Science.gov

Sample records for abundant organic material

  1. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials. The matrix normalized abundances of presolar silicate grains in meteorites range from 20 ppm in Semarkona and Bishunpur to 170 ppm for Acfer 094. The lower abundances of presolar silicates in Bishunpur and Semarkona has been ascribed to the destruction of presolar silicates during aqueous processes. Presolar silicates appear to be significantly more abundant in anhydrous IDPs, possibly because these materials did not experience parent body hydrothermal alteration. Among IDPs the estimated abundances of presolar silicates vary by more than an order of magnitude, from 480 to 5500 ppm. The wide disparity in the abundances of presolar silicates of IDPs may be a consequence of the relatively small total area analyzed in those studies and the fine grain sizes of the IDPs. Alternatively, there may be a wide range in presolar silicate abundances between different IDPs. This view is supported by the observation that 15N-rich IDPs have higher presolar silicate abundances than those with isotopically normal N.

  2. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials.

  3. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  4. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  5. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  6. Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material.

    PubMed

    Sun, Chengjun; Goharpey, Amir Hossein; Rai, Ayush; Zhang, Teng; Ko, Dong-Kyun

    2016-08-31

    The development of paper-based sensors, antennas, and energy-harvesting devices can transform the way electronic devices are manufactured and used. Herein we describe an approach to fabricate paper thermoelectric generators for the first time by directly impregnating naturally abundant cellulose materials with p- or n-type colloidal semiconductor quantum dots. We investigate Seebeck coefficients and electrical conductivities as a function of temperature between 300 and 400 K as well as in-plane thermal conductivities using Angstrom's method. We further demonstrate equipment-free fabrication of flexible thermoelectric modules using p- and n-type paper strips. Leveraged by paper's inherently low thermal conductivity and high flexibility, these paper modules have the potential to efficiently utilize heat available in natural and man-made environments by maximizing the thermal contact to heat sources of arbitrary geometry.

  7. Organic photoresponse materials and devices.

    PubMed

    Dong, Huanli; Zhu, Hongfei; Meng, Qing; Gong, Xiong; Hu, Wenping

    2012-03-07

    Organic photoresponse materials and devices are critically important to organic optoelectronics and energy crises. The activities of photoresponse in organic materials can be summarized in three effects, photoconductive, photovoltaic and optical memory effects. Correspondingly, devices based on the three effects can be divided into (i) photoconductive devices such as photodetectors, photoreceptors, photoswitches and phototransistors, (ii) photovoltaic devices such as organic solar cells, and (iii) optical data storage devices. It is expected that this systematic analysis of photoresponse materials and devices could be a guide for the better understanding of structure-property relationships of organic materials and provide key clues for the fabrication of high performance organic optoelectronic devices, the integration of them in circuits and the application of them in renewable green energy strategies (critical review, 452 references).

  8. Nanoscale metal-organic materials.

    PubMed

    Carné, Arnau; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2011-01-01

    Metal-organic materials are found to be a fascinating novel class of functional nanomaterials. The limitless combinations between inorganic and organic building blocks enable researchers to synthesize 0- and 1-D metal-organic discrete nanostructures with varied compositions, morphologies and sizes, fabricate 2-D metal-organic thin films and membranes, and even structure them on surfaces at the nanometre length scale. In this tutorial review, the synthetic methodologies for preparing these miniaturized materials as well as their potential properties and future applications are discussed. This review wants to offer a panoramic view of this embryonic class of nanoscale materials that will be of interest to a cross-section of researchers working in chemistry, physics, medicine, nanotechnology, materials chemistry, etc., in the next years.

  9. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  10. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  11. Self-Organized Porphyrinic Materials

    PubMed Central

    Drain, Charles Michael; Varotto, Alessandro; Radivojevic, Ivana

    2009-01-01

    The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices. PMID:19253946

  12. Organic materials for printed electronics

    NASA Astrophysics Data System (ADS)

    Berggren, M.; Nilsson, D.; Robinson, N. D.

    2007-01-01

    Organic materials can offer a low-cost alternative for printed electronics and flexible displays. However, research in these systems must exploit the differences - via molecular-level control of functionality - compared with inorganic electronics if they are to become commercially viable.

  13. Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils.

    PubMed

    Boyce, C K; Hazen, R M; Knoll, A H

    2001-05-22

    The electron microprobe allows elemental abundances to be mapped at the microm scale, but until now high resolution mapping of light elements has been challenging. Modifications of electron microprobe procedure permit fine-scale mapping of carbon. When applied to permineralized fossils, this technique allows simultaneous mapping of organic material, major matrix-forming elements, and trace elements with microm-scale resolution. The resulting data make it possible to test taphonomic hypotheses for the formation of anatomically preserved silicified fossils, including the role of trace elements in the initiation of silica precipitation and in the prevention of organic degradation. The technique allows one to understand the localization of preserved organic matter before undertaking destructive chemical analyses and, because it is nondestructive, offers a potentially important tool for astrobiological investigations of samples returned from Mars or other solar system bodies.

  14. EELS from organic crystalline materials

    NASA Astrophysics Data System (ADS)

    Brydson, R.; Eddleston, M. D.; Jones, W.; Seabourne, C. R.; Hondow, N.

    2014-06-01

    We report the use of the electron energy loss spectroscopy (EELS) for providing light element chemical composition information from organic, crystalline pharmaceutical materials including theophylline and paracetamol and discuss how this type of data can complement transmission electron microscopy (TEM) imaging and electron diffraction when investigating polymorphism. We also discuss the potential for the extraction of bonding information using electron loss near-edge structure (ELNES).

  15. Organic thermoelectric materials for energy harvesting and temperature control

    NASA Astrophysics Data System (ADS)

    Russ, Boris; Glaudell, Anne; Urban, Jeffrey J.; Chabinyc, Michael L.; Segalman, Rachel A.

    2016-10-01

    Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic-inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.

  16. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  17. T cell abundance in blood predicts acute organ toxicity in chemoradiotherapy for head and neck cancer

    PubMed Central

    Reichardt, Sybille D.; Rave-Fränk, Margret; Schirmer, Markus A.; Stadelmann, Christine; Canis, Martin; Wolff, Hendrik A.

    2016-01-01

    Treatment of head and neck squamous cell carcinoma (HNSCC) by chemoradiotherapy (CRT) often results in high-grade acute organ toxicity (HGAOT). As these adverse effects impair the patients' quality of life and the feasibility of the planned therapy, we sought to analyze immunological parameters in tumor material and blood samples obtained from 48 HNSCC patients in order to assess the potential to predict the individual acute organ toxicity. T cells in the tumor stroma were enriched in patients developing HGAOT whereas levels of soluble factors in the plasma and gene expression in whole blood did not coincide with the occurrence of acute organ toxicity. In contrast, the frequency and absolute numbers of selected leukocyte subpopulations measured in samples of peripheral blood mononuclear cells (PBMCs) directly before the beginning of CRT were significantly different in patients with HGAOT as compared to those without. When we validated several potential markers including the abundance of T cells in a small prospective study with 16 HNSCC patients, we were able to correctly predict acute organ toxicity in up to 81% of the patients. We conclude that analysis of PBMCs by fluorescence-activated cell sorting (FACS) might be a convenient strategy to identify patients at risk of developing HGAOT caused by CRT, which might allow to adapt the treatment regimen and possibly improve disease outcome. PMID:27589568

  18. Functional organic materials for electronics industries

    NASA Technical Reports Server (NTRS)

    Shibayama, K.; Ono, H.

    1982-01-01

    Topics closely related with organic, high molecular weight material synthesis are discussed. These are related to applications such as display, recording, sensors, semiconductors, and I.C. correlation. New materials are also discussed. General principles of individual application are not included. Materials discussed include color, electrochromic, thermal recording, organic photoconductors for electrophotography, and photochromic materials.

  19. NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.

  20. The activated sludge ecosystem contains a core community of abundant organisms.

    PubMed

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal.

  1. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  2. Bird diversity and abundance in organic and conventional apple orchards in northern Japan

    PubMed Central

    Katayama, Naoki

    2016-01-01

    Many studies have investigated the benefits of agri-environmental schemes, such as organic farming, on biodiversity conservation in annual systems, but their effectiveness in perennial systems is less well understood, particularly in bird communities in temperate regions of Asia. This study examined the effects of organic farming practices on species richness and abundance of breeding birds in apple orchards in northern Japan. Bird counts were conducted in six pairs of organic and conventional orchards during the breeding season in April and May 2015. The total species richness of birds, estimated by sample- and coverage-based rarefaction and extrapolation curves, was greater in organic orchards than in conventional orchards. Among the three dietary guilds (insectivore, granivore, and omnivore), only insectivorous species were more abundant in organic orchards than in conventional ones. This study offers the first quantitative evidence that organic farming can be beneficial for enhancing the diversity of birds, particularly of insectivores, in fruit orchards in Japan. PMID:27677408

  3. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  4. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  5. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  6. Purification of metal-organic framework materials

    SciTech Connect

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  7. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  8. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.

  9. Photochromic organic-inorganic hybrid materials.

    PubMed

    Pardo, Rosario; Zayat, Marcos; Levy, David

    2011-02-01

    Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.

  10. Apparatus and method for oxidizing organic materials

    DOEpatents

    Surma, Jeffrey E.; Bryan, Garry H.; Geeting, John G. H.; Butner, R. Scott

    1998-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell.

  11. Apparatus and method for oxidizing organic materials

    DOEpatents

    Surma, J.E.; Bryan, G.H.; Geeting, J.G.H.; Butner, R.S.

    1998-01-13

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. 6 figs.

  12. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    NASA Astrophysics Data System (ADS)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  13. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  14. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    SciTech Connect

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  15. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    EPA Science Inventory

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  16. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.

    PubMed

    Zhang, Qian; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2014-10-29

    The abundance of solar thermal energy and the widespread demands for waste heat recovery make thermoelectric generators (TEGs) very attractive in harvesting low-cost energy resources. Meanwhile, thermoelectric refrigeration is promising for local cooling and niche applications. In this context there is currently a growing interest in developing organic thermoelectric materials which are flexible, cost-effective, eco-friendly and potentially energy-efficient. In particular, the past several years have witnessed remarkable progress in organic thermoelectric materials and devices. In this review, thermoelectric properties of conducting polymers and small molecules are summarized, with recent progresses in materials, measurements and devices highlighted. Prospects and suggestions for future research efforts are also presented. The organic thermoelectric materials are emerging candidates for green energy conversion.

  17. Emerging Multifunctional Metal-Organic Framework Materials.

    PubMed

    Li, Bin; Wen, Hui-Min; Cui, Yuanjing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2016-10-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.

  18. Secondary Ion Mass Spectrometry of Zeolite Materials: Observation of Abundant Aluminosilicate Oligomers Using an Ion Trap

    SciTech Connect

    Groenewold, Gary Steven; Kessinger, Glen Frank; Scott, Jill Rennee; Gianotto, Anita Kay; Appelhans, Anthony David; Delmore, James Edward

    2000-12-01

    Oligomeric oxyanions were observed in the secondary ion mass spectra (SIMS) of zeolite materials. The oxyanions have the general composition AlmSinO2(m+n)H(m-1)- (m + n = 2 to 8) and are termed dehydrates. For a given mass, multiple elemental compositions are possible because (Al + H) is an isovalent and isobaric substitute for Si. Using 18 keV Ga+ as a projectile, oligomer abundances are low relative to the monomers. Oligomer abundance can be increased by using the polyatomic projectile ReO4- (~5 keV). Oligomer abundance can be further increased using an ion trap (IT-) SIMS; in this instrument, long ion lifetimes (tens of ms) and relatively high He pressure result in significant collisional stabilization and increased high-mass abundance. The dehydrates rapidly react with adventitious H2O present in the IT-SIMS to form mono-, di-, and trihydrates. The rapidity of the reaction and comparison to aluminum oxyanion hydration suggest that H2O adds to the aluminosilicate oxyanions in a dissociative fashion, forming covalently bound product ions. In addition to these findings, it was noted that production of abundant oligomeric aluminosilicates could be significantly increased by substituting the countercation (NH4+) with the larger alkali ions Rb+ and Cs+. This constitutes a useful tactic for generating large aluminosilicate oligomers for surface characterization and ion-molecule reactivity studies.

  19. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    PubMed

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

  20. Organic Matter Degradation Drives Benthic Cyanobacterial Mat Abundance on Caribbean Coral Reefs

    PubMed Central

    Brocke, Hannah J.; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs. PMID:25941812

  1. Recent advances in organic semiconducting materials

    NASA Astrophysics Data System (ADS)

    Ostroverkhova, Oksana

    2011-10-01

    Organic semiconductors have attracted attention due to their low cost, easy fabrication, and tunable properties. Applications of organic materials in thin-film transistors, solar cells, light-emitting diodes, sensors, and many other devices have been actively explored. Recent advances in organic synthesis, material processing, and device fabrication led to significant improvements in (opto)electronic device performance. However, a number of challenges remain. These range from lack of understanding of basic physics of intermolecular interactions that determine optical and electronic properties of organic materials to difficulties in controlling film morphology and stability. In this presentation, current state of the field will be reviewed and recent results related to charge carrier and exciton dynamics in organic thin films will be presented.[4pt] In collaboration with Whitney Shepherd, Mark Kendrick, Andrew Platt, Oregon State University; Marsha Loth and John Anthony, University of Kentucky.

  2. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  3. Phosphorus-containing materials for organic electronics.

    PubMed

    Stolar, Monika; Baumgartner, Thomas

    2014-05-01

    Phosphorus-based materials have received widespread attention in recent years, in particular as possible candidates for practical application in organic electronics. The geometry and electronic nature of phosphorus make it a favorable heteroatom for property tuning in order to obtain better performing organic electronics. This Focus Review discusses recent structural modifications and syntheses of phosphorus-based materials, illustrates property tuning at the same time, and highlights specific examples for device applications.

  4. Future Sources of Organic Raw Materials.

    ERIC Educational Resources Information Center

    Shapiro, Irving S.

    1978-01-01

    Examines the need for industrial organization, academic institutions, and national governments to agree on cooperative roles in planning the future raw materials demands of the chemical industry. Political and social concerns, as well as technical and economic considerations, are important to the raw material future of the industry. (MA)

  5. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers.

    PubMed

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  6. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    PubMed Central

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  7. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  8. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  9. Ion surface treatments on organic materials

    NASA Astrophysics Data System (ADS)

    Iwaki, Masaya

    2001-04-01

    A study has been made of surface modification of various organic materials by ion bombardment or implantation to make the surface properties of high and multiple functions in RIKEN. Substrates used were polyimide (PI), polyacetylene, polytetrafluoroethylene (PTFE), polystyrene (PS), silicone rubber, various kinds of proteins and so on. Bombarded or implanted ions were inert gas elements, chemically active gaseous elements and metallic elements. Surface properties such as electrical conductivity, wettability and cell adhesion of implanted layers have been investigated. Surface characterization of implanted materials has been carried out by means of transmission electron microscopy, laser Raman spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. In this paper, studies in RIKEN are reviewed of electrical conductivity, optical absorbance, wettability and cell adhesion depending on current densities and doping elements. Applications of ion bombardment to biomedical materials are introduced using cell adhesion control. It is concluded that ion bombardment or implantation is useful to change and control surface properties of various organic materials.

  10. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  11. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-type Protostars

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; López-Sepulcre, Ana; Ceccarelli, Cecilia; Neri, Roberto; Kahane, Claudine; Charnley, Steven B.

    2015-05-01

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  12. Probabilisitc Geobiological Classification Using Elemental Abundance Distributions and Lossless Image Compression in Recent and Modern Organisms

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.

    2005-01-01

    Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable

  13. CONSTRAINING THE ABUNDANCES OF COMPLEX ORGANICS IN THE INNER REGIONS OF SOLAR-TYPE PROTOSTARS

    SciTech Connect

    Taquet, Vianney; Charnley, Steven B.; López-Sepulcre, Ana; Ceccarelli, Cecilia; Kahane, Claudine; Neri, Roberto

    2015-05-10

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  14. Nature Inspired Strategies for New Organic Materials

    DTIC Science & Technology

    2007-01-14

    materials and generates the corresponding 2-acyl oxazoles in good to moderate yields. The basic chemical approaches to extended organic materials was...Acylation 2-chlorooxazoles are competent electrophiles for acyl anion equivalent I, providing access to bioactive keto- oxazoles (Scheme 1).1-2 Treatment of...benzaldehyde la with 25 mol % of imidazolium salt IS in the presence of 2.0 equivalents of sodium hydride and 1.0 equivalent of chloro- oxazole 2 at

  15. TREATMENT OF STORMWATER BY NATURAL ORGANIC MATERIALS

    EPA Science Inventory

    The overall objective of this study was to evaluate the feasibility of using low-cost natural filter materials for stormwater (SW) treatment. Generic mulch, pine bark mulch, and processed jute were evaluated for metal and organic pollutant removal from actual SW samples collected...

  16. ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS

    EPA Science Inventory

    The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

  17. Organic Optoelectronic Materials: Mechanisms and Applications.

    PubMed

    Ostroverkhova, Oksana

    2016-11-23

    Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.

  18. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  19. Shock-induced chemistry in organic materials

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Steve; Engelke, Ray; Manner, Virginia; Chellappa, Raja; Yoo, Choong - Shik

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  20. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  1. Orchid bees as bio-indicators for organic coffee farms in Costa Rica: does farm size affect their abundance?

    PubMed

    Hedström, Ingemar; Denzel, Andrew; Owens, Gareth

    2006-09-01

    The potential of Euglossini bees, especially Euglossa, as biological indicators of organic vs nonorganic coffee farms was studied in Atenas and San Isidro, Alajuela, Costa Rica using 1.8-cineole as lure. Observations were made for three days at each of four farms and complemented with data from a year of observations. Orchid bees were in greater abundance in the organic farms (t-Student test). However, lower abundances suggest that an organic farm may be negatively affected by the proximity of non-organic farms, depending on its size and distance. Orchid bees may be indicators of organic coffee farms.

  2. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil.

    PubMed

    Zhou, Xue; Qiao, Min; Wang, Feng-Hua; Zhu, Yong-Guan

    2017-01-01

    The application of manure-based commercial organic fertilizers (COFs) is becoming increasingly extensive because of the expanding market for organic food. The present study examined the effects of repeated applications of chicken or swine manure-based COFs on the fate of antibiotics and antibiotic resistance genes (ARGs) in soil by conducting a soil microcosm experiment. Application of COFs significantly increased antibiotics residues, as well as the relative abundance of ARGs and the integrase gene of class 1 integrons (intΙ1) in soil. Two months after each application, antibiotics and ARGs dissipated in amended soils, but they still remained at an elevated level, compared with the control. And, the accumulation of antibiotics was found due to repeated COF applications. However, the relative abundance of ARGs in most COF-amended soils did not differ significantly between the first application and the repeated application. The results imply that 2 months are not sufficient for ARGs to approach background levels, and that animal manure must be treated more effectively prior to using it in agriculture ecosystems.

  3. Tuning optoelectronic properties and understanding charge transport in nanocrystal thin films of earth abundant semiconducting materials

    NASA Astrophysics Data System (ADS)

    Riha, Shannon C.

    2011-12-01

    With the capability of producing nearly 600 TW annually, solar power is one renewable energy source with the potential to meet a large fraction of the world's burgeoning energy demand. To make solar technology cost-competitive with carbon-based fuels, cheaper devices need to be realized. Solution-processed solar cells from nanocrystal inks of earth abundant materials satisfy this requirement. Nonetheless, a major hurdle in commercializing such devices is poor charge transport through nanocrystal thin films. The efficiency of charge transport through nanocrystal thin films is strongly dependent on the quality of the nanocrystals, as well as their optoelectronic properties. Therefore, the first part of this dissertation is focused on synthesizing high quality nanocrystals of Cu2ZnSnS4, a promising earth abundant photovoltaic absorber material. The optoelectronic properties of the nanocrystals were tuned by altering the copper to zinc ratio, as well as by introducing selenium to create Cu2ZnSn(S1-xSe x)4 solid solutions. Photoelectrochemical characterization was used to test the Cu2ZnSnS4 and Cu2ZnSn(S 1-xSex)4 nanocrystal thin films. The results identify minority carrier diffusion and recombination via the redox shuttle as the major loss mechanisms hindering efficient charge transport through the nanocrystal thin films. One way to solve this issue is to sinter the nanocrystals together, creating large grains for efficient charge transport. Although this may be quick and effective, it can lead to the formation of structural defects, among other issues. To this end, using a different copper-based material, namely Cu2Se, and simple surface chemistry treatments, an alternative route to enhance charge transport through nanocrystals thin films is proposed.

  4. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  5. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  6. Inorganic nitrogen supply and dissolved organic nitrogen abundance across the US Great Plains.

    PubMed

    Mobley, Megan L; Cleary, Matthew J; Burke, Ingrid C

    2014-01-01

    Across US Great Plains grasslands, a gradient of increasing mean annual precipitation from west to east corresponds to increasing aboveground net primary productivity (ANPP) and increasing N-limitation. Previous work has shown that there is no increase in net N mineralization rates across this gradient, leading to the question of where eastern prairie grasses obtain the nitrogen to support production. One as-yet unexamined source is soil organic N, despite abundant literature from other ecosystems showing that plants take up dissolved soil organic N. This study measured KCl-extractable dissolved organic N (DON) in surface soils across the grassland productivity gradient. We found that KCl-extractable DON pools increased from west to east. If available to and used by plants, this DON may help explain the high ANPP in the eastern Great Plains. These results suggest a need for future research to determine whether, in what quantities, and in what forms prairie grasses use organic N to support primary production.

  7. Organic Optoelectronic Materials: A Topical Workshop

    NASA Astrophysics Data System (ADS)

    The topics covered include the following: Introduction to Nonlinear Optics of Organics and the Use of Second Harmonic Generation as a Polymer Probe; Experimental Characterization of Second Order Nonlinear Optical Chromophores; Chi(2) Structure-Property Relationship on the Colligative Scale; The Stability of the Poled Order in Crosslinked Systems; Corona Electric Filed Poling of Nonlinear Polymers and Femtosecond Optical Applications; Synthesis and Characterization of Photosensitive Polymers for Optical Waveguide Definition; Light-Emitting Diodes Based on Conjugated Polymers; The Relationship Between Chemical Structure and Second-Order Optical Nonlinearities or Organic Molecules; Theory and Structure/Property of chi(3) Materials; Synthesis of Well-Defined Thiophene Oligomers and Planar Conjugated Polymers for chi(3) Studies; and Spectroscopy as a Probe of chi(3) in Conjugated Materials.

  8. Trace Organic Analysis of Microencapsulated Materials

    DTIC Science & Technology

    1989-11-01

    chromatography Box-Behnken experimental design Microencapsulated pesticides Sur factants Emulsifiers Polymer shell/walls Microcapsule cores Fiber optic... microencapsulation field is given in Bibliography 10.1, (page 38), including references in microemulsions, microcapsules , polymeric/liposome delivery...CHEMICAL RESEARCH, r-i DEVELOPMENT . ENGINEERING CRDEC-CR-0S8-O CENTER (GC-TR-89-172-001 00 CD TRACE ORGANIC ANALYSIS OF MICROENCAPSULATED MATERIALS

  9. 78 FR 19637 - National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials for Organic Crop Production AGENCY: Agricultural... operations, material evaluation programs, and other organic industry stakeholders. The first set of...

  10. Ordered materials for organic electronics and photonics.

    PubMed

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed.

  11. Acetylene-Based Materials in Organic Photovoltaics

    PubMed Central

    Silvestri, Fabio; Marrocchi, Assunta

    2010-01-01

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices. PMID:20480031

  12. Acetylene-based materials in organic photovoltaics.

    PubMed

    Silvestri, Fabio; Marrocchi, Assunta

    2010-04-08

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C(60), and their use as the active materials in photovoltaic devices.

  13. Predators alter community organization of coral reef cryptofauna and reduce abundance of coral mutualists

    NASA Astrophysics Data System (ADS)

    Stier, A. C.; Leray, M.

    2014-03-01

    Coral reefs are the most diverse marine systems in the world, yet our understanding of the processes that maintain such extraordinary diversity remains limited and taxonomically biased toward the most conspicuous species. Cryptofauna that live deeply embedded within the interstitial spaces of coral reefs make up the majority of reef diversity, and many of these species provide important protective services to their coral hosts. However, we know very little about the processes governing the diversity and composition of these less conspicuous but functionally important species. Here, we experimentally quantify the role of predation in driving the community organization of small fishes and decapods that live embedded within Pocillopora eydouxi, a structurally complex, reef-building coral found widely across the Indo-Pacific. We use surveys to describe the natural distribution of predators, and then, factorially manipulate two focal predator species to quantify the independent and combined effects of predator density and identity on P. eydouxi-dwelling cryptofauna. Predators reduced abundance (34 %), species richness (20 %), and modified species composition. Rarefaction revealed that observed reductions in species richness were primarily driven by changes in abundance. Additionally, the two predator species uniquely affected the beta diversity and composition of the prey assemblage. Predators reduced the abundance and modified the composition of a number of mutualist fishes and decapods, whose benefit to the coral is known to be both diversity- and density-dependent. We predict that the density and identity of predators present within P. eydouxi may substantially alter coral performance in the face of an increased frequency and intensity of natural and anthropogenic stressors.

  14. EMISSION OF ORGANIC SUBSTANCES FROM INDOOR SURFACE MATERIALS

    EPA Science Inventory

    A wide variety of surface materials in buildings can release organic compounds. Examples include building materials, furnishings, maintenance materials, clothing, and paper products. These sources contribute substantially to the hundreds of organic compounds that have been measur...

  15. Microporous Metal Organic Materials for Hydrogen Storage

    SciTech Connect

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  16. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  17. Composition of estuarine colloidal material: organic components

    USGS Publications Warehouse

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  18. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  19. Supramolecular materials: Self-organized nanostructures

    SciTech Connect

    Stupp, S.I.; LeBonheur, V.; Walker, K.

    1997-04-18

    Miniaturized triblock copolymers have been found to self-assemble into nanostructures that are highly regular in size and shape. Mushroom-shaped supramolecular structures of about 200 kilodaltons form by crystallization of the chemically identical blocks and self-organize into films containing 100 or more layers stacked in a polar arrangement. The polar supramolecular material exhibits spontaneous second-harmonic generation from infrared to green photons and has an adhesive tape-like character with nonadhesive-hydrophobic and hydrophilic-sticky opposite surfaces. The films also have reasonable shear strength and adhere tenaciously to glass surfaces on one side only. The regular and finite size of the supramolecular units is believed to be mediated by repulsive forces among some of the segments in the triblock molecules. A large diversity of multifunctional materials could be formed from regular supramolecular units weighing hundreds of kilodaltons. 21 refs., 10 figs.

  20. Biomimicry in metal-organic materials

    SciTech Connect

    Zhang, MW; Gu, ZY; Bosch, M; Perry, Z; Zhou, HC

    2015-06-15

    Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimetic features. Published by Elsevier B.V.

  1. Organic material: Asteroids, meteorites, and planetary satellites

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Kerridge, John F.

    1992-01-01

    Telescopic observations in in situ spacecraft investigations over the last two decades have shown that many planetary satellites, asteroids, and comets have surfaces containing very dark material that is either neutral (black) or red in color. Although comets are not the focus of this paper, the possible relationship of comets to asteroids, meteorites, and interplanetary dust is briefly discussed in the context of their dark-matter component. The following topics are discussed with respect to their organic content: carbonaceous chondrites; asteroids; low-albedo planetary satellites; and Pluto, Charon, and Triton. Laboratory studies and a summary are also presented.

  2. Crystalline Organic Cavitands As Microcavity Materials

    NASA Astrophysics Data System (ADS)

    Kane, Christopher Michael

    There has been much interest in inefficiently packed molecular materials and their applications in gas storage, separations, catalysis, etc. Such known materials include metal-organic frameworks (MOFs), polymers of intrinsic microporosity (PIMs), container molecule materials, etc. One way to design inefficiently packed materials is to construct them from compounds that are incapable of close-packing, that is rigid scaffolds with enforced cavities that cannot be filled by self-packing. Cavitand molecules, tetrameric macrocycles derived from calix[4]resorcinarene derivatives, are well known for their propensity to form crystalline inclusion compounds with small molecules; for example, of the 169 examples of calix[4]resorcinarene scaffolds found in the Cambridge Structural Database (CSD), no guest-free forms exist. The guest-free forms of various cavitands, synthesized by literature methods, have been obtained as single crystals by sublimation. Gas inclusion compounds of these cavitands have also been isolated and studied by single crystal x-ray diffraction, thermogravimetric analysis, and 1 H NMR. Furthermore, some cavitand derivatives have shown promise as media for industrial separations (Kr vs. Xe, MeCl vs. DME, Propene vs. Propane).

  3. Effects of multiple levels of social organization on survival and abundance.

    PubMed

    Ward, Eric J; Semmens, Brice X; Holmes, Elizabeth E; Balcomb Iii, Ken C

    2011-04-01

    Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities.

  4. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  5. Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials

    SciTech Connect

    Yang, Ji-Hui; Yuan, Qinghong; Deng, Huixiong; Wei, Su-Huai; Yakobson, Boris I.

    2016-12-19

    Current thermoelectric (TE) materials often have low performance or contain less abundant and/or toxic elements, thus limiting their large-scale applications. Therefore, new TE materials with high efficiency and low cost are strongly desirable. Here we demonstrate that SiS and SiSe monolayers made from nontoxic and earth-abundant elements intrinsically have low thermal conductivities arising from their low-frequency optical phonon branches with large overlaps with acoustic phonon modes, which is similar to the state-of-the-art experimentally demonstrated material SnSe with a layered structure. Together with high thermal power factors due to their two-dimensional nature, they show promising TE performances with large figure of merit (ZT) values exceeding 1 or 2 over a wide range of temperatures. We establish some basic understanding of identifying layered materials with low thermal conductivities, which can guide and stimulate the search and study of other layered materials for TE applications.

  6. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  7. Optical band gaps of organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  8. Characterization of a flood-associated deposit on the Waipaoa River shelf using radioisotopes and terrigenous organic matter abundance and composition

    NASA Astrophysics Data System (ADS)

    Kniskern, Tara A.; Mitra, Siddhartha; Orpin, Alan R.; Harris, Courtney K.; Walsh, J. P.; Corbett, D. R.

    2014-09-01

    An ephemeral oceanic-flood deposit adjacent to a well-studied small mountainous river (SMR), the Waipaoa River in northeastern New Zealand, was characterized using multiple proxies, including radioisotopes (234Th, 7Be, and 210Pb), bulk organic carbon abundance and isotopic signature (%OC, δ13C), as well as a biomarker of terrigenous organic matter (lignin). Field sampling was conducted within two weeks after a 1-in-8 year flood that occurred between January 30 and February 6, 2010. Geochemical analyses indicated that initial deposition of fresh riverine material extended alongshore to the north and south from the river mouth. A comparison of prior- and post-flood 7Be inventories revealed that flood sediments were widely dispersed between 20 and 70 m water depth, accounting for 50-80% of the estimated flood load. Surface (0-2 cm) isotopic carbon values increased with distance from Poverty Bay, positively correlating with total 210Pb activities, potentially reflecting increasing marine influence with water depth. Abundances of sedimentary organic carbon (OC) were 0.18-0.76% dry weight, and the total nitrogen varied from 0.02 to 0.13%. Stable isotope signatures of carbon (δ13COC), nitrogen (δ15N), and lignin abundances (λ6) throughout the study area ranged from -23.6 to -27.7‰, 1.9 to 5.3‰, and 0.93 to 9.0 mg 100 mg OC-1, respectively. The spatial distribution pattern of terrigenous organic matter (OM) abundance and interclass ratios (indicative of freshness of organic matter) varied along and across-shelf. Lignin abundances were high and interclass ratios were low in the southern depocenter and inner shelf areas, suggesting that this zone had recently received vascular-plant enriched OM, minimally altered by shelf-bed mixing processes. In contrast, sediments in the northern depocenter and outer shelf also contained elevated amounts of terrigenous sedimentary OM, but this material was generally lower in lignin abundance and had higher interclass ratios

  9. Titan's inventory of organic surface materials

    USGS Publications Warehouse

    Lorenz, R.D.; Mitchell, K.L.; Kirk, R.L.; Hayes, A.G.; Aharonson, O.; Zebker, H.A.; Paillou, P.; Radebaugh, J.; Lunine, J.I.; Janssen, M.A.; Wall, S.D.; Lopes, R.M.; Stiles, B.; Ostro, S.; Mitri, G.; Stofan, E.R.

    2008-01-01

    Cassini RADAR observations now permit an initial assessment of the inventory of two classes, presumed to be organic, of Titan surface materials: polar lake liquids and equatorial dune sands. Several hundred lakes or seas have been observed, of which dozens are each estimated to contain more hydrocarbon liquid than the entire known oil and gas reserves on Earth. Dark dunes cover some 20% of Titan's surface, and comprise a volume of material several hundred times larger than Earth's coal reserves. Overall, however, the identified surface inventories (>3 ?? 104 km3 of liquid, and >2 ?? 105 km3 of dune sands) are small compared with estimated photochemical production on Titan over the age of the solar system. The sand volume is too large to be accounted for simply by erosion in observed river channels or ejecta from observed impact craters. The lakes are adequate in extent to buffer atmospheric methane against photolysis in the short term, but do not contain enough methane to sustain the atmosphere over geologic time. Unless frequent resupply from the interior buffers this greenhouse gas at exactly the right rate, dramatic climate change on Titan is likely in its past, present and future. Copyright 2008 by the American Geophysical Union.

  10. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  11. Zn3As2 nanowires and nanoplatelets: highly efficient infrared emission and photodetection by an earth abundant material.

    PubMed

    Burgess, Tim; Caroff, Philippe; Wang, Yuda; Badada, Bekele H; Jackson, Howard E; Smith, Leigh M; Guo, Yanan; Tan, Hark Hoe; Jagadish, Chennupati

    2015-01-14

    The development of earth abundant materials for optoelectronics and photovoltaics promises improvements in sustainability and scalability. Recent studies have further demonstrated enhanced material efficiency through the superior light management of novel nanoscale geometries such as the nanowire. Here we show that an industry standard epitaxy technique can be used to fabricate high quality II-V nanowires (1D) and nanoplatelets (2D) of the earth abundant semiconductor Zn3As2. We go on to establish the optoelectronic potential of this material by demonstrating efficient photoemission and detection at 1.0 eV, an energy which is significant to the fields of both photovoltaics and optical telecommunications. Through dynamical spectroscopy this superior performance is found to arise from a low rate of surface recombination combined with a high rate of radiative recombination. These results introduce nanostructured Zn3As2 as a high quality optoelectronic material ready for device exploration.

  12. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-03

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  13. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex.

  14. Study of earth abundant tco and absorber materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Prabhakar, Tejas

    In order to make photovoltaic power generation a sustainable venture, it is necessary to use cost-effective materials in the manufacture of solar cells. In this regard, AZO (Aluminum doped Zinc Oxide) and CZTS (Copper Zinc Tin Sulfide) have been studied for their application in thin film solar cells. While AZO is a transparent conducting oxide, CZTS is a photovoltaic absorber. Both AZO and CZTS consist of earth abundant elements and are non-toxic in nature. Highly transparent and conductive AZO thin films were grown using RF sputtering. The influence of deposition parameters such as working pressure, RF power, substrate temperature and flow rate on the film characteristics was investigated. The as-grown films had a high degree of preferred orientation along the (002) direction which enhanced at lower working pressures, higher RF powers and lower substrate temperatures. Williamson-Hall analysis on the films revealed that as the working pressure was increased, the nature of stress and strain gradually changed from being compressive to tensile. The fall in optical transmission of the films was a consequence of free carrier absorption resulting from enhanced carrier density due to incorporation of Al atoms or oxygen vacancies. The optical and electrical properties of the films were described well by the Burstein-Moss effect. CZTS absorber layers were grown using ultrasonic spray pyrolysis at a deposition temperature of 350 C and subsequently annealed in a sulfurization furnace. Measurements from XRD and Raman spectra confirmed the presence of pure single phase Cu2ZnSnS4. Texture analysis of as-deposited and annealed CZTS films indicated that the (112) plane which is characteristic of the kesterite phase was preferred. The grain size increased from 50 nm to 100 nm on conducting post-deposition annealing. CZTS films with stoichiometric composition yielded a band gap of 1.5 eV, which is optimal for solar energy conversion. The variation of tin in the film changed its

  15. Removal of organic contaminants from lithographic materials

    NASA Astrophysics Data System (ADS)

    Lytle, Wayne M.

