abundances, thereby reducing invaders’ competitive impacts on native species. But it is usually difficult or im...

  10. Species Abundance Patterns in Complex Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Tokita, Kei

    2004-10-01

    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g., gene expression.

  11. An exotic species is the favorite prey of a native enemy.

    PubMed

    Li, Yiming; Ke, Zunwei; Wang, Supen; Smith, Geoffrey R; Liu, Xuan

    2011-01-01

    Although native enemies in an exotic species' new range are considered to affect its ability to invade, few studies have evaluated predation pressures from native enemies on exotic species in their new range. The exotic prey naiveté hypothesis (EPNH) states that exotic species may be at a disadvantage because of its naïveté towards native enemies and, therefore, may suffer higher predation pressures from the enemy than native prey species. Corollaries of this hypothesis include the native enemy preferring exotic species over native species and the diet of the enemy being influenced by the abundance of the exotic species. We comprehensively tested this hypothesis using introduced North American bullfrogs (Lithobates catesbeianus, referred to as bullfrog), a native red-banded snake (Dinodon rufozonatum, the enemy) and four native anuran species in permanent still water bodies as a model system in Daishan, China. We investigated reciprocal recognition between snakes and anuran species (bullfrogs and three common native species) and the diet preference of the snakes for bullfrogs and the three species in laboratory experiments, and the diet preference and bullfrog density in the wild. Bullfrogs are naive to the snakes, but the native anurans are not. However, the snakes can identify bullfrogs as prey, and in fact, prefer bullfrogs over the native anurans in manipulative experiments with and without a control for body size and in the wild, indicating that bullfrogs are subjected to higher predation pressures from the snakes than the native species. The proportion of bullfrogs in the snakes' diet is positively correlated with the abundance of bullfrogs in the wild. Our results provide strong evidence for the EPNH. The results highlight the biological resistance of native enemies to naïve exotic species. PMID:21915306

  12. How selection structures species abundance distributions

    PubMed Central

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  13. Evolutionary responses of native plant species to invasive plants: a review.

    PubMed

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  14. Native and exotic plant species exhibit similar population dynamics during succession.

    PubMed

    Meiners, Scott J

    2007-05-01

    A growing body of literature has led to the debate in invasion biology whether exotic species perform within communities differently than native taxa due to inherent advantages. To address this issue, the population dynamics of native and exotic plant species were assessed from a 48-year record of permanent plot data from the Hutcheson Memorial Forest Center (New Jersey, USA) to determine rate of increase, lag time, maximum frequency, and the year of peak frequency. Overall, native and exotic species exhibited very similar population dynamics. Rates of increase and length of lag times were similar between native and exotic taxa but were strongly influenced by plant life form. Short-lived species were characterized by rapid population growth rates and short lag times. Growth rates decreased and lag times increased with species longevity. Overall, correlations between population metrics were the same in native and exotic taxa, suggesting similar trade-offs in life history patterns. The one difference observed was that, in native species, peak frequency was negatively associated with the year of peak frequency (i.e., early-successional species tended to become more abundant), while there was no relationship in exotic species. These analyses show that exotic species behave in essentially the same way as native taxa within dynamic communities. This suggests that abundant native and exotic plant species are exploiting the same range of ecological strategies resulting in similar roles within communities.

  15. Filling in the gaps: Modelling native species richness and invasions using spatially incomplete data

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.; Barnett, D.; Kartesz, J.

    2006-01-01

    Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km -2) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts. ?? 2006 The Authors.

  16. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    PubMed

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions. PMID:22251640

  17. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    PubMed

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.

  18. Attenuation of species abundance distributions by sampling.

    PubMed

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  19. Attenuation of species abundance distributions by sampling

    PubMed Central

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  20. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  1. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    PubMed

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition. PMID:26230025

  2. Show me the numbers: What data currently exist for non-native species in the USA?

    USGS Publications Warehouse

    Crall, Alycia W.; Meyerson, Laura A.; Stohlgren, Thomas J.; Jarnevich, Catherine S.; Newman, Gregory J.; Graham, James

    2006-01-01

    Non-native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non-native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non-native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non-native species in the US from county, state, multi-state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non-native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts.

  3. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  4. Native Macrophyte Density and Richness Affect the Invasiveness of a Tropical Poaceae Species

    PubMed Central

    Michelan, Thaisa S.; Thomaz, Sidinei M.; Bini, Luis M.

    2013-01-01

    The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics) is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment), and we then manipulated the densities of the same native species in a second experiment (density experiment). When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect). Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species. PMID:23536902

  5. Native macrophyte density and richness affect the invasiveness of a tropical poaceae species.

    PubMed

    Michelan, Thaisa S; Thomaz, Sidinei M; Bini, Luis M

    2013-01-01

    The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics) is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment), and we then manipulated the densities of the same native species in a second experiment (density experiment). When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect). Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species. PMID:23536902

  6. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    PubMed

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability. PMID:25709807

  7. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    USGS Publications Warehouse

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  8. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    PubMed Central

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability. PMID:25709807

  9. Urbanized landscapes favored by fig-eating birds increase invasive but not native juvenile strangler fig abundance.

    PubMed

    Caughlin, Trevor; Wheeler, Jessica H; Jankowski, Jill; Lichstein, Jeremy W

    2012-07-01

    Propagule pressure can determine the success or failure of invasive plant range expansion. Range expansion takes place at large spatial scales, often encompassing many types of land cover, yet the effect of landscape context on propagule pressure remains largely unknown. Many studies have reported a positive correlation between invasive plant abundance and human land use; increased propagule pressure in these landscapes may be responsible for this correlation. We tested the hypothesis that increased rates of seed dispersal by fig-eating birds, which are more common in urban habitats, result in an increase in invasive strangler fig abundance in landscapes dominated by human land use. We quantified abundance of an invasive species (Ficus microcarpa) and a native species (F. aurea) of strangler fig in plots spanning the entire range of human land use in South Florida, USA, from urban parking lots to native forest. We then compared models that predicted juvenile fig abundance based on distance to adult fig seed sources and fig-eating bird habitat quality with models that lacked one or both of these terms. The best model for juvenile invasive fig abundance included both distance to adult and fig-eating bird habitat terms, suggesting that landscape effects on invasive fig abundance are mediated by seed-dispersing birds. In contrast, the best model for juvenile native fig abundance included only presence/absence of adults, suggesting that distance from individual adult trees may have less effect on seed limitation for a native species compared to an invasive species undergoing range expansion. However, models for both species included significant effects of adult seed sources, implying that juvenile abundance is limited by seed arrival. This result was corroborated by a seed addition experiment that indicated that both native and invasive strangler figs were strongly seed limited. Understanding how landscape context affects the mechanisms of plant invasion may lead to

  10. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    PubMed Central

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  11. Duck productivity in restored species-rich native and species-poor non-native plantings.

    PubMed

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  12. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    PubMed Central

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but <3% by non-native birds. Although most non-native species could damage ES regulation (disease control and wastewater purification), some could be beneficial to the urbanized wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  13. An ecosystem-service approach to evaluate the role of non-native species in urbanized wetlands.

    PubMed

    Yam, Rita S W; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-04-09

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%-100%), but <3% by non-native birds. Although most non-native species could damage ES regulation (disease control and wastewater purification), some could be beneficial to the urbanized wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as "harmful" species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands.

  14. An ecosystem-service approach to evaluate the role of non-native species in urbanized wetlands.

    PubMed

    Yam, Rita S W; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-04-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%-100%), but <3% by non-native birds. Although most non-native species could damage ES regulation (disease control and wastewater purification), some could be beneficial to the urbanized wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as "harmful" species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  15. Colloquium paper: species invasions and extinction: the future of native biodiversity on islands.

    PubMed

    Sax, Dov F; Gaines, Steven D

    2008-08-12

    Predation by exotic species has caused the extinction of many native animal species on islands, whereas competition from exotic plants has caused few native plant extinctions. Exotic plant addition to islands is highly nonrandom, with an almost perfect 1 to 1 match between the number of naturalized and native plant species on oceanic islands. Here, we evaluate several alternative implications of these findings. Does the consistency of increase in plant richness across islands imply that a saturation point in species richness has been reached? If not, should we expect total plant richness to continue to increase as new species are added? Finally, is the rarity of native plant extinctions to date a misleading measure of the impact of past invasions, one that hides an extinction debt that will be paid in the future? By analyzing historical records, we show that the number of naturalized plant species has increased linearly over time on many individual islands. Further, the mean ratio of naturalized to native plant species across islands has changed steadily for nearly two centuries. These patterns suggest that many more species will become naturalized on islands in the future. We also discuss how dynamics of invasion bear upon alternative saturation scenarios and the implications these scenarios have for the future retention or extinction of native plant species. Finally, we identify invasion-motivated research gaps (propagule pressure, time-lags to extinction, abundance shifts, and loss of area) that can aid in forecasting extinction and in developing a more comprehensive theory of species extinctions. PMID:18695231

  16. Community structure influences species' abundance along environmental gradients.

    PubMed

    Eloranta, Antti P; Helland, Ingeborg P; Sandlund, Odd T; Hesthagen, Trygve; Ugedal, Ola; Finstad, Anders G

    2016-01-01

    Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations. We used a space-for-time approach to study how local community structure interact with lake morphometric and climatic characteristics (i.e. temperature and catchment productivity) to affect brown trout (Salmo trutta L.) yield in 283 Norwegian lakes located in different biogeographical regions. Brown trout yield (based on data from standardized survey gill net fishing; g 100 m(-2) gill net night(-1)) was generally lower in lakes where other fish species were present than in lakes with brown trout only. The yield showed an overall negative relationship with increasing temperature and a positive relationship with lake shoreline complexity. Brown trout yield was also negatively correlated with DOC load (measured using Normalized Difference Vegetation Index as a proxy) and lake size and depth (measured using terrain slope as a proxy), but only in lakes where other fish species were present. The observed negative response of brown trout yield to increasing DOC load and proportion of the pelagic open-water area is likely due to restricted (littoral) niche availability and competitive dominance of more pelagic fishes such as Arctic charr (Salvelinus alpinus (L.)). Our study highlights that, through competitive interactions, the local community structure can influence the response of a species' abundance to variation in abiotic conditions. Changes in biomass and niche use of top predators (such as the brown

  17. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  18. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE - 2014

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  19. Experimental test of the effects of a non-native invasive species on a wintering shorebird.

    PubMed

    Estelle, Veronica; Grosholz, Edwin D

    2012-06-01

    The abundance of nearly one-quarter of the world's shorebird species is declining. At the same time, the number of non-native species in coastal ecosystems is increasing rapidly. In some cases, non-native species may affect negatively the abundance and diversity of shorebird prey species. We conducted an experimental study of the effects of the introduced European green crab (Carcinus maenas) on prey consumption by wintering Dunlin (Calidris alpina) in a central California estuary. We placed green crabs and Dunlin sequentially in field enclosures and measured changes in density of benthic invertebrate prey (e.g. polychaetes and small clams), Dunlin biomass, and gut contents of both Dunlin and crabs and observed foraging behavior of Dunlin. Green crabs significantly affected Dunlin foraging success through both direct and indirect multitrophic linkages. In enclosures with high densities of green crabs, crab foraging reduced the availability of polychaetes, and Dunlin consumed significantly fewer polychaetes compared with Dunlin in enclosures without crabs. High densities of green crabs were also associated with increased availability of small clams. Dunlin consumed significantly more small clams compared with Dunlin in enclosures without crabs. In our literature survey of studies of effects of non-native invasive species on shorebirds, we found three prior experiments that addressed the effect of non-native invasive species on shorebirds. Results of two of these studies showed positive direct effects of non-native invertebrates on shorebirds, 1 showed negative direct effects of a non-native plant on shorebirds through habitat conversion, and none showed indirect effects of non-native invertebrates. We suggest future management of shorebirds explicitly examine how non-native marine species, particularly invertebrates, directly and indirectly affect shorebirds. PMID:22394251

  20. Inherited microbial symbionts increase herbivore abundances and alter arthropod diversity on a native grass.

    PubMed

    Faeth, Stanley H; Shochat, Eyal

    2010-05-01

    Some microbial symbionts of plants are maternally inherited and thus functionally increase genetic and phenotypic variation within plant populations. This variation, coupled with that of the host plant and environment, may alter abundances, diversity, and trophic structure of associated plant and animal communities. Fungal endophytes in the genus Neotyphodium are vertically transmitted, asexual microbial symbionts of grasses that remain asymptomatic and rely upon their hosts for resources and transmission via seeds, often providing benefits to their hosts, including protection against herbivores. Endophyte infections may influence associated arthropod communities in agronomic grasses, but the long-term effects of endophytes and variation in host genotype and resource availability on arthropod communities in native grass populations are unknown. We conducted a long-term field experiment with four maternal genotypes of an infected (E+) native grass (Festuca arizonica) from whence the endophyte was experimentally removed (E-) and water availability was controlled, to test the effects of infection, plant genotype, and resources on abundances, biomass, diversity (richness and evenness), and trophic structure of the arthropod community. Generally, E+ grasses harbored more arthropods, including more herbivores, predators, and detritivores, suggesting that the effects of endophytes cascaded upward through trophic levels in terms of abundances, at least in early ontogeny of the host. That E+ plants harbored more herbivorous insects than E- plants suggests that infection does not increase but instead decreases resistance to herbivores, contrary to prevailing concepts of endophytes as defensive mutualists. Infection did not alter overall species richness of the arthropod community or richness of herbivores but reduced natural enemy richness, especially that of parasites, and increased richness of detritivores. Reduced richness and shifts in evenness of natural enemies on E

  1. Type characters of non-native plant species in Great Lakes national parks (USA)

    USGS Publications Warehouse

    Bennett, J.P.; Brundu, G.; Brock, J.; Camarda, I.; Child, L.; Wade, M.

    2001-01-01

    Non-native plant species are increasing in frequency and abundance in many natural areas in the United States. In Midwestern National Parks, as much as one third of the flora may be non-native. It was hypothesized that botanical characters of these species could be used to typify them and improve the methods of predicting invasions. Data on 19 characters of 341 non-native species from the four Great Lakes national lakeshores (Apostle Islands, Indiana Dunes, Pictured Rocks, and Sleeping Bear Dunes) and invasive non-native species for the State of Wisconsin were collected and studied. For many of the species, little data could be found, but for 139 of them, data were collected for at least 80% of the characters. The frequencies of classes of the characters were tabulated and ranked to typify the most common non-native species. This led to a description of a 'type species' just for these four National Parks. Three species of Cirsium, including Canada (C. arvense), marsh (C. palustre) and bull thistle (C. vulgare), matched the type species better than other species. C. vulgare occurs in more National Parks than the other thistles.

  2. Ecological niche structure and rangewide abundance patterns of species.

    PubMed

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A Townsend; Yáñez-Arenas, Carlos

    2013-02-23

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological niche). We demonstrate consistent negative abundance-ecological distance relationships across all 11 species analysed (turtles to wolves), and that relationships in environmental space are consistently stronger than relationships in geographical space. PMID:23134784

  3. Altered rainfall patterns increase forb abundance and richness in native tallgrass prairie

    PubMed Central

    Jones, Sydney K.; Collins, Scott L.; Blair, John M.; Smith, Melinda D.; Knapp, Alan K.

    2016-01-01

    Models predict that precipitation variability will increase with climate change. We used a 15-year precipitation manipulation experiment to determine if altering the timing and amount of growing season rainfall will impact plant community structure in annually burned, native tallgrass prairie. The altered precipitation treatment maintained the same total growing season precipitation as the ambient precipitation treatment, but received a rainfall regime of fewer, larger rain events, and longer intervals between events each growing season. Although this change in precipitation regime significantly lowered mean soil water content, overall this plant community was remarkably resistant to altered precipitation with species composition relatively stable over time. However, we found significantly higher forb cover and richness and slightly lower grass cover on average with altered precipitation, but the forb responses were manifest only after a ten-year lag period. Thus, although community structure in this grassland is relatively resistant to this type of altered precipitation regime, forb abundance in native tallgrass prairie may increase in a future characterized by increased growing season precipitation variability. PMID:26830847

  4. Geographical Range and Local Abundance of Tree Species in China

    PubMed Central

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  5. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  6. Model reduction for stochastic chemical systems with abundant species

    SciTech Connect

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  7. Model reduction for stochastic chemical systems with abundant species

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  8. Abundances of coplanted native bunchgrasses and crested wheatgrass after 13 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crested wheatgrass (Agropyron cristatum [L] Gaertm) has been seeded on over 5 million hectares in western North America because it more readily establishes than native bunchgrasses. Currently, there is substantial interest in re-establishing native species in sagebrush steppe, but efforts to reintro...

  9. Ecological niche structure and rangewide abundance patterns of species

    PubMed Central

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A. Townsend; Yáñez-Arenas, Carlos

    2013-01-01

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological niche). We demonstrate consistent negative abundance–ecological distance relationships across all 11 species analysed (turtles to wolves), and that relationships in environmental space are consistently stronger than relationships in geographical space. PMID:23134784

  10. Species Composition and Abundance of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) in Minnesota Field Corn.

    PubMed

    Koch, Robert L; Pahs, Tiffany

    2015-04-01

    In response to concerns of increasing significance of stink bugs (Hemiptera: Heteroptera: Pentatomidae) in northern states, a survey was conducted over 2 yr in Minnesota to characterize the Pentatomidae associated with field corn, Zea mays L. Halyomorpha halys (Stål), an exotic species, was not detected in this survey, despite continued detection of this species as an invader of human-made structures in Minnesota. Five species of Pentatomidae (four herbivorous; one predatory) were collected from corn. Across years, Euschistus variolarius (Palisot de Beauvois) and Euschistus servus euschistoides (Vollenhoven) had the greatest relative abundances and frequencies of detection. In 2012, the abundance of herbivorous species exceeded 25 nymphs and adults per 100 plants (i.e., an economic threshold) in 0.48% of fields. However, the abundance of herbivorous species did not reach economic levels in any fields sampled in 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults was highest during reproductive growth stages of corn. The predator species, Podisus maculiventris (Say), was detected in 0 to 0.32% of fields. These results provide baseline information on the species composition and abundance of Pentatomidae in Minnesota field corn, which will be necessary for documentation of changes to this fauna as a result of the invasion of H. halys and to determine if some native species continue to increase in abundance in field crops.

  11. Species Composition and Abundance of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) in Minnesota Field Corn.

    PubMed

    Koch, Robert L; Pahs, Tiffany

    2015-04-01

    In response to concerns of increasing significance of stink bugs (Hemiptera: Heteroptera: Pentatomidae) in northern states, a survey was conducted over 2 yr in Minnesota to characterize the Pentatomidae associated with field corn, Zea mays L. Halyomorpha halys (Stål), an exotic species, was not detected in this survey, despite continued detection of this species as an invader of human-made structures in Minnesota. Five species of Pentatomidae (four herbivorous; one predatory) were collected from corn. Across years, Euschistus variolarius (Palisot de Beauvois) and Euschistus servus euschistoides (Vollenhoven) had the greatest relative abundances and frequencies of detection. In 2012, the abundance of herbivorous species exceeded 25 nymphs and adults per 100 plants (i.e., an economic threshold) in 0.48% of fields. However, the abundance of herbivorous species did not reach economic levels in any fields sampled in 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults was highest during reproductive growth stages of corn. The predator species, Podisus maculiventris (Say), was detected in 0 to 0.32% of fields. These results provide baseline information on the species composition and abundance of Pentatomidae in Minnesota field corn, which will be necessary for documentation of changes to this fauna as a result of the invasion of H. halys and to determine if some native species continue to increase in abundance in field crops. PMID:26313176

  12. Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance.

    PubMed

    Baxter, Colden V; Fausch, Kurt D; Murakami, Masashi; Chapman, Phillip L

    2007-08-01

    Movements of prey organisms across ecosystem boundaries often subsidize consumer populations in adjacent habitats. Human disturbances such as habitat degradation or non-native species invasions may alter the characteristics or fate of these prey subsidies, but few studies have measured the direct effects of this disruption on the growth and local abundance of predators in recipient habitats. Here we present evidence, obtained from a combined experimental and comparative study in northern Japan, that an invading stream fish usurped the flux of allochthonous prey to a native fish, consequently altering the diet and reducing the growth and abundance of the native species. A large-scale field experiment showed that excluding terrestrial invertebrates that fell into the stream with a mesh greenhouse reduced terrestrial prey in diets of native Dolly Varden charr (Salvelinus malma) by 46-70%, and reduced their growth by 25% over six weeks. However, when nonnative rainbow trout (Oncorhynchus mykiss) were introduced, they monopolized these prey and caused an even greater reduction of terrestrial prey in charr diets of 82-93%, and reduced charr growth by 31% over the same period. Adding both greenhouse and rainbow trout treatments together produced similar results to adding either alone. Results from a comparative field study of six other stream sites in the region corroborated the experimental findings, showing that at invaded sites rainbow trout usurped the terrestrial prey subsidy, causing a more than 75% decrease in the biomass of terrestrial invertebrates in Dolly Varden diets and forcing them to shift their foraging to insects on the stream bottom. Moreover, at sites with even low densities of rainbow trout, biomass of Dolly Varden was more than 75% lower than at sites without rainbow trout. Disruption of resource fluxes between habitats may be a common, but unidentified, consequence of invasions, and an additional mechanism contributing to the loss of native species

  13. Why abundant tropical tree species are phylogenetically old

    PubMed Central

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W.

    2013-01-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  14. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  15. Trophic Strategies of a Non-Native and a Native Amphibian Species in Shared Ponds

    PubMed Central

    San Sebastián, Olatz; Navarro, Joan; Llorente, Gustavo A.; Richter-Boix, Álex

    2015-01-01

    One of the critical factors for understanding the establishment, success and potential impact on native species of an introduced species is a thorough knowledge of how these species manage trophic resources. Two main trophic strategies for resource acquisition have been described: competition and opportunism. In the present study our objective was to identify the main trophic strategies of the non-native amphibian Discoglossus pictus and its potential trophic impact on the native amphibian Bufo calamita. We determine whether D. pictus exploits similar trophic resources to those exploited by the native B. calamita (competition hypothesis) or alternative resources (opportunistic hypothesis). To this end, we analyzed the stable isotope values of nitrogen and carbon in larvae of both species, in natural ponds and in controlled laboratory conditions. The similarity of the δ15N and δ13C values in the two species coupled with isotopic signal variation according to pond conditions and niche partitioning when they co-occurred indicated dietary competition. Additionally, the non-native species was located at higher levels of trophic niches than the native species and B. calamita suffered an increase in its standard ellipse area when it shared ponds with D. pictus. These results suggest niche displacement of B. calamita to non-preferred resources and greater competitive capacity of D. pictus in field conditions. Moreover, D. pictus showed a broader niche than the native species in all conditions, indicating increased capacity to exploit the diversity of resources; this may indirectly favor its invasiveness. Despite the limitations of this study (derived from potential variability in pond isotopic signals), the results support previous experimental studies. All the studies indicate that D. pictus competes with B. calamita for trophic resources with potential negative effects on the fitness of the latter. PMID:26101880

  16. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    the invasive. In fact, in one year fruit set of S. alba was significantly greater in the presence of L. salicaria. The number of invasive pollen grains on native stigmas was extremely low; on average less than one grain per stigma. These fruit set and pollen deposition findings indicate that native plant reproduction was not adversely affected in the short term by these invasive species and that therefore competition between the native and invasive species for pollinators did not occur. Native bee populations monitored in 2004-2005 at sites with and without B. thunbergii and/or F. alnus indicated a greater abundance of native bees at sites with these invasives present. Native bees collected from the native and invasive plants were compared with historical records to assess whether invasive plants favor different bee species than those that formerly predominated on Mount Desert Island. This does not appear to be the case. Several species of bumble bees (Bombus spp.) as well as nine solitary bee species were found that were not documented by the Procter surveys of 1917-1940. Collecting of native bees was limited to the study plants, which may, in part, explain why some bee species documented in the Procter Surveys were not found in the present research. A field guide for identification of native bumble bees has been produced to help Park Natural Resource personnel monitor the status of native bee populations in Acadia. Other educational materials were also developed, aimed at educating Park visitors by exposing them to: 1) the role of native plants and their bee pollinators in terrestrial ecosystems; 2) the effects of invasive plants on native plant-pollinator mutualisms; 3) the need for conserving native bees and other pollinators; and 4) conservation strategies for protecting and enhancing native plant-pollinator mutualisms in the Park. Based on the present findings, Acadia Park Resource Management personnel should continue to closely

  17. Multiple peaks of species abundance distributions induced by sparse interactions.

    PubMed

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u, we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions. PMID:27627322

  18. Multiple peaks of species abundance distributions induced by sparse interactions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u , we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions.

  19. Percolation Theory for the Distribution and Abundance of Species

    NASA Astrophysics Data System (ADS)

    He, Fangliang; Hubbell, Stephen P.

    2003-11-01

    We develop and test new models that unify the mathematical relationships among the abundance of a species, the spatial dispersion of the species, the number of patches occupied by the species, the edge length of the occupied patches, and the scale on which the distribution of species is mapped. The models predict that species distributions will exhibit percolation critical thresholds, i.e., critical population abundances at which the fragmented patches (as measured by the number of patches and edge length) start to coalesce to form large patches.

  20. Structural complexity of macroalgae influences epifaunal assemblages associated with native and invasive species.

    PubMed

    Veiga, Puri; Rubal, Marcos; Sousa-Pinto, Isabel

    2014-10-01

    Habitat structure is a primary factor determining the organism distribution. Here, two native and one invasive macroalgal species, apparently different in morphology, were sampled to examine the effects of habitat complexity on the abundance (N), taxon richness (S) and structure of their associated epifaunal assemblages by means of univariate and multivariate techniques. Dry weight and fractal measures were used as proxies of habitat quantity and habitat architecture respectively. Results revealed significant differences in the complexity and in N, S and the structure of epifaunal assemblages among macroalgae and significant correlations between complexity and epifauna. Results suggested that, beside the effect of habitat quantity, the habitat architecture also seems to play a significant role in shaping epifaunal assemblages. Complexity of the studied invasive macroalga significantly differed from that of native species and hosted also different assemblages. Therefore, our findings suggest that invasive macroalgae, if structurally different from native species, induce changes in the associated epifauna.

  1. Monitoring two native Spodoptera species using an exotic pheromone lure developed for an exotic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pheromone lure for the exotic species Spodoptera exempta was successful at attracting two native species, S. latifascia and S. albula. Trapping was conducted in north-central Florida and in southern Texas. Large numbers of both native species were collected throughout the season....

  2. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities. PMID:26481795

  3. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities.

  4. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio

    NASA Astrophysics Data System (ADS)

    Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  5. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio.

    PubMed

    Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  6. Defining the impact of non-native species.

    PubMed

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-10-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.

  7. Defining the impact of non-native species.

    PubMed

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-10-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. PMID:24779412

  8. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  9. Effects of macroalgal identity on epifaunal assemblages: native species versus the invasive species Sargassum muticum

    NASA Astrophysics Data System (ADS)

    Gestoso, Ignacio; Olabarria, Celia; Troncoso, Jesús S.

    2012-06-01

    Seaweeds are a refuge from stressful conditions associated with life on rocky intertidal shores, and there is evidence that different macrophytes support different assemblages of mobile epifauna. Introduction of non-indigenous macroalgae may have a great impact on associated epifaunal assemblages and ecosystem processes in coastal areas. Previous studies have reported conflicting evidences for the ability of epifauna to colonize non-indigenous species. Here, we analyzed epifaunal assemblages associated with three species of macroalgae that are very abundant on intertidal shores along the Galician coast: the two native species Bifurcaria bifurcata and Saccorhiza polyschides and the invasive species Sargassum muticum. We collected samples of each species from three different sites at three different times to test whether variability of epifaunal assemblages was consistent over space and time. Epifaunal assemblages differed between the three macroalgae. Results suggested that stability and morphology of habitat played an important role in shaping the structure of epifaunal assemblages. This study also showed that the invasive S. muticum offered a suitable habitat for many invertebrates.

  10. Modelling occurrence and abundance of species when detection is imperfect

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, J.D.; Kery, M.

    2005-01-01

    Relationships between species abundance and occupancy are of considerable interest in metapopulation biology and in macroecology. Such relationships may be described concisely using probability models that characterize variation in abundance of a species. However, estimation of the parameters of these models in most ecological problems is impaired by imperfect detection. When organisms are detected imperfectly, observed counts are biased estimates of true abundance, and this induces bias in stated occupancy or occurrence probability. In this paper we consider a class of models that enable estimation of abundance/occupancy relationships from counts of organisms that result from surveys in which detection is imperfect. Under such models, parameter estimation and inference are based on conventional likelihood methods. We provide an application of these models to geographically extensive breeding bird survey data in which alternative models of abundance are considered that include factors that influence variation in abundance and detectability. Using these models, we produce estimates of abundance and occupancy maps that honor important sources of spatial variation in avian abundance and provide clearly interpretable characterizations of abundance and occupancy adjusted for imperfect detection.

  11. Macroparasite Fauna of Alien Grey Squirrels (Sciurus carolinensis): Composition, Variability and Implications for Native Species

    PubMed Central

    Romeo, Claudia; Wauters, Lucas A.; Ferrari, Nicola; Lanfranchi, Paolo; Martinoli, Adriano; Pisanu, Benoît; Preatoni, Damiano G.; Saino, Nicola

    2014-01-01

    Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover) and by increased transmission risk of native parasites (spillback). We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis) in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris). Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6%) and Trichostrongylus calcaratus (6.5%), red squirrel flea Ceratophyllus sciurorum (26.0%) and Holarctic sucking louse Neohaematopinus sciuri (17.7%). All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur. PMID:24505348

  12. Macroparasite fauna of alien grey squirrels (Sciurus carolinensis): composition, variability and implications for native species.

