Science.gov

Sample records for abundant organic matter

  1. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    EPA Science Inventory

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  2. Organic Matter Degradation Drives Benthic Cyanobacterial Mat Abundance on Caribbean Coral Reefs

    PubMed Central

    Brocke, Hannah J.; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs. PMID:25941812

  3. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    PubMed

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs. PMID:25941812

  4. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  5. Organic matter formed from hydrolysis of metal carbides of the iron peak of cosmic elemental abundance

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco

    2003-01-01

    This work is a modern revisitation of an old idea of great chemists of the past such as Berthelot, Mendeleev, Cloez and Moissan: the formation of organic matter under pre-biotic conditions starting from the hydrolysis of metal carbides. This idea was originally proposed for the formation of petroleum in the Earth and was extended to other bodies of the solar system by Sokolov at the end of the 19th century. The reason for this revisitation lies in the fact that complex organic matter resembling a petroleum fraction may exist in certain protoplanetary nebulae. The present work starts with a survey of the theory of the inorganic origin of petroleum and reports on current evidence for its derivation from residues of formerly living matter, but also considers theories that admit both a biogenic and an abiogenic origin for petroleum. By considering the cosmic abundance of elements and the evidence concerning the presence of carbides in meteorites, we discuss the formation, structure and hydrolysis products derived from the metal carbides of the iron peak of cosmic elemental abundance. Chromium carbide (Cr3C2) has then been used as a model compound for all the key carbides of the iron peak of the cosmic abundance (Cr, Fe, Ni, V, Mn, Co) and it has been hydrolysed under different conditions and the hydrocarbons formed have been analysed using electronic spectroscopy, high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and by Fourier-transform infrared (FT-IR) spectroscopy. Methane, a series of about 20 different alkenes with single and conjugated double bonds have been detected. Paraffins are formed simultaneously with the alkene series but no acetylenic hydrocarbons have been detected. This study confirms early works considering the easy hydrolysis of the carbides of Cr, Fe, Ni, Mn and Co with the formation of H2, a series of alkanes including methane and a series of alkenes including ethylene. The peculiar behaviour of copper carbide (copper is

  6. Seasonal abundance of organic molecular markers in urban particulate matter from Philadelphia, PA

    NASA Astrophysics Data System (ADS)

    Li, Min; McDow, Stephen R.; Tollerud, David J.; Mazurek, Monica A.

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundance of key tracer compounds together with their dominant sources. Daily PM10 samples were collected seasonally in 2000 for four 2-week periods (January, April, August, and October). The North Broad Street site is within a heavily populated location in Philadelphia, PA. A suite of 52 individual organic marker compounds was monitored in the PM10 samples. Molecular markers, homologous compound series, and nonpolar and polar organic compounds were detected at ng m -3 ambient concentrations using gas chromatography/ion trap mass spectrometry (GC/IT MS). Organic diacids (C 3-C 9) and monoacids (C 10-C 30) had seasonal mass concentrations ranging from 91.0 (winter) to 261.8 ng m -3 (summer). Total n-alkanes (C 25-C 33) ranged from 25.9 (spring) to 49.5 ng m -3 (fall), total PAHs from 2.1 ng m -3 (summer) to 4.1 ng m -3 (winter), and total hopanes ranged from 4.0 ng m -3 (winter) to 7.4 ng m -3 (fall). The molecular marker ambient mass concentrations were normalized by the annual average mass of PM10 elemental carbon (EC) for the central Philadelphia area. The ambient mass concentrations to EC and OC ratios ranged from 2.6×10 -3 for total PAHs to EC to 115.3×10 -3 for total n-alkanoic acids to EC, 0.5×10 -3 for total PAHs to OC to 23.8×10 -3 for total n-alkanoic acids to OC. Ambient concentrations of individual markers are similar to other reported levels for metropolitan Los Angeles, CA and Atlanta, GA. Seasonal and daily variations of marker compounds are consistent with motor vehicle exhaust, particularly in winter. Summer concentration patterns indicate the importance of secondary organic aerosol to the PM10 ambient mass.

  7. Enzymatic activities and prokaryotic abundance in relation to organic matter along a West-East Mediterranean transect (TRANSMED cruise).

    PubMed

    Zaccone, R; Boldrin, A; Caruso, G; La Ferla, R; Maimone, G; Santinelli, C; Turchetto, M

    2012-07-01

    The distribution of extracellular enzymatic activities (EEA) [leucine aminopeptidase (LAP), ß-glucosidase (GLU), alkaline phosphatase (AP)], as well as that of prokaryotic abundance (PA) and biomass (PB), dissolved organic carbon (DOC), particulate organic carbon and particulate total nitrogen (POC, PTN), was determined in the epi-, meso-, and bathypelagic waters of the Mediterranean Sea along a West-East transect and at one Atlantic station located outside the Strait of Gibraltar. This study represents a synoptical evaluation of the microbial metabolism during early summer. Decreasing trends with depth were observed for most of the parameters (PA, PB, AP, DOC, POC, PTN). Significant differences between the western and eastern basins of the Mediterranean Sea were found, displaying higher rates of LAP and GLU and lower C/N ratios more in the eastern than in the western areas. Conversely, in the epipelagic layer, PA and PB were found to be higher in the western than in the eastern basins. PB was significantly related to DOC concentration (all data, n = 145, r = 0.53, P < 0.01), while significant correlations of EEA with POC and PTN were found in the epipelagic layer, indicating an active response of microbial metabolism to organic substrates. Specific enzyme activities normalized to cell abundance pointed out high values of LAP and GLU in the bathypelagic layer, especially in the eastern basin, while cell-specific AP was high in the epi- and bathypelagic zone of the eastern basin indicating a rapid regeneration of inorganic P for both prokaryotes and phytoplankton needs. Low activity and abundance characterized the Atlantic station, while opposite trends of these parameters were observed along the Mediterranean transect, showing the uncoupling between abundance and activity data. In the east Mediterranean Sea, decomposition processes increased probably in response to mesoscale structures which lead to organic matter downwelling. PMID:22349935

  8. Resolving the influence of nitrogen abundances on sediment organic matter in macrophyte-dominated lakes, using fluorescence spectroscopy.

    PubMed

    Yao, Xin; Wang, Shengrui; Jiao, Lixin; Yan, Caihong; Jin, Xiangcan

    2015-01-01

    A controlled experiment was designed to resolve the influence of nitrogen abundance on sediment organic matters in macrophyte-dominated lakes using fluorescence analysis. Macrophyte biomass showed coincident growth trends with time, but different variation rates with nitrogen treatment. All plant growth indexes with nitrogen addition (N, NH4Cl 100, 200, 400mg/kg, respectively) were lower than those of the control group. Four humic-like components, two autochthonous tryptophan-like components, and one autochthonous tyrosine-like component were identified using the parallel factor analysis model. The results suggested that the relative component changes of fluorescence in the colonized sediments were in direct relation to the change of root biomass with time. In the experiment, the root formation parameters of the plants studied were significantly affected by adding N in sediments, which may be related to the reason that the root growth was affected by N addition. Adding a low concentration of N to sediments can play a part in supplying nutrients to the plants. However, the intensive uptake of NH4(+) may result in an increase in the intracellular concentration of ammonia, which is highly toxic to the plant cells. Hence, our experiment results manifested that organic matter cycling in the macrophyte-dominated sediment was influenced by nitrogen enrichment through influencing vegetation and relevant microbial activity. PMID:25597678

  9. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Eglinton, Timothy; Yang, Liyang; Deng, Bing; Montluçon, Daniel; Zhang, Jing

    2013-12-01

    the sources and fate of organic matter (OM) sequestered in continental margin sediments is of importance because the mode and efficiency of OM burial impact the carbon cycle and the regulation of atmospheric CO2 over long time scales. We carried out molecular (lignin-derived phenols from CuO oxidation), elemental, isotopic (δ13C, Δ14C), and sedimentological (grain size and mineral surface area) analyses in order to examine spatial variability in the abundance, source, age of surface sediments of the East China Sea. Higher terrigenous organic matter values were found in the main accumulating areas of fluvial sediments, including the Changjiang (Yangtze) Estuary and Zhejiang-Fujian coastal zone. Isotopic and biomarker data suggest that the sedimentary OM in the inner shelf region was dominated by aged (Δ14C = -423 ± 42‰) but relatively lignin-rich OM (Λ = 0.94 ± 0.57 mg/100 mg OC) associated with fine-grained sediments, suggesting important contributions from soils. In contrast, samples from the outer shelf, while of similar age (Δ14 C = -450 ± 99‰), are lignin poor (Λ = 0.25 ± 0.14 mg/100 mg OC) and associated with coarse-grained material. Regional variation of lignin phenols and OM ages indicates that OM content is fundamentally controlled by hydrodynamic sorting (especially, sediment redistribution and winnowing) and in situ primary production. Selective sorption of acid to aldehyde in clay fraction also modified the ratios of lignin phenols. The burial of lignin in East China Sea is estimated to be relatively efficient, possibly as a consequence of terrigenous OM recalcitrance and/or relatively high sedimentation rates in the Changjiang Estuary and the adjacent Zhejing-Fujian mud belt.

  10. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-01

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes. PMID:22385100

  11. Variability in the bulk composition and abundance of dissolved organic matter in the lower Mississippi and Pearl rivers

    NASA Astrophysics Data System (ADS)

    Duan, Shuiwang; Bianchi, Thomas S.; Shiller, Alan M.; Dria, Karl; Hatcher, Patrick G.; Carman, Kevin R.

    2007-06-01

    In this study, we examined the temporal and spatial variability of dissolved organic matter (DOM) abundance and composition in the lower Mississippi and Pearl rivers and effects of human and natural influences. In particular, we looked at bulk C/N ratio, stable isotopes (δ15N and δ13C) and 13C nuclear magnetic resonance (NMR) spectrometry of high molecular weight (HMW; 0.2 μm to 1 kDa) DOM. Monthly water samples were collected at one station in each river from August 2001 to 2003. Surveys of spatial variability of total dissolved organic carbon (DOC) and nitrogen (DON) were also conducted in June 2003, from 390 km downstream in the Mississippi River and from Jackson to Stennis Space Center in the Pearl River. Higher DOC (336-1170 μM), C/N ratio,% aromaticity, and more depleted δ15N (0.76-2.1‰) were observed in the Pearl than in the lower Mississippi River (223-380 μM, 4.7-11.5‰, respectively). DOC, C/N ratio, δ13C, δ15N, and % aromaticity of Pearl River HMW DOM were correlated with water discharge, which indicated a coupling between local soil inputs and regional precipitation events. Conversely, seasonal variability in the lower Mississippi River was more controlled by spatial variability of a larger integrative signal from the watershed as well as in situ DOM processing. Spatially, very little change occurred in total DOC in the downstream survey of the lower Mississippi River, compared to a decrease of 24% in the Pearl River. Differences in DOM between these two rivers were reflective of the Mississippi River having more extensive river processing of terrestrial DOM, more phytoplankton inputs, and greater anthropogenic perturbation than the Pearl River.

  12. Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation

    PubMed Central

    García-Fraile, Paula; Benada, Oldrich; Cajthaml, Tomáš; Baldrian, Petr

    2015-01-01

    Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55T, which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55T include Bryocella elongata SN10T (95.4% identity), Acidicapsa ligni WH120T (95.2% identity), and Telmatobacter bradus TPB6017T (95.0% identity), revealing that strain S55T should be classified within the phylum Acidobacteria, subdivision 1. Strain S55T is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55T corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55T = NBRC 111238T = CECT 8791T). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55T also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55T being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55T in the carbon cycle in the Picea abies coniferous forest. PMID:26546425

  13. Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation.

    PubMed

    García-Fraile, Paula; Benada, Oldrich; Cajthaml, Tomáš; Baldrian, Petr; Lladó, Salvador

    2016-01-01

    Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55(T), which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55(T) include Bryocella elongata SN10(T) (95.4% identity), Acidicapsa ligni WH120(T) (95.2% identity), and Telmatobacter bradus TPB6017(T) (95.0% identity), revealing that strain S55(T) should be classified within the phylum Acidobacteria, subdivision 1. Strain S55(T) is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55(T) corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55(T) = NBRC 111238(T) = CECT 8791(T)). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55(T) also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55(T) being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55(T) in the carbon cycle in the Picea abies coniferous forest. PMID:26546425

  14. Characterization of a flood-associated deposit on the Waipaoa River shelf using radioisotopes and terrigenous organic matter abundance and composition

    NASA Astrophysics Data System (ADS)

    Kniskern, Tara A.; Mitra, Siddhartha; Orpin, Alan R.; Harris, Courtney K.; Walsh, J. P.; Corbett, D. R.

    2014-09-01

    An ephemeral oceanic-flood deposit adjacent to a well-studied small mountainous river (SMR), the Waipaoa River in northeastern New Zealand, was characterized using multiple proxies, including radioisotopes (234Th, 7Be, and 210Pb), bulk organic carbon abundance and isotopic signature (%OC, δ13C), as well as a biomarker of terrigenous organic matter (lignin). Field sampling was conducted within two weeks after a 1-in-8 year flood that occurred between January 30 and February 6, 2010. Geochemical analyses indicated that initial deposition of fresh riverine material extended alongshore to the north and south from the river mouth. A comparison of prior- and post-flood 7Be inventories revealed that flood sediments were widely dispersed between 20 and 70 m water depth, accounting for 50-80% of the estimated flood load. Surface (0-2 cm) isotopic carbon values increased with distance from Poverty Bay, positively correlating with total 210Pb activities, potentially reflecting increasing marine influence with water depth. Abundances of sedimentary organic carbon (OC) were 0.18-0.76% dry weight, and the total nitrogen varied from 0.02 to 0.13%. Stable isotope signatures of carbon (δ13COC), nitrogen (δ15N), and lignin abundances (λ6) throughout the study area ranged from -23.6 to -27.7‰, 1.9 to 5.3‰, and 0.93 to 9.0 mg 100 mg OC-1, respectively. The spatial distribution pattern of terrigenous organic matter (OM) abundance and interclass ratios (indicative of freshness of organic matter) varied along and across-shelf. Lignin abundances were high and interclass ratios were low in the southern depocenter and inner shelf areas, suggesting that this zone had recently received vascular-plant enriched OM, minimally altered by shelf-bed mixing processes. In contrast, sediments in the northern depocenter and outer shelf also contained elevated amounts of terrigenous sedimentary OM, but this material was generally lower in lignin abundance and had higher interclass ratios

  15. Diquark abundance in stellar matter

    SciTech Connect

    Horvath, J.E.; de Freitas Pacheco, J.A.; de Araujo, J.C.N. )

    1992-11-15

    The clustering of quarks into pairs (diquarks) has been suggested recently to play an important role in dense matter and its astrophysical realization in neutron-star cores. We address in this work the features of diquark matter by employing an accurate equation of state valid for the effective {lambda}{phi}{sup 4} diquark theory, and find milder (although non-negligible) effects than in previous calculations. Some considerations on the very presence of a diquark-dominated region immediately above the deconfinement density are also given.

  16. Effect of petroleum products on the decomposition of soil organic matter as assessed by 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Stelmach, Wioleta; Szarlip, Paweł; Trembaczowski, Andrzej; Bieganowski, Andrzej

    2016-04-01

    Petroleum products are common contaminants in soils due to human activities. They are toxic for microorganisms and threat their functions, including decomposition of soil organic matter (SOM). The direct estimation of altered SOM decomposition - based on the CO2 emission - is impossible after oil contamination, because oil decomposition also contributes to the CO2 release. We used the natural differences in the isotopic signature (δ13C) of SOM and of oil products to partition the total CO2 for both sources and to analyze the suppression of SOM decomposition. The dynamics of 13C fractionation during the mineralization of gasoline and diesel was measured during 42 days. The 13C fractionation varied between -8.8‰ and +3.6‰ within the first 10 days, and stabilized thereafter at about -5.3‰ for gasoline and +3.2‰ for diesel. These 13C fractionations and δ13C values of CO2 emitted from the soil were used for correct partitioning of the total CO2. Contamination with gasoline reduced the CO2 efflux from SOM decomposition by a factor of 25 (from 151 to 6 mg C-CO2 kg‑1 soil during 42 days). The negative effect of diesel was much lower: the CO2 efflux from SOM was decreased by less than a factor of 2. The strong effect of gasoline versus diesel reflects the lower absorption of gasoline to mineral particles and the development of a thin film on water surfaces, leading to toxicity for microorganisms. We conclude that the small differences of 13C of SOM and of organic pollutants can be used to partition CO2 fluxes and analyze pollutant effects on SOM decomposition.

  17. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA.

    PubMed

    DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong

    2016-09-15

    Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. PMID:27243792

  18. The effects of the 2010 flood on the composition and abundance of the terrestrial organic matter in sediments along the inner-shelf off the Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Li, X.; Bianchi, T. S.; Allison, M. A.; Chapman, P.; Yang, G.

    2011-12-01

    Surface sediments were collected within the primary depositional pathway along the inner-shelf off the Changjiang Estuary in winter 2009 and fall 2010 - before and after the 2010 flood in the Changjiang River. Multiple proxies (stable isotopes, lignin-phenols, pigments, cutins) were analyzed to examine the influence of this flooding event on the composition and abundance of river-derived terrestrial organic matter in sediments off the Changjiang Estuary. Elemental and stable isotope analyses showed significantly higher molar C/N ratios and enriched δ13C signatures for 2010 samples, which likely reflected inputs of C4 vascular plant materials. Post-flood concentrations of lignin-phenols were significantly lower in concentration than pre-flood concentrations in 2009. Lignin-phenol acid/aldehyde (Ad/Al) ratios, the lignin degradation index, showed significantly more degraded lignin post-flood in 2010 than that in 2009, which suggests greater inputs of lignins that were likely associated more with degraded soils, due to enhanced erosion from the flood, than surface plant litter. This was also in good agreement with higher inputs of another lignin soil proxy, the 3,5-Bd (3,5-dihydroxybenzoic acid) /V. Lignin-phenol source plots showed no significant differences in pre-and post flood sources, with sources largely consisting of a mixture of woody and non-woody gymnosperm and angiosperm inputs. Short lived radionuclides such as 7Be, 234Th analysis showed no apparent short-term sediment accumulation. The lack of evidence for new sediments deposited to the inner shelf after the flood was likely influenced in part, by the effects of extensive upstream damming on the Changjiang, especially the more recently constructed Three Gorges Dam.

  19. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  20. Dark Energy and The Dark Matter Relic Abundance

    SciTech Connect

    Rosati, Francesca

    2004-11-17

    Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.

  1. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  2. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  3. Elemental abundances in meteoritic and terrestrial matter

    NASA Technical Reports Server (NTRS)

    Schmitt, R. A.

    1974-01-01

    Major and trace element analyses of over 180 individual chondrules from 12 carbonaceous chondrites are reported, including individual analyses of 60 chondrules from Pueblito de Allende. Siderophile elements in most chondrules are depleted, compared to the whole chondrite. Correlations of Al-Ir and Ir-Sc among chondrules high in Ca and Al were observed. A Cu-Mn correlation was also found for chondrules from some meteorites. No correlation was observed between Au and other siderophile elements (Fe, Ni, Co and Ir). It is suggested that these elemental associations were present in the material from which the chondrules formed. Compositionally, chondrules appear to be a multicomponent mixture of remelted dust. One component displaying an Al-Ir correlation is identified as Allende-type white aggregates. The other components are a material chemically similar to the present matrix and sulfides-plus-metal material. Abundances of the REE (rare earth elements) were measured in ordinary Allende chondrules and were 50% higher than REE abundances in Mokoia chondrules; REE abundances in Ca-Al rich chondrules were similar to REE abundances in Ca-rich white aggregates.

  4. Helium and neon abundances and compositions in cometary matter.

    PubMed

    Marty, Bernard; Palma, Russell L; Pepin, Robert O; Zimmermann, Laurent; Schlutter, Dennis J; Burnard, Peter G; Westphal, Andrew J; Snead, Christopher J; Bajt, Sasa; Becker, Richard H; Simones, Jacob E

    2008-01-01

    Materials trapped and preserved in comets date from the earliest history of the solar system. Particles captured by the Stardust spacecraft from comet 81P/Wild 2 are indisputable cometary matter available for laboratory study. Here we report measurements of noble gases in Stardust material. Neon isotope ratios are within the range observed in "phase Q," a ubiquitous, primitive organic carrier of noble gases in meteorites. Helium displays 3He/4He ratios twice those in phase Q and in Jupiter's atmosphere. Abundances per gram are surprisingly large, suggesting implantation by ion irradiation. The gases are probably carried in high-temperature igneous grains similar to particles found in other Stardust studies. Collectively, the evidence points to gas acquisition in a hot, high ion-flux nebular environment close to the young Sun. PMID:18174437

  5. Extraterrestrial organic matter: a review.

    PubMed

    Irvine, W M

    1998-10-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  6. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  7. The secondary history of Sutter's Mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts

    NASA Astrophysics Data System (ADS)

    Beck, P.; Quirico, E.; Garenne, A.; Yin, Q.-Z.; Bonal, L.; Schmitt, B.; Montes-Hernandez, G.; Montagnac, G.; Chiriac, R.; Toche, F.

    2014-11-01

    Sutter's Mill is a regolith breccia composed of both heavily altered clasts and more reduced xenoliths. Here, we present a detailed investigation of fragments of SM18 and SM51. We have characterized the water content and the mineralogy by infrared (IR) and thermogravimetric analysis (TGA) and the structure of the organic compounds by Raman spectroscopy, to characterize the secondary history of the clasts, including aqueous alteration and thermal metamorphism. The three methods used in this study suggest that SM18 was significantly heated. The amount of water contained in phyllosilicates derived by TGA is estimated to be approximately 3.2 wt%. This value is quite low compared with other CM chondrites that typically range from 6 to 12 wt%. The infrared transmission spectra of SM18 show that the mineralogy of the sample is dominated by a mixture of phyllosilicate and olivine. SM18 shows an intense peak at 11.2 μm indicative of olivine (Fig. 1). If we compare SM18 with other CM and metamorphosed CM chondrites, it shows one of the most intense olivine signatures, and therefore a lower proportion of phyllosilicate minerals. The Raman results tend to support a short-duration heating hypothesis. In the ID/IG versus FWHM-D diagram, SM18 appears to be unusual compared to most CM samples, and close to the metamorphosed CM chondrites Pecora Escarpment (PCA) 91008 and PCA 02012. In the case of SM51, infrared spectroscopy reveals that olivine is less abundant than in SM18 and the 10 μm silicate feature is more similar to that of moderately altered CM chondrites (like Murchison or Queen Alexandra Range [QUE] 97990). Raman spectroscopy does not clearly point to a heating event for SM51 in the ID/IG versus FWHM-D diagram. However, TGA analysis suggests that SM51 was slightly dehydrated as the amount of water contained in phyllosilicates is approximately 3.7 wt%, which is higher than SM18, but still lower than phyllosilicate water contents in weakly altered CM chondrites

  8. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  9. Estrone degradation: does organic matter (quality), matter?

    PubMed

    Tan, David T; Temme, Hanna R; Arnold, William A; Novak, Paige J

    2015-01-01

    Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance. PMID:25454582

  10. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  11. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  12. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  13. The abundance of Kaluza-Klein dark matter with coannihilation

    SciTech Connect

    Burnell, Fiona; Kribs, Graham D.

    2006-01-01

    In universal extra dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level-one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level-one KK particles are within 5% of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.

  14. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  15. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  16. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-04-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with Rvir (ΔM), a fixed-aperture (ΔR) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V-web algorithm). ΔM is the mean density around a halo evaluated within a sphere of a radius of 5Rvir, where Rvir is the virial radius. ΔR is the density field Gaussian smoothed with R=4{ {h}^{-1}Mpc}, evaluated at the center of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross correlation between the mass of a halo and its fixed-aperture ambient density.

  17. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-07-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with Rvir (ΔM), a fixed-aperture (ΔR) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V-web algorithm). ΔM is the mean density around a halo evaluated within a sphere of a radius of 5Rvir, where Rvir is the virial radius. ΔR is the density field Gaussian smoothed with R = 4 h-1 Mpc, evaluated at the centre of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross-correlation between the mass of a halo and its fixed-aperture ambient density.

  18. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-07-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with $R_{vir}$ ($\\Delta_M$), a fixed-aperture ($\\Delta_R$) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V--web algorithm). $\\Delta_M$ is the mean density around a halo evaluated within a sphere of a radius of $5$\\rvir, where \\rvir\\ is the virial radius. $\\Delta_R$ is the density field Gaussian smoothed with $R=4h^{-1}$Mpc, evaluated at the center of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross correlation between the mass of a halo and its fixed-aperture ambient density.

  19. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  20. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management. PMID:26595271

  1. Effects of earthworms and plants on the soil structure, the physical stabilization of soil organic matter and the microbial abundance and diversity in soil aggregates in a long term study

    NASA Astrophysics Data System (ADS)

    Zangerlé, Anne; Hissler, Christophe; Lavelle, Patrick

    2014-05-01

    Earthworms and plant roots, as ecosystem engineers, have large effects on biotic and abiotic properties of the soil system. They create biogenic soil macroaggregates (i.e. earthworm casts and root macroaggregates) with specific physical, chemical and microbiological properties. Research to date has mainly considered their impacts in isolation thereby ignoring potential interactions between these organisms. On the other hand, most of the existing studies focused on short to midterm time scale. We propose in this study to consider effect of earthworms and plants on aggregate dynamics at long time scale. A 24 months macrocosm experiment, under semi-controlled conditions, was conducted to assess the impacts of corn and endogeic plus anecic earthworms (Apporectodea caliginosa and Lumbricus terrestris) on soil structure, C stabilization and microbial abundance and biodiversity. Aggregate stability was assessed by wet-sieving. Macroaggregates (>2 mm) were also visually separated according to their biological origin (e.g., earthworms, roots). Total C and N contents were measured in aggregates of all size classes and origins. Natural abundances of 13C of corn, a C4 plant, were used as a supplemental marker of OM incorporation in aggregates. The genetic structure and the abundance of the bacterial and fungal communities were characterized by using respectively the B- and F-ARISA fingerprinting approach and quantitative PCR bacteria (341F/515R) and fungi (FF330/FR1). They significantly impacted the soil physical properties in comparison to the other treatments: lower bulk density in the first 10cm of the soil with 0.95 g/cm3 in absence of corn plants and 0.88 g/cm3 in presence of corn plants compared to control soil (1.21g/cm3). The presence of earthworms increased aggregate stability (mean weight diameter) by 7.6 %, while plants alone had no simple impacts on aggregation. A significant interaction revealed that earthworms increased aggregate stability in the presence of

  2. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  3. Organic matter diagenesis in shallow water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Ingalls, Anitra E.; Aller, Robert C.; Lee, Cindy; Wakeham, Stuart G.

    2004-11-01

    Muddy carbonate deposits near the Dry Tortugas, Florida, are characterized by high organic carbon remineralization rates. However, approximately half of the total sedimentary organic matter potentially supporting remineralization is occluded in CaCO 3 minerals (intracrystalline). While a portion of nonintracrystalline organic matter appears to cycle rapidly, intracrystalline organic matter has an approximately constant concentration with depth, suggesting that as long as its protective mineral matrix is intact, it is not readily remineralized. Organic matter in excess of intracrystalline organic matter that is preserved may have a variety of mineral associations (e.g., intercrystalline, adsorbed or detrital). In surface sediment, aspartic acid contributed ˜22 mole % and ˜50 mole % to nonintracrystalline and intracrystalline pools, respectively. In deeper sediment (1.6-1.7m), the composition of hydrolyzable amino acids in both pools was similar (aspartic acid ˜40 mole %). Like amino acids, intracrystalline and nonintracrystalline fatty acids have different compositions in surface sediments, but are indistinguishable at depth. These data suggest that preserved organic matter in the nonintracrystalline pool is stabilized by its interactions with CaCO 3. Neutral lipids are present in very low abundances in the intracrystalline pool and are extensively degraded in both the intracrystalline and nonintracrystalline pools, suggesting that mineral interactions do not protect these compounds from degradation. The presence of chlorophyll- a, but absence of phytol, in the intracrystalline lipid pool demonstrates that chloropigments are present only in the nonintracrystalline pool. Sedimentary chloropigments decrease with depth at similar rates in Dry Tortugas sediments as found in alumino-silicate sediments from the Long Island Sound, suggesting that chloropigment degradation is largely unaffected by mineral interactions. Overall, however, inclusion and protection of

  4. Priming of native soil organic matter by pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes

    2015-04-01

    Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was

  5. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott R.; Nakamura-Messenger, Keiko

    2015-08-01

    Interplanetary dust particles (IDPs) collected in the Earth’s stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present

  6. Soil Organic Matter in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil organic matter (SOM) has been recognized as an important source of nutrients and maintains favorable soil structure. Organic matter is considered a major binding agent that stabilizes soil aggregates. Soil aggregates especially, water stable aggregates, are important i...

  7. Soil organic matter mineralization in frozen soils

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  8. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  9. Contribution of plant lignin to the soil organic matter formation and stabilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is the third most abundant plant constituent after cellulose and hemicellulose and thought to be one of the building blocks for soil organic matter formation. Lignin can be used as a predictor for long-term soil organic matter stabilization and C sequestration. Soils and humic acids from fo...