    One of the critical issues still facing the implementation of extreme ultraviolet lithography (EUVL) into mainstream manufacturing for integrated circuit (IC) production is cleanliness. EUV photons at 13.5 nm are easily absorbed by many species, including dust, thin-film layers, and other debris present in the path of the photons. Carrying out EUVL inside a vacuum helps reduce the amount of photon loss for illumination, however contamination in the sys- tem is unavoidable, especially due to carbon growth on the multilayer mirror collectors and to soft defects in the form of organic contamination on the mask. Traditional cleaning methods employ the use of wet chemicals to etch contamination off of a surface, however this is limited in the sub-micron range of contaminant particles due to lack of transport of sufficient liquid chemical to the surface in order to achieve satisfactory particle removal. According to the International Technology Roadmap for Semiconductors (ITRS), the photomask must be particle free at inspection below 30 nm. However, when analyzing the ability of traditional methods to meet the cleaning needs set forth by the ITRS, these methods fall short and often add more contamination to the surface targeted for cleaning. With that in mind, a new cleaning method is being developed to supplant these traditional methods. Preliminary research into a plasma-based method to clean organic contaminants from lithographic materials constructed an experimental device that demonstrated the removal of both polystyrene latex nanoparticles (representing hydrocarbon contamination) in the range of 30 nm to 500 nm, as well as the removal of 30 nm carbon film layers on silicon wafers. This research, called the Plasma-Assisted Cleaning by Metastable Atomic Neutralization (PACMAN) process is being developed with semiconductor manufacturing cleaning in mind. A model of the helium metastable density within the processing chamber has been developed in addition to

  16. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  17. Decrease in the abundance and viability of oceanic phytoplankton due to trace levels of complex mixtures of organic pollutants.

    PubMed

    Echeveste, Pedro; Dachs, Jordi; Berrojalbiz, Naiara; Agustí, Susana

    2010-09-01

    Long range atmospheric transport and deposition is a significant introduction pathway of organic pollutants to remote oceanic regions, leading to their subsequent accumulation in marine organisms. Persistent organic pollutants (POPs) bioconcentrate in planktonic food webs and these exert a biogeochemical control on the regional and global cycling of POPs. Therefore, an important issue is to determine whether the anthropogenic chemical perturbation of the biosphere introduced by the myriad of organic pollutants present in seawater influences phytoplankton abundance and productivity. The results reported here from five sets of experiments performed in the NE Atlantic Ocean show that there is a toxic effect induced by trace levels of complex mixtures of organic pollutants on phytoplankton oceanic communities. The levels of single pollutant, such as phenanthrene and pyrene, at which lethality of phytoplankton is observed are high in comparison to field levels. Complex mixtures of organic pollutants, however, have an important toxic effect on phytoplankton abundances, viability and concentrations of Chlorophyll a at pollutant concentrations 20-40 folds those found in the open ocean. The toxicity of these complex mixtures of organic pollutants exceeds by 10(3) times the toxicity expected for a single pollutant. Therefore, our results point out the need for a systematic investigation of the influence of complex mixtures of organic hydrophobic pollutants to oceanic phytoplankton communities, a perturbation not accounted for on previous assessments of anthropogenic pressures in the marine environment.

  18. Metal-organic framework materials with ultrahigh surface areas

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  19. Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations

    NASA Astrophysics Data System (ADS)

    Shi, Tingting

    In this dissertation, a series of earth-abundant photovoltaic materials including lead halide perovskites, copper based compounds, and silicon are investigated via density functional theory (DFT). Firstly, we study the unique optoelectronic properties of perovskite CH3NH3PbI3 and CH3NH3PbBr 3. First-principle calculations show that CH3NH3PbI 3 perovskite solar cells exhibit remarkable optoelectronic properties that account for the high open circuit voltage (Voc) and long electron-hole diffusion lengths. Our results reveal that for intrinsic doping, dominant point defects produce only shallow levels. Therefore lead halide perovskites are expected to exhibit intrinsic low non-radiative recombination rates. The conductivity of perovskites can be tuned from p-type to n-type by controlling the growth conditions. For extrinsic defects, the p-type perovskites can be achieved by doping group-IA, -IB, or -VIA elements, such as Na, K, Rb, Cu, and O at I-rich growth conditions. We further show that despite a large band gap of 2.2 eV, the dominant defects in CH3 NH3PbBr3 also create only shallow levels. The photovoltaic properties of CH3NH3PbBr3 - based perovskite absorbers can be tuned via defect engineering. Highly conductive p-type CH3NH3PbBr3 can be synthesized under Br-rich growth conditions. Such CH3NH3PbBr 3 may be potential low-cost hole transporting materials for lead halide perovskite solar cells. All these unique defect properties of perovskites are largely due to the strong Pb lone-pair s orbital and I p (Br p) orbital antibonding coupling and the high ionicity of CH3NH3PbX3 (X=I, Br). Secondly, we study the optoelectronic properties of Cu-V-VI earth abundant compounds. These low cost thin films may have the good electronic and optical properties. We have studied the structural, electronic and optical properties of Cu3-V-VI4 compounds. After testing four different crystal structures, enargite, wurtzite-PMCA, famatinite and zinc-blend-PMCA, we find that Cu3PS4 and

  20. Grants Management Training Materials for Tribal Organizations

    EPA Pesticide Factsheets

    EPA’s Office of Grants & Debarment (OGD) worked with the national Partnership for Environmental Technology Education (NPETE) to develop training materials. Training materials, including the training manuals & webinar recordings, are available for download.

  1. Apparatus and method for constant flow oxidizing of organic materials

    DOEpatents

    Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.

    1999-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.

  2. Diversity, abundance, and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria manilensis.

    PubMed

    Zhou, Xian-Hong; Ban, Li-Ping; Iovinella, Immacolata; Zhao, Li-Jing; Gao, Qian; Felicioli, Antonio; Sagona, Simona; Pieraccini, Giuseppe; Pelosi, Paolo; Zhang, Long; Dani, Francesca Romana

    2013-01-01

    Chemosensory proteins (CSPs) are small soluble proteins often associated with chemosensory organs in insects but include members involved in other functions, such as pheromone delivery and development. Although the CSPs of the sensory organs have been extensively studied, little is known on their functions in other parts of the body. A first screening of the available databases has identified 70 sequences encoding CSPs in the oriental locust Locusta migratoria manilensis. Applying proteomic analysis, we have identified 17 of them abundantly expressed in the female reproductive organs, but only one (CSP91) in male organs. Bacterially expressed CSP91 binds fatty acids with a specificity for oleic and linoleic acid, as well as medium-length alcohols and esters. The same acids have been detected as the main gas chromatographic peaks in the dichloromethane extracts of reproductive organs of both sexes. The abundance and the number of CSPs in female reproductive organs indicates important roles for these proteins. We cannot exclude that different functions can be associated with each of the 17 CSPs, including delivery of semiochemicals, solubilization of hormones, direct control of development, or other unknown tasks.

  3. Primitive Solar System materials and Earth share a common initial 142Nd abundance

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Boyet, M.

    2016-09-01

    The early evolution of planetesimals and planets can be constrained using variations in the abundance of neodymium-142 (142Nd), which arise from the initial distribution of 142Nd within the protoplanetary disk and the radioactive decay of the short-lived samarium-146 isotope (146Sm). The apparent offset in 142Nd abundance found previously between chondritic meteorites and Earth has been interpreted either as a possible consequence of nucleosynthetic variations within the protoplanetary disk or as a function of the differentiation of Earth very early in its history. Here we report high-precision Sm and Nd stable and radiogenic isotopic compositions of four calcium-aluminium-rich refractory inclusions (CAIs) from three CV-type carbonaceous chondrites, and of three whole-rock samples of unequilibrated enstatite chondrites. The CAIs, which are the first solids formed by condensation from the nebular gas, provide the best constraints for the isotopic evolution of the early Solar System. Using the mineral isochron method for individual CAIs, we find that CAIs without isotopic anomalies in Nd compared to the terrestrial composition share a 146Sm/144Sm-142Nd/144Nd isotopic evolution with Earth. The average 142Nd/144Nd composition for pristine enstatite chondrites that we calculate coincides with that of the accessible silicate layers of Earth. This relationship between CAIs, enstatite chondrites and Earth can only be a result of Earth having inherited the same initial abundance of 142Nd and chondritic proportions of Sm and Nd. Consequently, 142Nd isotopic heterogeneities found in other CAIs and among chondrite groups may arise from extrasolar grains that were present in the disk and incorporated in different proportions into these planetary objects. Our finding supports a chondritic Sm/Nd ratio for the bulk silicate Earth and, as a consequence, chondritic abundances for other refractory elements. It also removes the need for a hidden reservoir or for collisional erosion

  4. TOPICAL REVIEW: Molecular materials for organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mori, T.

    2008-05-01

    Organic field-effect transistors are important applications of thin films of molecular materials. A variety of materials have been explored for improving the performance of organic transistors. The materials are conventionally classified as p-channel and n-channel, but not only the performance but also even the carrier polarity is greatly dependent on the combinations of organic semiconductors and electrode materials. In this review, particular emphasis is laid on multi-sulfur compounds such as tetrathiafulvalenes and metal dithiolates. These compounds are components of highly conducting materials such as organic superconductors, but are also used in organic transistors. The charge-transfer complexes are used in organic transistors as active layers as well as electrodes.

  5. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  6. Elastomeric organic material for switching application

    SciTech Connect

    Shiju, K. E-mail: pravymon@gmail.com Praveen, T. E-mail: pravymon@gmail.com Preedep, P. E-mail: pravymon@gmail.com

    2014-10-15

    Organic Electronic devices like OLED, Organic Solar Cells etc are promising as, cost effective alternatives to their inorganic counterparts due to various reasons. However the organic semiconductors currently available are not attractive with respect to their high cost and intricate synthesis protocols. Here we demonstrate that Natural Rubber has the potential to become a cost effective solution to this. Here an attempt has been made to fabricate iodine doped poly isoprene based switching device. In this work Poly methyl methacrylate is used as dielectric layer and Aluminium are employed as electrodes.

  7. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    PubMed

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

  8. Materials science: Organic analogues of graphene

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Maryam; Rosei, Federico

    2017-02-01

    Chemists have long aspired to synthesize two-dimensional polymers that are fully conjugated -- an attribute that imparts potentially useful properties. Just such a material has been prepared using a solid-state polymerization reaction.

  9. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  10. Factors controlling the abundance of organic sulfur in flash pyrolyzates of Upper Cretaceous kerogens from Sergipe Basin, Brazil

    USGS Publications Warehouse

    Carmo, A.M.; Stankiewicz, B.A.; Mastalerz, Maria; Pratt, L.M.

    1997-01-01

    The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene + dec-1-ene) in the pyrolyzates is variable and may be related to changes in the type of primary organic input and/or to variations in rates of bacterial sulfate reduction. A concomitant increase in S/C and O/C ratios determined in situ using the electron microprobe is observed in AOM and alginites and may be related to a progressive oxidation of the organic matter during sulfurization. The S/C ratio of the AOM is systematically higher than the S C ratio of the alginites. Combined with a thiophene distribution characteristic of pyrolyzates of Type II organic matter, the higher S/C of AOM in Sergipe kerogens suggests that sulfurization and incorporation of low-molecular weight lipids derived from normal marine organic matter into the kerogen structure predominated over direct sulfurization of highly aliphatic algal biomacromolecules.The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene+dec-1-ene) in the pyrolyzates is variable and may be related to changes in

  11. X-ray characterization of solid small molecule organic materials

    SciTech Connect

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  12. MRFM System Design for the Study of Organic Materials

    NASA Astrophysics Data System (ADS)

    Smith, Doran; Kim, David

    2007-03-01

    We will present an overview of our program to develop an MRFM system specialized for the study of organic materials at 4 K. The system uses the SPAM geometry and the CERMIT protocol and is predicted to be capable of imaging organic materials in 3D. The MRFM probe head design will be overviewed and progress toward system completion will be discussed.

  13. THE ORGANIZATION OF NONBOOK MATERIALS IN SCHOOL LIBRARIES.

    ERIC Educational Resources Information Center

    HICKS, WARREN B.; TILLIN, ALMA M.

    A GENERAL GUIDE FOR CATALOGING AND PROCESSING OF NON-BOOK MATERIALS, THIS MANUAL WAS WRITTEN IN RESPONSE TO REQUESTS FOR ASSISTANCE IN ORGANIZING AUDIO-VISUAL MATERIALS FOR USE BY PUPILS AND TEACHERS IN CALIFORNIA SCHOOL LIBRARIES. AS SUCH, THE DECISIONS ON CATALOGING PROCEDURE ARE BASED UPON THE PRINCIPLE THAT THE ORGANIZATION OF ALL…

  14. Optics & Materials Science & Technology (OMST) Organization at LLNL

    SciTech Connect

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-11-30

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  15. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-12-09

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  16. Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra

    NASA Astrophysics Data System (ADS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2015-09-01

    Quantitative estimates of clay minerals on the martian surface, via remote sensing observations, provide constraints on activity, timing, duration, and extent of aqueous processes and the geochemical environment in martian history. We describe an analytical study to begin enabling quantitative estimates of phyllosilicates when mixed with martian analog materials. We characterize the chemistry, mineralogy, particle size distribution, and reflectance spectra of the end-member materials: saponite, montmorillonite, pyroxene, and palagonitic soil. Reflectance spectra were obtained for physical mixtures of saponite and montmorillonite with pyroxene, and saponite with palagonitic soil. We analyzed the diagnostic phyllosilicate spectral signatures in the 2.2-2.4 μm wavelength region in detail for the mixtures. This involved fitting the observed ∼2.3 or ∼2.2 μm band depth, associated with the presence of saponite and montmorillonite, respectively, as a function of the abundance of these materials in the mixtures. Based upon the band depth of the spectral features we find that 3-5 wt.% of the clay minerals in the mixture with pyroxene can be recognized and at 25 wt.% their presence is indisputable in the mixtures. When the saponite is mixed with the lower albedo palagonitic soil, its presence is clearly distinguishable via the 1.4 and 2.3 μm features at 25 wt.% abundance. These relationships, between abundance and band depth, provide an ability to quantitatively address the amount of these materials in mixtures. The trends described here provide guidance for estimating the presence of phyllosilicates in matrices on the martian surface.

  17. EDITORIAL Light-induced material organization Light-induced material organization

    NASA Astrophysics Data System (ADS)

    Vainos, Nikos; Rode, Andrei V.

    2010-12-01

    Light-induced material organization extends over a broad area of research, from photon momentum transfer to atoms, molecules and particles, serving the basis for optical trapping, and expands into the laser-induced changes of material properties through photopolymerization, photodarkening, and materials ablation. Relevant phenomena are observed over many orders of magnitude of light intensity, from a few kW cm-2 for the optical trapping of living cells to 1014 W cm-2 encountered in femtosecond laser micromachining and micro-explosion. Relevant interactions reveal a rich palette of novel phenomena in the solid state, from subtle excitations and material organization to phase transformations, non-equilibrium and transient states. The laser-induced material modifications relate to changes in the crystal structure and the molecular bonding, phase transitions in liquid state, ablation and plasma production associated with extreme pressure and temperature conditions towards entirely new states of matter. The underlying physical mechanisms form the foundations for micro-engineering photonic and other functional devices and lead the way to relevant applications. At the same time, they hold the potential for creating non-equilibrium material states and a range of fundamentally new products not available by other means. The fundamental understanding of both materials nature and functional behaviour will ultimately yield novel devices and improved performance in several fields. The far reaching goals of these studies relate to the development of new methods and technologies for micro- and nano-fabrication, not only offering a significant reduction of cost, but also expanding the fabrication capabilities into unexplored areas of biophotonics and nanotechnology. This special issue of Journal of Optics presents some very recent and exciting advances in the field of materials manipulation by laser beams, aiming to underline its current trends. In optical trapping research we

  18. Metal-Organic Frameworks as Platforms for Functional Materials.

    PubMed

    Cui, Yuanjing; Li, Bin; He, Huajun; Zhou, Wei; Chen, Banglin; Qian, Guodong

    2016-03-15

    Discoveries of novel functional materials have played very important roles to the development of science and technologies and thus to benefit our daily life. Among the diverse materials, metal-organic framework (MOF) materials are rapidly emerging as a unique type of porous and organic/inorganic hybrid materials which can be simply self-assembled from their corresponding inorganic metal ions/clusters with organic linkers, and can be straightforwardly characterized by various analytical methods. In terms of porosity, they are superior to other well-known porous materials such as zeolites and carbon materials; exhibiting extremely high porosity with surface area up to 7000 m(2)/g, tunable pore sizes, and metrics through the interplay of both organic and inorganic components with the pore sizes ranging from 3 to 100 Å, and lowest framework density down to 0.13 g/cm(3). Such unique features have enabled metal-organic frameworks to exhibit great potentials for a broad range of applications in gas storage, gas separations, enantioselective separations, heterogeneous catalysis, chemical sensing and drug delivery. On the other hand, metal-organic frameworks can be also considered as organic/inorganic self-assembled hybrid materials, we can take advantages of the physical and chemical properties of both organic and inorganic components to develop their functional optical, photonic, and magnetic materials. Furthermore, the pores within MOFs can also be utilized to encapsulate a large number of different species of diverse functions, so a variety of functional MOF/composite materials can be readily synthesized. In this Account, we describe our recent research progress on pore and function engineering to develop functional MOF materials. We have been able to tune and optimize pore spaces, immobilize specific functional groups, and introduce chiral pore environments to target MOF materials for methane storage, light hydrocarbon separations, enantioselective recognitions

  19. Continuous extraction of organic materials from water

    USGS Publications Warehouse

    Goldberg, M.C.; DeLong, L.; Kahn, L.

    1971-01-01

    A continuous liquid solvent extractor, designed to utilize organic solvents that are heavier than water, is described. The extractor is capable of handling input rates up to 2 liters per hour and has a 500-ml. extractant capacity. Extraction efficiency is dependent upon the p-value, the two solvent ratios, rate of flow of the aqueous phase, and rate of reflux of the organic phase. Extractors can be serially coupled to increase extraction efficiency and, when coupled with a lighter-than-water extractor, the system will allow the use of any immiscible solvent.

  20. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids.

    PubMed

    Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi

    2015-01-28

    Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.

  1. Organic polymer materials in the space environment

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2016-05-01

    The space environment is a complex environment full of microgravity, high vacuum, high and low temperature, strong radiation and plasma. Polymers used in the space environment will inevitably experience aging and degradation which result in changes of the material mechanics, physics and chemical properties, until they lose usefulness. To make a material that can be used for a long time and whose performance is not changed in the space environment, its ability to resist environmental factors must be excellent. Therefore, this paper provides an introduction to the harmful conditions in the space environment and their effects on the polymers, also it reviews the aging mechanisms of the adhesives used in the space environment and the effect of thermal cycling, stress, electromagnetic radiation and ionizing particles on the properties of polymers and optical devices, to provide the reference basis for selection, modification and reliability analysis of materials used in the space environment.

  2. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    technology and research towards finding new materials to improve the performance are underway. Conductive organic polymers have been proposed as...indigo carmine conjugated carbonyl organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications ...Final 3. DATES COVERED (From - To) 15 May 2013 – 14 May 2015 4. TITLE AND SUBTITLE Organic materials as Electrodes for Li-ion Batteries

  3. Cluster-based inorganic-organic hybrid materials.

    PubMed

    Schubert, Ulrich

    2011-02-01

    Clusters as building blocks have been used for two types of inorganic-organic hybrid materials. The first are hybrid polymers, with polymer-like properties and structures, where the cluster units crosslink the polymer chains. They are prepared by co-polymerization of organic monomers with functional ligands attached to the clusters. The second type is crystalline metal-organic framework structures which are obtained by coordination chemistry approaches, i.e. by coordinating multifunctional organic ligands to cluster units. This tutorial review shows that both types of cluster-based materials are limiting cases with many options for varying both the cluster units as well as the connecting organic entities.

  4. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  5. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  6. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  7. Weed seed persistence and microbial abundance in long-term organic and conventional cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed persistence in soil can be influenced by many factors, including crop management. This research was conducted to determine whether organic management systems with higher organic amendments and soil microbial biomass could reduce weed seed persistence compared to conventional management sy...

  8. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  9. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach

    USGS Publications Warehouse

    Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth

    2011-01-01

    Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial

  10. Flexible Organic Electronics in Biology: Materials and Devices.

    PubMed

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area.

  11. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Forest Service research paper

    SciTech Connect

    Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.; Cazares, E.; Bednar, L.F.

    1996-05-01

    Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole and crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.

  12. Zirconium and hafnium abundances in some lunar materials and implications of their ratios

    NASA Technical Reports Server (NTRS)

    Chyi, L. L.; Ehmann, W. D.

    1973-01-01

    A new rapid and precise analytical procedure for Zr and Hf has been applied to the study of lunar materials. The results indicate that the Zr/Hf ratios in lunar materials vary in a narrow range from 36.6 to 51.3 while their respective contents vary by a factor of 40. There is a strong Zr, Hf, and major element correlation. This correlation and the Zr and Hf systematics suggest that lunar materials fall into two groups. One group characterized by high Zr and Hf contents and higher Zr/Hf ratios corresponds to materials with a high KREEP content; the other characterized by low Zr and Hf contents and lower Zr/Hf ratios corresponds to materials with high Ti, Fe, Mn, and Mg contents. We believe that the modest Zr and Hf fractionation we observe is related to the extent of stabilization of the metals in the early titanium minerals and a charge disparity under extremely reduced conditions in which Zr exists as 3+, while Hf remains as 4+.

  13. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  14. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.

    PubMed

    Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2016-05-17

    Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.

  15. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials

    PubMed Central

    Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2016-01-01

    Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm2 over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2. PMID:27140621

  16. Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area

    NASA Astrophysics Data System (ADS)

    Pio, C. A.; Alves, C. A.; Duarte, A. C.

    Respirable suspended particles high-volume samples were collected from a coastal-rural site in the centre of Portugal in August 1997 and their solvent-extractable organic compounds were subjected to characterisation by gas chromatography-mass spectrometry. Particles were also analysed by a thermal/optical technique in order to determine their black and organic carbon content. The total lipid extract yields ranged from 20 to 63 μg m -3, containing mainly aliphatic hydrocarbons such as n-alkanes, acids, alcohols, aldehydes, ketones and polycyclic aromatic hydrocarbons. The higher input of vascular plant wax components was demonstrated by the distribution patterns of the n-alkanes, n-alkanoic acids and n-alkanols homologous series, with C max at C 29, C 22/C 24 and C 30, respectively. The CPI values for these series were in the range 1.8-9.7, being indicative of recent biogenic input from microbial lipid residues and flora epicuticular components. Specific natural constituents (e.g. phytosterols, terpenes, etc.) were identified as molecular markers. Some oxidation products from volatile organic precursors were also present in the aerosols. In addition, all samples had a component of petroleum hydrocarbons representing urban and vehicular emissions probably transported from the nearest cities and from the motorway in the vicinity. This data set could be used to make a mass balance with organic carbon, organic extracts and elutable matter, permitting also the comparison with lipid signatures observed for other regions.

  17. Porous materials: Lining up metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Champness, Neil R.

    2017-02-01

    A new report demonstrates an innovative approach to aligning crystallites of metal-organic frameworks such that thin films are created with oriented channels -- potentially overcoming one of the major barriers to application of these highly topical materials.

  18. Can heavy isotopes increase lifespan? Studies of relative abundance in various organisms reveal chemical perspectives on aging

    PubMed Central

    2016-01-01

    Stable heavy isotopes co‐exist with their lighter counterparts in all elements commonly found in biology. These heavy isotopes represent a low natural abundance in isotopic composition but impose great retardation effects in chemical reactions because of kinetic isotopic effects (KIEs). Previous isotope analyses have recorded pervasive enrichment or depletion of heavy isotopes in various organisms, strongly supporting the capability of biological systems to distinguish different isotopes. This capability has recently been found to lead to general decline of heavy isotopes in metabolites during yeast aging. Conversely, supplementing heavy isotopes in growth medium promotes longevity. Whether this observation prevails in other organisms is not known, but it potentially bears promise in promoting human longevity. PMID:27554342

  19. Abundance and diversity of total and nitrifying prokaryotes as influenced by biochemical quality of organic inputs combined with mineral nitrogen

    NASA Astrophysics Data System (ADS)

    Muema, Esther; Vanlauwe, Bernard; Röhl, Carolin; Cadisch, Georg; Rasche, Frank

    2014-05-01

    Ammonia-oxidizing bacteria and archaea (AOB, AOA) co-exist in soil, but they respond differently to distinct fertilization strategies in agricultural soils. Accordingly, effects of organic inputs and combination with mineral nitrogen (N) on AOB and AOA remain poorly understood. The aim of this study was to compare soil amendment with contrasting quality of organic inputs (i.e., high quality Tithonia diversifolia (TD; C/N ratio: 13, Lignin: 8.9 %; Polyphenols: 1.7 %), intermediate quality Calliandra calothyrsus (CC; 13; 13; 9.4) and low quality Zea mays (ZM; 59; 5.4; 1.2)), and combination with mineral N on the abundance (i.e., DNA-based gene quantification) and community structure (i.e., T-RFLP analysis) of total bacterial and archaea (16S rRNA gene), as well as AOB and AOA (targeting the amoA gene) communities in a Humic Nitisol. Soils (0-15 cm depth) were sampled prior to the onset of the rainy season in March 2012 in a 10 years old field experiment established in the central highlands of Kenya in 2002. Since the start of the experiment, organic inputs were applied annually at a rate of 4 Mg C ha-1 and mineral N twice a year as calcium ammonium nitrate (5Ca(NO3)2NH4NO3) at a rate of 120 kg N ha-1 growing season-1. Quality of organic inputs posed only a significant effect on the AOB community structure between TD versus ZM and CC versus ZM. Moreover, TD significantly increased the size of AOB over ZM input, while higher abundances for total bacteria, total archaea and AOA were measured in ZM and TD over CC. This was explained by high and available N in TD, but low lignin and polyphenol contents in TD and ZM as opposed to CC. AOB responded sensitively (i.e., complete community structure separation) to mineral N, specifically when combined with low quality ZM. Hence, AOB community was specifically responsive to quality of organic inputs and combination of low organic input with mineral N over AOA and total prokaryotic communities in the studied soil. The results

  20. Abundance and Characterization of Dissolved Organic Carbon in Suburban Streams of Baltimore, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Mora, G.; Fazekas, M.

    2014-12-01

    The contribution of streams and rivers to the carbon cycle is significant, transporting to the oceans ~1.4 Pg C/yr, with dissolved carbon corresponding to as much as 0.7 Pg C/yr. Changes in land use have the potential effect of modifying this flux, particularly in urban areas where impervious areas are common. To investigate the effect of urbanization on riverine carbon transport, we studied four first-order streams in Towson, a suburb of Baltimore, Maryland, USA. The watersheds from the studied streams exhibit different levels of urbanization as measured by the percentage of impervious areas. Samples from these four streams were taken weekly, and several chemical constituents were measured either in the field or in the laboratory. These constituents included nitrate, dissolved organic nitrogen, pH, dissolved organic carbon (DOC), total carbon, dissolved inorganic carbon (DIC), phosphate, the carbon isotopic compositions of DOC and DIC, and fluorescence intensity of the DOC. Results show that DOC concentrations were consistently below 5 mg C/L regardless of the level of imperviousness of the watershed. Similarly, carbon isotope ratios were consistent across the studied streams, with values centered around -26.4 per mil, thus suggesting a significant influx of soil-derived organic carbon originated from C3 plants that are common in the watersheds. Confirming this interpretation, fluorescence spectroscopy data suggest a humic-like origin for the DOC of the streams, thus pointing to the heterotrophic nature of the streams. The combined results suggest that the studied streams exhibit similar DOC concentrations, carbon isotopic values, and fluorescence spectra, despite their level of impervious surfaces in their watersheds.

  1. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials

    DTIC Science & Technology

    2015-11-12

    thermoelectric effects in organic materials-based vertical conductor/ polymer /conductor thin-film devices. 40 50 60 70 0 400 800 1200 1600 Au/P(VDF-TrFE...States in Organic Semiconducting Polymer MEH-PPV Based on Multi-layer Electrode/ Polymer /Electrode Thin-Film Structure Ling Xu, Yuchun Liu, Matthew...Phys. Chem. C. 117,14136-14140, 2013 15. Enhancing Seebeck Effects by Using Excited States in Organic Semiconducting Polymer MEH-PPV Based on Multi

  2. Abundance of organic compounds photochemically produced in the atmospheres of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Raulin, F.; Bossard, A.; Toupance, G.; Ponnamperuma, C.

    1979-01-01

    Organic photochemical syntheses in the Jovian atmosphere was simulated by irradiating, at 147 nm, gaseous mixtures of methane and ammonia with varying amounts of hydrogen. Some results relevant to the photochemistry of the Jupiter atmosphere at several tens of kilometers above the clouds were obtained: (1) a favorable effect of the pressure of high amounts of H2 on the yield of hydrocarbon synthesis when NH3 is mixed with CH4; (2) a very low yield of synthesis of unsaturated hydrocarbons in such conditions; and (3) the possibility of formation of detectable amounts of HCN and CH3CN.

  3. Organic light emitting device architecture for reducing the number of organic materials

    DOEpatents

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  4. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F.; Forrest, Stephen R.

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  5. New Directions for Organic Spintronics: Novel Materials and Emergent Phenomena

    NASA Astrophysics Data System (ADS)

    Johnston-Halperin, Ezekiel

    Organic and organic-based materials are attractive candidates for applications in magnetoelectronics and spintronics due to their low cost, ease of fabrication, and low spin-orbit coupling (and consequently long spin lifetimes). However, in comparison to the case for inorganic systems, robust intrinsic magnetic ordering in this class of materials is exceedingly rare and as a result the potential of these materials has yet to be fully realized. Here we present a series of recent breakthroughs in the synthesis, encapsulation, and measurement of organic-based magnets that lay the foundation for all organic magnetoelectronic and spintronic devices. We will discuss advances in encapsulation strategies that allow lifetimes of up to 1 month in air for functional magnetoelectronic devices, the use of ligand substitution to generate a library of related magnetic materials, the growth of all-organic and hybrid organic/inorganic magnetic heterostructures, and measurements of the magnetization dynamics that reveal ferromagnetic resonance (FMR) linewidths of ~1 G, comparable to or narrower than corresponding measurements in yttrium iron garnet (YIG). These results establish the validity of organic-based magnets for applications in next-generation magnetoelectronics and provide unique leverage on long-standing challenges in the field of organic spintronics. For example, organic magnetic heterostructures promise to provide an exciting opportunity to explore exchange, dynamic spin injection, and spin transport in all-organic spintronic devices. This work was supported in part by NSF DMR-1507775 and the Center for Emergent Materials (an NSFMRSEC; Award Number DMR-1420451) at The Ohio State University.

  6. Photoconversion of organic materials into single-cell protein

    DOEpatents

    Weaver, Paul F.

    2001-01-01

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be as high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  7. Photoconversion of organic materials into single-cell protein

    SciTech Connect

    Weaver, P.F.

    1991-12-31

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  8. Organic materials and devices for detecting ionizing radiation

    DOEpatents

    Doty, F. Patrick; Chinn, Douglas A.

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  9. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    DTIC Science & Technology

    2014-03-06

    Microscopy Research, 2012, 7, 158-169. Organic photovoltaic materials, hybrid organic devices, solar cells 6 1 FINAL TECHNICAL REPORT 1... hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an

  10. Effect of flagellates on free-living bacterial abundance in an organically contaminated aquifer

    USGS Publications Warehouse

    Kinner, N.E.; Harvey, R.W.; Kazmierkiewicz-Tabaka, M.

    1997-01-01

    Little is known about the role of protists in the saturated subsurface. Porous media microcosms containing bacteria and protists, were used to determine whether flagellates from an organically contaminated aquifer could substantively affect the number of free- living bacteria (FLB). When flagellates were present, the 3-40% maximum breakthrough of fluorescent y labelled FLB injected into the microcosms was much lower than the 60-130% observed for killed controls Grazing and clearance rates (3-27 FLB flag-1 h-1 and 12-23 nI flag-1 h-1, respectively) calculated from the data were in the range reported for flagellates in other aqueous environments. The data provide evidence that flagellate bacterivory is an important control on groundwater FLB populations.

  11. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Penn, Benjamin G.; Smith, David D.; Witherow, William K.; Paley, Mark S.; Abdeldayem, Hossin A.

    1997-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organics which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials.

  12. Organic (opto)electronic materials: understanding charge carrier dynamics

    NASA Astrophysics Data System (ADS)

    Ostroverkhova, Oksana

    2008-05-01

    There is growing interest in using organic (opto)electronic materials for applications in electronics and photonics. In particular, organic semiconductor thin films offer several advantages over traditional silicon technology, including low-cost processing, the potential for large-area flexible devices, high-efficiency light emission, and widely tunable properties through functionalization of the molecules. Over the past decade, remarkable progress in materials design and purification has been made, which led to applications of organic semiconductors in light-emitting diodes, polymer lasers, photovoltaic cells, high-speed photodetectors, organic thin-film transistors, and many others. Most of the applications envisioned for organic semiconductors rely on their conductive or photoconductive properties. However, despite remarkable progress in organic electronics and photonics, the nature of charge carrier photogeneration and transport in organic semiconductors is not completely understood and remains controversial, partly due to difficulties in assessing intrinsic properties that are often masked by impurities, grain boundaries, etc. Measurements of charge carrier dynamics at picosecond time scales after excitation reveal the intrinsic nature of mobile charge carriers before they are trapped at defect sites. In this presentation, I will review the current state of the field and summarize our recent results on photoconductivity of novel high-performance organic semiconductors (such as functionalized pentacene and anthradithiophene thin films) from picoseconds to seconds after photoexcitation. Photoluminescent properties of these novel materials will also be discussed.

  13. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  14. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  15. Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Ichikawa, Shoko

    2015-01-01

    Conducting polymers have received much attention recently as organic thermoelectric materials, because of such advantages as plentiful resources, easy synthesis, easy processing, low cost, low thermal conductivity, and easy fabrication of flexible, light, and printable devices with large area. Many reports on organic thermoelectric materials have recently been published. We have studied conducting polymers as organic thermoelectric materials since 1999. During these investigations, we found that the thermal conductivity of conducting polymers did not increase even though electrical conductivity increased; this was a major advantage of conducting polymers as organic thermoelectric materials. We also observed that molecular alignment was one of the most important factors for improvement of the thermoelectric performance of conducting polymers. Stretching of conducting polymers or their precursors was one of the most common techniques used to achieve good molecular alignment. Recently, alignment of the clusters of conducting polymers by treatment with solvents has been proposed as a means of achieving high electrical conductivity. Hybridization of conducting polymers with inorganic nanoparticles has also been found to improve thermoelectric performance. Here we present a brief history and discuss recent progress of research on conducting polymers as organic thermoelectric materials, and describe the techniques used to improve thermoelectric performance by treatment of conducting polymers with solvents and hybridization of conducting polymers with Bi2Te3 and gold nanoparticles.

  16. Organic materials for second harmonic generation. Final report

    SciTech Connect

    Twieg, R.J.

    1985-03-31

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  17. Effect of natural organic materials on cadmium and neptunium sorption

    SciTech Connect

    Kung, K.S.; Triay, I.R.

    1994-10-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study.

  18. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished

  19. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    PubMed

    Wong, Michael Y; Zysman-Colman, Eli

    2017-03-03

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs.

  20. Low abundance materials at the mars pathfinder landing site: An investigation using spectral mixture analysis and related techniques

    USGS Publications Warehouse

    Bell, J.F.; Farrand, W. H.; Johnson, J. R.; Morris, R.V.