    PubMed

    Romeo, Claudia; Wauters, Lucas A; Ferrari, Nicola; Lanfranchi, Paolo; Martinoli, Adriano; Pisanu, Benoît; Preatoni, Damiano G; Saino, Nicola

    2014-01-01

    Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover) and by increased transmission risk of native parasites (spillback). We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis) in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris). Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6%) and Trichostrongylus calcaratus (6.5%), red squirrel flea Ceratophyllus sciurorum (26.0%) and Holarctic sucking louse Neohaematopinus sciuri (17.7%). All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur. PMID:24505348

  13. Macroparasite fauna of alien grey squirrels (Sciurus carolinensis): composition, variability and implications for native species.

    PubMed

    Romeo, Claudia; Wauters, Lucas A; Ferrari, Nicola; Lanfranchi, Paolo; Martinoli, Adriano; Pisanu, Benoît; Preatoni, Damiano G; Saino, Nicola

    2014-01-01

    Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover) and by increased transmission risk of native parasites (spillback). We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis) in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris). Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6%) and Trichostrongylus calcaratus (6.5%), red squirrel flea Ceratophyllus sciurorum (26.0%) and Holarctic sucking louse Neohaematopinus sciuri (17.7%). All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur.

  14. How well can we predict forage species occurrence and abundance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a larger effort focused on forage species production and management, we have been developing a statistical modeling approach to predict the probability of species occurrence and the abundance for Orchard Grass over the Northeast region of the United States using two selected statistical m...

  15. Interspecific competition between alien and native congeneric species

    NASA Astrophysics Data System (ADS)

    Garcia-Serrano, H.; Sans, F. X.; Escarré, J.

    2007-01-01

    A good way to check hypotheses explaining the invasion of ecosystems by exotic plants is to compare alien and native congeneric species. To test the hypothesis that invasive alien plants are more competitive than natives, we designed a replacement series experiment to evaluate interspecific competition between three Senecio species representing the same bushy life form: two alien species ( S. inaequidens and S. pterophorus, both from South Africa) and a native species from the south-east of the Iberian Peninsula and Maghreb ( S. malacitanus). While S. inaequidens is widespread throughout western Europe and is expanding towards the south of Spanish-French border, the geographical distribution of the recently introduced S. pterophorus is still limited to north-eastern Spain. Plants from each species were grown in pure and in mixed cultures with one of their congeners, and water availability was manipulated to evaluate the effects of water stress on competitive abilities. Our results show that the alien S. inaequidens is the most competitive species for all water conditions. The native S. malacitanus is more competitive that the alien S. pterophorus in water stress conditions, but this situation is reversed when water availability is not limiting.

  16. Widespread plant species: natives vs. aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  17. Widespread plant species: Natives versus aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  18. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  19. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  20. Species composition, abundance, and seasonal dynamics of stink bugs (Hemiptera: Pentatomidae) in Minnesota soybean fields.

    PubMed

    Koch, Robert L; Pahs, Tiffany

    2014-08-01

    Stink bugs (Hemiptera: Pentatomidae) have historically not been pests of soybean in Minnesota. In response to the invasion of Halyomorpha halys (Stål) and reports of increasing abundance of species native to North America, a state-wide survey of soybean was conducted over 3 yr in Minnesota to determine species composition, abundance, and seasonal dynamics of Pentatomidae associated with soybean. Fourteen species of Pentatomidae (12 herbivorous and two predatory) were collected from soybean. H. halys was not detected in this survey. Among the herbivorous species found, adults of Euschistus variolarius (Palisot de Beauvois) had the greatest relative abundance (60.51%) and frequency of detection (18.44%), followed by Euschistus servus euschistoides (Say) (19.37 and 3.04%, respectively) and Chinavia hilaris (Say) (5.50 and 1.69%, respectively). Abundance of herbivorous nymphs and adults exceeded an economic threshold (20 nymphs and adults per 100 sweeps) in 0.82% of fields in 2012 but not in 2011 or 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults increased with increasing reproductive growth stage of soybean. In two of three years, herbivorous adults were more abundant in the edge compared with interior of fields. Two predatory Pentatomidae, Podisus maculiventris (Say) and Podisus placidus Uhler, comprised 5.95 and 1.62% of the pentatomid adults. Though the species composition of Pentatomidae in Minnesota soybean differs from that in eastern and southern states, the spatial (i.e., greater abundance near field edge) and seasonal dynamics (i.e., increasing abundance and reproduction with increasing reproductive maturity of soybean) in soybean appear similar.

  1. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and

  2. Estimating abundance in the presence of species uncertainty

    USGS Publications Warehouse

    Chambert, Thierry A; Hossack, Blake R.; Fishback, LeeAnn; Davenport, Jon M.

    2016-01-01

    1.N-mixture models have become a popular method for estimating abundance of free-ranging animals that are not marked or identified individually. These models have been used on count data for single species that can be identified with certainty. However, co-occurring species often look similar during one or more life stages, making it difficult to assign species for all recorded captures. This uncertainty creates problems for estimating species-specific abundance and it can often limit life stages to which we can make inference. 2.We present a new extension of N-mixture models that accounts for species uncertainty. In addition to estimating site-specific abundances and detection probabilities, this model allows estimating probability of correct assignment of species identity. We implement this hierarchical model in a Bayesian framework and provide all code for running the model in BUGS-language programs. 3.We present an application of the model on count data from two sympatric freshwater fishes, the brook stickleback (Culaea inconstans) and the ninespine stickleback (Pungitius pungitius), ad illustrate implementation of covariate effects (habitat characteristics). In addition, we used a simulation study to validate the model and illustrate potential sample size issues. We also compared, for both real and simulated data, estimates provided by our model to those obtained by a simple N-mixture model when captures of unknown species identification were discarded. In the latter case, abundance estimates appeared highly biased and very imprecise, while our new model provided unbiased estimates with higher precision. 4.This extension of the N-mixture model should be useful for a wide variety of studies and taxa, as species uncertainty is a common issue. It should notably help improve investigation of abundance and vital rate characteristics of organisms’ early life stages, which are sometimes more difficult to identify than adults.

  3. Responses of native and invasive Brassicaceae species to slug herbivory

    NASA Astrophysics Data System (ADS)

    Buschmann, Holger; Edwards, Peter J.; Dietz, Hansjörg

    2006-09-01

    It has been proposed that invasive plants are often less palatable or better able to compensate for biomass losses by herbivory than related, non-invasive species growing in the same area. We hypothesised that low palatability to slugs and/or an ability to compensate for grazing damage are traits contributing to the invasiveness of perennial Brassicaceae forb species introduced to northwestern and central Europe. In common garden and glasshouse experiments we compared life-history and fitness parameters of three native and three invasive Brassicaceae species of central European provenance that were subjected to herbivory by two slug species. Using the same species we performed leaf disc preference assays and investigated the effects of slug herbivory on small plants regenerated from root fragments and seedlings in field and glasshouse experiments. We found high between-species variation in susceptibility to slug herbivory but these were not related to the native or invasive status of the species. While the proportions of seedlings damaged or killed by slug herbivory did not differ between the two groups of species, the survival of damaged root regenerates was higher than that of seedlings. Consistent with our hypothesis, the invasive species, particularly those with clonal reproduction, showed higher compensation growth after slug herbivory. Our results suggest that a high ability for compensation growth in invasive Brassicaceae species makes them more tolerant to slug damage than native congeners. The potential to regenerate from root fragments, which are less vulnerable than seedlings to herbivory, appears to be another important factor contributing to the invasiveness of some clonal species. Since many invasive plant species share these traits (though regeneration may be from plant parts other than roots), we suggest that tolerance of herbivory may be one of the characteristics of many successful invaders.

  4. Rapid divergence of microsatellite abundance among species of Drosophila.

    PubMed

    Ross, Charles L; Dyer, Kelly A; Erez, Tamar; Miller, Susan J; Jaenike, John; Markow, Therese A

    2003-07-01

    Among major taxonomic groups, microsatellites exhibit considerable variation in composition and allele length, but they also show considerable conservation within many major groups. This variation may be explained by slow microsatellite evolution so that all species within a group have similar patterns of variation, or by taxon-specific mutational or selective constraints. Unfortunately, comparing microsatellites across species and studies can be problematic because of biases that may exist among different isolation and analysis protocols. We present microsatellite data from five Drosophila species in the Drosophila subgenus: D. arizonae, D. mojavensis, and D. pachea (three cactophilic species), and D. neotestacea and D. recens (two mycophagous species), all isolated at the same time using identical protocols. For each species, we compared the relative abundance of motifs, the distribution of repeat size, and the average number of repeats. Dimers were the most abundant microsatellites for each species. However, we found considerable variation in the relative abundance of motif size classes among species, even between sister taxa. Frequency differences among motifs within size classes for the three cactophilic species, but not the two mycophagous species, are consistent with other studied Drosophila. Frequency distributions of repeat number, as well as mean size, show significant differences among motif size classes but not across species. Sizes of microsatellites in these five species are consistent with D. virilis, another species in the subgenus Drosophila, but they have consistently higher means than in D. melanogaster, in the subgenus Sophophora. These results confirm that many aspects of microsatellite variation evolve quickly but also are subject to taxon-specific constraints. In addition, the nature of microsatellite evolution is dependent on temporal and taxonomic scales, and some variation is conserved across broad taxonomic levels despite relatively high

  5. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    USGS Publications Warehouse

    Keeley, J.E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2 due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  6. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    USGS Publications Warehouse

    Keeley, Jon E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  7. The effects of acoustic misclassification on cetacean species abundance estimation.

    PubMed

    Caillat, Marjolaine; Thomas, Len; Gillespie, Douglas

    2013-09-01

    To estimate the density or abundance of a cetacean species using acoustic detection data, it is necessary to correctly identify the species that are detected. Developing an automated species classifier with 100% correct classification rate for any species is likely to stay out of reach. It is therefore necessary to consider the effect of misidentified detections on the number of observed data and consequently on abundance or density estimation, and develop methods to cope with these misidentifications. If misclassification rates are known, it is possible to estimate the true numbers of detected calls without bias. However, misclassification and uncertainties in the level of misclassification increase the variance of the estimates. If the true numbers of calls from different species are similar, then a small amount of misclassification between species and a small amount of uncertainty around the classification probabilities does not have an overly detrimental effect on the overall variance. However, if there is a difference in the encounter rate between species calls and/or a large amount of uncertainty in misclassification rates, then the variance of the estimates becomes very large and this dramatically increases the variance of the final abundance estimate.

  8. Interactions between ecosystem engineers: A native species indirectly facilitates a non-native one

    NASA Astrophysics Data System (ADS)

    Sueiro, María Cruz; Schwindt, Evangelina; Mendez, María Martha (Pitu); Bortolus, Alejandro

    2013-08-01

    The positive impact that native species have on the survival, persistence and/or range-expansion of invasive species, is receiving increasing attention from ecologists and land managers trying to better understand and predict future invasions worldwide. Ecosystem engineers are among the best-known model organisms for such studies. The austral cordgrass Spartina densiflora is an ecosystem engineer native to South America coast, where it colonizes rocky shores that were recently successfully invaded by the acorn barnacle Balanus glandula. We conducted a field experiment combining living Spartina transplants and artificial model plants in order to address the following questions: Does the native ecosystem engineer S. densiflora facilitate the invasion of rocky shores by B. glandula? If so, how much of this facilitation is caused by its physical structure alone? We found that S. densiflora had a positive effect on the invasive barnacle by trapping among its stems, the mussels, shells and gravels where B. glandula settles. Dislodged mussels, cobbles, and small shells covered and agglutinated by living barnacles were retained within the aboveground structures of S. densiflora while the control plots (without living or artificial plant structures) remained mostly bare throughout the experiment, showing how plant structures speed the colonization process. Moreover, transplanting living Spartina and artificial Spartina models led to a maximum increase in the area covered by barnacles of more than 1700% relative to the unvegetated control plots. Our study clearly shows how a native ecosystem engineers can enhance the success of invasive species and facilitate their local spread.

  9. Factors affecting Culicoides species composition and abundance in avian nests.

    PubMed

    Martínez-de la Puente, J; Merino, S; Tomás, G; Moreno, J; Morales, J; Lobato, E; Talavera, S; Sarto I Monteys, V

    2009-08-01

    Mechanisms affecting patterns of vector distribution among host individuals may influence the population and evolutionary dynamics of vectors, hosts and the parasites transmitted. We studied the role of different factors affecting the species composition and abundance of Culicoides found in nests of the blue tit (Cyanistes caeruleus). We identified 1531 females and 2 males of 7 different Culicoides species in nests, with C. simulator being the most abundant species, followed by C. kibunensis, C. festivipennis, C. segnis, C. truncorum, C. pictipennis and C. circumscriptus. We conducted a medicationxfumigation experiment randomly assigning bird's nests to different treatments, thereby generating groups of medicated and control pairs breeding in fumigated and control nests. Medicated pairs were injected with the anti-malarial drug Primaquine diluted in saline solution while control pairs were injected with saline solution. The fumigation treatment was carried out using insecticide solution or water for fumigated and control nests respectively. Brood size was the main factor associated with the abundance of biting midges probably because more nestlings may produce higher quantities of vector attractants. In addition, birds medicated against haemoparasites breeding in non-fumigated nests supported a higher abundance of C. festivipennis than the rest of the groups. Also, we found that the fumigation treatment reduced the abundance of engorged Culicoides in both medicated and control nests, thus indicating a reduction of feeding success produced by the insecticide. These results represent the first evidence for the role of different factors in affecting the Culicoides infracommunity in wild avian nests.

  10. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  11. Capitalizing on opportunistic data for monitoring relative abundances of species.

    PubMed

    Giraud, Christophe; Calenge, Clément; Coron, Camille; Julliard, Romain

    2016-06-01

    With the internet, a massive amount of information on species abundance can be collected by citizen science programs. However, these data are often difficult to use directly in statistical inference, as their collection is generally opportunistic, and the distribution of the sampling effort is often not known. In this article, we develop a general statistical framework to combine such "opportunistic data" with data collected using schemes characterized by a known sampling effort. Under some structural assumptions regarding the sampling effort and detectability, our approach makes it possible to estimate the relative abundance of several species in different sites. It can be implemented through a simple generalized linear model. We illustrate the framework with typical bird datasets from the Aquitaine region in south-western France. We show that, under some assumptions, our approach provides estimates that are more precise than the ones obtained from the dataset with a known sampling effort alone. When the opportunistic data are abundant, the gain in precision may be considerable, especially for rare species. We also show that estimates can be obtained even for species recorded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount of data collected with a known effort may thus provide access to accurate and precise estimates of quantitative changes in relative abundance over space and/or time. PMID:26496390

  12. Effectiveness of mosquito traps in measuring species abundance and composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito species abundance and composition estimates provided by trapping devices are commonly used to guide control efforts, but knowledge of trap biases is necessary for accurately interpreting results. We compared the Mosquito Magnet – Pro, the Mosquito Magnet – X and the CDC Miniature Light Trap...

  13. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  14. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  15. Hawaiian native forest conserves water relative to timber plantation: species and stand traits influence water use.

    PubMed

    Kagawa, Aurora; Sack, Lawren; Duarte, Ka'eo; James, Shelley

    2009-09-01

    Tropical forests are becoming increasingly alien-dominated through the establishment of timber plantations and secondary forests. Despite widespread recognition that afforestation results in increased evapotranspiration and lower catchment yields, little is known of the impacts of timber plantations on water balance relative to native forest. Native forest trees have been claimed to use water conservatively and enhance groundwater recharge relative to faster-growing alien species, and this argument should motivate native forest preservation and restoration. However, data have been available primarily for leaf-level gas exchange rather than for whole-plant and stand levels. We measured sap flow of dominant tree and tree fern species over eight weeks in native Metrosideros polymorpha forest and adjacent alien timber plantations on the island of Hawai'i and estimated total stand transpiration. Metrosideros polymorpha had the lowest values of sap flux density and whole-tree water use (200 kg m(-2) sapwood d(-1), or 8 kg/d for trees of 35 cm mean diameter at breast height, D), substantially less than timber species Eucalyptus saligna or Fraxinus uhdei (33 and 34 kg/d for trees of 73 and 30 cm mean D, respectively). At the stand level, E. saligna and F. uhdei trees had three- and ninefold higher water use, respectively, than native M. polymorpha trees. Understory Cibotium tree ferns were most abundant in M. polymorpha-dominated forest where they accounted for 70% of water use. Overall, F. uhdei plantation had the highest water use at 1.8 mm/d, more than twice that of either E. saligna plantation or M. polymorpha forest. Forest water use was influenced by species composition, stem density, tree size, sapwood allocation, and understory contributions. Transpiration varied strongly among forest types even within the same wet tropical climate, and in this case, native forest had strikingly conservative water use. Comparisons of vegetation cover in water use should provide

  16. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    PubMed

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  17. Analytical formulae for computing dominance from species-abundance distributions.

    PubMed

    Fung, Tak; Villain, Laura; Chisholm, Ryan A

    2015-12-01

    The evenness of an ecological community affects ecosystem structure, functioning and stability, and has implications for biodiversity conservation. In uneven communities, most species are rare while a few dominant species drive ecosystem-level properties. In even communities, dominance is lower, with possibly many species playing key ecological roles. The dominance aspect of evenness can be measured as a decreasing function of the proportion of species required to make up a fixed fraction (e.g., half) of individuals in a community. Here we sought general rules about dominance in ecological communities by linking dominance mathematically to the parameters of common theoretical species-abundance distributions (SADs). We found that if a community's SAD was log-series or lognormal, then dominance was almost inevitably high, with fewer than 40% of species required to account for 90% of all individuals. Dominance for communities with an exponential SAD was lower but still typically high, with fewer than 40% of species required to account for 70% of all individuals. In contrast, communities with a gamma SAD only exhibited high dominance when the average species abundance was below a threshold of approximately 100. Furthermore, we showed that exact values of dominance were highly scale-dependent, exhibiting non-linear trends with changing average species abundance. We also applied our formulae to SADs derived from a mechanistic community model to demonstrate how dominance can increase with environmental variance. Overall, our study provides a rigorous basis for theoretical explorations of the dynamics of dominance in ecological communities, and how this affects ecosystem functioning and stability. PMID:26409166

  18. A global organism detection and monitoring system for non-native species

    USGS Publications Warehouse

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  19. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  20. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  1. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species

    PubMed Central

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  2. Assessing introduction risk using species' rank-abundance distributions.

    PubMed

    Chan, Farrah T; Bradie, Johanna; Briski, Elizabeta; Bailey, Sarah A; Simard, Nathalie; MacIsaac, Hugh J

    2015-01-22

    Mixed-species assemblages are often unintentionally introduced into new ecosystems. Analysing how assemblage structure varies during transport may provide insights into how introduction risk changes before propagules are released. Characterization of introduction risk is typically based on assessments of colonization pressure (CP, the number of species transported) and total propagule pressure (total PP, the total abundance of propagules released) associated with an invasion vector. Generally, invasion potential following introduction increases with greater CP or total PP. Here, we extend these assessments using rank-abundance distributions to examine how CP : total PP relationships change temporally in ballast water of ocean-going ships. Rank-abundance distributions and CP : total PP patterns varied widely between trans-Atlantic and trans-Pacific voyages, with the latter appearing to pose a much lower risk than the former. Responses also differed by taxonomic group, with invertebrates experiencing losses mainly in total PP, while diatoms and dinoflagellates sustained losses mainly in CP. In certain cases, open-ocean ballast water exchange appeared to increase introduction risk by uptake of new species or supplementation of existing ones. Our study demonstrates that rank-abundance distributions provide new insights into the utility of CP and PP in characterizing introduction risk. PMID:25473007

  3. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  4. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    EPA Science Inventory

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  5. A parasitic plant increases native and exotic plant species richness in vernal pools.

    PubMed

    Graffis, Andrea M; Kneitel, Jamie M

    2015-08-24

    Species interactions are well known to affect species diversity in communities, but the effects of parasites have been less studied. Previous studies on parasitic plants have found both positive and negative effects on plant community diversity. Cuscuta howelliana is an abundant endemic parasitic plant that inhabits California vernal pools. We tested the hypothesis that C. howelliana acts as a keystone species to increase plant species richness in vernal pools through a C. howelliana removal experiment at Beale Air Force Base in north-central California. Vernal pool endemic plants were parasitized more frequently, and Eryngium castrense and Navarretia leucocephala were the most frequently parasitized host plant species of C. howelliana. Cuscuta howelliana caused higher plant species richness, both natives and exotics, compared with removal plots. However, there was no single plant species that significantly increased with C. howelliana removal. Decreases in Eryngium castrense percent cover plots with C. howelliana is a plausible explanation for differences in species richness. In conclusion, C. howelliana led to changes in species composition and increases in plant species richness, consistent with what is expected from the effects of a keystone species. This research provides support for a shift in management strategies that focus on species-specific targets to strategies that target maintenance of complex species interactions and therefore maximize biodiversity and resilience of ecosystems.

  6. A parasitic plant increases native and exotic plant species richness in vernal pools

    PubMed Central

    Graffis, Andrea M.; Kneitel, Jamie M.

    2015-01-01

    Species interactions are well known to affect species diversity in communities, but the effects of parasites have been less studied. Previous studies on parasitic plants have found both positive and negative effects on plant community diversity. Cuscuta howelliana is an abundant endemic parasitic plant that inhabits California vernal pools. We tested the hypothesis that C. howelliana acts as a keystone species to increase plant species richness in vernal pools through a C. howelliana removal experiment at Beale Air Force Base in north-central California. Vernal pool endemic plants were parasitized more frequently, and Eryngium castrense and Navarretia leucocephala were the most frequently parasitized host plant species of C. howelliana. Cuscuta howelliana caused higher plant species richness, both natives and exotics, compared with removal plots. However, there was no single plant species that significantly increased with C. howelliana removal. Decreases in Eryngium castrense percent cover plots with C. howelliana is a plausible explanation for differences in species richness. In conclusion, C. howelliana led to changes in species composition and increases in plant species richness, consistent with what is expected from the effects of a keystone species. This research provides support for a shift in management strategies that focus on species-specific targets to strategies that target maintenance of complex species interactions and therefore maximize biodiversity and resilience of ecosystems. PMID:26307042

  7. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  8. Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure

    PubMed Central

    Ndlovu, Joice; Richardson, David M.; Wilson, John R. U.; O'Leary, Martin; Le Roux, Johannes J.

    2013-01-01

    Background and Aims Understanding the introduction history of invasive plant species is important for their management and identifying effective host-specific biological control agents. However, uncertain taxonomy, intra- and interspecific hybridization, and cryptic speciation may obscure introduction histories, making it difficult to identify native regions to explore for host-specific agents. The overall aim of this study was to identify the native source populations of Acacia pycnantha, a tree native to south-eastern Australia and invasive in South Africa, Western Australia and Portugal. Using a phylogeographical approach also allowed an exploration of the historical processes that have shaped the genetic structure of A. pycnantha in its native range. Methods Nuclear (nDNA) and plastid DNA sequence data were used in network and tree-building analyses to reconstruct phylogeographical relationships between native and invasive A. pycnantha populations. In addition, mismatch distributions, relative rates and Bayesian analyses were used to infer recent demographic processes and timing of events in Australia that led to population structure and diversification. Key Results The plastid network indicated that Australian populations of A. pycnantha are geographically structured into two informally recognized lineages, the wetland and dryland forms, whereas the nuclear phylogeny showed little geographical structure between these two forms. Moreover, the dryland form of A. pycnantha showed close genetic similarity to the wetland form based on nDNA sequence data. Hybrid zones may explain these findings, supported here by incongruent phylogenetic placement of some of these taxa between nuclear and plastid genealogies. Conclusions It is hypothesized that habitat fragmentation due to cycles of aridity inter-dispersed with periods of abundant rainfall during the Pleistocene (approx. 100 kya) probably gave rise to native dryland and wetland forms of A. pycnantha. Although the

  9. Comparative Herbivory Rates and Secondary Metabolite Profiles in the Leaves of Native and Non-Native Lonicera Species.

    PubMed

    Lieurance, Deah; Chakraborty, Sourav; Whitehead, Susan R; Powell, Jeff R; Bonello, Pierluigi; Bowers, M Deane; Cipollini, Don

    2015-12-01

    Non-native plants introduced to new habitats can have significant ecological impact. In many cases, even though they interact with the same community of potential herbivores as their new native competitors, they regularly receive less damage. Plants produce secondary metabolites in their leaves that serve a range of defensive functions, including resistance to herbivores and pathogens. Abiotic factors such as nutrient availability can influence the expression of defensive traits, with some species exhibiting increased chemical defense in low-nutrient conditions. Plants in the genus Lonicera are known to produce a diverse array of these secondary metabolites, yet non-native Lonicera species sustain lower amounts of herbivore damage than co-occurring native Lonicera species in North America. In this study, we searched for evidence of biochemical novelty in non-native species, and quantified its association with resistance to herbivores. In order to achieve this, we evaluated the phenolic and iridoid glycoside profiles in leaves of native and non-native Lonicera species grown under high and low fertilization treatments in a common garden. We then related these profiles to naturally occurring herbivore damage on whole plants in the garden. Herbivore damage was greater on native Lonicera, and chemical profiles and concentrations of selected putative defense compounds varied by species. Geographic origin was an inconsistent predictor of chemical variation in detected phenolics and iridoid glycosides (IGs). Overall, fertilization did not affect herbivore damage or measures of phenolics or IGs, but there were some fertilization effects within species. While we cannot conclude that non-natives were more chemically novel than native Lonicera species, chemical defense profiles and concentrations of specific compounds varied by species. Reduced attraction or deterrence of oviposition, specific direct resistance traits, or a combination of both may contribute to reduced

  10. Comparative Herbivory Rates and Secondary Metabolite Profiles in the Leaves of Native and Non-Native Lonicera Species.

    PubMed

    Lieurance, Deah; Chakraborty, Sourav; Whitehead, Susan R; Powell, Jeff R; Bonello, Pierluigi; Bowers, M Deane; Cipollini, Don

    2015-12-01

    Non-native plants introduced to new habitats can have significant ecological impact. In many cases, even though they interact with the same community of potential herbivores as their new native competitors, they regularly receive less damage. Plants produce secondary metabolites in their leaves that serve a range of defensive functions, including resistance to herbivores and pathogens. Abiotic factors such as nutrient availability can influence the expression of defensive traits, with some species exhibiting increased chemical defense in low-nutrient conditions. Plants in the genus Lonicera are known to produce a diverse array of these secondary metabolites, yet non-native Lonicera species sustain lower amounts of herbivore damage than co-occurring native Lonicera species in North America. In this study, we searched for evidence of biochemical novelty in non-native species, and quantified its association with resistance to herbivores. In order to achieve this, we evaluated the phenolic and iridoid glycoside profiles in leaves of native and non-native Lonicera species grown under high and low fertilization treatments in a common garden. We then related these profiles to naturally occurring herbivore damage on whole plants in the garden. Herbivore damage was greater on native Lonicera, and chemical profiles and concentrations of selected putative defense compounds varied by species. Geographic origin was an inconsistent predictor of chemical variation in detected phenolics and iridoid glycosides (IGs). Overall, fertilization did not affect herbivore damage or measures of phenolics or IGs, but there were some fertilization effects within species. While we cannot conclude that non-natives were more chemically novel than native Lonicera species, chemical defense profiles and concentrations of specific compounds varied by species. Reduced attraction or deterrence of oviposition, specific direct resistance traits, or a combination of both may contribute to reduced

  11. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  12. Measurement scale in maximum entropy models of species abundance

    PubMed Central

    Frank, Steven A.

    2010-01-01

    The consistency of the species abundance distribution across diverse communities has attracted widespread attention. In this paper, I argue that the consistency of pattern arises because diverse ecological mechanisms share a common symmetry with regard to measurement scale. By symmetry, I mean that different ecological processes preserve the same measure of information and lose all other information in the aggregation of various perturbations. I frame these explanations of symmetry, measurement, and aggregation in terms of a recently developed extension to the theory of maximum entropy. I show that the natural measurement scale for the species abundance distribution is log-linear: the information in observations at small population sizes scales logarithmically and, as population size increases, the scaling of information grades from logarithmic to linear. Such log-linear scaling leads naturally to a gamma distribution for species abundance, which matches well with the observed patterns. Much of the variation between samples can be explained by the magnitude at which the measurement scale grades from logarithmic to linear. This measurement approach can be applied to the similar problem of allelic diversity in population genetics and to a wide variety of other patterns in biology. PMID:21265915

  13. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    PubMed

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  14. Neutral theory and relative species abundance in ecology

    NASA Astrophysics Data System (ADS)

    Volkov, Igor; Banavar, Jayanth R.; Hubbell, Stephen P.; Maritan, Amos

    2003-08-01

    The theory of island biogeography asserts that an island or a local community approaches an equilibrium species richness as a result of the interplay between the immigration of species from the much larger metacommunity source area and local extinction of species on the island (local community). Hubbell generalized this neutral theory to explore the expected steady-state distribution of relative species abundance (RSA) in the local community under restricted immigration. Here we present a theoretical framework for the unified neutral theory of biodiversity and an analytical solution for the distribution of the RSA both in the metacommunity (Fisher's log series) and in the local community, where there are fewer rare species. Rare species are more extinction-prone, and once they go locally extinct, they take longer to re-immigrate than do common species. Contrary to recent assertions, we show that the analytical solution provides a better fit, with fewer free parameters, to the RSA distribution of tree species on Barro Colorado Island, Panama, than the lognormal distribution.