  10. SUBTERRANEAN TERMITES: REGULATORS OF SOIL ORGANIC MATTER IN THE CHICHUAHUAN DESERT

    EPA Science Inventory

    Soil organic matter and the abundance of subterranean termites were measured at 89 locations spaced at 30-m intervals from the bottom of the top of a small desert watershed. here was no correlation between soil organic matter content and topographic position on the watershed. nal...

  11. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  12. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  13. ENVIRONMENTAL PHOTOPROCESSES INVOLVING NATURAL ORGANIC MATTER

    EPA Science Inventory

    Current research is reviewed on the photoreactions that occur when sunlight interacts with soil and aquatic organic matter. The primary focus is on photoprocesses involving humic substances. Investigations of the direct photoreactions of humic substances are discussed, with empha...

  14. Relic abundance of dark matter in universal extra dimension models with right-handed neutrinos

    SciTech Connect

    Matsumoto, Shigeki; Sato, Joe; Yamanaka, Masato; Senami, Masato

    2009-04-17

    Relic abundance of dark matter is investigated in the framework of universal extra dimension models with right-handed neutrinos. These models are free from the serious Kaluza-Klein (KK) graviton problem that the original universal extra dimension model possesses. The first KK particle of the right-handed neutrino is a candidate for dark matter in this framework. When ordinary neutrino masses are large enough such as the degenerate mass spectrum case, the dark matter relic abundance can change significantly. The scale of the extra dimension consistent with cosmological observations can be 500 GeV in the minimal setup of universal extra dimension models with right-handed neutrinos.

  15. Effects of suspended matter quality and virus abundance on microbial parameters: experimental evidence from a large European river

    PubMed Central

    Kernegger, Lisa; Zweimüller, Irene; Peduzzi, Peter

    2014-01-01

    In riverine water, both suspended particulate material and viruses are prominent ecological factors. The existence of various particle types and differences in viral abundance impose variability in microenvironments. Particulates and their microbial surrounding may interact in several ways, this interaction being strongly dependent on particle quality and the abundance of organisms involved. In laboratory experiments, we used different suspended matter types (fresh and aged mineral sediment and leaf litter, river snow) that typically occur in riverine environments as model particles. We investigated the effects of particle quality and different ambient viral abundances (×1, ×2 enrichments, and inactivated viruses) on several microbial parameters (changes in bacterial and viral abundances, bacterial production, specific bacterial production) of both the free-living and particle-attached fractions using water from a floodplain system of the Danube River (Austria). Both seston quality and variable viral abundances in the bulk water influenced some microbial parameters. The average abundance of bacteria and viruses was significantly higher on organic than on inorganic particles and on aged particles (for both sediment and leaf litter). Changes in bacterial abundance during the course of the experiments were also influenced by particle quality, with, for example, aged sediment favoring increasing abundances. Virus:bacterium ratios (VBR) were significantly higher on organic than on inorganic particles, but significantly lower on suspended particles than in the plank-tonic fraction. Typically, bacterial secondary production (overall and cell-specific) was higher on particles than in bulk water. Bacterial productivity in the ambient water was negatively affected by the abundance of planktonic viruses but positively affected by that of attached viruses. These findings from experimental systems may foster in situ studies of particle-rich environments. PMID:24707113

  16. A marine sink for chlorine in natural organic matter

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  17. Ionic Liquid Extractions of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Macfarlane, Douglas; Clarke, Michael

    2010-05-01

    A large range of ionic liquids with the ability to dissolve different classes of natural biopolymers (e.g. cellulose, lignin, protein) have been reported in the literature. These have the potential to isolate different fractions of soil organic matter, thus yielding novel information that is not available through other extraction procedures. The ionic liquids dimethylammonium dimethylcarbamate (DIMCARB), alkylbenzenesulfonate and 1-butyl-3methylimidazolium chloride (Bmim Cl) can solubilise selected components of soil organic matter. Soil extractions with these materials showed that the organic matter recovered showed chemical properties that were consistent with humic substances. These extracts had a slightly different organic composition than the humic acids extracted using the traditional International Humic Substances Society (IHSS) method. The ionic liquids also solubilised some inorganic matter from the soil. Humic acids recovered with alkali were also partially soluble in the ionic liquids. DIMCARB appeared to chemically interfere with organic extract, increasing the level of nitrogen in the sample. It was concluded that the ionic liquid Bmim Cl may function as a useful solvent for SOM, and may be used to recover organic matter of a different character to that obtained with alkali

  18. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  19. Processing of Atmospheric Organic Matter by California Radiation Fogs

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Youngster, S. B.; Lee, T.; Chang, H.; Herckes, P.

    2005-12-01

    In many environments, organic compounds account for a significant fraction of fine particle mass. Because the lifetimes of accumulation mode aerosol particles are governed largely by interactions with clouds, it is important to understand how organic aerosol particles are processed by clouds and fogs. Recently we have examined the organic composition of radiation fogs in central California as well as how these fogs process organic aerosol particles and soluble organic trace gases. Observations indicate that organic matter is a significant component of the fog droplets, comprising approximately one-third of the total solute mass concentration. Concentrations of total organic carbon (TOC) range from approximately 2 to 41 ppmC. Approximately three-fourths of organic matter is typically found in solution as dissolved organic carbon (DOC). A variety of efforts have been made to characterize the composition of the fog organic matter, including analyses by GC/MS, HPLC, IC, NMR and IR. The most abundant species are typically low molecular weight carboxylic acids, small carbonyls and dicarbonyls, and sugar anhydrides. These species have been observed collectively to account for roughly 20-30 percent of the fog DOC. Dicarboxylic acids, frequently used as model compounds for organic CCN, typically account for only a few percent of the organic carbon, with oxalic acid the most important contributor. A significant portion of the fog DOC appears to be comprised of high molecular weight compounds (> 500 Da). Analyses also reveal the presence of organic molecular markers associated with particles produced by various combustion processes. Comparisons of pre-fog and interstitial aerosol samples reveal differences in the relative particle scavenging efficiencies of the fog drops between organic and elemental carbon and between different types of organic carbon. Measurements using a two-stage fog water collector reveal that organic matter tends to be enriched in smaller fog droplets

  20. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  1. The Role of Electroweak Corrections for the Dark Matter Relic Abundance

    SciTech Connect

    Ciafaloni, Paolo; Comelli, Denis; Simone, Andrea De; Morgante, Enrico; Riotto, Antonio; Urbano, Alfredo E-mail: comelli@fe.infn.it E-mail: enrico.morgante@unige.ch E-mail: alfredo.urbano@sissa.it

    2013-10-01

    We analyze the validity of the theorems concerning the cancellation of the infrared and collinar divergences in the case of dark matter freeze-out in the early universe. In particular, we compute the electroweak logarithmic corrections of infrared origin to the annihilation cross section of a dark matter particle being the neutral component of a SU(2){sub L} multiplet. The inclusion of processes with final state W can modify significantly the cross sections computed with only virtual W exchange. Our results show that the inclusion of infrared logs is necessary for a precise computation of the dark matter relic abundance.

  2. HEALTH ASSESSMENT DOCUMENT FOR POLYCYCLIC ORGANIC MATTER

    EPA Science Inventory

    The document responds to Section 122 of the Clean Air Act as Amended August 1977, which requires the Administrator to decide whether atmospheric emissions of polycyclic organic matter (POM) potentially endanger public health. This document reviews POM data on chemical and physica...

  3. Organic matter of urban soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2015-08-01

    Urban environment exerts an ambiguous effect on the organic pool of soils; it may decrease (as compared to the background values) in some parts of a city and increase in other parts. The organic matter accumulation in urban soils is promoted by the input of aerial organic pollutants; slowed down mineralization of plant residues under the influence of contamination; and increased productivity of the plants owing to elevated temperatures, high content of carbon dioxide in the air, and maintenance of green zones (sodding of vast areas in cities, application of peat, irrigation and drainage of soils.)

  4. Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator.

    PubMed

    Dorn, R I; Deniro, M J

    1985-03-22

    Stable carbon isotope ratios of organic matter in rock varnishes of Holocene age from western North America and the Middle East show a strong association with the environment. This isotopic variability reflects the abundance of plants with different photosynthetic pathways in adjacent vegetation. Analyses of different layers of varnish on late Pleistocene desert landforms indicate that the carbon isotopic composition of varnish organic matter is a paleoenvironmental indicator. PMID:17777781

  5. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  6. Sulfur species behavior in soil organic matter during decomposition

    NASA Astrophysics Data System (ADS)

    Schroth, Andrew W.; Bostick, Benjamin C.; Graham, Margaret; Kaste, James M.; Mitchell, Myron J.; Friedland, Andrew J.

    2007-12-01

    Soil organic matter (SOM) is a primary reservoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to speciation in SOM, particularly in conifer forests, and S species fractions in SOM change during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S.

  7. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  8. Organic matter and sandstone-type uranium deposits: a primer

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Organic material is intimately associated with sandstone-type uranium deposits in the western United States.. This report gives details of the types of organic matter and their possible role in producing a uranium deposit. These steps include mobilization of uranium from igneous rocks, transportation from the surface, concentration by organic matter, reduction by organic matter, and preservation of the uranium deposit.

  9. Isotopic analysis of cometary organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  10. Analysis of Organic matter from cloud particles

    NASA Astrophysics Data System (ADS)

    Bank, Shelton; Castillo, Raymond

    1987-03-01

    Organic matter collected from filtration of two separate cloud events was analysed by Fourier Transform Infrared Spectroscopy. Particles collected from different size filters were separated by color and each type of particle gave rise to a characteristic spectrum. The major constituents were identified as complex proteins and cellulose. Additionally, some degraded material (likely protein) and an unidentified orange-brown material were present. Finally some trace components were identified as wax, oil, silicon oil, polyvinyl chloride, calcium carbonate, clay, sand and polyethylene.

  11. Organic matter matters for ice nuclei of agricultural soil origin

    NASA Astrophysics Data System (ADS)

    Tobo, Y.; DeMott, P. J.; Hill, T. C. J.; Prenni, A. J.; Swoboda-Colberg, N. G.; Franc, G. D.; Kreidenweis, S. M.

    2014-04-01

    Heterogeneous ice nucleation is a~crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation of airborne desert soil dusts composed predominantly of minerals is relatively well understood. On the other hand, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to ∼25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust source region in North America. Here we show evidence for the significant role of soil organic matter (SOM) in particles acting as ice nuclei (IN) under mixed-phase cloud conditions. We find that the ice nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is reduced to almost the same level as that of clay minerals (e.g., kaolinite) after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we show that organic-rich particles are more important than mineral particles for the ice nucleating ability of the agricultural soil dusts at temperatures warmer than about -36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles) may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

  12. Organic matter matters for ice nuclei of agricultural soil origin

    NASA Astrophysics Data System (ADS)

    Tobo, Y.; DeMott, P. J.; Hill, T. C. J.; Prenni, A. J.; Swoboda-Colberg, N. G.; Franc, G. D.; Kreidenweis, S. M.

    2014-08-01

    Heterogeneous ice nucleation is a crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation by airborne desert soil dusts composed predominantly of minerals is widely acknowledged. However, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to 20-25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust-source region in North America. Here we show evidence for the significant role of soil organic matter (SOM) in particles acting as ice nuclei (IN) under mixed-phase cloud conditions. We find that the ice-nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is clearly reduced after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we demonstrate that organic-rich particles are more important than mineral particles for the ice-nucleating ability of the agricultural soil dusts at temperatures warmer than about -36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles) may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

  13. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  14. Factors controlling the abundance of organic sulfur in flash pyrolyzates of Upper Cretaceous kerogens from Sergipe Basin, Brazil

    USGS Publications Warehouse

    Carmo, A.M.; Stankiewicz, B.A.; Mastalerz, Maria; Pratt, L.M.

    1997-01-01

    The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene + dec-1-ene) in the pyrolyzates is variable and may be related to changes in the type of primary organic input and/or to variations in rates of bacterial sulfate reduction. A concomitant increase in S/C and O/C ratios determined in situ using the electron microprobe is observed in AOM and alginites and may be related to a progressive oxidation of the organic matter during sulfurization. The S/C ratio of the AOM is systematically higher than the S C ratio of the alginites. Combined with a thiophene distribution characteristic of pyrolyzates of Type II organic matter, the higher S/C of AOM in Sergipe kerogens suggests that sulfurization and incorporation of low-molecular weight lipids derived from normal marine organic matter into the kerogen structure predominated over direct sulfurization of highly aliphatic algal biomacromolecules.The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene+dec-1-ene) in the pyrolyzates is variable and may be related to changes in

  15. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM. PMID:26468620

  16. Soil organic matter composition affected by potato cropping managements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  17. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  18. Influence of vegetation changes on soil organic matter

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per

    In a heath region at Hjelm Hede in Denmark oak trees are invading a Calluna/Empetrum vegetation. In less than a century the oak invasion has caused considerable changes in the soil: what was once an O-horizon under Calluna has changed to an A-horizon under oak; the Calluna E-horizon has lost its distinct appearance; and the sharp boundary between E and Bh has been obliterated. The directly visible changes are associated with a rise in pH of about one unit in the top horizon under the oaks, an increasing content of organic matter in the E-horizon, a decreasing content of organic matter in the Bh-horizon, and a fall in the C/N ratio. In order to estimate the total microbiological activity, cotton strips were placed in the upper soil horizons. The loss in tensile strength during two summer months was 10-15% under Calluna, but more than 50% under oaks. Initial attempts to find differences in the type and content of organic matter showed that the most abundant low-molecular organic acids extracted from the Of-horizons were 3,4-dihydroxybenzoic acid (protocatechuic acid), 4-hydroxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid (vanillic acid). The extraction was done in 0.1 M sodium pyrophosphate at pH 10.2. The organic compounds were determined by HPLC. The 3,4-dihydroxybenzoic acid was relatively the most important compound under the Calluna heath, whereas 4-hydroxy-3-methoxybenzoic acid was most important under oaks. Extractions were performed on water samples from field lysimeter experiments to determine whether the substituted benzoic acids in the soil water arose under transport. These extractions exposed a ppm concentration of 2,4-dichlorobenzoic acid, a compound believed to originate from microbial decomposition of lysimeter material.

  19. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    (inferred from the analysis of local surface seawater). A notable exception is the case of organic matter (OM) fractions leached from cold seep sediment samples, which sometimes exhibit εNd values markedly different from both terrigenous and surface seawater signatures. This suggests that a significant fraction of organic compounds in these sediments may be derived from chemosynthetic processes, recycling pore water REE characterized by a distinct isotopic composition. Overall, our results confirm that organic matter probably plays an important role in the oceanic REE budget, through direct scavenging and remineralization within the water column. Both the high REE abundances and the shape of shale-normalized patterns for leached SOM also suggest that OM degradation in sub-surface marine sediments during early diagenesis could control, to a large extent, the distribution of REE in pore waters. Benthic fluxes of organic-bound REE could hence substantially contribute to the exchange processes between particulates and seawater that take place at ocean margins. Neodymium isotopes could provide useful information for tracing the origin (terrestrial versus marine) and geographical provenance of organic matter, with potential applications in paleoceanography. In particular, future studies should further investigate the potential of Nd isotopes in organic compounds preserved in sedimentary records for reconstructing past variations of surface ocean circulation.

  20. Soil organic matter prediction using environmental factors

    NASA Astrophysics Data System (ADS)

    Oueslati, I.; Allamano, P.; Claps, P.; Bonifacio, E.

    2009-04-01

    Organic matter is one of the most important properties affecting soil chemical and physical fertility, but it influences also soil hydrologic parameters. It is easily measured by chemical analyses, but in large scale studies its prediction is desirable. This study aims at predicting the spatial distribution of the soil organic matter concentration (SOM) in forest topsoils in Piedmont (North West Italy) using continuous predictors (in forms of auxiliary maps). As predictors we selected: the digital elevation model (DEM, 50 meter resolution), the mean annual precipitation, the soil dryness index and normal difference vegetation index (NDVI, 1 km resolution). Using the Geographic Information System SAGA, the terrain attributes were computed from the DEM, namely are: elevation, slope, aspect and mean curvature associated with hydrological parameters namely, the compound topographic index (CTI) and stream power index (SPI). From the long term monthly average of NDVI the mean annual value and the coefficient of variation (CV) were also derived. This data set was used to estimate the SOM concentration by regression analysis. To test the relationship between the SOM and the environmental variables, 66 soil profiles were used. Several variables were found to be significantly correlated with SOM concentration: elevation, slope, mean NDVI, CV(NDVI), precipitation and dryness index, with correlation coefficients, r, of the linear regressions ranging from 0.12 to 0.63. However, only precipitation and mean NDVI were retained when a stepwise multiple regression was used. Although these two predictors contribute only partially to explain SOM variability (R2=0.42). The importance of vegetation is clearly depicted by the significant effect of NDVI, while the precipitation may contribute to the explanation in a less direct way because of the complex links between climate and organic matter transformation in soils.

  1. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  2. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  3. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  4. Processing of atmospheric organic matter by California radiation fogs

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L., Jr.; Herckes, Pierre; Youngster, Sarah; Lee, Taehyoung

    2008-03-01

    Considerable effort has been put into characterizing the ionic composition of fogs and clouds over the past twenty-five years. Recently it has become evident that clouds and fogs often contain large concentrations of organic material as well. Here we report findings from a series of studies examining the organic composition of radiation fogs in central California. Organic compounds in these fogs comprise a major fraction of total solute mass, with total organic carbon sometimes reaching levels of several tens of mg/L. This organic matter is comprised of a wide variety of compounds, ranging from low molecular weight organic acids to high molecular weight compounds with molecular masses approaching several hundred to a thousand g/mole. The most abundant individual compounds are typically formic acid, acetic acid, and formaldehyde. High concentrations are also observed of some dicarboxylic acids (e.g., oxalate) and dicarbonyls (e.g., glyoxal and methylglyoxal) and of levoglucosan, an anhydrosugar characteristically emitted by biomass combustion. Many other compounds have been identified in fog water by GC/MS, including long chain n-alkanoic acids, n-alkanes, PAH, and others, although these compounds typically comprise a total of only a few percent of fog TOC. Measurements of fog scavenging of organic and elemental carbon reveal preferential scavenging of organic carbon. Tracking of individual organic compounds utilized as source type markers suggests the fogs differentially scavenge carbonaceous particles from different source types, with more active processing of wood smoke than vehicle exhaust. Observations of high deposition velocities of fog-borne organic carbon, in excess of 1 cm/s, indicate that fogs in the region represent an important mechanism for cleansing the atmosphere of pollution.

  5. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  6. Spectral fingerprinting of soil organic matter composition

    NASA Astrophysics Data System (ADS)

    Cecillon, L.; Certini, G.; Lange, H.; Forte, C.; Strand, L. T.

    2009-04-01

    The determination of soil organic matter (SOM) composition relies on a variety of chemical and physical methods, most of them time consuming and expensive. Hitherto, such methodological limitations have hampered the use of detailed SOM composition in process-based models of SOM dynamics, which usually include only three poorly defined carbon pools. Here we show a novel approach merging both near and mid infrared spectroscopy into a single fingerprint for an expeditious prediction of the molecular composition of organic materials in soil, as inferred from a molecular mixing model (MMM) based on 13C nuclear magnetic resonance (NMR), which describes SOM as a mixture of common biologically derived polymers. Infrared and solid-state 13C NMR spectroscopic measurements were performed on a set of mineral and organic soil samples presenting a wide range of organic carbon content (2 to 500 g kg-1), collected in a boreal heathland (Storgama, Norway). The implementation of the MMM using 13C NMR spectra allowed the calculation of five main biochemical components (carbohydrate, protein, lignin, lipids and black carbon) for each sample. Partial least squares regression models were developed for the five biopolymers using outer product analysis of near and mid infrared spectra (Infrared-OPA). All models reached ratios of performance to deviation (RPD) above 2 and specific infrared wavenumbers associated to each biochemical component were identified. Our results demonstrate that Infrared-OPA provides a robust and cost-effective fingerprint of SOM composition that could be useful for the routine assessment of soil carbon pools.

  7. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  8. The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.

    2001-01-01

    The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.

  9. Potential Marine Organisms Affecting Airborne Primary Organic Matter

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.

    2012-12-01

    The oceans cover 70% of earth with the marine environment contributing ~50% of the global biomass. Particularly during periods of high biological activity associated with phytoplankton blooms, primary emitted aerosol particles dominated by organic compounds in the submicron size range, are ejected from surface waters increasing in concentration exponentially with overlying wind speeds. This is significant for clouds and climate particularly over nutrient rich polar seas, where seawater concentrations of biogenic particles can reach 109 cells per ml during spring phytoplankton blooms, and even 106 cells per ml in winter when empty frustules and fragments of diatoms are resuspensed from shallow shelf sediments by strong winds, and mix with living pico- and nanoplankton in surface sea waters. This organic aerosol fraction can have a significant impact on the ability of ocean derived aerosol to act as cloud condensation nuclei. It has been shown that small insoluble organic particles are aerosolized from the sea surface microlayer (SML) via bubble bursting. The exact composition and complexity of the SML varies spatially and temporally but includes phytoplankton cells, microorganisms, organic debris, and a complex mixture of proteins, polysaccharides, humic-type material and waxes, microgels and colloidal nanogels, and strong surface active lipids. The specific chemical composition is dependent on the fractionation of organic matter which originates from in-situ production, from underlying water and even from atmospheric deposition. These conditions will most likely determine the nature of the organic and biogenic material. Here we review the types, sizes, and properties of ocean-derived particles and organic material which present potential candidates for airborne biogenic and organic particles.

  10. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  11. Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa

    SciTech Connect

    Nagy, B.; Rigali, M.J.; Gauthier-Lafaye, F.; Holliger, P.; Mossman, D.J.; Leventhal, J.S.

    1993-07-01

    Of the sixteen known Oklo and the Bangombe natural fission reactors (hydrothermally altered elastic sedimentary rocks that contain abundant uraninite and authigenic clay minerals), reactors 1 to 6 at Oklo contain only traces of organic matter, but the others are rich in organic substances. Reactors 7 to 9 are the subjects of this study. These organic-rich reactors may serve as time-tested analogues for anthropogenic nuclear-waste containment strategies. Organic matter helped to concentrate quantities of uranium sufficient to initiate the nuclear chain reactions. Liquid bitumen was generated from organic matter by hydrothermal reactions during nuclear criticality. The bitumen soon became a solid, consisting of polycyclic aromatic hydrocarbons and an intimate mixture of cryptocrystalline graphite, which enclosed and immobilized uraninite and the fission-generated isotopes entrapped in uraninite. This mechanism prevented major loss of uranium and fission products from the natural nuclear reactors for 1.2 b.y. 24 refs., 4 figs.

  12. Dilaton dominance in the early universe dilutes dark matter relic abundances

    SciTech Connect

    Lahanas, A. B.

    2011-05-15

    The role of the dilaton field and its coupling to matter may result in a dilution of dark matter (DM) relic densities. This is to be contrasted with quintessence scenarios in which relic densities are augmented, due to modification of the expansion rate, since the Universe is not radiation dominated at DM decoupling. The dilaton field, besides this, affects relic densities through its coupling to dust which tends to decrease relic abundances. Thus two separate mechanisms compete with each other resulting, in general, in a decrease of the relic density. This feature may be welcomed and can help the situation if direct dark matter experiments point towards small neutralino-nucleon cross sections, implying small neutralino annihilation rates and hence large relic densities, at least in the popular supersymmetric scenarios. In the presence of a diluting mechanism, both experimental constraints can be met. The role of the dilaton for this mechanism has been studied in the context of the noncritical string theory but in this work we follow a rather general approach assuming that the dilaton dominates only at early eras long before big bang nucleosynthesis.

  13. Sources of organic matter for intertidal consumers on Ascophyllum-shores (SW Iceland): a multi-stable isotope approach

    NASA Astrophysics Data System (ADS)

    Sarà, G.; de Pirro, M.; Romano, C.; Rumolo, P.; Sprovieri, M.; Mazzola, A.

    2007-12-01

    Stable isotopes were used to examine the origin of organic matter in Icelandic Ascophyllum-based habitats, the role of different organic matters in filling intertidal food webs and the food preferences of the most abundant suspension feeders, grazers and predators. We selected three intertidal sites on the SW coast of Iceland where we sampled in early September 2004, organic matter sources (POM, SOM and most abundant primary producers, A. nodosum and F. vesciculosus) and the most abundant macrofauna species (barnacles, mussels, gastropods, sponge and crabs). Even though the primary production ( Ascophyllum-based) was the same at the three study sites, the isotopic composition of common-among-sites organisms varied due to local differences in the origin of available POM and SOM and in food web structures.

  14. Insights into the nature of cometary organic matter from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Court, Richard W.; Sephton, Mark A.

    2012-04-01

    The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ

  15. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  16. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  17. Soil organic matter and management of plant-parasitic nematodes.

    PubMed

    Widmer, T L; Mitkowski, N A; Abawi, G S

    2002-12-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  18. Helium-3 in Milky Way Reveals Abundance of Matter in Early Universe

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Astronomers using the National Science Foundation's 140 Foot Radio Telescope in Green Bank, West Virginia, were able to infer the amount of matter created by the Big Bang, and confirmed that it accounts for only a small portion of the effects of gravity observed in the Universe. The scientists were able to make these conclusions by determining the abundance of the rare element helium-3 (helium with only one neutron and two protons in its nucleus) in the Milky Way Galaxy. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "Moments after the Big Bang, protons and neutrons began to combine to form helium-3 and other basic elements," said Robert Rood of the University of Virginia. "By accurately measuring the abundance of this primordial element in our Galaxy today, we were able infer just how much matter was created when the Universe was only a few minutes old." Rood and his colleagues, Thomas Bania from Boston University and Dana Balser from the National Radio Astronomy Observatory (NRAO), report their findings in the January 3 edition of the scientific journal Nature. Rood began searching for helium-3 in the Milky Way Galaxy in 1978. At that time, scientists believed that stars like our Sun synthesized helium-3 in their nuclear furnaces. Surprisingly, Rood's observations indicated that there was far less of this element in the Galaxy than the current models predicted. "If stars were indeed producing helium-3, as scientists believed, then we should have detected this element in much greater concentrations," he said. This unexpected discovery prompted Rood and his colleagues to broaden their search, and to look throughout the Milky Way for signs of stellar production of helium-3. Over the course of two decades, the researchers discovered that regardless of where they looked -- whether in the areas of sparse star formation like the outer edges of the Galaxy, or in areas of intense star formation near center of the Galaxy -- the relative abundance of

  19. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds. PMID:21220279

  20. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  1. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  2. TILLAGE AND RESIDUE MANAGEMENT EFFECTS ON SOIL ORGANIC MATTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This college-level textbook is designed to help students and researchers understand the complexity of how to manage soil organic matter in a diversity of agroecosystems. This chapter describes the current state of knowledge on how tillage and residue management affect soil organic matter. Types of t...

  3. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  4. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  5. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  6. Abiotic emissions of methane and reduced organic compounds from organic matter

    NASA Astrophysics Data System (ADS)

    Roeckmann, T.; Keppler, F.; Vigano, I.; Derendorp, L.; Holzinger, R.

    2012-12-01

    Recent laboratory studies show that the important greenhouse gas methane, but also other reduced atmospheric trace gases, can be emitted by abiotic processes from organic matter, such as plants, pure organic compounds and soils. It is very difficult to distinguish abiotic from biotic emissions in field studies, but in laboratory experiments this is easier because it is possible to carefully prepare/sterilize samples, or to control external parameters. For example, the abiotic emissions always show a strong increase with temperature when temperatures are increased to 70C or higher, well above the temperature optimum for bacterial activity. UV radiation has also been clearly shown to lead to emission of methane and other reduced gases from organic matter. Interesting information on the production mechanism has been obtained from isotope studies, both at natural abundance and with isotope labeling. For example, the methoxyl groups of pectin were clearly identified to produce methane. However, analysis of the isotopic composition of methane from natural samples clearly indicates that there must be other molecular mechanisms that lead to methane production. Abiotic methane generation could be a ubiquitous process that occurs naturally at low rates from many different sources.

  7. Dodelson-Widrow production of sterile neutrino Dark Matter with non-trivial initial abundance

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Schneider, Aurel; Totzauer, Maximilian

    2016-04-01

    The simplest way to create sterile neutrinos in the early Universe is by their admixture to active neutrinos. However, this mechanism, connected to the Dark Matter (DM) problem by Dodelson and Widrow (DW), cannot simulatenously meet the relic abundance constraint as well as bounds from structure formation and X-rays. Nonetheless, unless a symmetry forces active-sterile mixing to vanish exactly, the DW mechanism will unavoidably affect the sterile neutrino DM population created by any other production mechanism. We present a semi-analytic approach to the DW mechanism acting on an arbitrary initial abundance of sterile neutrinos, allowing to combine DW with any other preceeding production mechanism in a physical and precise way. While previous analyses usually assumed that the spectra produced by DW and another mechanism can simply be added, we use our semi-analytic results to discuss the validity of this assumption and to quantify its accurateness, thereby also scrutinising the DW spectrum and the derived mass bounds. We then map our results to the case of sterile neutrino DM from the decay of a real SM singlet coupled to the Higgs. Finally, we will investigate aspects of structure formation beyond the usual simple free-streaming estimates in order to judge on the effects of the DW modification on the sterile neutrino DM spectra generated by scalar decay.