    2002-01-01

    Recalibrated and geometrically registered multispectral images from the Imager for Mars Pathfinder (IMP) were analyzed using Spectral Mixture Analysis (SMA) and related techniques. SMA models a multispectral image scene as a linear combination of end-member spectra, and anomalous materials which do not fit the model are detected as model residuals. While most of the IMP data studied here are modeled generally well using "Bright Dust," "Gray Rock," and "Shade" image endmembers, additional anomalous materials were detected through careful analysis of root mean square (RMS) error images resulting from SMA. For example, analysis of SMA fraction and RMS images indicates spectral differences within a previously monolithologic Dark Soil class. A type of Dark Soil that has high fractional abundances in rock fraction images (Gray Rock Soil) was identified. Other anomalous materials identified included a previously noted "Black Rock" lithology, a class of possibly indurated, compacted, or partially cemented soils ("Intermediate Soil"), and a unit referred to as "Anomalous Patches" on at least one rock. The Black Rock lithology has a strong 900-1000-nm absorption, and modeling of the derived image endmembers using a laboratory reference endmember modeling (REM) approach produced best-fit model spectra that are most consistent with the presence of high-Ca pyroxenes and/or olivine, crystalline ferric oxide minerals, or mixtures of these materials as important components of the Black Rock endmember. More unique mineralogic identifications could not be obtained using our initial REM analyses. Both Intermediate Soil and Anomalous Patches units exhibit a relatively narrow 860-950-nm absorption that is consistent with the presence of either low-Ca pyroxenes or a cementing crystalline ferric oxide mineral. ?? 2002 Elsevier Science (USA).

  1. Structure and Dynamics of a Model Discotic Organic Conducting Material

    NASA Astrophysics Data System (ADS)

    Zbiri, Mohamed; Haverkate, Lucas A.; Kearley, Gordon J.; Johnson, Mark R.; Mulder, Fokko M.

    2016-10-01

    Organic conducting materials exhibit promising functionalities, inducing hence a keen interest due to their potential use as a next generation photoconverters. However, unlike the more expensive inorganic analogues, the underlying properties that give rise to these advantages also cause organic materials to be inherently inefficient as photovoltaics. Understanding their properties at the microscopic level is a major step towards an efficient and targeted design. We probed the morphological and dynamical aspects of a model organic discotic liquid crystal material hexakis(n-hexyloxy)triphenylene (HAT6) by using neutron-based diffraction and quasielastic scattering techniques to gain deeper insights into structure and dynamics. The neutron measurements are accompanied, in a synergistic way, by molecular dynamics simulations for the sake of the analysis and interpretation of the observations

  2. The Survival of Presolar Organic Material in CR Chondrites?

    NASA Astrophysics Data System (ADS)

    Ash, R. D.; Morse, A. D.; Pillinger, C. T.

    1993-07-01

    The CR chondrites are now well established as an entity to be considered alongside other carbonaceous chondrites and can no longer be classified as a subset of another group. The isotopic composition of nitrogen and hydrogen in these meteorites is diagnostic of the group, each being highly enriched in the heavy isotope. The source and history of these isotopic signatures can be explained by the survival of presolar organic materials in these meteorites. Astronomical Observations of organic material in interstellar clouds imply D/H ratios in the region of 1 (ca. 10^6%o). The much lower observed meteoritic deuterium overabundance (up to 5750%o [1]) is generally attributed to the survival of small quantities of presolar organic material, but in a form much diluted by solar system-produced material. The concentration of deuterium observed in the interstellar cloud organics is produced by low temperature ion-molecule reactions and a similar, but smaller scale, phenomenon in ^15N distribution has been postulated by some authors [2] with some astronomical measurements appearing to support this [3,4]. From chemical considerations it is not feasible for the carbon to produce such isotopic signatures from interstellar chemical reactions. While deuterium enrichments accompanied by ^15N enrichments have been found in some meteorites (e.g. Semarkona Delta D = +5740%o [5], Delta^15N = +65%o) the effects in nitrogen are generally small. The CR chondrites, however, show an enrichment in both deuterium (up to +1300%o for whole rock values) and a substantial enrichment in ^15N (up to +185%o) and some authors have postulated a possible correlation of ^15N and deuterium ennchments [e.g., 6]. New data obtained by stepped combustion support this hypothesis (see Fig. 1), and also show that the material is carbonaceous and burns at a low (<500 degrees C) temperature suggesting an organic nature. The stepped combustion allows the nitrogen isotopic composition of the organic material to be

  3. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  4. Inorganic-Organic Polymers and Their Role in Materials Science

    DTIC Science & Technology

    1994-05-18

    for the synthesis of organic polymer as polyamides and polysme and of totally iorganc polymers such as polyuilicases and poloons of a different kind...This document has been approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) The design and synthesis of new...organic./ inorganic materials, synthesis , phosphazenes 30 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY

  5. Advances in Organic Near-Infrared Materials and Emerging Applications.

    PubMed

    Qi, Ji; Qiao, Wenqiang; Wang, Zhi Yuan

    2016-06-01

    Much progress has been made in the field of research on organic near-infrared materials for potential applications in photonics, communications, energy, and biophotonics. This account mainly describes our research work on organic near-infrared materials; in particular, donor-acceptor small molecules, organometallics, and donor-acceptor polymers with the bandgaps less than 1.2 eV. The molecular designs, structure-property relationships, unique near-infrared absorption, emission and color/wavelength-changing properties, and some emerging applications are discussed.

  6. Marking of organic materials by CO2 laser beam scanning

    NASA Astrophysics Data System (ADS)

    Dumitras, Dan C.; Chitu, Livia; Blanaru, Constantin; Cernat, Ramona C.; Bucatica, Irina Alexandra L.; Puiu, Adriana P.

    2003-11-01

    CO2 laser beam scanning method was used for marking of organic materials (leather, paper, wood) both in continuous wave and in pulsed regime. The computer controlled X-Y galvometric scanner and the software developed for this application control every parameter of irradiation and allow programmable marking of simple marks, logos, alphanumeric characters, filled text, codes, graphics, or highly complex drawings and images. The factors influencing the quality of the marking were analyzed and the irradiation conditions were optimized to produce marks on organic materials with a quality imposed by industry standards.

  7. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    PubMed

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  8. The rise of organic electrode materials for energy storage.

    PubMed

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  9. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures.

    PubMed

    Zhao, Li-Dong; Lo, Shih-Han; He, Jiaqing; Li, Hao; Biswas, Kanishka; Androulakis, John; Wu, Chun-I; Hogan, Timothy P; Chung, Duck-Young; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2011-12-21

    Lead sulfide, a compound consisting of elements with high natural abundance, can be converted into an excellent thermoelectric material. We report extensive doping studies, which show that the power factor maximum for pure n-type PbS can be raised substantially to ~12 μW cm(-1) K(-2) at >723 K using 1.0 mol % PbCl(2) as the electron donor dopant. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding selected metal sulfide phases. The thermal conductivity at 723 K can be reduced by ~50%, 52%, 30%, and 42% through introduction of up to 5.0 mol % Bi(2)S(3), Sb(2)S(3), SrS, and CaS, respectively. These phases form as nanoscale precipitates in the PbS matrix, as confirmed by transmission electron microscopy (TEM), and the experimental results show that they cause huge phonon scattering. As a consequence of this nanostructuring, ZT values as high as 0.8 and 0.78 at 723 K can be obtained for nominal bulk PbS material. When processed with spark plasma sintering, PbS samples with 1.0 mol % Bi(2)S(3) dispersion phase and doped with 1.0 mol % PbCl(2) show even lower levels of lattice thermal conductivity and further enhanced ZT values of 1.1 at 923 K. The promising thermoelectric properties promote PbS as a robust alternative to PbTe and other thermoelectric materials.

  10. Electro-optic studies of novel organic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun

    1997-11-01

    Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.

  11. Localized aliphatic organic material on the surface of Ceres.

    PubMed

    De Sanctis, M C; Ammannito, E; McSween, H Y; Raponi, A; Marchi, S; Capaccioni, F; Capria, M T; Carrozzo, F G; Ciarniello, M; Fonte, S; Formisano, M; Frigeri, A; Giardino, M; Longobardo, A; Magni, G; McFadden, L A; Palomba, E; Pieters, C M; Tosi, F; Zambon, F; Raymond, C A; Russell, C T

    2017-02-17

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  12. Localized aliphatic organic material on the surface of Ceres

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2017-02-01

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  13. Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials

    NASA Technical Reports Server (NTRS)

    Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John

    1987-01-01

    Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.

  14. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries.

    PubMed

    Hubbell, Margaret C; Semotiuk, Andrew J; Thorpe, Richard B; Adeoye, Olayemi O; Butler, Stacy M; Williams, James M; Khorram, Omid; Pearce, William J

    2012-11-15

    Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility.

  15. Nanostructured Interfaces for Organized Mesoscopic Biotic-Abiotic Materials

    DTIC Science & Technology

    2011-09-30

    material for lithium batteries and solar cells . Previously, the proteins silicatein, lysozyme, silaffins, and amino- acids have been employed for...a fundamental basis for prospective ultra-sensing platform from hybrid organized nanomaterials for chemical, optical, and biological applications...with potential for dramatic miniaturization and superior sensitivity of lightweight hybrid sensor arrays. Students trained in this field will form a

  16. Magneto-optical activity in organic thin film materials

    NASA Astrophysics Data System (ADS)

    Vleugels, Rick; de Vega, Laura; Brullot, Ward; Verbiest, Thierry; Gómez-Lor, Berta; Gutierrez-Puebla, Enrique; Hennrich, Gunther

    2016-12-01

    A series of CF3-capped phenylacetylenes with varying symmetry is obtained by a conventional palladium-catalyzed cross-coupling protocol. The phenylacetylene targets form thin films both, liquid crystalline (LC) and crystalline in nature depending on their molecular structure. The magneto-optical activity of the resulting organic material is extraordinarily high as proved by Faraday rotation spectroscopy on thin film devices.

  17. Solar System Connections to the Organic Material In the ISM

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.

    2003-01-01

    The organic component of the interstellar medium (ISM) has relevance to the formation of the early solar nebula, since our solar system formed out of ISM material. Comparisons of near infrared spectra of the diffuse ISM dust with those of primitive solar system bodies (such as comets and meteorites) show a remarkable similarity, suggesting that perhaps some of the interstellar organic material made its way, unaltered, into our solar system. Tracing the interstellar organic material is necessary to understand how these materials may be important links in the development of prebiotic phenomena. Studies of the ISM reveal that the organic refractory component of the diffuse ISM is largely hydrocarbon in nature, possessing little N or O, with carbon distributed between the aromatic and aliphatic forms. There is a strong similarity in the near IR spectra of the diffuse ISM (the 3.4 micron hydrocarbon bands) and those seen in the Murchison and Orgueil meteorites, however, detailed comparisons at longer wavelengths reveal critical dissimilarities. Here we will present comparisons and discussion of relevant spectra. As we continue to explore, we will gain insight into the connection between planetesimals in the solar system and chemistry in the dusty space between the stars.

  18. Synthesis of phthalocyanine derivatives as materials for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Collazo-Ramos, Aura

    Organic photovoltaics (OPVs) are used to convert sunlight into electricity by using thin films of organic semiconductors. OPVs have the potential to produce low cost, lightweight, flexible devices with an eased manufacturing process. This technology contains the potential to increase the use of clean, sustainable solar energy, helping manage the global energy and environmental crisis that results majorly from the constant use of fossil fuels as an energy source. The ability to modulate the physical properties of organic molecules by tuning their chemical structure is an advantage for OPVs. Phthalocyanines (Pcs) are highly pi-conjugated synthetic porphyrin analogs that have been explored as active layer components in OPVs due to their high extinction coefficients and hole mobilities. The Pc structure can be modified by the introduction of metals in the core and the incorporation of substituents into the periphery. These modifications tend to tune the solubility, photophysical properties and condensed phase organization of Pcs. The research work in this dissertation describes improved methods towards substituted Pc derivatives addressing: (1) the use of mass spectrometry techniques for Pcs characterization, (2) efforts to achieve materials with near-infrared (NIR) absorption, and (3) the potential of Pc as electron-acceptor materials. Herein, the synthesis of a series of asymmetric and symmetric metallated Pcs has been established, which resulted in interesting chemical, photophysical and electrochemical properties. The materials investigated in this thesis increase the potential of Pcs as organic semiconductors for OPVs.

  19. Small organic molecular imprinted materials: their preparation and application.

    PubMed

    Jiang, Xiaoman; Jiang, Na; Zhang, Haixia; Liu, Mancang

    2007-09-01

    Molecular imprinting is a technique for preparing polymeric materials that are capable of recognizing and binding the desired molecular target with a high affinity and selectivity. The materials can be applied to a wide range of target molecules, even those for which no natural binder exists or whose antibodies are difficult to raise. The imprinting of small organic molecules (e.g., pharmaceuticals, pesticides, amino acids, steroids, and sugars) is now almost routine. In this review, we pay special attention to the synthesis and application of molecular imprinted polymer (MIPs) imprinted with small organic molecules, including herbicides, pesticides, and drugs. The advantages, applications, and recent developments in small organic molecular imprinted technology are highlighted.

  20. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  1. The polymer-like organic material in the Orgueil meteorite

    NASA Technical Reports Server (NTRS)

    Bandurski, E. L.; Nagy, B.

    1976-01-01

    Results are reported for analysis of polymeric organic material contained in powder from the Orgueil chondrite, using a stepwise high-vacuum pyrolysis-gas chromatography-mass spectrometry technique. Pyrolysis products obtained include a series of alkanes and alkenes to C8, an extensive series of alkylbenzene isomers, thiophene, alkylthiophenes, benzothiophene, acetonitrile, acrylonitrile, benzonitrile, acetone, and phenol. Most of these products are shown to be similar both qualitatively and quantitatively to those previously obtained from solvent-extracted Allende powder, indicating a basically aromatic and heteroaromatic polymer matrix with short aliphatic bridges or side chains. The production of acrylonitrile, acetonitrile, and benzonitrile (common breakdown products of amino acids) from the insoluble organic material is taken to suggest that amino acids exist in an insoluble form, perhaps as peptides, in the meteorite's polymeric component. Similarities between the structure of the Orgueil polymeric material and terrestrial kerogen are discussed which raise the possibility that both might have been produced in part by similar reactions.

  2. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes.

    PubMed

    Parnaudeau, V; Condom, N; Oliver, R; Cazevieille, P; Recous, S

    2008-04-01

    Both dilute and concentrated vinasse can be spread on agricultural fields or used as organic fertilizer. The effects of different characteristics of the original raw material on the biochemical composition of vinasse and their C and N mineralization in soil were investigated. Vinasse samples were obtained from similar industrial fermentation processes based on the growth of microorganisms on molasses from different raw material (sugar beet or sugar cane) and vinasse concentration (dilute or concentrated). The nature of the raw material used for fermentation had the greatest effect on the nature and size of the resistant organic pool. This fraction included aromatic compounds originating from the raw material or from complex molecules and seemed to be quantitatively related to acid-insoluble N. Samples derived from sugar beet were richer in N compounds and induced greater net N mineralization. The effect of evaporation varied with the nature of the raw material. Concentration led to a slight increase in the abundance of phenolic compounds, acid-insoluble fraction, and a slight decrease in the labile fraction of vinasses partly or totally derived from sugar beet. The effect of the dilute vinasse from sugar cane was greater. The concentrated vinasse had a smaller labile fraction, induced N immobilization at the beginning of incubation, and exhibited greater N concentration in the acid-insoluble fraction than the dilute vinasse.

  3. New fabrication method of metallic closed cellular materials containing organic materials

    NASA Astrophysics Data System (ADS)

    Kishimoto, Satoshi; Shinya, Norio

    2004-07-01

    New method to fabricate the metallic closed cellular material containing organic materials for the damping systems has been developed. Powder particles of polystyrene coated with a nickel-phosphorus alloy layer using electro-less plating were pressed into pellets and sintered at high temperatures by a furnace and a spark plasma sintering (SPS) system. A metallic closed cellular material containing polystyrene was then fabricated. The physical, mechanical and damping properties of this material were measured. The density of this material is smaller than that of other structural metals. The results of the compressive tests show that this material has the different stress-strain curves among the specimens that have different thickness of the cell walls and the sintering temperatures of the specimens affect the compressive strength of each specimen. Also, it seems that the results of the compressive tests show that this material has high-energy absorption and Young's modulus of this material depends on the thickness of the cell walls. The loss factor of this material was measured and the results show that this material has a large loss factor than that of structural metals. These obtained results emphasize that this metallic closed cellular material can be utilized as energy absorbing material and passive damping material.

  4. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  5. Isotopic characterisation of prebiotic synthesis of organic material

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Chang, S.

    1986-01-01

    Many primitive meteorites contain an insoluble organic material, much like terrestrial kerogen, whose mode of origin is currently unknown. When sujbected to stepwise decomposition, this material, unlike its terrestrial counterpart, reveals characteristic release patterns for the stable isotopes of carbon, hydrogen and nitrogen as a function of fractional release of each element. The purpose of this study is to try to match those release patterns using organic matter synthesised in the laboratory under controlled conditions. If successful, such a study would shed light on the origin of kerogen-like organic matter in the early solar system and, by extension, on prebiotic organic synthesis in general. The range of possible syntheses, starting materials and reaction conditions to be investigated is considerable. Samples analysed to date include: a heavy oil produced by Fischer-Tropsch-type catalysis of CO + H2; a solid residue generated by a plasma discharge in CO + H2 + N2; a solid deposited on the electrodes of a Miller-Urey synthesis operating on CH4 + H2O + N2; and a solid residue formed by polymerization of light hydrocarbons procured by a Miller-Urey discharge acting on CH4. Significant structure is observed in the release patterns for the carbon and hydrogen isotopes from the synthetic samples, though there is little evidence for isotopic fractionation during the analysis itself.

  6. Graphene - a promising material for organic photovoltaic cells.

    PubMed

    Wan, Xiangjian; Long, Guankui; Huang, Lu; Chen, Yongsheng

    2011-12-01

    As a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal, and mechanical properties, graphene has been proposed for many applications. In this Progress Report we summarize and discuss comprehensively the advances made so far for applications of graphene in organic photovoltaic (OPV) cells, including that for transparent electrodes, active layers and interfaces layer in OPV. It is concluded that graphene may very likely play a major role in new developments/improvements in OPVs. The future studies for this area are proposed to focus on the following: i) improving the conductivity without comprising the transparency as a transparent electrode material; ii) controlling the sheet sizes, band structure and surface morphology for use as a electron acceptor material, and iii) controlling and improving the functionalization and compatibility with other materials as interface layer material.

  7. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set.

  8. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants

    PubMed Central

    Albertsen, Mads; McIlroy, Simon J.; Stokholm-Bjerregaard, Mikkel; Karst, Søren M.; Nielsen, Per H.

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  9. Structural Organization of {pi} Conjugated Highly Luminescent Molecular Material

    SciTech Connect

    Toudic, B.; Limelette, P.; Le Gac, F.; Moreac, A.; Rabiller, P.; Froyer, G.

    2005-11-18

    We report on striking evidence for a room temperature structural phase instability in p-hexaphenyl, inducing a nonplanar conformation of the molecules. Solid state proton NMR and single crystal x-ray diffraction allow the analysis of the organization, the individual dynamics and the involved symmetry breaking. The analysis of Raman spectra above and below room temperature reveals a singular behavior suggesting a modification of the overlap between the electronic wave function induced by the nonplanarity. These results provide a new basis to answer fundamental issues related to molecular and electronic materials and, in particular, luminescent organic devices.

  10. Purely organic electroluminescent material realizing 100% conversion from electricity to light.

    PubMed

    Kaji, Hironori; Suzuki, Hajime; Fukushima, Tatsuya; Shizu, Katsuyuki; Suzuki, Katsuaki; Kubo, Shosei; Komino, Takeshi; Oiwa, Hajime; Suzuki, Furitsu; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya

    2015-10-19

    Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activated delayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state. The material contains electron-donating diphenylaminocarbazole and electron-accepting triphenyltriazine moieties. The typical trade-off between effective emission and triplet-to-singlet up-conversion is overcome by fine-tuning the highest occupied molecular orbital and lowest unoccupied molecular orbital distributions. The nearly zero singlet-triplet energy gap, smaller than the thermal energy at room temperature, results in an organic light-emitting diode with external quantum efficiency of 29.6%. An external quantum efficiency of 41.5% is obtained when using an out-coupling sheet. The external quantum efficiency is 30.7% even at a high luminance of 3,000 cd m(-2).

  11. Parameters for the Pyrolysis of Organic Material - Perchlorate Mixtures

    NASA Astrophysics Data System (ADS)

    Steininger, Harald; Goesmann, Fred; Goetz, Walter

    2013-04-01

    The ESA-lead Mars rover ExoMars (launch in 2018) will carry a suit of instruments, one of the in-struments is the Mars Organic Molecule Analyzer MOMA. Organic material in the Martian soil will be either pyrolyzed at temperatures of up to 1000°C and separated by gas chromatography or volatilized with the help of an UV-laser. A mass spectrometer will be the detector for both methods. Chlorinated organics have been detected in pyroly-sis GC-MS experiments on Mars two times. The first time during the Viking mission in 1976 and a second time with the Sample Analysis on Mars (SAM) in-strument onboard the Curiosity rover in 2012. [1] [2] The presence of perchlorates found by the Phoenix mission in 2008 [3] lead to the discovery that organic molecules not only get oxidized during pyrolysis, but also chlorinated organic compounds can be pro-duced. [4] The parameters used for pyrolysis and the sample composition especially the distribution of organics and perchlorates within the sample and the concentrations of organics and perchlorate have a huge influence on the products created. It is possible to change the condi-tions of the pyrolysis by spatially separating the organ-ics from the perchlorates that the chloromethanes get the major product of the pyrolysis. This might help to understand the results of the (SAM) instrument yield-ing mono-, di- and trichloromethane and a chlorinated 4-hydrocarbon molecule. References: [1] Biemann K et al. (1977) JGR, 82, 4641-4658. [2] Grotzinger J. P et al. (2011) AGU Fall Meeting U13A-01 [3] Hecht M. H., et al. (2009) Science, 325 64-67. [4] Steininger H., Goesmann F., Goetz W. (2011) Planet. & Space Sci., 71, 9-17. Acknowledgments: This work was funded by DLR (FKZ 50QX1001)

  12. Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.

    2014-12-01

    Particle composition measurements indicate that organic aerosol (OA) makes up ~20-90% of submicron particulate mass and secondary OA (SOA) accounts for a large fraction (~ 72 ±21%) of these OA masses at many locations around the globe. The volatility changes of secondary organic gases (SOG) associated with oxidation aging as well as the contribution of highly oxidized low volatile SOG (LV-SOG) to the condensational growth of secondary particles have been found to be important in laboratory and field measurements but are poorly represented in global models. A novel scheme to extend the widely used two-product SOA formation model, by adding a third product arising from the oxidation aging (i.e., LV-SOG) and considering the dynamic transfer of mass from higher to lower volatile products, has been developed and implemented into a global chemical transport model (GEOS-Chem) and a community atmosphere model (CESM-CAM5). The scheme requires only minor changes to the existing two-product SOA formation model and is computationally efficient. With the oxidation rate constrained by laboratory measurements, we show that the new scheme predicts a much higher SOA mass concentrations, improving the agreement with aerosol mass spectrometer SOA measurements. The kinetic condensation of LV-SOG on ultrafine particles, simulated by a size-resolved (sectional) advanced particle microphysics (APM) model incorporated into in GEOS-Chem and CAM5, increases the particle growth rate substantially and improves the agreement of simulated cloud condensation nuclei (CCN) concentrations with observations. Based on GEOS-Chem-APM simulations, the new SOA formation scheme increases global mean low troposphere SOA mass concentration by ~130% and CCN abundance by ~ 15%, and optical depth of secondary particles and coated black carbon and primary organic carbon particles by ~10%. As a result, aerosol radiative cooling effect (direct + first indirect) is enhanced by -0.9 W/m2, with large spatial

  13. Particle Rebound and Phase State of Secondary Organic Material

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Bertram, A. K.; Martin, S. T.

    2014-12-01

    Secondary organic material (SOM) is produced in the atmosphere from the oxidation of volatile organic compounds emitted from anthropogenic and biogenic sources. Aerosol particles, composed in part of SOM, play important roles in climate and air quality by scattering/absorbing radiation and serving as cloud condensation nuclei (CCN). The magnitude of climate-relevant perturbations depends on particle chemical composition, hygroscopic growth, and phase state, among other factors. Herein, the hygroscopic influence on particle rebound and the phase state of particles composed of isoprene, toluene, and α-pinene secondary organic material (SOM) was studied. Particle rebound measurements were obtained from 5 to 95% RH using a three-arm impaction apparatus. The experimentally determined rebound fractions were compared with results from a model of the rebound process that took into account the particle kinetic energy, van der Waals forces, and RH-dependent capillary forces. Comparison of the experimental and modeled indicated particles softened due to water uptake. For low RH values, the model explained the rebound behavior for all studied SOMs. At higher RH values specific to each SOM, however, particle rebound was no longer observed, and the model did not capture this behavior. Calibration experiments using sucrose particles of variable known viscosities showed the transition from non-rebounding to rebounding particles occurred for viscosity values from 100 to 1 Pa s, corresponding to a transition from semisolid to liquid material. The implication of the differing RH-dependent behaviors among the SOMs is that each SOM has a specific and quantitatively different interaction with water. A linear correlation between rebound fraction and hygroscopic growth factor was demonstrated, implying that absorbed water volume is the governing factor of viscosity for the studied classes of SOM. The findings of this study suggest that both the chemical composition and the ambient

  14. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    PubMed

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs.

  15. Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics.

    PubMed

    Osaka, Itaru; Takimiya, Kazuo

    2017-02-27

    π-Conjugated polymers are an important class of materials for organic electronics. In the past decade, numerous polymers with donor-acceptor molecular structures have been developed and used as the active materials for organic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). The choice of the building unit is the primary step for designing the polymers. Benzochalcogenadiazoles (BXzs) are one of the most familiar acceptor building units studied in this area. As their doubly fused system, naphthobischalcogenadiazoles (NXzs), i.e., naphthobisthiadiazole (NTz), naphthobisoxadiazole (NOz), and naphthobisselenadiazole (NSz) are emerging building units that provide interesting electronic properties and highly self-assembling nature for π-conjugated polymers. With these fruitful features, π-conjugated polymers based on these building units demonstrate great performances in OFETs and OPVs. In particular, in OPVs, NTz-based polymers have exhibited more than 10% efficiency, which is among the highest values reported so far. In this Progress Report, the synthesis, properties, and structures of NXzs and their polymers is summarized. The device performance is also highlighted and the structure-property relationships of the polymers are discussed.

  16. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  17. Recent advances in organic thermally activated delayed fluorescence materials.

    PubMed

    Yang, Zhiyong; Mao, Zhu; Xie, Zongliang; Zhang, Yi; Liu, Siwei; Zhao, Juan; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2017-02-06

    Organic materials that exhibit thermally activated delayed fluorescence (TADF) are an attractive class of functional materials that have witnessed a booming development in recent years. Since Adachi et al. reported high-performance TADF-OLED devices in 2012, there have been many reports regarding the design and synthesis of new TADF luminogens, which have various molecular structures and are used for different applications. In this review, we summarize and discuss the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure-property relationships, TADF mechanisms and applications. We hope that such a review provides a clear outlook of these novel functional materials for a broad range of scientists within different disciplinary areas and attracts more researchers to devote themselves to this interesting research field.

  18. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.

    1997-01-01

    Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

  19. Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation

    PubMed Central

    García-Fraile, Paula; Benada, Oldrich; Cajthaml, Tomáš; Baldrian, Petr

    2015-01-01

    Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55T, which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55T include Bryocella elongata SN10T (95.4% identity), Acidicapsa ligni WH120T (95.2% identity), and Telmatobacter bradus TPB6017T (95.0% identity), revealing that strain S55T should be classified within the phylum Acidobacteria, subdivision 1. Strain S55T is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55T corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55T = NBRC 111238T = CECT 8791T). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55T also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55T being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55T in the carbon cycle in the Picea abies coniferous forest. PMID:26546425

  20. On Organic Material in E Ring Ice Grains

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Reviol, R.; Nölle, L.; Klenner, F.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    Pure water ice dominates the composition of the micron and sub-micron sized dust particles in Saturn's E-ring, a ring constantly replenished by active ice jets of the moon Enceladus [1]. Details about the composition of this tenuous, optically thin ring can only be constrained by in situ measurements. The Cosmic Dust Analyzer (CDA) onboard Cassini investigates the composition of these grains by cationic time-of-flight mass spectra of individual ice grains hitting the instruments target surface. From these spectra three compositional types of E ring ice grains have been identified previously [2,3]: Type-1: Almost pure water, Type-2: Enriched in organics, and Type-3: Enriched in salt. Unlike Type-1 and 3, organic-enriched Type-2 spectra have not yet been investigated in depth. Here we report the first detailed compositional analysis of this type. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. In contrast to Type 1 and 3, Type-2 spectra display a great compositional diversity, which indicates varying contributions of several organic species. So far we have identified characteristic fragment patterns of at least three classes of organic compounds: aromatic species, amines, and carbonyl group species. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Due to the dynamical evolution of the orbital elements of E ring grains a large fraction collides with the icy moons embedded in the E ring. Therefore, the organic components identified by CDA can accumulate on the surfaces of these bodies over time. Ref: :[1]Kempf et al., Icarus-206, 2010. [2]Postberg et al., Nature-459, 2009. [3]Postberg et al., Icarus-193, 2008.

  1. Compositional effects of organic material in HC potential assessment

    NASA Astrophysics Data System (ADS)

    Luo, W. P.; Tsai, L. Y.

    2015-12-01

    Studies of petroleum system is the main theme of hydrocarbon potential assessment, in which the characteristics of source rock is especially worth noticed. In recent years, besides the growth of conventional hydrocarbon resources being rapidly utilized, the exploration of unconventional deposits is getting more and more important. Since Taiwan has a strong energy demand and still highly relied on imported fossil fuel, the development of unconventional gas resources needs to be considered. This research discussed the relationship among characteristics and thermal maturity of different organic material versus their hydrocarbon potential. In order to compare the compositional effects from different organic material, torbanites from Huangxian basin, China and Miocene humic coal from Chuhuangkeng Anticline (one of the most productive oil and gas fields), Taiwan were examined and compared. Torbanites from China had relatively low maturation with vitrinite reflectance 0.38~0.51%, whereas the maturation of humic coal from Chuhuangkeng Anticline are a little bit higher with vitrinite reflectance 0.55~0.6%, plus some methane explored. Methods of study include petrographic analysis, vitrinite reflectance measurement (Ro%), Rock-Eval pyrolysis, and other geochemical parameters. The conclusions were derived after comparing experimental results and the regional geologic information of samples studied. In conclude, sample from China is type I kerogen, and its organic matter is mostly algae, whereas the humic coal sample from Taiwan belongs to type III kerogen. The analytic results indicate that the characteristics organic matters affect their maturity. Even though the thermal history and depositional environments are different in Taiwan and China, their organic micelles still exhibit a similar trend in the process of coalification. The role of maceral composition played in HC potential needs to be considered in future shale gas exploration.

  2. Spin-on organic hardmask materials in 70nm devices

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Il; Uh, Dong-Seon; Kim, Do-Hyeon; Lee, Jin-Kuk; Yun, Hui-Chan; Nam, Irina; Kim, Min-Soo; Yoon, Kyong-Ho; Hyung, Kyung-Hee; Tokareva, Nataliya; Cheon, Hwan-Sung; Kim, Jong-Seob; Chang, Tu-Won

    2007-03-01

    In ArF lithography for < 90nm L/S, amorphous carbon layer (ACL) deposition becomes inevitable process because thin ArF resist itself can not provide suitable etch selectivity to sub-layers. One of the problems of ACL hardmask is surface particles which are more problematic in mass production. Limited capacity, high cost-of-ownership, and low process efficiency also make ACL hardmask a dilemma which can not be ignored by device makers. One of the answers to these problems is using a spin-on organic hardmask material instead of ACL hardmask. Therefore, several processes including bi-layer resist process (BLR), tri-layer resist process (TLR), and multi-layer resist process (MLR) have been investigated. In this paper, we have described spin-on organic hardmask materials applicable to 70nm memory devices. Applications to tri-layer resist process (TLR) were investigated in terms of photo property, etch property and process compatibility. Based on the test results described in this paper, our spin-on hardmask materials are expected to be used in mass production.

  3. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    SciTech Connect

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that this synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.

  4. Radiation effects on organic materials in nuclear plants. Final report

    SciTech Connect

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  5. Poly(3-hexylthiophene) nanostructured materials for organic electronics applications.

    PubMed

    Bhatt, M P; Magurudeniya, H D; Rainbolt, E A; Huang, P; Dissanayake, D S; Biewer, M C; Stefan, M C

    2014-02-01

    Semiconducting polymers have been developed during the last few decades and are currently used in various organic electronics applications. Regioregular poly(3-hexylthiophene) (P3HT) is the most employed semiconducting polymer for organic electronics applications. The development of living Grignard metathesis polymerization (GRIM) allowed the synthesis of P3HT with well-defined molecular weights and functional end groups. A large number of block copolymers containing P3HT have been reported, and their opto-electronic properties have been investigated. The performance of P3HT homopolymer and block copolymers in field-effect transistors and bulk heterojunction solar cells are discussed in this review. The morphology of the P3HT materials is also discussed.

  6. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  7. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  8. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  9. Organic materials in planetary and protoplanetary systems: nature or nurture?

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well

  10. Computational screening of organic materials towards improved photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  11. Organic and perovskite solar cells: Working principles, materials and interfaces.

    PubMed

    Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis

    2017-02-15

    In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells.

  12. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  13. Charge transport and injection in amorphous organic electronic materials

    NASA Astrophysics Data System (ADS)

    Tse, Shing Chi

    This thesis presents how we use various measuring techniques to study the charge transport and injection in organic electronic materials. Understanding charge transport and injection properties in organic solids is of vital importance for improving performance characteristics of organic electronic devices, including organic-light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field effect transistors (OFETs). The charge transport properties of amorphous organic materials, commonly used in organic electronic devices, are investigated by the means of carrier mobility measurements. Transient electroluminescence (EL) technique was used to evaluate the electron mobility of an electron transporting material--- tris(8-hydroxyquinoline) aluminum (Alq3). The results are in excellent agreement with independent time-of-flight (TOF) measurements. Then, the effect of dopants on electron transport was also examined. TOF technique was also used to examine the effects of tertiary-butyl (t-Bu) substitutions on anthracene derivatives (ADN). All ADN compounds were found to be ambipolar. As the degree of t-Bu substitution increases, the carrier mobilities decrease progressively. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap. In addition, from TOF measurements, two naphthylamine-based hole transporters, namely, N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'diamine (NPB) and 4,4',4"-tris(n-(2-naphthyl)-n-phenyl-amino)-triphenylamine (2TNATA) were found to possess electron-transporting (ET) abilities. An organic light-emitting diode that employed NPB as the ET material was demonstrated. The electron conducting mechanism of NPB and 2TNATA in relation to the hopping model will be discussed. Furthermore, the ET property of NPB applied in OLEDs will also be examined. Besides transient EL and TOF techniques, we also use dark-injection space-charge-limited current

  14. Natural abundance 13C and 14C analysis of water-soluble organic carbon in atmospheric aerosols.

    PubMed

    Kirillova, Elena N; Sheesley, Rebecca J; Andersson, August; Gustafsson, Örjan

    2010-10-01

    Water-soluble organic carbon (WSOC) constitutes a large fraction of climate-forcing organic aerosols in the atmosphere, yet the sources of WSOC are poorly constrained. A method was developed to measure the stable carbon isotope (δ(13)C) and radiocarbon (Δ(14)C) composition of WSOC for apportionment between fossil fuel and different biogenic sources. Synthetic WSOC test substances and ambient aerosols were employed to investigate the effect of both modern and fossil carbon contamination and any method-induced isotope fractionation. The method includes extraction of aerosols collected on quartz filters followed by purification and preparation for off-line δ(13)C and Δ(14)C determination. The preparative freeze-drying step for isotope analysis yielded recoveries of only ∼70% for ambient aerosols and WSOC probes. However, the δ(13)C of the WSOC isolates were in agreement with the δ(13)C of the unprocessed starting material, even for the volatile oxalic acid probe (6.59 ± 0.37‰ vs 6.33 ± 0.31‰; 2 sd). A (14)C-fossil phthalic acid WSOC probe returned a fraction modern biomass of <0.008 whereas a (14)C-modern sucrose standard yielded a fraction modern of >0.999, indicating the Δ(14)C-WSOC method to be free of both fossil and contemporary carbon contamination. Application of the δ(13)C/Δ(14)C-WSOC method to source apportion climate-affecting aerosols was illustrated be constraining that WSOC in ambient Stockholm aerosols were 88% of contemporary biogenic C3 plant origin.

  15. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  16. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.