  15. Environmental controls on fungal community composition and abundance over 3 years in native and degraded shrublands.

    PubMed

    Glinka, Clare; Hawkes, Christine V

    2014-11-01

    Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration.

  16. Environmental controls on fungal community composition and abundance over 3 years in native and degraded shrublands.

    PubMed

    Glinka, Clare; Hawkes, Christine V

    2014-11-01

    Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration. PMID:24935902

  17. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species

    PubMed Central

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  18. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  19. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  20. Mosquitoes of Zika Forest, Uganda: species composition and relative abundance.

    PubMed

    Kaddumukasa, M A; Mutebi, J-P; Lutwama, J J; Masembe, C; Akol, A M

    2014-01-01

    Mosquito collections were conducted in Zika Forest near Entebbe, Uganda, from July 2009 through June 2010 using CO2-baited light traps, ovitraps, and human-baited catches. In total, 163,790 adult mosquitoes belonging to 12 genera and 58 species were captured. Of these, 22 species (38%) were captured in Zika Forest for the first time. All the new records found in the forest in this study had previously been captured in other regions of Uganda, implying that they are native to the country and do not represent new introductions. More than 20 species previously collected in Zika Forest were not detected in our collections, and this may suggest a change in the mosquito fauna during the past 40 yr or variation in species composition from year to year. Arboviruses of public health importance have previously been isolated from >50% of the 58 mosquito species captured in Zika Forest, which suggests ahigh potential for transmission and maintenance of a wide range of arboviruses in Zika Forest.

  1. Estimating the number of species in a stochastic abundance model.

    PubMed

    Chao, Anne; Bunge, John

    2002-09-01

    Consider a stochastic abundance model in which the species arrive in the sample according to independent Poisson processes, where the abundance parameters of the processes follow a gamma distribution. We propose a new estimator of the number of species for this model. The estimator takes the form of the number of duplicated species (i.e., species represented by two or more individuals) divided by an estimated duplication fraction. The duplication fraction is estimated from all frequencies including singleton information. The new estimator is closely related to the sample coverage estimator presented by Chao and Lee (1992, Journal of the American Statistical Association 87, 210-217). We illustrate the procedure using the Malayan butterfly data discussed by Fisher, Corbet, and Williams (1943, Journal of Animal Ecology 12, 42-58) and a 1989 Christmas Bird Count dataset collected in Florida, U.S.A. Simulation studies show that this estimator compares well with maximum likelihood estimators (i.e., empirical Bayes estimators from the Bayesian viewpoint) for which an iterative numerical procedure is needed and may be infeasible.

  2. When can species abundance data reveal non-neutrality?

    PubMed

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S; Cornell, Stephen J

    2015-03-01

    Species abundance distributions (SAD) are probably ecology's most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  3. When Can Species Abundance Data Reveal Non-neutrality?

    PubMed Central

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S.; Cornell, Stephen J.

    2015-01-01

    Species abundance distributions (SAD) are probably ecology’s most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  4. Hierarchical faunal filters: An approach to assessing effects of habitat and nonnative species on native fishes

    USGS Publications Warehouse

    Quist, M.C.; Rahel, F.J.; Hubert, W.A.

    2005-01-01

    Understanding factors related to the occurrence of species across multiple spatial and temporal scales is critical to the conservation and management of native fishes, especially for those species at the edge of their natural distribution. We used the concept of hierarchical faunal filters to provide a framework for investigating the influence of habitat characteristics and normative piscivores on the occurrence of 10 native fishes in streams of the North Platte River watershed in Wyoming. Three faunal filters were developed for each species: (i) large-scale biogeographic, (ii) local abiotic, and (iii) biotic. The large-scale biogeographic filter, composed of elevation and stream-size thresholds, was used to determine the boundaries within which each species might be expected to occur. Then, a local abiotic filter (i.e., habitat associations), developed using binary logistic-regression analysis, estimated the probability of occurrence of each species from features such as maximum depth, substrate composition, submergent aquatic vegetation, woody debris, and channel morphology (e.g., amount of pool habitat). Lastly, a biotic faunal filter was developed using binary logistic regression to estimate the probability of occurrence of each species relative to the abundance of nonnative piscivores in a reach. Conceptualising fish assemblages within a framework of hierarchical faunal filters is simple and logical, helps direct conservation and management activities, and provides important information on the ecology of fishes in the western Great Plains of North America. ?? Blackwell Munksgaard, 2004.

  5. Non-native invasive species and novel ecosystems

    PubMed Central

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  6. Non-native invasive species and novel ecosystems.

    PubMed

    Simberloff, Daniel

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  7. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  8. Which Models Are Appropriate for Six Subtropical Forests: Species-Area and Species-Abundance Models

    PubMed Central

    Wei, Shi Guang; Li, Lin; Chen, Zhen Cheng; Lian, Ju Yu; Lin, Guo Jun; Huang, Zhong Liang; Yin, Zuo Yun

    2014-01-01

    The species-area relationship is one of the most important topic in the study of species diversity, conservation biology and landscape ecology. The species-area relationship curves describe the increase of species number with increasing area, and have been modeled by various equations. In this paper, we used detailed data from six 1-ha subtropical forest communities to fit three species-area relationship models. The coefficient of determination and F ratio of ANOVA showed all the three models fitted well to the species-area relationship data in the subtropical communities, with the logarithm model performing better than the other two models. We also used the three species-abundance distributions, namely the lognormal, logcauchy and logseries model, to fit them to the species-abundance data of six communities. In this case, the logcauchy model had the better fit based on the coefficient of determination. Our research reveals that the rare species always exist in the six communities, corroborating the neutral theory of Hubbell. Furthermore, we explained why all species-abundance figures appeared to be left-side truncated. This was due to subtropical forests have high diversity, and their large species number includes many rare species. PMID:24755956

  9. Comparing the ecological impacts of native and invasive crayfish: could native species' translocation do more harm than good?

    PubMed

    James, J; Slater, F M; Vaughan, I P; Young, K A; Cable, J

    2015-05-01

    Biological invasions are a principal threat to global biodiversity. Omnivores, such as crayfish, are among the most important groups of invaders. Their introduction often results in biodiversity loss, particularly of their native counterparts. Managed relocations of native crayfish from areas under threat from invasive crayfish into isolated 'ark sites' are sometimes suggested as a conservation strategy for native crayfish; however, such relocations may have unintended detrimental consequences for the recipient ecosystem. Despite this, there have been few attempts to quantify the relative impacts of native and invasive crayfish on aquatic ecosystems. To address this deficiency we conducted a meta-analysis on the effects of native and invasive crayfish on nine ecosystem components: decomposition rate, primary productivity, plant biomass, invertebrate density, biomass and diversity, fish biomass and refuge use, and amphibian larval survival. Native and invasive crayfish significantly reduced invertebrate density and biomass, fish biomass and amphibian survival rate and significantly increased decomposition rates. Invasive crayfish also significantly reduced plant biomass and invertebrate diversity and increased primary productivity. These results show that native and invasive crayfish have wide-ranging impacts on aquatic ecosystems that may be exacerbated for invasive species. Subsequent analysis showed that the impacts of invasive crayfish were significantly greater, in comparison to native crayfish, for decomposition and primary productivity but not invertebrate density, biomass and diversity. Overall, our findings reconfirm the ecosystem altering abilities of both native and invasive crayfish, enforcing the need to carefully regulate managed relocations of native species as well as to develop control programs for invasives. PMID:25549809

  10. Comparing the ecological impacts of native and invasive crayfish: could native species' translocation do more harm than good?

    PubMed

    James, J; Slater, F M; Vaughan, I P; Young, K A; Cable, J

    2015-05-01

    Biological invasions are a principal threat to global biodiversity. Omnivores, such as crayfish, are among the most important groups of invaders. Their introduction often results in biodiversity loss, particularly of their native counterparts. Managed relocations of native crayfish from areas under threat from invasive crayfish into isolated 'ark sites' are sometimes suggested as a conservation strategy for native crayfish; however, such relocations may have unintended detrimental consequences for the recipient ecosystem. Despite this, there have been few attempts to quantify the relative impacts of native and invasive crayfish on aquatic ecosystems. To address this deficiency we conducted a meta-analysis on the effects of native and invasive crayfish on nine ecosystem components: decomposition rate, primary productivity, plant biomass, invertebrate density, biomass and diversity, fish biomass and refuge use, and amphibian larval survival. Native and invasive crayfish significantly reduced invertebrate density and biomass, fish biomass and amphibian survival rate and significantly increased decomposition rates. Invasive crayfish also significantly reduced plant biomass and invertebrate diversity and increased primary productivity. These results show that native and invasive crayfish have wide-ranging impacts on aquatic ecosystems that may be exacerbated for invasive species. Subsequent analysis showed that the impacts of invasive crayfish were significantly greater, in comparison to native crayfish, for decomposition and primary productivity but not invertebrate density, biomass and diversity. Overall, our findings reconfirm the ecosystem altering abilities of both native and invasive crayfish, enforcing the need to carefully regulate managed relocations of native species as well as to develop control programs for invasives.

  11. Enhancing seedling production of native species to restore gypsum habitats.

    PubMed

    Cañadas, E M; Ballesteros, M; Foronda, A; Navarro, F B; Jiménez, M N; Lorite, J

    2015-11-01

    Gypsum habitats are widespread globally and are important for biological conservation. Nevertheless, they are often affected by human disturbances and thus require restoration. Sowing and planting have shown positive results, but these actions are usually limited by the lack of native plant material in commercial nurseries, and very little information is available on the propagation of these species. We address this issue from the hypothesis that gypsum added to a standard nursery growing medium (peat) can improve seedling performance of gypsum species and, therefore, optimise the seedling production for outplanting purposes. We test the effect of gypsum on emergence, survival, and growth of nine native plant species, including gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). We used four treatments according to the proportions, in weight, of gypsum:standard peat (G:S), i.e. high-g (50G:50S), medium-g (25G:75S), low-g (10G:90S), and standard-p (0G:100S). Our results showed that the gypsum treatments especially benefited the emergence stage, gypsophiles as group, and Ononis tridentata as a taxon. In particular, the gypsum treatments enhanced emergence of seven species, survival of three species, and growth of two gypsophiles, while the use of the standard peat favoured only the emergence or growth of three gypsovags. Improving emergence and survival at the nursery can provide a reduction of costs associated with seed harvesting, watering, and space, while enlarging seedlings can favour the establishment of individuals after outplanting. Thus, we suggest adding gypsum to standard peat for propagating seedlings in species from gypsum habitats, thereby potentially cutting the costs of restoring such habitats. Our assessment enables us to provide particular advice by species. In general, we recommend using between 25 and 50% of gypsum to propagate gypsophiles, and between 0 and 10% for gypsovags. The results can benefit not only the production

  12. Enhancing seedling production of native species to restore gypsum habitats.

    PubMed

    Cañadas, E M; Ballesteros, M; Foronda, A; Navarro, F B; Jiménez, M N; Lorite, J

    2015-11-01

    Gypsum habitats are widespread globally and are important for biological conservation. Nevertheless, they are often affected by human disturbances and thus require restoration. Sowing and planting have shown positive results, but these actions are usually limited by the lack of native plant material in commercial nurseries, and very little information is available on the propagation of these species. We address this issue from the hypothesis that gypsum added to a standard nursery growing medium (peat) can improve seedling performance of gypsum species and, therefore, optimise the seedling production for outplanting purposes. We test the effect of gypsum on emergence, survival, and growth of nine native plant species, including gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). We used four treatments according to the proportions, in weight, of gypsum:standard peat (G:S), i.e. high-g (50G:50S), medium-g (25G:75S), low-g (10G:90S), and standard-p (0G:100S). Our results showed that the gypsum treatments especially benefited the emergence stage, gypsophiles as group, and Ononis tridentata as a taxon. In particular, the gypsum treatments enhanced emergence of seven species, survival of three species, and growth of two gypsophiles, while the use of the standard peat favoured only the emergence or growth of three gypsovags. Improving emergence and survival at the nursery can provide a reduction of costs associated with seed harvesting, watering, and space, while enlarging seedlings can favour the establishment of individuals after outplanting. Thus, we suggest adding gypsum to standard peat for propagating seedlings in species from gypsum habitats, thereby potentially cutting the costs of restoring such habitats. Our assessment enables us to provide particular advice by species. In general, we recommend using between 25 and 50% of gypsum to propagate gypsophiles, and between 0 and 10% for gypsovags. The results can benefit not only the production

  13. Species composition and abundance of Brevipalpus spp. on different citrus species in Mexican orchards.

    PubMed

    Salinas-Vargas, D; Santillán-Galicia, M T; Valdez-Carrasco, J; Mora-Aguilera, G; Atanacio-Serrano, Y; Romero-Pescador, P

    2013-08-01

    We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed. PMID:23949863

  14. Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation.

    PubMed

    Boukhris, Asma; Laffont-Schwob, Isabelle; Mezghani, Imed; El Kadri, Lefi; Prudent, Pascale; Pricop, Anca; Tatoni, Thierry; Chaieb, Mohamed

    2015-01-01

    High fluoride pollution has been detected in the surrounding soils of the coastal superphosphate industries in the Gulf of Gabes (Southeast of Tunisia). A study was conducted in vicinity of factories analysing plant functional traits combined with plant fluoride accumulation and soil metal concentrations aiming to screen more efficiently native plant species tolerant to this pollution. Aerial parts of 18 plant species out of the 10 most abundant species per site were harvested on two polluted sites of Gabes and Skhira at the vicinity of the factories and on the less polluted site of Smara. Native plant species accumulated fluoride following the gradient of soil pollution. Fluoride contents of plant aerial parts ranged from 37 mg kg(-1) to 360 mg kg(-1) and five plant species were only found in the most polluted site. However these latter had low biomass and soil cover. Crossing biological traits and fluoride contents, a selection grid for potentially restorative plant species enabled the selection of three native perennials i.e. Rhanterium suaveolens, Atractylis serratuloides and, Erodium glaucophyllum as potential candidates for an in-situ phytoremediation program on arid fluoride-polluted sites. This approach may be used in other fluoride-polluted Mediterranean environments.

  15. Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation.

    PubMed

    Boukhris, Asma; Laffont-Schwob, Isabelle; Mezghani, Imed; El Kadri, Lefi; Prudent, Pascale; Pricop, Anca; Tatoni, Thierry; Chaieb, Mohamed

    2015-01-01

    High fluoride pollution has been detected in the surrounding soils of the coastal superphosphate industries in the Gulf of Gabes (Southeast of Tunisia). A study was conducted in vicinity of factories analysing plant functional traits combined with plant fluoride accumulation and soil metal concentrations aiming to screen more efficiently native plant species tolerant to this pollution. Aerial parts of 18 plant species out of the 10 most abundant species per site were harvested on two polluted sites of Gabes and Skhira at the vicinity of the factories and on the less polluted site of Smara. Native plant species accumulated fluoride following the gradient of soil pollution. Fluoride contents of plant aerial parts ranged from 37 mg kg(-1) to 360 mg kg(-1) and five plant species were only found in the most polluted site. However these latter had low biomass and soil cover. Crossing biological traits and fluoride contents, a selection grid for potentially restorative plant species enabled the selection of three native perennials i.e. Rhanterium suaveolens, Atractylis serratuloides and, Erodium glaucophyllum as potential candidates for an in-situ phytoremediation program on arid fluoride-polluted sites. This approach may be used in other fluoride-polluted Mediterranean environments. PMID:25014764

  16. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  17. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  18. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans

    PubMed Central

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  19. Are Mojave Desert annual species equal? Resource acquisition and allocation for the invasive grass Bromus madritensis subsp. rubens (Poaceae) and two native species

    USGS Publications Warehouse

    Defalco, Lesley A.; Bryla, David R.; Smith-Longozo, Vickie; Nowak, Robert S.

    2003-01-01

    Abundance of invasive plants is often attributed to their ability ot outcompete native species. We compared resource acquisition and allocation of the invasive annual grass Bromus madritensis subsp. rubens with that of two native Mojave Desert annuals, Vulpia octoflora and Descurainia pinnata, in a glasshouse experiment. Each species was grown in monoculture at two densities and two levels of N availability to compare how these annuals capture resources and to understand their relative sensitivities to environmental change. During >4 mo of growth, Bromus used water more rapidly and had greater biomass and N content than the natives, partly because of its greater root-surface area and its exploitation of deep soils. Bromus also had greater N uptake, net assimilation and transpiration rates, and canopy area than Vulpia. Resource use by Bromuswas less sensitive to changes in N availability or density than were the natives. The two native species in this study produced numerous small seeds that tended to remain dormant, thus ensuring escape of offspring from unfavorable germination conditions; Bromus produced fewer but larger seeds that readily germinated. Collectively, these traits give Bromus the potential to rapidly establish in diverse habitats of the Mojave Desert, thereby gaining an advantage over coexisting native species.

  20. Banking on the past: seed banks as a reservoir for rare and native species in restored vernal pools

    PubMed Central

    Faist, Akasha M.; Ferrenberg, Scott; Collinge, Sharon K.

    2013-01-01

    Soil seed banks serve as reservoirs for future plant communities, and when diverse and abundant can buffer vegetation communities against environmental fluctuations. Sparse seed banks, however, may lead to future declines of already rare species. Seed banks in wetland communities are often robust and can persist over long time periods making wetlands model systems for studying the spatial and temporal links between above- and belowground communities. Using collected soils and germination trials, we assessed species diversity and density in the seed banks of restored, ephemeral wetlands (vernal pools) in California's Central Valley, USA. Using long-term vegetation surveys, we compared the community structure of seed banks to that of aboveground vegetation and assessed the temporal links between below- and aboveground communities. We also compared the proportional abundances of different cover classes as well as the abundance of native plants in seed banks to aboveground communities. The proportional abundances of both rare and native species were greater in seed bank samples than in aboveground samples, yet the seed bank had lower species richness than aboveground vegetation. However, the seed bank had greater levels of differentiation among pools (beta diversity; β) than aboveground samples. Additionally, the seed bank was more similar to the earlier (2003–06) aboveground community than the more recent (2007–10) aboveground community. The correlation of species composition in the current seed bank to an earlier aboveground community suggests that seed banks exhibit storage effects while aboveground species composition in this system is not driven by seed bank composition, but is perhaps due to environmental filtering. We conclude that the seed bank of these pools is neither prone to the same temporal rates of invasion as the aboveground community, nor is seed abundance presently a limiting factor in the aboveground frequency of native species or a promoting

  1. Defining the Impact of Non-Native Species

    PubMed Central

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; VilÀ, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los

  2. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  3. Analyzing fractal property of species abundance distribution and diversity indexes.

    PubMed

    Su, Qiang

    2016-03-01

    Community diversity is usually characterized by numerical indexes; however it indeed depends on the species abundance distribution (SAD). Diversity indexes and SAD are based on the same information but treating as separate themes. Ranking species abundance from largest to smallest, the decreasing pattern can give the information about the SAD. Frontier proposed such SAD might be a fractal structure, and first applied the Zipf-Mandelbrot model to the SAD study. However, this model fails to include the Zipf model, and also fails to ensure an integer rank. In this study, a fractal model of SAD was reconstructed, and tested with 104 community samples from 8 taxonomic groups. The results show that there was a good fit of the presented model. Fractal parameter (p) determines the SAD of a community. The ecological significance of p relates to the "dominance" of a community. The correlation between p and classical diversity indexes show that Shannon index decreases and Simpson index increases as p increases. The main purpose of this paper is not to compare with other SADs models; it simply provides a new interpretation of SAD model construction, and preliminarily integrates diversity indexes and SAD model into a broader perspective of community diversity. PMID:26746388

  4. Metagenomic abundance estimation and diagnostic testing on species level

    PubMed Central

    Lindner, Martin S.; Renard, Bernhard Y.

    2013-01-01

    One goal of sequencing-based metagenomic community analysis is the quantitative taxonomic assessment of microbial community compositions. In particular, relative quantification of taxons is of high relevance for metagenomic diagnostics or microbial community comparison. However, the majority of existing approaches quantify at low resolution (e.g. at phylum level), rely on the existence of special genes (e.g. 16S), or have severe problems discerning species with highly similar genome sequences. Yet, problems as metagenomic diagnostics require accurate quantification on species level. We developed Genome Abundance Similarity Correction (GASiC), a method to estimate true genome abundances via read alignment by considering reference genome similarities in a non-negative LASSO approach. We demonstrate GASiC’s superior performance over existing methods on simulated benchmark data as well as on real data. In addition, we present applications to datasets of both bacterial DNA and viral RNA source. We further discuss our approach as an alternative to PCR-based DNA quantification. PMID:22941661

  5. Analyzing fractal property of species abundance distribution and diversity indexes.

    PubMed

    Su, Qiang

    2016-03-01

    Community diversity is usually characterized by numerical indexes; however it indeed depends on the species abundance distribution (SAD). Diversity indexes and SAD are based on the same information but treating as separate themes. Ranking species abundance from largest to smallest, the decreasing pattern can give the information about the SAD. Frontier proposed such SAD might be a fractal structure, and first applied the Zipf-Mandelbrot model to the SAD study. However, this model fails to include the Zipf model, and also fails to ensure an integer rank. In this study, a fractal model of SAD was reconstructed, and tested with 104 community samples from 8 taxonomic groups. The results show that there was a good fit of the presented model. Fractal parameter (p) determines the SAD of a community. The ecological significance of p relates to the "dominance" of a community. The correlation between p and classical diversity indexes show that Shannon index decreases and Simpson index increases as p increases. The main purpose of this paper is not to compare with other SADs models; it simply provides a new interpretation of SAD model construction, and preliminarily integrates diversity indexes and SAD model into a broader perspective of community diversity.

  6. Climate modifies response of non-native and native species richness to nutrient enrichment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the int...

  7. Sunflower stem weevil and its larval parasitoids in native sunflowers: Is parasitoid abundance and diversity greater in the US Southwest?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower stem weevils (Cylindrocopturus adspersus) and their larval parasitoids were collected from stems of four native sunflower species (Helianthus annuus, H. nuttallii, H. pauciflorus, and H. petiolaris) from 147 sites across eight states in 2003 and 2005. Native H. annuus constituted the major...

  8. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  9. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  10. Coevolution between Native and Invasive Plant Competitors: Implications for Invasive Species Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely...

  11. Breakdown of the species-area relationship in exotic but not in native forest patches

    NASA Astrophysics Data System (ADS)

    Magura, Tibor; Báldi, András; Horváth, Róbert

    2008-05-01

    We studied the pattern of bird species richness in native and exotic forest patches in Hungary. We hypothesized that species-area relationship will depend on forest naturalness, and on the habitat specialization of bird species. Therefore, we expected strong species-area relationship in native forest patches and forest bird species, and weaker relationship in exotic forest patches containing generalist species. We censused breeding passerine bird communities three times in 13 forest patches with only native tree species, and 14 with only exotic trees in Eastern Hungary in 2003. Although most bird species (92%) of the total of 41 species occurred in both exotic and native forests, the species-area relationship was significant for forest specialist, but not for generalist species in the native forests. No relationship between bird species and area was found for either species group in the forest with exotic tree species. The comparison of native versus exotic forest patches of similar sizes revealed that only large (>100 ha) native forests harbor higher bird species richness than exotic forests for the forest specialist bird species. There is no difference between small and medium forest patches and in richness of generalist species. Thus, the species-area relationship may diminish in archipelago of exotic habitat patches and/or for habitat generalist species; this result supports the warning that the extension of exotic habitats have been significantly contributing to the decline of natural community patterns.

  12. Coevolution between native and invasive plant competitors: implications for invasive species management.

    PubMed

    Leger, Elizabeth A; Espeland, Erin K

    2010-03-01

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability.

  13. Sunflower stem weevil and its larval parasitoids in native sunflowers: is parasitoid abundance and diversity greater in the U.S. Southwest?

    PubMed

    Ode, Paul J; Charlet, Laurence D; Seiler, Gerald J

    2011-02-01

    Classical biological control programs often target a pest's region of origin as a likely source for new biological control agents. Here, we use this approach to search for biological control agents of the sunflower stem weevil (Cylindrocopturus adspersus LeConte), an economically important pest of commercial sunflower. We conducted surveys of weevil natural enemy diversity and abundance across a transect running from the northern Great Plains to the southwestern U.S. (the presumed area of endemism of annual sunflower species in the genus Helianthus). Accordingly, natural enemy diversity and abundance were expected to be greater in the southwestern U.S. C. adspersus and their larval parasitoids were collected from stems of four native sunflower species (Helianthus annuus, H. nuttallii, H. pauciflorus, and H. petiolaris) from 147 sites across eight states. Native H. annuus constituted the majority of the sunflower populations. Mean weevil densities were significantly higher in sunflower stalks that were larger in diameter. Mean weevil densities within sites did not differ across the range of longitudes and latitudes sampled. After accounting for the effects of stalk diameter and location, weevil densities did not differ among the four sunflower species nor did they differ as a function of elevation. C. adspersus in H. annuus and H. petiolaris were attacked by seven species of parasitoids. No parasitoids were found attacking C. adspersus in H. nuttallii or H. pauciflorus stalks. C. adspersus were twice as likely to be attacked by a parasitoid when feeding on H. petiolaris than H. annuus. Furthermore, the likelihood that C. adspersus would be parasitized decreased with increasing elevation and increasing stem diameters. All parasitoid species have been previously reported attacking C. adspersus larvae in cultivated sunflower. Species richness was less diverse in these collections than from previous studies of cultivated sunflower. Our findings suggest that the species

  14. SPECIES-ABUNDANCE-BIOMASS RESPONSES BY ESTUARINE MACROBENTHOS TO SEDIMENT CHEMICAL CONTAMINATION.

    EPA Science Inventory

    Macrobenthic community responses can be measured through concerted changes in univariate metrics, including species richness, total abundance, and total biomass. The classic model of pollution effects on marine macroinvertebrate communities recognizes that species/abundance/bioma...

  15. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  16. Astrochem: Abundances of chemical species in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Maret, Sébastien; Bergin, Edwin A.

    2015-07-01

    Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

  17. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    PubMed

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential. PMID:25077026

  18. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    PubMed Central

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential. PMID:25077026

  19. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  20. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  1. Beyond the Patch: Disturbance Affects Species Abundances in the surrounding Community

    PubMed Central

    Dudgeon, Steve R.

    2009-01-01

    The role of disturbance in community ecology has been studied extensively and is thought to free resources and reset successional sequences at the local scale and create heterogeneity at the regional scale. Most studies have investigated effects on either the disturbed patch or on the entire community, but have generally ignored any effect of or on the community surrounding disturbed patches. We used marine fouling communities to examine the effect of a surrounding community on species abundance within a disturbed patch and the effect of a disturbance on species abudance in the surrounding community. We varied both the magnitude and pattern of disturbance on experimental settlement plates. Settlement plates were dominated by a non-native bryozoan, which may have established because of the large amount of initial space available on plates. Percent cover of each species within the patch were affected by the surrounding community, confirming previous studies’ predictions about edge effects from the surrounding community on dynamics within a patch. Disturbance resulted in lower percent cover in the surrounding community, but there were no differences between magnitudes or spatial patterns of disturbance. Disturbance lowered population growth rates in the surrounding community, potentially by altering the abiotic environment or species interactions. Following disturbance, the recovery of species within a patch may be affected by species in the surrounding community, but the effects of a disturbance can extend beyond the patch and alter abundances in the surrounding community. The dependence of patch dynamics on the surrounding community and the extended effects of disturbance on the surrounding community, suggest an important feedback of disturbance on patch dynamics indirectly via the surrounding community. PMID:20161249

  2. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  3. Burning reveals cryptic diversity and promotes coexistence of native species in a restored California prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland and prairie restoration projects in California often result in long-term establishment of only a few native plant species, even when they begin with a diverse palette of species. A likely explanation for the disappearance of certain native species over time is that they are outcompeted by ...

  4. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  5. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  6. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  7. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    PubMed

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi. PMID:21573837

  8. Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage.

    PubMed

    Čuda, Jan; Skálová, Hana; Janovský, Zdeněk; Pyšek, Petr

    2015-04-01

    Many invasive species are considered competitively superior to native species, with the strongest competition expected in species with similar niches and/or in closely related species. However, competition outcome is strongly context-dependent as competitive strength varies along environmental gradients, and life stages, and also depends on abundances. To explore the importance of these factors, we examined competition effects in an experiment with three Impatiens species (Balsaminaceae) widespread in central Europe and sharing similar life-history characteristics and habitats: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera. We compared their competitive strength and reciprocal impacts under two levels of water and light availability, two overall planting densities and three competitor densities. We assessed species performance (ability to complete the life-cycle, biomass and fecundity) and temporal competition dynamics in a garden pot experiment. Environmental variables had lower explanatory power than overall planting and competitor density, which indicates the importance of competitive interactions when evaluating plant performance and potential invasion success. Despite poor and delayed germination, the invasive I. glandulifera attained dominance even at a high competitor density and was competitively superior across all treatments, exceeding the height of both congeners. Impatiens parviflora was competitively weakest, having a negligible impact on both native I. noli-tangere and invasive I. glandulifera. The intermediate competitive strength of the native I. noli-tangere probably results from its intermediate height, and good germination rate and timing. The difference in height among species increased during the experiment when I. glandulifera was involved; this species continues growing until autumn, enhancing its competitive superiority. The results provide a mechanistic understanding for the competitive exclusion of

  9. Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage

    PubMed Central

    Čuda, Jan; Skálová, Hana; Janovský, Zdeněk; Pyšek, Petr

    2015-01-01

    Many invasive species are considered competitively superior to native species, with the strongest competition expected in species with similar niches and/or in closely related species. However, competition outcome is strongly context-dependent as competitive strength varies along environmental gradients, and life stages, and also depends on abundances. To explore the importance of these factors, we examined competition effects in an experiment with three Impatiens species (Balsaminaceae) widespread in central Europe and sharing similar life-history characteristics and habitats: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera. We compared their competitive strength and reciprocal impacts under two levels of water and light availability, two overall planting densities and three competitor densities. We assessed species performance (ability to complete the life-cycle, biomass and fecundity) and temporal competition dynamics in a garden pot experiment. Environmental variables had lower explanatory power than overall planting and competitor density, which indicates the importance of competitive interactions when evaluating plant performance and potential invasion success. Despite poor and delayed germination, the invasive I. glandulifera attained dominance even at a high competitor density and was competitively superior across all treatments, exceeding the height of both congeners. Impatiens parviflora was competitively weakest, having a negligible impact on both native I. noli-tangere and invasive I. glandulifera. The intermediate competitive strength of the native I. noli-tangere probably results from its intermediate height, and good germination rate and timing. The difference in height among species increased during the experiment when I. glandulifera was involved; this species continues growing until autumn, enhancing its competitive superiority. The results provide a mechanistic understanding for the competitive exclusion of

  10. [Occurence of diarylheptanoids in Corylus species native to Hungary].