  8. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  9. Kinetics of desorption of organic compounds from dissolved organic matter.

    PubMed

    Kopinke, Frank-Dieter; Ramus, Ksenia; Poerschmann, Juergen; Georgi, Anett

    2011-12-01

    This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process. Solutes which remain sorbed to DOM pass through the extraction capillary and can be analyzed afterward. This technique allows a time resolution for the desorption kinetics from subseconds up to minutes. It is applicable to the study of interaction kinetics between a wide variety of hydrophobic solutes and polyelectrolytes. Due to its simplicity it is accessible for many environmental laboratories. The time-resolved in-tube solid-phase microextraction (TR-IT-SPME) was applied to two humic acids and a surfactant as sorbents together with pyrene, phenanthrene and 1,2-dimethylcyclohexane as solutes. The results give evidence for a two-phase desorption kinetics: a fast desorption step with a half-life of less than 1 s and a slow desorption step with a half-life of more than 1 min. For aliphatic solutes, the fast-desorbing fraction largely dominates, whereas for polycyclic aromatic hydrocarbons such as pyrene, the slowly desorbing, stronger-bound fraction is also important. PMID:22035249

  10. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  11. Multiple proxy estimates of organic matter sources in surface sediments from the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xing, L.; Gao, W.; Wang, F.; Li, L.; Liu, J.; Zhao, M.

    2011-12-01

    The C/N ratio and δ13C of total organic matter, BIT, and TMBR (C27+C29+C31n-alkanes/(C27+C29+C31n-alkanes+(brassicasterol+dinosterol+alkenones)) are measured in 54 surface sediment samples of the southern Yellow Sea (YS) to estimate the sources and relative abundance of sedimentary organic matter in the southern YS. Three proxies, the BIT, TMBR and δ13C of TOC, reveal consistent spatial patterns which indicate high terrestrial organic inputs near the old Huanghe Estuary, but C/N ratio of TOC has no obvious distribution pattern. Quantitative estimates of organic matter contribution using a three end-member mixing model based on BIT, TMBR and δ13C indicate that soil organic carbon accounts for 4%~47% of TOC, plant organic carbon accounts for 0.9%~73% of TOC, and marine organic carbon accounts for 88~8% of TOC. Higher terrestrial organic matter values occur in the Old Huanghe Estuary and near the coasts. The contribution of marine organic carbon reveals an opposite pattern, with low values near shore and high values in the YS basin, which is controlled by marine productivity.

  12. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  13. 13 ENDOR studies of organic radicals in natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Kirste, Burkhard

    13C ENDOR studies of phenoxyls, galvinoxyls, triphenylmethyl radicals, nitroxides, and cyclosilane and semiquinone radical anions with natural isotopic distribution are reported. The method is described, and it is shown that 13C coupling constants can be measured precisely; in favorable cases even the determination of signs is possible by general TRIPLE resonance. Studies of the relaxation behavior of 13C ENDOR signals or measurements of hyperfine shifts in liquid-crystalline solutions yield information about dipolar hyperfine interactions and hence π spin populations which is of aid in assignments to molecular positions. Complete sets of 13C coupling constants have been determined for 2,4,6-tri- tert-butylphenoxyl and Coppinger's radical. For the central carbon atoms of tert-butyl groups, a Q parameter of Qτ-Bu C = -34 MHz is proposed, and for a 29Si atom in trimethylsilyl groups, QTMSSi = +49 MHz. Favorable conditions for natural-abundance 13C ENDOR experiments, e.g., small hyperfine anisotropies and use of deuterated compounds, and limitations of the method are discussed.

  14. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  15. Degradation of natural organic matter: A thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Van Cappellen, Philippe

    2011-04-01

    The oxidative degradation of organic matter is a key process in the biogeochemical functioning of the earth system. Quantitative models of organic matter degradation are therefore essential for understanding the chemical state and evolution of the Earth's near-surface environment, and to forecast the biogeochemical consequences of ongoing regional and global change. The complex nature of biologically produced organic matter represents a major obstacle to the development of such models, however. Here, we compare the energetics of the oxidative degradation of a large number of naturally occurring organic compounds. By relating the Gibbs energies of half reactions describing the complete mineralization of the compounds to their average nominal carbon oxidation state, it becomes possible to estimate the energetic potential of the compounds based on major element (C, H, N, O, P, S) ratios. The new energetic description of organic matter can be combined with bioenergetic theory to rationalize observed patterns in the decomposition of natural organic matter. For example, the persistence of cell membrane derived compounds and complex organics in anoxic settings is consistent with their limited catabolic potential under these environmental conditions. The proposed approach opens the way to include the thermodynamic properties of organic compounds in kinetic models of organic matter degradation.

  16. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  17. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed. PMID:27247870

  18. Influence of land use on soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogeon, H.; Lemée, L.; Chabbi, A.; Ambles, A.

    2009-04-01

    Soil organic matter (SOM) is actually of great environmental interest as the amount of organic matter stored in soils represents one of the largest reservoirs of organic carbon on the global scale [1]. Indeed, soil carbon storage capacity represents 1500 to 2000 Gt for the first meter depth, which is twice the concentration of atmospheric CO2 [2]. Furthermore, human activities, such as deforestation (which represents a flux of 1.3 Gt C/year), contribute to the increase in atmospheric CO2 concentration for about one percent a year [3]. Therefore, carbon dioxide sequestration in plant and carbon storage in soil and biomass could be considered as a complementary solution against climate change. The stock of carbon in soils is greatly influenced by land use (ca 70 Gt for a forest soil or a grassland against 40 Gt for an arable land). Furthermore the molecular composition of SOM should be also influenced by vegetation. In this context, four horizons taken between 0-120 cm from the same profile of a soil under grassland and forest located in the vicinity of Poitiers (INRA Lusignan, ORE Prairie) were compared. For the surface horizon, the study is improved with the results from the cultivated soil from INRA Versailles. Soil organic matter was characterized using IR spectroscopy, elemental analysis and thermal analysis. Granulometric fractionation into sand (50-2000 μm), silt (2-50 μm) and clay (<2 μm) was conducted. The organic matter associated with the mineral fractions was thus characterized using thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The total lipidic fractions were extracted with CH2Cl2/MeOH using an accelerated solvent extraction (ASE). In the three soils, lipids are concentrated into the superficial horizon (0-30 cm) which indicates a low mobilisation. Lipids from the superficial horizon are more abundant for the arable soil (1010 ppm) than for the two other (400 ppm). Lipids from the forest and the grassland were

  19. Spectral band selection for classification of soil organic matter content

    NASA Technical Reports Server (NTRS)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  20. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-01

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system. PMID:16675696

  1. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  2. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.

    PubMed

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-10-01

    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits. PMID:26363284

  3. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin

    USGS Publications Warehouse

    Leenheer, Jerry A.; Rostad, Colleen E.

    2004-01-01

    Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.

  4. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  5. Pyrolysis-combustion 14C dating of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Hackley, Keith C.; Panno, Samuel V.; Coleman, Dennis D.; Liu, Jack Chao-li; Brown, Johnie

    2003-11-01

    Radiocarbon ( 14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (δ 13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and δ 13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and δ 13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent.

  6. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  7. Organic matter in the Paleogene west European rift: Bresse and Valence salt basins (France)

    SciTech Connect

    Curial, A.; Dumas, D.; Moretto, R.

    1988-08-01

    The Bresse and Valence basins are two adjacent segments of the West European rift. They contain thick Paleogene halite sequences including intercalated and interfingering siliciclastic material and carbonate and sulfate deposits. Source rock samples in this study were mainly taken from the depocenters because of maximum sampling coverage. Organic matter (OM) is generally immature and occurs primarily within intercalated nonhalitic beds. The Bresse basin seems to contain more OM in (1) the Intermediate Salt Formation (Priabonian), composed of alternating laminated carbonate and halite beds; (2) the upper part of the Upper Salt Formation (clayey carbonate beds; Rupelian), affected by synsedimentary halite solution; and (3) the solution breccia which immediate overlies the salt sequence. In the Valence basin, the organic-rich layers are concentrated in the Subsalt Formation (carbonate beds; Priabonian), and the upper part of the Lower Salt Formation (laminates; Rupelian). In both basins, type III organic matter is associated with terrigenous facies. Type I is abundant in the Valence basin (laminites), and type II seems to be more abundant in the Bresse basin. The amount of OM varies considerably, and we suppose it is higher toward the basin margins. From studies made in evaporite basins in other region, which are also known to have significant amounts of organic matter, we find a similar range of organic composition. Such studies are of interest because of their petroleum potential and for understanding precise depositional environments and waste disposal problems (gas generation with local heat source).

  8. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  9. Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs.

    PubMed

    Lindahl, Björn D; Tunlid, Anders

    2015-03-01

    Although hypothesized for many years, the involvement of ectomycorrhizal fungi in decomposition of soil organic matter remains controversial and has not yet been fully acknowledged as an important factor in the regulation of soil carbon (C) storage. Here, we review recent findings, which support the view that some ectomycorrhizal fungi have the capacity to oxidize organic matter, either by 'brown-rot' Fenton chemistry or using 'white-rot' peroxidases. We propose that ectomycorrhizal fungi benefit from organic matter decomposition primarily through increased nitrogen mobilization rather than through release of metabolic C and question the view that ectomycorrhizal fungi may act as facultative saprotrophs. Finally, we discuss how mycorrhizal decomposition may influence organic matter storage in soils and mediate responses of ecosystem C sequestration to environmental changes. PMID:25524234

  10. Meiofaunal distributions on the Peru margin:. relationship to oxygen and organic matter availability

    NASA Astrophysics Data System (ADS)

    Neira, Carlos; Sellanes, Javier; Levin, Lisa A.; Arntz, Wolf E.

    2001-11-01

    A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10 cm -2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ˜12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l -1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson

  11. Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario

    SciTech Connect

    Jittoh, Toshifumi; Koike, Masafumi; Sato, Joe; Yamanaka, Masato; Kohri, Kazunori; Shimomura, Takashi

    2008-09-01

    A scenario of the big-bang nucleosynthesis is analyzed within the minimal supersymmetric standard model, which is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. We find that we can account for the possible discrepancy of the abundance of {sup 7}Li between the observation and the prediction of the big-bang nucleosynthesis by taking the mass of the neutralino as 300 GeV and the mass difference between the stau and the neutralino as (100-120) MeV. We can therefore simultaneously explain the abundance of the dark matter and that of {sup 7}Li by these values of parameters. The lifetime of staus in this scenario is predicted to be O(100-1000) sec.

  12. Cross Sections, relic abundance, and detection rates for neutralino dark matter

    NASA Technical Reports Server (NTRS)

    Griest, Kim

    1988-01-01

    Neutralino annihilation and elastic scattering cross sections are derived which differ in important ways from previous work. These are applied to relic abundance calculations and to direct detection of neutralino dark matter from the galactic halo. Assuming the neutralino to be the lightest supersymmetric particle and that it is less massive than the Z sup 0, we find relic densities of neutralinos greater than 4 percent of critical density for almost all values of the supersymmetric parameters. We constrain the parameter space by using results from PETRA (chargino mass less than 23 GeV) and ASP, and then assuming a critical density of neutralinos, display event rates in a cryogenic detector for a variety of models. A new term implies spin independent elastic scattering even for those majorana particles and inclusion of propagator momenta increases detection rates by 10 to 300 percent for pure photinos. Z sup 0-squark interference leads to very low detection rates for some values of the parameters. The new term in the elastic cross section dominates for heavy, mostly spinless materials and mitigates the negative interference cancellations in light materials; except for the pure photino or pure higgsinos cases where it does not contribute. In general, the rates can be substantially different from the pure photino and pure higgsino special cases usually considered.

  13. Land-use Effect on Stream Organic Matter Composition in Two Metropolitan Areas in USA

    NASA Astrophysics Data System (ADS)

    Duan, S.; Kaushal, S.; Amon, R. M.; Brinkmeyer, R.

    2011-12-01

    displacement of waste water treatment plant in upper watershed. Organic matter compositions of suspended sediment, however, were more related to abundance of phytoplankton biomass.

  14. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    USGS Publications Warehouse

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  15. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  16. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  17. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2009-01-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  18. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2008-10-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  19. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  20. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  1. Modeling organic matter stabilization during windrow composting of livestock effluents.

    PubMed

    Oudart, D; Paul, E; Robin, P; Paillat, J M

    2012-01-01

    Composting is a complex bioprocess, requiring a lot of empirical experiments to optimize the process. A dynamical mathematical model for the biodegradation of the organic matter during the composting process has been developed. The initial organic matter expressed by chemical oxygen demand (COD) is decomposed into rapidly and slowly degraded compartments and an inert one. The biodegradable COD is hydrolysed and consumed by microorganisms and produces metabolic water and carbon dioxide. This model links a biochemical characterization of the organic matter by Van Soest fractionating with COD. The comparison of experimental and simulation results for carbon dioxide emission, dry matter and carbon content balance showed good correlation. The initial sizes of the biodegradable COD compartments are explained by the soluble, hemicellulose-like and lignin fraction. Their sizes influence the amplitude of the carbon dioxide emission peak. The initial biomass is a sensitive variable too, influencing the time at which the emission peak occurs. PMID:23393964

  2. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L., Jr.

    2007-01-01

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds. ?? 2007 American Chemical Society.

  3. Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.

    2013-12-01

    In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.

  4. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  5. From microbial biomass compounds to non-living soil organic matter - Microbial biomass as a significant source for soil organic matter formation

    NASA Astrophysics Data System (ADS)

    Miltner, A.; Kindler, R.; Hoffmann-Jäniche, C.; Schmidt-Brücken, B.; Kästner, M.

    2009-04-01

    Soil organic matter is one of the most important pools of the global carbon cycle. Recently, it has been suggested that microbial biomass is a significant source for the formation of refractory organic matter. We tested the relevance of this source by incubation of soil with 13C-labeled Escherichia coli cells. We traced the labeled carbon in fatty acids and amino acids, both in the microbial biomass and in the bulk soil. We also localized cells and their debris by scanning electron microscopy. Although we could not detect any living cells after 100 days, about 50% of the carbon remained in the soil after 224 days. The amount of label in the fatty acids indicated that microbial lipids were degraded faster than the bulk microbial biomass. Their labeling pattern showed that they were redistributed from E. coli to the microbial food web and from the living biomass to non-living soil organic matter. In contrast, the label in the total amino acids did not decrease significantly during incubation. Proteins are thus surprisingly stable in soil, but they also shifted from microbial biomass to non-living soil organic matter. The scanning electron micrographs showed only isolated intact microbial cells in our soil, but patches of organic material of unknown origin which are about 20 - 50 nm2 in size were quite abundant. Dying microbial cells therefore are a significant carbon source for the formation of refractory organic material, but the morphology of the cells changes during degradation, as cell structures cannot be found frequently in soils.

  6. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  7. Significance of organic matter in Eocene turbidite sediments (SE Pyrenees, Spain).

    PubMed

    Caja, M A; Permanyer, A

    2008-11-01

    Although turbidite deposits are classically considered to be good reservoir rocks for oil and gas, there are no reports concerning their source rock potential in the literature. The sediments from the Vallfogona Formation in the South-Eastern Pyrenees present numerous organic matter-rich levels interbedded in sandstones and coarse turbidite deposits. Two types of organic matter deposits were differentiated on the basis of organic geochemistry and petrography: type A and type B. Type A was deposited in a carbonate marine environment under hypersaline conditions as indicated mainly by even/odd n-alkane predominance, pristane and phytane ratio (Pr/Ph) < 1, presence of gammacerane, and trisnorneohopane over trisnorhopane ratio (Ts/Tm) > 1. Type B was deposited in a more mud-rich marine environment evidenced by the predominance of odd n-alkane, Pr/Ph > or = 1, Ts/Tm < 1, the absence of gammacerane, similar concentrations of the C(27) and C(29) regular steranes, and the greater abundance of C(27) diasteranes. Turbidite facies can be regarded as an environment where organic matter sedimentation is heterogeneous in type and amount. This study suggests that turbidite deposits with interbedded organic matter-rich levels may act as a combined source-reservoir system. PMID:18618092

  8. Significance of organic matter in Eocene turbidite sediments (SE Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Caja, M. A.; Permanyer, A.

    2008-11-01

    Although turbidite deposits are classically considered to be good reservoir rocks for oil and gas, there are no reports concerning their source rock potential in the literature. The sediments from the Vallfogona Formation in the South-Eastern Pyrenees present numerous organic matter-rich levels interbedded in sandstones and coarse turbidite deposits. Two types of organic matter deposits were differentiated on the basis of organic geochemistry and petrography: type A and type B. Type A was deposited in a carbonate marine environment under hypersaline conditions as indicated mainly by even/odd n-alkane predominance, pristane and phytane ratio (Pr/Ph) < 1, presence of gammacerane, and trisnorneohopane over trisnorhopane ratio (Ts/Tm) > 1. Type B was deposited in a more mud-rich marine environment evidenced by the predominance of odd n-alkane, Pr/Ph ≥ 1, Ts/Tm < 1, the absence of gammacerane, similar concentrations of the C27 and C29 regular steranes, and the greater abundance of C27 diasteranes. Turbidite facies can be regarded as an environment where organic matter sedimentation is heterogeneous in type and amount. This study suggests that turbidite deposits with interbedded organic matter-rich levels may act as a combined source reservoir system.

  9. Roles of organic matter in sediment diagenesis

    SciTech Connect

    Gautier, D.L.

    1986-01-01

    This book is a collection of papers presented at a 1984 symposium of the Society of Economic Paleontologists and Mineralogists (SEPM). It purpose, in the words of its editor, is to bring to the attention of the sedimentological community the importance of interaction of organic compounds with the inorganic sedimentary system and the degree to which organic compounds drive diagenetic systems. Its 16 papers cover topics ranging from laboratory carbonate dissolution to hydrocarbon source-rock evaluation. It contains an excellent group of papers on the role of organic-inorganic interactions in porosity enhancement. An excellent contribution is the paper on organic and inorganic diagenesis in the Shinjo oil field of Japan. At the other end of the scale, however, are several theoretical papers that present greatly oversimplified and/or underedited thermodynamic and mass-transfer models. Nearly all of the papers contribute to the dialogue between organic and inorganic sedimentologists. Because much of this interchange has occurred in support of petroleum exploration, the dialogue has waxed and waned with the ups and downs of the oil market. However, hydrocarbon prospects do not necessarily present the best opportunities for unraveling the complex interrelations between organic and inorganic diagenesis. These interrelations are important in a wide range of diagenetic settings, including early diagenesis in low-organic sediments that have little or no hydrocarbon potential. It is hoped that this book will pave the way for expanded basic research in one of the most important aspects of sediment diagenesis.

  10. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  11. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  12. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds. PMID:20213151

  13. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    NASA Astrophysics Data System (ADS)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  14. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  15. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  16. Black carbon and organic matter stabilization in soil

    NASA Astrophysics Data System (ADS)

    Lehmann, J.; Liang, B.; Sohi, S.; Gaunt, J.

    2007-12-01

    Interaction with minerals is key to stabilization of organic matter in soils. Stabilization is commonly perceived to occur due to entrapment in pore spaces, encapsulation within aggregates or interaction with mineral surfaces. Typically only interactions between organic matter and minerals are considered in such a model. Here we demonstrate that black carbon may act very similar to minerals in soil in that it enhances the stabilization of organic matter. Mineralization of added organic matter was slower and incorporation into intra-aggregate fractions more rapid in the presence of black carbon. Added double-labeled organic matter was recovered in fractions with high amounts of black carbon. Synchrotron-based near-edge x-ray fine structure (NEXAFS) spectroscopy coupled to scanning transmission x-ray microscopy (STXM) suggested a possible interaction of microorganisms with black carbon surfaces and metabolization of residues. These findings suggest a conceptual model that includes carbon-carbon interactions and by-passing for more rapid stabilization of litter into what is commonly interpreted as stable carbon pools.

  17. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  18. Organic matter on asteroid 130 Elektra

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Brown, R. H.

    1987-01-01

    Infrared absorption spectra of a low-albedo water-rich asteroid appear to show a weak 3.4-micrometer carbon-hydrogen stretching mode band, which suggests the presence of hydrocarbons on asteroid 130 Elektra. The organic extract from the primitive carbonaceous chondritic Murchison meteorite shows similar spectral bands.

  19. Microbial biomass as a significant source of soil organic matter

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Kindler, Reimo; Schweigert, Michael; Achtenhagen, Jan; Bombach, Petra; Fester, Thomas; Kästner, Matthias

    2014-05-01

    Soil organic matter (SOM) plays an important role for soil fertility and in the global carbon cycle. SOM management should be based on knowledge about the chemical composition as well as the spatial distribution of SOM and its individual components in soils. Both parameters strongly depend on the direct precursors of SOM. In the past, microbial biomass has been neglected as a potential source of SOM, mainly because of its small pool size. Recent studies, however, show that a substantial portion of SOM is derived from microbial biomass residues. We therefore investigated the fate of microbial biomass residues in soils by means of incubation experiments with 13C-labelled microbial biomass. For our studies, we selected model organisms representing the three types of soil microorganisms and their characteristic cell wall structures: Escherichia coli (a Gram-negative bacterium), Bacillus subtilis (a Gram-positive bacterium) and Laccaria bicolor (an ectomycorrhizal fungus). We labelled the organisms by growing them on 13C glucose and incubated them in soil. During incubation, we followed the mineralisation of the labelled C, its incorporation into microbial biomass, and its transformation to non-living SOM. We found that 50-65% of the microbial biomass C remained in the soil during incubation. However, only a small part remained in the microbial biomass, the majority was transformed to SOM. In particular, proteins seemed to be rather stable in our experiments. In addition, we used scanning electron microscopy to identify microbial residues in soils and, for comparison, in artificial groundwater microcosms. Scanning electron micrographs showed a low number of intact cells, but mainly fragments of about 200-500 nm size. Similar fragments were found in artificial groundwater microcosms where the only possible origin was microbial biomass residues. Based on the results obtained, we provide a mechanistic model which explains how microbial biomass residues are formed and

  20. Organic Matter in Rivers: The Crossroads between Climate and Water Quality

    SciTech Connect

    Davisson, M L

    2001-04-27

    All surface waters in the world contain dissolved organic matter and its concentration depends on climate and vegetation. Dissolved organic carbon (DOC) is ten times higher in wetlands and swamps than in surface water of arctic, alpine, or arid climate. Climates of high ecosystem productivity (i.e., tropics) typically have soils with low organic carbon storage, but drain high dissolved organic loads to rivers. Regions with lower productivity (e.g. grasslands) typically have high soil carbon storage while adjacent rivers have high DOC contents. Most DOC in a free-flowing river is derived from leaching vegetation and soil organic matter, whereas in dammed rivers algae may comprise a significant portion. Water chemistry and oxygen-18 abundance of river water, along with radiocarbon and carbon-13 isotope abundance measurements of DOC were used to distinguish water and water quality sources in the Missouri River watershed. Drinking water for the City of St. Louis incorporates these different sources, and its water quality depends mostly on whether runoff is derived from the upper or the lower watershed, with the lower watershed contributing water with the highest DOC. During drinking water chlorination, DOC forms carcinogenic by-products in proportion to the amount of DOC present. This has recently led the USEPA to propose federal regulation standards. Restoration of natural riparian habitat such as wetlands will likely increase DOC concentrations in river water.

  1. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  2. Organic matter in the Saturn system

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    1984-01-01

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  3. Determining carbon-carbon connectivities in natural abundance organic powders using dipolar couplings.

    PubMed

    Dekhil, Myriam; Mollica, Giulia; Bonniot, Tristan Texier; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2016-06-30

    We present a solid-state NMR methodology capable of investigating the carbon skeleton of natural abundance organic powders. The methodology is based on the (13)C-(13)C dipolar coupling interaction and allows carbon-carbon connectivities to be unambiguously established for a wide range of organic solids. This methodology is particularly suitable for disordered solids, such as natural or synthetic macromolecules, which cannot be studied using conventional diffraction or NMR techniques. PMID:27319808

  4. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  5. Isotopic composition of hydrogen in insoluble organic matter from cherts

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.

    1991-01-01

    Robert (1989) reported the presence of unusually enriched hydrogen in the insoluble HF-HCl residue extracted from two chert samples of Eocene and Pliocene ages. Since the presence of heavy hydrogen might be due to the incorporation of extraterrestrial materials, we desired to reexamine the same samples to isolate the D-rich components. Our experiments did not reveal any D-rich components, but the hydrogen isotope composition of the insoluble residue of the two chert samples was well within the range expected for terrestrial organic matter. We also describe a protocol that needs to be followed in the hydrogen isotope analysis of any insoluble organic matter.

  6. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  7. Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter

    NASA Astrophysics Data System (ADS)

    El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane

    2015-04-01

    It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018

  8. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    PubMed

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments. PMID:21996607

  9. Bound-state effects on light-element abundances in gravitino dark matter scenarios

    NASA Astrophysics Data System (ADS)

    Cyburt, Richard H.; Ellis, John; Fields, Brian D.; Olive, Keith A.; Spanos, Vassilis C.

    2006-11-01

    If the gravitino is the lightest supersymmetric particle and the long-lived next-to-lightest sparticle (NSP) is the stau, the charged partner of the tau lepton, it may be metastable and form bound states with several nuclei. These bound states may affect the cosmological abundances of 6Li and 7Li by enhancing nuclear rates that would otherwise be strongly suppressed. We consider the effects of these enhanced rates on the final abundances produced in Big-Bang nucleosynthesis (BBN), including injections of both electromagnetic and hadronic energy during and after BBN. We calculate the dominant two- and three-body decays of both neutralino and stau NSPs, and model the electromagnetic and hadronic decay products using the PYTHIA event generator and a cascade equation. Generically, the introduction of bound states drives light element abundances further from their observed values; however, for small regions of parameter space bound-state effects can bring lithium abundances in particular into better accord with observations. We show that in regions where the stau is the NSP with a lifetime longer than 103 104 s, the abundances of 6Li and 7Li are far in excess of those allowed by observations. For shorter lifetimes of order 1000 s, we comment on the possibility in minimal supersymmetric and supergravity models that stau decays could reduce the 7Li abundance from standard BBN values while at the same time enhancing the 6Li abundance.

  10. The Contribution of Fungal Necromass to Soil Organic Matter Storage

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Blair, N. E.; Buiser, A.; Egerton-Warburton, L.

    2013-12-01

    Saprotrophic fungi have the ability to degrade the three most important biopolymers: cellulose, lignin, and chitin, and therefore are key moderators of a globally important flow of carbon. However, little is known about how that carbon is transformed and/or stored in soil organic matter (SOM). Fungi are also known to produce a variety of biopolymers, such as chitin, melanin, glucan, and mucus-like exudates, and it is likely that these compounds contribute to long-term storage of SOM. In fact, recent work with ectomycorrhizal fungi has shown that a portion of the fungal necromass survives after degradation times of a few weeks to one month (e.g. Drigo et al. 2012, Clemmenson et al. 2013). Until now, the potential contribution of other abundant fungi to recalcitrant SOM has been unknown. Soil incubations have been performed with the common saprotrophic fungus, Fusarium avencum. Approximately 80% of the fungal material was found to turnover over on a time period of days, but 15% of the original biomass was left over at the end of the two-month degradation experiment in both laboratory experiments and in situ in the Dixon Prairie of the Chicago Botanic Garden. In both experiments, degradation was performed by a natural soil microbial consortium. Residual fungal material at each point in the decomposition sequence was analyzed using FTIR and thermochemolysis-GCMS with tetramethyl ammonium hydroxide. The recalcitrant fraction contained carbohydrate and amide-linked functional groups, which is consistent with the chitin or chitosan biopolymer. The breakdown of more labile organic carbon (including proteins and ester-linked groups) appears to occur on a more rapid time scale. Additionally, lipid biomarker analyses revealed a succession of microbial degraders in the degradation process. This is the first time a study of this kind has been performed using a widely distributed saprotrophic fungus, and indicates that these fungi are potentially important in long-term C

  11. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  12. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  13. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    PubMed

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches. PMID:26520832

  14. Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter

    NASA Astrophysics Data System (ADS)

    Cody, George D.; Alexander, Conel M. O'D.; Kilcoyne, A. L. David; Yabuta, Hikaru

    2008-10-01

    We have initiated an extensive program of molecular analysis of extraterrestrial organic matter isolated from a broad range of meteorites (spanning multiple classes, groups, and petrologic types), including recent molecular spectroscopic analyses of the organic matter in the Comet 81P/Wild 2 samples. The results of these analyses clearly reveal the signature of multiple reaction pathways that transformed extraterrestrial organic matter away from its primitive roots. The most significant molecular transformation occurred in the post-accretionary phase of the parent body. However, each of the various chemical transformation trajectories point unambiguously back to a common primitive origin. Applying a wide range of spectroscopic techniques we find that the primitive organic precursor is striking in its chemical complexity exhibiting a broad array of oxygen- and nitrogen-bearing functional groups. The π-bonded carbon exists as predominately highly substituted single ring aromatics, there exists no evidence for abundant, large, polycyclic aromatic hydrocarbons (PAHs). We find that the molecular structure of primitive extraterrestrial organics is consistent with synthesis from small reactive molecules, e. g. formaldehyde, whose random condensation and subsequent rearrangement chemistry at low temperatures leads to a highly cross-linked macromolecule.