    PubMed

    Liu, Yao; Duzhko, Volodimyr V; Page, Zachariah A; Emrick, Todd; Russell, Thomas P

    2016-11-15

    Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (Vbi) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton

  17. n-Channel semiconductor materials design for organic complementary circuits.

    PubMed

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  18. Measurement of reflection coefficients of organic and non-organic media and materials in UV spectrum

    NASA Astrophysics Data System (ADS)

    Klimkin, A. V.; Belov, V. V.; Vorobieva, L. P.; Prokopev, V. E.; Kurjak, A. V.; Sokovikov, V. G.

    2015-12-01

    Measurements of the diffuse reflection coefficients of organic and inorganic materials and media in solid, granular and liquid forms were made in the UV field of 230-400 nm. A single channel spectrometer with an integrating sphere was used. Relation between diffuse reflection coefficients and the structure and composition of the samples is discussed. These data allow us to estimate the prospect of machine vision systems application for the UV range in such areas as biology, geology, remote control of materials and media.

  19. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  20. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    PubMed

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  1. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis.

    PubMed

    de Almeida, Felipe Alves; Pimentel-Filho, Natan de Jesus; Carrijo, Lanna Clícia; Bento, Cláudia Braga Pereira; Baracat-Pereira, Maria Cristina; Pinto, Uelinton Manoel; de Oliveira, Leandro Licursi; Vanetti, Maria Cristina Dantas

    2017-01-01

    Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules.

  2. Hierarchically organized soft-materials based on fullerenes

    NASA Astrophysics Data System (ADS)

    Nakanishi, Takashi

    2009-04-01

    Simple chemical modifications of fullerene (C60) with long aliphatic chains provide novel type amphiphilic molecules playing in organic solvents due to the two different intermolecular interactions, namely π-π on C60 and van der Waals interactions on aliphatic chain moieties, respectively, and open a door developing supramolecular soft-materials having hierarchically organized architectures, various morphologies and functions based on fullerenes. By tuning the length and number of aliphatic chains on the derivatives as well as experimental conditions such as solvents, temperature, substrates for preparation of the assemblies, the assembled fullerenes showed various faces such as creating of many unique-shaped objects with controlled their dimensionality. For instance, nanowires and thin disks with single bilayer thickness in nanometer size, globular, fibrous, conical objects in mesoscopic (sub-micrometer) scale and flower-shaped and direction-controlled spiral objects in micrometer scale are obtained. As bulk states, thermotropic liquid crystals and room temperature (isotropic) liquid fullerenes are interestingly prepared from this molecular designs and showed not only their fluid natures and comparably high carrier mobility as fullerene-based organic-semiconductor phenomena. In addition, nano-carbon superhydrophobic surface with fractal morphology of the two-tier roughness on a nano- and microscopic scale was created from one of the supramolecular objects. The all of hierarchical supramolecular assemblies describing in this review is derived from fine-tuning intermolecular interactions of fullerene derivatives bearing long aliphatic chains.

  3. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    SciTech Connect

    Turner, D.A.; Miron, Y.

    1994-01-01

    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  4. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    SciTech Connect

    Marks, Tobin

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  5. Supramolecular organization of functional organic materials in the bulk and at organic/organic interfaces: a modeling and computer simulation approach.

    PubMed

    Muccioli, Luca; D'Avino, Gabriele; Berardi, Roberto; Orlandi, Silvia; Pizzirusso, Antonio; Ricci, Matteo; Roscioni, Otello Maria; Zannoni, Claudio

    2014-01-01

    The molecular organization of functional organic materials is one of the research areas where the combination of theoretical modeling and experimental determinations is most fruitful. Here we present a brief summary of the simulation approaches used to investigate the inner structure of organic materials with semiconducting behavior, paying special attention to applications in organic photovoltaics and clarifying the often obscure jargon hindering the access of newcomers to the literature of the field. Special attention is paid to the choice of the computational "engine" (Monte Carlo or Molecular Dynamics) used to generate equilibrium configurations of the molecular system under investigation and, more importantly, to the choice of the chemical details in describing the molecular interactions. Recent literature dealing with the simulation of organic semiconductors is critically reviewed in order of increasing complexity of the system studied, from low molecular weight molecules to semiflexible polymers, including the challenging problem of determining the morphology of heterojunctions between two different materials.

  6. Optimization of Organic Solar Cells: Materials, Devices and Interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Nanjia

    Due to the increasing demand for sustainable clean energy, photovoltaic cells have received intensified attention in the past decade in both academia and industry. Among the types of cells, organic photovoltaic (OPV) cells offer promise as alternatives to conventional inorganic-type solar cells owning to several unique advantages such as low material and fabrication cost. To maximize power conversion efficiencies (PCEs), extensive research efforts focus on frontier molecular orbital (FMO) energy engineering of photoactive materials. Towards this objective, a series of novel donor polymers incorporating a new building block, bithiophene imide (BTI) group are developed, with narrow bandgap and low-lying highest occupied molecular orbital (HOMO) energies to increase short circuit current density, Jsc, and open circuit voltage, Voc.. Compared to other PV technologies, OPVs often suffer from large internal recombination loss and relatively low fill factors (FFs) <70%. Through a combination of materials design and device architecture optimization strategies to improve both microscopic and macroscopic thin film morphology, OPVs with PCEs up to 8.7% and unprecedented FF approaching 80% are obtained. Such high FF are close to those typically achieved in amorphous Si solar cells. Systematic variations of polymer chemical structures lead to understanding of structure-property relationships between polymer geometry and the resulting blend film morphology characteristics which are crucial for achieving high local mobilities and long carrier lifetimes. Instead of using fullerene as the acceptors, an alternative type of OPV is developed employing a high electron mobility polymer, P(NDI2OD-T2), as the acceptor. To improve the all-polymer blend film morphology, the influence of basic solvent properties such as solvent boiling point and solubility on polymer phase separation and charge transport properties is investigated, yielding to a high PCE of 2.7% for all-polymer solar cells

  7. Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment of San Francisco Bay

    USGS Publications Warehouse

    Thomson-Becker, E. A.; Luoma, S.N.

    1985-01-01

    The physical and chemical characteristics of the oxidized surface sediment in an estuary fluctuate temporally in response to physical forces and apparently-fluctuating inputs. These characteristics, which include grain size and concentrations of organic materials and iron, will influence both trace-metal geochemistry and bioavailability. Temporal trends in the abundance of fine particles, total organic carbon content (TOC), absorbance of extractable organic material (EOM), and concentration of extractable iron in the sediment of San Francisco Bay were assessed using data sets containing approximately monthly samples for periods of two to seven years. Changes in wind velocity and runoff result in monthly changes in the abundance of fine particles in the intertidal zone. Fine-grained particles are most abundant in the late fall/early winter when runoff is elevated and wind velocities are low; particles are coarser in the summer when runoff is low and wind velocities are consistently high. Throughout the bay, TOC is linearly related to fine particle abundance (r = 0.61). Temporal variability occurs in this relationship, as particles are poor in TOC relative to percent of fine particles in the early rainy season. Iron-poor particles also appear to enter the estuary during high runoff periods; while iron is enriched on particle surfaces in the summer. Concentrations of extractable iron and absorbance of EOM vary strongly from year to year. Highest absorbances of EOM occurred in the first year following the drought in 1976-77, and in 1982 and 1983 when river discharge was unusually high. Extractable-iron concentrations were also highest in 1976-77, but were very low in 1982 and 1983. ?? 1985 Dr W. Junk Publishers.

  8. Mineral Associations and Character of Isotopically Anomalous Organic Material in the Tagish Lake Carbonaceous Chondrite

    SciTech Connect

    Zega, T.; Alexander, C; Busemann, H; Nittler, L; Hoppe, P; Stroud, R; Young, A

    2010-01-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small ({le}20 {micro}m) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e

  9. Metal-organic frameworks as functional, porous materials

    NASA Astrophysics Data System (ADS)

    Rood, Jeffrey A.

    The research presented in this thesis investigates the use of metal carboxylates as permanently porous materials called metal-organic frameworks (MOFs). The project has focused on three broad areas of study, each which strives to develop a further understanding of this class of materials. The first topic is concerned with the synthesis and structural characterization of MOFs. Our group and others have found that the reaction of metal salts with carboxylic acids in polar solvents at elevated temperatures often leads the formation of crystalline MOF materials that can be examined by single crystal X-ray diffraction. Specifically, Chapter 2 reports on some of the first examples of magnesium MOFs, constructed from formate or aryldicarboxylate ligands. The magnesium formate MOF, [Mg3(O2CH) 6] was found to be a permanently porous 3-D material capable of selective uptake and exchange of small molecules. Once the synthesis and structures of some of these materials was known, their physical properties were studied. The magnesium formate MOF, [Mg 3(O2CH)6], was found to be permanently porous and able to reversibly adsorb both N2 and H2 gas. Furthermore, the material was also capable of taking up a variety of organic molecules to form new inclusion compounds that were characterized by XRD studies. Size exclusion was shown for cyclohexane and larger molecules. Chapters 3, 5, and 6 attempt to build off of the synthetic findings reported in Chapter 2. Specifically, the ability of these materials to take up guest molecules is expanded by the attempted synthesis of porous, homochiral MOFs using enantiopure carboxylic acids in the synthesis. It was found that under the appropriate synthetic conditions, both L-tartaric acid and (+)-camphoric acid were robust linkers for the formation of homochiral MOFs. Of the compounds synthesized, the most interesting were the set of compounds, [Zn2(Cam) 2(bipy)⊃3DMF] and [Zn2(Cam)2(apyr)⊃2DMF]. These compounds formed isoreticular cubic

  10. Delivery of Organic Material and Water through Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Frantseva, Kateryna; van der Tak, Floris; Helmich, Frank P.

    2014-11-01

    Meteorites, specifically carbonaceous chondrites, are frequently invoked as the primary source of Earth's water and organic materials, crucial ingredients for the formation of life. We have started developing a dynamical model of the delivery of their parent bodies, primitive low-albedo asteroids, from the asteroid main belt to Earth and to other planetary surfaces.Existing modeling work focuses on time-integrated delivery rates, which are dominated by the Solar System's turbulent youth. We, in turn, aim at calculating instantaneous delivery rates for comparison with instantaneous measurements. In doing so, we take direct account of the asteroid main belt's observed dynamical and physical structure. In particular, we use low albedo (as taken from the WISE catalog) as a proxy for primitive composition.Our first goal is for our model to reproduce the measured rate of micro-meteorite impacts on Earth. We will then calculate improved delivery rates to Mars and other planetary surfaces within the Solar System.Finally, we aim at applying our model to select exo-planetary systems. Far-IR observations of Vega and Fomalhaut reveal the presence of asteroid belts around these stars; dynamical calculations suggest that those are not a rare occurence but should occur rather generically around the location of the frost line. In such planetary systems, asteroids could deliver water and organics to the habitable region. In this sense, our model should lead to the definition of benchmark observables for exoplanet studies using upcoming/proposed IR facilities such as SPICA, METIS, and JWST.

  11. Micromachining of transparent materials by laser ablation of organic solution

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    2000-11-01

    Transparent materials such as fused silica, quartz, calcium fluoride, and fluorocarbon polymer were etched upon irradiation of organic solution containing pyrene with a conventional KrF excimer laser. Threshold fluence for etching was 240 mJ/cm2 for fused silica. Etch rate remarkably depended on a concentration of pyrene: higher etch rate with the increase of pyrene concentration. It means that pyrene molecules play an important role in this process. The etch rate can be easily controlled through changing a laser pulse number, a laser fluence and a concentration of solution. The mechanism for this process is discussed by cyclic multiphotonic absorption of pyrene in the excited states, thermal relaxation, and formation of super-heated solution. As the results, it is suggested that the process is based on the combination of two processes in the interface between the transparent materials and the liquid: one is a heating process by a super-heated liquid and the other is an attacking process by a high temperature and pressure vapor.

  12. Conversion and Extraction of Insoluble Organic Materials in Meteorites

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Burton, Aaron S.; Niles, Paul B.

    2016-01-01

    We endeavor to develop and implement methods in our laboratory to convert and extract insoluble organic materials (IOM) from low car-bon bearing meteorites (such as ordinary chondrites) and Precambrian terrestrial rocks for the purpose of determining IOM structure and prebiotic chemistries preserved in these types of samples. The general scheme of converting and extracting IOM in samples is summarized in Figure 1. First, powdered samples are solvent extracted in a micro-Soxhlet apparatus multiple times using solvents ranging from non-polar to polar (hexane - non-polar, dichloromethane - non-polar to polar, methanol - polar protic, and acetonitrile - polar aprotic). Second, solid residue from solvent extractions is processed using strong acids, hydrochloric and hydrofluoric, to dissolve minerals and isolate IOM. Third, the isolated IOM is subjected to both thermal (pyrolysis) and chemical (oxidation) degradation to release compounds from the macromolecular material. Finally, products from oxidation and pyrolysis are analyzed by gas chromatography - mass spectrometry (GCMS). We are working toward an integrated method and analysis scheme that will allow us to determine prebiotic chemistries in ordinary chondrites and Precambrian terrestrial rocks. Powerful techniques that we are including are stepwise, flash, and gradual pyrolysis and ruthenium tetroxide oxidation. More details of the integrated scheme will be presented.

  13. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I determine the organic HAP... Determining Hazardous Air Pollutant Content § 63.5758 How do I determine the organic HAP content of materials? (a) Determine the organic HAP content for each material used. To determine the organic HAP...

  14. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the organic HAP... Determining Hazardous Air Pollutant Content § 63.5758 How do I determine the organic HAP content of materials? (a) Determine the organic HAP content for each material used. To determine the organic HAP...

  15. Tailoring porphyrin-based electron accepting materials for organic photovoltaics.

    PubMed

    Rawson, Jeff; Stuart, Andrew C; You, Wei; Therien, Michael J

    2014-12-17

    The syntheses, potentiometric responses, optical spectra, electronic structural properties, and integration into photovoltaic devices are described for ethyne-bridged isoindigo-(porphinato)zinc(II)-isoindigo chromophores built upon either electron-rich 10,20-diaryl porphyrin (Ar-Iso) or electron-deficient 10,20-bis(perfluoroalkyl)porphyrin (Rf-Iso) frameworks. These supermolecules evince electrochemical responses that trace their geneses to their respective porphyrinic and isoindigoid subunits. The ethyne linkage motif effectively mixes the comparatively weak isoindigo-derived visible excitations with porphyrinic π-π* states, endowing Ar-Iso and Rf-Iso with high extinction coefficient (ε ∼ 10(5) M(-1)·cm(-1)) long-axis polarized absorptions. Ar-Iso and Rf-Iso exhibit total absorptivities per unit mass that greatly exceed that for poly(3-hexyl)thiophene (P3HT) over the 375-900 nm wavelength range where solar flux is maximal. Time-dependent density functional theory calculations highlight the delocalized nature of the low energy singlet excited states of these chromophores, demonstrating how coupled oscillator photophysics can yield organic photovoltaic device (OPV) materials having absorptive properties that supersede those of conventional semiconducting polymers. Prototype OPVs crafted from the poly(3-hexyl)thiophene (P3HT) donor polymer and these new materials (i) confirm that solar power conversion depends critically upon the driving force for photoinduced hole transfer (HT) from these low-band-gap acceptors, and (ii) underscore the importance of the excited-state reduction potential (E(-/*)) parameter as a general design criterion for low-band-gap OPV acceptors. OPVs constructed from Rf-Iso and P3HT define rare examples whereby the acceptor material extends the device operating spectral range into the NIR, and demonstrate for the first time that high oscillator strength porphyrinic chromophores, conventionally utilized as electron donors in OPVs, can also

  16. Organic hydrogels as potential sorbent materials for water purification

    NASA Astrophysics Data System (ADS)

    Linardatos, George; Bekiari, Vlasoula; Bokias, George

    2014-05-01

    Hydrogels are three-dimensional, hydrophilic, polymeric networks capable to adsorb large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers and are insoluble due to the presence of chemical or physical cross-links. Depending on the nature of the structural units, swelling or shrinking of these gels can be activated by several external stimuli, such as solvent, heat, pH, electric stimuli. As a consequence, these materials are attractive for several applications in a variety of fields: drug delivery, muscle mimetic soft linear actuators, hosts of nanoparticles and semiconductors, regenerative medicine etc. Of special interest is the application of hydrogels for water purification, since they can effectively adsorb several water soluble pollutants such as metal ions, inorganic or organic anions, organic dyestaff, etc. In the present work, anionic hydrogels bearing negatively charged -COO- groups were prepared and investigated. These are based on the anionic monomer sodium acrylate (ANa) and the nonionic one N,N-dimethylacrylamide (DMAM). A series of copolymeric hydrogels (P(DMAM-co-ANax) were synthesized. The molar content x of ANa units (expressing the molar charged content of the hydrogel) varies from 0 (nonionic poly(N,N-dimethylacrylamide), PDMAM, hydrogel) up to 1 (fully charged poly(sodium acrylate), PANa, hydrogel). The hydrogels were used to extract organic or inorganic solutes from water. Cationic and anionic model dyes, as well as multivalent inorganic ions, have been studied. It is found that cationic dyes are strongly adsorbed and retained by the hydrogels, while adsorbance of anionic dyes was negligible. Both maximum adsorption and equilibrium binding constant depend on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. In the case of metal cations, adsorption depends mostly on the charge of the cation. In addition, crucial factors controlling

  17. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... content in the test material by adding up the individual organic HAP contents and truncating the result to... content of materials? 63.5758 Section 63.5758 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... content of materials? (a) Determine the organic HAP content for each material used. To determine...

  18. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil.

    PubMed

    Nõlvak, Hiie; Truu, Marika; Kanger, Kärt; Tampere, Mailiis; Espenberg, Mikk; Loit, Evelin; Raave, Henn; Truu, Jaak

    2016-08-15

    Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were

  19. The interfacial chemistry of organic materials on commercial glass surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Joy

    The hydrolytic stability of glass is dependent on its composition. Glasses are exposed to water during their processing and in many applications; therefore, their surface or interface with other materials must withstand hydrolytic attack. Multi-component silicate glasses are widely used but have been the least studied. In coatings-based applications, these glasses come in contact with organosilanes and organic molecules where the adsorption may be affected by surface water. For example, the influence of glass composition on the wet strength of a glass/polymer composite material is unclear, but it is presumed to be driven by the hydrolytic stability of the interfacial chemistry. Organosilanes are critical for increasing the performance of composite materials in humid environments but the precise manner by which the improvement occurs has not been verified. The current school of thought is that the application of silane coatings on a multi-component glass surface transforms the chemically heterogeneous surface into a homogenous and hydrolytically stable surface. In this study, multi-component silicate glass surfaces were silanized by both aqueous and non-aqueous methods. The effect of glass composition and surface hydration on silane coverage was quantified by X-ray Photoelectron Spectroscopy (XPS) analysis. The monolayer-level adsorption results showed that the low-sodium content glasses had greater coverage than a high-sodium content glass in dry conditions in contrast to an equivalent coverage in wet conditions. The hydrolytically-stable coverage on multi-component silicate glass surfaces by both silanization methods was found to be sub-monolayer. A thin film model in conjunction with XPS and Infrared Spectroscopy was used to probe the interfacial region of a fiberglass insulation material containing a sodium-rich multi-component silicate glass and an acrylate resin binder. Upon the application of the aqueous binder, the leaching of sodium from the glass promoted

  20. Organic/inorganic interfaced field-effect transistor properties with a novel organic semiconducting material

    NASA Astrophysics Data System (ADS)

    Demir, Ahmet; Atahan, Alparslan; Bağcı, Sadık; Aslan, Metin; Saif Islam, M.

    2016-01-01

    A novel 1,3,4-oxadiazole-substituted benzo[b]triphenylene was synthesized by three-step synthetic procedure and OFET device design was successfully designed after theoretical calculations made using Gaussian software. For investigating the field-effect properties of designed organic electronic device, a SiO2 (300 nm) was thermally grown on p-Si wafer at 1000 °C as a dielectric layer and gate, source and drain contacts have been deposited using Au metal with physical vapour deposition. 1,3,4-Oxadiazole-substituted benzo[b]triphenylene was spin coated on the source and drain electrodes of our device, forming organic/inorganic interfaced field-effect transistors. Surface morphology and thin film properties were investigated using AFM. All electrical measurements were done in air ambient. The device showed a typical p-type channel behaviour with increasing negative gate bias voltage values. Our results have surprisingly shown that the saturation regime of this device has high mobility (μFET), excellent on/off ratio (Ion/Ioff), high transconductance (gm) and a small threshold voltage (VTh). The values of μFET, Ion/Ioff, gm and VTh were found as 5.02 cm2/Vs, 0.7 × 103, 5.64 μS/mm and 1.37 V, respectively. These values show that our novel organic material could be a potential candidate for organic electronic device applications in the future.

  1. Inorganic-organic electrolyte materials for energy applications

    NASA Astrophysics Data System (ADS)

    Fei, Shih-To

    This thesis research is devoted to the development of phosphazene-based electrolyte materials for use in various energy applications. Phosphazenes are inorganic-organic materials that provide unusal synthetic advantages and unique process features that make them useful in energy research. This particular thesis consists of six chapters and is focused on four specific aspects: lithium battery, solar cell, and fuel cell electrolytes, and artificial muscles. Chapter 1 is written as an introduction and review of phosphazene electrolytes used in energy applications. In this introduction the basic history and characteristics of the phosphazenes are discussed briefly, followed by examples of current and future applications of phosphazene electrolytes related to energy. Notes are included on how the rest of the chapters relate to previous work. Chapters 2 and 3 discuss the conductivity and fire safety of ethyleneoxy phosphazene gel electrolytes. The current highly flammable configurations for rechargeable lithium batteries generate serious safety concerns. Although commercial fire retardant additives have been investigated, they tend to decrease the overall efficiency of the battery. In these two chapters the discussion is focused on ionically conductive, non-halogenated lithium battery additives based on a methoxyethoxyethoxyphosphazene oligomer and the corresponding high polymer, both of which can increase the fire resistance of a battery while retaining a high energy efficiency. Conductivities in the range of 10 -4 Scm-1 have been obtained for self-extinguishing, ion-conductive methoxyethoxyethoxyphosphazene oligomers. The addition of 25 wt% high polymeric poly[bis(methoxyethoxyethoxy)phosphazene] to propylene carbonate electrolytes lowers the flammability by 90% while maintaining a good ionic conductivity of 2.5x10--3 Scm -1 Chapter 2 is focused more on the electrochemical properties of the electrolytes and how they compare to other similar materials, while Chapter 3

  2. Spatio-temporal distribution of organic and inorganic pollutants from Lake Geneva (Switzerland) reveals strong interacting effects of sewage treatment plant and eutrophication on microbial abundance.

    PubMed

    Thevenon, Florian; Graham, Neil D; Herbez, Aline; Wildi, Walter; Poté, John

    2011-07-01

    Variation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg(-1)), bacterial abundance (in order of 9×10(9) cell g(-1) dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments. In fact, the relatively unpolluted deepwater sites and the coastal polluted site show large synchronous increases in bacterial densities linked to the anoxic conditions in the 1970s (lake eutrophication caused by external nutrient input) that subsequently increased the nutrient loading fluxes. These results show that the microbial activities response to natural or human-induced changing limnological conditions (e.g., nutrient supply, oxygen availability, redox conditions) constitutes a threat to the security of water resources, which in turn poses concerns for the world's freshwater resources in the context of global warming and the degradation of water quality (oxygen depletion in the bottom water due to reduced deep waters mixing). Moreover, the accumulation of inorganic pollutants such as high mercury (methyl-mercury) concentration may represent a significant source of toxicity for sediment dwelling organisms.

  3. Ecotoxicity of selected nano-materials to aquatic organisms.

    PubMed

    Blaise, C; Gagné, F; Férard, J F; Eullaffroy, P

    2008-10-01

    Present knowledge concerning the ecotoxic effects of nano-materials is very limited and merits to be documented more fully. For this purpose, we appraised the toxicity of nine metallic nano-powders (copper zinc iron oxide, nickel zinc iron oxide, yttrium iron oxide, titanium dioxide, strontium ferrite, indium tin oxide, samarium oxide, erbium oxide, and holmium oxide) and of two organic nano- powders (fullerene-C60 and single-walled carbon nanotube or SWCNT). After a simple process where nano-powders (NPs) were prepared in aqueous solution and filtered, they were then bioassayed across several taxonomic groups including decomposers (bacteria), primary producers (micro-algae), as well as primary and secondary consumers (micro-invertebrates and fish). Toxicity data generated on the 11 NPs reflected a wide spectrum of sensitivity that was biological level-, test-, and endpoint-specific. With all acute and chronic tests confounded for these 11 NPs, toxicity responses spanned over three orders of magnitude: >463 mg/L (24 h LC50 of the invertebrate Thamnoplatyurus platyurus for fullerene-C60) / 0.3 mg/L (96 h EC50 of the invertebrate Hydra attenuata for indium tin oxide), that is a ratio of 1543. On the basis of the MARA (Microbial Array for Risk Assessment) assay toxic fingerprint concept, it is intimated that NPs may have different modes of toxic action. When mixed in a 1:1 ratio with a certified reference material (CRM) sediment, two solid phase assays and an elutriate assay, respectively, showed that five NPs (copper zinc iron oxide, samarium oxide, erbium oxide, holmium oxide, and SWCNT) were able to increase both CRM sediment toxicity and its elutriate toxicity. This initial investigation suggests that chemicals emerging from nanotechnology may pose a risk to aquatic life in water column and sediment compartments and that further studies on their adverse effects are to be encouraged.

  4. Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream

    USGS Publications Warehouse

    McKnight, Diane M.; Smith, R.L.; Harnish, R.A.; Miller, C.L.; Bencala, K.E.

    1993-01-01

    The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L-1 hr-1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0??C and the DOC concentration was greatest. The turnover time of the in situ glucose pool ranged seasonally from 40-1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations. ?? 1993 Kluwer Academic Publishers.

  5. Development of polyatomic ion beam system using liquid organic materials

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Nishida, Y.; Yamamoto, T.; Kawashita, M.

    2005-08-01

    We have developed a new type of polyatomic ion beam system using liquid organic materials such as octane and ethanol, which consists of a capillary type of nozzle, an ionizer, a mass-separator and a substrate holder. Ion current extracted after ionization was 430 μA for octane and 200 μA for ethanol, respectively. The mass-analysis was realized using a compact E × B mass filter, and the mass-analyzed ion beams were transferred toward the substrate. The ion current density at the substrate was a few μA/cm2 for the mass-separated ion species. Interactions of polyatomic ion beams with silicon (Si) surfaces were investigated by utilizing the ellipsometry measurement. It was found that the damaged layer thickness irradiated by the polyatomic ions with a mass number of about 40 was smaller than that by Ar ion irradiation at the same incident energy and ion fluence. The result indicated that the rupture of polyatomic ions occurred upon its impact on the Si surface with an incident energy larger than a few keV. In addition, the chemical modification of Si surfaces such as wettability could be achieved by adjusting the incident energy for the ethanol ions, which included all the fragment ions.

  6. Highly transparent and birefringent chromophores for organic photorefractive materials

    NASA Astrophysics Data System (ADS)

    Wortmann, R.; Glania, C.; Krämer, P.; Lukaszuk, K.; Matschiner, R.; Twieg, R. J.; You, F.

    1999-07-01

    A series of chromophores for application in organic photorefractive (PR) materials is investigated by electro-optical absorption measurements (EOAM). This experimental technique yields information on the transition dipole moment μag, the ground-state dipole moment μg, and the change of the dipole moment upon optical excitation Δ μ within the intense charge transfer (CT) band of the dyes. It is shown that the results of the EOAM experiment allow us to estimate the PR figures-of-merits (FOMs) of the chromophores by either perturbational two-level equations or Kramers-Kronig transformation. In particular, chromophores based on the heterocyclic dihydropyran and dihydropyridine groups in combination with dicyano and cyanocarboxy acceptor units were investigated. These donor-acceptor pairs yield chromophores close to the `cyanine limit' that is characterized by a small dipole difference, but a large ground-state dipole moment and a large polarizability anisotropy. This leads to very high PR FOMs of the new PR chromophores that are demonstrated to be superior to conventional second-order nonlinear optical (NLO) chromophores in situations where the medium has a low glass transition.

  7. Supramolecularly self-organized nanomaterials: A voyage from inorganic particles to organic light-harvesting materials

    NASA Astrophysics Data System (ADS)

    Varotto, Alessandro

    In 2009 the U.S. National Science Foundation announced the realignment of the Chemistry Divisions introducing the new interdisciplinary program of "Macromolecular, Supramolecular and Nanochemistry." This statement officially recognizes a field of studies that has already seen the publication of many thousands of works in the past 20 years. Nanotechnology and supramolecular chemistry can be found in the most diverse disciplines, from biology to engineering, to physics. Furthermore, many technologies rely on nanoscale dimensions for more than one component. Nanomaterials and technologies are on the market with a range of applications from composite materials, to electronics, to medicine, to sensing and more. This thesis will introduce a variety of studies and applications of supramolecular chemistry to form nanoscale photonic materials from soft matter. We will first illustrate a method to synthesize metallic nanoparticles using plasmids DNA as a mold. The circular DNA functions as a sacrificial template to shape the particles into narrowly monodispersed nanodiscs. Secondly, we will describe the synthesis of a highly fluorinated porphyrin derivative and how the fluorines improve the formation of ultra thin films when the porphyrin is blended with fullerene C60. Finally, we will show how to increase the short-circuit current in a solar cell built with an internal parallel tandem light harvesting design. A blend of phthalocyanines, each with a decreasing optical band gap, is supramolecularly self-organized with pyridyl-C60 within thin films. The different band gaps of the single phthalocyanines capture a wider segment of the solar spectrum increasing the overall efficiency of the device. In conclusion, we have presented a number of studies for the preparation of inorganic and organic nanomaterials and their application in supramolecularly organized photonic devices.

  8. Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Baron, J.; McKnight, D.; Denning, A.S.

    1991-01-01

    The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May-July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer. ?? 1991 Kluwer Academic Publishers.

  9. The secondary history of Sutter's Mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts

    NASA Astrophysics Data System (ADS)

    Beck, P.; Quirico, E.; Garenne, A.; Yin, Q.-Z.; Bonal, L.; Schmitt, B.; Montes-Hernandez, G.; Montagnac, G.; Chiriac, R.; Toche, F.

    2014-11-01

    Sutter's Mill is a regolith breccia composed of both heavily altered clasts and more reduced xenoliths. Here, we present a detailed investigation of fragments of SM18 and SM51. We have characterized the water content and the mineralogy by infrared (IR) and thermogravimetric analysis (TGA) and the structure of the organic compounds by Raman spectroscopy, to characterize the secondary history of the clasts, including aqueous alteration and thermal metamorphism. The three methods used in this study suggest that SM18 was significantly heated. The amount of water contained in phyllosilicates derived by TGA is estimated to be approximately 3.2 wt%. This value is quite low compared with other CM chondrites that typically range from 6 to 12 wt%. The infrared transmission spectra of SM18 show that the mineralogy of the sample is dominated by a mixture of phyllosilicate and olivine. SM18 shows an intense peak at 11.2 μm indicative of olivine (Fig. 1). If we compare SM18 with other CM and metamorphosed CM chondrites, it shows one of the most intense olivine signatures, and therefore a lower proportion of phyllosilicate minerals. The Raman results tend to support a short-duration heating hypothesis. In the ID/IG versus FWHM-D diagram, SM18 appears to be unusual compared to most CM samples, and close to the metamorphosed CM chondrites Pecora Escarpment (PCA) 91008 and PCA 02012. In the case of SM51, infrared spectroscopy reveals that olivine is less abundant than in SM18 and the 10 μm silicate feature is more similar to that of moderately altered CM chondrites (like Murchison or Queen Alexandra Range [QUE] 97990). Raman spectroscopy does not clearly point to a heating event for SM51 in the ID/IG versus FWHM-D diagram. However, TGA analysis suggests that SM51 was slightly dehydrated as the amount of water contained in phyllosilicates is approximately 3.7 wt%, which is higher than SM18, but still lower than phyllosilicate water contents in weakly altered CM chondrites

  10. A Review of Patterned Organic Bioelectronic Materials and their Biomedical Applications.

    PubMed

    Park, SooHyun; Kang, You Jung; Majd, Sheereen

    2015-12-09

    Organic electronic materials are rapidly emerging as superior replacements for a number of conventional electronic materials, such as metals and semiconductors. Conducting polymers, carbon nanotubes, graphenes, organic light-emitting diodes, and diamond films fabricated via chemical vapor deposition are the most popular organic bioelectronic materials that are currently under active research and development. Besides the capability to translate biological signals to electrical signals or vice versa, organic bioelectronic materials entail greater biocompatibility and biodegradability compared to conventional electronic materials, which makes them more suitable for biomedical applications. When patterned, these materials bring about numerous capabilities to perform various tasks in a more-sophisticated and high-throughput manner. Here, we provide an overview of the unique properties of organic bioelectronic materials, different strategies applied to pattern these materials, and finally their applications in the field of biomedical engineering, particularly biosensing, cell and tissue engineering, actuators, and drug delivery.

  11. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I determine the organic HAP... Methods for Determining Hazardous Air Pollutant Content § 63.5758 How do I determine the organic HAP content of materials? (a) Determine the organic HAP content for each material used. To determine...

  12. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I determine the organic HAP... Methods for Determining Hazardous Air Pollutant Content § 63.5758 How do I determine the organic HAP content of materials? (a) Determine the organic HAP content for each material used. To determine...

  13. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials

    DTIC Science & Technology

    2015-08-13

    optical properties of different organic molecules, mesogenics and conjugated polymers , mainly poly(3-alkylthiophene)s, have been investigated by Faraday...currents in chiral (semi-)conducting polymers will be a valuable pathway to implement organic spintronics. Emerging from our research is therefore the...of organic media we focused in our part of the project on studies of the Faraday rotation of an array of organic molecules and conjugated polymers

  14. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials

    DTIC Science & Technology

    2015-08-10

    radical containing fluorescent organic molecule for ascorbic acid (AA) sensor . A novel nitronyl- nitroxide derivative (NN-CN-TFFP) for highly sensitive...15. SUBJECT TERMS organic magnetoresistance, OMAR, Ascorbic acid sensor 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...fluorescent organic molecule for ascorbic acid (AA) sensor . A novel nitronyl-nitroxide derivative (NN-CN-TFFP) for highly sensitive and selective

  15. Interstellar/Precometary Organic Material and the Photochemical Evolution of Complex Organics

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; Bernstein, Max; Sandford, Scott; Witteborn, Fred (Technical Monitor)

    1996-01-01

    During the past two decades ground-, air-, and space-based infrared spectroscopic observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in Large molecular clouds where simple molecules are formed by dust grain and gas phase reactions. Gaseous species striking the cold (10 K) dust will stick, forming an icy grain mantle. This accretion, coupled with energetic particle bombardment and UV photolysis, will produce a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species including nitriles and ketones or esters. The evidence for these compounds as well as carbon rich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk. The second part of the presentation will focus on interstellar/precometary ice photochemical evolution. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs containing methanol will be discussed. ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. Infrared spectroscopy, H-1 and C-13 nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that when ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C(integral)N (nitriles). Several of these are already known to be in the interstellar

  16. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

    PubMed Central

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-01-01

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α-pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate. PMID:23620520

  17. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

    SciTech Connect

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-05-14

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by α-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ≤ 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ≤ 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ≥ 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ≤ 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

  18. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  19. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  20. Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation

    SciTech Connect

    Thacker, Nathan C.; Lin, Zekai; Zhang, Teng; Gilhula, James C.; Abney, Carter W.; Lin, Wenbin

    2016-05-27

    We have designed a strategy for postsynthesis installation of the β-diketiminate (NacNac) functionality in a metal–organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp3 C–H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp3 C–H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity. Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700 000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.

  1. Magnetic Resonance Force Microscopy System Design for the Study of Organic Materials

    NASA Astrophysics Data System (ADS)

    Smith, Doran

    2008-03-01

    We will present an overview of our program to develop an MRFM system specialized for the study of organic materials at 4 K. The system uses the SPAM geometry and the CERMIT protocol and is predicted to be capable of imaging organic materials. With the system we have obtained an MRFM signal on a sample of GaAs with known characteristics. We will present the most recent results of our program to study organic materials with MRFM.