    PubMed

    Riethmüller, Eszter; Tóth, Gergő; Alberti, Agnes; Végh, Krisztina; Béni, Szabolcs; Balogh, György Tibor; Kéry, Agnes

    2015-01-01

    Since the last decade naturally occurring diarylheptanoids have been in the focus of scientific interest due to their various. beneficial biological effects. Besides the outstanding importance of the curcuminoids isolated from members of the Curcuma genus (Zingiberaceae), several different diarylheptanoids identified in Alnus species (Betulaceae) have been proved to possess notable pharmacological effects. Chemoprotective, neuroprotective, hepatoprotective, antiviral, antibacterial, antiinflammatory and antioxidant activities suggest their potential role in clinical practice. The aim of our study was the phytochemical investigation of the Corylus (Betulaceae) species native to Hungary: the Common hazel (Corylus avellana L.), the Turkish hazel (Corylus colurna L.) and the Filbert (Corylus maxima Mill.) in order to characterise their phenolic-profile. Although these plants have been used in traditional medicine for long time, literature data regarding their phytochemical composition is limited to the flavonoid and hydroxycinnamic-acid derivatives of C. avellana leaves. No previous studies have been published reporting the presence of diarylheptanoid compounds in any of the Corylus species. Soxhlet extraction with solvents of increasing polarity was performed on the bark and leaves of the mentioned three Corylus species. The phenolic-profile of the methanolic and ethyl acetate extracts was investigated by HPLC-DAD-ESI-TOF-MS and HPLC-DAD-ESI-MS/MS methods. Altogether 37 different phenolic compounds were detected in the extracts: twenty diarylheptanoids (1-20), nine flavonols (21-29) and eight other phenolics: caffeic and quinic acid derivatives and flavanones (30-37). The main compounds of the extracts were identified as myricetin- quercetin- and kaempferol-3-O-rhanmosides.

  11. [Occurence of diarylheptanoids in Corylus species native to Hungary].

    PubMed

    Riethmüller, Eszter; Tóth, Gergő; Alberti, Agnes; Végh, Krisztina; Béni, Szabolcs; Balogh, György Tibor; Kéry, Agnes

    2015-01-01

    Since the last decade naturally occurring diarylheptanoids have been in the focus of scientific interest due to their various. beneficial biological effects. Besides the outstanding importance of the curcuminoids isolated from members of the Curcuma genus (Zingiberaceae), several different diarylheptanoids identified in Alnus species (Betulaceae) have been proved to possess notable pharmacological effects. Chemoprotective, neuroprotective, hepatoprotective, antiviral, antibacterial, antiinflammatory and antioxidant activities suggest their potential role in clinical practice. The aim of our study was the phytochemical investigation of the Corylus (Betulaceae) species native to Hungary: the Common hazel (Corylus avellana L.), the Turkish hazel (Corylus colurna L.) and the Filbert (Corylus maxima Mill.) in order to characterise their phenolic-profile. Although these plants have been used in traditional medicine for long time, literature data regarding their phytochemical composition is limited to the flavonoid and hydroxycinnamic-acid derivatives of C. avellana leaves. No previous studies have been published reporting the presence of diarylheptanoid compounds in any of the Corylus species. Soxhlet extraction with solvents of increasing polarity was performed on the bark and leaves of the mentioned three Corylus species. The phenolic-profile of the methanolic and ethyl acetate extracts was investigated by HPLC-DAD-ESI-TOF-MS and HPLC-DAD-ESI-MS/MS methods. Altogether 37 different phenolic compounds were detected in the extracts: twenty diarylheptanoids (1-20), nine flavonols (21-29) and eight other phenolics: caffeic and quinic acid derivatives and flavanones (30-37). The main compounds of the extracts were identified as myricetin- quercetin- and kaempferol-3-O-rhanmosides. PMID:26137784

  12. Development of water quality criteria for phenanthrene and comparison of the sensitivity between native and non-native species.

    PubMed

    Wu, Jiang-Yue; Yan, Zhen-Guang; Liu, Zheng-Tao; Liu, Ji-dong; Liang, Feng; Wang, Xiao-Nan; Wang, Wei-Li

    2015-01-01

    Phenanthrene (PHE) is a priority polycyclic aromatic hydrocarbon (PAH) which is toxic to aquatic organisms.However, there has been no paper dealing with water quality criteria (WQC) of PHE due to the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 8 acute toxicity tests and 3 chronic toxicity tests using 8 Chinese native aquatic species from different taxonomic levels, and the water quality criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSDs) between native and non-native species were compared. A criterion maximum concentration of 0.0514 mg/L and a criterion continuous concentration of 0.0186 mg/L were developed according to the US EPA guidelines. Finally, by using risk quotient (RQ) to assess the site-specific ecological risk in Liao River, the results indicated that the PHE might pose no risk to local aquatic species. PMID:25463707

  13. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  14. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change and biological invasions are primary threats to global biodiversity that may operate synergistically in the future. To date, the hypothesis that climate change will favor non-native species has been examined though local comparisons of single or few species. We took a meta-analytical ...

  15. A Contextual Comparison of Native Ice Abundances in Comet C/2013 US10 (Catalina) based on Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Gibb, Erika L.; Roth, Nathanial; Bonev, Boncho P.; Keane, Jacqueline; Meech, Karen Jean; Villanueva, Geronimo Luis; Paganini, Lucas; Mumma, Michael J.

    2016-10-01

    The primitive nature of comets makes them the best available carriers of information pertaining to conditions in the early solar system. High-resolution spectrometers operating at IR wavelengths (~ 1 – 5 µm) permit quantifying molecular species (aka "parent volatiles") released into the coma upon sublimation of ices contained in the cometary nucleus (i.e., native ices). Over the past 20 years we used first CSHELL at the IRTF, then NIRSPEC at Keck and CRIRES at the VLT, amassing production rates and abundance ratios in 30-plus comets.We present a summary of molecular abundances in long period Comet C/2013 US10 (Catalina), which passed perihelion on UT 2015 November 15.7 at heliocentric distance Rh = 0.822 AU. We used CSHELL on UT 2015 November 23 (Rh = 0.84 AU), December 15 – 17 (Rh = 1.0 AU) and 2016 February 28 (Rh = 1.95 AU), and NIRSPEC on 2016 January 24 (Rh = 1.49 AU). We targeted H2O, CO, H2CO, CH3OH, OCS, HCN, NH3, CH4, C2H2, and C2H6, and obtained production rates or stringent upper limits for all of these. This allowed testing for potential changes in relative abundances as a function of Rh. Such IR measurements spanning a range in Rh are still rare, but are very important for testing possible heterogeneous nucleus composition and/or heliocentric dependence of abundances, for example through release from grains heated in the coma. Our measurements will be inter-compared, and also placed in the context of our current (and continually evolving) compositional taxonomy of comets.We gratefully acknowledge support from the NASA Solar System Observations/Planetary Astronomy Program (SSO15-0028 to MAD, PAST11-0045 to MJM), Planetary Atmospheres Program (NNX12AG60G to BPB), NASA Astrobiology Institute (13-13NAI7-0032 to MJM, NN09DA77A to KJM), and NSF Astronomy and Astrophysics Research Grants (AST-1211362 to BPB and ELG, and AST-1413736 to KJM). The IRTF is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space

  16. Do Wildfires Promote Woody Species Invasion in a Fire-Adapted Ecosystem? Post-fire Resprouting of Native and Non-native Woody Plants in Central Argentina.

    PubMed

    Herrero, M Lucrecia; Torres, Romina C; Renison, Daniel

    2016-02-01

    We asked whether prescribed fire could be a useful management tool to reduce invasion by non-native plants in an ecosystem where native plants are supposed to be adapted to fires. Specifically, we compare the post-fire resprouting response of native and non-native woody species in Chaco Serrano forest of central Argentina. The measurements were carried out in five burnt areas where we selected ten native and seven non-native species. Our response variables were (1) post-fire survival, (2) types of resprouts, and (3) the growth of the resprouts. Our main results show that one year after the fire, survivals of native and non-native species were 0.84 and 0.89, respectively, with variances in survival seven times smaller in the native species group. Type of resprout was also less variable in native species, while growth of the resprouts was similar in native and non-native groups. We interpret that in most cases, the burning a forest with mixed native and non-native plants through prescribed fires will not differentially stop the invasion by non-native woody species even in ecosystems which are presumed to be relatively resistant to fires such as our study area. PMID:26423569

  17. Do Wildfires Promote Woody Species Invasion in a Fire-Adapted Ecosystem? Post-fire Resprouting of Native and Non-native Woody Plants in Central Argentina.

    PubMed

    Herrero, M Lucrecia; Torres, Romina C; Renison, Daniel

    2016-02-01

    We asked whether prescribed fire could be a useful management tool to reduce invasion by non-native plants in an ecosystem where native plants are supposed to be adapted to fires. Specifically, we compare the post-fire resprouting response of native and non-native woody species in Chaco Serrano forest of central Argentina. The measurements were carried out in five burnt areas where we selected ten native and seven non-native species. Our response variables were (1) post-fire survival, (2) types of resprouts, and (3) the growth of the resprouts. Our main results show that one year after the fire, survivals of native and non-native species were 0.84 and 0.89, respectively, with variances in survival seven times smaller in the native species group. Type of resprout was also less variable in native species, while growth of the resprouts was similar in native and non-native groups. We interpret that in most cases, the burning a forest with mixed native and non-native plants through prescribed fires will not differentially stop the invasion by non-native woody species even in ecosystems which are presumed to be relatively resistant to fires such as our study area.

  18. Do Wildfires Promote Woody Species Invasion in a Fire-Adapted Ecosystem? Post-fire Resprouting of Native and Non-native Woody Plants in Central Argentina

    NASA Astrophysics Data System (ADS)

    Herrero, M. Lucrecia; Torres, Romina C.; Renison, Daniel

    2016-02-01

    We asked whether prescribed fire could be a useful management tool to reduce invasion by non-native plants in an ecosystem where native plants are supposed to be adapted to fires. Specifically, we compare the post-fire resprouting response of native and non-native woody species in Chaco Serrano forest of central Argentina. The measurements were carried out in five burnt areas where we selected ten native and seven non-native species. Our response variables were (1) post-fire survival, (2) types of resprouts, and (3) the growth of the resprouts. Our main results show that one year after the fire, survivals of native and non-native species were 0.84 and 0.89, respectively, with variances in survival seven times smaller in the native species group. Type of resprout was also less variable in native species, while growth of the resprouts was similar in native and non-native groups. We interpret that in most cases, the burning a forest with mixed native and non-native plants through prescribed fires will not differentially stop the invasion by non-native woody species even in ecosystems which are presumed to be relatively resistant to fires such as our study area.

  19. Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands

    NASA Astrophysics Data System (ADS)

    Blaum, Niels; Rossmanith, Eva; Popp, Alexander; Jeltsch, Florian

    2007-01-01

    Shrub encroachment due to overgrazing has led to dramatic changes of savanna landscapes and is considered to be one of the most threatening forms of rangeland degradation e.g. via habitat fragmentation. Mammalian carnivores are particularly vulnerable to local extinction in fragmented landscapes. However, our understanding of how shrub encroachment affects mammalian carnivores is poor. Here we investigated the relative sensitivities of ten native carnivores to different levels of shrub cover ranging from low (<5%) to high shrub cover (>25%) in 20 southern Kalahari rangeland sites. Relative abundance of carnivores was monitored along 40 sand transects (5 m × 250 m) for each site. Our results show that increasing shrub cover affects carnivore species differently. African wild cats, striped polecats, cape foxes and suricates were negatively affected, whereas we found hump-shaped responses for yellow mongooses, bat-eared foxes and small-spotted genets with maximum abundance at shrub covers between 10 and 18%. In contrast, black-backed jackals, slender mongooses and small spotted cats were not significantly affected by increasing shrub cover. However, a negative impact of high shrub cover above 18% was congruent for all species. We conclude that intermediate shrub cover (10-18%) in savanna landscapes sustain viable populations of small carnivores.

  20. Abundance changes and habitat availability drive species' responses to climate change

    NASA Astrophysics Data System (ADS)

    Mair, Louise; Hill, Jane K.; Fox, Richard; Botham, Marc; Brereton, Tom; Thomas, Chris D.

    2014-02-01

    There is little consensus as to why there is so much variation in the rates at which different species' geographic ranges expand in response to climate warming. Here we show that the relative importance of species' abundance trends and habitat availability for British butterfly species vary over time. Species with high habitat availability expanded more rapidly from the 1970s to mid-1990s, when abundances were generally stable, whereas habitat availability effects were confined to the subset of species with stable abundances from the mid-1990s to 2009, when abundance trends were generally declining. This suggests that stable (or positive) abundance trends are a prerequisite for range expansion. Given that species' abundance trends vary over time for non-climatic as well as climatic reasons, assessment of abundance trends will help improve predictions of species' responses to climate change, and help us to understand the likely success of different conservation strategies for facilitating their expansions.

  1. Determinants of distribution and abundance of two shrub species, Guiera senegalensis and Piliostigma reticulatum, in Peanut Basin, Senegal

    NASA Astrophysics Data System (ADS)

    Lufafa, A.; Diédhiou, I.; Ndiaye, N.; Kizito, F.; Dick, R.; Noller, J. S.

    2005-05-01

    The ability to predict and manage the course of landscape-level ecological change and its longer-term consequences on ecosystem functions (e.g. carbon stabilization and soil degradation mitigation) depends on the ability to understand how a particular ecosystem functions and the mechanisms that control the distribution, configuration and abundance of key species. Guiera senegalensis and Piliostigma reticulatum are two native shrub species that are widely found in Sub-Saharan Africa but unrecognized in their potential role in regulating hydrological and carbon cycles in both natural and agro-ecosystems. Our objective was to conduct a study on the determinants of landscape-level distribution and abundance of these shrub species as a basis for ecological modeling and management of this fragile semiarid environment. Formal Recursive Inference Modeling was used to adduce determinants of species presence while logistic regression and geostatistical approaches were used to estimate shrub abundance within their communities. The results showed that distribution of the shrubs is controlled by four factors: geological substrate, mean annual temperature, mean annual rainfall and landform (profile convexity). Relative abundance within the shrub communities is under the influence of mean annual rainfall, maximum annual temperature and elevation (for G. senegalensis) and mean annual rainfall, mean annual temperature, elevation and landform (profile convexity) (for P. reticulatum). Predictive models for shrub distribution and abundance were generally poor, probably highlighting the weakness of statistical models in analysis and quantification of the spatial structure of ecosystems.

  2. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    PubMed

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. . PMID:27008777

  3. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    PubMed

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  4. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams

    USGS Publications Warehouse

    Riley, S.P.D.; Busteed, G.T.; Kats, L.B.; Vandergon, T.L.; Lee, L.F.S.; Dagit, R.G.; Kerby, J.L.; Fisher, R.N.; Sauvajot, R.M.

    2005-01-01

    Urbanization negatively affects natural ecosystems in many ways, and aquatic systems in particular. Urbanization is also cited as one of the potential contributors to recent dramatic declines in amphibian populations. From 2000 to 2002 we determined the distribution and abundance of native amphibians and exotic predators and characterized stream habitat and invertebratecommunities in 35 streams in an urbanized landscape north of Los Angeles (U.S.A.). We measured watershed development as the percentage of area within each watershed occupied by urban land uses. Streams in more developed watersheds often had exotic crayfish (Procambarus clarkii) and fish, and had fewer native species such as California newts (Taricha torosa) and California treefrogs (Hyla cadaverina). These effects seemed particularly evident above 8% development, a result coincident with other urban stream studies that show negative impacts beginning at 10-15% urbanization. For Pacific treefrogs (H. regilla), the most widespread native amphibian, abundance was lower in the presence of exotic crayfish, although direct urbanization effects were not found. Benthic macroinvertebrate communities were also less diverse in urban streams, especially for sensitive species. Faunal community changes in urban streams may be related to changes in physical stream habitat, such as fewer pool and more run habitats and increased water depth and flow, leading to more permanent streams. Variation in stream permanence was particularly evident in 2002, a dry year when many natural streams were dry but urban streams were relatively unchanged. Urbanization has significantly altered stream habitat in this region and may enhance invasion by exotic species and negatively affect diversity and abundance of native amphibians. ??2005 Society for Conservation Biology.

  5. Predicting the species abundance distribution using a model food web.

    PubMed

    Powell, Craig R; McKane, Alan J

    2008-12-21

    A large number of models of the species abundance distribution (SAD) have been proposed, many of which are generically similar to the log-normal distribution, from which they are often indistinguishable when describing a given data set. Ecological data sets are necessarily incomplete samples of an ecosystem, subject to statistical noise, and cannot readily be combined to yield a closer approximation to the underlying distribution. In this paper, we adopt the Webworld ecosystem model to study the predicted SAD in detail. The Webworld model is complex, and does not allow analytic examination of such features; rather, we use simulation data and an approach similar to that of ecologists analysing empirical data. By examining large sets of fully described data we are able to resolve features which can distinguish between models but which have not been investigated in detail in field data. We find that the power-law normal distribution is superior to both the log-normal and logit-normal distributions, and that the data can improve on even this at the high-population cut-off.

  6. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    EPA Science Inventory

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  7. Paragonimiasis Acquired in the United States: Native and Nonnative Species

    PubMed Central

    2013-01-01

    SUMMARY Paragonimiasis is a parasitic lung infection caused by lung flukes of the genus Paragonimus, with most cases reported from Asia and caused by P. westermani following consumption of raw or undercooked crustaceans. With the exception of imported P. westermani cases in immigrants, in travelers returning from areas of disease endemicity, and in clusters of acquired cases following consumption of imported Asian crabs, human paragonimiasis caused by native lung flukes is rarely described in the United States, which has only one indigenous species of lung fluke, Paragonimus kellicotti. Clinicians should inquire about the consumption of raw or undercooked freshwater crabs by immigrants, expatriates, and returning travelers, and the consumption of raw or undercooked crayfish in U.S. freshwater river systems where P. kellicotti is endemic when evaluating patients presenting with unexplained fever, cough, rales, hemoptysis, pleural effusions, and peripheral eosinophilia. Diagnostic evaluation by specific parasitological, radiological, serological, and molecular methods will be required in order to differentiate paragonimiasis from tuberculosis, which is not uncommon in recent Asian immigrants. All cases of imported and locally acquired paragonimiasis will require treatment with oral praziquantel to avoid any potential pulmonary and cerebral complications of paragonimiasis, some of which may require surgical interventions. PMID:23824370

  8. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    EPA Science Inventory

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  9. Effort and Potential Efficiencies for Aquatic Non-native Species Early Detection

    EPA Science Inventory

    This manuscript is based on the early aquatic non-native species detection research in the Duluth-Superior harbor. The problem of early detection is essentially that of a "needle in a haystack" - to detect a newly arrived and presumably rare non-native species with a high probabi...

  10. Plant Trait-Species Abundance Relationships Vary with Environmental Properties in Subtropical Forests in Eastern China

    PubMed Central

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  11. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    PubMed

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  12. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China

    USGS Publications Warehouse

    Ren, H.; Jian, S.; Lu, H.; Zhang, Q.; Shen, W.; Han, W.; Yin, Z.; Guo, Q.

    2008-01-01

    To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical-chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species-Sonneratia apetala Buch.Ham-between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4-10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place. ?? 2007 The Ecological Society of Japan.

  13. An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species

    USGS Publications Warehouse

    McDonald, D.B.; Parchman, T.L.; Bower, M.R.; Hubert, W.A.; Rahel, F.J.

    2008-01-01

    The genetic impacts of hybridization between native and introduced species are of considerable conservation concern, while the possibility of reticulate evolution affects our basic understanding of how species arise and shapes how we use genetic data to understand evolutionary diversification. By using mitochondrial NADH dehydrogenase subunit 2 (ND2) sequences and 467 amplified fragment-length polymorphism nuclear DNA markers, we show that the introduced white sucker (Catostomus commersoni) has hybridized with two species native to the Colorado River Basin - the flannelmouth sucker (Catostomus latipinnis) and the bluehead sucker (Catostomus discobolus). Hybrids between the flannelmouth sucker and white sucker have facilitated introgression between the two native species, previously isolated by reproductive barriers, such that individuals exist with contributions from all three genomes. Most hybrids had the mitochondrial haplotype of the introduced white sucker, emphasizing its pivotal role in this three-way hybridization. Our findings highlight how introduced species can threaten the genetic integrity of not only one species but also multiple previously reproductively isolated species. Furthermore, this complex three-way reticulate (as opposed to strictly bifurcating) evolution suggests that seeking examples in other vertebrate systems might be productive. Although the present study involved an introduced species, similar patterns of hybridization could result from natural processes, including stream capture or geological formations (e.g., the Bering land bridge). ?? 2008 by The National Academy of Sciences of the USA.

  14. Exploring Public Perception of Non-native Species from a Visions of Nature Perspective

    NASA Astrophysics Data System (ADS)

    Verbrugge, Laura N. H.; Van den Born, Riyan J. G.; Lenders, H. J. Rob

    2013-12-01

    Not much is known about lay public perceptions of non-native species and their underlying values. Public awareness and engagement, however, are important aspects in invasive species management. In this study, we examined the relations between the lay public's visions of nature, their knowledge about non-native species, and their perceptions of non-native species and invasive species management with a survey administered in the Netherlands. Within this framework, we identified three measures for perception of non-native species: perceived risk, control and engagement. In general, respondents scored moderate values for perceived risk and personal engagement. However, in case of potential ecological or human health risks, control measures were supported. Respondents' images of the human-nature relationship proved to be relevant in engagement in problems caused by invasive species and in recognizing the need for control, while images of nature appeared to be most important in perceiving risks to the environment. We also found that eradication of non-native species was predominantly opposed for species with a high cuddliness factor such as mammals and bird species. We conclude that lay public perceptions of non-native species have to be put in a wider context of visions of nature, and we discuss the implications for public support for invasive species management.

  15. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J.; McClintock, W. E.; Killen, R. M.; Sprague, A. L.; Burger, M. H.; Merkel, A. W.; Sarantos, M.

    2011-12-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, Al, Si, O, S, Mn, Cl, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  16. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  17. Species of Mycosphaerellaceae and Teratosphaeriaceae on native Myrtaceae in Uruguay: evidence of fungal host jumps.

    PubMed

    Pérez, C A; Wingfield, M J; Altier, N; Blanchette, R A

    2013-02-01

    Mycosphaerella species are well-known causal agents of leaf diseases on many economically and ecologically important plant species. In Uruguay, a relatively large number of Mycosphaerellaceae and Teratosphaeriaceae are found on Eucalyptus, but nothing is known of these fungi on native Myrtaceae. The aim of this study was to identify Mycosphaerellaceae and Teratosphaeriaceae species associated with leaf diseases on native Myrtaceae in Uruguay and to consider whether host jumps by the pathogen from introduced Eucalyptus to native Myrtaceae have occurred. Several native forests throughout the country were surveyed with special attention given to those located close to Eucalyptus plantations. Five species belonging to the Mycosphaerellaceae and Teratosphaeriaceae clades were found on native Myrtaceous trees and three of these had previously been reported on Eucalyptus in Uruguay. Those occurring both on Eucalyptus and native Myrtaceae included Pallidocercospora heimii, Pseudocercospora norchiensis, and Teratosphaeria aurantia. In addition, Mycosphaerella yunnanensis, a species known to occur on Eucalyptus but not previously recorded in Uruguay, was found on leaves of two native Myrtaceous hosts. Because most of these species occur on Eucalyptus in countries other than Uruguay, it appears that they were introduced in this country and have adapted to be able to infect native Myrtaceae. These apparent host jumps have the potential to result in serious disease problems and they should be carefully monitored.

  18. Spatial pattern of invasion and the evolutionary responses of native plant species.

    PubMed

    Stotz, Gisela C; Gianoli, Ernesto; Cahill, James F

    2016-09-01

    Invasive plant species can have a strong negative impact on the resident native species, likely imposing new selective pressures on them. Altered selective pressures may result in evolutionary changes in some native species, reducing competitive exclusion and allowing for coexistence with the invader. Native genotypes that are able to coexist with strong invaders may represent a valuable resource for management efforts. A better understanding of the conditions under which native species are more, or less, likely to adapt to an invader is necessary to incorporate these eco-evolutionary dynamics into management strategies. We propose that the spatial structure of invasion, in particular the size and isolation of invaded patches, is one factor which can influence the evolutionary responses of native species through modifying gene flow and the strength of selection. We present a conceptual model in which large, dense, and well-connected patches result in a greater likelihood of native species adaptation. We also identify characteristics of the interacting species that may influence the evolutionary response of native species to invasion and outline potential management implications. Identifying areas of rapid evolutionary change may offer one additional tool to managers in their effort to conserve biodiversity in the face of invasion. PMID:27606003

  19. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis.

    PubMed

    Anderson, Lucy G; Rocliffe, Steve; Haddaway, Neal R; Dunn, Alison M

    2015-01-01

    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow. PMID:26485300

  20. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis.

    PubMed

    Anderson, Lucy G; Rocliffe, Steve; Haddaway, Neal R; Dunn, Alison M

    2015-01-01

    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow.

  1. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    USGS Publications Warehouse

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  2. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  3. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    PubMed

    Hansen, Gretchen J A; Carey, Cayelan C

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance) and "occasional" (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  4. A Comparison of the Recruitment Success of Introduced and Native Species Under Natural Conditions

    PubMed Central

    Flores-Moreno, Habacuc; Moles, Angela T.

    2013-01-01

    It is commonly accepted that introduced species have recruitment advantages over native species. However, this idea has not been widely tested, and those studies that have compared survival of introduced and native species have produced mixed results. We compiled data from the literature on survival through germination (seed to seedling survival), early seedling survival (survival through one week from seedling emergence) and survival to adulthood (survival from germination to first reproduction) under natural conditions for 285 native and 63 introduced species. Contrary to expectations, we found that introduced and native species do not significantly differ in survival through germination, early seedling survival, or survival from germination to first reproduction. These comparisons remained non-significant after accounting for seed mass, longevity and when including a random effect for site. Results remained consistent after excluding naturalized species from the introduced species data set, after performing phylogenetic independent contrasts, and after accounting for the effect of life form (woody/non-woody). Although introduced species sometimes do have advantages over native species (for example, through enemy release, or greater phenotypic plasticity), our findings suggest that the overall advantage conferred by these factors is either counterbalanced by advantages of native species (such as superior adaptation to local conditions) or is simply too small to be detected at a broad scale. PMID:23951326

  5. Presence and absence of non-native fish species in the Wet Tropics region, Australia.

    PubMed

    Kroon, F; Phillips, S; Burrows, D; Hogan, A

    2015-03-01

    Distributional records of non-native fish species were identified in the Wet Tropics region, Far North Queensland, Australia, through a compilation of published records and expert knowledge. A total of 1106 records were identified comprising 346 presence and four uncertain records for at least 13 species, and 756 absence records. All current presence records consist of six species from the families Cichlidae and Poeciliidae with established self-sustaining populations in the region, probably affecting the highly diverse native fish fauna.

  6. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis

    PubMed Central

    Anderson, Lucy G.; Rocliffe, Steve; Haddaway, Neal R.; Dunn, Alison M.

    2015-01-01

    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species–particularly in freshwater and marine environments–is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow. PMID:26485300

  7. Dispersal and selection mediate hybridization between a native and invasive species.

    PubMed

    Kovach, Ryan P; Muhlfeld, Clint C; Boyer, Matthew C; Lowe, Winsor H; Allendorf, Fred W; Luikart, Gordon

    2015-01-22

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age--relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) = 0.60; s.e. = 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species.

  8. Dispersal and selection mediate hybridization between a native and invasive species

    USGS Publications Warehouse

    Kovach, Ryan P.; Muhlfeld, Clint C.; Boyer, Matthew C.; Lowe, Winsor H.; Allendorf, Fred W.; Luikart, Gordon

    2015-01-01

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age—relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) ¼ 0.60; s.e. ¼ 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species. .

  9. Dispersal and selection mediate hybridization between a native and invasive species

    PubMed Central

    Kovach, Ryan P.; Muhlfeld, Clint C.; Boyer, Matthew C.; Lowe, Winsor H.; Allendorf, Fred W.; Luikart, Gordon

    2015-01-01

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age―relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) = 0.60; s.e. = 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species. PMID:25473019

  10. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica - current knowledge, methodology and management action.