  15. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance

  16. Ultrathin organic semiconductor films--soft matter effect.

    PubMed

    Wang, Tong; Yan, Donghang

    2014-05-01

    The growth of organic semiconductor thin films has been a crucial issue in organic electronics, especially the growth at the early stages. The thin-film phase has been found to be a common phenomenon in many organic semiconductor thin films, which is closely related with the weak van der Waals interaction between organic molecules, the long-range interaction between organic molecules and the substrate, as well as the soft matter characteristics of ultrathin films. The growth behavior and soft matter characteristics of the thin-film phase have great effects on thin film morphology and structure, for example, the formation and coalescence of grain boundaries, which further influences the performance of organic electronic devices. The understanding of thin-film phase and its intrinsic quality is necessary for fabricating large-size, highly ordered, continuous and defect-free ultrathin films. This review will focus on the growth behavior of organic ultrathin films, i.e., the level of the first several molecular layers, and provide an overview of the soft matter characteristics. PMID:24548597

  17. Bromination of marine particulate organic matter through oxidative mechanisms

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Ravel, Bruce

    2014-10-01

    Although bromine (Br) is considered conservative in seawater, it exhibits a well established correlation with organic carbon in marine sediments. This carbon-bromine association was recently attributed to covalent bonding, with organobromine in sinking particulates providing a putative link between sedimentary organobromine and organic matter cycling in surface waters. We hypothesized that phytoplankton detritus, a major precursor of sedimentary organic matter, would be susceptible to bromination through oxidative attack. Through a series of model experiments, we demonstrate incorporation of Br into algal particulate detritus through peroxidative and photochemical mechanisms. Peroxidative bromination was enhanced by addition of exogenous bromoperoxidase, but the enzyme was not required for the reaction. Fenton-like reaction conditions also promoted bromination, especially under solar irradiation, implicating radical mechanisms in the euphotic zone as another abiotic source of brominated particulates. These reactions produced aliphatic and aromatic forms of organobromine, suggesting that lipid- and protein-rich components of algal membranes provide suitable substrates for bromination. Biogenic organobromines in certain genera of phytoplankton also appeared in both aliphatic and aromatic forms. Experimental evidence and samples from oceanic midwater sediment traps imply that the aromatic fraction is more stable than the aliphatic. These experiments establish Br as a versatile oxidant in the transformation of planktonic organic matter through both enzymatic and abiotic mechanisms. Organobromine may serve as a marker of oxidative breakdown of marine organic detritus, with the metastable component providing a short-lived indicator of early-stage oxidation. By altering the stability of aliphatic and aromatic moieties, bromination may affect the availability of organic matter to organisms, with consequences for the preservation and degradation of marine organic carbon.

  18. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  19. Relating Soil Organic Matter Dynamics to its Molecular Structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of the dynamics of soil organic matter (SOM) must be integrated with a sound knowledge of it biochemical complexity. The molecular structure of SOM was determined in 98% sand soils to eliminate the known protective effects of clay on the amount and turnover rate of the SOM constitu...

  20. Calculation of the enthalpy of formation of coal organic matter

    SciTech Connect

    A.M. Gyul'maliev; M.Ya. Shpirt

    2008-10-15

    The enthalpy of formation for the organic matter of coals in the coal rank series was calculated from the heat of the complete combustion reaction. Three variants were considered in which the experimental heating values and the values found from the correlation equation or calculated using the Mendeleev formula were taken as the heat of the complete combustion of coals.

  1. SOURCES OF FINE PARTICLE ORGANIC MATTER IN BOISE

    EPA Science Inventory

    Ambient concentrations of fine particle extracted organic matter (EOM) measured at the Elm Grove Park and Fire Station sites in Boise have been apportioned to their two principal sources, woodsmoke and motor vehicle emissions. A multiple linear regression method using lead and po...

  2. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  3. Forms and Bioavailability of Phosphorus Associated With Natural Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural organic matter (NOM) is an important ingredient in soil which can improve physical, chemical, and biological properties of soils and nutrient supplies. In this study, we investigated the spectral features and potential availability of phosphorus (P) in the IHSS Elliott Soil humic acid standa...

  4. Organic Matter Balance: Managing for Soil Protection and Bioenergy Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils are an important natural resource allowing the production of food, feed, fiber and fuel. The growing demand for these services or products requires we protect the soil resource. Many characteristics of high quality soils can be related to the quantity and quality of soil organic matter (organi...

  5. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  6. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  7. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  8. Protection of Organic Matter from Enzyme Degradation by Mineral Mesopores

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. R.; Chorover, J. D.; Brantley, S. L.

    2003-12-01

    Mineral mesopores (2-50 nm diameter) may sequester organic matter (natural and pollutant) and protect it from microbial and fungal enzymatic degradation in soils and sediments. Synthetic mesoporous alumina and silica minerals with uniform pore sizes and shapes were used to test the role of mesopores in protecting organic matter from enzymatic degradation. A model humic compound, L-3-4-dihydroxyphenylalanine (L-DOPA), was sorbed to the internal surfaces of mesoporous alumina (8.2 nm diameter pores) and mesoporous silica (3.4 nm diameter pores) as well as to the external surfaces of nonporous alumina and silica analogues. A fungal derived enzyme, laccase, was added to these sorbate-sorbent pairs in aqueous solution and activity was monitored by oxygen consumption. Though enzyme activity was suppressed in both cases by mineral-enzyme interaction (enzyme inhibition likely due to adsorption of the enzyme), both the rate and total extent of enzyme-mediated degradation of mesopore-sorbed L-DOPA was 3-40 times lower than that of the externally-sorbed analogue. These results provide, for the first time, direct evidence for the viability of the proposed mesopore protection mechanism for the sequestration and preservation of sedimentary organic matter and organic contaminants. Mesopore adsorption/desorption phenomena may also help explain the slow degradation of organic contaminants in soil and sediment and may prove useful as delivery vehicles for organic compounds to agricultural, medical or environmental systems.

  9. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  10. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  11. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  12. Molecular characterization of soil organic matter: a historic overview

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Rumpel, Cornelia

    2014-05-01

    The characterization of individual molecular components of soil organic matter started in the early 19th century, but proceeded slowly. The major focus at this time was on the isolation and differentiation of different humic and fulvic acid fractions, which were considered to have a defined chemical composition and structure. The isolation and structural anlysis of specific individual soil organic matter components became more popular in the early 20th century. In 1936 40 different individual compounds had been isolated and a specific chemical strucutre had been attributed. These structural attributions were confirmed later for some, but not all of these individual compounds. In the 1950 much more individual compounds could be isolated and characterized, using complicated and time consuming chromatography. It became obvious that soil also contains a number of compounds of microbial origin, such as e.g., amino sugars and lipids. With the improvement of chrmoatographic separation techniques and the use of gas chromatography in combination with thin layerchromatography in the 1960 hundreds of individual compounds have been isolated and identified, most of them after chemical degradation of humic or fulvic acids. The chemical degradative techniques were amended with analytical pyrolysis in the 1970s. More and more, bulk soil organic matter was analyzed with these techniques and the advent of solid-stae 13C NMR spectroscopy around the 1980s allowed for the characterization of the composition of bulk soil organic matter. The gas chromatographic separation of organic matter can nowadays be combined with specific detectors, such that specific attributes ofindividual molecules can be analyzed, e.g. the radiocarbon content or the stable isotope composition.

  13. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    NASA Astrophysics Data System (ADS)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  14. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased

  15. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  16. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  17. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. II. ABUNDANCE RATIO IN THE HOT INTERSTELLAR MATTER

    SciTech Connect

    Kim, Dong-Woo; Fabbiano, Giuseppina; Pipino, Antonio

    2012-05-20

    Using Chandra X-ray observations of young, post-merger elliptical galaxies, we present X-ray characteristics of age-related observational results by comparing them with typical old elliptical galaxies in terms of metal abundances in the hot interstellar matter (ISM). While the absolute element abundances may be uncertain because of unknown systematic errors and partly because of the smaller amount of hot gas in young ellipticals, the relative abundance ratios (e.g., the {alpha}-element to Fe ratio, and most importantly the Si/Fe ratio) can be relatively well constrained. In two young elliptical galaxies (NGC 720 and NGC 3923) we find that the Si to Fe abundance ratio is super-solar (at a 99% significance level), in contrast to typical old elliptical galaxies where the Si to Fe abundance ratio is close to solar. Also, the O/Mg ratio is close to solar in the two young elliptical galaxies, as opposed to the sub-solar O/Mg ratio reported in old elliptical galaxies. Both features appear to be less significant outside the effective radius (roughly 30'' for the galaxies under study), consistent with the observations that confine to the centermost regions the signatures of recent star formation in elliptical galaxies. Observed differences between young and old elliptical galaxies can be explained by the additional contribution from SNe II ejecta in the former. In young elliptical galaxies, the later star formation associated with recent mergers would have a dual effect, resulting both in galaxy scale winds-and therefore smaller observed amounts of hot ISM-because of the additional SN II heating, and in different metal abundances, because of the additional SN II yields.

  18. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  19. Evalution of soil organic matter contents using spectral inhance indeces

    NASA Astrophysics Data System (ADS)

    Faghih, Athar; Heidari, Ahmad

    2010-05-01

    Topography composed of elevation, slope, and aspect, that through the influence microclimate and chemical and physical properties of land affects the amount of organic carbon. Because of the height difference between hydrology and temperature regime in mountainous regions are collaborating and that difference has led to differences in the composition and distribution patterns of vegetation, the soil and organic matter decomposition rate is. Effect of climate change on soil organic carbon storage and its distribution is different in different regions, and the main factors creating differences, temperature and rainfall levels are on the order and the growth rate plant species and organic carbon mineralization rate impact.to evaluate these factors first ETM+ satellite images of 2002 North range lands, Karaj river basin prepared, then image processing and image classification as supervision and unsupervision was done. Then NDVI, TNDVI, VI, IR/R, Square IR/R indices obtained for study area and on the basis of these indices study area units was specified. Digital elevation model (DEM) using the region as a 1:50000 topographic map was produced before. Using Arc- GIS image and maps physiographic, location sampling based physiographic units changes and temperature change with the opposite slope directions sample have been made. By using GPS, 24 positions for surface samples and 4 pedons determined and sampled. Physical and chemical sample properties have based on size and by using dry sieve and OC, N and C/N ratio respectively specified in them. Then, using Exel software existing relationships between different parameters were studied. The results showed that, with increases. In the slope of the north and west due to the ability to maintain more moisture, have organic matter, more than the southern and eastern slopes. Correlation coefficients obtained included: correlation coefficient between organic matter and elevation 0.84, correlation coefficient between organic matter

  20. Sedimentary process control on carbon isotope composition of sedimentary organic matter in an ancient shallow-water shelf succession

    NASA Astrophysics Data System (ADS)

    Davies, S. J.; Leng, M. J.; Macquaker, J. H. S.; Hawkins, K.

    2012-11-01

    Source and delivery mechanisms of organic matter are rarely considered when interpreting changing δ13C through sedimentary successions even though isotope excursions are widely used to identify and correlate global perturbations in the carbon cycle. Combining detailed sedimentology and geochemistry we demonstrate how organic carbon abundance and δ13C values from sedimentary organic matter from Carboniferous-aged mudstones are influenced by the proportion of terrestrial versus water column-derived organic matter. Silt-bearing clay-rich shelf mudstones that were deposited by erosive density flows are characterized by 1.8-2.4% organic carbon and highδ13C values (averaging -22.9 ± 0.3‰, n = 12). Typically these mudstones contain significant volumes of terrestrial plant-derived material. In contrast, clay-rich lenticular mudstones, with a marine macrofauna, are the products of the transport of mud fragments, eroded from pre-existing water-rich shelfal muds, when shorelines were distant and biological productivity in the water column was high. Higher organic carbon (2.1-5.2%) and lowerδ13C values (averaging -24.3 ± 0.5‰, n = 11) characterize these mudstones and are interpreted to reflect a greater contribution by (isotopically more negative) amorphous organic matter derived from marine algae. Differences in δ13C between terrestrial and marine organic matter allow the changing proportions from different sources to be tracked through this succession. Combining δ13C values with zirconium (measured from whole rock), here used as a proxy for detrital silt input, provides a novel approach to distinguishing mudstone provenance and ultimately using δ13C to identify oil-prone organic matter in potential source rocks. These results have important implications for using bulk organic matter to identify and characterize global C-isotope excursions.

  1. Hydrographic controls on marine organic matter fate and microbial diversity in the western Irish Sea

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shane; Szpak, Michal; Monteys, Xavier; Flanagan, Paul; Allen, Christopher; Kelleher, Brian

    2014-05-01

    Cycling of organic matter (OM) is the key biological process in the marine environment1 and knowledge of the sources and the reactivity of OM, in addition to factors controlling its distribution in estuarine, coastal and shelf sediments are of key importance for understanding global biogeochemical cycles2. With recent advances in cultivation-independent molecular approaches to microbial ecology, the key role of prokaryotes in global biogeochemical cycling in marine ecosystems has been emphasised3,4. However, spatial studies combining the distribution and fate of OM with microbial community abundance and diversity remain rare. Here, a combined spatial lipid biomarker and 16S rRNA tagged pyrosequencing study was conducted in surface sediments and particulate matter across hydrographically distinct zones associated with the seasonal western Irish Sea gyre. The aim was to assess the spatial variation of, and factors controlling, marine organic cycling and sedimentary microbial communities across these distinct zones. The distribution of phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids indicate that diatoms, dinoflagellates and green algae were the major contributors of marine organic matter, while the distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids have highlighted the importance of copepod grazing for mineralizing organic matter in the water column5. This marine OM production and mineralisation was greatest in well-mixed waters compared to offshore stratified waters. Lipid analysis and 16S rRNA PCR-DGGE profiling also suggests that sedimentary bacterial abundance increases while community diversity decreases in offshore stratified waters. The major bacterial classes are the Deltaproteobacteria, Clostridia, Flavobacteriia, Gammaproteobactera and Bacteroiidia. At the family/genus level most groups appear to be associated with organoheterotrophic processing of sedimentary OM, ranging

  2. Direct Evidence Linking Soil Organic Matter Development to Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kallenbach, C.; Grandy, S.

    2013-12-01

    Despite increasing recognition of microbial contributions to soil organic matter (SOM) formation there is little experimental evidence linking microbial processes to SOM development and the mechanisms responsible remain unclear. Specifically, if stable SOM is largely comprised of microbial products, we need to better understand the soil conditions that influence microbial biomass production and ultimately its stability. Microbial physiology, such as microbial growth efficiency (MGE) and rate (MGR) have direct influences on microbial biomass production and are highly sensitive to resource quality. Therefore, the importance of resource quality on SOM is not necessarily a function of resistance to decay but the degree to which it optimizes microbial biomass production. While resource quality may have an indirect effect on SOM abundance via its influence on microbial physiology, SOM stabilization of labile microbial products may rely heavily on a soil's capacity to form organo-mineral interactions. To examine the relative importance of soil microbial community function, resource quality and mineralogy on direct microbial contributions to SOM formation and stability, an ongoing 15-mo incubation experiment was set up using artificial, initially C- and microbial-free soils. Soil microcosms were constructed by mixing sand with either kaolinite or montmorillonite clays followed with a natural soil microbial inoculum. For both soil mineral treatments, weekly additions of glucose, cellobiose, or syringol are carried out, with an additional treatment of plant leachate to serve as a reference. This simplified system allows us to determine if, in the absence of plant-derived C, microbial products using simple substrates can result in chemically complex SOM similar to natural soils. Over the course of the incubation, MGE, MGR, microbial activity, and SOM accumulation rates are monitored. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is used to track the microbial

  3. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  4. Loss of organic matter from riverine particles in deltas

    SciTech Connect

    Keil, R.G.; Quay, P.D.; Richey, J.E.

    1997-04-01

    In order to examine the transport and burial of terrigenous organic matter along the coastal zones of large river systems, we assessed organic matter dynamics in coupled river/delta systems using mineral surface area as a conservative tracer for discharged riverine particulate organic matter (POM). Most POM in the rivers studied (n = 6) is tightly associated with suspended mineral materiaL e.g., it is sorbed to mineral surfaces. Average organic loadings in the Amazon River (0.67 - 0.14 Mg C m{sup -2}), the river for which we have the largest dataset, are approximately twice that of sedimentary minerals from the Amazon Delta (-0.35 mg C m{sup -2}). Stable carbon isotope analysis indicate that approximately two-thirds of the total carbon on the deltaic particles is terrestrial. The combined surface-normalized, isotope-distinguished estimate is that >70% of the Amazon fluvial POM is not buried in the delta consistent with other independent evidence. Losses of terrestrial POM have also been quantified for the river/delta systems of Columbia in the USA, Fly in New Guinea. and Huange-He in China. If the losses of riverine POM observed in these river/delta systems are representative of rivers worldwide, then the surface-constrained analyses point toward a global loss of fluvial POM in delta regions of {approximately}0.1 x 10{sup 15} g C y{sup -1}. 28 refs., 2 figs., 1 tab.

  5. Control of organic matter on the magnetic properties of surficial marine sediments. A simple kinetic model

    NASA Astrophysics Data System (ADS)

    Mohamed Falcon, K. J.; Andrade, A.; Rey, D.; Rubio, B.

    2014-12-01

    Magnetic properties of marine sediments in the Galician Rias, in NW Spain, have shown that in these shallow marine settings the magnetic mineral assemblage, and its bulk magnetic properties, is controlled by grain size, wave climate, and organic matter content. The grain size effect is explained by concentration of diamagnetic biogenic carbonates in the coarse fraction, which dilutes the concentration-dependent magnetic properties. Furthermore, this effect is enhanced by the hydrodynamic sorting of the heavy minerals, like magnetite, that become concentrated in the finer fractions. Waves on the other hand concentrate the coarser bioclasts in the shallower areas along the coastal margins of the rias, and consequently these areas show the lowest magnetic mineral concentrations. Magnetic minerals are therefore more abundant in the deeper central axis and towards the external, more oceanic, areas of the rias. Another effect of waves is periodic resuspension of fine sediments, which allows them to be reoxigenated preventing the onset of reductive diagenesis. This effect is best seen in sediment cores, where organic matter remineralization promotes dissolution of magnetic iron oxides and oxyhydroxides. Areas where resuspension is frequent and/or deeper areas where sediments stay in the water column for longer have lower degrees of reductive early diagenesis. In addition to its downcore effect, organic matter also controls the magnetic properties of surficial sediments. Our results in the Ria de Muros, at the north of our study area, have shown that a simple kinetic model is enough to quantify the effect of organic matter content on the dissolution of magnetite. We have found that a Total Organic Carbon increase of 0.35% reduces magnetite concentration of surface samples by half. These effects observed in the Ria de Muros have also been confirmed for published results in the southern Rias Baixas previously studied by our research group.

  6. Prebiotic Organic Matter from the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Halfen, DeWayne; Ziurys, Lucy M.

    2016-06-01

    The origins of life on Earth must have begun with simple organic compounds. A plausible source of such prebiotic molecules was the interstellar medium (ISM). Of the over 160 molecules that have been identified in interstellar gas, about half have been discovered in one source, Sagittarius B2(N), located in the Galactic Center. This giant molecular cloud is also home to many large organic species observed in the ISM. How complex these species can become is unknown. In order to accurately establish an inventory of potentially, prebiotic organic molecules, we completed a continuous spectral-line survey of Sgr B2(N) at the confusion limit using the Arizona Radio Observatory facilities: the Kitt Peak 12 m and the Submillimeter Telescope. The survey covers the 1, 2, and 3 mm atmospheric windows in the range 68 - 280 GHz, and about 15,000 individual spectral lines have been observed. Seventy-four molecules have been identified in the data, including several potential prebiotic species, such as glycolaldehyde, acetamide, and methyl isocyanate. These molecules are relatively abundant in Sgr B2(N), with fractional abundances of f ~ 10-10 - 10-12 relative to H2. Current results of this survey will be presented, along with its implications for interstellar organic chemistry and prebiotic synthesis. A comparison with organics found in comets and meteorites will also be discussed.

  7. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  8. Dark matter relic abundance and big bang nucleosynthesis in Horava's gravity

    SciTech Connect

    Lambiase, G.

    2011-05-15

    The cosmological consequences of Horava's gravity are reviewed in the frameworks of the PAMELA experiment (which has reported an excess of positron events that likely can be ascribed to weakly interacting massive particles dark matter) and of big bang nucleosynthesis. Constraints on parameters characterizing Horawa's cosmology are derived.

  9. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  10. Oxytetracycline sorption to organic matter by metal-bridging.

    PubMed

    MacKay, Allison A; Canterbury, Brian

    2005-01-01

    The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups. PMID:16221815

  11. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers.

    PubMed

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  12. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    PubMed Central

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  13. Contributions of organic matter and organic sulfur redox processes to electron flow in anoxic incubations of peat

    NASA Astrophysics Data System (ADS)

    YU, Zhiguo; Peiffer, Stefan; Göttlicher, Jörg; Knorr, Klaus-Holger

    2015-04-01

    Anaerobic decomposition of peat soils involves a number of interdependent microbial processes that ultimately generate CO2 and CH4. In many peat soils, a high ratio of CO2:CH4 was reported, which presumably results from a direct or indirect role of soil organic matter serving as an electron acceptor. Therefore, in this study we intended to test the hypothesis that organic matter (OM) suppresses methanogenesis and sustains anaerobic CO2 production, serving as i) direct electron acceptor or ii) via supporting internal sulfur cycling to maintains CO2 production through bacterial sulfate reduction (BSR). We incubated peat samples of commercial bog peat, inoculated with a small amount of fresh peat to introduce an active microbial community. Samples were amended with sulfate or sulfide and incubated under anoxic conditions for 6 weeks at 30 ° C. Upon anaerobic incubation of peat virtually devoid of inorganic electron acceptors, CO2 and CH4 were produced at a ratio of 3.2. According to the electron budget, the calculated electron accepting capacity (EAC) of OM was 2.36 μeq cm3 d-1. Addition of sulfate significantly increased CO2 production and effectively suppressed CH4 production. After subtracting the EAC provided though sulfate addition (0.97~2.81 μeq cm-3 d-1), EACs supplied by OM reached 3.88 to 4.85 μeq cm-3 d-1.The contribution of organic sulfur was further evaluated by XANES spectroscopy and using natural abundance of δ34S as a tracer. Results demonstrated that BSR involved both addition of H2S and sulfate to OM leading to a formation of reduced organic sulfur and partial changes of oxidized organic sulfur species. The original peat prior to incubation contained 70.5% reduced organic S (R-S-H, R-S-R, R-S-S-R), and 25.9% oxidized S (R-SO3, R-SO2-R, R-SO4-R), whereas the treatment with H2S or sulfate addition comprised 75.7~ 81.1% reduced organic S, and only 21.1~18.9 % oxidized S. Our results imply that that organic matter contributes to anaerobic respiration

  14. Organic matter and benthic metabolism in Lake Illawarra, Australia

    NASA Astrophysics Data System (ADS)

    Qu, Wenchuan; Morrison, R. J.; West, R. J.; Su, Chenwei

    2006-10-01

    Carbon and nitrogen contents (total organic carbon and total nitrogen), chlorophyll-a concentrations in surface sediments and benthic sediment-water fluxes of oxygen and carbon dioxide were investigated at five stations in Lake Illawarra (Australia) to compare the sources/quality of sedimentary organic matter and the characteristics of diagenesis and benthic biogeochemical processes for different primary producers (e.g., seagrass, microphytobenthos and macroalgae) and/or sediment types (sand or mud). The unvegetated sediments showed lower C/N ratios (with the lowest value occurring in the deep organic-rich muddy site) than the seagrass ( Ruppia or Zostera) beds, which may be due to the contribution of microalgae (mainly diatoms) to the sedimentary organic matter pool. This was also supported by the detection of microalgal pigments in the bare sediments. On an annual basis, seagrass beds exhibited the highest gross primary productivity (O 2 or TCO 2 fluxes), while the lowest rates occurred in the deep central basin of the Lake. Seasonally, there was a general trend of highest production in spring or summer, and lowest production in winter or autumn. Organic carbon oxidation scenarios, evaluated by either calcium carbonate dissolution or sulfate reduction models, indicated that both models can explain organic matter mineralization. Trophic status was evaluated using different indices including benthic trophic state index, net O 2 fluxes and P/ R ratios for Lake Illawarra, which led to similar trophic classifications in general, and also the same trends in spatial and seasonal variations. Overall, these data indicated that the Lake was heterotrophic on an annual basis, as the total community carbon respiration exceeded production, and this supported an earlier LOICZ mass balance/stoichiometric modelling conclusion.

  15. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  16. Distribution of living benthic foraminifera off the Douro river (western Iberian margin): the importance of the terrestrial organic matter.

    NASA Astrophysics Data System (ADS)

    Bonnin, Jerome; Dessandier, Pierre-Antoine; Kim, Jung-Hyun; Gremare, Antoine; Deflandre, Bruno; Sinnighe-Damste, Jaap

    2014-05-01

    Living (stained) benthic foraminifera assemblages and geochemical characterization of the organic matter (phytopigments, amino acids, δ13Coc, BIT) were investigated on a cross-margin transect off the Douro River (Northern Portuguese margin) in order to assess the role of the quality of organic matter on the distribution of live benthic foraminifera. For this, 5 stations ranging from 50 to 2000 m depth were collected in March 2011 about one month after the Douro River annual flood. Faunal abundances generally decrease from the coast to the slope with maximum total densities of 3051 ind./50 cm3 in the mudbelt (Q50=32µm) at 100 m and minimum density of 63 ind./50 cm3 found at 500 m water depth where grain size is coarse (Q50=190µm). Faunas of the shallow most station are dominated by Ammonia becarii, Eggerella scabra, Bulimina aculeata and Nonion scaphum while N. scaphum and to a lesser extent Uvigerina bifurcata dominate the assemblages at 100 m. The deepest stations are dominated by Uvigerina mediterranea, Hoeglundina elegans and Reophax scorpiurus. In general, live benthic foraminiferal densities are higher where the indicators of organic matter are more concentrated. However, some species appear to have strong affinities with Chl-a (e.g., N. scaphum, U. bifurcata), while others (A. becarii, E. Scabra, B. aculeata) are more abundant where labile organic matter is high as show by the EHAA/THAA amino acid ratio. The species that show a good correlation with Chl-a also show affinity with organic matter of terrestrial origin as show by the δ13Coc suggesting 1) that Chl-a measured in the coastal zone is not only marine and 2) that land plant derived organic matter could be an important source of food for marine benthic communities.

  17. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  18. Flocculation of Clay and Organic Matter in Turbid Salt Water

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Yin, H.; Zhang, G.; Tan, X.; Furukawa, Y.

    2010-12-01

    Sediment transport and deposition in estuaries and tidal flats are often dominated by the aggregation of clay and organic matter into composite particles or “flocs”. The stability of the flocs is important in determining the distance over which the sediment is transported and the areas to which the sediment is deposited. During floc transport from riverine to oceanic environments, stability is determined by suspended sediment concentrations, sediment types, organic matter type, fluid flow rates and small scale turbulence. In a series of laboratory experiments, interactions between clay sediments and organic matter were evaluated within a flow column that was filled with saline water. The focus of this investigation was on changes in floc size, density and strength as flow velocities and turbulent stresses were altered. Significant changes in the floc shape, consolidation, density and behavior were determined for flow rates and Reynolds numbers that are common to riverine environments. The variability in floc composition was also shown to influence bulk sediment properties: heat transport, acoustic propagation and shear strength, while sediments were entrained in high-density suspensions and low-density deposits.

  19. Methylmercury production in estuarine sediments: role of organic matter

    PubMed Central

    Schartup, Amina T.; Mason, Robert P.; Balcom, Prentiss H.; Hollweg, Terill A.; Chen, Celia Y.

    2013-01-01

    Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (HgII) species primarily in sediments then accumulates and biomagnifies in the food web. Most of the fish consumed in the US are from estuarine and marine systems highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern US (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across five orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas like Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries. PMID:23194318

  20. Comments on D/H ratios in chondritic organic matter

    NASA Astrophysics Data System (ADS)

    Smith, J. W.; Rigby, D.

    1981-06-01

    D/H ratios in chondritic organic matter are investigated. Demineralized organic residues obtained from previous experiments were dried in a quartz reaction vessel under vacuum for 60 minutes at 250-300 C and then combusted in oxygen for 20 minutes at 850 C. The apparatus is described and the results of the experiments such as D/H ratios in water and measurements on total carbon dioxide are given. Atomic H/C ratios calculated directly from the quantities of carbon dioxide and water recovered, are reported according to Standard Mean Ocean Water and Pee Dee Belemnite, using the customary notation.

  1. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  2. Flood Pulse Influence on Export of Terrestrial Organic Matter

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Harbor, J. M.; Filley, T. R.