  2. Structured organic materials and devices using low-energy particle beams

    DOEpatents

    Vardeny, Z. Valy; Li, Sergey; Delong, Matthew C.; Jiang, Xiaomei

    2005-09-13

    Organic materials exposed to an electron beam for patterning a substrate (1) to make an optoelectronic organic device which includes a source, a drain, gate dielectric layer (4), and a substrate for emitting light.

  3. Ionic and electronic behaviors of earth-abundant semiconductor materials and their applications toward solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Mayer, Matthew T.

    Semiconductor devices offer promise for efficient conversion of sunlight into other useful forms of energy, in either photovoltaic or photoelectrochemical cell configurations to produce electrical power or chemical energy, respectively. This dissertation examines ionic and electronic phenomena in some candidate semiconductors and seeks to understand their implications toward solar energy conversion applications. First, copper sulfide (Cu2S) was examined as a candidate photovoltaic material. It was discovered that its unique property of cation diffusion allows the room-temperature synthesis of vertically-aligned nanowire arrays, a morphology which facilitates study of the diffusion processes. This diffusivity was found to induce hysteresis in the electronic behavior, leading to the phenomena of resistive switching and negative differential resistance. The Cu2S were then demonstrated as morphological templates for solid-state conversion into different types of heterostructures, including segmented and rod-in-tube morphologies. Near-complete conversion to ZnS, enabled by the out-diffusion of Cu back into the substrate, was also achieved. While the ion diffusion property likely hinders the reliability of Cu 2S in photovoltaic applications, it was shown to enable useful electronic and ionic behaviors. Secondly, iron oxide (Fe2O3, hematite) was examined as a photoanode for photoelectrochemical water splitting. Its energetic limitations toward the water electrolysis reactions were addressed using two approaches aimed at achieving greater photovoltages and thereby improved water splitting efficiencies. In the first, a built-in n-p junction produced an internal field to drive charge separation and generate photovoltage. In the second, Fe 2O3 was deposited onto a smaller band gap material, silicon, to form a device capable of producing enhanced total photovoltage by a dual-absorber Z-scheme mechanism. Both approaches resulted in a cathodic shift of the photocurrent onset

  4. Synthesis of Linearly Fused Benzodipyrrole Based Organic Materials.

    PubMed

    Vlasselaer, Maarten; Dehaen, Wim

    2016-06-17

    The objective of this review is to give an overview of the synthetic methods to prepare different indolo[3,2-b]carbazoles and similar systems with a potential use in electro-optical devices such as OLEDs (organic light emitting diode), OPVs (organic photovoltaic) and OFETs (organic field effect transistor). Some further modifications to the core units and their implications for specific applications are also discussed.

  5. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    NASA Astrophysics Data System (ADS)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  6. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    PubMed Central

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-01-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported. PMID:27877671

  7. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  8. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  9. Immobilization of low level hazardous organics using recycled materials

    SciTech Connect

    Conner, J.R.; Smith, F.G.

    1996-12-31

    Rust Remedial Services, Inc. (RRS) recently conducted a major study on the effectiveness of additives, both virgin and recycled, in the immobilization of low-level organics in soils. Using a clean soil spiked with a mixture of hazardous organic chemicals, twelve different stabilization formulations were comparatively tested using leaching (TCLP) and total analysis (TCA) methods. TCLP reduction levels illustrated the effectiveness of the stabilization treatment on a wide variety of low level organics in contaminated soil, with the proper selection of stabilization admixtures. A specially prepared, comminuted, rubber particulate was especially effective in reducing the apparent presence of certain semi-volatile organic compounds in soil, as measured by TCA methods. Most semi-volatile organic compounds were so strongly held by the rubber particles that they were not recovered in the analytical procedure.

  10. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    PubMed Central

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E.; Kung, Chung-Wei; So, Monica; Sampson, Matthew D.; Peters, Aaron W.; Kubiak, Cliff P.; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm−2. Although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst. PMID:26365764

  11. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    SciTech Connect

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E.; Kung, Chung-Wei; So, Monica; Sampson, Matthew D.; Peters, Aaron W.; Kubiak, Cliff P.; Farha, Omar K.; Hupp, Joseph T.

    2015-09-14

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm−2. In conclusion, although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.

  12. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    DOE PAGES

    Hod, Idan; Deria, Pravas; Bury, Wojciech; ...

    2015-09-14

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm−2. In conclusion, althoughmore » the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.« less

  13. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution.

    PubMed

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E; Kung, Chung-Wei; So, Monica; Sampson, Matthew D; Peters, Aaron W; Kubiak, Cliff P; Farha, Omar K; Hupp, Joseph T

    2015-09-14

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm(-2). Although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.

  14. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E.; Kung, Chung-Wei; So, Monica; Sampson, Matthew D.; Peters, Aaron W.; Kubiak, Cliff P.; Farha, Omar K.; Hupp, Joseph T.

    2015-09-01

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm-2. Although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.

  15. Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste.

    PubMed

    Sasaki, Kengo; Haruta, Shin; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2007-06-01

    An anaerobic packed-bed reactor using carbon fiber textiles (CFT) as the supporting material was continuously operated using an artificial garbage slurry. 16S rRNA gene analysis showed that many bacteria in the biomass adhering to CFT were closely related to those observed from other anaerobic environments, although a wide variety of unidentified bacteria were also found. Dot blot hybridization results clarified that 16S rRNA levels of methanogens in the adhering biomass were higher than those in the effluent. Based on microscopic observation, the adhering biomass consisted of microorganisms, organic material, and void areas. Bacteria and Archaea detected by fluorescence in situ hybridization were distributed from the surface to the inner regions of the adhering biomass. Methanosarcina sp. tended to be more abundant in the inner part of the adhering biomass than at the surface. This is the first report to elucidate the structure of the microbial community on CFT in a packed-bed reactor.

  16. Effect of petroleum products on the decomposition of soil organic matter as assessed by 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Stelmach, Wioleta; Szarlip, Paweł; Trembaczowski, Andrzej; Bieganowski, Andrzej

    2016-04-01

    Petroleum products are common contaminants in soils due to human activities. They are toxic for microorganisms and threat their functions, including decomposition of soil organic matter (SOM). The direct estimation of altered SOM decomposition - based on the CO2 emission - is impossible after oil contamination, because oil decomposition also contributes to the CO2 release. We used the natural differences in the isotopic signature (δ13C) of SOM and of oil products to partition the total CO2 for both sources and to analyze the suppression of SOM decomposition. The dynamics of 13C fractionation during the mineralization of gasoline and diesel was measured during 42 days. The 13C fractionation varied between -8.8‰ and +3.6‰ within the first 10 days, and stabilized thereafter at about -5.3‰ for gasoline and +3.2‰ for diesel. These 13C fractionations and δ13C values of CO2 emitted from the soil were used for correct partitioning of the total CO2. Contamination with gasoline reduced the CO2 efflux from SOM decomposition by a factor of 25 (from 151 to 6 mg C-CO2 kg-1 soil during 42 days). The negative effect of diesel was much lower: the CO2 efflux from SOM was decreased by less than a factor of 2. The strong effect of gasoline versus diesel reflects the lower absorption of gasoline to mineral particles and the development of a thin film on water surfaces, leading to toxicity for microorganisms. We conclude that the small differences of 13C of SOM and of organic pollutants can be used to partition CO2 fluxes and analyze pollutant effects on SOM decomposition.

  17. Biomimetic synthesis of shaped and chiral silica entities templated by organic objective materials.

    PubMed

    Jin, Ren-Hua; Yao, Dong-Dong; Levi, Rumi Tamoto

    2014-06-10

    Organic molecules with accompanying self-organization have been a great subject in chemistry, material science and nanotechnology in the past two decades. One of the most important roles of organized organic molecules is the capability of templating complexly structured inorganic materials. The focus of this Minireview is on nanostructured silica with divergent morphologies and/or integrated chirality directed by organic templates of self-assembled polyamine/polypeptides/block copolymers, chiral organogels, self-organized chiral amphiphiles and chiral crystalline complexes, etc., by biomimetic silicification and conventional sol-gel reaction. Among them, biosilica (diatoms and sponges)-inspired biomimetic silicifications are particularly highlighted.

  18. U, Th, Pb and REE abundances and Pb 207/Pb 206 ages of individual minerals in returned lunar material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1972-01-01

    Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.

  19. Organic materials as templates for the formation of mesoporous inorganic materials and ordered inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ziegler, Christopher R.

    Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular self-assembly. In doing so, a very basic hierarchical structure is formed on the angstrom and nanometer scales. The work presented herein utilizes the self-assembly of either surfactants or block copolymers with the desired inorganic or inorganic precursor to form templated inorganic structures. Specifically, mesoporous silica spheres and copolymer directed calcium phosphate-polymer composites were formed through the co-assembly of an organic template and a precursor to form the desired mesostructured inorganic. For the case of the mesoporous silica spheres, a silica precursor was mixed with cetyltrimethylammonium bromide and cysteamine, a highly effective biomimetic catalyst for the conversion of alkoxysilanes to silica. Through charge-based interactions between anionic silica species and the micelle-forming cationic surfactant, ordered silica structures resulted. The incorporation of a novel, effective catalyst was found to form highly condensed silica spheres for potential application as catalyst supports or an encapsulation media. Ordered calcium phosphate-polymer composites were formed using two routes. Both routes take advantage of hydrogen bonding and ionic interactions between the calcium and phosphate precursors

  20. Materials Organization, Planning, and Homework Completion in Middle School Students with ADHD: Impact on Academic Performance.

    PubMed

    Langberg, Joshua M; Epstein, Jeffery N; Girio, Erin L; Becker, Stephen P; Vaughn, Aaron J; Altaye, Mekibib

    2011-06-01

    This study evaluated the homework functioning of middle school students with ADHD to determine what aspects are most predictive of school grades and the best source (e.g., parents or teachers) for obtaining this information. Students with ADHD in grades 5-8 (N = 57) and their parents and teachers completed the Children's Organization Skills Scales (COSS) to measure materials organization, planning, and time-management, and parents completed the Homework Problems Checklist (HPC) to examine homework completion and homework materials management behaviors. Regression analyses revealed that parent-rated homework materials management and teacher-rated memory and materials management were the best predictors of school grades. These findings suggest that organization of materials is a critical component of the homework completion process for students with ADHD and an important target for intervention. Teachers were the best source of information regarding materials organization and planning, whereas parents were a valuable source of information for specific homework materials management problems.

  1. Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an urban site in Korea in summer.

    PubMed

    Park, Seung Shik; Kim, Ja-Hyun; Jeong, Jae-Uk

    2012-01-01

    In this study, the characteristics of total water-soluble organic carbon (WSOC) and isolated WSOC fractions were examined to gain a better understanding of the pathway of organic aerosol production. 24 h PM(2.5) samples were collected during the summer (July 28-August 28, 2009) at an urban site in Korea. A glass column filled with XAD7HP resin was used to separate the filtered extracts into hydrophilic (WSOC(HPI)) and hydrophobic (WSOC(HPO)) fractions. The origins of air mass pathways arriving at the sampling site were mostly classified into three types, those originating over the East Sea of Korea that passed over the eastern inland urban and industrial regions (type I); those from the marine (western/southwestern/southern marine) and passed over the national industrial complex regions (type II); and those from northeastern China that passed through North Korea and metropolitan areas of South Korea (type III). Measurements showed an increase in the average WSOC fraction of total OC from the type II to III air mass (53 to 64%) periods. Also, higher SO(4)(2-)/SO(x) (=SO(2) + SO(4)(2-)) was observed in the type III air mass (0.70) than those in the types I (0.49) and II (0.43). According to the average values of WSOC/OC and SO(4)(2-)/SO(x), measurements suggest that the aerosols collected during the type III air mass period were more aged or photo-chemically processed than those during the types I and II air mass periods. The relationship between the SO(4)(2-)/SO(x) and WSOC/OC (R(2) = 0.64) suggests that a significant fraction of the observed WSOC at the site could be formed by an oxidation process similar to SO(4)(2-) aerosols, probably the oxidation process using OH radicals, or in-cloud processing. The photochemical production of WSOC(HPO) was also observed to significantly contribute to the total OC.

  2. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  3. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  4. Formation of Apollo 16 impactites and the composition of late accreted material: Constraints from Os isotopes, highly siderophile elements and sulfur abundances

    NASA Astrophysics Data System (ADS)

    Gleißner, Philipp; Becker, Harry

    2017-03-01

    Fe-Ni metal-schreibersite-troilite intergrowths in Apollo 16 impact melt rocks and new highly siderophile element (HSE) and S abundance data indicate that millimeter-scale closed-system fractional crystallization processes during cooling of impactor-derived metal melt droplets in impact-melts are the main reason for compositional variations and strong differences in abundances and ratios of HSE in multiple aliquots from Apollo 16 impact melt rocks. Element ratios obtained from linear regression of such data are therefore prone to error, but weighted averages take into account full element budgets in the samples and thus represent a more accurate estimate of their impactor contributions. Modeling of solid metal-liquid metal partitioning in the Fe-Ni-S-P system and HSE patterns in impactites from different landing sites suggest that bulk compositions of ancient lunar impactites should be representative of impact melt compositions and that large-scale fractionation of the HSE by in situ segregation of solid metal or sulfide liquid in impact melt sheets most likely did not occur. The compositional record of lunar impactites indicates accretion of variable amounts of chondritic and non-chondritic impactor material and the mixing of these components during remelting of earlier ejecta deposits. The non-chondritic composition appears most prominently in some Apollo 16 impactites and is characterized by suprachondritic HSE/Ir ratios which increase from refractory to moderately volatile HSE and exhibit a characteristic enrichment of Ru relative to Pt. Large-scale fractional crystallization of solid metal from sulfur and phosphorous rich metallic melt with high P/S in planetesimal or embryo cores is currently the most likely process that may have produced these compositions. Similar materials or processes may have contributed to the HSE signature of the bulk silicate Earth (BSE).

  5. The Suzaku Observation of the Nucleus of the Radio Loud Active Galaxy Centaurus A: Constraints on Abundances in the Accreting Material

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J. N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-01-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  6. Organizing to cope with hazardous-material spills

    SciTech Connect

    Rychman, D.W.; Ryckman, M.D.

    1980-01-01

    A method is given for handling hazardous-material spills that threaten drinking-water supplies. The method is applied to three case histories involving a phenol/alcohol/solvents spill, a gasoline spill, and a weekend oil spill.

  7. The use of amino acid indices for assessing organic matter quality and microbial abundance in deep-sea Antarctic sediments of IODP Expedition 318

    USGS Publications Warehouse

    Carr, Stephanie A; Mills, Christopher; Mandernack, Kevin W

    2016-01-01

    The Adélie Basin, located offshore of the Wilkes Land margin, experiences unusually high sedimentation rates (~ 2 cm yr− 1) for the Antarctic coast. This study sought to compare depthwise changes in organic matter (OM) quantity and quality with changes in microbial biomass with depth at this high-deposition site and an offshore continental margin site. Sediments from both sites were collected during the International Ocean Drilling (IODP) Program Expedition 318. Viable microbial biomass was estimated from concentrations of bacterial-derived phospholipid fatty acids, while OM quality was assessed using four different amino acid degradation proxies. Concentrations of total hydrolysable amino acids (THAA) measured from the continental margin suggest an oligotrophic environment, with THAA concentrations representing only 2% of total organic carbon with relative proportions of non-protein amino acids β-alanine and γ-aminobutyric acid as high as 40%. In contrast, THAA concentrations from the near-shore Adélie Basin represent 40%–60% of total organic carbon. Concentrations of β-alanine and γ-aminobutyric acid were often below the detection limit and suggest that the OM of the basin as labile. DI values in surface sediments at the Adélie and margin sites were measured to be + 0.78 and − 0.76, reflecting labile and more recalcitrant OM, respectively. Greater DI values in deeper and more anoxic portions of both cores correlated positively with increased relative concentrations of phenylalanine plus tyrosine and may represent a change of redox conditions, rather than OM quality. This suggests that DI values calculated along chemical profiles should be interpreted with caution. THAA concentrations, the percentage of organic carbon (CAA%) and total nitrogen (NAA%) represented by amino acids at both sites demonstrated a significant positive correlation with bacterial abundance estimates. These data suggest that the selective degradation of amino acids, as

  8. Model-measurement comparison of functional group abundance in α-pinene and 1,3,5-trimethylbenzene secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Ruggeri, Giulia; Bernhard, Fabian A.; Henderson, Barron H.; Takahama, Satoshi

    2016-07-01

    Secondary organic aerosol (SOA) formed by α-pinene and 1,3,5-trimethylbenzene photooxidation under different NOx regimes is simulated using the Master Chemical Mechanism v3.2 (MCM) coupled with an absorptive gas-particle partitioning module. Vapor pressures for individual compounds are estimated with the SIMPOL.1 group contribution model for determining apportionment of reaction products to each phase. We apply chemoinformatic tools to harvest functional group (FG) composition from the simulations and estimate their contributions to the overall oxygen to carbon ratio. Furthermore, we compare FG abundances in simulated SOA to measurements of FGs reported in previous chamber studies using Fourier transform infrared spectroscopy. These simulations qualitatively capture the dynamics of FG composition of SOA formed from both α-pinene and 1,3,5-trimethylbenzene in low-NOx conditions, especially in the first hours after start of photooxidation. Higher discrepancies are found after several hours of simulation; the nature of these discrepancies indicates sources of uncertainty or types of reactions in the condensed or gas phase missing from current model implementation. Higher discrepancies are found in the case of α-pinene photooxidation under different NOx concentration regimes, which are reasoned through the domination by a few polyfunctional compounds that disproportionately impact the simulated FG abundance in the aerosol phase. This manuscript illustrates the usefulness of FG analysis to complement existing methods for model-measurement evaluation.

  9. [Progress of organometallic complexes and their application to organic electroluminescent materials].

    PubMed

    Zhou, Rui; An, Zhong-Wei; Chai, Sheng-Yong

    2004-08-01

    Organic electroluminescent (EL) material is one of most prospective display materials in flat panel display. Organometallic complexes, which have five or six member ring structures, with high stability, high melting point and high fluorescence quantum efficiency, are widely applied in organic EL devices. The recent progress in organometallic complexes is summarized in terms of the electroluminescence of ligands and metal atoms.

  10. Selective Bifunctional Modification of a Non-catenated Metal-Organic Framework Material via 'Click' Chemistry

    SciTech Connect

    Gadzikwa, Tendai; Farha, Omar K.; Malliakas, Christos D.; Kanatzidis, Mercouri G.; Hupp, Joseph T.; Nguyen, SonBinh T.; NWU

    2009-12-01

    A noncatenated, Zn-based metal-organic framework (MOF) material bearing silyl-protected acetylenes was constructed and postsynthetically modified using 'click' chemistry. Using a solvent-based, selective deprotection strategy, two different organic azides were 'clicked' onto the MOF crystals, resulting in a porous material whose internal and external surfaces are differently functionalized.

  11. High Performance Organic Photovoltaics via Novel Materials Combinations

    SciTech Connect

    Laird, Dr Darin; McGuiness, Dr Christine; Storch, Mark

    2011-01-20

    OPV cell efficiencies have increased significantly over the last decade and verified champion efficiencies are currently at 8.3% for both single and multi-junction device types. These increases in efficiency have been driven through the development and optimization of the donor and acceptor materials in bulk heterojunction active layers. Plextronics and Solarmer Energy Inc. are two of the world leading developers of these donor and acceptor materials. Solarmer Energy has reported NREL certified 6.77% efficiencies using optimized low band gap donor materials in combination with PC61BM and PC71BM acceptors and recently reported a champion NREL certified efficiency of 8.1%. Plextronics has reported Newport certified efficiencies of 6.7% using PC71BM acceptors with low band gap materials. In addition, Plextronics has also demonstrated that OPV efficiency of P3HT based materials can be improved by 50% by improving the Voc using alternative acceptors (indene substituted C60 and C70) to PC61BM and PC71BM. However, performance of these alternative acceptors in combination with low band gap materials has not been investigated and the potential for efficiency improvement is evident. In this collaboration, four low band gap donor materials from Solarmer Energy Inc were combined with Plextronics’ indene-class acceptors Plextronics’ indene substituted C60 and C70 acceptors to demonstrate OPV performance greater than 7%. Two main indene class C60 acceptors (codenamed Mono-indene[C60] Mono-indene[C60] , Bis-indene[C60] ) were screened with the Solarmer polymers. These four polymers were screened and optimized with the indene class acceptors at both Plextronics and Solarmer. A combination was identified which produced 6.7% (internal measurement) with a Solarmer polymer and a Plextronics fullerene acceptor. This was accomplished primarily by improving the Voc as well as improving the current (Jsc) and FF.

  12. Charge carrier mobility in organic molecular materials probed by electromagnetic waves.

    PubMed

    Seki, Shu; Saeki, Akinori; Sakurai, Tsuneaki; Sakamaki, Daisuke

    2014-06-21

    Charge carrier mobility is an essential parameter providing control over the performance of semiconductor devices fabricated using a variety of organic molecular materials. Recent design strategies toward molecular materials have been directed at the substitution of amorphous silicon-based semiconductors; accordingly, numerous measurement techniques have been designed and developed to probe the electronic conducting nature of organic materials bearing extremely wide structural variations in comparison with inorganic and/or metal-oxide semiconductor materials. The present perspective highlights the evaluation methodologies of charge carrier mobility in organic materials, as well as the merits and demerits of techniques examining the feasibility of organic molecules, crystals, and supramolecular assemblies in semiconductor applications. Beyond the simple substitution of amorphous silicon, we have attempted to address in this perspective the systematic use of measurement techniques for future development of organic molecular semiconductors.

  13. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies

    PubMed Central

    Francioli, Davide; Schulz, Elke; Lentendu, Guillaume; Wubet, Tesfaye; Buscot, François; Reitz, Thomas

    2016-01-01

    Soil management is fundamental to all agricultural systems and fertilization practices have contributed substantially to the impressive increases in food production. Despite the pivotal role of soil microorganisms in agro-ecosystems, we still have a limited understanding of the complex response of the soil microbiota to organic and mineral fertilization in the very long-term. Here, we report the effects of different fertilization regimes (mineral, organic and combined mineral and organic fertilization), carried out for more than a century, on the structure and activity of the soil microbiome. Organic matter content, nutrient concentrations, and microbial biomass carbon were significantly increased by mineral, and even more strongly by organic fertilization. Pyrosequencing revealed significant differences between the structures of bacterial and fungal soil communities associated to each fertilization regime. Organic fertilization increased bacterial diversity, and stimulated microbial groups (Firmicutes, Proteobacteria, and Zygomycota) that are known to prefer nutrient-rich environments, and that are involved in the degradation of complex organic compounds. In contrast, soils not receiving manure harbored distinct microbial communities enriched in oligotrophic organisms adapted to nutrient-limited environments, as Acidobacteria. The fertilization regime also affected the relative abundances of plant beneficial and detrimental microbial taxa, which may influence productivity and stability of the agroecosystem. As expected, the activity of microbial exoenzymes involved in carbon, nitrogen, and phosphorous mineralization were enhanced by both types of fertilization. However, in contrast to comparable studies, the highest chitinase and phosphatase activities were observed in the solely mineral fertilized soil. Interestingly, these two enzymes showed also a particular high biomass-specific activities and a strong negative relation with soil pH. As many soil parameters

  14. 9 CFR 95.17 - Glands, organs, ox gall, and like materials; requirements for unrestricted entry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Glands, organs, ox gall, and like... STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.17 Glands, organs, ox gall, and like materials; requirements for unrestricted entry. Glands, organs, ox gall or bile, bone marrow, and various like...

  15. 9 CFR 95.17 - Glands, organs, ox gall, and like materials; requirements for unrestricted entry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Glands, organs, ox gall, and like... STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.17 Glands, organs, ox gall, and like materials; requirements for unrestricted entry. Glands, organs, ox gall or bile, bone marrow, and various like...

  16. 9 CFR 95.17 - Glands, organs, ox gall, and like materials; requirements for unrestricted entry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Glands, organs, ox gall, and like... STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.17 Glands, organs, ox gall, and like materials; requirements for unrestricted entry. Glands, organs, ox gall or bile, bone marrow, and various like...

  17. 9 CFR 95.17 - Glands, organs, ox gall, and like materials; requirements for unrestricted entry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Glands, organs, ox gall, and like... STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.17 Glands, organs, ox gall, and like materials; requirements for unrestricted entry. Glands, organs, ox gall or bile, bone marrow, and various like...

  18. 9 CFR 95.17 - Glands, organs, ox gall, and like materials; requirements for unrestricted entry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Glands, organs, ox gall, and like... STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.17 Glands, organs, ox gall, and like materials; requirements for unrestricted entry. Glands, organs, ox gall or bile, bone marrow, and various like...

  19. WOWBugs: Materials Development and Classroom Implementation of a Novel Organism.

    ERIC Educational Resources Information Center

    Koballa, Thomas R., Jr.; And Others

    The purpose of the WOWBug project was to promote "Melittobia digitata," a fruit-fly sized wasp, as a new organism for life science instruction and to determine the potential usefulness of the wasp to teach fundamental life science concepts. Fifty-five middle school teachers were introduced to the WOWBug and practiced with prototype…

  20. Organic underlayer materials with exceptionally high thermal stability

    NASA Astrophysics Data System (ADS)

    Cheon, Hwan-Sung; Yoon, Kyong-Ho; Kim, Min-Soo; Oh, Sung Bae; Song, Jee-Yun; Tokareva, Nataliya; Kim, Jong-Seob; Chang, Tuwon

    2009-03-01

    Multilayer hardmask (MLHM) schemes have been implemented as an indispensable process for ArF lithography which continues to demand thinner photoresist films. There are many variations of MLHM and semiconductor manufacturers choose to adopt their own designs, depending on their specific needs and technical advances. The quad-layer stack consisting of photoresist, organic ARC, CVD Si hardmask, and spin-on carbon underlayer is one of them. Despite the need for wafer transporting between the spin track and CVD equipment, this scheme is attractive because it can avoid laborious elaboration of sophisticated etching chemistries for spin-on Si-ARC and carbon underlayer. One of the issues arising from the mixed film forming process is the thermal stability of carbon underlayer at high temperatures during the CVD process of the Si hardmask. Organic underlayer which shows high thermal stability is crucial for this mixed hardmask process. These types of thermally stable organic film can also be used for other applications such as the spacer patterning technique for pitch size shrinkage. In this paper, we discuss the development of organic resins with high thermal stability, their physical properties, and their lithographic behaviors in the MLHM schemes.

  1. Ideas for Organizing, Storing, and Using Equipment/Materials.

    ERIC Educational Resources Information Center

    United Cerebral Palsy Associations, Inc., Washington, DC.

    This document lists 55 ideas for organizing and lending computer equipment, switches, adapters, and software. The first section lists general organizational hints, including labeling of equipment, maintaining regular inventories, and establishing a crisis phone number and contact person to help people figure things out. The second section lists…

  2. Hybrid organic-inorganic materials based on hydroxyapatite structure

    NASA Astrophysics Data System (ADS)

    Moussa, Sana Ben; Bachouâ, Hassen; Gruselle, Michel; Beaunier, Patricia; Flambard, Alexandrine; Badraoui, Béchir

    2017-04-01

    The present article details the formation of calcium hydroxyapatite synthesized by the hydrothermal way, in presence of glycine or sarcosine. The presence of these amino-acids during the synthetic processes reduces the crystalline growthing through the formation of hybrid organic-inorganic species The crystallite sizes are decreasing and the morphology is modified with the increase of the amino-acid concentration.

  3. Deterioration of organic packing materials commonly used in air biofiltration: effect of VOC-packing interactions.

    PubMed

    Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Quijano, Guillermo

    2014-05-01

    The abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene. Likewise, the exposure to toluene increased the packing material biodegradability by 26% in wood bark, 20% in compost and 17% in Macadamia nutshells. Finally, scanning electron microscopy analysis confirmed the deterioration in the structure of the packing materials evaluated due to the exposure to toluene, Macadamia nutshells being the material with the highest resistance to volatile organic compound attack.

  4. Organizing Learning Materials through Hierarchical Topic Maps: An Illustration through Chinese Herb Medication

    ERIC Educational Resources Information Center

    Shih, B.-J.; Shih, J.-L.; Chen, R.-L.

    2007-01-01

    This research aims to use hierarchical topic maps to compile digital learning material and to discuss its design and application possibilities. The system renders tremendous original assets and then embeds a self-organizing map (SOM) in the material database to produce topical learning materials, as in this case, an illustration through Chinese…

  5. The Suzaku Observation of the Nucleus of the Radio-loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    NASA Astrophysics Data System (ADS)

    Markowitz, A.; Takahashi, T.; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J. N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-08-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3-250 keV. The net exposure times after screening were 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD GSO. The hard X-rays are fit by two power laws of the same slope, absorbed by columns of 1.5 and 7×1023 cm-2, respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the subparsec VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial-covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca, and Ni are detected. The Fe Kα line width yields a 200 lt-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  6. The Suzaku Observation of the Nucleus of theRadio-Loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    SciTech Connect

    Markowitz, A.; Takahashi, T.; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J.N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-06-27

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 x 10{sup 23} cm{sup -2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature vapec model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K{alpha} line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  7. Materials Approach to Dissecting Surface Responses in the Attachment Stages of Biofouling Organisms

    DTIC Science & Technology

    2016-04-25

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION ... Organisms Michael R. Detty, PI/PD Summary of Research Highlights Supported by ONR N00014-13-1-0430 1) Hydrophobic xerogel coatings are “robust” – good...correlation of surface energy/critical surface tension/water contact angles/zeta potentials/charge with settlement of fouling organisms /materials and

  8. Reaction of organic material to progressive geologic heating

    SciTech Connect

    Creaney, S.

    1985-02-01

    The generation of oil is a process that begins to occur at some point during the burial history of a source rock. This onset of maturation is dictated largely by temperature and residence time. However, the nature of the source rock itself also influences the hydrocarbon product being expelled from the source rock. The vast majority of the world's oil can be ascribed to source rocks of the following types. (1) Marine mudrocks deposited in anoxic conditions and dominated by phytoplankton organisms; this type of source rock can have a carbonate or clay inorganic matrix and total organic carbon values from 1 to 30% (commonly 4 to 10% when immature). Examples of this classical oil source rock would be the source rocks of western Canada, the Middle East, and the North Sea. (2) Specific coal facies such as torbanites and channel coals, which contain a mixture of hydrogen-rich plant detritus (e.g., spores, pollen, cuticle, resin, and algae); deposition was probably in open-water areas of an overall coal-swamp environment. Examples of hydrocarbons from this type of source include the Gippsland basin, Canadian Beaufort Sea, and Southeast Asia. (3) Lacustrine organic-rich deposits, rich in freshwater algae, which ultimately result in high-wax crude oils. Examples are relatively rare, but include major source rocks in the Uinta basin and China. The effect of increasing maturity on marine mudrocks of the Devonian Duvernay Formation of Alberta illustrates oil generation from this type of source rock. The data base in this unit consists of 40 conventional cores, ranging from immature to completely overmature, and 80 oils from separate accumulations sourced from the Duvernay. An illustration of oil generation in a coaly source rock is provided by a single core from the Lower Cretaceous of the Beaufort-Mackenzie basin plus many of the oils and condensates reservoired in that area.

  9. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  10. Polytellurophenes as Solution Processable Materials for Applications in Organic Electronics

    NASA Astrophysics Data System (ADS)

    Jahnke, Ashlee Anne

    With very few previous publications on polytellurophenes prior to 2009, this is a largely unexplored class of conjugated polymers. This thesis details investigations into two types of tellurophene polymers. The synthesis of four novel tellurophene containing polymers is described and the characterization of their optical, solid-state, and electronic properties is discussed. The first chapter provides an introduction to the history of the field of polytellurophenes and provides context for the work presented in this thesis. The second chapter describes the synthesis of a novel bitellurophene monomer and its use in palladium-catalyzed polymerization. Once synthesized, the polymer is used to explore the unique chemistry of tellurium and its ability to form coordination species with bromine. Upon treatment with elemental bromine, changes in the optical properties of the system are observed. In chapter three, the synthesis of the first examples of soluble tellurophene homopolymers is presented. These poly(3-alkyltellurophene)s are solution processable materials and are fully characterized in solution and the solid-state. Chapter four describes further studies into the thin-film morphology of the materials presented in chapter three. Furthermore, semiconductor:insulator blends are prepared using poly(3-alkyltellurophene)s and high-density polyethylene. Taking advantage of the elemental contrast provided by the tellurium heavy atom, the micro- and nanostructure of the blend thin-films are investigated with various microscopy techniques providing insight into these types of blends that was previously unavailable. In the final chapter, the performance of these materials in thin-film field-effect transistors was investigated.

  11. Influence of salivary organic substances on the discoloration of esthetic dental materials-a review.

    PubMed

    Lee, Yong-Keun; Powers, John M

    2006-02-01

    The objective of this article was to review the articles on the interaction of salivary organic substances with resin-based dental materials and on the interaction of these organic substances with exogenous chemical agents, which results in discoloration. Original scientific articles or reviews on the saliva, acquired pellicle, and the interaction with pellicle and chemical agents related to dental resin-based materials were reviewed. Salivary esterases can increase or decrease the internal and external discoloration. The formation of acquired pellicle on the surface of a material varies by the properties of material, and the pellicle interacts with denaturation agents, such as tannin and chlorhexidine, to form stains and also adsorbs staining substances. Therefore, for the quality and longevity of restorations, protocols for the evaluation of the influence of organic substances on the extrinsic staining of restorative materials should be included in the evaluation of aesthetic restorative materials.

  12. Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability.

    PubMed

    Reddy, Saripally Sudhaker; Gunasekar, Kumarasamy; Heo, Jin Hyuck; Im, Sang Hyuk; Kim, Chang Su; Kim, Dong-Ho; Moon, Jong Hun; Lee, Jin Yong; Song, Myungkwan; Jin, Sung-Ho

    2016-01-27

    Small molecules based on N-atom-linked phenylcarbazole-fluorene as the main scaffold, end-capped with spirobifluorene derivatives, are developed as organic hole-transporting materials for highly efficient perovskite solar cells (PSCs) and bulk heterojunction (BHJ) inverted organic solar cells (IOSCs). The CzPAF-SBF-based devices show remarkable device performance with excellent long-term stability in PSCs and BHJ IOSCs with a maximum PCE of 17.21% and 7.93%, respectively.

  13. Containerless synthesis of amorphous and nanophase organic materials

    DOEpatents

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  14. Sucrose: A Prospering and Sustainable Organic Raw Material

    NASA Astrophysics Data System (ADS)

    Peters, Siegfried; Rose, Thomas; Moser, Matthias

    Sucrose (α-d-glucopyranosyl-(1→2)-β-d-fructofuranoside) is an inexpensive chemical produced by sugar cane and sugar beet cultivation. Chemical and/or biochemical transformations convert it into highly valuable synthetic intermediates such as 5-hydroxymethylfurfural (HMF), bioethylene, 1,2-propylene glycol and levulinic acid. Sucrose can also be converted into biodegradable polymers such as polyesters and polyurethanes, as well as into novel carbohydrates such as isomaltulose, trehalulose, inulin, levan, Neo-amylose, and dextran, highly valuable additives for food and cosmetics and materials for separation and purification technologies.

  15. Crystal morphology variation in inkjet-printed organic materials

    NASA Astrophysics Data System (ADS)

    Ihnen, Andrew C.; Petrock, Anne M.; Chou, Tsengming; Samuels, Phillip J.; Fuchs, Brian E.; Lee, Woo Y.

    2011-11-01

    The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.

  16. Hybrid metal organic scintillator materials system and particle detector

    DOEpatents

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  17. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  18. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India.