    PubMed

    Hughes, Kevin A; Convey, Peter

    2012-01-01

    Continental Antarctic terrestrial and freshwater environments currently have few established non-native species compared to the sub-Antarctic islands and other terrestrial ecosystems on Earth. This is due to a unique combination of factors including Antarctica's remoteness, harsh climate, physical geography and brief history of human activity. However, recent increases in national operator and tourism activities increase the risk of non-native propagules reaching Antarctica, while climate change may make successful establishment more likely. The frequency and probability of human-assisted transfer mechanisms appear to far outweigh those of natural propagule introductions by wind, water, birds and marine mammals. A dilemma for scientists and environmental managers, which is exacerbated by a poor baseline knowledge of Antarctic biodiversity, is how to determine the native/non-native status of a newly discovered species which could be (a) a previously undiscovered long-term native species, (b) a recent natural colonist or (c) a human-mediated introduction. A correct diagnosis is crucial as the Protocol on Environmental Protection to the Antarctic Treaty dictates dramatically different management responses depending on native/non-native status: native species and recent natural colonists should be protected and conserved, while non-native introductions should be eradicated or controlled. We review current knowledge on how available evidence should be used to differentiate between native and non-native species, and discuss and recommend issues that should be considered by scientists and managers upon discovery of a species apparently new to the Antarctic region.

  11. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica - current knowledge, methodology and management action.

    PubMed

    Hughes, Kevin A; Convey, Peter

    2012-01-01

    Continental Antarctic terrestrial and freshwater environments currently have few established non-native species compared to the sub-Antarctic islands and other terrestrial ecosystems on Earth. This is due to a unique combination of factors including Antarctica's remoteness, harsh climate, physical geography and brief history of human activity. However, recent increases in national operator and tourism activities increase the risk of non-native propagules reaching Antarctica, while climate change may make successful establishment more likely. The frequency and probability of human-assisted transfer mechanisms appear to far outweigh those of natural propagule introductions by wind, water, birds and marine mammals. A dilemma for scientists and environmental managers, which is exacerbated by a poor baseline knowledge of Antarctic biodiversity, is how to determine the native/non-native status of a newly discovered species which could be (a) a previously undiscovered long-term native species, (b) a recent natural colonist or (c) a human-mediated introduction. A correct diagnosis is crucial as the Protocol on Environmental Protection to the Antarctic Treaty dictates dramatically different management responses depending on native/non-native status: native species and recent natural colonists should be protected and conserved, while non-native introductions should be eradicated or controlled. We review current knowledge on how available evidence should be used to differentiate between native and non-native species, and discuss and recommend issues that should be considered by scientists and managers upon discovery of a species apparently new to the Antarctic region. PMID:22054571

  12. Biochemical performance of native and introduced clam species living in sympatry: The role of elements accumulation and partitioning.

    PubMed

    Velez, Cátia; Leandro, Sérgio; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2015-08-01

    The present study reports metal and arsenic contamination in sediments, as well as element accumulation and partitioning in native (Ruditapes decussatus and Venerupis corrugata) and introduced (Ruditapes philippinarum) clam species living in sympatry at the Óbidos lagoon (Portugal). The biochemical performance and the human health risks derived from the consumption of these species are also discussed. The results obtained showed that R. decussatus was the most abundant species in all the sampling sites, revealing that the introduced clam has not yet supplanted the native species. The concentration of elements was higher in areas with higher Total Organic Matter (TOM) and fines content, being Chromium (Cr), Copper (Cu) and Lead (Pb) the most abundant metals. Clams from these areas showed the highest concentration of elements but the lowest bioaccumulation levels. Furthermore, except for As, higher concentration of elements was found in clams insoluble fraction, the less toxic fraction to the organisms. Due to the low contamination levels and because elements, except As, were mainly allocated to the insoluble fraction, clams presented similar biochemical parameters among distinct areas, with no significant oxidative stress induced. Furthermore, clams from the Óbidos lagoon represent a low health risk to human consumption since, except for As, their contamination levels were below the maximum permissible limits defined by international organizations.

  13. Core collections of potato (Solanum) species native to the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato has two wild relatives native to the USA, Solanum jamesii (jam) and S. fendleri (fen). Core collections are a useful tool for genebanks, identifying a ranked minimum number of samples that together encompass most of the total diversity. With diversity measured as presence of AFLP bands, core ...

  14. The public and professionals reason similarly about the management of non-native invasive species: a quantitative investigation of the relationship between beliefs and attitudes.

    PubMed

    Fischer, Anke; Selge, Sebastian; van der Wal, René; Larson, Brendon M H

    2014-01-01

    Despite continued critique of the idea of clear boundaries between scientific and lay knowledge, the 'deficit-model' of public understanding of ecological issues still seems prevalent in discourses of biodiversity management. Prominent invasion biologists, for example, still argue that citizens need to be educated so that they accept scientists' views on the management of non-native invasive species. We conducted a questionnaire-based survey with members of the public and professionals in invasive species management (n = 732) in Canada and the UK to investigate commonalities and differences in their perceptions of species and, more importantly, how these perceptions were connected to attitudes towards species management. Both native and non-native mammal and tree species were included. Professionals tended to have more extreme views than the public, especially in relation to nativeness and abundance of a species. In both groups, species that were perceived to be more abundant, non-native, unattractive or harmful to nature and the economy were more likely to be regarded as in need of management. While perceptions of species and attitudes towards management thus often differed between public and professionals, these perceptions were linked to attitudes in very similar ways across the two groups. This suggests that ways of reasoning about invasive species employed by professionals and the public might be more compatible with each other than commonly thought. We recommend that managers and local people engage in open discussion about each other's beliefs and attitudes prior to an invasive species control programme. This could ultimately reduce conflict over invasive species control.

  15. SAGE III Meteor-3M L2 Solar Event Species Profiles (Native) V003

    Atmospheric Science Data Center

    2016-06-14

    SAGE III Meteor-3M L2 Solar Event Species Profiles (Native) V003 Project Title:  ... Aerosol Extinction Ozone Atmospheric Pressure Water Vapor Nitrogen Dioxide Air Temperature Trace Gases Dust/ash ...

  16. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    PubMed

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  17. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  18. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades.

    PubMed

    Kimbro, David L; Grosholz, Edwin D; Baukus, Adam J; Nesbitt, Nicholas J; Travis, Nicole M; Attoe, Sarikka; Coleman-Hulbert, Caitlin

    2009-06-01

    Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk's distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator-prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary's oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function.

  19. From the Cover: Ecological community description using the food web, species abundance, and body size

    NASA Astrophysics Data System (ADS)

    Cohen, Joel E.; Jonsson, Tomas; Carpenter, Stephen R.

    2003-02-01

    Measuring the numerical abundance and average body size of individuals of each species in an ecological community's food web reveals new patterns and illuminates old ones. This approach is illustrated using data from the pelagic community of a small lake: Tuesday Lake, Michigan, United States. Body mass varies almost 12 orders of magnitude. Numerical abundance varies almost 10 orders of magnitude. Biomass abundance (average body mass times numerical abundance) varies only 5 orders of magnitude. A new food web graph, which plots species and trophic links in the plane spanned by body mass and numerical abundance, illustrates the nearly inverse relationship between body mass and numerical abundance, as well as the pattern of energy flow in the community. Species with small average body mass occur low in the food web of Tuesday Lake and are numerically abundant. Larger-bodied species occur higher in the food web and are numerically rarer. Average body size explains more of the variation in numerical abundance than does trophic height. The trivariate description of an ecological community by using the food web, average body sizes, and numerical abundance includes many well studied bivariate and univariate relationships based on subsets of these three variables. We are not aware of any single community for which all of these relationships have been analyzed simultaneously. Our approach demonstrates the connectedness of ecological patterns traditionally treated as independent. Moreover, knowing the food web gives new insight into the disputed form of the allometric relationship between body mass and abundance.

  20. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    PubMed

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host. PMID:25579021

  1. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    PubMed

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host.

  2. Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new North American species, Tuber arnoldianum sp. nov.

    PubMed

    Healy, Rosanne A; Zurier, Hannah; Bonito, Gregory; Smith, Matthew E; Pfister, Donald H

    2016-10-01

    During a study comparing the ectomycorrhizal root communities in a native forest with those at the Arnold Arboretum in Massachusetts (USA), the European species Tuber borchii was detected on the roots of a native red oak in the arboretum over two successive years. Since T. borchii is an economically important edible truffle native to Europe, we conducted a search of other roots in the arboretum to determine the extent of colonization. We also wanted to determine whether other non-native Tuber species had been inadvertently introduced into this 140-year-old Arboretum because many trees were imported into the site with intact soil and roots prior to the 1921 USDA ban on these horticultural practices in the USA. While T. borchii was not found on other trees, seven other native and exotic Tuber species were detected. Among the North American Tuber species detected from ectomycorrhizae, we also collected ascomata of a previously unknown species described here as Tuber arnoldianum. This new species was found colonizing both native and non-native tree roots. Other ectomycorrhizal taxa that were detected included basidiomycetes in the genera Amanita, Russula, Tomentella, and ascomycetes belonging to Pachyphlodes, Helvella, Genea, and Trichophaea. We clarify the phylogenetic relationships of each of the Tuber species detected in this study, and we discuss their distribution on both native and non-native host trees.

  3. Nonindigenous vs. native species: A comparison of preferred niche breadth

    EPA Science Inventory

    To successfully invade and expand their populations, nonindigenous species must be able to physiologically cope with their new environment. Given this, species that tolerate a wide array of environmental conditions are often predicted to be better at establishing populations in ...

  4. Modelling Favourability for Invasive Species Encroachment to Identify Areas of Native Species Vulnerability

    PubMed Central

    Báez, José C.; Ferri-Yáñez, Francisco; Bellido, Jesús J.

    2014-01-01

    We assessed the vulnerability of the native Mediterranean pond turtle to encroachment by the invasive red-eared slider in southern Spain. We first obtained an ecogeographical favourability model for the Mediterranean pond turtle. We then modelled the presence/absence of the red-eared slider in the Mediterranean pond turtle range and obtained an encroachment favourability model. We also obtained a favourability model for the red-eared slider using the ecogeographical favourability for the Mediterranean pond turtle as a predictor. When favourability for the Mediterranean pond turtle was high, favourability for the red-eared slider was low, suggesting that in these areas the Mediterranean pond turtle may resist encroachment by the red-eared slider. We also calculated favourability overlap between the two species, which is their simultaneous favourability. Grids with low overlap had higher favourability values for the Mediterranean pond turtle and, consequently, were of lesser conservation concern. A few grids had high values for both species, being potentially suitable for coexistence. Grids with intermediate overlap had similar intermediate favourability values for both species and were therefore areas where the Mediterranean pond turtle was more vulnerable to encroachment by the red-eared slider. We mapped the favourability overlap to provide a map of vulnerability of the Mediterranean pond turtle to encroachment by the red-eared slider. PMID:24719577

  5. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter; Lunine, Jonathan; Mousis, Olivier

    2014-11-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We aim to improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of eddy diffusion coefficient. The new formulation predicts a smooth transition from slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraintprovided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other one constrains the water enrichment between 7 and 23. This difference calls for a better assessment of CO kinetic models.

  6. New insights on Jupiter's deep water abundance from disequilibrium species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter J.; Lunine, Jonathan I.; Mousis, Olivier

    2015-04-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the water enrichment between 3 and 11.

  7. Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat

    USGS Publications Warehouse

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.

  8. Non-native species impacts on pond occupancy by an anuran

    USGS Publications Warehouse

    Adams, M.J.; Pearl, C.A.; Galvan, S.; McCreary, B.

    2011-01-01

    Non-native fish and bullfrogs (Lithobates catesbeianus) are frequently cited as contributing to the decline of ranid frogs in the western United States, so we hypothesized that non-native species, habitat, or a combination of these relate to the probability of local extinction for northern red-legged frogs (Rana aurora) in Oregon, USA. We also hypothesized that the probability of colonization relates to land use, wetland size, or riparian forest. In a 5-yr study, we found no support for an effect of non-native species on northern red-legged frogs. Instead, probability of local extinction decreased with the extent of emergent vegetation and riparian forest. This finding suggests that managers consider the role of habitat when confronting non-native species problems. Copyright ?? 2011 The Wildlife Society.

  9. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    USGS Publications Warehouse

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  10. Beyond the ecological: biological invasions alter natural selection on a native plant species.

    PubMed

    Lau, Jennifer A

    2008-04-01

    Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.

  11. The distribution and abundance of a nuisance native alga, Didymosphen Didymosphenia geminata, in streams of Glacier National Park: Climate drivers and management implications

    USGS Publications Warehouse

    William, Schweiger E.; Ashton, I.W.; Muhlfeld, C.C.; Jones, L.A.; Bahls, L.L.

    2011-01-01

    Didymosphenia geminata (didymo) is a freshwater alga native to North America, including Glacier National Park, Montana. It has long been considered a cold-water species, but has recently spread to lower latitudes and warmer waters, and increasingly forms large blooms that cover streambeds. We used a comprehensive monitoring data set from the National Park Service (NPS) and USGS models of stream temperatures to explore the drivers of didymo abundance in Glacier National Park. We estimate that approximately 64% of the stream length in the park contains didymo, with around 5% in a bloom state. Results suggest that didymo abundance likely increased over the study period (2007-2009), with blooms becoming more common. Our models suggest that didymo abundance is positively related to summer stream temperatures and negatively related to total nitrogen and the distance downstream from lakes. Regional climate model simulations indicate that stream temperatures in the park will likely continue to increase over the coming decades, which may increase the extent and severity of didymo blooms. As a result, didymo may be a useful indicator of thermal and hydrological modification associated with climate warming, especially in a relatively pristine system like Glacier where proximate human-related disturbances are absent or reduced. Glacier National Park plays an important role as a sentinel for climate change and associated education across the Rocky Mountain region.

  12. The distribution and abundance ofa nuisance native alga, Didymosphenia geminata,in streams of Glacier National Park: Climate drivers and management implications

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Jones, Leslie A.; E. William Schweiger,; Isabel W. Ashton,; Loren L. Bahls,

    2011-01-01

    Didymosphenia geminata (didymo) is a freshwater alga native to North America, including Glacier National Park, Montana. It has long been considered a cold-water species, but has recently spread to lower latitudes and warmer waters, and increasingly forms large blooms that cover streambeds. We used a comprehensive monitoring data set from the National Park Service (NPS) and USGS models of stream temperatures to explore the drivers of didymo abundance in Glacier National Park. We estimate that approximately 64% of the stream length in the park contains didymo, with around 5% in a bloom state. Results suggest that didymo abundance likely increased over the study period (2007–2009), with blooms becoming more common. Our models suggest that didymo abundance is positively related to summer stream temperatures and negatively related to total nitrogen and the distance downstream from lakes. Regional climate model simulations indicate that stream temperatures in the park will likely continue to increase over the coming decades, which may increase the extent and severity of didymo blooms. As a result, didymo may be a useful indicator of thermal and hydrological modification associated with climate warming, especially in a relatively pristine system like Glacier where proximate human-related disturbances are absent or reduced. Glacier National Park plays an important role as a sentinel for climate change and associated education across the Rocky Mountain region.

  13. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  14. Existing and emerging high impact invasive species are characterized by higher functional responses than natives.

    PubMed

    Alexander, Mhairi E; Dick, Jaimie T A; Weyl, Olaf L F; Robinson, Tamara B; Richardson, David M

    2014-02-01

    Predicting ecological impacts of invasive species and identifying potentially damaging future invaders are research priorities. Since damage by invaders is characterized by their depletion of resources, comparisons of the 'functional response' (FR; resource uptake rate as a function of resource density) of invaders and natives might predict invader impact. We tested this by comparing FRs of the ecologically damaging 'world's worst' invasive fish, the largemouth bass (Micropterus salmoides), with a native equivalent, the Cape kurper (Sandelia capensis), and an emerging invader, the sharptooth catfish (Clarias gariepinus), with the native river goby (Glossogobius callidus), in South Africa, a global invasion hotspot. Using tadpoles (Hyperolius marmoratus) as prey, we found that the invaders consumed significantly more than natives. Attack rates at low prey densities within invader/native comparisons reflected similarities in predatory strategies; however, both invasive species displayed significantly higher Type II FRs than the native comparators. This was driven by significantly lower prey handling times by invaders, resulting in significantly higher maximum feeding rates. The higher FRs of these invaders are thus congruent with, and can predict, their impacts on native communities. Comparative FRs may be a rapid and reliable method for predicting ecological impacts of emerging and future invasive species.

  15. Existing and emerging high impact invasive species are characterized by higher functional responses than natives.

    PubMed

    Alexander, Mhairi E; Dick, Jaimie T A; Weyl, Olaf L F; Robinson, Tamara B; Richardson, David M

    2014-02-01

    Predicting ecological impacts of invasive species and identifying potentially damaging future invaders are research priorities. Since damage by invaders is characterized by their depletion of resources, comparisons of the 'functional response' (FR; resource uptake rate as a function of resource density) of invaders and natives might predict invader impact. We tested this by comparing FRs of the ecologically damaging 'world's worst' invasive fish, the largemouth bass (Micropterus salmoides), with a native equivalent, the Cape kurper (Sandelia capensis), and an emerging invader, the sharptooth catfish (Clarias gariepinus), with the native river goby (Glossogobius callidus), in South Africa, a global invasion hotspot. Using tadpoles (Hyperolius marmoratus) as prey, we found that the invaders consumed significantly more than natives. Attack rates at low prey densities within invader/native comparisons reflected similarities in predatory strategies; however, both invasive species displayed significantly higher Type II FRs than the native comparators. This was driven by significantly lower prey handling times by invaders, resulting in significantly higher maximum feeding rates. The higher FRs of these invaders are thus congruent with, and can predict, their impacts on native communities. Comparative FRs may be a rapid and reliable method for predicting ecological impacts of emerging and future invasive species. PMID:24522629

  16. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders.

  17. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders. PMID:27069615

  18. Existing and emerging high impact invasive species are characterized by higher functional responses than natives

    PubMed Central

    Alexander, Mhairi E.; Dick, Jaimie T. A.; Weyl, Olaf L. F.; Robinson, Tamara B.; Richardson, David M.

    2014-01-01

    Predicting ecological impacts of invasive species and identifying potentially damaging future invaders are research priorities. Since damage by invaders is characterized by their depletion of resources, comparisons of the ‘functional response’ (FR; resource uptake rate as a function of resource density) of invaders and natives might predict invader impact. We tested this by comparing FRs of the ecologically damaging ‘world's worst’ invasive fish, the largemouth bass (Micropterus salmoides), with a native equivalent, the Cape kurper (Sandelia capensis), and an emerging invader, the sharptooth catfish (Clarias gariepinus), with the native river goby (Glossogobius callidus), in South Africa, a global invasion hotspot. Using tadpoles (Hyperolius marmoratus) as prey, we found that the invaders consumed significantly more than natives. Attack rates at low prey densities within invader/native comparisons reflected similarities in predatory strategies; however, both invasive species displayed significantly higher Type II FRs than the native comparators. This was driven by significantly lower prey handling times by invaders, resulting in significantly higher maximum feeding rates. The higher FRs of these invaders are thus congruent with, and can predict, their impacts on native communities. Comparative FRs may be a rapid and reliable method for predicting ecological impacts of emerging and future invasive species. PMID:24522629

  19. Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands

    NASA Astrophysics Data System (ADS)

    de Miguel, José M.; Martín-Forés, Irene; Acosta-Gallo, Belén; del Pozo, Alejandro; Ovalle, Carlos; Sánchez-Jardón, Laura; Castro, Isabel; Casado, Miguel A.

    2016-11-01

    Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and

  20. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  1. Urbanization level and woodland size are major drivers of woodpecker species richness and abundance.

    PubMed

    Myczko, Lukasz; Rosin, Zuzanna M; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species.

  2. Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance.

    PubMed

    Martensen, Alexandre Camargo; Ribeiro, Milton Cezar; Banks-Leite, Cristina; Prado, Paulo Inácio; Metzger, Jean Paul

    2012-12-01

    Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F= 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it

  3. Abundance of minor ion species at Mars: ASPERA-3 observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yiteng; Nilsson, Hans; Barabash, Stas; Li, Lei

    2012-07-01

    The main species at Mars are O+, O2+, CO2+, while there are also some minor species. This article successfully separates minor species of O++, He+ and H2+ with about 12eV by integrating from two and a half years ASPERA-3 data on Mars Express and by integrating and taking some corrections and data processing. At the same time some space statistic Statistics of these Mars ions and estimating are taken place. The result indicates O++ ions density reduce quickly in the region without sunlight, and have moreis higher at subsolar than in the high alatitude place,. and reduces quickly in the region without sunlight. He+ and H2+ have similar distribution in space mainly above in the high altitude ionosphere, and relatively reduce sparse in the midnight space. O++ and He+ have a comparable volume density about 0.1% of O+, and H2+ is muchone order of magnitude lowerless for one order. Our results imply that O++ ions in the martian space are mainly the product of phtoionization in the ionosphere, while H2+ and He+ might also be originated in the planet.

  4. Non-native species in the vascular flora of highlands and mountains of Iceland.

    PubMed

    Wasowicz, Pawel

    2016-01-01

    The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1) How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2) Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3) Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4) Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5) Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive). Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland's highlands and mountain areas.

  5. Non-native species in the vascular flora of highlands and mountains of Iceland.

    PubMed

    Wasowicz, Pawel

    2016-01-01

    The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1) How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2) Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3) Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4) Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5) Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive). Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland's highlands and mountain areas. PMID:26844017

  6. Non-native species in the vascular flora of highlands and mountains of Iceland

    PubMed Central

    2016-01-01

    The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1) How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2) Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3) Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4) Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5) Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive). Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas. PMID:26844017

  7. When Are Native Species Inappropriate for Conservation Plantings

    EPA Science Inventory

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  8. Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels

    PubMed Central

    Burlakova, Lyubov E.; Tulumello, Brianne L.; Karatayev, Alexander Y.; Krebs, Robert A.; Schloesser, Donald W.; Paterson, Wendy L.; Griffith, Traci A.; Scott, Mariah W.; Crail, Todd; Zanatta, David T.

    2014-01-01

    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade. PMID:25490103

  9. Competitive replacement of invasive congeners may relax impact on native species: Interactions among zebra, quagga, and native unionid mussels

    USGS Publications Warehouse

    Burlakova, Lyubov E.; Tulumello, Brianne L.; Karatayev, Alexander Y.; Krebs, Robert A.; Schloesser, Donald W.; Paterson, Wendy L.; Griffith, Traci A.; Scott, Mariah W.; Crail, Todd D.; Zanatta, David T

    2014-01-01

    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade.

  10. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.

    PubMed

    Capinha, César; Larson, Eric R; Tricarico, Elena; Olden, Julian D; Gherardi, Francesca

    2013-08-01

    Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal-limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate-suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate-suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague-transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization.

  11. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory.

    PubMed

    Chao, Anne; Hsieh, T C; Chazdon, Robin L; Colwell, Robert K; Gotelli, Nicholas J

    2015-05-01

    Based on a sample of individuals, we focus on inferring the vector of species relative abundance of an entire assemblage and propose a novel estimator of the complete species-rank abundance distribution (RAD). Nearly all previous estimators of the RAD use the conventional "plug-in" estimator Pi (sample relative abundance) of the true relative abundance pi of species i. Because most biodiversity samples are incomplete, the plug-in estimators are applied only to the subset of species that are detected in the sample. Using the concept of sample coverage and its generalization, we propose a new statistical framework to estimate the complete RAD by separately adjusting the sample relative abundances for the set of species detected in the sample and estimating the relative abundances for the set of species undetected in the sample but inferred to be present in the assemblage. We first show that P, is a positively biased estimator of pi for species detected in the sample, and that the degree of bias increases with increasing relative rarity of each species. We next derive a method to adjust the sample relative abundance to reduce the positive bias inherent in j. The adjustment method provides a nonparametric resolution to the longstanding challenge of characterizing the relationship between the true relative abundance in the entire assemblage and the observed relative abundance in a sample. Finally, we propose a method to estimate the true relative abundances of the undetected species based on a lower bound of the number of undetected species. We then combine the adjusted RAD for the detected species and the estimated RAD for the undetected species to obtain the complete RAD estimator. Simulation results show that the proposed RAD curve can unveil the true RAD and is more accurate than the empirical RAD. We also extend our method to incidence data. Our formulas and estimators are illustrated using empirical data sets from surveys of forest spiders (for abundance data) and

  12. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  13. Arsenic and mercury in native aquatic bryophytes: differences among species.

    PubMed

    Díaz, Santiago; Villares, Rubén; López, Jesús; Carballeira, Alejo

    2013-04-01

    This study investigated the capacities of five species of aquatic bryophytes to accumulate As and Hg from their natural habitats in rivers in Galicia (NW Spain). The distributions of the concentrations of both elements in all species were skewed to the right, with a higher incidence of extreme values in the As data, which may indicate a greater degree of contamination by this metalloid. There were no significant differences in the accumulation of either of the elements between the different species studied, which justifies their combined use as biomonitors of As and Hg, at least in the study area.

  14. Non-native species impacts on pond occupancy by an anuran

    USGS Publications Warehouse

    Adams, Michael J.; Pearl, Christopher A.; Galvan, Stephanie; McCreary, Brome

    2011-01-01

    Non-native fish and bullfrogs (Lithobates catesbeianus; Rana catesbeiana) are frequently cited as factors contributing to the decline of ranid frogs in the western United States (Bradford 2005). This hypothesis is supported by studies showing competition with or predation by these introduced species (Kupferberg 1997, Kiesecker and Blaustein 1998, Lawler et al. 1999, Knapp et al. 2001) and studies suggesting a deficit of native frogs at sites occupied by bullfrogs or game fish (Hammerson 1982, Schwalbe and Rosen 1988, Fisher and Shaffer 1996, Adams 1999). Conversely, other studies failed to find a negative association between native ranids and bullfrogs and point out that presence of non-native species correlates with habitat alterations that could also contribute to declines of native species (Hayes and Jennings 1986; Adams 1999, 2000; Pearl et al. 2005). A criticism of these studies is that they may not detect an effect of non-native species if the process of displacement is at an early stage. We are not aware of any studies that have monitored a set of native frog populations to determine if non-native species predict population losses. Our objective was to study site occupancy trends in relation to non-native species for northern red-legged frogs (Rana aurora) on federal lands in the southern Willamette Valley, Oregon. We conducted a 5-yr monitoring study to answer the following questions about the status and trends of the northern red-legged frog: 1) What is the rate of local extinction (how often is a site that is occupied in year t unoccupied in year t+1) and what factors predict variation in local extinction? and 2) What is the rate of colonization (how often is a site that is unoccupied in year t occupied in year t+1) and what factors predict variation in colonization? The factors we hypothesized for local extinction were: 1) bullfrog presence, 2) bullfrogs mediated by wetland vegetation, 3) non-native fish (Centrarchidae), 4) non-native fish mediated by

  15. A Common Scaling Rule for Abundance, Energetics, and Production of Parasitic and Free-Living Species

    PubMed Central

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the −¾ power. This result indicates “production equivalence,” where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic. PMID:21778398

  16. A common scaling rule for abundance, energetics, and production of parasitic and free-living species

    USGS Publications Warehouse

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the - 3/4 power. This result indicates "production equivalence," where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic.

  17. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances

    PubMed Central

    Boulangeat, Isabelle; Gravel, Dominique; Thuiller, Wilfried

    2014-01-01

    Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model’s performance and that the spatial variations of species presence–absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. PMID:22462813

  18. Assessing the influence of environmental and human factors on native and exotic species richness

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Fábio Suzart; Castro-Díez, Pilar; Rodríguez, Miguel Á.; Cayuela, Luis

    2011-03-01

    Understanding the ecological determinants of biological invasions is a key issue for predicting the spread of exotic species over broad geographical extents. The goal of this study was to investigate independent and combined effects of climatic and human-related factors on native and exotic plant species richness in Great Britain. We used multiple and partial regression techniques and spatial methods to investigate the effect of these variables on species richness. The highest plant richness was found in southeastern Great Britain and the lowest in the North for both native and exotic species. We found that energy input was the best predictor of either native or exotic plant richness, followed by water availability. Richness increased linearly with energy input for native plants, but exponentially for exotics. This is probably due to the lower chances of exotic species to succeed in low-energy sites, and/or to the lower species saturation of more productive ecosystems. The low portion of richness variance explained by human footprint was probably due to the study scale and to the overlapping between climatic and human factors. We conclude that the environment-human models are robust to enhance our understanding of the factors controlling the distribution of exotic species. Models containing water-energy measures can be a key component for explaining the broad-scale patterns of exotic species.

  19. FIRE REHABIlIATION USING NATIVE AND INTRODUCED SPECIES: A LANDSCAPE TRIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following the 1999 Railroad Fire in Tintic Valley, Utah, we initiated a large-scale fire rehabilitation study comparing a predominately introduced species seed mix used by the US Department of Interior-Bureau of Land Management (BLM), a mix of native and introduced species provided by the US Departm...

  20. FISH SPECIES OCCURRENCE DENSITIES IN NORTHEASTERN LAKES AND THE EXTENT OF NON-NATIVES

    EPA Science Inventory

    A species' occurrence density is the proportion or number of habitat units (lakes in this case) in a region in which it is present. Reliable estimates of occurrence density should be useful to discussions and decisions about biodiversity, rare species, and non-native invasions. T...