    2004-12-01

    While much attention has been placed on characterizing Terrestrial Organic Matter (TOM) export from large rivers, recent research has shown that in-stream processing of TOM in smaller streams and rivers over shorter time scales can be an important upland component of regional carbon budgets not detected at the outlets of large rivers. With predictions of climate change accompanied by more intense rainfall patterns in some areas, it is important to understand the linkage between flood events and watershed export of TOM. To this end, we have collected water samples from Big Pine Creek watershed, an 850km2 watershed located in west central Indiana. Organic carbon in dissolved, colloidal, and particulate size fractions has been described with molecular and stable carbon isotope techniques to track source, quantity, and compositional changes of TOM over changing flow conditions. Results from these samples show that flood conditions export dramatically more TOM; not only from increases in discharge, but also from increases in concentration of terrestrial organic carbon to all size fractions. While molecular biomarkers show increases in terrestrial organic matter, bulk stable carbon isotope values show that the sources of TOM do not remain constant. Rather, relative contributions from C4 plants (corn in this study area) increase during flood conditions by up to 40 percent. Finally, increases in rainfall intensity are likely to disproportionately increase organic carbon export from terrestrial systems, especially from smaller watersheds where short duration and high intensity flow events dominate annual discharge.

  3. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.

    2015-12-01

    We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.

  4. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  5. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy.

    PubMed

    Rossini, Aaron J; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance (1)H-(2)H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance (2)H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the (2)H solid-state NMR spectra is comparable to that of (1)H spectra obtained with state of the art homonuclear decoupling techniques. PMID:26363582

  6. A human interactome in three quantitative dimensions organized by stoichiometries and abundances.

    PubMed

    Hein, Marco Y; Hubner, Nina C; Poser, Ina; Cox, Jürgen; Nagaraj, Nagarjuna; Toyoda, Yusuke; Gak, Igor A; Weisswange, Ina; Mansfeld, Jörg; Buchholz, Frank; Hyman, Anthony A; Mann, Matthias

    2015-10-22

    The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis. PMID:26496610

  7. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-type Protostars

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; López-Sepulcre, Ana; Ceccarelli, Cecilia; Neri, Roberto; Kahane, Claudine; Charnley, Steven B.

    2015-05-01

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  8. Probabilisitc Geobiological Classification Using Elemental Abundance Distributions and Lossless Image Compression in Recent and Modern Organisms

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.

    2005-01-01

    Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable

  9. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    SciTech Connect

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradation rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.

  10. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  11. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    NASA Astrophysics Data System (ADS)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  12. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  13. Isotopic constraints on the origin of meteoritic organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1991-01-01

    Salient features of the isotopic distribution of H, C and N in the organic material found in carbonaceous meteorites are noted. Most organic fractions are strongly enriched in D with respect to the D/H ratio characteristic of H2 in the protosolar system; substantial variations in C-13/C-12 ratio are found among different molecular species, with oxidised species tending to be C-13 enriched relative to reduced species; some homologous series reveal systematic decrease in C-13/C-12 with increasing C number; considerable variation in N-15/N-14 ratio is observed within organic matter, though no systematic pattern to its distribution has yet emerged; no interelement correlations have been observed between isotope enrichments for the different biogenic elements. The isotopic complexity echoes the molecular diversity observed in meteoritic organic matter and suggests that the organic matter was formed by multiple processes and/or from multiple sources. However, existence of a few systematic patterns points towards survival of isotopic signatures characteristic of one or more specific processes. The widespread D enrichment implies either survival of many species of interstellar molecule or synthesis from a reservoir containing a significant interstellar component. Several of the questions raised above can be addressed by more detailed determination of the distribution of the H, C and N isotopes among different well-characterized molecular fractions. Thus, the present study is aimed at discovering whether the different amino acids have comparable D enrichments, which would imply local synthesis from a D-enriched reservoir, or very viable D enrichments, which would imply survival of some interstellar amino acids. The same approach is also being applied to polycyclic aromatic hydrocarbons. Because the analytical technique employed (secondary ion mass spectrometry) can acquire data for all three isotopic systems from each molecular fraction, any presently obscured interelement

  14. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  15. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  16. Is organic matter found in glaciers similar to soil organic matter? A detailed molecular-level investigation of organic matter found in cryoconite holes on the Athabasca Glacier

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Xu, Y.; Eyles, N.; Simpson, A. J.; Baer, A.

    2009-04-01

    Cryoconite is a dark-coloured, dust-like material found on the surfaces of glaciers. Cryoconite has received much interest recently because cryoconite holes, which are produced by accelerated ice melt, act as habitats for microbes on glacier surfaces and accelerate ice melt. To the best of our knowledge, cyroconite organic matter (COM) has not yet been chemically characterized at the molecular level. In this study, organic matter biomarkers and a host of Nuclear Magnetic Resonance (NMR) techniques were used to characterize COM from the Athabasca Glacier in the Canadian Rocky Mountains. The research questions that were targeted by this study include: 1) what are the sources of COM on the Athabasca Glacier; 2) are there any biomarker and/or NMR evidence for microbial community activity in the cryoconite holes; and 3) is the COM structurally similar to terrestrial OM? Solvent extracts contained large quantities of fatty acids, n-alkanols, n-alkanes, wax esters and sterols. A large contribution of C23, C25 and C27 relative to C29 and C31 n-alkanes suggests that allochthonous COM is mainly from lower order plants (mosses, lichens). This is confirmed by the absence of lignin phenols (after copper (II) oxidation) in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent signals from microbial components, while solid-state 13C Cross Polarization Magic Angle Spinning NMR analysis shows an atypically high alkyl/O-alkyl ratio, suggesting that COM is unique compared to organic matter found in nearby soils. The NMR results suggest that COM is dominated by microbial-derived compounds which were confirmed by phospholipid fatty acid analysis, which showed a significant microbial contribution, primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier and that COM composition is uniquely different than that found in terrestrial environments. Our data

  17. An analysis of the chemical character of dissolved organic matter and soluble soil organic matter within the same catchment

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Russell, N.; McKnight, D. M.

    2010-12-01

    Trends of increasing dissolved organic matter (DOM) concentrations have been reported in many parts of the world. To better understand how organic matter is transported throughout and used within watersheds, it is important to measure not only how much there is, but to also its chemical character. In this study, spectroscopic techniques were used to analyze the DOM from Boulder Creek in Colorado, as well as the soluble organic matter in soil from a smaller catchment within the watershed. Samples from the creek were taken at regular intervals for several years and the DOM quantity and quality was analyzed to determine both seasonal impacts and the affect of Barker Dam halfway up the watershed. Observed trends followed similar patterns to that seen in other alpine ecosystems, with a peak in microbial DOM just before snowmelt, followed by increasing terrestrial input. However, the storage in the reservoir made the signal less clear below the dam. Soil organic matter samples were taken with an aim to observing both spatial and temporal patterns. A large number of both surface and deep samples were taken in one time snapshot, and surface samples were taken from the same plots over several months beginning during snowmelt and reaching the end of the growing season. Surface samples displayed a stronger correlation with DOM in the stream than samples taken at depth, indicating much of the DOM comes from overland flow. However, strong microbial signals from samples at depth indicated the possibility that microbes may be using OM as an electron acceptor during bedrock weathering processes. Little variation was shown temporally in surface samples, although there was some seen in the riparian zone during snowmelt.

  18. Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments.

    PubMed

    Bongiorni, Lucia

    2012-01-01

    Decomposition of organic matter in marine sediments is a critical step influencing oxygen and carbon fluxes. In addition to heterotrophic bacteria and fungi, osmoheterotrophic protists may contribute to this process, but the extent of their role as decomposers is still unknown. Among saprophytic protists, the thraustochytrids have been isolated from different habitats and substrates. Recently, they have been reported to be particularly abundant in marine sediments characterized by the presence of recalcitrant organic matter such as seagrass and mangrove detritus where they can reach biomass comparable to those of other protists and bacteria. In addition, their capacity to produce a wide spectrum of enzymes suggests a substantial role of thraustochytrids in sedimentary organic decomposition. Moreover, thraustochytrids may represent a food source for several benthic microorganisms and animals and may be involved in the upgrading of nutrient-poor organic detritus. This chapter presents an overview on studies of thraustochytrids in benthic ecosystems and discusses future prospectives and possible methods to quantify their role in benthic food webs. PMID:22222824

  19. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  20. Photochemical flocculation of terrestrial dissolved organic matter and iron

    NASA Astrophysics Data System (ADS)

    Helms, John R.; Mao, Jingdong; Schmidt-Rohr, Klaus; Abdulla, Hussain; Mopper, Kenneth

    2013-11-01

    Dissolved organic matter (DOM) rich water samples (Great Dismal Swamp, Virginia) were 0.1-μm filtered and UV-irradiated in a solar simulator for 30 days. During the irradiation, pH increased, particulate organic matter (POM) and particulate iron formed. After 30 days, 7% of the dissolved organic carbon (DOC) was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present or the pH was low enough to keep iron in solution. Nuclear magnetic resonance and Fourier transform infrared spectroscopies indicated that photochemically flocculated POM was more aliphatic than the residual non-flocculated DOM. Photochemically flocculated POM was also enriched in amide functionality, while carbohydrate-like material was resistant to both photochemical degradation and flocculation. Abiotic photochemical flocculation likely removes a significant fraction of terrestrial DOM from the upper water column between headwaters and the ocean, but has previously been ignored. Preliminary evidence suggests that this process may significantly impact the transport of DOM and POM in ocean margin environments including estuaries.

  1. Formation of soil organic matter via biochemical and physical pathways of litter mass loss

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. Francesca; Soong, Jennifer L.; Horton, Andrew J.; Campbell, Eleanor E.; Haddix, Michelle L.; Wall, Diana H.; Parton, William J.

    2015-10-01

    Soil organic matter is the largest terrestrial carbon pool. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter. However, labile components of plant litter could also form mineral-stabilized soil organic matter. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter-microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.

  2. Remote monitoring of organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Niccolai, Filippo; Bazzani, Marco; Cecchi, Giovanna; Innamorati, Mario; Massi, Luca; Nuccio, Caterina; Santoleri, Rosalia

    1999-12-01

    The monitoring of organic matter, suspended or dissolved in the water column, is relevant for the study of the aquatic environment. Actually, the Dissolved Organic Matter (DOM) represents a major reservoir of reactive carbon in the global carbon cycle, thus influencing significantly the marine ecosystem. Due to the strong absorption in the near ultraviolet, DOM reduces considerably the extinction path of solar light in the water column, affecting phytoplankton population and its vertical distribution. The measurement of the DOM absorption coefficient has to be regarded as a good parameter for the monitoring of water quality. This paper deals with the measurements carried out during the oceanographic campaign 'Marine Fronts,' which took place in the Western Mediterranean Sea and Atlantic Ocean from July 14 to August 5, 1998. In this measurement campaign, a high spectral resolution fluorescence lidar (FLIDAR) was installed on the rear-deck of the O/V 'Urania,' acquiring remote fluorescence spectra both in ship motion and in stations. A particular attention was devoted to the monitoring of DOM distribution in the different water masses in marine frontal areas. The lidar data were compared and integrated with SST satellite data and biological samplings. The results show that FLIDAR data agree with satellite imagery, particularly for marine front detection. The comparison with water sample data gave indications for retrieving the DOM absorption coefficient directly from fluorescence remote spectra. In addition, a protein like fluorescence band was detected in the measurements carried out on total suspended matter filtered from the water samplings.

  3. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  4. New upper limit on strange quark matter abundance in cosmic rays with the PAMELA space experiment.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergè, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2015-09-11

    In this work we present results of a direct search for strange quark matter (SQM) in cosmic rays with the PAMELA space spectrometer. If this state of matter exists it may be present in cosmic rays as particles, called strangelets, having a high density and an anomalously high mass-to-charge (A/Z) ratio. A direct search in space is complementary to those from ground-based spectrometers. Furthermore, it has the advantage of being potentially capable of directly identifying these particles, without any assumption on their interaction model with Earth's atmosphere and the long-term stability in terrestrial and lunar rocks. In the rigidity range from 1.0 to ∼1.0×10^{3}  GV, no such particles were found in the data collected by PAMELA between 2006 and 2009. An upper limit on the strangelet flux in cosmic rays was therefore set for particles with charge 1≤Z≤8 and mass 4≤A≤1.2×10^{5}. This limit as a function of mass and as a function of magnetic rigidity allows us to constrain models of SQM production and propagation in the Galaxy. PMID:26406816

  5. Photochemical production of singlet oxygen from particulate organic matter.

    PubMed

    Appiani, Elena; McNeill, Kristopher

    2015-03-17

    Dissolved organic matter is established as one of the most relevant photosensitizers in aquatic environments, producing singlet oxygen (1O2) alongside other photochemically produced reactive intermediates. While the production of 1O2 from DOM has been well studied, the relative importance of particulate organic matter (POM) to the overall 1O2 production is less well understood. POM is known to play an important role in pollutant fate through the sorption and transport of hydrophobic pollutants. If POM is directly involved in 1O2 production, sorbed molecules would be expected to undergo enhanced photodegradation. In this work, synthetic POM was prepared by coating silica particles with commercial humic acid. The photochemical behavior of these POM samples was compared to dissolved commercial humic acids (DOM). Suspended natural sediment was also studied to test the environmental relevance of the synthetic POM model. Synthetic POM particles appear to simulate well the 1O2-production of suspended sediment. The 1O2 concentrations experienced by POM-sorbed probe molecules was up to 30% higher than experienced by DOM-sorbed ones, even though the aqueous concentration of 1O2 in irradiated POM suspensions was much lower than the analogous DOM solutions. These results were interpreted with a reaction-diffusion model, which suggested that the production rate of 1O2 by POM is lower than DOM, but the loss of 1O2 from the POM-phase is also lower than DOM. Based on the experimental results of this study, calculations were conducted to estimate the impact of removing POM on 1O2-mediated processes. These calculations indicate that compounds with a log Koc value near 4 will be most affected by removal of POM and that the magnitude of the effect is proportional to the fraction of the total organic matter represented by POM. This study demonstrates that particles can play an important role in the degradation of organic compounds via aquatic photochemistry. PMID:25674663

  6. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  7. Missing links in the root-soil organic matter continuum.

    SciTech Connect

    O'Brien, S. L.; Iversen, C. M.; Biosciences Division; ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors (Fig. 1). The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models.

  8. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally. PMID:21978424

  9. Microorganisms Implicated in Degradation of Organic Matter During Black Shale Weathering

    NASA Astrophysics Data System (ADS)

    Petsch, S.; Eglinton, T.; Edwards, K.

    2001-12-01

    Sedimentary rocks rich in organic matter are common features of the geologic record and in general usage are termed black shales. Presence of organic matter and sulfide minerals in black shales generates a chemically reducing environment within these rocks. Once uplifted and exposed on the earth's continents to surface environments, an oxidation front begins to penetrate into these rocks. Oxidative chemical weathering of black shales results in loss of organic matter and sulfides. The oxidized zone within black shale weathering profiles provides an unusual habitat for microbial activity. Although organic carbon is abundant within black shales, it occurs in a complex and chemically recalcitrant form that is less susceptible to biological degradation than simple carbon compounds. The oxidation of shale sulfide minerals generates significant acidity, such that the pH of porewaters measures <2 in some locations. Thus the organisms living within black shale weathering profile must be able to access complex carbon substrates and tolerate highly acidic conditions. Samples were recovered from a weathering profile developed on Late Devonian New Albany Shale exposed near Clay City, Kentucky. This site has been the subject of previous studies of shale weathering and geochemistry. This study examines whether microorganisms are present within the weathering profile, if they unambiguously are accessing shale organic matter as a carbon source, and what the phylogenetic relationships are between these and other known hydrocarbon-degrading organisms. Epifluorescence microscopy of samples stained with DAPI or AO or hybridized with group-specific probes confirms the presence of the three domains Bacteria, Archaea and Eucarya within environmental samples and enrichment cultures. Our research has shown that compound-specific 14C analysis of phospholipid-derived fatty acid methyl esters from living enrichment cultures contain essentially zero 14C, indicating that enrichment culture

  10. Uranium(IV) Complexation by Natural Organic Matter Controls Speciation in the Subsurface

    NASA Astrophysics Data System (ADS)

    Bone, S.; Dynes, J.; Fendorf, S. E.; Jones, M. E.; Bargar, J.

    2014-12-01

    Uranium contaminates groundwater at many sites throughout the United States. At the aquifer in Rifle, CO, U(IV) has been found to accumulate in natural organic matter (NOM)-rich sediments comprising buried alluvial material. We expect that NOM, which is composed of detrital plant material and microbial biomass and necromass, profoundly influences the speciation of U(IV). Specifically, we hypothesize that NOM forms stable complexes with U(IV) (i.e., "noncrystalline" U(IV)), particularly through organic phosphorus moieties associated with bacteria and exopolymeric substances (EPS). Complexation with NOM can help to explain why noncrystalline U(IV) is more abundant in the subsurface than the mineral uraninite (UO2). The abundance and relative reactivity of non-crystalline U(IV) suggests that it drives U fate and transport in the subsurface. W are examining the reduction of U(VI) and subsequent complexation of U(IV) in model NOM systems comprising homogenized, partially degraded plant material, which is analogous to the detrital plant material abundant in Rifle sediments, and its associated microbial consortia. We employ a suite of spectroscopic (X-ray absorption spectroscopies) and microscopic (scanning transmission X-ray microscopy, scanning electron microscopy, and nano-scale secondary ion mass spectrometry) tools that allow us to identify the number and types of coordinating ligands and the distribution of U with respect to NOM components, including bacterial cells, plant matter and entrained minerals. In preliminary experiments we found that 50 - 100 % of U(VI) was reduced to U(IV) within several days. Furthermore, NOM was observed to sorb both U(VI), as a carbonyl complex, and U(IV), possibly as a phosphoryl complex. Further microscopic analyses are designed to elucidate whether U(IV)-P complexes are associated with bacteria or EPS. Our research suggests a new, more complicated model for U(IV) speciation in subsurface sediments, in which complexation by NOM, as

  11. The nature of Cu bonding to natural organic matter

    NASA Astrophysics Data System (ADS)

    Manceau, Alain; Matynia, Anthony

    2010-05-01

    Copper biogeochemistry is largely controlled by its bonding to natural organic matter (NOM) for reasons not well understood. Using XANES and EXAFS spectroscopy, along with supporting thermodynamic equilibrium calculations and structural and steric considerations, we show evidence at pH 4.5 and 5.5 for a five-membered Cu(malate) 2-like ring chelate at 100-300 ppm Cu concentration, and a six-membered Cu(malonate)) 1-2-like ring chelate at higher concentration. A "structure fingerprint" is defined for the 5.0-7.0 Å -1 EXAFS region which is indicative of the ring size and number (i.e., mono- vs. bis-chelate), and the distance and bonding of axial oxygens (O ax) perpendicular to the chelate plane formed by the four equatorial oxygens (O eq) at 1.94 Å. The stronger malate-type chelate is a C 4 dicarboxylate, and the weaker malonate-type chelate a C 3 dicarboxylate. The malate-type chelate owes its superior binding strength to an -OH for -H substitution on the α carbon, thus offering additional binding possibilities. The two new model structures are consistent with the majority of carboxyl groups being clustered and α-OH substitutions common in NOM, as shown by recent infrared and NMR studies. The high affinity of NOM for Cu(II) is explained by the abundance and geometrical fit of the two types of structures to the size of the equatorial plane of Cu(II). The weaker binding abilities of functionalized aromatic rings also is explained, as malate-type and malonate-type structures are present only on aliphatic chains. For example, salicylate is a monocarboxylate which forms an unfavorable six-membered chelate, because the OH substitution is in the β position. Similarly, phthalate is a dicarboxylate forming a highly strained seven-membered chelate. Five-membered Cu(II) chelates can be anchored by a thiol α-SH substituent instead of an alcohol α-OH, as in thio-carboxylic acids. This type of chelate is seldom present in NOM, but forms rapidly when Cu(II) is photoreduced

  12. Soil dissolved organic matter export to coastal temperate rainforest streams

    NASA Astrophysics Data System (ADS)

    Edwards, R. T.; D'Amore, D. V.; Hood, E.; Johnson, A.

    2006-12-01

    The north coastal temperate rainforest is a dynamic area of biogeochemical exchange between terrestrial and aquatic ecosystems. Wetlands and poorly drained soils dominate the landscape, where wetlands alone comprise 30% of the watersheds. The region is experiencing warming with potentially profound impacts on soil processes, forest structure, stream productivity, and the large and valuable salmon fishery. There are few data on stream chemistry, biological productivity, or discharge among soils and streams in the region. To predict the impact of climate change, management practices or land use on streams we need better baseline data on soil-stream interactions in temperate rainforest watersheds. We measured weekly export of dissolved organic matter from 3 dominant soil vegetation communities (peat bogs, forested wetlands and mineral soil uplands) during spring through fall of 2006. Three replicate sites for each soil type were gauged with weirs and fluxes of major forms of carbon, nitrogen and phosphorus measured. Discharge dominated the seasonal flux dynamics but major differences in export and area-specific export emphasized differences in soil-specific transformations on nutrient export potential. Export per unit soil area varied from 0.01 to 25 kg C/ha/day. Peat bogs exported 2-5 times as much per unit area as the other two soils. Forested wetlands were intermediate between bogs and uplands in export per unit area. Mean daily carbon fluxes from gauged subcatchments ranged from 0.01 to 75 kg C/day. Because they are larger than bogs, forested wetlands exported the greatest amount of DOC at our study locations, with uplands exporting intermediate amounts during spring floods. Uplands and bogs exported far less than forested wetlands during normal flow conditions. Total nitrogen fluxes were dominated by organic forms and seasonal trends closely followed the patterns observed for DOC. Although wetlands of either type export more organic matter per unit area, the

  13. ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS

    EPA Science Inventory

    The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...

  14. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  15. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. PMID:26874872

  16. Unraveling the chemical space of terrestrial and meteoritic organic matter

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir

    2015-04-01

    In terrestrial environments natural organic matter (NOM) occurs in soils, freshwater and marine environments, in the atmosphere and represents an exceedingly complex mixture of organic compounds that collectively exhibits a nearly continuous range of properties (size-reactivity continuum). In these materials, the "classical" biogeosignatures of the (biogenic and geogenic) precursor molecules, like lipids, lignins, proteins and natural products have been attenuated, often beyond recognition, during a succession of biotic and abiotic (e.g. photo- and redox chemistry) reactions. Because of this loss of biochemical signature, these materials can be designated non-repetitive complex systems. The access to extra-terrestrial organic matter is given i.e. in the analysis of meteoritic materials. Numerous descriptions of organic molecules present in organic chondrites have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, many molecular analyses are so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a non-targeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of meteorite extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. The description of the molecular complexity provides hints on heteroatoms chronological assembly, shock and thermal events and revealed recently new classes of thousands of novel organic, organometallic compounds uniquely found in extra-terrestrial materials and never described in terrestrial systems. This high polymolecularity suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological and biogeochemical-driven chemical space. (ultra

  17. Organic Matter as an Indicator of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Romero Diaz, Asuncion; Damian Ruiz Sinoga, Jose

    2010-05-01

    Numerous and expensive physical-chemical tests are often carried out to determine the level of soil degration. This study was to find one property, as Organic Matter, which is usually analyzed for determine the soil degradation status. To do this 19 areas in the south and southeast of the Iberian Peninsula (provinces of Málaga, Granada, Almería y Murcia) were selected and a wide sampling process was carried out. Sampling points were spread over a wide pluviometric gradient (from 1100 mm/yr to 232 mm/yr) covering the range from Mediterranean wet to dry. 554 soil surface samples were taken from soil (0-10 cm) and the following properties were analyzed: Texture, Organic Matter (OM), Electric Conductivity (EC), Aggregate Stability (AE) y Cation Exchange Capacity (CEC). These properties were intercorrelated and also with rainfall and the K factor of soil erosion, calculated for each sampling point. Los results obtained by applying the Pearson correlation coefficient to the database shows how as rainfall increases so does OM content (0,97) and la CEC (0,89), but K factor (-0,80) reacts inversely. The content of OM in the soil is related to its biological activity and this in turn is the result of available wáter within the system and, consequently, rainfall. This is specially important in fragile and complex ecogeomorphological systems as is the case of the Mediterranean, where greater or lesser rainfall is similarly reflected in the levels of increase or decrease of soil organic matter. This affirmation is reinforced by linking the organic matter of the soil with other indicative properties such as CEC and erosion, as has been shown by various authors (Imeson y Vis, 1984; De Ploey & Poesen, 1985; Le Bissonnais, 1996; Boix-Fayos et al., 2001; Cammeraat y Imeson, 1998; Cerdá, 1998). As has been stated, there is a direct relationship between rainfall, organic matter content, cation exchange capacity, structural stability, and the resistence to soil erosion factor

  18. Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    2005-05-01

    Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

  19. Complexation of lead by organic matter in Luanda Bay, Angola.

    PubMed

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands. PMID:27624745

  20. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  1. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  2. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  3. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  4. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  5. Persistence of soil organic matter as an ecosystem property

    SciTech Connect

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  6. Persistence of soil organic matter as an ecosystem property.

    PubMed

    Schmidt, Michael W I; Torn, Margaret S; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A C; Nannipieri, Paolo; Rasse, Daniel P; Weiner, Steve; Trumbore, Susan E

    2011-10-01

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming. PMID:21979045

  7. Aquatic Organic Matter Fluorescence - from phenomenon to application

    NASA Astrophysics Data System (ADS)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  8. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    NASA Astrophysics Data System (ADS)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  9. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Simpson, André J.; Gregorich, Edward G.; Elberling, Bo; Hopkins, David W.; Sparrow, Ashley D.; Novis, Philip M.; Greenfield, Lawrence G.; Simpson, Myrna J.

    2010-11-01

    Despite its harsh environmental conditions, terrestrial Antarctica contains a relatively large microbial biomass. Natural abundance carbon and nitrogen stable isotope signatures of organic materials in the dry valleys indicate mixed provenance of the soil organic matter (SOM) with varying proportions of contributions from lichens, mosses, lake-derived algae and cyanobacteria. Here we employed two complementary analytical techniques, biomarker measurements by gas chromatography/mass spectrometry and solution-state 1H nuclear magnetic resonance spectroscopy, to provide further information at a molecular-level about the composition and possible source of SOM in the Garwood Valley, Antarctica. The predominance of branched alkanes and short-chain lipids in the solvent extracts indicates that the primary contribution to the SOM was microbial-derived. Chemical structures in the NaOH extracts from soils were also dominated by amide, peptides, and a CH 3-dominating aliphatic region that were characteristic of microbial signatures. Furthermore, the SOM in the Garwood Valley contained compounds that were different from those in the cyanobacteria-dominated mat from a nearby lake (including monoethyl alkanes and enriched side-chain protons). This observation suggests that easily degradable carbon sources from the nearby lake did not dominate the SOM, which is consistent with a fast turnover of the mat-derived organic matter found in the valley. This study highlights the important role of native soil microbes in the carbon transformation and biogeochemistry in terrestrial Antarctica.

  10. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    NASA Astrophysics Data System (ADS)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  11. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  12. Organic matter protection as affected by the mineral soil matrix: allophanic vs. non-allophanic volcanic ash soils

    NASA Astrophysics Data System (ADS)

    Nierop, K. G. J.; Kaal, J.; Jansen, B.; Naafs, D. F. W.

    2009-04-01

    Volcanic ash soils (Andosols) contain the largest amounts of organic carbon of all mineral soil types. Chemical (complexes of organic matter with allophane, Al/Fe) and physical (aggregation) mechanisms are protecting the carbon from decomposition. While allophanic Andosols are dominated by short range order minerals such as allophane, imogolite and ferrihydrite, organic matter-Al/Fe complexes dominate non-allophanic Andosols. Consequently, chemical interactions between the mineral soil matrix and organic matter differ between these two soil types. This difference could potentially lead to different organic matter compositions. In this study, the organic matter of Ah horizons of an allophanic Andosol with a non-allophanic Andosol from Madeira Island is compared using analytical pyrolysis. Both volcanic soil types showed a relative decrease of lignin-derived pyrolysis products with depth, but this decrease was more pronounced in the allophanic Andosol. Polysaccharides were more abundant in the allophanic Ah horizon, particularly at lower depth, and this was also the case for the non-plant-derived N-containing polysaccharide chitin. Most likely, these biopolymers are adsorbed onto short range order minerals such as allophane and therefore were better protected in the allophanic Andosol. In addition, the higher chitin contents combined with the more pronounced lignin degradation suggests a higher fungal activity. Aliphatic pyrolysis products (n-alkenes/n-alkanes, fatty acids) were relatively more enriched in the non-allophanic Andosol. Lower microbial activity caused by the more acidic pH and higher levels of (toxic) aluminium are the most plausible reasons for the accumulation of these compounds in the non-allophanic Andosol. Although the allophanic and non-allophanic Andosol resembled each other in containing biopolymer groups of the same orders of magnitudes, in particular the contents of chitin and aliphatic compounds were distinctly affected by the differences in

  13. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    PubMed

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. PMID:24839192

  14. Maturation of organic matter during experimental simulation of carbonate diagenesis

    SciTech Connect

    Ferguson, J.; Bush, P.R.; Clarke, B.A. )

    1989-09-01

    An earlier investigation involving the simulation of the early stages of diagenesis of carbonate ooids has been extended to include skeletal carbonates and carbonate mud. The experiments, lasting up to 70 days at elevated hydrostatic pressure and temperatures of 180{degree}-210{degree}C, used natural sea water and recent calcitic and aragonitic carbonate materials collected from Florida Bay and the Bahamas. The results give insight into the processes of maturation and diagenesis of the organic and inorganic fractions. Analysis of the organic fraction, both before and after the experiments, gives indicates of possible pathways of maturation during early diagenesis. A small amount of data is also available on the fate of sugars and amino acids in the system. Overall, the experiments closely approximate the natural system. Reactions occurring in the inorganic components are closely allied to those in the organic fraction. Indeed, two of the critical factors in early carbonate diagenesis are the amount and quality of organic matter and the shape, size, and nature of the carbonate grains. Changes in the carbonate fraction taking place during and after the experiments have been deduced by monitoring the pore fluid chemistry and by analyzing the final solid product. These results are discussed briefly and related to changes in the organic phase.