    PubMed

    Li, Jianjun; Wang, Gehui; Aggarwal, Shankar G; Huang, Yao; Ren, Yanqin; Zhou, Bianhong; Singh, Khem; Gupta, Prabhat K; Cao, Junji; Zhang, Rong

    2014-04-01

    Wintertime TSP samples collected in the two megacities of Xi'an, China and New Delhi, India were analyzed for elements, inorganic ions, carbonaceous species and organic compounds to investigate the differences in chemical compositions and sources of organic aerosols. The current work is the first time comparing the composition of urban organic aerosols from China and India and discussing their sources in a single study. Our results showed that the concentrations of Ca, Fe, Ti, inorganic ions, EC, PAHs and hopanes in Xi'an are 1.3-2.9 times of those in New Delhi, which is ascribed to the higher emissions of dust and coal burning in Xi'an. In contrast, Cl(-), levoglucosan, n-alkanes, fatty alcohols, fatty acids, phthalates and bisphenol A are 0.4-3.0 times higher in New Delhi than in Xi'an, which is attributed to strong emissions from biomass burning and solid waste incineration. PAHs are carcinogenic while phthalates and bisphenol A are endocrine disrupting. Thus, the significant difference in chemical compositions of the above TSP samples may suggest that residents in Xi'an and New Delhi are exposed to environmental hazards that pose different health risks. Lower mass ratios of octadecenoic acid/octadecanoic acid (C18:1/C18:0) and benzo(a)pyrene/benzo(e)pyrene (BaP/BeP) demonstrate that aerosol particles in New Delhi are photochemically more aged. Mass closure reconstructions of the wintertime TSP indicate that crustal material is the most abundant component of ambient particles in Xi'an and New Delhi, accounting for 52% and 48% of the particle masses, respectively, followed by organic matter (24% and 23% in Xi'an and New Delhi, respectively) and secondary inorganic ions (sulfate, nitrate plus ammonium, 16% and 12% in Xi'an and New Delhi, respectively).

  19. Stimulated Raman scattering in new organic and inorganic crystalline materials

    NASA Astrophysics Data System (ADS)

    Rhee, Hanjo; Kaminskii, Alexander A.; Eichler, Hans Joachim

    2007-02-01

    Results of our SRS investigations of the organic crystals α-Ca(HCOO) II (alpha calcium formate), LiNH IIC 6H 4SO 3 • H IIO (lithium sulfanilate monohydrate) and N(CH IICH IINH 3) 3Br 3 (tren trihydrobromide) are presented. Currently a promising development in solid-state laser physics is the use of highly transparent ceramics. We have demonstrated efficient SRS in three ceramics based on cubic rare earth sesquioxides RE IIO 3 (RE = Sc, Y and Lu) with Raman shifts in the range of 378 cm -1 to 419 cm -1. Cascading χ (3) --> χ (2) --> χ (3) lasing effects, self-SHG, self-SFM and cascading Stokes and anti-Stokes generation between phonons of different energies has been observed in Li IISO 4 • H IIO (lithium sulphate monohydrate), CsLiMoO 4 (caesium lithium molybdate) and CsLiMoO 4 • 1/3H IIO.

  20. Solar power wires based on organic photovoltaic materials.

    PubMed

    Lee, Michael R; Eckert, Robert D; Forberich, Karen; Dennler, Gilles; Brabec, Christoph J; Gaudiana, Russell A

    2009-04-10

    Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.

  1. Grown organic matter as a fuel raw material resource

    NASA Technical Reports Server (NTRS)

    Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.

    1975-01-01

    An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.

  2. Organization and diffusion in biological and material fabrication problems

    NASA Astrophysics Data System (ADS)

    Mangan, Niall Mari

    anhydrase and RuBisCO in a smaller volume raises the concentration of carbon dioxide around RuBisCO by switching from a regime where the carbonic anhydrase is saturated to non-saturated. Hyper-doping with femto-second lasers offers a versatile method for creating new materials including semi-conductor materials doped at beyond the equilibrium solubility limit. Silicon hyper-doped with sulfur has been shown to absorb highly in the infra-red region. Hyper-doped silicon already is already used in night-vision infra-red sensors and is being explored for other applications such as photovoltaics. Being able to finely tune the dopant profile in the material will allow us to achieve more efficient and effective devices. To better control the doping profile, we develop a model which correctly represents the physics of melting of Si and diffusion of dopant into the material. The thermal and solute diffusion model produces melt dynamics and dopant profiles consistent with experimental data. We present the results of numerical simulations. We identify two distinct mechanisms which account for the characteristic dopant profiles in experiments. A change in laser absorption such that the melt depth increases or a change in the mechanism of dopant integration from an "instant surface dose" to a surface flux can both account for changes in dopant profile with subsequent laser pulses.

  3. 3D printing of natural organic materials by photochemistry

    NASA Astrophysics Data System (ADS)

    Da Silva Gonçalves, Joyce Laura; Valandro, Silvano Rodrigo; Wu, Hsiu-Fen; Lee, Yi-Hsiung; Mettra, Bastien; Monnereau, Cyrille; Schmitt Cavalheiro, Carla Cristina; Pawlicka, Agnieszka; Focsan, Monica; Lin, Chih-Lang; Baldeck, Patrice L.

    2016-03-01

    In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.

  4. Tunable structural color in organisms and photonic materials for design of bioinspired materials.

    PubMed

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  5. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  6. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    PubMed Central

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  7. Organizations Working to Reduce the Disposal of Construction and Demolition (C&D) Materials

    EPA Pesticide Factsheets

    Organizations with available resources and services related to reducing, reducing, and recycling C&D Materials? This table is a great place to start! Use the three tabs below to easily sort the data and best meet your needs.

  8. Organic materials database: An open-access online database for data mining

    PubMed Central

    Geilhufe, R. Matthias; Balatsky, Alexander V.

    2017-01-01

    We present an organic materials database (OMDB) hosting thousands of Kohn-Sham electronic band structures, which is freely accessible online at http://omdb.diracmaterials.org. The OMDB focus lies on electronic structure, density of states and other properties for purely organic and organometallic compounds that are known to date. The electronic band structures are calculated using density functional theory for the crystal structures contained in the Crystallography Open Database. The OMDB web interface allows users to retrieve materials with specified target properties using non-trivial queries about their electronic structure. We illustrate the use of the OMDB and how it can become an organic part of search and prediction of novel functional materials via data mining techniques. As a specific example, we provide data mining results for metals and semiconductors, which are known to be rare in the class of organic materials. PMID:28182744

  9. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    SciTech Connect

    Martin, D.R.

    1994-02-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  10. Metal-organic framework materials based on icosahedral boranes and carboranes

    DOEpatents

    Mirkin, Chad A.; Hupp, Joseph T.; Farha, Omar K.; Spokoyny, Alexander M.; Mulfort, Karen L.

    2010-11-02

    Disclosed herein are metal-organic frameworks of metals and boron rich ligands, such as carboranes and icosahedral boranes. Methods of synthesizing and using these materials in gas uptake are disclosed.

  11. Organic materials database: An open-access online database for data mining.

    PubMed

    Borysov, Stanislav S; Geilhufe, R Matthias; Balatsky, Alexander V

    2017-01-01

    We present an organic materials database (OMDB) hosting thousands of Kohn-Sham electronic band structures, which is freely accessible online at http://omdb.diracmaterials.org. The OMDB focus lies on electronic structure, density of states and other properties for purely organic and organometallic compounds that are known to date. The electronic band structures are calculated using density functional theory for the crystal structures contained in the Crystallography Open Database. The OMDB web interface allows users to retrieve materials with specified target properties using non-trivial queries about their electronic structure. We illustrate the use of the OMDB and how it can become an organic part of search and prediction of novel functional materials via data mining techniques. As a specific example, we provide data mining results for metals and semiconductors, which are known to be rare in the class of organic materials.

  12. REFERENCE MATERIALS AND QUALITY ASSURANCE FOR THE CHARACTERIZATION OF ORGANIC COMPOUNDS IN PARTICULATE MATTER

    EPA Science Inventory

    One of the first environmental matrix Standard Reference Materials (SRMs) developed by the National Institute of Standards and Technology (NIST) for determination of organic species was SRM 1649 Urban Dust, ambient total suspended particulate matter (PM) collected in Washington D...

  13. Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview

    NASA Technical Reports Server (NTRS)

    Shin, Euy-Sik Eugene

    2015-01-01

    Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.

  14. Nanostructured organic electronic materials: Synthesis and sensor applications

    NASA Astrophysics Data System (ADS)

    Dua, Vineet

    2009-12-01

    This study is an investigation into (a) the process by which one obtains bulk quantities of nanofibers of parent polythiophene, (b) in-situ deposition of nanofibers of polythiophene on flexible substrate and its application in vapor sensing, and (c) inkjet printing of graphene on flexible substrate and its application as a detector. (a) The 2 nd chapter of the thesis is an extension of "seeding" method from aqueous to organic solvents to synthesize parent polythiophene nanofibers. Bulk quantities of parent polythiophene nanofibers were synthesized in one step using catalytic amounts of freeze dried V2O5. This work is published in Chemistry Letters 2008 37(5), 526--527. (b) The 3rd chapter deals with in-situ films of polythiophene nanofibers on plastic substrates. In this a one step method to directly deposit nanofibers of parent polythiophene on flexible substrate is discussed. These films show a reversible detection of highly oxidizing vapors such as NO2, Cl2 and SO 2 at ppb levels under ambient conditions. This work is published in Macromolecules 2009, 42, 5414--5415. (c) The 4 th chapter describes the synthesis of reduced graphene oxide (RGO) using a mild reducing agent ascorbic acid (Vitamin C) rather than traditionally used harsh reducing agents (N2H4). Dispersions of RGO were inkjet printed on flexible substrate and has been shown to detect aggressive vapors NO2 and Cl2 at ambient conditions. This work is accepted for publication in Angewandte Chemie (Nov 2009).

  15. Asymmetric split ring resonators for optical sensing of organic materials.

    PubMed

    Lahiri, Basudev; Khokhar, Ali Z; De La Rue, Richard M; McMeekin, Scott G; Johnson, Nigel P

    2009-01-19

    Asymmetric Split Ring Resonators are known to exhibit resonant modes where the optical electric field is strongest near the ends of the arms, thereby increasing the sensitivity of spectral techniques such as surface enhanced Raman scattering (SERS). By producing asymmetry in the structures, the two arms of the ring produce distinct plasmonic resonances related to their lengths - but are also affected by the presence of the other arm. This combination leads to a steepening of the slope of the reflection spectrum between the resonances that increases the sensitivity of the resonant behavior to the addition of different molecular species. We describe experimental results, supported by simulation, on the resonances of a series of circular split ring resonators with different gap and section lengths--at wavelengths in the mid-infra red regions of the spectrum--and their utilization for highly sensitive detection of organic compounds. We have used thin films of PMMA with different thicknesses, resulting in characteristic shifts from the original resonance. We also demonstrate matching of asymmetric split ring resonators to a molecular resonance of PMMA.

  16. Arc melter vitrification of organic and chloride containing materials

    SciTech Connect

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.

    1995-10-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of mixed (radioactive and hazardous), transuranic (TRU)-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The different feed mixtures included up to (a) 80 weight % combustibles, (b) 60% chlorinated and nonchlorinated hydrocarbons, (c) 27% metals, (d) 2% nitrates, and (e) 3 % metal hydroxides. Cerium was added as a nonradioactive surrogate for plutonium, a TRU element. Over 9,200 kg (20,200 lb) of the feed mixtures were vitrified at feedrates of up to 500 kg/hr (1,100 lb/hr). The furnace products including the glass, metal, offgas, and offgas solids have been analyzed to determine the fate and partitioning of metals, organics, and the TRU surrogate. Offgas emissions were efficiently controlled using an air pollution control system that included a thermal oxidizer, water-spray and air dilution cooling, cyclone and baghouse particulate removal, packed bed acid gas scrubbing, charcoal absorption, and High Efficiency Particulate-Air (HEPA) filtration.

  17. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence.

    PubMed

    Clifton, Eric H; Jaronski, Stefan T; Hodgson, Erin W; Gassmann, Aaron J

    2015-01-01

    Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought.

  18. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence

    PubMed Central

    Clifton, Eric H.; Jaronski, Stefan T.; Hodgson, Erin W.; Gassmann, Aaron J.

    2015-01-01

    Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought. PMID:26191815

  19. A non-aqueous procedure to synthesize amino group bearing nanostructured organic-inorganic hybrid materials.

    PubMed

    Göring, M; Seifert, A; Schreiter, K; Müller, P; Spange, S

    2014-09-04

    Amino-functionalized organic-inorganic hybrid materials with a narrow distributed nanostructure of 2-4 nm in size were obtained by means of a template-free and non-aqueous procedure. Simultaneous twin polymerization of novel amino group containing twin monomers with 2,2'-spirobi[4H-1,3,2-benzodioxasiline] has been applied for this purpose. The amino groups of the organic-inorganic hybrid material are useful for post derivatization.

  20. Fabrication and characterization of materials and structures for hybrid organic-inorganic photonics

    NASA Astrophysics Data System (ADS)

    Haško, Daniel; Chovan, Jozef; Uherek, František

    2017-03-01

    Hybrid organic-inorganic integrated photonics integrate the organic material, as a part of active layer, with inorganic structure, and it is the organic component that extends the functionalities as compared to inorganic photonics. This paper presents the results of fabrication and characterization of inorganic and organic layers, as well as of hybrid organic-inorganic structures. Inorganic oxide and nitride materials and structures were grown using plasma enhanced chemical vapor deposition. As a substrate for tested organic layers and for preparation of multilayer structures, commercially available SiO2 created by thermal oxidation on Si was used. The hybrid organic-inorganic structures were prepared by spin coating of organic materials on SiO2/Si inorganic structures. As the basic photonics devices, the testing strip inorganic and organic waveguides were fabricated using reactive ion etching. The shape of fabricated testing waveguides was trapezoidal and etched structures were able to guide the radiation. The presented technology enabled to prepare hybrid organic-inorganic structures of comparable dimensions and shape. The fabricated waveguides dimensions and shape will be used for optimisation and design of new lithographic mask to prepare photonic components with required characteristics.

  1. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  2. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  3. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  4. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  5. Abundance of volatile and organic species in intermediate temperature fluids from the Von Damm and Piccard deep sea hydrothermal fields, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; Reeves, E. P.; German, C. R.; Sylva, S. P.; Klein, F.

    2012-12-01

    vent fluids, and imply the presence of a CO2 sink. Von Damm fluid CO2/CH4 ratios are relatively constant at 1.0 to 1.5 (mol/mol) in the higher temperature fluids, and are low compared with CO2/CH4 ratios of 200 to 250 (mol/mol) in the higher temperature Piccard fluids. All vent fluids at Von Damm are enriched in CH4 and longer-chain n-alkanes. Von Damm fluid H2 and H2S abundances are consistent with those at Rainbow and other ultramafic-influenced systems. At the Von Damm vent field, H2 shows non-conservative behavior in intermediate fluids at temperatures ≤114 °C. Such behavior is consistent with previous studies, which attributed non-conservative H2 behavior in ~30 °C vent fluids to microbial consumption (e.g. Von Damm and Lilley, 2004). Similar activity may be occurring at Von Damm. At Piccard, H2 shows non-conservative mixing behavior at temperatures ≤149 °C. H2 depletion at Piccard occurs at higher temperatures than at Von Damm, in excess of the currently known limit for life at 122 °C (Takei et al., 2008), suggesting that abiotic as well as microbial processes may be affecting H2 abundance. Methylated organic compounds, including methanethiol and methanol, were also observed in vent fluids at Piccard and Von Damm, and further organic compound analyses are ongoing.

  6. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  7. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    PubMed

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.

  8. Design Principles for High H2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0-700 bar at 298 K.

    PubMed

    Pramudya, Yohanes; Mendoza-Cortes, Jose L

    2016-11-23

    Physisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11 different transition metals (Tm), including abundant first-row Tm (Sc through Cu), totaling 60 molecular compounds with more than 4 configurations related to the different number of H2 that interact with the molecular compound. It was found that first-row Tm gave similar and sometimes superior van der Waals interactions with H2 than precious Tm. Based on these linkers, 30 new covalent organic frameworks (COFs) were constructed. The H2 uptakes of these new COFs were determined using quantum mechanics (QM)-based force fields and grand canonical Monte Carlo (GCMC) simulations. For the first time, the range for the adsorption pressure was explored for 0-700 bar and 298 K. It was determined that Co-, Ni-, and Fe-based COFs can give high H2 uptake and delivery when compared to bulk H2 on this unexplored range of pressure.

  9. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  10. Anion-directed self-organization of thermotropic liquid crystalline materials containing a guanidinium moiety.

    PubMed

    Kim, Dongwoo; Jon, Sangyong; Lee, Hyung-Kun; Baek, Kangkyun; Oh, Nam-Keun; Zin, Wang-Cheol; Kim, Kimoon

    2005-11-28

    New wedge-shaped thermotropic liquid crystalline materials containing a guanidinium moiety at the apex organize into various supramolecular structures such as hexagonal columnar, rectangular columnar and Pm3n cubic mesophases depending on anions illustrating guest-directed self-organization in mesophases.

  11. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOEpatents

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  12. An Annotated Bibliography of Materials Designed and Organized for Adult Use in Discussion Groups.

    ERIC Educational Resources Information Center

    Ellison, John W.

    This first annotated bibliography of materials designed and organized for adult use in disucssion groups includes both book and nonbook material. Areas dealt with are: art, censorship, change, child guidance, communication, crime, democracy, economics, education, evolution, food, foreign affairs, forgetting, generation gap, gold, good and evil,…

  13. Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel process.

    PubMed

    Boury, Bruno; Corriu, Robert J P

    2002-04-21

    Silica-based hybrid organic-inorganic materials prepared by sol-gel chemistry exhibit chemical and physical properties revealing their anisotropic organisation. Besides the opportunities that this phenomenon opens for the preparation of new materials, it also provides arguments to the chemist looking for a better comprehension and control of the organisation of solids.

  14. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  15. Study of natural organic dyes as active material for fabrication of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sánchez Juárez, A.; Castillo, D.; Guaman, A.; Espinosa, S.; Obregón, D.

    2016-09-01

    The scientific community and some sectors of industry have been working with organic dyes for successful applications in OLED's, OSC's, however, most of the used dyes and pigments are synthetic. In this work is investigated the use of natural dyes for its application in organic light emitting diodes, some of the studied species are chili, blackberry, guayacan flower, cochinilla, tree tomato, capuli, etc. In this study the dyes are deposited by direct deposition and SOL-GEL process doped with the natural organic dye, both methods show good performance and lower fabrication costs for dye extraction, this represents a new alternative for the fabrication of OLED devices with low requirements in technology. Most representative results are presented for Dactylopius Coccus Costa (cochinilla) and raphanus sativus' skin.

  16. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    PubMed

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  17. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    DTIC Science & Technology

    2014-02-19

    hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an...between surface-modified semiconducting nanoparticles and polymers often contributes to the limited efficiency of hybrid photovoltaic cells and

  18. The impact of powder diffraction on the structural characterization of organic crystalline materials.

    PubMed

    Tremayne, Maryjane

    2004-12-15

    The bulk properties of organic crystalline materials depend on their molecular and crystal structures but, as many of these materials cannot be prepared in a suitable form for conventional single-crystal diffraction studies, structural characterization and rationalization of these properties must be obtained from powder diffraction data. The recent development of direct-space structure solution methods has enabled the study of a wide range of organic materials using powder diffraction data, many of structural complexity only made tractable by these advances in methodology. These direct-space methods are based on a number of global optimization techniques including Monte Carlo, simulated annealing, genetic algorithm and differential evolution approaches. In this article, the implementation and relative efficiency and reliability of these methods are discussed, and their impact on the structural study of organic materials is illustrated by examples of polymorphic systems, pharmaceutical, pigment and polypeptide structures and compounds used in the study of intermolecular networks.

  19. Method for monitoring the crystallization of an organic material from a liquid

    DOEpatents

    Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.

    2004-10-05

    Method for monitoring the crystallization of at least one organic material from a liquid. According to the method, a liquid having at least one organic material capable of existing in at least one non-centrosymmetric phase is prepared. The liquid is interrogated with a laser beam at a chosen wavelength. As at least a portion of the at least one organic material crystallizes from the liquid, the intensity of any light scattered by the crystallized material at a wavelength equal to one-half the chosen wavelength of the interrogating laser beam is monitored. If the intensity of this scattered light, increases, then the crystals that form include at least one non-cetrosymmetric phase.

  20. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  1. Materials Organization, Planning, and Homework Completion in Middle School Students with ADHD: Impact on Academic Performance

    PubMed Central

    Langberg, Joshua M.; Epstein, Jeffery N.; Girio, Erin L.; Becker, Stephen P.; Vaughn, Aaron J.; Altaye, Mekibib

    2013-01-01

    This study evaluated the homework functioning of middle school students with ADHD to determine what aspects are most predictive of school grades and the best source (e.g., parents or teachers) for obtaining this information. Students with ADHD in grades 5–8 (N = 57) and their parents and teachers completed the Children’s Organization Skills Scales (COSS) to measure materials organization, planning, and time-management, and parents completed the Homework Problems Checklist (HPC) to examine homework completion and homework materials management behaviors. Regression analyses revealed that parent-rated homework materials management and teacher-rated memory and materials management were the best predictors of school grades. These findings suggest that organization of materials is a critical component of the homework completion process for students with ADHD and an important target for intervention. Teachers were the best source of information regarding materials organization and planning, whereas parents were a valuable source of information for specific homework materials management problems. PMID:23577045

  2. AIEgens-Functionalized Inorganic-Organic Hybrid Materials: Fabrications and Applications.

    PubMed

    Li, Dongdong; Yu, Jihong

    2016-12-01

    Inorganic materials functionalized with organic fluorescent molecules combine advantages of them both, showing potential applications in biomedicine, chemosensors, light-emitting, and so on. However, when more traditional organic dyes are doped into the inorganic materials, the emission of resulting hybrid materials may be quenched, which is not conducive to the efficiency and sensitivity of detection. In contrast to the aggregation-caused quenching (ACQ) system, the aggregation-induced emission luminogens (AIEgens) with high solid quantum efficiency, offer new potential for developing highly efficient inorganic-organic hybrid luminescent materials. So far, many AIEgens have been incorporated into inorganic materials through either physical doping caused by aggregation induced emission (AIE) or chemical bonding (e.g., covalent bonding, ionic bonding, and coordination bonding) caused by bonding induced emission (BIE) strategy. The hybrid materials exhibit excellent photoactive properties due to the intramolecular motion of AIEgens is restricted by inorganic matrix. Recent advances in the fabrication of AIEgens-functionalized inorganic-organic hybrid materials and their applications in biomedicine, chemical sensing, and solid-state light emitting are presented.

  3. Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials.

    PubMed

    Karmakar, Avishek; Illathvalappil, Rajith; Anothumakkool, Bihag; Sen, Arunabha; Samanta, Partha; Desai, Aamod V; Kurungot, Sreekumar; Ghosh, Sujit K

    2016-08-26

    Two porous hydrogen-bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra-high proton conduction values (σ) 0.75× 10(-2)  S cm(-1) and 1.8×10(-2)  S cm(-1) under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic-based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen-bonded porous organic frameworks as solid-state proton conducting materials.

  4. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C

    2016-11-09

    Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today's organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.

  5. Abundance of volatile organic compounds in white ash phloem and emerald ash borer larval frass does not attract Tetrastichus planipennisi in a Y-tube olfactometer.

    PubMed

    Chen, Yigen; Ulyshen, Michael D; Poland, Therese M

    2016-10-01

    Many natural enemies employ plant- and/or herbivore-derived signals for host/prey location. The larval parasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is 1 of 3 biocontrol agents currently being released in an effort to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coloeptera: Burprestidae) in North America. To enhance its efficiency, allelochemicals that attract it need to be assessed. In this study, ash phloem volatile organic compounds (VOCs) of black, green, and white ash, and EAB larval frass were compared. Foraging behavior of T. planipennisi females in response to VOCs of white ash or frass from EAB larvae feeding on white ash phloem was tested using a Y-tube olfactometer. Results indicated that the 3 ash species had similar VOC profiles. EAB larval frass generally contained greater levels of VOCs than phloem. Factor analysis indicated that the 11 VOCs could be broadly divided into 2 groups, with α-bisabolol, β-caryophyllene, (E)-2-hexenal, (Z)-3-hexenal, limonene, methyl benzoate, methyl indole-3-acetic acid, methyl jasmonate, methyl salicylate as the first group and the rest (i.e., methyl linoleate and methyl linolenate) as a second. Abundance of VOCs in white ash phloem tissue and frass, nevertheless, did not attract T. planipennisi females. The concealed feeding of EAB larvae might explain the selection for detectable and reliable virbrational signals, instead of undetectable and relatively unreliable VOC cues from phloem and frass, in short-range foraging by T. planipennisi. Alternatively, it is possible that T. planipennisi is not amenable to the Y-tube olfactometer assay employed.

  6. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models.

    PubMed

    Chi, Y; Liang, J; Yan, D

    2006-02-01

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationships between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty

  7. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    SciTech Connect

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationships between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty

  8. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    NASA Astrophysics Data System (ADS)

    Deeb, Maha; Grimaldi, Michel; Lerch, Thomas Z.; Pando, Anne; Gigon, Agnès; Blouin, Manuel

    2016-04-01

    There is no information on how organisms influence hydrostructural properties of constructed Technosols and how such influence will be affected by the parent-material composition factor. In a laboratory experiment, parent materials, which were excavated deep horizons of soils and green waste compost (GWC), were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, but not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass, resulting in positive effects on available water in macropores. Organisms and their interaction with parent materials positively affected the hydrostructural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  9. Estimated temperatures of organic materials in the TMI-2 reactor building during hydrogen burn

    SciTech Connect

    Schutz, H.W.; Nagata, P.K.

    1982-12-01

    Maximum surface temperatures attained by certain materials during the hydrogen burn associated with the March 1979 accident at TMI-2 are estimated, using photographs and material samples from the reactor building. Thermal degradation, melting, and charring noted in the photographs, and the chemical and thermal analyses of polymeric and organic materials indicated an increase in temperature with elevation in the reactor building. The maximum material surface temperatures estimated ranged from 360 to 500/sup 0/F (455 to 533/sup 0/K). Analyses were performed to estimate the damage to electrical cables and insulation. Based on temperatures reached and approximate duration, greater than 90% of cable insulation life remains.

  10. Recent advances in porous polyoxometalate-based metal-organic framework materials.

    PubMed

    Du, Dong-Ying; Qin, Jun-Sheng; Li, Shun-Li; Su, Zhong-Min; Lan, Ya-Qian

    2014-07-07

    Polyoxometalate (POM)-based metal-organic framework (MOF) materials contain POM units and generally generate MOF materials with open networks. POM-based MOF materials, which utilize the advantages of both POMs and MOFs, have received increasing attention, and much effort has been devoted to their preparation and relevant applications over the past few decades. They have good prospects in catalysis owing to the electronic and physical properties of POMs that are tunable by varying constituent elements. In this review, we present recent developments in porous POM-based MOF materials, including their classification, synthesis strategies, and applications, especially in the field of catalysis.

  11. Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals.

    PubMed

    Morita, Yasushi; Nishida, Shinsuke; Murata, Tsuyoshi; Moriguchi, Miki; Ueda, Akira; Satoh, Masaharu; Arifuku, Kazunori; Sato, Kazunobu; Takui, Takeji

    2011-10-16

    Secondary batteries using organic electrode-active materials promise to surpass present Li-ion batteries in terms of safety and resource price. The use of organic polymers for cathode-active materials has already achieved a high voltage and cycle performance comparable to those of Li-ion batteries. It is therefore timely to develop approaches for high-capacity organic materials-based battery applications. Here we demonstrate organic tailored batteries with high capacity by using organic molecules with degenerate molecular orbitals (MOs) as electrode-active materials. Trioxotriangulene (TOT), an organic open-shell molecule, with a singly occupied MO (SOMO) and two degenerate lowest-unoccupied MOs (LUMOs) was investigated. A tri-tert-butylated derivative ((t-Bu)(3)TOT)exhibited a high discharge capacity of more than 300 A h kg(-1), exceeding those delivered by Li-ion batteries. A tribrominated derivative (Br(3)TOT) was also shown to increase the output voltage and cycle performance up to 85% after 100 cycles of the charge-discharge processes.

  12. Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Yook, Kyoung Soo; Lee, Jun Yeob; Kim, Sung Hyun; Jang, Jyongsik

    2008-06-01

    Transparent organic bistable memory devices (OBDs) were developed by employing indium tin oxide (ITO) as an anode and a cathode for OBD. A cathode structure of aluminum (Al)/ITO was used and bistability could be realized with pure polyphenylenevilylene based polymer active material without any metal nanoparticle. Transmittance of over 50% could be obtained in Al/ITO based OBD at an Al thickness of 10nm, and an average on/off ratio around 100 was observed.

  13. Complex Organic Materials on Planetary Satellites and Other Small Bodies of the Solar System

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2006-01-01

    The search for organic materials on small bodies of the Solar System is conducted spectroscopically from Earth-based telescopes and from spacecraft. Although the carbonaceous meteorites carry a significant inventory of complex organic solids, the sources of these meteorites have not been identified. Infrared spectra of a sample of the suspected sources, the C- and D-class asteroids, including new data from the Spitzer Space Telescope, show signatures of silicates, but none diagnostic of organic compounds. In the absence of discrete spectral features, the low albedos and colors in the visible and near-IR spectral regions are the principal links between the organic-bearing meteorites and the asteroids. While Pluto and a few trans-neptunian objects show spectral signatures of frozen CH4. Solid CH3OH has been identified on two Centaur objects in the outer Solar System. In some cases the red colors of those objects suggest the presence of tholins. The VIMS instrument aboard the Cassini spacecraft in orbit around Saturn has detected near-IR spectral features on at least three of Saturn's satellites that are indicative or suggestive of organic molecules. One entire hemisphere of the satellite Iapetus is covered with low-albedo material that shows a spectral signature of aromatic hydrocarbons (3.3 microns) and the -CH2 stretching mode bands of an aliphatic component. Organics absorbing at 3.44 microns are suspected in the region of the south pole of Enceladus, and also on the surface of Phoebe. Organic material may originate on icy bodies in the current epoch by various processes of energy deposition into native material, or they may fall to the surface from an external (probably cometary) source. Some organic material may be pre-solar, having originated in the interstellar medium before the formation of the Solar System. Using the techniques of remote sensing, its detection and analysis are slow and difficult.

  14. Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pourdavoud, Neda; Riedl, Thomas J.

    2016-09-01

    Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.

  15. Effects of water hardness and dissolved organic material on bioavailability of selected organic chemicals.

    PubMed

    Akkanen, J; Kukkonen, J V

    2001-10-01

    The influence of water hardness and dissolved organic matter (DOM) on bioavailability of organic chemicals to Daphnia magna was studied by using benzo[a]pyrene (BaP), pyrene, atrazine, and 3,3',4,4'-tetrachlorobiphenyl (TCB) as model compounds. Two types of DOM were used, namely Lake Kontiolampi, Joensuu, Finland water (KL) and Nordic reference fulvic acid (NoFA) dissolved in artificial freshwater. Binding of the four contaminants by KL DOM decreased with increasing water hardness. Furthermore, increasing hardness reduced the binding of BaP and pyrene to NoFA. The binding of atrazine and TCB by NoFA was low and was not significantly affected by water hardness. In the DOM-free samples, the bioconcentration of the four contaminants in D. magna usually was not affected by water hardness. In the presence of DOM, the bioconcentration factors (BCFs) were lower (except for atrazine) than in the DOM-free controls. In the presence of both types of DOM, increasing water hardness resulted in higher BCFs for BaP. The bioconcentration of pyrene and TCB increased with increasing water hardness in the presence of KL DOM. In conclusion, the effects of DOM and water hardness on bioavailability of hydrophobic chemicals depend on the type of chemical and on the properties of DOM.

  16. Organic compound alteration during hypervelocity collection of carbonaceous materials in aerogel

    NASA Astrophysics Data System (ADS)

    Spencer, M. K.; Clemett, S. J.; Sandford, S. A.; McKay, D. S.; Zare, R. N.

    2009-03-01

    The NASA Stardust mission brought to Earth micron-size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test-shot terminal particles are mostly preserved. These conclusions are based on two-step laser mass spectrometry (L2MS) examinations of test shots with organic-laden particles (both tracks in aerogel and the terminal particles themselves).

  17. CONTRIBUTION OF SEMI-VOLATILE ORGANIC MATERIAL TO AMBIENT PM2.5

    SciTech Connect

    Delbert J. Eatough; William K. Modey; Rebecca Sizemore; Michael Simpson

    2004-04-01

    Both annual 24-h average and seasonal diurnal samples collected at NETL during the research program have been analyzed. The fine particulate components determined include PM{sub 2.5} mass, ammonium sulfate, ammonium nitrate, elemental and organic carbonaceous material and trace elements. The analysis of the nitrate and organic material includes both the identification of nonvolatile material retained by the particle collection filter and semi-volatile material lost from the particles during sample collection. The results obtained in these analyses indicate that both the semivolatile and nonvolatile organic material in the fine particles sampled at the NETL site originate from mobile emissions in the local area. However, the majority of the nonvolatile material is associated with primary emissions and the majority of the semi-volatile material is secondary, being formed from photochemical processes in the atmosphere. In contrast, the fine particulate sulfate does not originate from the local area but is transported into the study region, mostly from sources in the Ohio River Valley. These observations have been supported by both detailed meteorological and apportionment analysis of the data.

  18. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  19. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    PubMed

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.

  20. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  1. Method for the catalytic conversion of organic materials into a product gas

    DOEpatents

    Elliott, D.C.; Sealock, L.J. Jr.; Baker, E.G.

    1997-04-01

    A method for converting organic material into a product gas includes: (a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; (b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and (c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300 C to about 450 C; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen. 5 figs.

  2. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    PubMed

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted.

  3. Method for the catalytic conversion of organic materials into a product gas

    DOEpatents

    Elliott, Douglas C.; Sealock, Jr., L. John; Baker, Eddie G.

    1997-01-01

    A method for converting organic material into a product gas includes: a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300.degree. C. to about 450.degree. C.; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen.

  4. Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials

    PubMed Central

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D.

    2016-01-01

    Abstract Research on redox‐flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of “green”, safe, and cost‐efficient energy storage, research has shifted from metal‐based materials to organic active materials in recent years. This Review presents an overview of various flow‐battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox‐active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. PMID:28070964

  5. Relating desorption of polycyclic aromatic hydrocarbons from harbour sludges to type of organic material

    NASA Astrophysics Data System (ADS)

    Heister, K.; Pols, S.; Loch, J. P. G.; Bosma, T.

    2009-04-01

    For decades, polycyclic aromatic hydrocarbons (PAH) cause great concern as environmental pollutants. Especially river and marine harbour sediments are frequently polluted with PAH derived from surface runoff, fuel and oil spills due to shipping and industrial activities, industrial waste and atmospheric deposition. Harbour sediments contain large amounts of organic carbon and clay minerals and are therefore not easy to remediate and have to be stored in sludge depositories after dredging to maintain sufficient water depth for shipping. The organic contaminants will be adsorbed to particles, leached in association with dissolved organic material or microbially degraded. However, compounds of high molecular weight are very persistent, particularly under anaerobic conditions, thus giving rise to the potential to become desorbed again. PAH adsorb mainly to organic material. It has been shown that components of the organic material with a low polarity and a high hydrophobicity like aliphatic and aromatic components exhibit a high sorption capacity for hydrophobic organic contaminants like PAH. Accordingly, not only the amount but also the type of organic material needs to be determined in order to be able to predict contaminant behaviour. In this study, desorption behaviour of the 16 EPA-PAH in two different harbour sludges from the port of Rotterdam, the Netherlands, has been investigated. The Beerkanaal (BK) site is located relatively close to the North Sea and represents a brackish environment; the Beneden Merwede River (BMR) site originates from a fresh water environment and is close to industrial sites. The samples were placed in dialysis membranes and brought into contact with water for a period of 130 days. At several time intervals, water samples were retrieved for analysis of pH, dissolved organic carbon (DOC) content, electrical conductivity and PAH concentrations. The experiment was conducted at 4 and at 20°C. Although the samples were initially treated with

  6. Response of Organic Materials to Hypervelocity Impacts (up to 11.2 km/sec)

    NASA Astrophysics Data System (ADS)

    Bass, D. S.; Murphy, W. M.; Miller, G. P.; Grosch, D. J.; Walker, J. D.; Mullin, A.; Waite, J. H.