  1. Native Australian species are effective in extracting multiple heavy metals from biosolids.

    PubMed

    Mok, Hoi-Fei; Majumder, Ramaprasad; Laidlaw, W Scott; Gregory, David; Baker, Alan J M; Arndt, Stefan K

    2013-01-01

    Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species. PMID:23819263

  2. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary goal of this research was to investigate the prokaryotic and fungal communities associated with the bulk soil, the rhizosphere, the phyllosphere, and the root and leaf endospheres, for three Agave species: the cultivated Agave tequilana and the native species, A. salmiana and A. deserti ...

  3. The effect of soil-borne pathogens depends on the abundance of host tree species.

    PubMed

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen-Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  4. The effect of soil-borne pathogens depends on the abundance of host tree species

    PubMed Central

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen–Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  5. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations

    PubMed Central

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C.

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  6. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations.

    PubMed

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  7. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  8. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    PubMed

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  9. Evaluating Ecosystem Services Provided by Non-Native Species: An Experimental Test in California Grasslands

    PubMed Central

    Stein, Claudia; Hallett, Lauren M.; Harpole, W. Stanley; Suding, Katharine N.

    2014-01-01

    The concept of ecosystem services – the benefits that nature provides to human's society – has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem. PMID:25222028

  10. Spatial covariation of local abundance among different parasite species: the effect of shared hosts.

    PubMed

    Lagrue, C; Poulin, R

    2015-10-01

    Within any parasite species, abundance varies spatially, reaching higher values in certain localities than in others, presumably reflecting the local availability of host resources or the local suitability of habitat characteristics for free-living stages. In the absence of strong interactions between two species of helminths with complex life cycles, we might predict that the degree to which their abundances covary spatially is determined by their common resource requirements, i.e. how many host species they share throughout their life cycles. We test this prediction using five trematode species, all with a typical three-host cycle, from multiple lake sampling sites in New Zealand's South Island: Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, Maritrema poulini, and an Apatemon sp. Pairs of species from this set of five share the same host species at either one, two, or all three life cycle stages. Our results show that when two trematode species share the same host species at all three life stages, they show positive spatial covariation in abundance (of metacercarial and adult stages) across localities. When they share hosts at two life stages, they show positive spatial covariation in abundance in some cases but not others. Finally, if two trematode species share only one host species, at a single life stage, their abundances do not covary spatially. These findings indicate that the extent of resource sharing between parasite species can drive the spatial match-mismatch between their abundances, and thus influence their coevolutionary dynamics and the degree to which host populations suffer from additive or synergistic effects of multiple infections. PMID:26113509

  11. Assessing the sensitivity of avian species abundance to land cover and climate

    USGS Publications Warehouse

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  12. Potential for using native plant species in stormwater wetlands.

    PubMed

    Bonilla-Warford, Cristina M; Zedler, Joy B

    2002-03-01

    Spartina pectinata (prairie cordgrass) was grown under five hydroperiods (wet-dry cycles) to determine its potential for use in stormwater wetlands, particularly as an alternative to the highly invasive Phalaris arundinacea (an exotic grass). Rhizomes planted in outdoor microcosms grew vigorously in all treatments, namely, weekly flooding in early summer, weekly flooding in late summer, flooding every three weeks throughout the summer, weekly flooding throughout the summer, and no flooding. Neither the timing nor frequency of 24-hour floods (10-20 cm deep) affected total stem length (grand mean 1003 +/- 188.8 cm per pot, n = 140) or above-ground biomass (46.5 +/- 8.3 g per pot, equivalent to approximately 360 g/m2). However, by late summer, fewer new tillers were found in unflooded microcosms, indicating that vegetative expansion is drought-sensitive. The growth of Spartina plants was further assessed with and without Glyceria striata (a native grass) and Phalaris arundinacea. Glyceria growth was not affected by hydrologic treatment. Glyceria reduced Spartina growth by approximately 11%, suggesting potential as a cover crop that might reduce establishment and growth of Phalaris seedlings. Seeds of Phalaris did not germinate, but branch fragments established where soil was moist from flooding, regardless of the presence of Glyceria. The ability of Spartina to establish vegetatively and grow well under variable water levels leads us to recommend further testing in stormwater wetlands, along with early planting of Glyceria to reduce weed invasions.

  13. Plant species richness at different scales in native and exotic grasslands in Southeastern Arizona

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2006-01-01

    Species richness in Madrean mixed-grass prairies dominated by native or exotic species in southeastern Arizona was characterized at the community and point scales using ten 1-m2 quadrats nested within each of eight 1000-m2 plots. In the 1000-m2 plots average richness was significantly higher in oak savanna (OS, 121.0 species) than in exotic grassland on mesa tops (EMT, 52.0 species), whereas native grassland on mesa slopes (NMS, 92.5 species) and native grassland on mesa tops (NMT, 77.0 species) did not differ significantly in richness from OS or EMT When richness was partitioned by life form, EMT was notably poorer than other community types in species of perennial grasses, perennial herbs, and summer annuals. In the 1-m2 quadrats, OS (21.2 species), NMS (20.9 species), and NMT (20.7 species) were significantly richer than EMT (5.9 species). Cover in 1-m2 plots was significantly higher in EMT than in NMT, NMS, or OS. Species richness at the point scale showed a unimodal relation to canopy cover, with cover accounting for 30% of the variation in number of species in 1-m2 quadrats. Competitive exclusion and allelopathy have perhaps limited species richness at the point scale in exotic grassland. There was no evidence of a species-pool effect between point and community scales, but such an effect between community and landscape scales was supported. Madrean mixed-grass prairies are landscapes with high species richness in comparison to other grassland types in North America, providing a large pool of potential colonizing species at the community scale. Beta-diversity (between communities) within the landscape of the Appleton-Whittell Research Ranch was consequently high despite a relative lack of habitat diversity.

  14. Remembrance of things past: modelling the relationship between species' abundances in living communities and death assemblages

    PubMed Central

    Olszewski, Thomas D.

    2012-01-01

    Accumulations of dead skeletal material are a valuable archive of past ecological conditions. However, such assemblages are not equivalent to living communities because they mix the remains of multiple generations and are altered by post-mortem processes. The abundance of a species in a death assemblage can be quantitatively modelled by successively integrating the product of an influx time series and a post-mortem loss function (a decay function with a constant half-life). In such a model, temporal mixing increases expected absolute dead abundance relative to average influx as a linear function of half-life and increases variation in absolute dead abundance values as a square-root function of half-life. Because typical abundance distributions of ecological communities are logarithmically distributed, species' differences in preservational half-life would have to be very large to substantially alter species' abundance ranks (i.e. make rare species common or vice-versa). In addition, expected dead abundances increase at a faster rate than their range of variation with increased time averaging, predicting greater consistency in the relative abundance structure of death assemblages than their parent living community. PMID:21653564

  15. Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance

    PubMed Central

    Tuya, Fernando; Vanderklift, Mathew A.; Wernberg, Thomas; Thomsen, Mads S.

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat. PMID:21629654

  16. Grassland invader responses to realistic changes in native species richness.

    PubMed

    Rinella, Matthew J; Pokorny, Monica L; Rekaya, Romdhane

    2007-09-01

    The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion. PMID:17913143

  17. Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site

    PubMed Central

    Brunnschweiler, Juerg M.; Abrantes, Kátya G.; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion

  18. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark

  19. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark

  20. A new species of Atheroides Haliday (Hemiptera, Aphididae) native to North America.

    PubMed

    Miller, Gary L; Jensen, Andrew S; Metz, Mark A; Parmenter, Robert R

    2014-01-01

    We report and describe the first species of Atheroides Haliday presumed to be native to North America, collected at the Valles Caldera National Preserve, New Mexico, USA. We hypothesize its placement among the Siphini based on morphological, phylogenetic analysis and extend the distribution of the genus to the Holoarctic. We expand the key of the known Atheroides to include the new species and discuss the current hypotheses of the geographic distribution of the type species, Atheroidesserrulatus Haliday. PMID:25493053

  1. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions

    USGS Publications Warehouse

    Wenger, S.J.; Freeman, Mary C.

    2008-01-01

    Researchers have developed methods to account for imperfect detection of species with either occupancy (presence-absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.

  2. Different responses of invasive and native species to elevated CO 2 concentration

    NASA Astrophysics Data System (ADS)

    Song, Liying; Wu, Jinrong; Li, Changhan; Li, Furong; Peng, Shaolin; Chen, Baoming

    2009-01-01

    Increasing atmospheric CO 2 concentration is regarded as an important factor facilitating invasion. However, the mechanisms by which invasive plants spread at the expense of existing native plants are poorly understood. In this study, three invasive species ( Mikania micrantha, Wedelia trilobata and Ipomoea cairica) and their indigenous co-occurring species or congeners ( Paederia scandens, Wedelia chinensis and Ipomoea pescaprae) in South China were exposed to elevated CO 2 concentration (700 μmol mol -1). The invasive species showed an average increase of 67.1% in photosynthetic rate, significantly different from the native species (24.8%). On average the increase of total biomass at elevated CO 2 was greater for invasive species (70.3%) than for the natives (30.5%). Elevated CO 2 also resulted in significant changes in biomass allocation and morphology of invasive M. micrantha and W. trilobata. These results indicate a substantial variation in response to elevated CO 2 between these invasive and native plant species, which might be a potential mechanism partially explaining the success of invasion with ongoing increase in atmospheric CO 2.

  3. Toxoplasmosis in three species of native and introduced Hawaiian birds

    USGS Publications Warehouse

    Work, T.M.; Massey, J.G.; Lindsay, D.S.; Dubey, J.P.

    2002-01-01

    Toxoplasma gondii was found in endemic Hawaiian birds, including 2 nene geese (Nesochen sandvicensis), 1 red-footed booby (Sula sula), and an introduced bird, the Erckels francolin (Francolinus erckelii). All 4 birds died of disseminated toxoplasmosis; the parasite was found in sections of many organs, and the diagnosis was confirmed by immunohistochemical staining with antia??T. gondiia??specific polyclonal antibodies. This is the first report of toxoplasmosis in these species of birds.

  4. Toxoplasmosis in three species of native and introduced Hawaiian birds.

    PubMed

    Work, Thierry M; Massey, J Gregory; Lindsay, David; Dubey, J P

    2002-10-01

    Toxoplasma gondii was found in endemic Hawaiian birds, including 2 nene geese (Nesochen sandvicensis), 1 red-footed booby (Sula sula), and an introduced bird, the Erckels francolin (Francolinus erckelii). All 4 birds died of disseminated toxoplasmosis; the parasite was found in sections of many organs, and the diagnosis was confirmed by immunohistochemical staining with anti-T. gondii-specific polyclonal antibodies. This is the first report of toxoplasmosis in these species of birds.

  5. Toxoplasmosis in three species of native and introduced Hawaiian birds.

    PubMed

    Work, Thierry M; Massey, J Gregory; Lindsay, David; Dubey, J P

    2002-10-01

    Toxoplasma gondii was found in endemic Hawaiian birds, including 2 nene geese (Nesochen sandvicensis), 1 red-footed booby (Sula sula), and an introduced bird, the Erckels francolin (Francolinus erckelii). All 4 birds died of disseminated toxoplasmosis; the parasite was found in sections of many organs, and the diagnosis was confirmed by immunohistochemical staining with anti-T. gondii-specific polyclonal antibodies. This is the first report of toxoplasmosis in these species of birds. PMID:12435157

  6. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.

  7. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. PMID:25712048

  8. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  9. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  10. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    PubMed Central

    Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  11. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  12. Microbial Characteristics of Native Aquatic Species of Savannah River Wetlands

    SciTech Connect

    McKinsey, P.C.

    2000-12-12

    In 1974 the Savannah River Site (SRS) was established as a National Environmental Research Park (NERP) in the United States. NERP provided locations for long-term ecological research investigation. Many of the ecological studies that have been conducted in the past mainly focused on the macroscopic view. The Savannah River Site contains wetlands that are home to many diverse organisms. We conducted a preliminary survey of microbial habitats in order to explore the biodiversity of species-specific symbionts. Bacterial surveys included viable counts, direct counts, isolation, identification, and metabolic profiles.

  13. Abundance and species composition of Tintinnina (ciliophora) in Bahía Blanca estuary, Argentina

    NASA Astrophysics Data System (ADS)

    Barría de Cao, M. S.

    1992-03-01

    Numerical abundance and seasonal cycle of tintinnines species were studied in the inner part of the Bahía Blanca estuary. Sampling was carried out at two fixed stations at approximately weekly intervals over the period March 1986-February 1987. Nineteen species representing five genera were recorded. Most species belonged to the genus Tintinnopsis. Maximal abundances of tintinnines, 10·1 × 10 3 1 -1 and 11·3 × 10 3 1 -1 at each station respectively, were found in summer. Minimal abundances, 0·5 × 10 3 1 -1 and 0·7 × 10 3 1 -1 at each station respectively, were found in winter. Tintinnidium balechi, Tintinnopsis parva and Tintinnopsis glans were present throughout the year. Tintinnopsis gracilis, Tintinnopsis baltica and Tintinnopsis beroidea exhibited seasonal occurrence, the remaining species did not show a clear pattern of distribution. The presence of Favella taraikaensis demonstrated occasional intrusions of typical fauna of the outer estuary.

  14. Population structure in the native range predicts the spread of introduced marine species.

    PubMed

    Gaither, Michelle R; Bowen, Brian W; Toonen, Robert J

    2013-06-01

    Forecasting invasion success remains a fundamental challenge in invasion biology. The effort to identify universal characteristics that predict which species become invasive has faltered in part because of the diversity of taxa and systems considered. Here, we use an alternative approach focused on the spread stage of invasions. FST, a measure of alternative fixation of alleles, is a common proxy for realized dispersal among natural populations, summarizing the combined influences of life history, behaviour, habitat requirements, population size, history and ecology. We test the hypothesis that population structure in the native range (FST) is negatively correlated with the geographical extent of spread of marine species in an introduced range. An analysis of the available data (29 species, nine phyla) revealed a significant negative correlation (R(2) = 0.245-0.464) between FST and the extent of spread of non-native species. Mode FST among pairwise comparisons between populations in the native range demonstrated the highest predictive power (R(2) = 0.464, p < 0.001). There was significant improvement when marker type was considered, with mtDNA datasets providing the strongest relationship (n = 21, R(2) = 0.333-0.516). This study shows that FST can be used to make qualitative predictions concerning the geographical extent to which a non-native marine species will spread once established in a new area.

  15. Population structure in the native range predicts the spread of introduced marine species.

    PubMed

    Gaither, Michelle R; Bowen, Brian W; Toonen, Robert J

    2013-06-01

    Forecasting invasion success remains a fundamental challenge in invasion biology. The effort to identify universal characteristics that predict which species become invasive has faltered in part because of the diversity of taxa and systems considered. Here, we use an alternative approach focused on the spread stage of invasions. FST, a measure of alternative fixation of alleles, is a common proxy for realized dispersal among natural populations, summarizing the combined influences of life history, behaviour, habitat requirements, population size, history and ecology. We test the hypothesis that population structure in the native range (FST) is negatively correlated with the geographical extent of spread of marine species in an introduced range. An analysis of the available data (29 species, nine phyla) revealed a significant negative correlation (R(2) = 0.245-0.464) between FST and the extent of spread of non-native species. Mode FST among pairwise comparisons between populations in the native range demonstrated the highest predictive power (R(2) = 0.464, p < 0.001). There was significant improvement when marker type was considered, with mtDNA datasets providing the strongest relationship (n = 21, R(2) = 0.333-0.516). This study shows that FST can be used to make qualitative predictions concerning the geographical extent to which a non-native marine species will spread once established in a new area. PMID:23595272

  16. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J., Jr.; Killen, R. M.; Sprague, A. L.; Burger, M. H.; Merkel, A. W.; Sarantos, M.

    2011-10-01

    Now that the MESSENGER spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbitalphase searches for additional species in Mercury's exosphere.

  17. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  18. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    USGS Publications Warehouse

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  19. Assessment of the Species Composition, Densities, and Distribution of Native Freshwater Mussels along the Benton County Shoreline of the Hanford Reach, Columbia River, 2004

    SciTech Connect

    Mueller, Robert P.; Tiller, Brett L.; Bleich, Matthew D.; Turner, Gerald; Welch, Ian D.

    2011-01-31

    The Hanford Reach of the Columbia River is the last unimpounded section of the river and contains substrate characteristics (cobble, gravel, sand/silt) suitable for many of the native freshwater mussels known to exist in the Pacific Northwest. Information concerning the native mussel species composition, densities, and distributions in the mainstem of the Columbia River is limited. Under funding from the U.S. Department of Energy Richland Operations Office (DOE-RL), Pacific Northwest National Laboratory conducted an assessment of the near-shore habitat on the Hanford Reach. Surveys conducted in 2004 as part of the Ecological Monitoring and Compliance project documented several species of native mussels inhabiting the near-shore habitat of the Hanford Reach. Findings reported here may be useful to resource biologists, ecologists, and DOE-RL to determine possible negative impacts to native mussels from ongoing near-shore remediation activities associated with Hanford Site cleanup. The objective of this study was to provide an initial assessment of the species composition, densities, and distribution of the freshwater mussels (Margaritiferidae and Unionidae families) that exist in the Hanford Reach. Researchers observed and measured 201 live native mussel specimens. Mussel density estimated from these surveys is summarized in this report with respect to near-shore habitat characteristics including substrate size, substrate embeddedness, relative abundance of aquatic vegetation, and large-scale geomorphic/hydrologic characteristics of the Hanford Reach.

  20. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current

    NASA Astrophysics Data System (ADS)

    Brinton, Edward; Townsend, Annie

    2003-08-01

    Euphausiid abundance data from broadly based California Cooperative Oceanic Fisheries Investigation surveys in California and Baja California sectors of the California Current provided a time series distinguishing periodic, rhythmic and irregular species patterns. Comparisons with environmental indexes indicate significant correlations with warm-water species, most notably in coastal Nyctiphanes simplex. Oceanic warm-water species were similarly, but less extremely, allied with an index. Coastal warm-water N. simplex was uncommon off southern California before the atmospheric regime shift of the 1970s. It assumed a post-1978 pattern of rhythmic biannual abundance increases and decreases during 1981-2000. The near-tropical oceanic Euphausia eximia and Pacific Central subtropicals patterned similarly, but was more periodic than rhythmic. Euphausia pacifica, the most dominant and broadly ranging Euphausia species, peaked at irregular but distinct bi-decadal abundances during 6 strong La Niña episodes. The peaks uniformly collapsed by 90%, becoming El Niño-associated minima. The cold-water coastal northern species Thysanoessa spinifera frequently ranged far south off Baja California before 1960 but became limited to Central California in the 1980s. The importance of T. spinifera off the Californias is small compared with northern regions, but it extends to southern upwelling centers contributing to dominance, here, by cold-water euphausiids. Decadal periodicity of species abundances decreased in the 1990s, when trends became more common. Differences among sectors were minimal between the two Californias, but were often distinct between southern California and Central Baja California. Species abundances, comparing pre- and post-climate shift species averages, differed insignificantly for all species when logarithmic values were used. With arithmetic values, most 1977-1998 average values were the greater, but with large standard deviations.

  1. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    PubMed Central

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most

  2. Global patterns in sandy beach macrofauna: Species richness, abundance, biomass and body size

    NASA Astrophysics Data System (ADS)

    Defeo, Omar; McLachlan, Anton

    2013-10-01

    Global patterns in species richness in sandy beach ecosystems have been poorly understood until comparatively recently, because of the difficulty of compiling high-resolution databases at continental scales. We analyze information from more than 200 sandy beaches around the world, which harbor hundreds of macrofauna species, and explore latitudinal trends in species richness, abundance and biomass. Species richness increases from temperate to tropical sites. Abundance follows contrasting trends depending on the slope of the beach: in gentle slope beaches, it is higher at temperate sites, whereas in steep-slope beaches it is higher at the tropics. Biomass follows identical negative trends for both climatic regions at the whole range of beach slopes, suggesting decreasing rates in carrying capacity of the environment towards reflective beaches. Various morphodynamic variables determine global trends in beach macrofauna. Species richness, abundance and biomass are higher at dissipative than at reflective beaches, whereas a body size follows the reverse pattern. A generalized linear model showed that large tidal range (which determines the vertical dimension of the intertidal habitat), small size of sand particles and flat beach slope (a product of the interaction among wave energy, tidal range and grain size) are correlated with high species richness, suggesting that these parameters represent the most parsimonious variables for modelling patterns in sandy beach macrofauna. Large-scale patterns indicate a scaling of abundance to a body size, suggesting that dissipative beaches harbor communities with highest abundance and species with the smallest body sizes. Additional information for tropical and northern hemisphere sandy beaches (underrepresented in our compilation) is required to decipher more conclusive trends, particularly in abundance, biomass and body size. Further research should integrate meaningful oceanographic variables, such as temperature and primary

  3. Soil-occupancy effects of invasive and native grassland plant species on composition and diversity of mycorrhizal associations

    USGS Publications Warehouse

    Jordan, Nicholas R.; Aldrich-Wolfe, Laura; Huerd, Sheri C.; Larson, Diane L.; Muehlbauer, Gary

    2012-01-01

    Diversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects

  4. Use of community-composition data to predict the fecundity and abundance of species.

    PubMed

    Elmendorf, Sarah C; Moore, Kara A

    2008-12-01

    Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co-occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community-composition data. Composition-based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment-based models were built with soil chemistry, moisture content, above-ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community-composition data were the best predictors of both the site-specific reproductive output of sown individuals and the site-specific abundance of existing populations. Successful community-based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community-based modeling at scales relevant to conservation. PMID:18847440

  5. A new species of Atheroides Haliday (Hemiptera, Aphididae) native to North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Report and description of the first species of Atheroides Haliday presumed to be native to North America was collected at the Valles Caldera National Preserve, NM, USA. Hypothesis on its placement among the Siphini is based on morphological and phylogenetic analysis. These findings expand the dis...

  6. IDENTIFYING SOURCES OF STRESS TO NATIVE AQUATIC SPECIES USING A WATERSHED ECOLOGICAL RISK ASSESSMENT FRAMEWORK.

    EPA Science Inventory

    The free-flowing Clinch and Powell River basin, located in southwestern Virginia, U.S.A., historically had one of the richest assemblages of native fish and freshwater mussels in the world. Nearly half of the species once residing here are now extinct, threatened or endangered....

  7. Planting native species to control site reinfestation by Japanese knotweed (Fallopia japonica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Japanese knotweed (Polygonum cuspidatum Sieb. & Zucc.) (JKW) is a highly invasive species that has become a serious problem in riparian zones and along road and railroad right-of-ways. Once established, it forms solid colonies that usually choke out all other herbaceous vegetation, displacing native...

  8. Invasive ecosystem engineer selects for different phenotypes of an associated native species.

    PubMed

    Wright, Jeffrey T; Gribben, Paul E; Byers, James E; Monro, Keyne

    2012-06-01

    Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.

  9. "Growing" a Campus Native Species Garden: Sustaining Volunteer-Driven Sustainability

    ERIC Educational Resources Information Center

    McKinne, Kristan L.; Halfacre, Angela C.

    2008-01-01

    Purpose: This paper aims to examine the challenges of volunteer-driven college campus sustainability projects through a case study of the development of an urban native plant species garden on the College of Charleston campus in Charleston, South Carolina, USA. Design/methodology/approach: The research used participant observation as the primary…

  10. Copepod abundance and species composition in the Eastern subtropical/tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Schnack-Schiel, Sigrid B.; Mizdalski, Elke; Cornils, Astrid

    2010-12-01

    Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5'N to 27°28.1'S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C

  11. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    PubMed Central

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  12. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    PubMed Central

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  13. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees.

    PubMed

    Dexter, Kyle; Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  14. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees.

    PubMed

    Dexter, Kyle; Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  15. Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest.

    PubMed

    dos Anjos, Luiz

    2004-06-01

    Bird communities were studied in two types of fragmented habitat of Atlantic forest in the State of Paraná, southern Brazil; one consisted of forest fragments that were created as a result of human activities (forest remnants), the other consisted of a set of naturally occurring forest fragments (forest patches). Using quantitative data obtained by the point counts method in 3 forest patches and 3 forest remnants during one year, species richness and relative abundance were compared in those habitats, considering species groups according to their general feeding habits. Insectivores, omnivores, and frugivores presented similar general tendencies in both habitats (decrease of species number with decreasing size and increasing isolation of forest fragment). However, these tendencies were different, when considering the relative abundance data: the trunk insectivores presented the highest value in the smallest patch while the lowest relative abundance was in the smallest remnant. In the naturally fragmented landscape, time permitted that the loss of some species of trunk insectivores be compensated for the increase in abundance of other species. In contrast, the remnants essentially represented newly formed islands that are not yet at equilibrium and where future species losses would make them similar to the patches.

  16. Influence of Trap Height and Bait Type on Abundance and Species Diversity of Cerambycid Beetles Captured in Forests of East-Central Illinois.

    PubMed

    Schmeelk, Thomas C; Millar, Jocelyn G; Hanks, Lawrence M

    2016-08-01

    We assessed how height of panel traps above the forest floor, and the type of trap bait used, influenced the abundance and diversity of cerambycid beetles caught in forested areas of east-central Illinois. Panel traps were suspended from branches of hardwood trees at three heights above the ground: understory (∼1.5 m), lower canopy (∼6 m), and midcanopy (∼12 m). Traps were baited with either a multispecies blend of synthesized cerambycid pheromones or a fermenting bait mixture. Traps captured a total of 848 beetles of 50 species in the cerambycid subfamilies Cerambycinae, Lamiinae, Lepturinae, and Parandrinae, and one species in the closely related family Disteniidae. The species caught in highest numbers was the cerambycine Anelaphus pumilus (Newman), represented by 349 specimens. The 17 most abundant species (mean ± 1 SD: 45 ± 80 specimens per species) included 12 cerambycine and five lamiine species. Of these most abundant species, 13 (77%) were attracted to traps baited with the pheromone blend. Only the cerambycine Eburia quadrigeminata (Say) was attracted by the fermenting bait. Three species were captured primarily in understory traps, and another five species primarily in midcanopy traps. Variation among cerambycid species in their vertical distribution in forests accounted for similar overall abundances and species richness across trap height treatments. These findings suggest that trapping surveys of native communities of cerambycids, and quarantine surveillance for newly introduced exotic species, would be optimized by including a variety of trap baits and distributing traps across vertical strata of forests. PMID:27298428

  17. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  18. Global correlations in tropical tree species richness and abundance reject neutrality.

    PubMed

    Ricklefs, Robert E; Renner, Susanne S

    2012-01-27

    Patterns of species richness and relative abundance at some scales cannot be distinguished from predictions of null models, including zero-sum neutral models of population change and random speciation-extinction models of evolutionary diversification. Both models predict that species richness or population abundance produced by independent iterations of the same processes in different regions should be uncorrelated. We find instead that the number of species and individuals in families of trees in forest plots are strongly correlated across Southeast Asia, Africa, and tropical America. These correlations imply that deterministic processes influenced by evolutionarily conservative family-level traits constrain the number of confamilial tree species and individuals that can be supported in regional species pools and local assemblages in humid tropical forests.

  19. Soil biota effects on local abundances of three grass species along a land-use gradient.

    PubMed

    Heinze, J; Werner, T; Weber, E; Rillig, M C; Joshi, J

    2015-09-01

    Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.

  20. Understanding the threats posed by non-native species: public vs. conservation managers.

    PubMed

    Gozlan, Rodolphe E; Burnard, Dean; Andreou, Demetra; Britton, J Robert

    2013-01-01

    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  1. Understanding the Threats Posed by Non-Native Species: Public vs. Conservation Managers

    PubMed Central

    Gozlan, Rodolphe E.; Burnard, Dean; Andreou, Demetra; Britton, J. Robert

    2013-01-01

    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone. PMID:23341931

  2. Allelopathic effect of a native species on a major plant invader in Europe.

    PubMed

    Christina, Mathias; Rouifed, Soraya; Puijalon, Sara; Vallier, Félix; Meiffren, Guillaume; Bellvert, Floriant; Piola, Florence

    2015-04-01

    Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopiaxbohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27% for plants originating from rhizomes and by 38% for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20%. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25% for plants originating from rhizomes and 70, 61 and 55% for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species.

  3. Habitat partitioning by five congeneric and abundant Choerodon species (Labridae) in a large subtropical marine embayment

    NASA Astrophysics Data System (ADS)

    Fairclough, D. V.; Clarke, K. R.; Valesini, F. J.; Potter, I. C.

    2008-04-01

    The habitats occupied by the juveniles and adults of five morphologically similar, diurnally active and abundant Choerodon species in the large subtropical environment of Shark Bay, a "World Heritage Property" on the west coast of Australia, have been determined. The densities of the two life cycle stages of each Choerodon species in those habitats were used in various analyses to test the hypotheses that: (1) habitats are partitioned among these species and between their juveniles and adults; (2) such habitat partitioning is greatest in the case of the two Western Australian endemic species, i.e. Choerodon rubescens and Choerodon cauteroma; and (3) the extent of habitat partitioning between both of these two species and the only species that is widely distributed in the Indo-West Pacific, i.e. Choerodon schoenleinii, will be less pronounced. Initially, catches of each of the five congeneric species, obtained during other studies in Shark Bay by angling, spearfishing and otter trawling, were collated to elucidate the broad distribution of these species in that embayment. Underwater visual census was then used to determine the densities of the juveniles and adults of each Choerodon species at sites representing the four habitat types in which one or more of these species had been caught, i.e. reefs in marine waters at the western boundary of the bay and seagrass, reefs and rocky shorelines in the two inner gulfs. The compositions of the Choerodon species over marine (entrance channel) reefs and in seagrass were significantly different and each differed significantly from those in both inner gulf reefs and rocky shorelines, which were, however, not significantly different. Choerodon rubescens was restricted to exposed marine reefs, and thus occupied a different habitat and location of the bay than C. cauteroma, the other endemic species, which was almost exclusively confined to habitats found in the inner gulfs. Choerodon cauteroma differed from other Choerodon

  4. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    NASA Astrophysics Data System (ADS)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  5. Species composition and seasonal abundance of Chaetognatha in the subtropical coastal waters of Hong Kong

    NASA Astrophysics Data System (ADS)

    Tse, P.; Hui, S. Y.; Wong, C. K.