  15. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick

    2016-05-01

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. PMID:26874432

  16. Release of biodegradable dissolved organic matter from ancient sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Schillawski, Sarah; Petsch, Steven

    2008-09-01

    Sedimentary rocks contain the largest mass of organic carbon on Earth, yet these reservoirs are not well integrated into modern carbon budgets. Here we describe the release of dissolved organic matter (DOM) from OM-rich sedimentary rocks under simulated weathering conditions. Results from column experiments demonstrate slow, sustained release of DOM from ancient sedimentary rocks under simulated weathering conditions. 1H-NMR analysis of shale-derived DOM reveals a highly aliphatic, carbohydrate-poor material distinct from other natural DOM pools. Shale-derived DOM is rapidly assimilated and biodegraded by aerobic heterotrophic bacteria. Consequently, no compositional signature of shale-derived DOM other than 14C-depletion is likely to persist in rivers or other surface reservoirs. Combined, these efforts show that dissolution provides a mechanism for the conversion of refractory kerogen into labile biomass, linking rock weathering with sedimentary OM oxidation and the delivery of aged OM to rivers and ocean margins.

  17. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  18. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  19. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  20. Mesopelagic N2 Fixation Related to Organic Matter Composition in the Solomon and Bismarck Seas (Southwest Pacific)

    PubMed Central

    Benavides, Mar; Moisander, Pia H.; Berthelot, Hugo; Dittmar, Thorsten; Grosso, Olivier; Bonnet, Sophie

    2015-01-01

    Dinitrogen (N2) fixation was investigated together with organic matter composition in the mesopelagic zone of the Bismarck (Transect 1) and Solomon (Transect 2) Seas (Southwest Pacific). Transparent exopolymer particles (TEP) and the presence of compounds sharing molecular formulae with saturated fatty acids and sugars, as well as dissolved organic matter (DOM) compounds containing nitrogen (N) and phosphorus (P) were higher on Transect 1 than on Transect 2, while oxygen concentrations showed an opposite pattern. N2 fixation rates (up to ~1 nmol N L-1 d-1) were higher in Transect 1 than in Transect 2, and correlated positively with TEP, suggesting a dependence of diazotroph activity on organic matter. The scores of the multivariate ordination of DOM molecular formulae and their relative abundance correlated negatively with bacterial abundances and positively with N2 fixation rates, suggesting an active bacterial exploitation of DOM and its use to sustain diazotrophic activity. Sequences of the nifH gene clustered with Alpha-, Beta-, Gamma- and Deltaproteobacteria, and included representatives from Clusters I, III and IV. A third of the clone library included sequences close to the potentially anaerobic Cluster III, suggesting that N2 fixation was partially supported by presumably particle-attached diazotrophs. Quantitative polymerase chain reaction (qPCR) primer-probe sets were designed for three phylotypes and showed low abundances, with a phylotype within Cluster III at up to 103 nifH gene copies L-1. These results provide new insights into the ecology of non-cyanobacterial diazotrophs and suggest that organic matter sustains their activity in the mesopelagic ocean. PMID:26659074

  1. Near IR Spectroscopy of Iapetus : Search for Organic Matter

    NASA Astrophysics Data System (ADS)

    Wittemberg, R.; Coustenis, A.; Schmitt, B.; Cuby, J.-G.; Quirico, E.; Doute, S.

    1997-07-01

    One of the most mysterious among the icy Saturnian satellites, Iapetus, is unique in its range of surface albedos, from 0.5 on the trailing side (typical of icy objects) to 0.02-0.04 in the inner parts of the leading hemisphere. This albedo asymmetry is not unique in the solar system, as Titan and Hyperion present such a property, which might be indicative of a common origin. The nature and the origin of the dark component has not been elucidated yet, but according to some models, this is possibly connected with the presence of organic material on the surface. We have tried to detect organic lines on the leading side of Iapetus with the Infrared Spectrometer (ISIS) at the CFHT in the 1.4-1.8 micron range, where some signatures of most of the expected organic components (Polymers, tholins and other hydrocarbons) are located. The observations were made with R=2000 on 26 & 27 August 1996. We have compared the observations with laboratory measurements made at the L.G.G.E (Grenoble, France) of C_3H_8, C_2H_4, C_2H_6 & C_2H_2 (Quirico and Schmitt, 1997, Icarus, in press). No obvious identification was achieved, but we set constraints on the abundance of some organics on Iapetus' surface.

  2. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  3. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration. PMID:26015089

  4. Synergy of fresh and accumulated organic matter to bacterial growth.

    PubMed

    Farjalla, Vinicius F; Marinho, Claudio C; Faria, Bias M; Amado, André M; Esteves, Francisco de A; Bozelli, Reinaldo L; Giroldo, Danilo

    2009-05-01

    The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal. PMID:18985269

  5. Photosensitizing properties of water-extractable organic matter from soils.

    PubMed

    Nkhili, Ezzhora; Boguta, Patrycja; Bejger, Romualda; Guyot, Ghislain; Sokołowska, Zofia; Richard, Claire

    2014-01-01

    Water-extractable organic matter (WEOM) was extracted using pure water from two black soils and from the Elliott reference soil of the International Humic Substances Society (IHSS). WEOMs were characterized by chemical and spectroscopic methods. The apparent quantum yields of singlet oxygen, triplet excited states and hydroxyl radicals formation upon irradiation within the wavelength range 290-450 nm were determined using chemical probes and compared to those of standard Elliott humic substances. In general, the aromatic content, as measured by the SUVA value, was close in WEOMs and humic substances, while the E2/E3 was higher and the humification index lower in the former. Quantum yield values measured for WEOMs fell within the range of those found for basic medium extracted humic substances or were even higher in one case. Thus, water soluble aromatic moiety of the soil organic matter, especially those with low humification degree, is important for the photosensitizing properties. We also found that WEOMs sensitized the bisphenol A phototransformation with rates of the same order of magnitude for all the samples. PMID:24083904

  6. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation. PMID:19491501

  7. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  8. Organic matter turnover in subsoils: current knowledge and future challenges

    NASA Astrophysics Data System (ADS)

    Marschner, Bernd

    2014-05-01

    In the past, carbon flux measurements and modelling have mostly considered the topsoil where C-concentrations, root densities and microbial activities are generally highest. However, depending on climate zone and land use, this soil compartment contains only 30-50% of the C-stocks of the first meter. If the deeper subsoil down to 3 m is also considered, the contribution of topsoil carbon stocks to total soil C-pools is only 20-40%. Another distinct property of subsoil organic matter is its high apparent 14C age. The 14C age of bulk soil organic matter below 30 cm depth generally increases continuously indicating mean residence times of several 103 to 104 years. Large pool size and high radiocarbon age suggest that subsoil OM has accumulated at very low rates over very long time periods and therefore appears to be very stable. In this review, several hypotheses for explaining why subsoil SOM is so seemingly old and inert are presented. These questions are being addressed in a recently granted German research unit consisting of 9 subprojects from all soil science disciplines using field measurements of C-fluxes, 14C analyses and conducting field and lab experiments.

  9. An enhanced capillary electrophoresis method for characterizing natural organic matter.

    PubMed

    Cottrell, Barbara A; Cheng, Wei Ran; Lam, Buuan; Cooper, William J; Simpson, Andre J

    2013-02-21

    Natural organic matter (NOM) is ubiquitous and is one of the most complex naturally occurring mixtures. NOM plays an essential role in the global carbon cycle; atmospheric and natural water photochemistry; and the long-range transport of trace compounds and contaminants. There is a dearth of separation techniques capable of resolving this highly complex mixture. To our knowledge, this is the first reported use of ultrahigh resolution counterbalance capillary electrophoresis to resolve natural organic matter. The new separation strategy uses a low pH, high concentration phosphate buffer to reduce the capillary electroosmotic flow (EOF). Changing the polarity of the electrodes reverses the EOF to counterbalance the electrophoretic mobility. Sample stacking further improves the counterbalance separation. The combination of these conditions results in an electropherogram comprised up to three hundred peaks superimposed on the characteristic "humic hump" of NOM. Fraction collection, followed by three-dimensional emission excitation spectroscopy (EEMs) and UV spectroscopy generated a distinct profile of fluorescent and UV absorbing components. This enhanced counterbalance capillary electrophoresis method is a potentially powerful technique for the characterization and separation of NOM and complex environmental mixtures in general. PMID:23289095

  10. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  11. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  12. Impact of Native and Invasive Earthworm Activity on Forest Soil Organic Matter Dynamics

    NASA Astrophysics Data System (ADS)

    Top, Sara; Filley, Timothy

    2010-05-01

    Many northern North American forests are experiencing the introduction of exotic European lumbricid species earthworms with documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations as a result. Some of these forests were previously devoid of these ecosystem engineers. We compare the soil isotope and molecular chemistry from two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) that lie within the zones of earthworm invasion. These sites exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Additionally, 15N-labeled additions to the soil provide additional methods for tracking earthworm impacts. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicate how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and

  13. Predators alter community organization of coral reef cryptofauna and reduce abundance of coral mutualists

    NASA Astrophysics Data System (ADS)

    Stier, A. C.; Leray, M.

    2014-03-01

    Coral reefs are the most diverse marine systems in the world, yet our understanding of the processes that maintain such extraordinary diversity remains limited and taxonomically biased toward the most conspicuous species. Cryptofauna that live deeply embedded within the interstitial spaces of coral reefs make up the majority of reef diversity, and many of these species provide important protective services to their coral hosts. However, we know very little about the processes governing the diversity and composition of these less conspicuous but functionally important species. Here, we experimentally quantify the role of predation in driving the community organization of small fishes and decapods that live embedded within Pocillopora eydouxi, a structurally complex, reef-building coral found widely across the Indo-Pacific. We use surveys to describe the natural distribution of predators, and then, factorially manipulate two focal predator species to quantify the independent and combined effects of predator density and identity on P. eydouxi-dwelling cryptofauna. Predators reduced abundance (34 %), species richness (20 %), and modified species composition. Rarefaction revealed that observed reductions in species richness were primarily driven by changes in abundance. Additionally, the two predator species uniquely affected the beta diversity and composition of the prey assemblage. Predators reduced the abundance and modified the composition of a number of mutualist fishes and decapods, whose benefit to the coral is known to be both diversity- and density-dependent. We predict that the density and identity of predators present within P. eydouxi may substantially alter coral performance in the face of an increased frequency and intensity of natural and anthropogenic stressors.

  14. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  15. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight

    NASA Astrophysics Data System (ADS)

    Mitra, Siddhartha; Bianchi, Thomas S.; Guo, Laodong; Santschi, Peter H.

    2000-10-01

    Concentrations of lignin-phenols were analyzed in high molecular weight dissolved organic matter (0.2 μm > HMW DOM > 1 kDa) isolated from surface waters of the Chesapeake Bay (C. Bay), and surface and bottom waters of the Middle Atlantic Bight (MAB). The abundance of lignin-phenols in HMW DOM was higher in the C. Bay (0.128 ± 0.06 μg L -1) compared to MAB surface waters (0.016 ± 0.004 μg L -1) and MAB bottom waters (0.005 ± 0.003 μg L -1). On an organic carbon-normalized basis, lignin-phenol abundances in the HMW DOM (i.e., Λ 6), were significantly higher ( p < 0.05) in bottom waters compared to sediments at some stations in the MAB. Ratios of syringyl to vanillyl phenols (S/V) in HMW DOM, indicative of angiosperm-derived lignin, ranged from 0.165 to 0.422 in C. Bay, 0.100 to 0.314 in MAB surface waters, and 0.076 to 0.357 in MAB bottom waters. Ratios of vanillic acid to vanillin (Ad/Al) V in HMW DOM, indicative of lignin decay, ranged from 0.611 to 1.37 in C. Bay, 0.534 to 2.62 in MAB surface waters, and 0.435 to 1.96 in MAB bottom water. Ratios of S/V and (Ad/Al) V showed no significant differences between each environment, providing no evidence of any compositionally distinct input of terrestrial organic matter into each environment. When considering depth profiles of suspended particulate matter in the MAB, with C:N ratios, and bulk radiocarbon ages and stable carbon isotopic values in HMW DOM isolated from these areas, two scenarios present themselves regarding the sources and transport of terrestrially derived HMW DOM in the MAB. Scenario #1 assumes that a low amount of refractory terrestrial organic matter and old DOC are uniformly distributed in the oceans, both in surface and bottom waters, and that primary production in surface waters increases DOC with low lignin and younger DOC which degrades easily. In this case, many of the trends in age and biomarker composition likely reflect general patterns of Atlantic Ocean surface and bottom water

  16. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    PubMed Central

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  17. Chemical mapping of proterozoic organic matter at submicron spatial resolution.

    PubMed

    Oehler, Dorothy Z; Robert, François; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S

    2006-12-01

    A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples. PMID:17155884

  18. Molecular composition of organic fine particulate matter in Houston, TX

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Yue, Z. W.; Tropp, R. J.; Kohl, S. D.; Chow, J. C.

    Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.

  19. DETOXIFICATION OF OUTFALL WATER USING NATURAL ORGANIC MATTER

    SciTech Connect

    Halverson, N.; Looney, B.; Millings, M.; Nichols, R.; Noonkester, J.; Payne, B.

    2010-07-13

    To protect stream organisms in an ephemeral stream at the Savannah River Site, a proposed National Pollutant Discharge Elimination System (NPDES) permit reduced the copper limit from 25 {micro}g/l to 6 {micro}g/l at Outfall H-12. Efforts to reduce copper in the wastewater and stormwater draining to this outfall did not succeed in bringing copper levels below this limit. Numerous treatment methods were considered, including traditional methods such as ion exchange and natural treatment alternatives such as constructed wetlands and peat beds, all of which act to remove copper. However, the very low target metal concentration and highly variable outfall conditions presented a significant challenge for these treatment technologies. In addition, costs and energy use for most of these alternatives were high and secondary wastes would be generated. The Savannah River National Laboratory developed an entirely new 'detoxification' approach to treat the outfall water. This simple, lower-cost detoxification system amends outfall water with natural organic matter to bind up to 25 {micro}g/l copper rather than remove it, thereby mitigating its toxicity and protecting the sensitive species in the ecosystem. The amendments are OMRI (Organic Materials Review Institute) certified commercial products that are naturally rich in humic acids and are commonly used in organic farming.

  20. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  1. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  2. Targeted Access to the Genomes of Low Abundance Organisms in Complex Microbial Communities

    SciTech Connect

    Podar, Mircea; Abulencia, Carl; Walcher, Marion; Hutchinson, Don; Zengler, Karsten; Garcia, Joseph; Holland, Trevin; Cotton, Dave; Hauser, Loren John; Keller, Martin

    2007-01-01

    Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism, and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequency, especially those representing yet uncultured taxa-which includes the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms directly isolated from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the community metabolic potential.

  3. Nanoscale Structure Of Organic Matter Explain Its Recalcitrance To Degradation

    NASA Astrophysics Data System (ADS)

    Spagnol, M.; Salati, S.; Papa, G.; Tambone, F.; Adani, F.

    2009-04-01

    Recalcitrance can be defined as the natural resistance of organic matter (OM) to microbial and enzymatic deconstruction (Himmel et al., 2007). The nature of OM recalcitrance remained not completely understood and more studies need above all to elucidate the role of the chemical topography of the OM at nanometer scale. Hydrolytic enzymes responsible of OM degradation have a molecular weight of 20-25 kD, corresponding to a size of about 4 nm, hardly penetrate into micropores (i.e. the pore having a diameter < 2 nm) and small mesopores (i.e. pores having a diameter 2 < 50 nm) of OM structures, so that their activities are confined only to a portion of the total surface (Zimmerman et al., 2004; Chesson, 1997; Adani et al., 2006). As consequence of that the characterization of the organic matter at nano-scale became interesting in view to explain OM recalcitrance. The aim of this work was to asses the effect of the nano-scale structure of OM versus its recalcitrance. The evolution of organic matter of organic matrices was studied in two systems: plant residue-soil system and simulated landfill system. Plant residues were incubated in soil for one year and recalcitrant fraction, i.e. humic acid, was isolated and studied. Laboratory simulated landfill considered organic fraction of municipal solid waste sampled at different stages of evolution from a full scale plant and incubated under anaerobic condition for one year. In addition the nano-scale structure of fossilized OM (leonardite, chair coal and graphite) was detected as used as model of recalcitrant OM. Nano-scale structures were detected by using meso and microporosity detection. In particular microporosity was determined by adsorption method using CO2 at 273 K and Non Local Density Functional Theory (NLDFT) method was applied to measure the CO2 adsorption isotherms. On the other hand mesoporosity was detected by using N2 adsorption method at 77 K. The BET (Brunauer-Emmett-Teller) equation and the BJH (Barret

  4. Measuring Organic Matter with COSIMA on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Briois, C.; Baklouti, D.; Bardyn, A.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Godard, M.; Hilchenbach, M.; von Hoerner, H.; Höfner, H.; Hornung, K.; Kissel, J.; Langevin, Y.; Le Roy, L.; Lehto, H.; Lehto, K.; Orthous-Daunay, F. R.; Revillet, C.; Rynö, J.; Schulz, R.; Silen, J. V.; Siljeström, S.; Thirkell, L.

    2014-12-01

    Comets are believed to contain the most pristine material of our Solar System materials and therefore to be a key to understand the origin of the Solar System, and the origin of life. Remote sensing observations have led to the detection of more than twenty simple organic molecules (Bockelée-Morvan et al., 2004; Mumma and Charnley, 2011). Experiments on-board in-situ exploration missions Giotto and Vega and the recent Stardust sample return missions have shown that a significant fraction of the cometary grains consists of organic matter. Spectra showed that both the gaseous (Mitchell et al., 1992) and the solid phase (grains) (Kissel and Krueger, 1987) contained organic molecules with higher masses than those of the molecules detected by remote sensing techniques in the gaseous phase. Some of the grains analyzed in the atmosphere of comet 1P/Halley seem to be essentially made of a mixture of carbon, hydrogen, oxygen and nitrogen (CHON grains, Fomenkova, 1999). Rosetta is an unparalleled opportunity to make a real breakthrough into the nature of cometary matter, both in the gas and in the solid phase. The dust mass spectrometer COSIMA on Rosetta will analyze organic and inorganic phases in the dust. The organic phases may be refractory, but some organics may evaporate with time from the dust and lead to an extended source in the coma. Over the last years, we have prepared the cometary rendezvous by the analysis of various samples with the reference model of COSIMA. We will report on this calibration data set and on the first results of the in-situ analysis of cometary grains as captured, imaged and analyzed by COSIMA. References : Bockelée-Morvan, D., et al. 2004. (Eds.), Comets II. the University of Arizona Press, Tucson, USA, pp. 391-423 ; Fomenkova, M.N., 1999. Space Science Reviews 90, 109-114 ; Kissel, J., Krueger, F.R., 1987. Nature 326, 755-760 ; Mitchell, et al. 1992. Icarus 98, 125-133 ; Mumma, M.J., Charnley, S.B., 2011. Annual Review of Astronomy and

  5. Distribution, origin and transformation of amino sugars and bacterial contribution to estuarine particulate organic matter

    NASA Astrophysics Data System (ADS)

    Khodse, Vishwas B.; Bhosle, Narayan B.

    2013-10-01

    Amino sugars including bacterial biomarker muramic acid (Mur) were investigated in suspended particulate matter (SPM) to understand their distribution, origin, and biogeochemical cycling and the contribution of bacteria to particulate organic matter (POM) of the Mandovi estuary. SPM was collected from 9 sampling stations in the Mandovi estuary during the pre-monsoon (March) and monsoon (August). Total particulate amino sugar (TPAS) concentrations and yields varied spatially and were 2 to 5 times higher during the monsoon than the pre-monsoon. Negative correlation between salinity and TPAS-C yields [TPAS-C/particulate organic carbon (POC)×100] indicates the influence of terrestrial organic matter on the transport of TPAS-carbon. Glucosamine (GlcN), galactosamine (GalN), and mannosamine (ManN) were abundant during the monsoon. Low GlcN/GalN ratios (<3) indicate bacteria as the major source of amino sugars. Higher amino sugar yields and lower GlcN/GalN ratios during the monsoon than the pre-monsoon indicate enhanced transformation and greater bacterial contribution to POM during the former season. Degradation trends observed with TPAS were well supported by those obtained with carbohydrates and amino acids. Based on Mur concentrations, bacteria accounted for 24% to 35% of the POC and 24% to 62% of the total particulate nitrogen (TPN). Intact bacterial cells, however accounted for a small proportion of POC (2.5% to 4%) and TPN (9% to 11%). Our study suggests that POM was subjected to extensive diagenetic transformation, and its composition was influenced by bacteria, especially during the monsoon.

  6. Strong pathways for incorporation of terrestrially derived organic matter into benthic communities

    NASA Astrophysics Data System (ADS)

    McLeod, Rebecca J.; Wing, Stephen R.

    2009-05-01

    In Fiordland, New Zealand, large volumes of organic matter are deposited into the marine environment from pristine forested catchments. Analyses of δ15N, δ13C and δ34S were employed to determine whether these inputs were contributing to marine food webs via assimilation by common macroinvertebrates inhabiting the inner reaches of the fjords. Terrestrially derived organic matter (TOM) had values of δ15N, δ13C and δ34S that were distinct from other carbon source pools, providing sufficient power to quantify the contribution of TOM to the benthic food web. Isotopic values among macroinvertebrates varied significantly, with consistently low values of δ15N, δ13C and δ34S for the abundant deposit feeders Echinocardium cordatum (Echinodermata) and Pectinaria australis (Annelida), indicating assimilation of TOM. High concentrations of bacterial fatty acid biomarkers in E. cordatum, and values of δ13C of these biomarkers similar to TOM (-27 to -30‰) confirmed that TOM is indirectly assimilated by these sea urchins via heterotrophic bacteria. TOM was also found to enter the infaunal food web via chemoautotrophic bacteria that live symbiotically within Solemya parkinsonii (Bivalvia). Echinocardium cordatum, Pectinaria australis and S. parkinsonii comprised up to 33.5% of the biomass of the macroinfaunal community, and thus represent strong pathways for movement of organic matter from the forested catchments into the benthic food web. This demonstration of connectivity among adjacent marine and terrestrial habitats has important implications for coastal land management, and highlights the importance of intact coastal forests to marine ecosystem function.

  7. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  8. Molecular simulation of a model of dissolved organic matter

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  9. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  10. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  11. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  12. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  13. Microbial response to the effect of quantity and quality soil organic matter alteration after laboratory heating

    NASA Astrophysics Data System (ADS)

    Bárcenas-Moreno, G.; Escalante, E.; Pérez-Bejarano, A.; Zavala, L. M.; Jordán, A.

    2012-04-01

    Fire-induced soil changes influence indirectly on soil microbial response, mainly due to pH increases and organic matter alterations. Partial carbon combustion can originate both, an increase in microbial activity due to dissolved organic carbon increases (Bárcenas-Moreno and Bååth, 2099, Bárcenas-Moreno et al., 2011), as well as limitation of microbial growth, either due to diminution of some fractions of organic matter (Fernández et al., 1997) or due to the formation of toxic compounds (Widden and Parkinson, 1975; Diaz-Raviña et al., 1996). The magnitude or direction of these changes is conditioned mainly by fire intensity and plant species, so forest with different vegetation could promote different quantity and quality alterations of soil organic matter after fire which leads to different soil microbial response. The objective of this work was to differentiate between the effect of reduction of carbon content and the presence of substances with inhibitory effect on soil microorganisms, inoculating microorganisms from an unaltered forest area on heated soil extract-based culture media. Soil collected from two different vegetation forest, pine (P) and oak (O) forests, with similar soil characteristics was sieved and heated at 450 °C in a muffle furnace. Heated and unheated soil was used to prepare culture media resulting in different treatments: pine unheated (PUH), pine heated at 450 °C (P450), Oak unheated (OUH) and oak heated at 450 °C (O450). To isolate inhibition of microbial proliferation and nutrient limitation, different nutritive supplements were added to the media, obtaining two levels of nutrient status for each media described above: no nutrients added (-) and nutrients added (+). Colony forming units (CFU) were enumerated as estimation of viable and cultivable microbial abundance and soil parameters characterization was also realized. Significant differences were found between CFU isolated using heated and unheated soil extract-based media

  14. Saltcedar (Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream

    USGS Publications Warehouse

    Kennedy, T.A.; Hobbie, S.E.

    2004-01-01

    1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring-fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance. 2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m-2 year-1, macrophyte production of 15 g AFDM m-2 year-1 and algal production of 400 g AFDM m-2 year-1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7-34 g AFDM m -2 year-1, macrophyte production of 118-425 g AFDM m -2 year-1 and algal production of 640-900 g AFDM m -2 year-1. 3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.

  15. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  16. Fluorescence Characterization of Dissolved Organic Matter Isolates from Sediments and the Association with Phenanthrene Binding Affinity

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Lee, Bo-Mi; Shin, Kyung-Hoon

    2014-05-01

    In this study, selected spectroscopic characteristics of sediment organic matter (SOM) were compared and discussed with respect to their different isolation methods, the source discrimination capabilities, and the association with the extent of phenanthrene binding. A total of 16 sediments were collected from three categorized locations including a costal lake, industrial areas, and the upper streams, each of which is likely influenced by the organic sources of algal production, industrial effluent, and terrestrial input, respectively. The spectroscopic properties related to aromatic structures and terrestrial humic acids were more pronounced for alkaline extractable organic matter (AEOM) isolates than for the SOM isolates based on water soluble extracts and porewater. The three categorized sampling locations were the most differentiated in the AEOM isolates, suggesting AEOM may be the most representative SOM isolates in describing the chemical properties and the organic sources of SOM. Parallel factor analysis (PARAFAC) based on fluorescence excitation-emission matrix (EEM) showed that a combination of four fluorescent groups could represent all the fluorescence features of SOM. The three categorized sampling locations were well discriminated by the percent distributions of terrestrial and microbial humic-like fluorescent groups of the AEOM isolates. The relative distribution of terrestrial humic-like fluorophores was highly correlated with the extent of phenanthrene binding (r=0.676; p<0.01), suggesting that the presence of terrestrial humic acids in SOM may contribute to the enhancement of binding with hydrophobic organic contaminants in sediments. Principal component analysis (PCA) further demonstrated that the extent of SOM's binding affinity might be affected by the degree of biological transformation in SOM as well as the abundance of aromatic carbon structures.

  17. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  18. Soil organic matter dynamics under different land-use in grasslands in Inner Mongolia (northern China)

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wu, W.; Xu, X.; Xu, Y.

    2014-04-01

    We examined bulk soil properties and molecular biomarker distributions in surface soils from Inner Mongolia grasslands in order to understand the responses of soil organic matter to different land-use. The total of sixteen soils were collected from severely degraded grassland by overgrazing (DG), native grassland without apparent anthropogenic disturbance (NG), groundwater-sustaining grassland (GG) and restored grassland from previous potato cropland (RG). Compared to NG, soil organic carbon content was lower by 50% in DG, but higher by six-fold in GG and one-fold in RG. The δ13C values of soil organic carbon were -24.2 ± 0.6‰ in DG, -24.9 ± 0.6‰ in NG, -25.1 ± 0.1‰ in RG and -26.2 ± 0.6‰ in GG, reflecting different degradation degrees of soil organic matter or different water use efficiencies. The soils in DG contained the lowest abundance of aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acids, ω-hydroxylalkanoic acids and α-hydroxylalkanoic acids) and lignin-phenols, suggesting selective removal of these biochemically recalcitrant biomarkers with grassland degradation by microbial respiration or wind erosion. Compared to NG, the soils in GG and RG increased ω-hydroxylalkanoic acids by 60-70%, a biomarker for suberin from roots, and increased α-hydroxylalkanoic acids by 10-20%, a biomarker for both cutin and suberin. Our results demonstrate that the groundwater supply and cultivation-restoration practices in Inner Mongolia grasslands not only enhance soil organic carbon sequestration, but also change the proportions of shoot vs. root-derived carbon in soils. This finding has important implications for global carbon cycle since root derived aliphatic carbon has a longer residence time than the aboveground tissue-derived carbon in soils.