    1998-09-01

    It is speculated that organic-rich planetesimals played a role in the origin of life on Earth. However, the mechanism by which organics could have been delivered from space to a planetary surface is difficult to determine. Particularly problematic is the question of the stability of organic material under hypervelocity impact conditions. Although some evidence suggests organic molecules cannot survive impacts from projectile velocities greater than about 10 km/sec [1], other investigators have found that impacts create a favorable environment for post-shock recombination of organic molecules in the plume phase [2, 3]. Understanding the mechanisms involved in delivering organics to a planetary surface remains difficult to assess due to the lack of experimental results of hypervelocity impacts, particularly in the velocity range of tens of km/sec. Organic material preservation and destruction from impact shocks, the synthesis of organics in the post-impact plume environment, and implications of these processes for Earth and Mars can be investigated by launching an inorganic projectile into an analog planetesimal-and-bolide organic-rich target. We explored the pressure and temperature ranges of hypervelocity impacts (11.2 km/sec) through simulations with CTH impact physics computer code. Using an inhibited shaped-charge launcher, we also experimentally determined the response of organic material to hypervelocity impacts. Initial work focused on saturating well-characterized zeolitic tuff with an aqueous solution containing dissolved naphthalene, a common polycyclic aromatic hydrocarbon (PAH). Porosity measurements, thin section, and x-ray diffraction analyses were performed to determine that the tuff is primarily fine-grained clinoptilolite. In order to distinguish between contaminants and compounds generated or destroyed in the impact, we tagged the aqueous component of our target with deuterium. Experimental tests revealed that to first order, naphthalene survived

  7. The Impact and Oxidation Survival of Selected Meteoritic Compounds: Signatures of Asteroid Organic Material on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood

    2013-01-01

    Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.

  8. Preparative free-flow electrophoresis as a method of fractionation of natural organic materials

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.

  9. Unidirectional coating technology for organic field-effect transistors: materials and methods

    NASA Astrophysics Data System (ADS)

    Sun, Huabin; Wang, Qijing; Qian, Jun; Yin, Yao; Shi, Yi; Li, Yun

    2015-05-01

    Solution-processed organic field-effect transistors (OFETs) are essential for developing organic electronics. The encouraging development in solution-processed OFETs has attracted research interest because of their potential in low-cost devices with performance comparable to polycrystalline-silicon-based transistors. In recent years, unidirectional coating technology, featuring thin-film coating along only one direction and involving specific materials as well as solution-assisted fabrication methods, has attracted intensive interest. Transistors with organic semiconductor layers, which are deposited via unidirectional coating methods, have achieved high performance. In particular, carrier mobility has been greatly enhanced to values much higher than 10 cm2 V-1 s-1. Such significant improvement is mainly attributed to better control in morphology and molecular packing arrangement of organic thin film. In this review, typical materials that are being used in OFETs are discussed, and demonstrations of unidirectional coating methods are surveyed.

  10. polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials.

    PubMed

    Zhang, Zhenjie; Nguyen, Ha Thi Hoang; Miller, Stephen A; Cohen, Seth M

    2015-05-18

    Preparation of porous materials from one-dimensional polymers is challenging because the packing of polymer chains results in a dense, non-porous arrangement. Herein, we demonstrate the remarkable adaptation of an amorphous, linear, non-porous, flexible organic polymer into a three-dimensional, highly porous, crystalline solid, as the organic component of a metal-organic framework (MOF). A polymer with aromatic dicarboxylic acids in the backbone functioned as a polymer ligand upon annealing with Zn(II), generating a polymer-metal-organic framework (polyMOF). These materials break the dogma that MOFs must be prepared from small, rigid ligands. Similarly, polyMOFs contradict conventional polymer chemistry by demonstrating that linear and amorphous polymers can be readily coaxed into a highly crystalline, porous, three-dimensional structure by coordination chemistry.

  11. Research by the U.S. Geological Survey on organic materials in water

    USGS Publications Warehouse

    Baker, Robert Andrew

    1976-01-01

    The U.S. Geological Survey has responsibility for investigating the Nation's water resources for source, availability, quantity, and quality. This paper describes the Geological Survey's research on organic substances in water and fluvial sediments. Results and ongoing studies are examined. Typical research includes: Separation, concentration, and chromatographic identification of volatile acids; free-flow electrophoresis fractionation of natural organic materials; identification of chlorinated insecticides in suspended sediments and bottom materials; fate of organics following underground disposal; determination of humic and fulvic acid stability constants and characterizations; identification of low-molecular weight chloroorganic constituents in water; PCB (polychlorinated biphenyl compound) distribution in aquatic environments; dissolved organic carbon in ground water; and improvement in separation and concentration schemes prior to analyses.

  12. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Merkli, Christian; Sartori, Giacomo; Mirabella, Aldo; Plötze, Michael

    2008-05-01

    A toposequence of Holocene soils located between 1100-2400 m asl in the Italian Alps served as the basis for the following analyses: the weathering of limestone and dolomite, the calculation of mass balances, understanding the formation of pedogenic Fe and Al, the determination of soil mineral and clay mineral reactions and transformation and the measurement of accumulation and stabilisation mechanisms of soil organic matter. Leaching of carbonates is most intense at the lower elevations, although calcite and dolomite have a higher solubility at low temperatures. The pCO 2 in the soil is higher at lower elevations and weathering is driven mainly by carbonic acids. At higher elevations, organic acids appear to determine the mineral transformations and weathering reactions to a greater extent. This suggests that two very different weathering regimes (carbonic and organic acid weathering) exist along the toposequence. The transformation of mica into vermiculite is the main process in both the clay and fine-earth fraction. Weathering of silicate minerals started even before the carbonates had been completely removed from the soils. The transformation mechanisms of silicate minerals in the A and O horizon at higher elevations was at least as intensive as that at the climatically warmer sites. The neoformation of pedogenetic clays at climatically cooler sites was slightly greater than that at the warmer sites. However, the formation rate of secondary Fe and Al phases was more pronounced at lower elevation, which means that this process seemed to be driven dominantly by carbonic acid (weathering of primary minerals). Soil organic matter (SOM) abundance in the mineral soil is nearly 15 kg/m 2 at all sites and, surprisingly, no climate-driven effect could be detected. In general, the preservation and stabilisation of SOM was due to poorly crystalline Al and Fe phases and vermiculite, regardless of some variations in the composition of the parent material (varying calcite

  13. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    SciTech Connect

    Whitfield, Pamela S

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  14. Metal–organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials

    PubMed Central

    Mendiratta, Shruti; Lee, Cheng-Hua; Usman, Muhammad; Lu, Kuang-Lieh

    2015-01-01

    Metal–organic frameworks (MOFs) have been intensively studied over the past decade because they represent a new category of hybrid inorganic–organic materials with extensive surface areas, ultrahigh porosity, along with the extraordinary tailorability of structure, shape and dimensions. In this highlight, we summarize the current state of MOF research and report on structure–property relationships for nonlinear optical (NLO) and dielectric applications. We focus on the design principles and structural elements needed to develop potential NLO and low dielectric (low-κ) MOFs with an emphasis on enhancing material performance. In addition, we highlight experimental evidence for the design of devices for low-dielectric applications. These results motivate us to develop better low-dielectric and NLO materials and to perform in-depth studies related to deposition techniques, patterning and the mechanical performance of these materials in the future. PMID:27877833

  15. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview

    PubMed Central

    Zhou, Yan; Chiu, Cheng-Wei; Liang, Hong

    2012-01-01

    The capabilities of biosensors for bio-environmental monitoring have profound influences on medical, pharmaceutical, and environmental applications. This paper provides an overview on the background and applications of the state-of-the-art biosensors. Different types of biosensors are summarized and sensing mechanisms are discussed. A review of organic materials used in biosensors is given. Specifically, this review focuses on self-assembled monolayers (SAM) due to their high sensitivity and high versatility. The kinetics, chemistry, and the immobilization strategies of biomolecules are discussed. Other representative organic materials, such as graphene, carbon nanotubes (CNTs), and conductive polymers are also introduced in this review. PMID:23202199

  16. Poling and characterization of a novel organic/polymer electro-optic material

    NASA Astrophysics Data System (ADS)

    Liao, Jinkun; Tang, Xianzhong; Lu, Rongguo; Tang, Xionggui; Li, Heping; Zhang, Xiaoxia; Liu, Yongzhi

    2010-10-01

    Electro-optic organic/polymer material is important for the fabrication of polymer integrated optic-electronic devices and organic sensors. Recently, a novel organic high μβ value chromophore FFC have been synthesized by molecular design. The absorption spectrum in 400-4000 cm-1 is measured for the material, and the measurement result shows that the absorption loss is negligibly small. An organic/polymer high electro-optic activity material FFC/PSU is obtained by dissolving guest FFC (wt. 20%) and a host polysulfone (PSU) in a solvent. The resolvability of cyclohexanone for the material is satisfactory by comparison with other solvents experimentally, and the preparation of FFC/PSU thin film is ease relatively. The materiel is poled by electric field-assisted contact poling, and the near optimum poling condition is determined by adjusting poling parameters as pre-curing duration, poling temperature and poling voltage etc. The electro-optic coefficient of the material is measured as high as 130pm/V by using the widely accepted simple reflection technique. The investigation indicates that the FFC/PSU has excellent characteristics, such as high electro-optic coefficient, low absorption loss, good thermal stability and capability for withstanding the subsequent process techniques, suitable for the fabrication of high-performance integrated optic-electronic devices and sensors.

  17. Using Lunar Impact Glasses to Inform the Amount of Organic Material Delivered to the Early Earth

    NASA Astrophysics Data System (ADS)

    Nguyen, Pham; Zellner, Nicolle

    2017-01-01

    The delivery of organic material via comets and asteroids during the early history of Earth plays an important role in some theories about the origin of life on Earth. Given the close proximity of the Moon to the Earth, the Moon’s impact history can be used to estimate the amount of organic material delivered to the early Earth. Analysis of lunar impact glasses, derived from energetic impacts on the Moon, provide valuable data that can be used to interpret the Moon’s impact flux. Here we present the results of a study of the non-volatile lithophile element compositions of over 500 impact glass samples from the Apollo 14, 16, and 17 landing sites, along with associated ages of a subset of them. Our analyses show that many of the impact glasses possess compositions exotic to the local regolith in which they were found. Coupled with their ages, these glasses suggest material transport from distant regions of the Moon and may allow an estimate of the number of lunar (and terrestrial) impactors in a given time period. These results have important implications for constraining the Moon’s impact flux and also the amount of organic material delivered to the early Earth. Results of our preliminary study, which investigates the amounts of organic material delivered by comets and asteroids to the Moon (and Earth), will be presented.

  18. Microscopic origin of entropy-driven polymorphism in hybrid organic-inorganic perovskite materials

    NASA Astrophysics Data System (ADS)

    Butler, Keith T.; Svane, Katrine; Kieslich, Gregor; Cheetham, Anthony K.; Walsh, Aron

    2016-11-01

    Entropy is a critical, but often overlooked, factor in determining the relative stabilities of crystal phases. The importance of entropy is most pronounced in softer materials, where small changes in free energy can drive phase transitions, which has recently been demonstrated in the case of organic-inorganic hybrid-formate perovskites. In this Rapid Communication we demonstrate the interplay between composition and crystal structure that is responsible for the particularly pronounced role of entropy in determining polymorphism in hybrid organic-inorganic materials. Using ab initio based lattice dynamics, we probe the origins and effects of vibrational entropy of four archetype perovskite (A B X3 ) structures. We consider an inorganic material (SrTiO3), an A -site hybrid-halide material (CH3NH3) PbI3 , a X -site hybrid material KSr (BH4)3 , and a mixed A - and X -site hybrid-formate material (N2H5) Zn (HCO2)3 , comparing the differences in entropy between two common polymorphs. The results demonstrate the importance of low-frequency intermolecular modes in determining the phase stability in these materials. The understanding gained allows us to propose a general principle for the relative stability of different polymorphs of hybrid materials as temperature is increased.

  19. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.

    PubMed

    McKeown, Neil B; Budd, Peter M

    2006-08-01

    This tutorial review describes recent research directed towards the synthesis of polymer-based organic microporous materials termed Polymers of Intrinsic Microporosity (PIMs). PIMs can be prepared either as insoluble networks or soluble polymers with both types giving solids that exhibit analogous behaviour to that of conventional microporous materials such as activated carbons. Soluble PIMs may be processed into thin films for use as highly selective gas separation membranes. Preliminary results also demonstrate the potential of PIMs for heterogeneous catalysis and hydrogen storage.

  20. A Look into PNNL’s New Way of Making Metal Organic Framework Materials (MOFs)

    SciTech Connect

    2016-07-25

    Metal organic framework materials are used in many energy-efficient and green technologies. PNNL researchers may bring their commercial use a step closer to reality by developing a new way to create these materials in larger quantities, better qualities, and more quickly than ever before. This video is a step-by-step look at how our PNNL scientists create MOFs with 80% efficacy.

  1. [THE THROMBUS FORMATION IN THE PROSTHESIS AS A REACTION OF ORGANISM ON ITS MATERIAL].

    PubMed

    Alekseyeva, T A; Gupalo, Yu M; Kolomoets, A M; Lazarenko, O N; Lazarenko, G O; Litvin, P M; Lohs, I V; Smorzhevskiy, V J; Stepkin, V I

    2016-04-01

    Abstract Vascular prostheses, excised because of their functional properties loss, were studied. Using different methods there was established, that this complication is caused by the thrombus formation as a reaction of organism on the prosthesis material. The testing procedure on compatibility was proposed, using atomic-power microscope. Components of a patient immunity may identify the prosthesis material and start the rejection mechanisms in case of negative reaction.

  2. Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: Synthesis, characterization and application

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Christopher

    The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream. The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Bronsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic

  3. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-09-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  4. Scalable sub-micron patterning of organic materials toward high density soft electronics

    SciTech Connect

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong -Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun -Hi; Noh, Yong -Young; Yun Jaung, Jae; Kim, Yong -Hoon; Kyu Park, Sung

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  5. Scalable sub-micron patterning of organic materials toward high density soft electronics

    DOE PAGES

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; ...

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  6. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    PubMed Central

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  7. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    PubMed

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  8. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect

    Cai, Min

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  9. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    NASA Astrophysics Data System (ADS)

    Cai, Min

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs' performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  10. Introduction of bridging and pendant organic groups into mesoporous alumina materials.

    PubMed

    Grant, Stacy M; Woods, Stephan M; Gericke, Arne; Jaroniec, Mietek

    2011-11-01

    Incorporation of organic functionalities into soft-templated mesoporous alumina was performed via organosilane-assisted evaporation induced self-assembly using aluminum alkoxide precursors and block copolymer templates. This strategy permits one to obtain mesoporous alumina-based materials with tailorable adsorption, surface and structural properties. Isocyanurate, ethane, mercaptopropyl, and ureidopropyl-functionalized mesoporous alumina materials were synthesized with relatively high surface area and large pore volume with uniform and wormhole-like mesopores. The presence of organosilyl groups within these hybrid materials was confirmed by IR or Raman spectroscopy and their concentration was determined by elemental analysis.

  11. Emissions of volatile organic compounds from building materials and consumer products

    NASA Astrophysics Data System (ADS)

    Wallace, Lance A.; Pellizzari, Edo; Leaderer, Brian; Zelon, Harvey; Sheldon, Linda

    EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10-100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.

  12. Guard Flow-enhanced Organic Vapor Jet Printing of Molecular Materials in Air

    NASA Astrophysics Data System (ADS)

    Biswas, Shaurjo

    Rapid advances in the research and development of organic electronics have re-sulted in many exciting discoveries and applications, including OLEDs, OPVs and OTFTs. Devices based on small molecular organic materials often call for sharp interfaces and highly pure materials for improved device performance. Solvent-free deposition and additive patterning of the active layers without the use of vacuum is preferred, calling for specialized processing approaches. Guard flow-enhanced organic vapor jet printing (GF-OVJP), enables addi-tive, rapid, mask-free, solvent-free printing of molecular organic semiconductors in ambient atmosphere by evaporating organic source material into an inert carrier gas jet and collimating and impinging it onto a substrate where the organic molecules condense. A surrounding annular "guard flow" hydrodynamically focuses the primary jet carrying the hot organic vapor and shields it from contact with the ambient oxygen and moisture, enabling device-quality deposits. Deposition in air entails non-trivial effects at the boundary between ambient surroundings and the gas jet carrying the semiconductor vapor that influence the morphology and properties of the resulting electronic devices. This thesis demonstrates the deposition of active layers of OLEDs, OPVs and OTFTs by GF-OVJP in air. Process-structure-property relationships are elucidated, using a combination of film deposition and structural characterization (e.g. AFM, XRD, SEM, spectroscopies), device fabrication and testing, as well as compressible fluid flow, heat and mass transport modeling, thus laying the groundwork for rigorous, quantitative design of film deposition apparatus and small molecular organic semiconductor processing.

  13. Removal of volatile organic compounds by natural materials during composting of poultry litter.

    PubMed

    Turan, N G; Akdemir, A; Ergun, O N

    2009-01-01

    The objective of this study was to reduce volatile organic compounds (VOCs) produced during composting of poultry litter. The natural zeolite, expanded perlite, pumice and expanded vermiculite as the natural materials were used for the reducing of VOCs. Composting was performed in a laboratory scale in-vessel composting plant. Poultry litter was composted for 100 d with volumetric ratio of natural materials:poultry litter of 1:10. The VOCs were tested using the FT-IR method by VOCs analyzer. Studies showed that VOCs generation was the greatest in the control treatment without any natural materials. The natural materials significantly reduced VOCs. At the end of the processes, removal efficiency was 79.73% for NZ treatment, 54.59% for EP treatment, 88.22% for P treatment and 61.53% for EV treatment. Potential of removal for VOCs on poultry litter matrix using natural materials was in order of: P>NZ>EV>EP.

  14. Water holding capacity and evaporative loss from organic bedding materials used in livestock facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...

  15. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  16. How Microstructure Defines Function in Organic Conjugated Materials: Insights from Modelling

    NASA Astrophysics Data System (ADS)

    Olivier, Yoann

    Organic conjugated materials have attracted an increasing interest over the years for their use in organic opto- electronic devices such as light-emitting diodes, solar cells, or field- effect transistors as a result of their low cost, light weight and ease of processing from solution. The improvement of the device performances requires a deep understanding of the electronic processes taking place in these devices down to the molecular scale. Especially, the way organic conjugated molecules or polymer chains organize in the solid state appears as a critical parameter to control in order to fine tune the materials electronic and photophysical properties. In our laboratory, we have developed a multi-faceted modeling scheme that encompasses classical molecular dynamics, quantum-chemistry, non-adiabatic quantum dynamics and kinetic Monte Carlo simulations to assess multiple fundamental opto- electronic processes occurring in conjugated materials used in devices. Here, we will more specifically review work dealing with the modeling of charge transport in conjugated polymers as well as singlet fission and exciton transport in small molecules. In all cases, we will highlight how these processes are sensitive to the relative arrangement of the materials at the nanoscale.

  17. Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels

    NASA Astrophysics Data System (ADS)

    Bessou, Maryelle; Duday, Henri; Caumes, Jean-Pascal; Salort, Simon; Chassagne, Bruno; Dautant, Alain; Ziéglé, Anne; Abraham, Emmanuel

    2012-10-01

    Terahertz imaging and conventional X-ray have been used to investigate a sealed Ancient Egyptian jar preserved at the Museum of Aquitaine (France). Terahertz radiation revealed an unknown content that could not have been visualized by X-ray. By comparison with a model object, we concluded that this content was composed of organic materials explaining their relative radiolucency.

  18. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    ERIC Educational Resources Information Center

    Korur, Fikret; Toker, Sacip; Eryilmaz, Ali

    2016-01-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…

  19. 77 FR 12202 - Public Inspection of Material Relating to Tax-Exempt Organizations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Internal Revenue Service 26 CFR Part 301 RIN 1545-BG60 Public Inspection of Material Relating to Tax-Exempt Organizations AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulations. SUMMARY: This... made available by the IRS for public inspection under the Internal Revenue ] Code (Code). The...

  20. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    ERIC Educational Resources Information Center

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  1. Ultrafast Frequency Agile Optical Materials: Organically Doped Sol-Gel Glasses

    DTIC Science & Technology

    1992-10-13

    PhD. anticipated 1/93 John Pelo Robert A. Crowell, Ph.D. awarded 9/92 Teresa Rose Undergraduate Students: John Middleton Bibliography [1] A...Coulter, D. Alvarez Jr., S. R. Marder, T. H. Wei, M. J. Sence, E. W. Van Stryland, and D. J. Hagan, Organic Materials for Nonlinear Optics and Photonics, J

  2. INTERLABORATORY METHODS COMPARISON FOR THE TOTAL ORGANIC CARBON ANALYSIS OF AQUIFER MATERIALS

    EPA Science Inventory

    The total organic carbon (TOC) content of aquifer materials has been found to have significant effects on the movement of pollutants in the subsurface environment. Accurate quantification of TOC is therefore of great im- portance to research in groundwater contamination. However,...

  3. Graphitization of Organic Material in a Progressively Metamorphosed Precambrian Iron Formation.

    PubMed

    French, B M

    1964-11-13

    Organic matter in the sedimentary Biwabik iron formation in northern Minnesota shows a progressive increase in crystallinity where the formation is metamorphosed by the intrusive Duluth gabbro complex. X-ray diffraction of acid-insoluble residues shows that there is a complete range in crystallinity, from amorphous material in the unmetamorphosed sediments to completely crystalline graphite adjacent to the gabbro.

  4. Selective Adsorption of Sulfur Dioxide in a Robust Metal-Organic Framework Material.

    PubMed

    Savage, Mathew; Cheng, Yongqiang; Easun, Timothy L; Eyley, Jennifer E; Argent, Stephen P; Warren, Mark R; Lewis, William; Murray, Claire; Tang, Chiu C; Frogley, Mark D; Cinque, Gianfelice; Sun, Junliang; Rudić, Svemir; Murden, Richard T; Benham, Michael J; Fitch, Andrew N; Blake, Alexander J; Ramirez-Cuesta, Anibal J; Yang, Sihai; Schröder, Martin

    2016-10-01

    Selective adsorption of SO2 is realized in a porous metal-organic framework material, and in-depth structural and spectroscopic investigations using X-rays, infrared, and neutrons define the underlying interactions that cause SO2 to bind more strongly than CO2 and N2 .

  5. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  6. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  7. Sorption of trace organics and engineered nanomaterials onto wetland plant material.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Wastewater treatment plant (WWTP) effluents are sources for emerging pollutants, including organic compounds and engineered nanomaterials (ENMs), which then flow into aquatic systems. In this article, natural attenuation of pollutants by constructed wetland plants was investigated using lab-scale microcosm and batch sorption studies. The microcosms were operated at varying hydraulic residence times (HRTs) and contained decaying plant materials. Representative organic compounds and ENMs were simultaneously spiked into the microcosm influent, along with a conservative tracer (bromide), and then monitored in the effluent over time. It was observed that a more hydrophobic compound-natural estrogen achieved better removal than a polar organic compound – para-chlorobenzoic acid (pCBA), which mimics the behaviour of the tracer. Batch sorption experiments showed that estrogen has higher sorption affinity than pCBA, highlighting the importance of sorption to the plant materials as a removal process for the organic contaminants in the microcosms. Wetland plants were also found a potential sorbent for ENMs. Two different ENMs (nano-silver and aqueous fullerenes) were included in this study, both of which experienced comparable removal in the microcosms. Relative to the tracer, the highest removal of ENMs and trace organics was 60% and 70%, respectively. A more than two-fold increase in HRT increased the removal efficiency of the contaminants in the range of 20–60%. The outcome of this study supports that plant materials of wetlands can play an important role in removing emerging pollutants from WWTP effluent.

  8. Theoretical description of structural and electronic properties of organic photovoltaic materials.

    PubMed

    Zhugayevych, Andriy; Tretiak, Sergei

    2015-04-01

    We review recent progress in the modeling of organic solar cells and photovoltaic materials, as well as discuss the underlying theoretical methods with an emphasis on dynamical electronic processes occurring in organic semiconductors. The key feature of the latter is a strong electron-phonon interaction, making the evolution of electronic and structural degrees of freedom inseparable. We discuss commonly used approaches for first-principles modeling of this evolution, focusing on a multiscale framework based on the Holstein-Peierls Hamiltonian solved via polaron transformation. A challenge for both theoretical and experimental investigations of organic solar cells is the complex multiscale morphology of these devices. Nevertheless, predictive modeling of photovoltaic materials and devices is attainable and is rapidly developing, as reviewed here.

  9. Theoretical Description of Structural and Electronic Properties of Organic Photovoltaic Materials

    NASA Astrophysics Data System (ADS)

    Zhugayevych, Andriy; Tretiak, Sergei

    2015-04-01

    We review recent progress in the modeling of organic solar cells and photovoltaic materials, as well as discuss the underlying theoretical methods with an emphasis on dynamical electronic processes occurring in organic semiconductors. The key feature of the latter is a strong electron-phonon interaction, making the evolution of electronic and structural degrees of freedom inseparable. We discuss commonly used approaches for first-principles modeling of this evolution, focusing on a multiscale framework based on the Holstein-Peierls Hamiltonian solved via polaron transformation. A challenge for both theoretical and experimental investigations of organic solar cells is the complex multiscale morphology of these devices. Nevertheless, predictive modeling of photovoltaic materials and devices is attainable and is rapidly developing, as reviewed here.

  10. In silico evaluation of highly efficient organic light-emitting materials

    NASA Astrophysics Data System (ADS)

    Kwak, H. Shaun; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang; Gavartin, Jacob; Dixon, Steve; Halls, Mathew D.

    2016-09-01

    Design and development of highly efficient organic and organometallic dopants is one of the central challenges in the organic light-emitting diodes (OLEDs) technology. Recent advances in the computational materials science have made it possible to apply computer-aided evaluation and screening framework directly to the design space of organic lightemitting diodes (OLEDs). In this work, we will showcase two major components of the latest in silico framework for development of organometallic phosphorescent dopants - (1) rapid screening of dopants by machine-learned quantum mechanical models and (2) phosphorescence lifetime predictions with spin-orbit coupled calculations (SOC-TDDFT). The combined work of virtual screening and evaluation would significantly widen the design space for highly efficient phosphorescent dopants with unbiased measures to evaluate performance of the materials from first principles.

  11. Volatile organic compounds from used building materials in a simulated chamber study

    SciTech Connect

    Berglund, B. ); Johansson, I.; Lindvall, T. )

    1989-01-01

    Building materials emit volatile organic compounds (VOCs) indoors. They may also adsorb compounds so that an equilibrium with indoor air is reached. Samples were taken from the floor, walls, and ceiling of one room in a seven-year-old preschool building. They were placed in a small climate chamber for a period of 41 days. Samples from the air in the room and the chamber were analysed by gas chromatography and mass spectrometry, and about 60 compounds were identified. The composition of organics in the room air was reestablished in the chamber the first day. Since most of the compounds disappeared within 2 to 23 days, they are believed to have been adsorbed from the room air onto the material surfaces. During the last 10 days, 17 compounds remained at constant concentrations, implying that they are representative of the building material samples.

  12. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  13. Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach

    NASA Astrophysics Data System (ADS)

    Geilhufe, R. Matthias; Bouhon, Adrien; Borysov, Stanislav S.; Balatsky, Alexander V.

    2017-01-01

    A data mining study of electronic Kohn-Sham band structures was performed to identify Dirac materials within the Organic Materials Database. Out of that, the three-dimensional organic crystal 5,6-bis(trifluoromethyl)-2-methoxy-1 H -1,3-diazepine was found to host different Dirac-line nodes within the band structure. From a group theoretical analysis, it is possible to distinguish between Dirac-line nodes occurring due to twofold degenerate energy levels protected by the monoclinic crystalline symmetry and twofold degenerate accidental crossings protected by the topology of the electronic band structure. The obtained results can be generalized to all materials having the space group P 21/c (No. 14, C2h 5) by introducing three distinct topological classes.

  14. Light-Emitting Organic Materials with Variable Charge Injection and Transport Properties

    SciTech Connect

    Chen, A. C.-A.; Wallace, J. U.; Wei, S. K.-H.; Zeng, L.; Shen, S. H.; Blenton, T. N.

    2006-01-01

    Novel light-emitting organic materials comprising conjugated oligomers chemically attached via a flexible spacer to an electron- or hole-conducting core were designed for tunable charge injection and transport properties. Representative glassy-isentropic and glassy-liquid-crystalline (i.e., noncrystaline solid) materials were synthesized and characterized; they were found to exhibit a glass transition temperature and a clearing point close to 140 and 250 C, respectively; an orientational order parameter of 0.75; a photoluminescence quantum yield up to 51%; and HOMO and LUMO energy levels intermediate between those of blue-emitting oligofluorenes and the ITO and Mg/Ag electrodes commonly used in organic light-emitting diodes, OLEDs. This class of materials will help to balance charge injection and transport and to spread out the charge recombination zone, thereby significantly improving the device efficiency and lifetime of unpolarized and polarized OLEDs.

  15. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development.

    PubMed

    de Mel, Achala; Ramesh, Bala; Scurr, David J; Alexander, Morgan R; Hamilton, George; Birchall, Martin; Seifalian, Alexander M

    2014-03-01

    Replacement of irreversibly damaged organs due to chronic disease, with suitable tissue engineered implants is now a familiar area of interest to clinicians and multidisciplinary scientists. Ideal tissue engineering approaches require scaffolds to be tailor made to mimic physiological environments of interest with specific surface topographical and biological properties for optimal cell-material interactions. This study demonstrates a single-step procedure for inducing biomimicry in a novel nanocomposite base material scaffold, to re-create the extracellular matrix, which is required for stem cell integration and differentiation to mature cells. Fumed silica nanoparticle mediated procedure of scaffold functionalization, can be potentially adapted with multiple bioactive molecules to induce cellular biomimicry, in the development human organs. The proposed nanocomposite materials already in patients for number of implants, including world first synthetic trachea, tear ducts and vascular bypass graft.

  16. Demonstration test results of organic materials' volumetric reduction using bio-ethanol, thermal decomposition and burning

    SciTech Connect

    Tagawa, Akihiro; Watanabe, Masahisa

    2013-07-01

    To discover technologies that can be utilized for decontamination work and verify their effects, economic feasibility, safety, and other factors, the Ministry of the Environment launched the 'FY2011 Decontamination Technology Demonstrations Project' to publicly solicit decontamination technologies that would be verified in demonstration tests and adopted 22 candidates. JAEA was commissioned by the Ministry of the Environment to provide technical assistance related to these demonstrations. This paper describes the volume reduction due to bio-ethanol, thermal decomposition and burning of organic materials in this report. The purpose of this study is that to evaluate a technique that can be used as biomass energy source, while performing volume reduction of contamination organic matter generated by decontamination. An important point of volume reduction technology of contaminated organic matter, is to evaluate the mass balance in the system. Then, confirming the mass balance of radioactive material and where to stay is important. The things that are common to all technologies, are ensuring that the radioactive cesium is not released as exhaust gas, etc.. In addition, it evaluates the cost balance and energy balance in order to understand the applicability to the decontamination of volume reduction technology. The radioactive cesium remains in the carbides when organic materials are carbonized, and radioactive cesium does not transfer to bio-ethanol when organic materials are processed for bio-ethanol production. While plant operating costs are greater if radioactive materials need to be treated, if income is expected by business such as power generation, depreciation may be calculated over approximately 15 years. (authors)

  17. Milk and serum standard reference materials for monitoring organic contaminants in human samples.

    PubMed

    Schantz, Michele M; Eppe, Gauthier; Focant, Jean-François; Hamilton, Coreen; Heckert, N Alan; Heltsley, Rebecca M; Hoover, Dale; Keller, Jennifer M; Leigh, Stefan D; Patterson, Donald G; Pintar, Adam L; Sharpless, Katherine E; Sjödin, Andreas; Turner, Wayman E; Vander Pol, Stacy S; Wise, Stephen A

    2013-02-01

    Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4'-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.

  18. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

    PubMed

    Lee, Dongwook; Bolton, Onas; Kim, Byoung Choul; Youk, Ji Ho; Takayama, Shuichi; Kim, Jinsang

    2013-04-24

    Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.

  19. Impact of materials used in lab and field experiments on the recovery of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    Organic micropollutants are frequently detected in the aquatic environment. There-fore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and ob-served mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies.

  20. Development and pattern of mRNA relative abundance of bovine embryos cultured in the isolated mouse oviduct in organ culture.

    PubMed

    Rizos, D; Pintado, B; de la Fuente, J; Lonergan, P; Gutiérrez-Adán, A

    2007-06-01

    The aim of this study was to examine the development of bovine zygotes in isolated mouse oviducts (IMO) and the quality of the blastocysts produced. In vitro produced bovine zygotes were transferred into the ampullae of the IMO and cultured in SOF or KSOM. Control embryos were cultured in droplets of the same media. Following 6 days of culture, blastocysts were processed for nuclei counts or mRNA abundance. Culture in the IMO did not affect the proportion of zygotes developing to the blastocyst stage compared to the respective control droplets (SOF: 17.7 +/- 3.2% vs. 18.8 +/- 2.7%; KSOM: 20.7 +/- 2.6% vs. 22.2 +/- 2.8%). Culture in the IMO in KSOM resulted in an increased number of inner cell mass (ICM) nuclei; however, total nuclei number or incidence of apoptosis was unaffected. Culture in the IMO in SOF resulted in an increase (P < 0.05) in abundance of transcripts in blastocysts for Oct-4 and SOX, and reduced abundance of Glut-1, Na/K, Cx43, and survivin compared to blastocysts derived from culture in SOF alone. In contrast, culture in the IMO in KSOM resulted in increased abundance of transcripts for Glut-1, Cx43, Oct-4, and survivin and reduced expression of Na/K and SOX compared to KSOM alone. Transcripts for G6PDH, IFN-tau, and E-Cad were unaffected. These data confirm that the IMO is capable of supporting development of bovine embryos. Depending on the basal medium used, the pattern of transcript abundance in embryos derived from the IMO is similar to that of in vivo derived embryos.

  1. Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials.

    PubMed

    Nilsson, Charlotte; Renman, Gunno; Westholm, Lena Johansson; Renman, Agnieszka; Drizo, Aleksandra

    2013-10-15

    The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ~5.5 h), using wastewater with high (mean ~120 mg L(-1)) and low (mean ~20 mg L(-1)) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life.

  2. Anthropogenic activities have contributed moderately to increased inputs of organic materials in marginal seas off China.

    PubMed

    Liu, Liang-Ying; Wei, Gao-Ling; Wang, Ji-Zhong; Guan, Yu-Feng; Wong, Charles S; Wu, Feng-Chang; Zeng, Eddy Y

    2013-10-15

    Sediment has been recognized as a gigantic sink of organic materials and therefore can record temporal input trends. To examine the impact of anthropogenic activities on the marginal seas off China, sediment cores were collected from the Yellow Sea, the inner shelf of the East China Sea (ECS), and the South China Sea (SCS) to investigate the sources and spatial and temporal variations of organic materials, i.e., total organic carbon (TOC) and aliphatic hydrocarbons. The concentration ranges of TOC were 0.5-1.29, 0.63-0.83, and 0.33-0.85%, while those of Σn-C14-35 (sum of n-alkanes with carbon numbers of 14-35) were 0.08-1.5, 0.13-1.97, and 0.35-0.96 μg/g dry weight in sediment cores from the Yellow Sea, ECS inner shelf, and the SCS, respectively. Terrestrial higher plants were an important source of aliphatic hydrocarbons in marine sediments off China. The spatial distribution of Σn-C14-35 concentrations and source diagnostic ratios suggested a greater load of terrestrial organic materials in the Yellow Sea than in the ECS and SCS. Temporally, TOC and Σn-C14-35 concentrations increased with time and peaked at either the surface or immediate subsurface layers. This increase was probably reflective of elevated inputs of organic materials to marginal seas off China in recent years, and attributed partly to the impacts of intensified anthropogenic activities in mainland China. Source diagnostics also suggested that aliphatic hydrocarbons were mainly derived from biogenic sources, with a minority in surface sediment layers from petroleum sources, consistent with the above-mentioned postulation.

  3. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  4. Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Abbey, W. A.; Tsapin, A. T.; Dragoi, D.; Kanik, I.

    2004-01-01

    In the robotic search for life on Mars, different proposed missions will analyze the chemical and biological signatures of life using different platforms. The analysis of samples via analytical instrumentation on the surface of Mars has thus far only been attempted by the two Viking missions. Robotic arms scooped relogith material into a pyrolysis oven attached to a GC/MS. No trace of organic material was found on any of the two different samples at either of the two different landing sites. This null result puts an upper limit on the amount of organics that might be present in Martian soil/rocks, although the level of detection for each individual molecular species is still debated. Determining the absolute limit of detection for each analytical instrument is essential so that null results can be understood. This includes investigating the trade off of using pyrolysis versus liquid solvent extraction to release organic materials (in terms of extraction efficiencies and the complexity of the sample extraction process.) Extraction of organics from field samples can be accomplished by a variety of methods such utilizing various solvents including HCl, pure water, supercritical fluid and Soxhelt extraction. Utilizing 6N HCl is one of the most commonly used method and frequently utilized for extraction of organics from meteorites but it is probably infeasible for robotic exploration due to difficulty of storage and transport. Extraction utilizing H2O is promising, but it could be less efficient than 6N HCl. Both supercritical fluid and Soxhelt extraction methods require bulky hardware and require complex steps, inappropriate for inclusion on rover spacecraft. This investigation reports the efficiencies of pyrolysis and solvent extraction methods for amino acids for different terrestrial samples. The samples studied here, initially created in aqueous environments, are sedimentary in nature. These particular samples were chosen because they possibly represent one of the

  5. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates.