    2007-06-01

    Species composition, species diversity and seasonal abundance of chaetognaths were studied in Tolo Harbour and the coastal waters of eastern Hong Kong. Tolo Harbour is a semi-enclosed and poorly flushed bay with a long history of eutrophication. It opens into the eastern coast of Hong Kong which is fully exposed to water currents from the South China Sea. Zooplankton samples were collected monthly from July 2003 to July 2005 at six stations. Twenty species of chaetognaths were identified. They included six species of the genus Aidanosagitta ( Aidanosagitta neglecta, Aidanosagitta delicata, Aidanosagitta johorensis, Aidanosagitta regularis, Aidanosagitta bedfordii and Aidanosagitta crassa), four species of the genus Zonosagitta ( Zonosagitta nagae, Zonosagitta bedoti, Zonosagitta bruuni and Zonosagitta pulchra), three species of the genus Ferosagitta ( Ferosagitta ferox, Ferosagitta tokiokai and Ferosagitta robusta) and one species each from the genera Serratosagitta ( Serratosagitta pacifica), Decipisagitta ( Decipisagitta decipiens), Flaccisagitta ( Flaccisagitta enflata), Krohnitta ( Krohnitta pacifica), Mesosagitta ( Mesosagitta minima), Pterosagitta ( Pterosagitta draco) and Sagitta ( Sagitta bipunctata). The most abundant species were Flaccisagitta enflata, A. neglecta and A. delicata. Averaged over the entire study period, the densities of Flaccisagitta enflata, A. neglecta and A. delicata were 9.3, 6.6 and 5.2 ind. m -3, respectively. Overall, these species constituted 39.7%, 28.2% and 22.0% of all chaetognaths collected in the study. Averaged over the entire study, the density of most of the low abundance species was <0.6 ind. m -3. Flaccisagitta enflata occurred throughout the year at all sampling stations. Aidanosagitta neglecta occurred at all sampling stations, but was most common in summer. Aidanosagitta delicata was most common in Tolo Harbour during summer. Tolo Harbour supported larger populations, but fewer species of chaetognaths than the

  6. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. PMID:25588119

  7. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland.

  8. Testing the enemy release hypothesis in a native insect species with an expanding range

    PubMed Central

    2015-01-01

    The enemy release hypothesis (ERH) predicts that the spread of (invasive) species will be facilitated by release from their enemies as they occupy new areas. However, the ERH is rarely tested on native (non-invasive, long established) species with expanding or shifting ranges. I tested the ERH for a native damselfly (Enallagma clausum) whose range has recently expanded in western Canada, with respect to its water mite and gregarine parasites. Parasitism levels (prevalence and intensity) were also compared between E. clausum and a closely related species, Enallagma boreale, which has long been established in the study region and whose range is not shifting. A total of 1,150 damselflies were collected at three ‘old’ sites for E. clausum in Saskatchewan, and three ‘new’ sites in Alberta. A little more than a quarter of the damselflies collected were parasitized with, on average, 18 water mite individuals, and 20% were parasitized by, on average, 10 gregarine individuals. I assessed whether the differences between levels of infection (prevalence and intensity) were due to site type or host species. The ERH was not supported: Enallagma clausum has higher or the same levels of parasitism in new sites than old sites. However, E. boreale seems to be benefitting from the recent range expansion of a native, closely related species through ecological release from its parasites because the parasites may be choosing to infest the novel, potentially naïve, host instead of the well-established host. PMID:26618085

  9. Species abundance distribution and population dynamics in a two-community model of neutral ecology

    NASA Astrophysics Data System (ADS)

    Vallade, M.; Houchmandzadeh, B.

    2006-11-01

    Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.

  10. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance?

    NASA Astrophysics Data System (ADS)

    Leewis, Lies; van Bodegom, Peter M.; Rozema, Jelte; Janssen, Gerard M.

    2012-11-01

    Coastal squeeze is the largest threat for sandy coastal areas. To mitigate seaward threats, erosion and sea level rise, sand nourishment is commonly applied. However, its long-term consequences for macroinvertebrate fauna, critical to most ecosystem services of sandy coasts, are still unknown. Seventeen sandy beaches - nourished and controls - were sampled along a chronosequence to investigate the abundance of four dominant macrofauna species and their relations with nourishment year and relevant coastal environmental variables. Dean's parameter and latitude significantly explained the abundance of the spionid polychaete Scolelepis squamata, Beach Index (BI), sand skewness, beach slope and latitude explained the abundance of the amphipod Haustorius arenarius and Relative Tide Range (RTR), recreation and sand sorting explained the abundance of Bathyporeia sarsi. For Eurydice pulchra, no environmental variable explained its abundance. For H. arenarius, E. pulchra and B. sarsi, there was no relation with nourishment year, indicating that recovery took place within a year after nourishment. Scolelepis squamata initially profited from the nourishment with "over-recolonisation". This confirms its role as an opportunistic species, thereby altering the initial community structure on a beach after nourishment. We conclude that the responses of the four dominant invertebrates studied in the years following beach nourishment are species specific. This shows the importance of knowing the autecology of the sandy beach macroinvertebrate fauna in order to be able to mitigate the effects of beach nourishment and other environmental impacts.

  11. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  12. Plankton studies in San Francisco Bay; IV, Phytoplankton abundance and species composition, January 1980 - February 1981

    USGS Publications Warehouse

    Wong, R.L.; Cloern, J.E.

    1982-01-01

    Data are presented on the phytoplankton species composition and abundance in San Francisco Bay from January 1980 through February 1981. Phytoplankton were identified and enumerated in surface samples collected approximately every two weeks at selected stations in the main channel of the Bay, and at shoal stations in the central portion of South San Francisco Bay, San Pablo Bay, and Suisun Bay. Also reported are separate species lists for microphytoplankton (< 60 micrometers) and macrophytoplankton (> 60 micrometers). (Author 's abstract)

  13. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    PubMed

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  14. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    PubMed

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized.

  15. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  16. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  17. Estimating Lion Abundance using N-mixture Models for Social Species

    PubMed Central

    Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.

    2016-01-01

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283

  18. Regular Patterns for Proteome-Wide Distribution of Protein Abundance across Species

    PubMed Central

    Jiang, Ying; Ying, Wantao; Wu, Songfeng; Zhu, Yunping; Liu, Siqi; Yang, Pengyuan; Qian, Xiaohong; He, Fuchu

    2012-01-01

    A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The principle that determines the abundance of different proteins in a proteome is of fundamental significance for an understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases, protein abundance is positively correlated with the protein's origination time or sequence conservation during evolution; it is negatively correlated with the protein's domain number and positively correlated with domain coverage in protein structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are more abundant than those that act on information modulation (information category). Thus, protein abundance is intrinsically related to the protein's inherent characters of evolution, structure, and function. PMID:22427835

  19. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    PubMed

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health. PMID:25643605

  20. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    PubMed

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health.

  1. Observed and predicted effects of climate change on species abundance in protected areas

    NASA Astrophysics Data System (ADS)

    Johnston, Alison; Ausden, Malcolm; Dodd, Andrew M.; Bradbury, Richard B.; Chamberlain, Dan E.; Jiguet, Frédéric; Thomas, Chris D.; Cook, Aonghais S. C. P.; Newson, Stuart E.; Ockendon, Nancy; Rehfisch, Mark M.; Roos, Staffan; Thaxter, Chris B.; Brown, Andy; Crick, Humphrey Q. P.; Douse, Andrew; McCall, Rob A.; Pontier, Helen; Stroud, David A.; Cadiou, Bernard; Crowe, Olivia; Deceuninck, Bernard; Hornman, Menno; Pearce-Higgins, James W.

    2013-12-01

    The dynamic nature and diversity of species' responses to climate change poses significant difficulties for developing robust, long-term conservation strategies. One key question is whether existing protected area networks will remain effective in a changing climate. To test this, we developed statistical models that link climate to the abundance of internationally important bird populations in northwestern Europe. Spatial climate-abundance models were able to predict 56% of the variation in recent 30-year population trends. Using these models, future climate change resulting in 4.0°C global warming was projected to cause declines of at least 25% for more than half of the internationally important populations considered. Nonetheless, most EU Special Protection Areas in the UK were projected to retain species in sufficient abundances to maintain their legal status, and generally sites that are important now were projected to be important in the future. The biological and legal resilience of this network of protected areas is derived from the capacity for turnover in the important species at each site as species' distributions and abundances alter in response to climate. Current protected areas are therefore predicted to remain important for future conservation in a changing climate.

  2. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.

  3. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam.

    PubMed

    Campbell, Earl W; Adams, Amy A Yackel; Converse, Sarah J; Fritts, Thomas H; Rodda, Gordon H

    2012-05-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout-vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  4. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    USGS Publications Warehouse

    Campbell, Earl W.; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  5. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    PubMed

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-11-17

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range.

  6. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    PubMed Central

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-01-01

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range. PMID:26573017

  7. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.

  8. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. PMID:27038576

  9. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    NASA Astrophysics Data System (ADS)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  10. Honeybees increase fruit set in native plant species important for wildlife conservation.

    PubMed

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wild cherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  11. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives.

    PubMed

    Gerhold, Pille; Pärtel, Meelis; Tackenberg, Oliver; Hennekens, Stephan M; Bartish, Igor; Schaminée, Joop H J; Fergus, Alexander J F; Ozinga, Wim A; Prinzing, Andreas

    2011-05-01

    Alien species can be a major threat to ecological communities, but we do not know why some community types allow the entry of many more alien species than do others. Here, for the first time, we suggest that evolutionary diversity inherent to the constituent species of a community may determine its present receptiveness to alien species. Using recent large databases from observational studies, we find robust evidence that assemblage of plant community types from few phylogenetic lineages (in plots without aliens) corresponds to higher receptiveness to aliens. Establishment of aliens in phylogenetically poor communities corresponds to increased phylogenetic dispersion of recipient communities and to coexistence with rather than replacement of natives. This coexistence between natives and distantly related aliens in recipient communities of low phylogenetic dispersion may reflect patterns of trait assembly. In communities without aliens, low phylogenetic dispersion corresponds to increased dispersion of most traits, and establishment of aliens corresponds to increased trait concentration. We conclude that if quantified across the tree of life, high biodiversity correlates with decreasing receptiveness to aliens. Low phylogenetic biodiversity, in contrast, facilitates coexistence between natives and aliens even if they share similar trait states. PMID:21508612

  12. Influence of species, size and relative abundance on the outcomes of competitive interactions between brook trout and juvenile coho salmon

    USGS Publications Warehouse

    Thornton, Emily J; Duda, Jeff; Quinn, Thomas P

    2016-01-01

    Resource competition between animals is influenced by a number of factors including the species, size and relative abundance of competing individuals. Stream-dwelling animals often experience variably available food resources, and some employ territorial behaviors to increase their access to food. We investigated the factors that affect dominance between resident, non-native brook trout and recolonizing juvenile coho salmon in the Elwha River, WA, USA, to see if brook trout are likely to disrupt coho salmon recolonization via interference competition. During dyadic laboratory feeding trials, we hypothesized that fish size, not species, would determine which individuals consumed the most food items, and that species would have no effect. We found that species, not size, played a significant role in dominance; coho salmon won 95% of trials, even when only 52% the length of their brook trout competitors. As the pairs of competing fish spent more time together during a trial sequence, coho salmon began to consume more food, and brook trout began to lose more, suggesting that the results of early trials influenced fish performance later. In group trials, we hypothesized that group composition and species would not influence fish foraging success. In single species groups, coho salmon consumed more than brook trout, but the ranges overlapped. Brook trout consumption remained constant through all treatments, but coho salmon consumed more food in treatments with fewer coho salmon, suggesting that coho salmon experienced more intra- than inter-specific competition and that brook trout do not pose a substantial challenge. Based on our results, we think it is unlikely that competition from brook trout will disrupt Elwha River recolonization by coho salmon.

  13. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis.

    PubMed

    Davidson, Amy Michelle; Jennions, Michael; Nicotra, Adrienne B

    2011-04-01

    Do invasive plant species have greater phenotypic plasticity than non-invasive species? And, if so, how does this affect their fitness relative to native, non-invasive species? What role might this play in plant invasions? To answer these long-standing questions, we conducted a meta-analysis using data from 75 invasive/non-invasive species pairs. Our analysis shows that invasive species demonstrate significantly higher phenotypic plasticity than non-invasive species. To examine the adaptive benefit of this plasticity, we plotted fitness proxies against measures of plasticity in several growth, morphological and physiological traits to test whether greater plasticity is associated with an improvement in estimated fitness. Invasive species were nearly always more plastic in their response to greater resource availability than non-invasives but this plasticity was only sometimes associated with a fitness benefit. Intriguingly, non-invasive species maintained greater fitness homoeostasis when comparing growth between low and average resource availability. Our finding that invasive species are more plastic in a variety of traits but that non-invasive species respond just as well, if not better, when resources are limiting, has interesting implications for predicting responses to global change.

  14. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    PubMed

    Carthey, Alexandra J R; Banks, Peter B

    2012-01-01

    The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve. PMID:22355396

  15. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    PubMed

    Carthey, Alexandra J R; Banks, Peter B

    2012-01-01

    The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.

  16. Effects of land-use intensity on arthropod species abundance distributions in grasslands.

    PubMed

    Simons, Nadja K; Gossner, Martin M; Lewinsohn, Thomas M; Lange, Markus; Türke, Manfred; Weisser, Wolfgang W

    2015-01-01

    As a rule, communities consist of few abundant and many rare species, which is reflected in the characteristic shape of species abundance distributions (SADs). The processes that shape these SADs have been a longstanding problem for ecological research. Although many studies found strong negative effects of increasing land-use intensity on diversity, few reports consider land-use effects on SADs. Arthropods (insects and spiders) were sampled on 142 grassland plots in three regions in Germany, which were managed with different modes (mowing, fertilization and/or grazing) and intensities of land use. We analysed the effect of land use on three parameters characterizing the shape of SADs: abundance decay rate (the steepness of the rank abundance curve, represented by the niche-preemption model parameter), dominance (Berger-Parker dominance) and rarity (Fisher's alpha). Furthermore, we tested the core-satellite hypothesis by comparing the species' rank within the SAD to their distribution over the land-use gradient. When data on Araneae, Cicadina, Coleoptera, Heteroptera and Orthoptera were combined, abundance decay rate increased with combined land-use intensity (including all modes). Among the single land-use modes, increasing fertilization and grazing intensity increased the decay rate of all taxa, while increasing mowing frequency significantly affected the decay rate only in interaction with fertilization. Results of single taxa differed in their details, but all significant interaction effects included fertilization intensity. Dominance generally increased with increasing fertilization and rarity decreased with increasing grazing or mowing intensity, despite small differences among taxa and regions. The majority of species found on <10% of the plots per region were generally rare (<10 individuals), which is in accordance with the core-satellite hypothesis. We found significant differences in the rarity and dominance of species between plots of low and high

  17. Establishment of non-native plant species after wildfires: Effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments

    USGS Publications Warehouse

    Hunter, M.E.; Omi, P.N.; Martinson, E.J.; Chong, G.W.

    2006-01-01

    Establishment and spread of non-native species following wildfires can pose threats to long-term native plant recovery. Factors such as disturbance severity, resource availability, and propagule pressure may influence where non-native species establish in burned areas. In addition, pre- and post-fire management activities may influence the likelihood of non-native species establishment. In the present study we examine the establishment of non-native species after wildfires in relation to native species richness, fire severity, dominant native plant cover, resource availability, and pre- and post-fire management actions (fuel treatments and post-fire rehabilitation treatments). We used an information-theoretic approach to compare alternative hypotheses. We analysed post-fire effects at multiple scales at three wildfires in Colorado and New Mexico. For large and small spatial scales at all fires, fire severity was the most consistent predictor of non-native species cover. Non-native species cover was also correlated with high native species richness, low native dominant species cover, and high seeded grass cover. There was a positive, but non-significant, association of non-native species with fuel-treated areas at one wildfire. While there may be some potential for fuels treatments to promote non-native species establishment, wildfire and post-fire seeding treatments seem to have a larger impact on non-native species. ?? IAWF 2006.

  18. Habitat Selection and Temporal Abundance Fluctuations of Demersal Cartilaginous Species in the Aegean Sea (Eastern Mediterranean)

    PubMed Central

    Maravelias, Christos D.; Tserpes, George; Pantazi, Maria; Peristeraki, Panagiota

    2012-01-01

    Predicting the occurrence of keystone top predators in a multispecies marine environment, such as the Mediterranean Sea, can be of considerable value to the long-term sustainable development of the fishing industry and to the protection of biodiversity. We analysed fisheries independent scientific bottom trawl survey data of two of the most abundant cartilaginous fish species (Scyliorhinus canicula, Raja clavata) in the Aegean Sea covering an 11-year sampling period. The current findings revealed a declining trend in R. clavata and S. canicula abundance from the late ′90 s until 2004. Habitats with the higher probability of finding cartilaginous fish present were those located in intermediate waters (depth: 200–400 m). The present results also indicated a preferential species' clustering in specific geographic and bathymetric regions of the Aegean Sea. Depth appeared to be one of the key determining factors for the selection of habitats for all species examined. With cartilaginous fish species being among the more biologically sensitive fish species taken in European marine fisheries, our findings, which are based on a standardized scientific survey, can contribute to the rational exploitation and management of their stocks by providing important information on temporal abundance trends and habitat preferences. PMID:22536389

  19. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Mellin, C.; Andréfouët, S.; Ponton, D.

    2007-12-01

    Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

  20. The introduced tree Prosopis juliflora is a serious threat to native species of the Brazilian Caatinga vegetation.

    PubMed

    de Souza Nascimento, Clóvis Eduardo; Tabarelli, Marcelo; da Silva, Carlos Alberto Domingues; Leal, Inara Roberta; de Souza Tavares, Wagner; Serrão, José Eduardo; Zanuncio, José Cola

    2014-05-15

    Despite its economic importance in the rural context, the Prosopis juliflora tree species has already invaded millions of hectares globally (particularly rangelands), threatening native biodiversity and rural sustainability. Here we examine seedling growth (leaf area, stem diameter, plant height) and seedling mortality across five native plant species of the Caatinga vegetation in response to competition with P. juliflora. Two sowing treatments with 10 replications were adopted within a factorial 2 × 5 randomized block design. Treatments consisted of P. juliflora seeds sowed with seeds of Caesalpinia ferrea, Caesalpinia microphylla, Erythrina velutina, Mimosa bimucronata and Mimosa tenuiflora (one single native species per treatment), while seeds of native species sowed without P. juliflora were adopted as controls. Overall, our results suggest that P. juliflora can reduce seedling growth by half and cause increased seedling mortality among woody plant species. Moreover, native species exhibit different levels of susceptibility to competition with P. juliflora, particularly in terms of plant growth. Such a superior competitive ability apparently permits P. juliflora to establish monospecific stands of adult trees, locally displacing native species or limiting their recruitment. The use of less sensitive species, such as C. ferrea and M. tenuiflora, to restore native vegetation before intensive colonization by P. juliflora should be investigated as an effective approach for avoiding its continuous spread across the Caatinga region.

  1. Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests of NW Argentina

    NASA Astrophysics Data System (ADS)

    Aragón, Roxana; Montti, Lia; Ayup, María Marta; Fernández, Romina

    2014-01-01

    Invasions of exotic tree species can cause profound changes in community composition and structure, and may even cause legacy effect on nutrient cycling via litter production. In this study, we compared leaf litter decomposition of two invasive exotic trees (Ligustrum lucidum and Morus sp.) and two dominant native trees (Cinnamomum porphyria and Cupania vernalis) in native and invaded (Ligustrum-dominated) forest stands in NW Argentina. We measured leaf attributes and environmental characteristics in invaded and native stands to isolate the effects of litter quality and habitat characteristics. Species differed in their decomposition rates and, as predicted by the different species colonization status (pioneer vs. late successional), exotic species decayed more rapidly than native ones. Invasion by L. lucidum modified environmental attributes by reducing soil humidity. Decomposition constants (k) tended to be slightly lower (-5%) for all species in invaded stands. High SLA, low tensile strength, and low C:N of Morus sp. distinguish this species from the native ones and explain its higher decomposition rate. Contrary to our expectations, L. lucidum leaf attributes were similar to those of native species. Decomposition rates also differed between the two exotic species (35% higher in Morus sp.), presumably due to leaf attributes and colonization status. Given the high decomposition rate of L. lucidum litter (more than 6 times that of natives) we expect an acceleration of nutrient circulation at ecosystem level in Ligustrum-dominated stands. This may occur in spite of the modified environmental conditions that are associated with L. lucidum invasion.

  2. Abundance of biting midge species (Diptera: Ceratopogonidae, Culicoides spp.) on cattle farms in Korea

    PubMed Central

    Oem, Jae-Ku; Chung, Joon-Yee; Kwon, Mee-Soon; Kim, Toh-Kyung; Lee, Tae-Uk

    2013-01-01

    Culicoides biting midges were collected on three cattle farms weekly using light traps overnight from May to October between 2010 and 2011 in the southern part of Korea. The seasonal and geographical abundance of Culicodes spp. were measured. A total of 16,538 biting midges were collected from 2010 to 2011, including seven species of Culicoides, four of which represented 98.42% of the collected specimens. These four species were Culicodes (C.) punctatus (n = 14,413), C. arakawae (n = 1,120), C. oxystoma (n = 427), and C. maculatus (n = 318). C. punctatus was the predominant species (87.15%). PMID:23388441

  3. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  4. Methanotrophic community abundance and composition in plateau soils with different plant species and plantation ways.

    PubMed

    Dai, Yu; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2015-11-01

    Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating the methane emission in soil ecosystems to the atmosphere. However, the impact of plant species and plantation ways on the distribution of MOB remains unclear. The present study investigated MOB abundance and structure in plateau soils with different plant species and plantation ways (natural and managed). Soils were collected from unmanaged wild grassland and naturally forested sites, and managed farmland and afforested sites. A large variation in MOB abundance and structure was found in these studied soils. In addition, both type I MOB (Methylocaldum) and type II MOB (Methylocystis) were detected in these soils, while type II MOB usually outnumbered type I MOB. The distribution of soil MOB community was found to be collectively regulated by plantation way, plant species, the altitude of sampling site, and soil properties. PMID:26142389

  5. Exposure to an environmental estrogen breaks down sexual isolation between native and invasive species.

    PubMed

    Ward, Jessica L; Blum, Michael J

    2012-12-01

    Environmental change can increase the likelihood of interspecific hybridization by altering properties of mate recognition and discrimination between sympatric congeners. We examined how exposure to an environmentally widespread endocrine-disrupting chemical (EDC), bisphenol A (BPA), affected visual communication signals and behavioral isolation between an introduced freshwater fish and a native congener (genus: Cyprinella). Exposure to BPA induced changes in the expression of male secondary traits as well as male and female mate choice, leading to an overall reduction in prezygotic isolation between congeners. Changes in female mate discrimination were not tightly linked to changes in male phenotypic traits, suggesting that EDC exposure may alter female choice thresholds independently of the effects of exposure on males. These findings indicate that environmental exposure to EDCs can lead to population declines via the erosion of species boundaries and by promoting the establishment and spread of non-native species via hybridization.

  6. Annual cycle of zooplankton abundance and species composition in Izmit Bay (the northeastern Marmara Sea)

    NASA Astrophysics Data System (ADS)

    Isinibilir, Melek; Kideys, Ahmet E.; Tarkan, Ahmet N.; Yilmaz, I. Noyan

    2008-07-01

    The monthly abundance, biomass and taxonomic composition of zooplankton of Izmit Bay (the northeastern Marmara Sea) were studied from October 2001 to September 2002. Most species within the zooplankton community displayed a clear pattern of succession throughout the year. Generally copepods and cladocerans were the most abundant groups, while the contribution of meroplankton increased at inner-most stations and dominated the zooplankton. Both species number ( S) and diversity ( H') were positively influenced by the increase in salinity of upper layers ( r = 0.30 and r = 0.31, p < 0.001, respectively), while chlorophyll a was negatively affected ( r = -0.36, p < 0.001). Even though Noctiluca scintillans had a significant seasonality ( F11,120 = 8.45, p < 0.001, ANOVA), abundance was not related to fluctuations in temperature and only chlorophyll a was adversely correlated ( r = -0.35, p < 0.001). In general, there are some minor differences in zooplankton assemblages of upper and lower layers. A comparison of the species composition and abundance of Izmit Bay with other Black Sea bays reveals a high similarity between them.

  7. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance. PMID:25412524

  8. Exotic plant species associations with horse trails, old roads, and intact native communities in the Missouri Ozarks

    USGS Publications Warehouse

    Stroh, E.D.; Struckhoff, M.A.

    2009-01-01

    We compared the extent to which exotic species are associated with horse trails, old roads, and intact communities within three native vegetation types in Ozark National Scenic Riverways, Missouri. We used a general linear model procedure and a Bonferroni multiple comparison test to compare exotic species richness, exotic to native species ratios, and exotic species percent cover across three usage types (horse trails, old roads, and intact communities) and three community types (river bottoms, upland waterways, and glades). We found that both exotic species richness and the ratio of exotic species to native species were greater in plots located along horse trails than in plots located either in intact native communities or along old roads. Native community types did not differ in the number of exotic species present, but river bottoms had a significantly higher exotic to native species ratio than glades. Continued introduction of exotic plant propagules may explain why horse trails contain more exotic species than other areas in a highly disturbed landscape.

  9. Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species.

    PubMed

    Vilcins, Inger-Marie E; Old, Julie M; Deane, Elizabeth

    2009-11-01

    Three Australian native animal species yielded 60 samples composed of three indigenous ticks. Hosts included twelve koalas, two echidnas and one wombat from Victoria, and ticks were of the species Ixodes tasmani (n = 42), Bothriocroton concolor (n = 8) and B. auruginans (n = 10), respectively. PCR screening and sequencing detected a species of Coxiella, sharing closest sequence identity to C. burnetii (>98%), in all B. auruginans, as well as a species of Rickettsia, matching closest to R. massiliae, in 70% of the same samples. A genotype sharing closest similarity to Rickettsia bellii (>99%) was identified in three female B. concolor collected from one of the echidnas. Three samples of I. tasmani, taken from three koalas, yielded different genotypes of Rickettsiella. These results represent the first detection of the three genera in each tick species and identify a high level of previously undetected bacterial diversity in Australian ticks. PMID:19296229

  10. Effects of resource availability and propagule supply on native species recruitment in sagebrush ecosystems invaded by Bromus tectorum

    USGS Publications Warehouse

    Mazzola, Monica B.; Chambers, Jeanne C.; Blank, Robert R.; Pyke, David A.; Schupp, Eugene W.; Allcock, Kimberly G.; Doescher, Paul S.; Nowak, Robert S.

    2011-01-01

    Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m-2) and native species (0, 150, 300, and 600 viable seeds m-2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.

  11. Abundance, seasonal patterns and diet of the non-native jellyfish Blackfordia virginica in a Portuguese estuary

    NASA Astrophysics Data System (ADS)

    Marques, F.; Chainho, P.; Costa, J. L.; Domingos, I.; Angélico, M. M.

    2015-12-01

    Blackfordia virginica, a non-indigenous hydrozoan introduced in many systems around the world, has been observed in the Mira estuary, southwest of Portugal, since 1984. Monthly sampling (January 2013-January 2014) at a fixed location with high abundance of the medusae confirmed the occurrence of a seasonal cycle associated with temperature and photoperiod. The beginning of the medusa cycle occurred in May immediately after the spring zooplankton bloom during April. Examination of the gut contents of B. virginica medusae revealed that copepods, the most abundant group in the zooplankton community, were highly predated. Barnacle nauplii, decapod crustacean larvae and anchovy eggs were also identified in the guts. The medusae showed positive selection for copepods, and negative selection for barnacle nauplii, decapod crustacean larvae and anchovy eggs. The mortality rate of copepods (used as a model prey group) induced by medusae predation was estimated and showed the potential impact of this species in the ecosystem, ranging between 2.34 d-1 and 0.02 d-1, with a minimum copepod half-life of 0.30 days.

  12. Alien species and their zoonotic parasites in native and introduced ranges: The raccoon dog example.

    PubMed

    Laurimaa, Leidi; Süld, Karmen; Davison, John; Moks, Epp; Valdmann, Harri; Saarma, Urmas

    2016-03-30

    The raccoon dog (Nyctereutes procyonoides) is a canid that is indigenous in East Asia and alien in Europe, where it was introduced more than half a century ago. The aim of this study was to compare the parasite faunas associated with raccoon dogs in their native and introduced ranges, and to identify zoonotic parasite species. We examined 255 carcasses of hunted raccoon dogs from Estonia and recorded a total of 17 helminth species: 4 trematodes, 4 cestodes and 9 nematodes. The most prevalent parasite species were Uncinaria stenocephala (97.6%) and Alaria alata (68.3%). Average parasite species richness was 2.86 (the highest was 9) and only two animals were not parasitized at all. Although the infection intensity was determined by weight and not by sex, all animals infected with more than five helminth species were males. We also found that animals infected with higher numbers of helminth species fed significantly more on natural plants. Intentional consumption of grass may represent a self-medicating behaviour among raccoon dogs. We included the Estonian data into a wider comparison of raccoon dog parasite faunas and found a total of 54 helminth taxa, including 28 of zoonotic potential. In Europe, raccoon dogs are infected with a minimum of 32 helminth species of which 19 are zoonotic; in the native range they are infected with 26 species of which 17 are zoonotic. Most species were nematodes or trematodes, with fewer cestodes described. The recent increase in the number and range of raccoon dogs in Europe and the relatively high number of zoonotic parasite taxa that it harbours suggests that this species should be considered an important source of environmental contamination with zoonotic agents in Europe.