  19. Soil organic matter dynamics under different land use in grasslands in Inner Mongolia (northern China)

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wu, W.; Xu, X.; Xu, Y.

    2014-09-01

    We examined bulk soil properties and molecular biomarker distributions in surface soils from Inner Mongolian grasslands in order to understand the responses of soil organic matter to different land use. A total of 16 soils were collected from severely degraded grassland by overgrazing (DG), native grassland without apparent anthropogenic disturbance (NG), groundwater-sustaining grassland (GG) and restored grassland from previous potato cropland (RG). Compared to NG, soil organic carbon content was lower by 50% in DG, but higher by six-fold in GG and one-fold in RG. The δ13C values of soil organic carbon were -24.2 ± 0.6‰ in DG, -24.9 ± 0.6‰ in NG, -25.1 ± 0.1‰ in RG and -26.2 ± 0.6‰ in GG, reflecting different degradation degrees of soil organic matter or different water use efficiencies. The soils in DG contained the lowest abundance of aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acids, ω-hydroxylalkanoic acids and α-hydroxyalkanoic acids) and lignin-phenols, suggesting selective removal of these biochemically recalcitrant biomarkers with grassland degradation by microbial respiration or wind erosion. Compared to NG, the soils in GG and RG increased ω-hydroxylalkanoic acids by 60-70%, a biomarker for suberin from roots, and increased α-hydroxylalkanoic acids by 10-20%, a biomarker for both cutin and suberin. Our results demonstrate that the groundwater supply and cultivation-restoration practices in Inner Mongolian grasslands not only enhance soil organic carbon sequestration, but also change the proportions of shoot- versus root-derived carbon in soils. This finding has important implications for the global carbon cycle since root-derived aliphatic carbon has a longer residence time than the aboveground tissue-derived carbon in soils.

  20. Organic-matter retention and macroinvertebrate utilization of seasonally inundated bryophytes in a mid-order Piedmont River

    USGS Publications Warehouse

    Wood, James; Pattillo, Meryom; Freeman, Mary C.

    2016-01-01

    There is increased understanding of the role of bryophytes in supporting invertebrate biomass and for their influence on nutrient cycling and carbon balance in aquatic systems, but the structural and functional role of bryophytes growing in seasonally inundated habitats is substantially less studied. We conducted a study on the Middle Oconee River, near Athens, GA, to assess invertebrate abundance and organic-matter retention in seasonally inundated patches of the liverwort Porella pinnata, a species that tends to be submerged only when water levels in rivers are substantially above base flow. Aquatic invertebrate utilization of these seasonally inundated habitats has rarely been investigated. Macroinvertebrate biomass, insect density, and organic-matter content were significantly greater in patches of P. pinnata than on adjacent bare rock. Bryophyte biomass explained additional variation in organic matter, insect biomass, and density. The most abundant insects in P. pinnata patches were Dipterans and Plecopterans. Our results suggest an important structural role of seasonally inundated bryophyte habitats in riverine ecosystems.

  1. Storage and turnover of organic matter in soil

    SciTech Connect

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  2. Size fractionated characterization of freshwater organic matter fluorescence

    NASA Astrophysics Data System (ADS)

    Baker, A.; Lead, J.; Elliott, S.; Demomi, A.; Liu, R.; Seredynska-Sobecka, B.; Hudson, N. J.

    2006-12-01

    We employ a range of optical (fluorescence, absorbance) techniques to freshwater organic matter, focusing on samples from urban catchments and using both traditional (filtration, cross flow ultrafiltration) and novel (split cell thin flow (SPLITT)) fractionation techniques to investigate the fluorescence characteristics of both dissolved and colloidal organic matter and to probe different fractions of the size range. We find: (1) As with previous studies, urban freshwaters have high tryptophan-like fluorescence in comparison to humic-like fluorescence. (2) After conventional filtration, our samples demonstrate that humic-like fluorescence is predominantly within the <25 nm fraction and pH dependent, suggesting that it is predominantly `dissolved'. Tryptophan-like fluorescence is associated with either dissolved, colloidal and particulate fractions, and is less pH dependent, depending on the sample, suggesting a variety of sources that are known to include microbial and biological cells and their exudates and the products of decomposition and feeding. (3) When the thermal quenching of fluorescence is investigated at different filter fractions, humic-like fluorescence quenching does not vary with filter fraction, whereas tryptophan-like fluorescence quenching exhibits a size dependency. This confirms at least two sources of tryptophan-like fluorescence that have different sizes and different thermal quenching properties. (4) SPLITT also shows that tryptophan-like fluorescence intensity is found mainly in the particulate material and is not pH dependent, while humic-like fluorescence intensities are dependent on pH but not on size. However, humic-like fluorescence intensity normalised to absorbance, related to fluorescence efficiency and molar mass, varies with size in the SPLITT samples. (5) Cross flow ultrafiltration confirms that, compared with tryptophan standards, freshwater tryptophan-like fluorescence is not dissolved and `free'. However, it is related to the

  3. Root Mediation of Soil Organic Matter Feedbacks to Climate Change

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Nie, M.; Osanai, Y.; Nelson, L. C.; Sanderman, J.; Baldock, J.; Hovenden, M.

    2014-12-01

    The importance of plant roots in carbon cycling and especially soil organic matter (SOM) formation and decomposition has been recently recognized. Up to eighty percent of net primary production may be allocated to roots in ecosystems such as grasslands, where they contribute substantially to SOM formation. On the other hand, root induced priming of SOM decomposition has been implicated in the loss of soil C stocks. Thus, the accurate prediction of climate change impacts on C sequestration in soils largely depends upon improved understanding of root-mediated SOM formation and loss in the rhizosphere. This presentation represents an initial attempt to synthesize belowground observations from free-air CO2 enrichment and warming experiments in two grassland ecosystems. We found that the chemical composition of root carbon is similar to particulate organic matter (POM), but not to mineral associated organic matter (MOM), suggesting less microbial modification during formation of POM than MOM. While root biomass and production rates increased under elevated CO2, POM and MOM fractions did not increase proportionally. We also observed increased root decomposition with elevated CO2, which was likely due to increased soil water and substrate availability, since root C quality (determined by NMR) and decomposition (in laboratory incubations) were unaltered. Further, C quality and decomposition rates of roots differed between C3 and C4 functional types. Changes in root morphology with elevated CO2 have altered root functioning. Increased root surface area and length per unit mass allow increased exploration for nutrients, and potentially enhanced root exudation, rhizodeposition, and priming of SOM decomposition. Controlled chamber experiments demonstrated that uptake of N from SOM was linearly correlated with specific root length. Taken together, these results indicate that root morphology, chemistry and function all play roles in affecting soil C storage and loss, and that

  4. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter

    PubMed Central

    Orsi, William D; Smith, Jason M; Wilcox, Heather M; Swalwell, Jarred E; Carini, Paul; Worden, Alexandra Z; Santoro, Alyson E

    2015-01-01

    Particles in aquatic environments host distinct communities of microbes, yet the evolution of particle-specialized taxa and the extent to which specialized microbial metabolism is associated with particles is largely unexplored. Here, we investigate the hypothesis that a widely distributed and uncultivated microbial group—the marine group II euryarchaea (MGII)—interacts with living and detrital particulate organic matter (POM) in the euphotic zone of the central California Current System. Using fluorescent in situ hybridization, we verified the association of euryarchaea with POM. We further quantified the abundance and distribution of MGII 16 S ribosomal RNA genes in size-fractionated seawater samples and compared MGII functional capacity in metagenomes from the same fractions. The abundance of MGII in free-living and >3 μm fractions decreased with increasing distance from the coast, whereas MGII abundance in the 0.8–3 μm fraction remained constant. At several offshore sites, MGII abundance was highest in particle fractions, indicating that particle-attached MGII can outnumber free-living MGII under oligotrophic conditions. Compared with free-living MGII, the genome content of MGII in particle-associated fractions exhibits an increased capacity for surface adhesion, transcriptional regulation and catabolism of high molecular weight substrates. Moreover, MGII populations in POM fractions are phylogenetically distinct from and more diverse than free-living MGII. Eukaryotic phytoplankton additions stimulated MGII growth in bottle incubations, providing the first MGII net growth rate measurements. These ranged from 0.47 to 0.54 d−1. However, MGII were not recovered in whole-genome amplifications of flow-sorted picoeukaryotic phytoplankton and heterotrophic nanoflagellates, suggesting that MGII in particle fractions are not physically attached to living POM. Collectively, our results support a linkage between MGII ecophysiology and POM, implying that

  5. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter.

    PubMed

    Orsi, William D; Smith, Jason M; Wilcox, Heather M; Swalwell, Jarred E; Carini, Paul; Worden, Alexandra Z; Santoro, Alyson E

    2015-08-01

    Particles in aquatic environments host distinct communities of microbes, yet the evolution of particle-specialized taxa and the extent to which specialized microbial metabolism is associated with particles is largely unexplored. Here, we investigate the hypothesis that a widely distributed and uncultivated microbial group--the marine group II euryarchaea (MGII)--interacts with living and detrital particulate organic matter (POM) in the euphotic zone of the central California Current System. Using fluorescent in situ hybridization, we verified the association of euryarchaea with POM. We further quantified the abundance and distribution of MGII 16 S ribosomal RNA genes in size-fractionated seawater samples and compared MGII functional capacity in metagenomes from the same fractions. The abundance of MGII in free-living and >3 μm fractions decreased with increasing distance from the coast, whereas MGII abundance in the 0.8-3 μm fraction remained constant. At several offshore sites, MGII abundance was highest in particle fractions, indicating that particle-attached MGII can outnumber free-living MGII under oligotrophic conditions. Compared with free-living MGII, the genome content of MGII in particle-associated fractions exhibits an increased capacity for surface adhesion, transcriptional regulation and catabolism of high molecular weight substrates. Moreover, MGII populations in POM fractions are phylogenetically distinct from and more diverse than free-living MGII. Eukaryotic phytoplankton additions stimulated MGII growth in bottle incubations, providing the first MGII net growth rate measurements. These ranged from 0.47 to 0.54 d(-1). However, MGII were not recovered in whole-genome amplifications of flow-sorted picoeukaryotic phytoplankton and heterotrophic nanoflagellates, suggesting that MGII in particle fractions are not physically attached to living POM. Collectively, our results support a linkage between MGII ecophysiology and POM, implying that

  6. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin

    SciTech Connect

    Pedersen, T.F. ); Shimmield, G.B.; Price, N.B. )

    1992-01-01

    The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance of sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.

  7. Relevance of wet deposition of organic matter for alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Goss, N. R.; Reche, I.

    2011-12-01

    In barren, alpine environments, carbon inputs from atmospheric deposition may be very important for ecological processes. Recent findings suggest that atmospheric deposition influences the quality of dissolved organic matter (DOM) in alpine lakes on a global scale. Here, we evaluate the inputs of DOM in atmospheric wet deposition to alpine terrestrial ecosystems, in terms of both quantity and quality. We show that at the Niwot Ridge Long Term Ecological Research Station (Colorado, USA) wet deposition represents a seasonally variable (Figure 1) mass input of organic carbon, depositing on average 6 kg C/ha/yr or roughly 1500 kg C to the Green Lake 4 watershed at Niwot Ridge. Wet deposition is, therefore, a substantial input of dissolved organic carbon (DOC) to the catchment when compared to the annual DOC yield from Green Lake 4, estimated at just over 1800 kg C. In terms of DOM bioavailability for alpine microorganisms, our optical spectroscopic results showing high amounts of amino acid-like fluorescence and low aromaticity suggest that DOM in wet deposition may be particularly labile, especially in the summer months. The heterotrophic processing of this organic carbon input has important implications for the cycling of other nutrients, such as nitrogen, in alpine environments. We have also shown that the sources of DOM in wet deposition include bioaerosols, such as pollen, which represent much of the summer DOC loading. However, relationships with inorganic N and sulfate also suggest that organic pollutants in the atmosphere may have an equally important influence on DOM in wet deposition. Additionally, the quality of wet deposition DOM in the spring is similar to that of dust deposition observed near the Sahara and may be influenced by dust events, as shown from air mass trajectories originating in or near the Colorado Plateau. The seasonality of DOM quality appears to be related to these varying sources and is, therefore, a critical topic for future research.

  8. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  9. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters. PMID:26407145

  10. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that

  11. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  12. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types. PMID:25055664

  13. Impact of natural organic matter (NOM) on freshwater amphipods.

    PubMed

    Timofeyev, Maxim A; Wiegand, Claudia; Kent Burnison, B; Shatilina, Zhanna M; Pflugmacher, Stephan; Steinberg, Christian E W

    2004-02-01

    Natural organic matter (NOM) isolated from the eutrophic Sanctuary Pond (Point Pelee National Park, Canada) has an adverse impact on amphipod species (Gammarus tigrinus and Chaetogammarus ischnus from Lake Müggelsee, Germany, and Eulimnogammarus cyaneus, from Lake Baikal, Russia). Increases in amphipod mortality, changes in peroxidase activity and increases of heat shock protein (hsp70) expression were observed upon exposure to NOM. The highest resistance to the adverse impact of NOM was observed with the endemic Baikalian amphipod E. cyaneus. However, the mechanisms behind this finding remains obscure. If differences in the sensitivity of the hsp70 antibody may be excluded, different modes of action may be postulated: because the adverse impact of NOM may be caused by reactive oxygen species (ROS) and the NOM itself, the observed differences may be due to the action of ROS alone (with E. cyaneus) and a combination of both adverse modes of action (European species). PMID:14967505

  14. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  15. A search for presolar organic matter in meteorite

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1985-01-01

    The D/H ratios and the C-13/C-12 ratios of acid-insoluble organic matter of 4 meteorites, Ochansk (H4), Plainview (H5), Gladstone (H6) and Odessa (IA), were measured. delta-D values for hydrogen extracted by stepwise combustion were negative, down to -280 deg/infinity. delta-C-13 values were also negative except in the case of the carbon coming off at the highest temperature steps for Plainview and Odessa meteorites. The concentrations of C-13-rich carbon were 3-5 orders of magnitude smaller than those found in Murchison meteorite, suggesting that relic grains of stellar condensates were mostly destroyed in the meteorites examined.

  16. Grown organic matter as a fuel raw material resource

    NASA Technical Reports Server (NTRS)

    Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.

    1975-01-01

    An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.

  17. Soil Organic Matter Feedback to changes in soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Strunk, R.

    2012-04-01

    The reaction of the soil organic matter (SOM) pool to climate change is largely assessed based on simple models linking temperature and soil moisture, in more sophisticated models also Net Primary Productivity (NPP), to Carbon (C) stocks. Experiments on the sensitivity of vegetation growth and soil properties also mostly consider only temperature as a driver for NPP and thus SOM turnover in soils, while keeping moisture either constant or not distinguishing between moisture and temperature effects. All approaches ignore the feedback of secondary soil properties such aggregation and pore size distribution, to changes in rainfall regime and litter input. In this study, we present an experiment which is designed specifically to identifying the long-term effects of contrasting soil moisture regimes on NPP, soil C stocks and secondary soil properties such as aggregate stability and porosity. In addition, soil respiration as well as SOM quantity and quality are analyzed.

  18. Atmospheric N Deposition Increases Bacterial Laccase-Like Multicopper Oxidases: Implications for Organic Matter Decay

    PubMed Central

    Zak, Donald R.

    2014-01-01

    Anthropogenic release of biologically available nitrogen (N) has increased dramatically over the last 150 years, which can alter the processes controlling carbon (C) storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan in the United States, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. This change occurred concomitantly with compositional changes in Basidiomycete fungi and in Actinobacteria, as well as the downregulation of fungal lignocelluloytic genes. Recently, laccase-like multicopper oxidases (LMCOs) have been discovered among bacteria which can oxidize β-O-4 linkages in phenolic compounds (e.g., lignin and humic compounds), resulting in the production of dissolved organic carbon (DOC). Here, we examined how nearly 2 decades of experimental N deposition has affected the abundance and composition of saprotrophic bacteria possessing LMCO genes. In our experiment, LMCO genes were more abundant in the forest floor under experimental N deposition whereas the abundances of bacteria and fungi were unchanged. Experimental N deposition also led to less-diverse, significantly altered bacterial and LMCO gene assemblages, with taxa implicated in organic matter decay (i.e., Actinobacteria, Proteobacteria) accounting for the majority of compositional changes. These results suggest that experimental N deposition favors bacteria in the forest floor that harbor the LMCO gene and represents a plausible mechanism by which anthropogenic N deposition has reduced decomposition, increased soil C storage, and accelerated phenolic DOC production in our field experiment. Our observations suggest that future rates of atmospheric N deposition could fundamentally alter the physiological potential of soil microbial communities. PMID:24837374

  19. Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment

    PubMed Central

    Garren, Melissa; Azam, Farooq

    2012-01-01

    Understanding the mechanisms of resilience of coral reefs to anthropogenic stressors is a critical step toward mitigating their current global decline. Coral–bacteria associations are fundamental to reef health and disease, but direct observations of these interactions remain largely unexplored. Here, we use novel technology, high-speed laser scanning confocal microscopy on live coral (Pocillopora damicornis), to test the hypothesis that corals exert control over the abundance of their associated bacterial communities by releasing (‘shedding') bacteria from their surface, and that this mechanism can counteract bacterial growth stimulated by organic inputs. We also test the hypothesis that the coral pathogen Vibrio coralliilyticus can evade such a defense mechanism. This first report of direct observation with high-speed confocal microscopy of living coral and its associated bacterial community revealed a layer (3.3–146.8 μm thick) on the coral surface where bacteria were concentrated. The results of two independent experiments showed that the bacterial abundance in this layer was not sensitive to enrichment (5 mg l−1 peptone), and that coral fragments exposed to enrichment released significantly more bacteria from their surfaces than control corals (P<0.01; 35.9±1.4 × 105 cells cm−2 coral versus 1.3±0.5 × 105 cells cm−2 coral). Our results provide direct support to the hypothesis that shedding bacteria may be an important mechanism by which coral-associated bacterial abundances are regulated under organic matter stress. Additionally, the novel ability to watch this ecological behavior in real-time at the microscale opens an unexplored avenue for mechanistic studies of coral–microbe interactions. PMID:22189494

  20. Relating hygroscopicity and composition of organic aerosol particulate matter

    SciTech Connect

    Duplissy, J.; DeCarlo, P. F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, T.; Gysel, M.; Aiken, A. C.; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, D. R.; Collins, D. R.; Tomlinson, J.; Baltensperger, U.

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg = 2.2 × f44 - 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. Finally, the use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  1. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    PubMed

    Ward, Collin P; Cory, Rose M

    2016-04-01

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw. PMID:26910810

  2. Effects of multiple levels of social organization on survival and abundance.

    PubMed

    Ward, Eric J; Semmens, Brice X; Holmes, Elizabeth E; Balcomb Iii, Ken C

    2011-04-01

    Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities. PMID:21054527

  3. Measuring and modeling continuous quality distributions of soil organic matter

    NASA Astrophysics Data System (ADS)

    Bruun, S.; Gren, G. I. Ã.; Christensen, B. T.; Jensen, L. S.

    2010-01-01

    An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution approaches the underlying continuum. Continuous distributions lead to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods will have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help generate the interest needed to accommodate this.

  4. Measuring and modelling continuous quality distributions of soil organic matter

    NASA Astrophysics Data System (ADS)

    Bruun, S.; Gren, G. I.; Christensen, B. T.; Jensen, L. S.

    2009-09-01

    An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution is approaching the underlying continuum. Continuous distributions leads to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help spawning the interest needed to accommodate this.

  5. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  6. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly

    PubMed Central

    Chen, Chi-Shuo; Anaya, Jesse M.; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors—warming and acidification—threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow— even hinder—the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming–acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  7. Effects of warming on stream biofilm organic matter use capabilities.

    PubMed

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels. PMID:24633338

  8. Molecular characterization of dissolved organic matter (DOM): a critical review.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  9. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  10. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses.

    PubMed

    Voget, Sonja; Wemheuer, Bernd; Brinkhoff, Thorsten; Vollmers, John; Dietrich, Sascha; Giebel, Helge-Ansgar; Beardsley, Christine; Sardemann, Carla; Bakenhus, Insa; Billerbeck, Sara; Daniel, Rolf; Simon, Meinhard

    2015-02-01

    The RCA (Roseobacter clade affiliated) cluster, with an internal 16S rRNA gene sequence similarity of >98%, is the largest cluster of the marine Roseobacter clade and most abundant in temperate to (sub)polar oceans, constituting up to 35% of total bacterioplankton. The genome analysis of the first described species of the RCA cluster, Planktomarina temperata RCA23, revealed that this phylogenetic lineage is deeply branching within the Roseobacter clade. It shares not >65.7% of homologous genes with any other organism of this clade. The genome is the smallest of all closed genomes of the Roseobacter clade, exhibits various features of genome streamlining and encompasses genes for aerobic anoxygenic photosynthesis (AAP) and CO oxidation. In order to assess the biogeochemical significance of the RCA cluster we investigated a phytoplankton spring bloom in the North Sea. This cluster constituted 5.1% of the total, but 10-31% (mean 18.5%) of the active bacterioplankton. A metatranscriptomic analysis showed that the genome of P. temperata RCA23 was transcribed to 94% in the bloom with some variations during day and night. The genome of P. temperata RCA23 was also retrieved to 84% from metagenomic data sets from a Norwegian fjord and to 82% from stations of the Global Ocean Sampling expedition in the northwestern Atlantic. In this region, up to 6.5% of the total reads mapped on the genome of P. temperata RCA23. This abundant taxon appears to be a major player in ocean biogeochemistry. PMID:25083934

  11. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGESBeta

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  12. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  13. Partition of nonpolar organic pollutants from water to soil and sediment organic matters

    USGS Publications Warehouse

    Chiou, C.T.

    1995-01-01

    The partition coefficients (Koc) of carbon tetrachloride and 1,2-dichlorobenzene between normal soil/sediment organic matter and water have been determined for a large set of soils, bed sediments, and suspended solids from the United States and the People's Republic of China. The Koc values for both solutes are quite invariant either for the soils or for the bed sediments; the values on bed sediments are about twice those on soils. The similarity of Koc values between normal soils and between normal bed sediments suggests that natural organic matters in soils (or sediments) of different geographic origins exhibit comparable polarities and possibly comparable compositions. The results also suggest that the process that converts eroded soils into bed sediments brings about a change in the organic matter property. The difference between soil and sediment Koc values provides a basis for identifying the source of suspended solids in river waters. The very high Koc values observed for some special soils and sediments are diagnostic of severe anthropogenic contamination.

  14. Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Tamelander, Tobias; Reigstad, Marit; Hop, Haakon; Carroll, Michael L.; Wassmann, Paul

    2008-10-01

    The structure and function of the marine food web strongly regulate the cycling of organic matter derived from primary production by phytoplankton and ice algae in Arctic shelf seas. Improved knowledge of trophic relationships and export of organic matter from the surface layer is needed to better understand how the Arctic marine ecosystem may respond to climate-related changes in distribution of sea ice, water masses, and associated primary production regimes. Pelagic and sympagic inputs of organic matter to dominant meso- and macrozooplankton species and vertical export were investigated in the northern Barents Sea by means of stable carbon and nitrogen isotopes (δ 13C and δ 15N). Samples were collected during spring and summer (2003-2005) from a total of 13 stations with different ice conditions, abundances of ice algae, and phytoplankton bloom phases. δ 13C signatures were different in organic matter of phytoplankton (mean -24.3‰) and ice algal origin (mean -20.0‰). Stable carbon isotope compositions showed that most of the energy assimilated by zooplankton originated from pelagic primary production, but at times ice algae also contributed to zooplankton diets. Trophic level (TL) estimates of copepods ( Calanus glacialis and Calanus hyperboreus) and krill ( Thysanoessa inermis and Thysanoessa longicaudata), calculated based on δ 15N values, varied among stations from 1.3 to 2.7 and from 1.5 to 3.1, for respective taxa. TL in C. glacialis was significantly and inversely related to the depth-integrated phytoplankton chlorophyll a concentration. A similar trend, although weaker, also was observed for the other species. This relationship indicates that copepods graze primarily on the abundant autotrophic biomass during the peak bloom phase. At stations with lower chlorophyll a concentration, the TL of Calanus spp. was 1.0 higher, indicating omnivory outside the peak bloom phase in response to changed food availability. The majority of organic matter

  15. The origin and biogeochemistry of organic matter in surface sediments of Lake Shihwa and Lake Hwaong

    NASA Astrophysics Data System (ADS)

    Won, Eun-Ji; Cho, Hyen-Goo; Shin, Kyung-Hoon

    2007-12-01

    To understand the origin and biogeochemistry of the organic matter in surface sediments of Lake Shihwa and Lake Hwaong, organic nitrogen, inorganic nitrogen, labile organic carbon, and residual organic carbon contents as well as stable isotope ratios for carbon and nitrogen were determined by KOBr-KOH treatment. Ratios of organic carbon to organic nitrogen (Corg/Norg) (mean = 24) were much higher than ratios of organic carbon to total nitrogen (Corg/Ntot) (mean=12), indicating the presence of significant amounts of inorganic nitrogen in the surface sediments of both lakes. Stable isotope ratios for organic nitrogen were, on average, 5.2‰ heavier than ratios of inorganic nitrogen in Lake Shihwa, but those same ratios were comparable in Lake Hwaong. This might be due to differences in the origin or the degree of degradation of sedimentary organic matter between the two lakes. In addition, stable isotope ratios for labile organic carbon were, on average, 1.4‰ heavier than those for residual organic carbon, reflecting the preferential oxidation of13C-enriched organic matter. The present study demonstrates that KOBr-KOH treatment of sedimentary organic matter can provide valuable information for understanding the origin and degradation state of organic matter in marine and brackish sediments. This also suggests that the ratio of Corg/Norg and stable isotope ratios for organic nitrogen can be used as indexes of the degree of degradation of organic matter.

  16. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  17. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  18. Removal of bromide and natural organic matter by anion exchange.

    PubMed

    Hsu, Susan; Singer, Philip C

    2010-04-01

    Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 microg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC. PMID:20045170

  19. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices. PMID:25157605

  20. Effects of agricultural practices on organic matter degradation in ditches

    PubMed Central

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C.J.M.; Kraak, Michiel H.S.; Vijver, Martina G.

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  1. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1). PMID:24083647

  2. Benthic bacterial biomass supported by streamwater dissolved organic matter.

    PubMed

    Bott, T L; Kaplan, L A; Kuserk, F T

    1984-12-01

    Bacterial biomass in surface sediments of a headwater stream was measured as a function of dissolved organic carbon (DOC) flux and temperature. Bacterial biomass was estimated using epifluorescence microscopic counts (EMC) and ATP determinations during exposure to streamwater containing 1,788μg DOC/liter and after transfer to groundwater containing 693μg DOC/liter. Numbers of bacteria and ATP concentrations averaged 1.36×10(9) cells and 1,064 ng per gram dry sediment, respectively, under initial DOC exposure. After transfer to low DOC water, biomass estimates dropped by 53 and 55% from EMC and ATP, respectively. The decline to a new steady state occurred within 4 days from ATP assays and within 11 days from EMC measures. A 4°C difference during these exposures had little effect on generation times. The experiment indicated that 27.59 mg/hour of natural DOC supported a steady state bacterial biomass of approximately 10μg C/g dry weight of sediment (from EMC determinations). Steady state bacterial biomass estimates on sediments that were previously muffled to remove organic matter were approximately 20-fold lower. The ratio of GTP∶ATP indicated differences in physiological condition or community composition between natural and muffled sediments. PMID:24221176

  3. Mineral surface-organic matter interactions: basics and applications

    NASA Astrophysics Data System (ADS)

    Valdrè, G.; Moro, D.; Ulian, G.

    2012-03-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted-Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  4. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  5. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  6. Toward an experimental synthesis of the chondritic insoluble organic matter

    NASA Astrophysics Data System (ADS)

    Biron, Kasia; Derenne, Sylvie; Robert, FrançOis; Rouzaud, Jean-NoëL.

    2015-08-01

    Based on the statistical model proposed for the molecular structure of the insoluble organic matter (IOM) isolated from the Murchison meteorite, it was recently proposed that, in the solar T-Tauri disk regions where (photo)dissociation of gaseous molecules takes place, aromatics result from the cyclization/aromatization of short aliphatics. This hypothesis is tested in this study, with n-alkanes being submitted to high-frequency discharge at low pressure. The contamination issue was eliminated using deuterated precursor. IOM was formed and studied using solid-state nuclear magnetic resonance, pyrolysis coupled to gas chromatography and mass spectrometry, RuO4 oxidation, and high-resolution transmission electron microscopy. It exhibits numerous similarities at the molecular level with the hydrocarbon backbone of the natural IOM, reinforcing the idea that the initial precursors of the IOM were originally chains in the gas. Moreover, a fine comparison between the chemical structure of several meteorite IOM suggests either that (i) the meteorite IOMs share a common precursor standing for the synthetic IOM or that (ii) the slight differences between the meteorite IOMs reflect differences in their environment at the time of their formation i.e., related to plasma temperature that, in turn, dictates the dissociation-recombination rates of organic fragments.