    PubMed

    Diener, Stefan; Zurbrügg, Christian; Tockner, Klement

    2009-09-01

    Larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), are voracious feeders of organic material and may thus be used in simple engineered systems to reduce organic waste in low- and middle-income countries. Controlled feeding experiments with standard fodder were conducted to assess the optimum amount of organic waste to be added to a CORS system (Conversion of Organic Refuse by Saprophages). A daily feeding rate of 100 mg chicken feed (60% moisture content) per larva resulted in an optimum trade-off between material reduction efficiency (41.8%, SE 0.61) and biomass production (prepupal dry weight: 48.0 mg, SE 2.0). Applied to market waste and human faeces, this corresponds to a potential daily feeding capacity of 3-5 kg/m(2) and 6.5 kg/m(2), respectively. In addition, H. illucens prepupae quality was assessed to determine their suitability to substitute fishmeal in animal feed production. The chitin-corrected crude protein content ranged from 28.2 to 42.5%, depending on the amount of food provided to the larvae. Based on our study, a waste processing unit could yield a daily prepupal biomass of 145 g (dry mass) per m(2). We conclude that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture.

  6. Systems for the treatment of organic material and particularly sewage sludge

    SciTech Connect

    Schimel, K.A.

    1983-08-30

    Anaerobic digestion of organic material, particularly biological sludge, such as sewage sludge, is carried out in a closed system having a first digestion tank and a second concentration and partial digestion tank. The concentrated and partially digested sludge is fed to the first tank where it is maintained under vacuum such that an active zone of organic material undergoing digestion is detained therein for a long period of time. The digested sludge is withdrawn against the vacuum and has approximately 80 to 90% of the organic solids therein mineralized; thus simplifying dewatering and ultimate disposal of the sludge. Pathogens including viruses are also removed from the digested sludge. Denitrification takes place in the vacuum digester tank and gas consisting essentially of nitrogen is removed. Return sludge from the vacuum digester and influent sludge is fed into the second or concentrator tank to facilitate reseeding with anaerobic organisms. Both tanks are provided with passageways which are coterminous near the upper ends of the tanks and provided with baffles which direct the flow to be in opposite directions in the passageways, thus providing for stripping of the gas and solid-liquid separation. Gas consisting essentially of methane and carbon dioxide is produced from the second tank. Supernatant from the second tank may be recirculated to the source of the sludge to facilitate degradation of remaining organic contaminants.

  7. Metal-organic frameworks as competitive materials for non-linear optics.

    PubMed

    Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V

    2016-09-26

    The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials

  8. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Gélinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).

  9. Metal-organic frameworks as host materials of confined supercooled liquids

    NASA Astrophysics Data System (ADS)

    Fischer, J. K. H.; Sippel, P.; Denysenko, D.; Lunkenheimer, P.; Volkmer, D.; Loidl, A.

    2015-10-01

    In this work, we examine the use of metal-organic framework (MOF) systems as host materials for the investigation of glassy dynamics in confined geometry. We investigate the confinement of the molecular glass former glycerol in three MFU-type MOFs with different pore sizes (MFU stands for "Metal-Organic Framework Ulm-University") and study the dynamics of the confined liquid via dielectric spectroscopy. In accord with previous reports on confined glass formers, we find different degrees of deviations from bulk behavior depending on pore size, demonstrating that MOFs are well-suited host systems for confinement investigations.

  10. Sorption Characteristics of Organic Powder Sorption Material in Fluidized Bed with a Cooling Pipe

    NASA Astrophysics Data System (ADS)

    Horibe, Akihiko; Husain, Syahrul; Inaba, Hideo; Haruki, Naoto

    The dynamic sorption characteristics of organic sorbent materials have been studied by using fluidized bed with a cooling pipe. The organic powder type sorbent made from a bridged complex of sodium polyacrylate which is one of the sorption polymers is adopted in this study. Sorption rate of water vapor and the variation of temperature in the sorbent bed with time were measured under various conditions. As a result, sorption ratio increases and the completion time for the sorption process decreases by using a cooling pipe. Furthermore, the non-dimensional correlation equations were obtained for water vapor mass transfer under sorption process in terms of relevant non-dimensional parameters.

  11. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    SciTech Connect

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori; Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya; Hirata, Osamu; Shibano, Yuki

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  12. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy.

    PubMed

    Saryg-Ool, B Yu; Myagkaya, I N; Kirichenko, I S; Gustaytis, M A; Shuvaeva, O V; Zhmodik, S M; Lazareva, E V

    2017-03-01

    Migration and redistribution of elements during prolonged interaction of cyanide wastes with the underlying natural organic-bearing material have been studied in two ~40cm deep cores that sample primary ores and their weathering profile (wastes I and II, respectively) in the dispersion train of gold-bearing sulfide tailings in Siberia. Analytical results of SR-XRF, whole-rock XRF, AAS, CHNS, and SEM measurements of core samples show high K, Sr, Ti, and Fe enrichments and correlation of P2O5 and Mn with LOI and Corg. Organic material interlayered or mixed with the wastes accumulates Cu, Zn, Se, Cd, Ag, Au, and Hg. The peat that contacts wastes II bears up to 3wt.% Zn, 1000g/t Se, 100g/t Cd, and 8000g/t Hg. New phases of Zn and Hg sulfides and Hg selenides occur as abundant sheaths over bacterial cells suggesting microbial mediation in sorption of elements. Organic-bearing material in the cores contains 10-30g/t Au in 2-5cm thick intervals, both within and outside the intervals rich in sulfides and selenides. Most of gold is invisible but reaches 345g/t and forms 50nm to 1.5μm Au(0) particles in a thin 2-3cm interval of organic remnants mixed with wastes I. Vertical and lateral infiltration of AMD waters in peat and oxidative dissolution of wastes within the dispersion train of the Ursk tailings lead to redistribution of elements and their accumulation by combined physical (material's permeability, direction AMD), chemical (complexing, sorption by organic matter and Fe(III) hydroxides) and biochemical (metabolism of sulfate-reducing bacteria) processes. The accumulated elements form secondary sulfates, and Hg and Zn selenides. The results provide insights into accumulation of elements in the early history of coal and black shale deposits and have implications for remediation of polluted areas and for secondary enrichment technologies.

  13. Fabrication of nanobeads from nanocups by controlling scission/crosslinking in organic polymer materials.

    PubMed

    Oyama, Tomoko Gowa; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi

    2012-12-14

    The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.

  14. Production of certified reference materials for the detection of genetically modified organisms.

    PubMed

    Trapmann, Stefanie; Schimmel, Heinz; Kramer, Gerard Nico; Van den Eede, Guy; Pauwels, Jean

    2002-01-01

    Certified reference materials (CRMs) are an essenIial tool in the quality assurance of analytical measurements. They are produced, certified, and used in accordance with relevant ISO (International Organization for Standardization) and BCR (Community Bureau of Reference) guidelines. The Institute for Reference Materials and Measurements (IRMM; Geel, Belgium) has produced the first powdery genetically modified organism (GMO) CRMs in cooperation with the Institute for Health and Consumer Protection (Ispra, Italy). Until now, different weight percentages in the range of 0-5% for 4 GMOs in Europe were produced and certified: Bt (Bacillus thuringiensis)-11 and Bt-176 maize, Roundup Ready soybean, and MON810 maize. Bt-11 and Bt-176 maize and Roundup Ready soybean were produced by IRMM on behalf of Fluka Chemie AG (Buchs, Switzerland). Characterization of used base material is the first step in production and is especially important for GMO CRMs. The production of powdery GMO CRMs and methods used for production control are described. Thorough control of homogeneity and stability are essential for certification of reference materials and ensure validity of the certificate for each bottle of a batch throughout a defined shelf-life. Because production of reference materials and their maintenance are very labor- and cost-intensive tasks, the usefulness of new types of GMO CRMs must be estimated carefully.

  15. Arsenic methylation by micro-organisms isolated from sheepskin bedding materials.

    PubMed

    Lehr, Corinne R; Polishchuk, Elena; Delisle, Marie-Chantal; Franz, Catherine; Cullen, William R

    2003-06-01

    Sudden infant death syndrome (SIDS) has been associated with the volatilization of arsenic, antimony or phosphorus compounds from infants' bedding material by micro-organisms, the so-called 'toxic gas hypothesis'. The volatilization of arsenic by aerobic micro-organisms isolated from new sheepskin bedding material, as well as on material used by a healthy infant and by an infant who perished of SIDS, was examined. Three fungi were isolated from a piece of sheepskin bedding material on which an infant perished of SIDS, which methylated arsenic to form trimethylarsenic(V) species, precursors to volatile trimethylarsine. These three fungi were identified as Scopulariopsis koningii, Fomitopsis pinicola and Penicillium gladioli by their 26S-ribosomal RNA polymerase chain reaction products. These fungi were not previously known to methylate arsenic. The volatilization of arsenic by these three fungi was then examined. Only P. gladioli volatilized arsenic and only under conditions such that the production of sufficient trimethylarsine to be acutely toxic to an infant is unlikely. S. brevicaulis grew on the sheepskin bedding material and evolved a trace amount of trimethylarsine. Known human pathogens such as Mycobacterium neoaurum and Acinetobacter junii were isolated from used bedding.

  16. Flexibility in metal-organic framework materials: Impact on sorption properties

    NASA Astrophysics Data System (ADS)

    Fletcher, Ashleigh J.; Thomas, K. Mark; Rosseinsky, Matthew J.

    2005-08-01

    Recent years have seen the development of a new class of porous coordination polymers known collectively as metal organic framework materials (MOFs). This review outlines recent progress in understanding how adsorption characteristics of these systems differ from rigid classical sorbents such as activated carbon and zeolites. Gas/vapor adsorption studies for characterization of the porous structures of MOF materials are reviewed and differences in adsorption characteristics based on detailed measurement of equilibrium and dynamical sorption behavior, compared with previous generations of sorbents, are highlighted. The role of framework flexibility and specific structural features, such as windows and pore cavities, within the MOF porous structures are discussed in relation to adsorption mechanisms.

  17. Development of new inorganic luminescent materials by organic-metal complex route

    NASA Astrophysics Data System (ADS)

    Manavbasi, Alp

    The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the

  18. Metal-organic fireworks: MOFs as integrated structural scaffolds for pyrotechnic materials.

    PubMed

    Blair, L H; Colakel, A; Vrcelj, R M; Sinclair, I; Coles, S J

    2015-08-07

    A new approach to formulating pyrotechnic materials is presented whereby constituent ingredients are bound together in a solid-state lattice. This reduces the batch inconsistencies arising from the traditional approach of combining powders by ensuring the key ingredients are 'mixed' in appropriate quantities and are in intimate contact. Further benefits of these types of material are increased safety levels as well as simpler logistics, storage and manufacture. A systematic series of new frameworks comprising fuel and oxidiser agents (group 1 and 2 metal nodes & terephthalic acid derivatives as linkers) has been synthesised and structurally characterised. These new materials have been assessed for pyrotechnic effect by calorimetry and burn tests. Results indicate that these materials exhibit the desired pyrotechnic material properties and the effect can be correlated to the dimensionality of the structure. A new approach to formulating pyrotechnic materials is proposed whereby constituent ingredients are bound together in a solid-state lattice. A series of Metal-organic framework frameworks comprising fuel and oxidiser agents exhibits the desired properties of a pyrotechnic material and this effect is correlated to the dimensionality of the structure.

  19. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Sharma, G D

    2014-06-01

    Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells.

  20. Role of chromatography in the development of Standard Reference Materials for organic analysis.

    PubMed

    Wise, Stephen A; Phinney, Karen W; Sander, Lane C; Schantz, Michele M

    2012-10-26

    The certification of chemical constituents in natural-matrix Standard Reference Materials (SRMs) at the National Institute of Standards and Technology (NIST) can require the use of two or more independent analytical methods. The independence among the methods is generally achieved by taking advantage of differences in extraction, separation, and detection selectivity. This review describes the development of the independent analytical methods approach at NIST, and its implementation in the measurement of organic constituents such as contaminants in environmental materials, nutrients and marker compounds in food and dietary supplement matrices, and health diagnostic and nutritional assessment markers in human serum. The focus of this review is the important and critical role that separation science techniques play in achieving the necessary independence of the analytical steps in the measurement of trace-level organic constituents in natural matrix SRMs.

  1. Standard reference materials (SRMs) for determination of organic contaminants in environmental samples.

    PubMed

    Wise, Stephen A; Poster, Dianne L; Kucklick, John R; Keller, Jennifer M; Vanderpol, Stacy S; Sander, Lane C; Schantz, Michele M

    2006-10-01

    For the past 25 years the National Institute of Standards and Technology (NIST) has developed certified reference materials (CRMs), known as standard reference materials (SRMs), for determination of organic contaminants in environmental matrices. Assignment of certified concentrations has usually been based on combining results from two or more independent analytical methods. The first-generation environmental-matrix SRMs were issued with certified concentrations for a limited number (5 to 10) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Improvements in the analytical certification approach significantly expanded the number and classes of contaminants determined. Environmental-matrix SRMs currently available include air and diesel particulate matter, coal tar, marine and river sediment, mussel tissue, fish oil and tissue, and human serum, with concentrations typically assigned for 50 to 90 organic contaminants, for example PAHs, nitro-substituted PAHs, PCBs, chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs).

  2. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials.

    PubMed

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-Ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  3. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Hoo Kim, Eun; Wei, Alexander; Negishi, Ei-ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  4. First discovery of the organic materials in deep-sea iron cosmic spherule

    NASA Technical Reports Server (NTRS)

    Hanchang, Peng; Peicang, XU

    1993-01-01

    The dust impact mass analyzer (PUMA) carried by the spacecraft Vega 1, Vega 2 and Giotto has provided the first direct measurements of the physical and chemical properties of cometary dust. The results indicate that most of the cometary dust particles are rich in light elements such as H, C, N, and O, suggesting the validity of models that describe the cometary dust as including organic material. Up to now, there were none found with the organic material from the deep-sea cosmic spherules. We have determined this from the deep-sea iron cosmic spherules collected from the North Pacific. An iron cosmic spherule (382 microns in diameter) was determined by the Laser Raman Microprobe.

  5. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    NASA Astrophysics Data System (ADS)

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-12-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.

  6. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP.

    PubMed

    Wu, Dingcai; Li, Zhenghui; Zhong, Mingjiang; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2014-04-07

    A facile templated synthesis of functional nanocarbon materials with well-defined spherical mesopores is developed using all-organic porogenic precursors comprised of hairy nanoparticles with nitrogen-rich polyacrylonitrile shells grafted from sacrificial cross-linked poly(methyl methacrylate) cores (xPMMA-g-PAN). Such shape-persistent all-organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes.

  7. Photochromic organic-inorganic composite materials prepared by sol-gel processing: properties and potentials

    NASA Astrophysics Data System (ADS)

    Hou, Lisong; Mennig, Martin; Schmidt, Helmut K.

    1994-09-01

    The sol-gel method which features a low-temperature wet-chemical process opens vast possibilities to incorporating organic dyes into solid matrices for various optical applications. In this paper we present our experimental results on the sol-gel derived photochromic organic- inorganic composite (Ormocer) materials following an introductory description of the sol-gel process and a brief review on the state of the art of the photochromic solids prepared using this method. Our photochromic spirooxazine-Ormocer gels and coatings possess better photochromic response and color-change speed than the corresponding photochromic polymer coatings and similar photochemical stability to the latter. Further developments are proposed as to tackle the temperature dependence problem and further tap the potentialities of the photochromic dye-Ormocer material for practical applications.

  8. Interfacial Charge Transport in Organic Electronic Materials: the Key to a New Electronics Technology

    SciTech Connect

    Smith, D.L.; Campbell, I.H.; Davids, P.S.; Heller, C.M.; Laurich, B.K.; Crone, B.K.; Saxena, A.; Bishop, A.R.; Ferraris, J.P.; Yu, Z.G.

    1999-06-04

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The primary aim of this project is to obtain a basic scientific understanding of electrical transport processes at interfaces that contain an organic electronic material. Because of their processing advantages and the tunability of their electronic properties, organic electronic materials are revolutionizing major technological areas such as information display. We completed an investigation of the fundamental electronic excitation energies in the prototype conjugated polymer MEH-PPV. We completed a combined theoretical/experimental study of the energy relation between charged excitations in a conjugated polymer and the metal at a polymer/metal interface. We developed a theoretical model that explains injection currents at polymer/metal interfaces. We have made electrical measurements on devices fabricated using the conjugated polymer MEH-PPV a nd a series of metals.

  9. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    PubMed Central

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  10. Covalent organic frameworks: a materials platform for structural and functional designs

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Wang, Ping; Jiang, Donglin

    2016-10-01

    Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores. One important feature of COFs is that they are designable; that is, the geometry and dimensions of the building blocks can be controlled to direct the topological evolution of structural periodicity. The diversity of building blocks and covalent linkage topology schemes make COFs an emerging materials platform for structural control and functional design. Indeed, COF architectures offer confined molecular spaces for the interplay of photons, excitons, electrons, holes, ions and guest molecules, thereby exhibiting unique properties and functions. In this Review, we summarize the major progress in the field of COFs and recent achievements in developing new design principles and synthetic strategies. We highlight cutting-edge functional designs and identify fundamental issues that need to be addressed in conjunction with future research directions from chemistry, physics and materials perspectives.

  11. Dependence on material choice of degradation of organic solar cells following exposure to humid air

    PubMed Central

    Glen, Tom S.; Scarratt, Nicholas W.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Kingsley, James; Buckley, Alastair R.; Lidzey, David G.

    2015-01-01

    ABSTRACT Electron microscopy has been used to study the degradation of organic solar cells when exposed to humid air. Devices with various different combinations of commonly used organic solar cell hole transport layers and cathode materials have been investigated. In this way the ingress of water and the effect it has on devices could be studied. It was found that calcium and aluminum in the cathode both react with water, causing voids and delamination within the device. The use of poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was found to increase the degradation by easing water ingress into the device. Replacing these materials removed these degradation features. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 216–224 PMID:27594763

  12. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    PubMed Central

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-ichi

    2014-01-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C–C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials. PMID:27877696

  13. Quantum spin Hall and Z2 metallic states in an organic material

    NASA Astrophysics Data System (ADS)

    Zhao, Bao; Zhang, Jiayong; Feng, Wanxiang; Yao, Yugui; Yang, Zhongqin

    2014-11-01

    Motivated by recently searching for topological states in organic materials as well as successful experimental synthesis of a graphitelike metal-organic framework Ni3(C18H12N6 )2 [Sheberla et al., J. Am. Chem. Soc. 136, 8859 (2014), 10.1021/ja502765n], we systematically investigated the electronic and topological properties of the Ni3(C18H12N6 )2 monolayer using an ab initio method combined with a tight-binding model. Our calculations demonstrate that the material can be in a quantum spin Hall or Z2 metallic state in different electron-doped concentrations, which are experimentally accessible with currently electrostatic gating technologies. The tight-binding model also shows that the real next-nearest-neighbor interaction is essential to drive the Z2 metallic phase in Ni3(C18H12N6 )2-type lattices.

  14. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    SciTech Connect

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  15. Vibrational, electronic absorption, thermal and mechanical analyses of organic nonlinear optical material guanidinium phthalate

    NASA Astrophysics Data System (ADS)

    Devi, T. Uma; Prabha, A. Josephine; Meenakshi, R.; Kalpana, G.; Dilip, C. Surendra

    2017-02-01

    The FTIR and UV spectroscopic analysis have been carried out on guanidinium phthalate (GUP) crystal, an organic nonlinear optical material. The spectra are interpreted with the aid of normal coordinate analysis following structure optimizations and force field calculations based on density functional theory (DFT). The thermogravimetric (TG) and differential thermal analysis (DTA) ensures the thermal stability of the compound. Vickers microhardness values reveals the mechanical strength of the crystal.

  16. Characterization of Optical and Associated Properties of Marine Colored Dissolved Organic Material (CDOM)

    DTIC Science & Technology

    2000-09-30

    Characterization of Optical and Associated Properties of Marine Colored Dissolved Organic Material (CDOM) Principal Investigator: Dr. Rod G. Zika Co...of the FFFF on the ship. A nitrogen purification system, that eliminates our dependence on and the cost of liquid nitrogen dewers as a N2 source, has...Catherine D., Erik R. Stabenau, Eliete Zanardi-Lamardo, Cynthia A. Moore, and Rod G. Zika (1999) “Photochemical Effects on the Structural Properties

  17. Tissue distribution and thyroid hormone effects on mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting polypeptides (Oatps) in a teleost fish

    PubMed Central

    Muzzio, Amanda M.; Noyes, Pamela D.; Stapleton, Heather M.; Lema, Sean C.

    2014-01-01

    Many of the actions of thyroid hormones (THs) occur via TH binding to intracellular receptors. Although it was long thought that THs diffused passively across plasma membranes, it is now recognized that cellular entry is mediated by a variety of membrane transporter proteins. In this study, we identified cDNAs encoding the TH transporters monocarboxylate transferase 8 (mct8) and 10 (mct10) as well as eight distinct organic anion-transporting polypeptide (oatp) proteins from fathead minnow (Pimephales promelas). Analysis of the tissue distribution of transporter mRNAs revealed that mct8 and mct10 transcripts were both abundant in liver, but also present at lower levels in brain, gonad and other tissues. Transcripts encoding oatp1c1 were highly abundant in brain, liver and gonad, and exhibited significant sex differences in the liver and gonad. Treatment of adult male minnows with 3,5,3′-triiodothyronine (T3) or the goitrogen methimazole altered gene transcript abundance for several transporters. Fish given exogenous T3 had reduced mct8 and oapt1c1 mRNA levels in the liver compared to methimazole-treated fish. In the brain, transcripts for mct8, mct10, oatp2b1, and oatp3a1 were each reduced in abundance in fish with elevated T3. As a whole, these results provide evidence that TH status influences the transcriptional dynamics of mct8, mct10 and several Oatp genes including oatp1c1 in teleost fish. PMID:24113777

  18. Tissue distribution and thyroid hormone effects on mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting polypeptides (Oatps) in a teleost fish.

    PubMed

    Muzzio, Amanda M; Noyes, Pamela D; Stapleton, Heather M; Lema, Sean C

    2014-01-01

    Many of the actions of thyroid hormones (THs) occur via TH binding to intracellular receptors. Although it was long thought that THs diffused passively across plasma membranes, it is now recognized that cellular entry is mediated by a variety of membrane transporter proteins. In this study, we identified cDNAs encoding the TH transporters monocarboxylate transferases 8 (mct8) and 10 (mct10) as well as eight distinct organic anion-transporting polypeptide (oatp) proteins from fathead minnow (Pimephales promelas). Analysis of the tissue distribution of transporter mRNAs revealed that mct8 and mct10 transcripts were both abundant in liver, but also present at lower levels in brain, gonad and other tissues. Transcripts encoding oatp1c1 were highly abundant in brain, liver and gonad, and exhibited significant sex differences in the liver and gonad. Treatment of adult male minnows with 3,5,3'-triiodothyronine (T3) or the goitrogen methimazole altered gene transcript abundance for several transporters. Fish given exogenous T3 had reduced mct8 and oapt1c1 mRNA levels in the liver compared to methimazole-treated fish. In the brain, transcripts for mct8, mct10, oatp2b1, and oatp3a1 were each reduced in abundance in fish with elevated T3. As a whole, these results provide evidence that TH status influences the transcriptional dynamics of mct8, mct10 and several Oatp genes including oatp1c1 in teleost fish.

  19. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  20. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Seki, T.; Aoki, T.; Matsuo, J.

    2011-01-01

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  1. The effect of elastomeric impression materials on the growth of micro-organisms.

    PubMed

    Tuit, C M; Coogan, M M

    1999-10-01

    The influence of elastomeric impression materials on the growth of micro-organisms was examined in vitro. Bacillus subtilis was inoculated into broth containing impression materials and incubated at 37 degrees C for 72 hours. Express STD Putty, President Putty and Jet-Light Body, Low and Very High Viscosity Permagum and Provil L stimulated growth whereas Impregum-F and Express Light Body inhibited growth. The influence of Impregum-F and Express Light Body on oral micro-organisms was investigated further. Broth extracts were prepared by soaking these materials in Todd Hewitt broth for either 5 or 10 minutes. Thereafter, the extracts were inoculated with oral strains of Staphylococcus aureus, Streptococcus mutans and Candida albicans, incubated at 37 degrees C for 72 hours and plated on blood and Sabourauds agar to test for the presence of viable micro-organisms. The 10-minute broth extracts killed all the test isolates which suggests that impressions taken with Impregum-F and Express Light Body may not require disinfecting.

  2. Laboratory and field measurements of vapors generated by organic materials in drilling fluids

    SciTech Connect

    Candler, J.; Churan, M.; Conn, L.

    1996-11-01

    In an era of increasing awareness of worker health issues one of the key concerns in exploration activities is the exposure of wellsite personnel to vapors generated by organic materials in drilling fluids. Areas on the drilling location with the highest exposure potentials are the shale shakers and mud pits. These areas are often enclosed in rooms and ventilated to prevent unhealthy levels of vapors from accumulating. In continuing efforts to minimize health risks, new products are evaluated to minimize the volatility of organic materials used in drilling fluids. This study presents a laboratory technique for measuring vapors generated from organic materials in drilling fluids. Using this technique, data will be presented comparing the volume of vapors generated from diesel oils, mineral oils, synthetic fluids and a water-miscible glycol. Field data collected from the shaker and mud pit areas of drilling operations will be used to validate the laboratory study to field conditions. The potential health effects of the collected vapors will be reviewed.

  3. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471

  4. Organic Material Based Fluorescent Sensor for Hg(2+): a Brief Review on Recent Development.

    PubMed

    Saleem, Muhammad; Rafiq, Muhammad; Hanif, Muhammad

    2017-01-01

    Due to the deleterious effects of mercury on human health and natural ecosystems, high reactivity, non-degradability, extreme volatility and relative water and tissue solubility, it would consider as one of the most toxic environmental pollutants among the transition metals. In the present investigation, we have tried to summarized the several organic material based fluorescent sensor including rhodamine, boron-dipyrromethene (BODIPYs), thiourea, crown-ether, coumarine, squaraines, pyrene, imidazole, triazole, anthracene, dansyl, naphthalenedimide/ naphthalene/ naphthalimide, naphthyridine, iridium (III) complexes, polymeric materials, cyclodextrin, phthalic anhydride, indole, calix [4]arene, chromenone, 1,8-naphthalimides, lysine, styrylindolium, phenothiazine, thiocarbonyl quinacridone, oxadiazole, triphenylamine-triazines, tetraphenylethene, peptidyl and semicarbazone for the trace mercury detection in the aqueous, aqueous-organic and cellular media. The present review provides a brief look over the previous development in the organic material based fluorescent sensor for mercuric ion detection. Furthermore, the ligand-metal binding stoichiometry, binding/association/dissociation constants and the detection limit by the receptors have been particularly highlighted which might be useful for the future design and development of more sensitive and robust fluorescent chemosensor/chemodosimeter for the mercuric ion detection. Graphical Abstract Dummy.

  5. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods.

    PubMed

    Garavand, Ali; Dadkhah Tehrani, Abbas

    2016-11-05

    Organic-inorganic functional hybrid materials play a major role in the development of advanced functional materials and recently have gained growing interest of the worldwide community. In this context, new hybrid organic-inorganic gel consisting of cellulose nanowhisker xanthate (CNWX) and S-H functionalized polypseudorotaxane (PPR) as organic parts of gel and gold nanorods (GNRs) as inorganic cross-linking agent were prepared. Firstly, thiolated α-cyclodextrin (α-CD-SH) was threaded onto poly-(ethylene glycol) bis (mercaptoethanoate ester) (PEG-SH) to give polypseudorotaxane (PPR) and then it reacted with GNRs in the presence of CNWX to give the new hybrid gel material. The new synthesized gel and its components characterized by spectroscopic measurement methods such as FT-IR, UV-vis and NMR spectroscopy. Interestingly, hybrid gel showed new polygonal plate like morphology with 45-60nm thickness and 400-600nm width. The obtained gel may have potential application in many fields especially in biomedical applications.

  6. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2015-06-10

    Donor-bridge-acceptor (DBA) systems occupy a rich history in molecular electronics and photonics. A key property of DBA materials is their typically large and tunable (hyper)polarizabilities. While traditionally, classical descriptions such as the Clausius-Mossotti formalism have been used to relate molecular polarizabilities to bulk dielectric response, recent work has shown that these classical equations are inadequate for numerous materials classes. Creating high-dielectric organic materials is critically important for utilizing unconventional semiconductors in electronic circuitry. Employing a plane-wave density functional theory formalism, we investigate the dielectric response of highly polarizable DBA molecule-based thin films. Such films are found to have large dielectric response arising from cooperative effects between donor and acceptor units when mediated by a conjugated bridge. Moreover, the dielectric response can be systematically tuned by altering the building block donor, acceptor, or bridge structures and is found to be nonlinearly dependent on electric field strength. The computed dielectric constants are largely independent of the density functional employed, and qualitative trends are readily evident. Remarkably large computed dielectric constants >15.0 and capacitances >6.0 μF/cm(2) are achieved for squaraine monolayers, significantly higher than in traditional organic dielectrics. Such calculations should provide a guide for designing high-capacitance organic dielectrics that should greatly enhance transistor performance.

  7. Real-time and online screening method for materials emitting volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, Changhyuk; Sul, Yong Tae; Pui, David Y. H.

    2016-09-01

    In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption-gas chromatography-mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.

  8. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    SciTech Connect

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Matsuo, J.; Seki, T.; Aoki, T.

    2011-01-07

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  9. Electron injection and transport mechanism in organic devices based on electron transport materials

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Xu, Wei; Khizar-ul-Haq; Zhang, Xiao Wen; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.

    2008-11-01

    Electron injection and transport in organic devices based on electron transport (ET) materials, such as 4,7- diphyenyl-1,10-phenanthroline (Bathophenanthroline BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) and bipyridyl oxadiazole compound 1,3-bis [2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene (Bpy-OXD), have been reported. The devices are composed of ITO/ET materials (BPhen, BCP Bpy-OXD)/cathodes, where cathodes = Au, Al and Ca. Current-voltage characteristics of each ET material are performed as a function of cathodes. We have found that Ca and Al exhibit quite different J-V characteristics compared with the gold (Au) cathode. The current is more than one order of magnitude higher for the Al cathode and more than three orders of magnitude higher for Ca compared with that of the Au cathode at ~8 V for all ET materials. This is because of the relatively low energy barrier at the organic/metal interface for Ca and Al cathodes. Electron-only devices with the Au cathode show that the electron transfer limitation is located at the organic/cathode interface and the Fowler-Nordheim mechanism is qualitatively consistent with experimental data at high voltages. With Ca and Al cathodes, electron conduction is preponderant and is bulk limited. A power law dependence J ~ Vm with m > 2 is consistent with the model of trap-charge limited conduction. The total electron trap density is estimated to be ~5 × 1018 cm-3. The critical voltage (Vc) is found to be ~45 V and is almost independent of the materials.

  10. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    SciTech Connect

    Bardhan, S.; Watson, M.; Dick, W.A.

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  11. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    PubMed

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m(-1) K(-2) with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  12. Solvothermal synthesis and characterization of two inorganic-organic hybrid materials based on barium.

    PubMed

    Abdollahian, Yashar; Hauser, Jesse L; Rogow, David L; Oliver, Allen G; Oliver, Scott R J

    2012-10-28

    Two metal-organic frameworks containing barium were synthesized hydrothermally and investigated for their catalytic properties. Ba(2)F(2)[O(3)SC(2)H(4)SO(3)] has barium fluoride layers linked by organic 1,2-ethanedisulfonate molecules. Ba[O(3)SC(2)H(4)SO(3)] has discrete barium centers arranged in layers and connected covalently by ethanedisulfonate bridges. Thermogravimetric analysis showed that Ba(2)F(2)[O(3)SC(2)H(4)SO(3)] is stable to ca. 325 °C and Ba[O(3)SC(2)H(4)SO(3)] to ca. 375 °C. These materials expand the metal-organic frameworks available for group II metals bound to organodisulfonate linkers and are potentially useful for a range of heterogeneous acid catalysis reactions.

  13. Search for greener Li-ion batteries: an alternative offered by organic electroactive materials

    NASA Astrophysics Data System (ADS)

    Geng, Joaquin; Renault, Stéven; Poizot, Philippe; Dolhem, Franck

    2011-06-01

    The threats of climate change and the issues of secure energy supply are among the fundamental challenges of the 21stcentury that push humanity to adopt a sustainable development and to favour the use of renewable sources of energy. In addition to their historical use, LIBs seem on the road to power the next "Zero Emission" vehicles or could be used to assist the integration of renewable energy sources both on- and off-the-grid. Consequently, production of LIBs is expected to keep on growing. However LIBs are nearly exclusively based on inorganic compounds, non-renewable and energy-greedy materials. Thus in parallel with regular research on inorganic-based LIBs, we have recently proposed to probe an alternative pathway by searching for redox-active organic materials, easier to discard while possibly derived from biomass resources. As solid-state electrochemistry of organics is not that well documented, our current approach consists in a global survey of selected organic structures in order to grasp relevant parameters that affect the redox potential, the stability upon cycling and so on. In this report, we extend our current database of redox-active organic structures by evaluating vs. Li bulky pyrazine-based structures and dilithium polyporate as a supplementary specimen of p-benzoquinone derivatives.

  14. 25th anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices.

    PubMed

    Orgiu, Emanuele; Samorì, Paolo

    2014-03-26

    Organic semiconductors have garnered significant interest as key components for flexible, low-cost, and large-area electronics. Hitherto, both materials and processing thereof seems to head towards a mature technology which shall ultimately meet expectations and efforts built up over the past years. However, by its own organic electronics cannot compete or complement the silicon-based electronics in integrating multiple functions in a small area unless novel solutions are brought into play. Photochromic molecules are small organic molecules able to undergo reversible photochemical isomerization between (at least) two (meta)stable states which exhibit markedly different properties. They can be embedded as additional component in organic-based materials ready to be exploited in devices such as OLEDs, OFETs, and OLETs. The structurally controlled incorporation of photochromic molecules can be done at various interfaces of a device, including the electrode/semiconductor or dielectric/semiconductor interface, or even as a binary mixture in the active layer, in order to impart a light responsive nature to the device. This can be accomplished by modulating via a light stimulus fundamental physico-chemical properties such as charge injection and transport in the device.

  15. The Effects of the Position of Organizers to Facilitate Learning of Structured Anthropology Materials in the Sixth Grade.

    ERIC Educational Resources Information Center

    Barnes, Buckley Richard

    The purpose of the study, part of the research and curriculum development of the Anthropology Curriculum Project, was to compare the facilitative effects of pre- and post-organizers on the learning of structured anthropology materials at the sixth-grade level. Organizers were defined, in this thesis, as written material that serves the function of…

  16. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  17. Health evaluation of volatile organic compound (VOC) emissions from wood and wood-based materials.

    PubMed

    Jensen, L K; Larsen, A; Mølhave, L; Hansen, M K; Knudsen, B

    2001-01-01

    In this study, the authors describe a method for evaluation of material emissions. The study was based on chemical analysis of emissions from 23 materials representing solid wood and wood-based materials commonly used in furniture, interior furnishings, and building products in Denmark in the 1990s. The authors used the emission chamber testing method to examine the selected materials with a qualitative screening and quantitative determination of volatile organic compounds. The authors evaluated the toxicological effects of all substances identified with chamber testing. Lowest concentration of interest and standard room concentrations were assessed, and the authors calculated an S-value for each wood and wood-based material. The authors identified 144 different chemical substances with the screening analyses, and a total of 84 individual substances were quantified with chamber measurements. The irritative effects dominated at low exposure levels; therefore, the lowest concentration of interes