  13. Alien species and their zoonotic parasites in native and introduced ranges: The raccoon dog example.

    PubMed

    Laurimaa, Leidi; Süld, Karmen; Davison, John; Moks, Epp; Valdmann, Harri; Saarma, Urmas

    2016-03-30

    The raccoon dog (Nyctereutes procyonoides) is a canid that is indigenous in East Asia and alien in Europe, where it was introduced more than half a century ago. The aim of this study was to compare the parasite faunas associated with raccoon dogs in their native and introduced ranges, and to identify zoonotic parasite species. We examined 255 carcasses of hunted raccoon dogs from Estonia and recorded a total of 17 helminth species: 4 trematodes, 4 cestodes and 9 nematodes. The most prevalent parasite species were Uncinaria stenocephala (97.6%) and Alaria alata (68.3%). Average parasite species richness was 2.86 (the highest was 9) and only two animals were not parasitized at all. Although the infection intensity was determined by weight and not by sex, all animals infected with more than five helminth species were males. We also found that animals infected with higher numbers of helminth species fed significantly more on natural plants. Intentional consumption of grass may represent a self-medicating behaviour among raccoon dogs. We included the Estonian data into a wider comparison of raccoon dog parasite faunas and found a total of 54 helminth taxa, including 28 of zoonotic potential. In Europe, raccoon dogs are infected with a minimum of 32 helminth species of which 19 are zoonotic; in the native range they are infected with 26 species of which 17 are zoonotic. Most species were nematodes or trematodes, with fewer cestodes described. The recent increase in the number and range of raccoon dogs in Europe and the relatively high number of zoonotic parasite taxa that it harbours suggests that this species should be considered an important source of environmental contamination with zoonotic agents in Europe. PMID:26921035

  14. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.

  15. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. PMID:26467257

  16. Allelopathic effect of a native species on a major plant invader in Europe

    NASA Astrophysics Data System (ADS)

    Christina, Mathias; Rouifed, Soraya; Puijalon, Sara; Vallier, Félix; Meiffren, Guillaume; Bellvert, Floriant; Piola, Florence

    2015-04-01

    Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopia x bohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27 % for plants originating from rhizomes and by 38 % for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20 %. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25 % for plants originating from rhizomes and 70, 61 and 55 % for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species.

  17. Allelopathic effect of a native species on a major plant invader in Europe.

    PubMed

    Christina, Mathias; Rouifed, Soraya; Puijalon, Sara; Vallier, Félix; Meiffren, Guillaume; Bellvert, Floriant; Piola, Florence

    2015-04-01

    Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopiaxbohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27% for plants originating from rhizomes and by 38% for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20%. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25% for plants originating from rhizomes and 70, 61 and 55% for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species. PMID:25740225

  18. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    , and all these 84 species seem endemic to Antarctica south of the Polar Front. Comparing diversity and abundances based on epibenthic sledge samples, there is no clear relationship between Antarctic deep-sea gastropod abundance and species richness with depth. However, both Antarctic and adjacent deep-sea areas are still far from being adequately sampled to allow more comprehensive conclusions.

  19. Species Abundance Distribution of Ectoparasites on Norway Rats (Rattus norvegicus) from a Localized Area in Southwest China

    PubMed Central

    Guo, Xian Guo; Dong, Wen Ge; Men, Xing Yuan; Qian, Ti Jun; Wu, Dian; Ren, Tian Guang; Qin, Feng; Song, Wen Yu; Yang, Zhi Hua; Fletcher, Quinn E

    2016-01-01

    Background: The species of ectoparasites that live on a specific host in a geographical region form an ectoparasite community. Species abundance distributions describe the number of individuals observed for each different species that is encountered within a community. Based on properties of the species abundance distribution, the expected total number of species present in the community can be estimated. Methods: Preston’s lognormal distribution model was used to fit the expected species abundance distribution curve. Using the expected species abundance distribution curve, we estimated the total number of expected parasite species present and the amount of species that were likely missed by our sampling in the field. Results: In total, 8040 ectoparasites (fleas, sucking lice, gamasid mites and chigger mites) were collected from 431 Norway rats (Rattus norvegicus) from a localized area in southwest China. These ectoparasites were identified to be 47 species from 26 genera in 10 families. The majority of ectoparasite species were chigger mites (family Trombiculidae) while the majority of individuals were sucking lice in the family Polyplacidae. The expected species abundance distribution curve demonstrated the classic pattern that the majority of ectoparasite species were rare and that there were a few common species. The total expected number of ectoparasite species on R. norvegicus was estimated to be 85 species, and 38 species were likely missed by our sampling in the field. Conclusions: Norway rats harbor a large suite of ectoparasites. Future field investigations should sample large numbers of host individuals to assess ectoparasite populations. PMID:27308277

  20. Effect of trophic status in lakes on fungal species diversity and abundance.

    PubMed

    Pietryczuk, A; Cudowski, A; Hauschild, T

    2014-11-01

    The objective of this study was to determine the species diversity and abundance of fungi in relation to the hydrochemical conditions, with special emphasis on the trophic status and degree of pollution of lakes. The study was conducted in 14 lakes of the Augustów Lakeland (central Europe, NE Poland) with different hydrological conditions, type of stratification and trophic status. The analyses were performed in the hydrological year 2013. In the waters of the studied lakes, the mean abundance of fungi was 5600±3600 CFU/mL. The minimum value (800 CFU/mL) was recorded for the mesotrophic Płaskie Lake, and the maximum value (14,000 CFU/mL) was recorded for the eutrophic Pobojno Lake. A total of 38 species of fungi were identified, including 11 belonging to the aquatic hyphomycetes; up to 14 species were potentially pathogenic fungi. The potentially pathogenic fungi, particularly Candida albicans and Scopulariopsis fusca, were found in lakes with increased concentrations of chloride and sulphate(VI) ions and may thus serve as indicators of the degree of water pollution. This paper illustrates that the species diversity and abundance of fungi in limnic waters depend on the concentration of organic matter, chlorophyll a concentration, and the degree of water pollution. The results suggest that aquatic fungi can be a valuable indicator of the degree of pollution and the sanitary quality of the water. PMID:25145569

  1. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities

    PubMed Central

    Chisholm, Ryan A.; Pacala, Stephen W.

    2010-01-01

    A fundamental challenge in ecology is to understand the mechanisms that govern patterns of relative species abundance. Previous numerical simulations have suggested that complex niche-structured models produce species abundance distributions (SADs) that are qualitatively similar to those of very simple neutral models that ignore differences between species. However, in the absence of an analytical treatment of niche models, one cannot tell whether the two classes of model produce the same patterns via similar or different mechanisms. We present an analytical proof that, in the limit as diversity becomes large, a strong niche model give rises to exactly the same asymptotic form of SAD as the neutral model, and we verify the analytical predictions for a Panamanian tropical forest data set. Our results strongly suggest that neutral processes drive patterns of relative species abundance in high-diversity ecological communities, even when strong niche structure exists. However, neutral theory cannot explain what generates high diversity in the first place, and it may not be valid in low-diversity communities. Our results also confirm that neutral theory cannot be used to infer an absence of niche structure or to explain ecosystem function. PMID:20733073

  2. Culicoides monitoring in Belgium in 2011: analysis of spatiotemporal abundance, species diversity and Schmallenberg virus detection.

    PubMed

    DE Regge, N; DE Deken, R; Fassotte, C; Losson, B; Deblauwe, I; Madder, M; Vantieghem, P; Tomme, M; Smeets, F; Cay, A B

    2015-09-01

    In 2011, Culicoides (Diptera: Ceratopogonidae) were collected at 16 locations covering four regions of Belgium with Onderstepoort Veterinary Institute (OVI) traps and at two locations with Rothamsted suction traps (RSTs). Quantification of the collections and morphological identification showed important variations in abundance and species diversity between individual collection sites, even for sites located in the same region. However, consistently higher numbers of Culicoides midges were collected at some sites compared with others. When species abundance and diversity were analysed at regional level, between-site variation disappeared. Overall, species belonging to the subgenus Avaritia together with Culicoides pulicaris (subgenus Culicoides) were the most abundant, accounting for 80% and 96% of all midges collected with RSTs and OVI traps, respectively. Culicoides were present during most of the year, with Culicoides obsoletus complex midges found from 9 February until 27 December. Real-time reverse-transcription polymerase chain reaction screening for Schmallenberg virus in the heads of collected midges resulted in the first detection of the virus in August 2011 and identified C. obsoletus complex, Culicoides chiopterus and Culicoides dewulfi midges as putative vector species. At Libramont in the south of Belgium, no positive pools were identified. PMID:25761054

  3. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    PubMed

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.

  4. Differential effects of cocaine exposure on the abundance of phospholipid species in rat brain and blood*

    PubMed Central

    Cummings, Brian S.; Pati, Sumitra; Sahin, Serap; Scholpa, Natalie E.; Monian, Prashant; Trinquero, Paul O.; Clark, Jason K.; Wagner, John J.

    2015-01-01

    Background Lipid profiles in the blood are altered in human cocaine users, suggesting that cocaine-exposure can induce lipid remodeling. Methods Cocaine-induced locomotor sensitization in rats was followed by shotgun lipidomics using electrospray ionization-mass spectrometry (ESI-MS) and determined changes in brain tissues. To determine if any lipidomic changes were also reflected in the blood, we performed principal component analysis (PCA) of lipidomic spectra isolated from cocaine-treated animals. Alterations in the abundance of phospholipid species were correlated with behavioral changes in the magnitude of either the initial response to drug or locomotor sensitization. Results Behavioral sensitization altered the relative abundance of several phospholipid species in the hippocampus and cerebellum, measured one week following the final exposure to cocaine. In contrast, relatively few effects on phospholipids in either the dorsal or the ventral striatum were observed. PCA analysis demonstrated that cocaine altered the relative abundance of several glycerophospholipid species as compared to saline-injected controls. Subsequent MS/MS analysis identified some of these lipids as phosphatidylethanolamines, phosphatidylserines and phosphatidylcholines. The relative abundance of some of these phospholipid species were well correlated (R2 of 0.7 or higher) with either the initial response to cocaine or locomotor sensitization. Conclusion Taken together, these data demonstrate that a cocaine-conditioning experience results in the remodeling of specific phospholipids in rat brain tissue in a region-specific manner and also alters the intensities and types of phospholipid species in rat blood. These results further suggest that such changes may serve as biomarkers to assess the neuroadaptations occurring following repeated exposure to cocaine. PMID:25960140

  5. Estimating species – area relationships by modeling abundance and frequency subject to incomplete sampling

    USGS Publications Warehouse

    Yamaura, Yuichi; Connor, Edward F.; Royle, Andy; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-01-01

    Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied

  6. Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island

    PubMed Central

    2012-01-01

    Background Microzooplankton consisting of protists and metazoa <200 μm. It displays unique feeding mechanisms and behaviours that allow them to graze cells up to five times their own volume. They can grow at rates which equal or exceed prey growth and can serve as a viable food source for metazoans. Moreover, they are individually inconspicuous, their recognition as significant consumers of oceanic primary production. The microzooplankton can be the dominant consumers of phytoplankton production in both oligo- and eutrophic regions of the ocean and are capable of consuming >100% of primary production. Results The microzooplankton of the South Andaman Sea were investigated during September 2011 to January 2012. A total of 44 species belong to 19 genera were recorded in this study. Tintinnids made larger contribution to the total abundance (34%) followed in order by dinoflagellates (24%), ciliates (20%) and copepod nauplii (18%). Foraminifera were numerically less (4%). Tintinnids were represented by 20 species belong to 13 genera, Heterotrophic dinoflagellates were represented by 17 species belong to 3 genera and Ciliates comprised 5 species belong to 3 genera. Eutintinus tineus, Tintinnopsis cylindrical, T. incertum, Protoperidinium divergens, Lomaniella oviformes, Strombidium minimum were the most prevalent microzooplankton. Standing stock of tintinnids ranged from 30–80 cells.L-1 and showed a reverse distribution with the distribution of chlorophyll a relatively higher species diversity and equitability was found in polluted harbour areas. Conclusions The change of environmental variability affects the species composition and abundance of microzooplankton varied spatially and temporarily. The observations clearly demonstrated that the harbor area differed considerably from other area in terms of species present and phytoplankton biomass. Further, the phytoplankton abundance is showed to be strongly influenced by tintinnid with respect to the relationship of

  7. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change.

  8. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change. PMID:25413866

  9. Molecular identification and relative abundance of cryptic Lophodermium species in natural populations of Scots pine, Pinus sylvestris L.

    PubMed

    Reignoux, Sabrina N A; Green, Sarah; Ennos, Richard A

    2014-01-01

    The multi-locus phylogenetic species recognition approach and population genetic analysis of Amplified Fragment Length Polymorphism (AFLP) markers were used to delineate Lophodermium taxa inhabiting needles of Scots pine (Pinus sylvestris) in native pinewoods within Scotland. These analyses revealed three major lineages corresponding to the morphological species Lophodermium seditiosum and Lophodermium conigenum, fruiting on broken branches, and Lophodermium pinastri, fruiting on naturally fallen needles. Within L. pinastri three well supported sister clades were found representing cryptic taxa designated L. pinastri I, L. pinastri II, and L. pinastri III. Significant differences in mean growth rate in culture were found among the cryptic taxa. Taxon-specific primers based on ITS sequences were designed and used to classify over 500 Lophodermium isolates, derived from fallen needles of P. sylvestris in three Scottish and one French pinewood site, into the three L. pinastri cryptic taxa. Highly significant differences in the relative abundance of the three taxa were found among the Scottish pinewood sites, and between the French and all of the Scottish sites.

  10. Effects of an exotic prey species on a native specialist: Eexample of the snail kite

    USGS Publications Warehouse

    Cattau, Christopher E.; Martin, J.; Kitchens, W.M.

    2010-01-01

    Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences. ?? 2009 Elsevier Ltd.

  11. Effects of an exotic prey species on a native specialist: example of the snail kite

    USGS Publications Warehouse

    Cattau, Christopher E.; Martin, J.; Kitchens, Wiley M.

    2010-01-01

    Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences.

  12. The control of rank-abundance distributions by a competitive despotic species.

    PubMed

    Mac Nally, Ralph; McAlpine, Clive A; Possingham, Hugh P; Maron, Martine

    2014-11-01

    Accounting for differences in abundances among species remains a high priority for community ecology. While there has been more than 80 years of work on trying to explain the characteristic S shape of rank-abundance distributions (RADs), there has been recent conjecture that the form may not depend on ecological processes per se but may be a general phenomenon arising in many unrelated disciplines. We show that the RAD shape can be influenced by an ecological process, namely, interference competition. The noisy miner (Manorina melanocephala) is a hyperaggressive, 'despotic' bird that occurs over much of eastern Australia (>10(6) km(2)). We compiled data for bird communities from 350 locations within its range, which were collected using standard avian survey methods. We used hierarchical Bayesian models to show that the RAD shape was much altered when the abundance of the strong interactor exceeded a threshold density; RADs consistently were steeper when the density of the noisy miner ≥2.5 birds ha(-1). The structure of bird communities at sites where the noisy miner exceeded this density was very different from that at sites where the densities fell below the threshold: species richness and Shannon diversity were much reduced, but mean abundances and mean avian biomass per site did not differ substantially. PMID:25185775

  13. A framework for spatial risk assessments: Potential impacts of nonindigenous invasive species on native species

    USGS Publications Warehouse

    Allen, C.R.; Johnson, A.R.; Parris, L.

    2006-01-01

    Many populations of wild animals and plants are declining and face increasing threats from habitat fragmentation and loss as well as exposure to stressors ranging from toxicants to diseases to invasive nonindigenous species. We describe and demonstrate a spatially explicit ecological risk assessment that allows for the incorporation of a broad array of information that may influence the distribution of an invasive species, toxicants, or other stressors, and the incorporation of landscape variables that may influence the spread of a species or substances. The first step in our analyses is to develop species models and quantify spatial overlap between stressor and target organisms. Risk is assessed as the product of spatial overlap and a hazard index based on target species vulnerabilities to the stressor of interest. We illustrate our methods with an example in which the stressor is the ecologically destructive nonindigenous ant, Solenopsis invicta, and the targets are two declining vertebrate species in the state of South Carolina, USA. A risk approach that focuses on landscapes and that is explicitly spatial is of particular relevance as remaining undeveloped lands become increasingly uncommon and isolated and more important in the management and recovery of species and ecological systems. Effective ecosystem management includes the control of multiple stressors, including invasive species with large impacts, understanding where those impacts may be the most severe, and implementing management strategies to reduce impacts. Copyright ?? 2006 by the author(s).

  14. Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles.

    PubMed

    Verneau, O; Palacios, C; Platt, T; Alday, M; Billard, E; Allienne, J-F; Basso, C; DU Preez, L H

    2011-11-01

    One of the major threats to biodiversity involves biological invasions with direct consequences on the stability of ecosystems. In this context, the role of parasites is not negligible as it may enhance the success of invaders. The red-eared slider, Trachemys scripta elegans, has been globally considered among the worst invasive species. Since its introduction through the pet trade, T. s. elegans is now widespread and represents a threat for indigenous species. Because T. s. elegans coexists with Emys orbicularis and Mauremys leprosa in Europe, it has been suggested it may compete with the native turtle species and transmit pathogens. We examined parasite transfer from American captive to the two native species that co-exist in artificial pools of a Turtle Farm in France. As model parasite species we used platyhelminth worms of the family Polystomatidae (Monogenea) because polystomes have been described from American turtles in their native range. Phylogenetic relationships among polystomes parasitizing chelonian host species that are geographically widespread show patterns of diversification more complex than expected. Using DNA barcoding to identify species from adult and/or polystome eggs, several cases of host switching from exotic to indigenous individuals were illustrated, corroborating that parasite transmission is important when considering the pet trade and in reintroduction programmes to reinforce wild populations of indigenous species. PMID:21767431

  15. Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery

    NASA Astrophysics Data System (ADS)

    Stagakis, Stavros; Vanikiotis, Theofilos; Sykioti, Olga

    2016-09-01

    The advancing technology of hyperspectral remote sensing offers the opportunity of accurate land cover characterization of complex natural environments. In this study, a linear spectral unmixing algorithm that incorporates a novel hierarchical Bayesian approach (BI-ICE) was applied on two spatially and temporally adjacent CHRIS/PROBA images over a forest in North Pindos National Park (Epirus, Greece). The scope is to investigate the potential of this algorithm to discriminate two different forest species (i.e. beech - Fagus sylvatica, pine - Pinus nigra) and produce accurate species-specific abundance maps. The unmixing results were evaluated in uniformly distributed plots across the test site using measured fractions of each species derived by very high resolution aerial orthophotos. Landsat-8 images were also used to produce a conventional discrete-type classification map of the test site. This map was used to define the exact borders of the test site and compare the thematic information of the two mapping approaches (discrete vs abundance mapping). The required ground truth information, regarding training and validation of the applied mapping methodologies, was collected during a field campaign across the study site. Abundance estimates reached very good overall accuracy (R2 = 0.98, RMSE = 0.06). The most significant source of error in our results was due to the shadowing effects that were very intense in some areas of the test site due to the low solar elevation during CHRIS acquisitions. It is also demonstrated that the two mapping approaches are in accordance across pure and dense forest areas, but the conventional classification map fails to describe the natural spatial gradients of each species and the actual species mixture across the test site. Overall, the BI-ICE algorithm presented increased potential to unmix challenging objects with high spectral similarity, such as different vegetation species, under real and not optimum acquisition conditions. Its

  16. Cryptic species, native populations and biological invasions by a eucalypt forest pathogen.

    PubMed

    Pérez, Guillermo; Slippers, Bernard; Wingfield, Michael J; Wingfield, Brenda D; Carnegie, Angus J; Burgess, Treena I

    2012-09-01

    Human-associated introduction of pathogens and consequent invasions is very evident in areas where no related organisms existed before. In areas where related but distinct populations or closely related cryptic species already exist, the invasion process is much harder to unravel. In this study, the population structure of the Eucalyptus leaf pathogen Teratosphaeria nubilosa was studied within its native range in Australia, including both commercial plantations and native forests. A collection of 521 isolates from across its distribution was characterized using eight microsatellite loci, resulting in 112 multilocus haplotypes (MLHs). Multivariate and Bayesian analyses of the population conducted in structure revealed three genetically isolated groups (A, B and C), with no evidence for recombination or hybridization among groups, even when they co-occur in the same plantation. DNA sequence data of the ITS (n = 32), β-tubulin (n = 32) and 27 anonymous loci (n = 16) were consistent with microsatellite data in suggesting that T. nubilosa should be considered as a species complex. Patterns of genetic diversity provided evidence of biological invasions by the pathogen within Australia in the states of Western Australia and New South Wales and helped unravel the pattern of invasion beyond Australia into New Zealand, Brazil and Uruguay. No significant genetic differences in pathogen populations collected in native forests and commercial plantations were observed. This emphasizes the importance of sanitation in the acquisition of nursery stock for the establishment of commercial plantations.

  17. The fish fauna of Anambra river basin, Nigeria: species abundance and morphometry.

    PubMed

    Odo, Gregory Ejikeme; Didigwu, Nwani Christopher; Eyo, Joseph Effiong

    2009-01-01

    The fish yields of most Nigeria inland waters are generally on the decline for causes that may range from inadequate management of the fisheries to degradation of the water bodies. Sustainable exploitation requires knowledge of the ichthyofaunal composition in the water bodies. We did a survey of fish species in Anambra river basin for 22 months. Fish samples were collected using four different gears -hook and line of size 13, caste nets, gill nets, and cages of mesh sizes of 50 mm, 75 mm, and 100 mm each. We recorded 52 fish species belonging to 17 families: 171, 236, and 169 individuals at Ogurugu, Otuocha, and Nsugbe stations respectively. Two families, Characidae, 19.5%, and Mochokidae, 11.8%, constituted the dominant fish families in the river. The dominant fish species were Citherinus citherius, 9.02%, and Alestes nurse, 7.1%. Other fish species with significant abundance were Synodontis clarias 6.9%, Macrolepidotus curvier 5.7%, Labeo coubie 5.4%, Distichodus rostrtus 4.9%, and Schilbe mystus 4.5%. The meristic features of the two most abundant fish species caught are as follows: Citharinus citharius dorsal fins 20, anal fins 30, caudal fins 21, pectoral fins, 9 and 8 ventral fins, and Alestes nurse 10 dorsal fins, 14 anal fins, 31 caudal fins, 7 pectoral fins and 6 ventral fins. The morphometric features of the two most abundant fish species are Citharinus citharius total length 300 mm, standard length 231 mm, head length 69 mm, body length 101 mm, body girth 176 mm, body weight 900 mg. Alestes nurse total length 200, standard length 140 mm, head length 60 mm, body length 80 mm, body girth 120 mm, body weight 400 mg. The most abundant animal utilizing the basin was Ardea cinerea (D3) with 22.2% occurrence (D4) and this was followed by Caprini with 13.51%, and Varanus niloticus, 10.04%. The least abundant animals utilizing basin were Chephalophus rufilatus, and Erythrocebus patas, with 0.58% each of occurrence. PMID:19637699

  18. Plankton studies in San Francisco Bay; II, Phytoplankton abundance and species composition, July 1977-December 1979

    USGS Publications Warehouse

    Wong, Raymond L. J.; Cloern, James E.

    1981-01-01

    Data are presented on the phytoplankton species composition and abundance in San Francisco Bay from July 1977 through December 1979. Phytoplankton identification and enumerations were made at selected stations. Sample collections were made at selected stations in the main channel of the Bay from Rio Vista on the Sacramento River to Calaveras Point in South San Francisco Bay, and at shoal stations in the central portion of South San Francisco Bay, San Pablo Bay, and Suisun Bay. Also reported, from October 1978 through December 1979, are the calculated phytoplankton carbon and percent nondiatom carbon, and the species list. This study is one component of an ongoing interdisciplinary study of San Francisco Bay. (USGS)

  19. Are Non-Native Plants Perceived to Be More Risky? Factors Influencing Horticulturists' Risk Perceptions of Ornamental Plant Species

    PubMed Central

    Humair, Franziska; Kueffer, Christoph; Siegrist, Michael

    2014-01-01

    Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625) to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species. PMID:25003195

  20. Are non-native plants perceived to be more risky? Factors influencing horticulturists' risk perceptions of ornamental plant species.

    PubMed

    Humair, Franziska; Kueffer, Christoph; Siegrist, Michael

    2014-01-01

    Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625) to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.

  1. Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage

    PubMed Central

    Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.

    2014-01-01

    Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865

  2. Tolerance and resistance of invasive and native Eupatorium species to generalist herbivore insects

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Fang; Feng, Yu-Long

    2016-11-01

    Invasive plants are exotic species that escape control by native specialist enemies. However, exotic plants may still be attacked by locally occurring generalist enemies, which can influence the dynamics of biological invasions. If invasive plants have greater defensive (resistance and tolerance) capabilities than indigenous plants, they may experience less damage from native herbivores. In the present study, we tested this prediction using the invasive plant Eupatorium adenophorum and two native congeners under simulated defoliation and generalist herbivore insect (Helicoverpa armigera and Spodoptera litura) treatments. E. adenophorum was less susceptible and compensated more quickly to damages in biomass production from both treatments compared to its two congeners, exhibiting greater herbivore tolerance. This strong tolerance to damage was associated with greater resource allocation to aboveground structures, leading to a higher leaf area ratio and a lower root: crown mass ratio than those of its native congeners. E. adenophorum also displayed a higher resistance index (which integrates acid detergent fiber, nitrogen content, carbon/nitrogen ratio, leaf mass per area, toughness, and trichome density) than its two congeners. Thus, H. armigera and S. litura performed poorly on E. adenophorum, with less leaf damage, a lengthened insect developmental duration, and decreased pupating: molting ratios compared to those of the native congeners. Strong tolerance and resistance traits may facilitate the successful invasion of E. adenophorum in China and may decrease the efficacy of leaf-feeding biocontrol agents. Our results highlight both the need for further research on defensive traits and their role in the invasiveness and biological control of exotic plants, and suggest that biocontrol of E. adenophorum in China would require damage to the plant far in excess of current levels.

  3. Parasite diversity and microsatellite variability in native and introduced populations of four Neogobius species (Gobiidae).

    PubMed

    Ondračková, M; Šimková, A; Civáňová, K; Vyskočilová, M; Jurajda, P

    2012-09-01

    Species introduced into new areas often show a reduction in parasite and genetic diversity associated to the limited number of founding individuals. In this study, we compared microsatellite and parasite diversity in both native (lower Danube) and introduced populations of 4 Ponto-Caspian gobies, including those (1) introduced from within the same river system (middle Danube; Neogobius kessleri and N. melanostomus), and (2) introduced from a different river system (River Vistula; N. fluviatilis and N. gymnotrachelus). Microsatellite data confirmed the lower Danube as a source population for gobies introduced into the middle Danube. Both native and introduced (same river system) populations of N. kessleri and N. melanostomus had comparable parasite species richness and microsatellite diversity, possibly due to multiple and/or continual migration/introduction of new individuals and the acquisition of local parasites. Reduced parasite species richness and microsatellite diversity were observed in introduced (different river system) populations in the Vistula. A low number of colonists found for N. fluviatilis and N. gymnotrachelus in the Vistula potentially resulted in reduced introduction of parasite species. Insufficient adaptation of the introduced host to local parasite fauna, together with introduction into an historically different drainage system, may also have contributed to the reduced parasite fauna. PMID:22814338

  4. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species.

    PubMed

    Allem, Laísa N; Gomes, Anabele S; Borghetti, Fabian

    2014-10-21

    Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions. PMID:25337668

  5. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species.

    PubMed

    Allem, Laísa N; Gomes, Anabele S; Borghetti, Fabian

    2014-12-01

    Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions. PMID:25590714

  6. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado.

    PubMed

    Meyer, Sylvia Therese; Castro, Samuel Rodrigues; Fernandes, Marcus Manoel; Soares, Aylton Carlos; de Souza Freitas, Guilherme Augusto; Ribeiro, Edvan

    2016-08-01

    Plants of the Cerrado have shown some potential for restoration and/or phytoremediation projects due to their ability to grow in and tolerate acidic soils rich in metals. The aim of this study is to evaluate the tolerance and accumulation of metals (Cd, Cu, Pb, and Zn) in five native tree species of the Brazilian Cerrado (Copaifera langsdorffii, Eugenia dysenterica, Inga laurina, Cedrela fissilis, Handroanthus impetiginosus) subjected to three experiments with contaminated soils obtained from a zinc processing industry (S1, S2, S3) and control soil (S0). The experimental design was completely randomized (factorial 5 × 4 × 3) and conducted in a greenhouse environment during a 90-day experimentation time. The plant species behavior was assessed by visual symptoms of toxicity, tolerance index (TI), translocation factor (TF), and bioaccumulation factor (BF). C. fissilis has performed as a Zn accumulator by the higher BFs obtained in the experiments, equal to 3.72, 0.88, and 0.41 for S1, S2, and S3 respectively. This species had some ability of uptake control as a defense mechanism in high stress conditions with the best behavior for phytoremediation and high tol