  7. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters. PMID:24828085

  8. Effects of agricultural practices on organic matter degradation in ditches.

    PubMed

    Hunting, Ellard R; Vonk, J Arie; Musters, C J M; Kraak, Michiel H S; Vijver, Martina G

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  9. Molecular trickery in soil organic matter: hidden lignin.

    PubMed

    Hernes, Peter J; Kaiser, Klaus; Dyda, Rachael Y; Cerli, Chiara

    2013-08-20

    Binding to minerals is one mechanism crucial toward the accumulation and stabilization of organic matter (OM) in soils. Of the various biochemicals produced by plants, lignin-derived phenols are among the most surface-reactive compounds. However, it is not known to what extent mineral-bound lignin-derived phenols can be analytically assessed by alkaline CuO oxidation. We tested the potential irreversible binding of lignin from three litters (blue oak, foothill pine, annual grasses) to five minerals (ferrihydrite, goethite, kaolinite, illite, montmorillonite) using the CuO-oxidation technique, along with bulk organic carbon (OC) sorption. Up to 56% of sorbed lignin could not be extracted from the minerals with the CuO-oxidation technique. The composition of the irreversibly bound lignin component differed markedly between minerals and from that of the parent litter leachates, indicating different bonding strengths related to individual monomers and conformations. The difference in extractability of individual phenols suggests that abiotic processes, such as sorption/desorption, should be taken into account when using CuO oxidation data for assessing lignin turnover in mineral matrixes. However, given the apparent relationship between aromaticity as indicated by carbon-specific UV absorbance (SUVA) and bulk OC sorption, it is likely that irreversible sorption is a concern for any technique that addresses the broad class of aromatic/phenolic compounds in soils and sediments. PMID:23875737

  10. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  11. Annual Cycling of Dissolved Organic Matter in an Alpine Stream

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; McLoughlin, R.; McKnight, D. M.

    2009-12-01

    Boulder Creek, an alpine stream in the Colorado Front Range, runs through glacially-scoured landscapes and various alpine ecosystems from its headwaters at around 12,500 ft to the city of Boulder at around 6,000 ft. The flow in the lower potions of the creek is controlled by Barker Reservoir. As part of the Boulder Creek Critical Zone Observatory, water samples were collected from several sites along Boulder Creek at regular time intervals since May 2008. The concentration and quality of the Dissolved Organic Matter (DOM) in these samples was analyzed to understand the response to seasonal changes and variations in flow rates. Filtered samples were fractionated to isolate the humic material and both whole water and fulvic acid fractions were analyzed for dissolved organic carbon concentration as well as with fluorescence and UV-VIS spectroscopy. DOM concentration reached a maximum just before peak stream flow, likely due to dilution from the reservoir release. Near the end of summer, as flow slowed down and the dilution impact was minimized, the concentration began to rise again. In addition, the fluorescence index (FI), which can represent variations in DOM source, indicated a much higher microbial source during early snowmelt, likely due to microbial communities growing beneath the ice in the reservoir and lack of terrestrial runoff during the winter. The FI showed a slowly increasing terrestrial input throughout the summer as snowmelt and runoff from the watershed entered the stream. During late summer and fall the FI shifted back to a predominately microbial signal, indicative of less runoff and a greater percentage of DOM created in situ. In addition to stream measurements, surface soil samples along several transects were collected from a section of the watershed, as well as deeper samples from soil pits on both north-facing and south-facing slopes. DOM from these samples was leached with potassium sulfate and analyzed using the same techniques as the stream

  12. Natural Organic Matter and the Event Horizon of Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Frommberger, M.; Witt, M.; Koch, B. P.; Schmitt-Kopplin, P.; Perdue, E. M.

    2009-05-01

    Soils, sediments, freshwaters and marine waters contain natural organic matter (NOM) - an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size- reactivity continuum). NOM is composed mainly of carbon, hydrogen and oxygen, with minor contributions from heteroatoms such as sulphur and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulae, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference m among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of m imposes an ever growing mandatory difference in molecular composition. Molecular formulae that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen and oxygen. The molecular formulae within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A one-hundred percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass, H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulae that

  13. Organic matter in the ancient Alpine Tethyan Ocean Continental Transition

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Wolff, George; Kusznir, Nick; Wheeler, John; Manataschal, Gianreto

    2016-04-01

    Studies of hydrothermal vents in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. Are such bio-systems locally restricted to hydrothermal vents or are more pervasive, being linked with the geology of serpentinized mantle in the subsurface? Answering this question has implications for our understanding of the global importance of hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The ocean-continent transition (OCT) of magma-poor rifted continental margins, exhumed within mountain belts by continent collision, provides an opportunity to investigate this question. Initial data from the Totalp unit in the Eastern Swiss Alps, representing exhumed OCT of the Alpine Tethyan rifted continental margin, shows the presence of various hydrocarbons (Mateeva et al., in prep.). Samples from other Tethyan OCT locations, consisting of the Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps, have also been analysed to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle and associated ophicalcite and syn-rift sediments. Samples from these remnant Tethyan OCT locations are characterized by low and varied organic carbon concentrations that reflect the large lithological diversity of this area. The samples contain hydrocarbons in the form of n-alkanes mostly in the range C20 - C32, polynuclear aromatic hydrocarbons (PAHs) and various biomarkers (e.g. steranes, hopanes). A typical sample from the hydrothermal system in Platta shows the lithological characteristics of a black smoker, but with no indication of a more developed biosystem. Preliminary results from the examined Tethyan OCT locations (Tasna, Platta, Chenaillet) show evidence for the preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no unequivocal indication that the organic matter is generated from

  14. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  15. Effects of the fungicide pyrimethanil on biofilm and organic matter processing in outdoor lentic mesocosms.

    PubMed

    Abelho, Manuela; Martins, Tiago Fortunato; Shinn, Cândida; Moreira-Santos, Matilde; Ribeiro, Rui

    2016-01-01

    The effect of the fungicide pyrimethanil (0.7 mg L(−1)) on biofilm development and alder leaf litter decomposition in aquatic ecosystems was assessed in outdoor lentic mesocosms immediately and 274 days after pyrimethanil application. Pyrimethanil decreased ergosterol concentrations (an indicator of fungal biomass) and the abundance and richness of the macroinvertebrate community associated with decomposing leaves. However, because neither fungi nor macroinvertebrates were main factors contributing to decomposition in this particular system, organic matter processing rates were not affected. After 274 days, pyrimethanil concentration in the water column was ≤0.004 mg L(−1) but richness, biomass and composition of the invertebrate community associated with decomposing leaf-litter still showed the effect. The comparison of ergosterol (a molecule existing on both algae and fungal cell membranes), with chlorophyll (an indicator of algal biomass) associated with biofilm suggests that pyrimethanil may decrease fungal biomass and alter the relative abundance of algae and fungi on biofilm developing in control- and treated-mesocosms. PMID:26496930

  16. Macroinvertebrate Communities and Benthic Organic Matter in Sand Habitats of 15 Northern Michigan Streams

    NASA Astrophysics Data System (ADS)

    Yamamuro, A. M.; Miesbauer, J. M.; Lamberti, G. A.

    2005-05-01

    Relationships between benthic organic matter (BOM) and macroinvertebrates have been well studied in streams with coarse substrates, but such relationships have been little studied in sand habitats, despite the abundance of sand in many streams. These relationships were investigated in sand habitats of 15 streams in three watersheds of the Ottawa National Forest, Michigan. Sand habitats in the 15 streams varied widely in mean total BOM quantity (112 to 1814 g AFDM·m-2) and size composition [very fine BOM (VFBOM, 0.45-250 μm), 0-58%; fine BOM (FBOM, 250 μm-1 mm), 11-27%; coarse BOM (CBOM, >1 mm), 27-81%] but differences were still detected among watersheds (VFBOM, ANOVA, F2,11 = 8.69, p = 0.005; CBOM, F2,11 = 11.15, p = 0.002). Sand-dwelling invertebrates were dominated by gathering-collectors, primarily Chironomidae (relative abundance = 73.6±15.4%; mean±SE; n = 15). Invertebrate biomass and mean body size differed among watersheds (biomass, F2,12 = 3.89, p = 0.050; body size, F2,12 = 6.12, p = 0.015). However, at this broad spatial scale, BOM quantity and quality had little effect on invertebrate community metrics in sand habitats. BOM content of sand habitats likely represents one factor, among many components of this dynamic habitat, which shapes overall macroinvertebrate communities.

  17. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming

  18. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  19. Palaeohydrological controls on sedimentary organic matter on Amazon floodplain lakes during the Holocene

    NASA Astrophysics Data System (ADS)

    Moreira, L. S.; Moreira-Turcq, P. F.; Cordeiro, R. C.; Turcq, B.

    2014-12-01

    A synthesis of the impacts of the Amazon River hydrological changes on the sedimentation process of organic matter (OM) in three different floodplain lakes (Santa Ninha, Maracá, and Comprido lakes) is presented in this study. Today the Santa Ninha and Maracá lakes are directly and permanently connected with the main channel of the Amazon River, in contrast to Comprido Lake, which is indirectly and periodically influenced by the Amazon River due to its high distance from the main channel. All the sedimentary lake records showed a reduced river inflow due to dry climatic conditions during the Early and Middle Holocene followed by a humid Late Holocene with an increased fluvial input. In Santa Ninha and Maraca Lakes the reduced river inflow period was characterized by sediments with a low abundance of smectite (on average ~20 wt. %), a clay mineral mainly transported by the fluvial system, high total organic carbon (TOC) contents and a predominant C3 vegetation input evidenced by the C/N ratio and d13C. During the Late Holocene, a higher smectite abundance (on average ~43 wt. %) and a low TOC content (on average ~1.4 wt. %) pointed to dilution with the riverine lithogenic matter. In this period a enhanced aquatic primary productivity was evidenced by the increased d13C values and by a C/N typical of algae, suggesting an increased lake water level. In Comprido Lake, a sedimentation gap occurred during the Early and Middle Holocene. The humid Late Holocene, after 3,000 cal years BP, was characterized by high TOC values (on average ~9 wt. %) and increasing abundance of planktonic species, like Aulacoseira sp., which reflects the expansion of water bodies. The predominance of C3-vegetation and low smectite content suggest that in Comprido Lake the soil OM input from the local catchment area was predominant during the humid Late Holocene due to its high distance from the Amazon River main stem. Consequently, our study shows that the sedimentation processes of OM in

  20. Universal molecular features of refractory dissolved organic matter in fresh- and seawater

    NASA Astrophysics Data System (ADS)

    Dittmar, T.; Blasius, B.; Steinbrink, C.; Feenders, C.; Stumm, M.; Christoffers, J.; Niggemann, J.; Gerdts, G.; Osterholz, H.; Seibt, M.; Seidel, M.; Vähätalo, A.

    2012-04-01

    Dissolved organic matter (DOM) is among the largest pools of reduced carbon on Earth's surface. Its molecular structure and the reasons behind its stability in the aquatic environment are unknown. We present a mathematical model that predicts essential molecular features of refractory dissolved organic matter in fresh- and seawater. The model has only eight input variables and can accurately reproduce the presence and abundance of up to 10,000 molecular formulae in aquatic systems. The model was established with ultrahigh-resolution mass spectrometry data of North Pacific deep water (obtained on a 15 Tesla Fourier-transform ion cyclotron resonance mass spectrometer, FT-ICR-MS). We determined the molecular formulae of DOM with help of FT-ICR-MS in >1,000 samples from around the globe, covering a wide variety of open ocean, freshwater and coastal systems. The molecular formulae predicted from our North Pacific deep water model were present in all sea- and fresh water samples. In terrigenous DOM, we detected a second group of compounds that could also accurately be predicted with our model, by using a different set of eight input variables. This exclusively terrigenous compound group was more photo-reactive than the universal compound group. During a two-year sampling period at a continental shelf station, the universal DOM compounds were always present at their predicted abundance. During plankton blooms, additional compounds were produced that did not match our model and that did not persist on a longer term. The universal DOM pattern was also not observed in mesocosm experiments where algae and bacteria blooms were artificially induced. Refractory DOM in any aquatic system not only shares the same molecular formulae at the same relative abundance, but compounds with the same molecular formulae most likely have the same molecular structure, independent of the origin of DOM. Fragmentation experiments in the FT-ICR-MS on a wide range of molecular formulae revealed

  1. Soil organic matter on citrus plantation in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais

  2. The flux of organic matter through a peatland ecosystem - evidence from thermogravimetric analysis

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth

    2016-04-01

    Carbon budgets of peatlands are now common and studies have considered nitrogen, oxygen and energy budgets, but no study has considered the whole composition of the organic matter as it transfers through and into a peatland. Organic matter samples were taken from each organic matter reservoir found in and each fluvial flux from a peatland and analysed the samples by thermogravimetric analysis. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, a peat core, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, humic acid and plant protein. Results showed that the thermogravimetric trace of the sampled organic matter were distinctive with the DOM traces being marked out by very low thermal stability relative other organic matter types. The peat profile shows a significant trend with depth from vegetation- to lignin-like composition. When all traces are weighted according to the observed dry matter and carbon budgets for the catchment then it is possible to judge what has been lost in the transition through and into the ecosystem. By plotting this "lost" trace it possible to assess its composition which is either 97% cellulose and 3% humic acid or 92% and 8% lignin. This has important implications for what controls the organic matter balance of peatlands and it suggests that the oxidation state (OR) of peatland is less than 1.

  3. Characterization of microflora and transformation of organic matters in urban sewer system.

    PubMed

    Jin, Pengkang; Wang, Bin; Jiao, Ding; Sun, Guangxi; Wang, Baobao; Wang, Xiaochang C

    2015-11-01

    A study was conducted using a pilot sewer system consisting of 35 sequential sections, totalling 1200 m of gravity pipe. Urban sewage flowed into the sewer system at a constant flow rate until it reached physical and microbiological steady states. Microflora in the biofilm that attached to the inner surface along the pipe length were analysed. The organic compositions in both the liquid and gaseous phases of the sewer system were monitored. The results showed that typical fermentation bacteria, such as bacteroidetes and bacillus, were abundant in the system, indicating that the anoxic environment (DO = 0.3 mg/L) was suitable for fermentative bacterial growth. This resulted in a substantial reduction of the chemical oxygen demand (COD) along the pipe length and an increase of the biodegradable oxygen demand/chemical oxygen demand (BOD/COD) ratio from 0.68 at the beginning of the sewer system to 0.84 at the end of the sewer system; this was an indication of a transformation of organic matters from less-biodegradable to more-biodegradable products. Via molecular weight (MW) analysis, it was further identified that the larger organic molecules (MW > 10,000 Da) were transformed into products with smaller molecular weights. Regarding the fermentation products, the concentrations of the volatile fatty acids (VFAs) increased dramatically in the initial 600-m sections and then remained constant for the later sections except for the end section of the sewer; acetic acid was found to be the primary product of the VFAs. Gaseous carbon dioxide (CO2) and methane (CH4) were found to increase along the length of the sewer system, whereas the concentrations of ethanol, lactic acid, and hydrogen (H2) were high at the beginning of the sewer and then decreased in the rear sections of the sewer system. It could thus be concluded that in an urban wastewater sewer system, fermentative microflora could perform important roles in contributing to organic matter removal and

  4. Sedimentary organic matter distributions, burrowing activity, and biogeochemical cycling: Natural patterns and experimental artifacts

    NASA Astrophysics Data System (ADS)

    Michaud, Emma; Aller, Robert, C.; Stora, Georges

    2010-11-01

    The coupling between biogenic reworking activity and reactive organic matter patterns within deposits is poorly understood and often ignored. In this study, we examined how common experimental treatments of sediment affect the burrowing behavior of the polychaete Nephtys incisa and how these effects may interact with reactive organic matter distributions to alter diagenetic transport - reaction balances. Sediment and animals were recovered from a subtidal site in central Long Island Sound, USA. The upper 15 cm of the sediment was sectioned into sub-intervals, and each interval separately sieved and homogenized. Three initial distributions of sediment and organic substrate reactivity were setup in a series of microcosms: (1) a reconstituted natural pattern with surface-derived sediment overlying sediment obtained from progressively deeper material to a depth of 15 cm (Natural); (2) a 15 cm thick sediment layer composed only of surface-derived sediment (Rich); and (3) a 15 cm thick layer composed of uniformally mixed sediment from the original 15 cm sediment profile (Averaged). The two last treatments are comparable to that used in microcosms in many previous studies of bioturbation and interspecific functional interaction experiments. Sediment grain size distributions were 97.5% silt-clay and showed no depth dependent patterns. Sediment porosity gradients were slightly altered by the treatments. Nepthys were reintroduced and aquariums were X-rayed regularly over 5 months to visualize and quantify spatial and temporal dynamics of burrows. The burrowing behaviour of adult populations having similar total biovolume, biomass, abundance, and individual sizes differed substantially as a function of treatment. Burrows in sediment with natural property gradients were much shallower and less dense than those in microcosms with altered gradients. The burrow volume/biovolume ratio was also lower in the substrate with natural organic reactivity gradients. Variation in food

  5. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  6. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  7. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal).

    PubMed

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L M; Frontalini, Fabrizio; Clemente, Iara M M M; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H M; Dias, João M Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  8. Response of Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable Concentrations of Metals in Aveiro Lagoon (Portugal)

    PubMed Central

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L. M.; Frontalini, Fabrizio; Clemente, Iara M. M. M.; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H. M.; Dias, João M. Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  9. Geochemical imprint of depositional conditions on organic matter in laminated-Bioturbated interbeds from fine-grained marine sequences

    USGS Publications Warehouse

    Pratt, L.M.; Claypool, G.E.; King, J.D.

    1986-01-01

    Laminated organic-rich shales are interbedded at a scale of centimeters to a few meters with bioturbated organic-poor mudstones or limestones in some fine-grained marine sequences. We have analyzed the organic matter in pairs of laminated/bioturbated interbeds from Cretaceous and Devonian rocks deposited in epicontinental and oceanic settings for the purpose of studying the influence of depositional and early diagenetic environment on the organic geochemical properties of marine shales. Results of these analyses indicate that for rocks that are still in a diagenetic stage of thermal alteration, the relative abundance of biomarker compounds and specific biomarker indices can be useful indicators of depositional and early diagenetic conditions. Pristane/phytane ratios are generally highest for laminated rocks from epicontinental basins and appear to reflect the input of isoprenoid precursors more than oxygenated versus anoxic depositional conditions. The thermally immature laminated rocks are characterized by relatively high contents of 17??(H), 21??(H)-hopanes, hopenes, sterenes and diasterenes, and by strong predominance of the 22R over 22S homohopane isomers. Thermally immature bioturbated samples are characterized by absence of the ??,??-hopanes, by low contents of both saturated and unsaturated polycyclic hydrocarbons, and by slight or no predominance of the 22R over 22S homohopane isomers. There are less obvious compositional differences between the saturated hydrocarbons in the laminated and bioturbated units from the thermally mature sequences. For both the thermally mature and immature laminated samples, the degree of isomerization at the 22C position for hopanes and at the 20C position for steranes is generally consistent with the degree of thermal maturity interpreted from other properties of the organic matter. The bioturbated samples, however, exhibit inconsistent and anomalously high degrees of isomerization for the homohopanes, resulting either from

  10. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  11. Isotopic composition of pyrite: Relationship to organic matter type and iron availability in some North American cretaceous shales

    USGS Publications Warehouse

    Gautier, D.L.

    1987-01-01

    The S isotope composition of pyrite in Cretaceous shales from the Western Interior of North America is related to organic C abundance, kerogen type and Fe availability. Both calcareous and noncalcareous rocks show a correlation between S and C, but noncalcareous rocks are relatively enriched in S with a higher S C ratio. This higher ratio probably shows that pyrite formation was Fe limited in the calcareous rocks. Organic-carbon-rich noncalcareous shales accumulated slowly beneath anoxic bottom waters. The anoxic bottom waters allowed hydrogen-rich organic matter to be preserved. Such shales have a narrow range of 34S-depleted sulfide and have Fe S ratios like stoichiometric pyrite, suggesting that pyrite formation in organic-rich shales was also limited by Fe availability. Conversely, organic-poor shales commonly accumulated at comparatively high rates, contain hydrogen-poor and refractory organic matter, and have a wide range of pyrite-S isotopic compositions. These organic-poor shales contain post-sulfidic authigenic minerals such as siderite and have excess reactive Fe rather than pyrite stoichiometry. Evidently Fe played a large role in early diagenesis and determined the course of post-sulfidic diagenesis. Fe availability was, however, mainly controlled by provenance, by the rates of sediment accumulation, and by the oxygen content of the depositional environment. ?? 1987.

  12. Dissolved organic matter sources in large Arctic rivers

    NASA Astrophysics Data System (ADS)

    Amon, Rainer; Walker, Sally; Prokushkin, Anatoly; Guggenberger, Georg

    2013-04-01

    The composition of dissolved organic carbon (DOC) of the six largest Arctic rivers was studied between 2003 and 2007 as part of the PARTNERS Project. Samples were collected over seasonal cycles relatively close to the river mouths. Here we report the lignin phenol and p-hydroxybenzene composition along with optical properties of Arctic river DOC in order to identify major sources of carbon. Arctic river DOC represents an important carbon conduit linking the large pools of organic carbon in the Arctic/Subarctic watersheds to the Arctic Ocean. Most of the annual lignin discharge (>75%) occurs during the two month of spring freshet with extremely high lignin concentrations and a lignin phenol composition indicative of fresh vegetation from boreal forests. The three large Siberian rivers, Lena, Yenisei, and Ob, which also have the highest proportion of forests within their watersheds, contribute about 90% of the total lignin discharge to the Arctic Ocean. The composition of river DOC is also characterized by elevated levels of p-hydroxybenzenes, particularly during the low flow season, which indicates a larger contribution from mosses and peat bogs. The lignin composition was strongly related to the average 14C-age of DOC supporting the abundance of young, boreal-vegetation-derived leachates during spring flood, and older, soil-, peat-, and wetland-derived DOC during groundwater dominated low flow conditions, particularly in the Ob and Yukon Rivers. We observed significant differences in DOC concentration and composition between the rivers over the seasonal cycles with the Mackenzie River being the most unique, the Lena River being similar to the Yenisei, and the Yukon being most similar to the Ob. The observed relationship between the lignin phenol composition and watershed characteristics suggests that DOC discharge from these rivers could increase in a warmer climate under otherwise undisturbed conditions.

  13. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  14. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  15. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  16. Coupled Ocean-Atmosphere Loss of Refractory Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Keene, W. C.; Frossard, A. A.; Long, M. S.; Russell, L. M.; Maben, J. R.; Kinsey, J. D.; Tyssebotn, I. M.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosol produced in the oceans from bursting bubbles and breaking waves is number dominated by submicron aerosol that are highly enriched in marine organic matter relative to seawater. Recent studies suggest that these organic-rich, submicron aerosol have a major impact on tropospheric chemistry and climate. It has been assumed this marine-derived aerosol organic matter is of recent origin stemming from biological activity in the photic zone. However, we deployed a marine aerosol generator on a recent cruise in the Sargasso Sea with seawater collected from 2500 m and showed that the aerosol generated from this seawater was enriched with organic matter to the same level as observed in surface Sargasso seawater, implying that the marine organic matter flux from the oceans into atmospheric aerosol is partly due to marine organic matter not of recent origin. We propose that marine aerosol production and subsequent physical and photochemical atmospheric evolution is the main process whereby old, refractory organic matter is removed from the oceans, thereby closing the carbon budget in the oceans and solving a long-standing conundrum regarding the removal mechanism for this organic matter in the sea. The implications of this study for couplings in the ocean-atmosphere cycling of organic matter will be discussed.

  17. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics.

    PubMed

    Williams, Timothy J; Wilkins, David; Long, Emilie; Evans, Flavia; DeMaere, Mathew Z; Raftery, Mark J; Cavicchioli, Ricardo

    2013-05-01

    Heterotrophic marine bacteria play key roles in remineralizing organic matter generated from primary production. However, far more is known about which groups are dominant than about the cellular processes they perform in order to become dominant. In the Southern Ocean, eukaryotic phytoplankton are the dominant primary producers. In this study we used metagenomics and metaproteomics to determine how the dominant bacterial and archaeal plankton processed bloom material. We examined the microbial community composition in 14 metagenomes and found that the relative abundance of Flavobacteria (dominated by Polaribacter) was positively correlated with chlorophyll a fluorescence, and the relative abundance of SAR11 was inversely correlated with both fluorescence and Flavobacteria abundance. By performing metaproteomics on the sample with the highest relative abundance of Flavobacteria (Newcomb Bay, East Antarctica) we defined how Flavobacteria attach to and degrade diverse complex organic material, how they make labile compounds available to Alphaproteobacteria (especially SAR11) and Gammaproteobacteria, and how these heterotrophic Proteobacteria target and utilize these nutrients. The presence of methylotrophic proteins for archaea and bacteria also indicated the importance of metabolic specialists. Overall, the study provides functional data for the microbial mechanisms of nutrient cycling at the surface of the coastal Southern Ocean. PMID:23126454

  18. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill.

    PubMed

    Salati, Silvia; Scaglia, Barbara; di Gregorio, Alessandra; Carrera, Alberto; Adani, Fabrizio

    2013-08-01

    The aim of this paper was to study the evolution of DOM during 1 year of observation in simulated landfill, of aerobically treated vs. untreated organic fraction of MSW. Results obtained indicated that aerobic treatment of organic fraction of MSW permitted getting good biological stability so that, successive incubation under anaerobic condition in landfill allowed biological process to continue getting a strong reduction of soluble organic matter (DOM) that showed, also, an aromatic character. Incubation of untreated waste gave similar trend, but in this case DOM decreasing was only apparent as inhibition of biological process in landfill did not allow replacing degraded/leached DOM with new material coming from hydrolysis of fresh OM. PMID:23743423

  19. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  20. Relating changes of organic matter composition of two German peats to climatic conditions during peat formation

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Nikolova, Radoslava; Rumpel, Cornelia; González-Vila, Francisco, J.; Drösler, Matthias

    2010-05-01

    less favorable climatic conditions during the formation of the alpine fen. The distribution of n-alkanes, n-fatty acids and n-alkan-2-ones demonstrated changes related to vegetational shifts throughout the peat profiles. The source materials included remains from mosses, higher terrestrial plants as well as microbial sources. In the peat of the "Großer Bolchow", contributions from phytoplankton were also identified. Among the alkyl series, the n-alkanes evidenced the highest reliability as biomarkers in the peat deposits. Although combination of the results of the three alkyl series were complementary, in some cases, this approach lead to ambiguities, possibly because of selective preservation of certain lipids during peatification. Thus, to verify the analytical results, they were supplemented with field assessment data. Subjecting the two peats to CuO-oxidation revealed mainly contributions of mosses and grasses. The analysis of the degradation stage of the lignin derivatives supported the decomposition pattern already revealed by the δ13C data and the NMR analysis. In summary, our study confirmed that in peat, changes in biomarker abundance and distribution are in accordance with chemical alterations of the organic matter composition. However, both biomarker abundance and the degradation state of the organic material did not indicate a constant increase of the humification with peat depths but showed clear fluctuations along the core. This is in line with the constantly changing climatic conditions during peat formation that are either favoring or hindering organic matter accumulation.

  1. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater streams export organisms and other materials to their receiving streams and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time macroinvertebrate drift and organic matter export was me...

  2. Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf

    EPA Science Inventory

    Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...

  3. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. PMID:24972176

  4. Investigating organic matter in Fanno Creek, Oregon, Part 2 of 3: Sources, sinks, and transport of organic matter with fine sediment

    NASA Astrophysics Data System (ADS)

    Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.

    2014-11-01

    Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River-about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek's mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29-67 t of carbon, or about 49-116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.

  5. Investigating organic matter in Fanno Creek, Oregon, Part 2 of 3: sources, sinks, and transport of organic matter with fine sediment

    USGS Publications Warehouse

    Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.

    2014-01-01

    Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River—about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek’s mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29–67 t of carbon, or about 49–116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.

  6. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Scheel, T.; Mikutta, R.; van Hees, P.; Kaiser, K.; Kalbitz, K.

    2010-03-01

    Amorphous Al hydroxides (am-Al(OH) 3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L -1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO 2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH) 3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L -1) during sorption. At low SSRs, hence limited am-Al(OH) 3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH) 3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH) 3 availability, despite constant aromatic C (˜30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the

  7. Sustaining effect of soil warming on organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  8. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries.

    PubMed

    Gerzova, Lenka; Babak, Vladimir; Sedlar, Karel; Faldynova, Marcela; Videnska, Petra; Cejkova, Darina; Jensen, Annette Nygaard; Denis, Martine; Kerouanton, Annaelle; Ricci, Antonia; Cibin, Veronica; Österberg, Julia; Rychlik, Ivan

    2015-01-01

    One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A), tet(B) and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France) exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden). Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm's status as organic or conventional. PMID:26218075

  9. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.

    PubMed

    Shan, Linglong; Fan, Hongwei; Guo, Hongxia; Ji, Shulan; Zhang, Guojun

    2016-04-15

    Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the superhydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (ΔG(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (RUV254) and DOC removal rates (RDOC) could be increased to 83.6% and 73.3%, respectively. PMID:26900973

  10. Soil microstructure and organic matter: keys for chlordecone sequestration.

    PubMed

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. PMID:24056248

  11. On the spectral induced polarization signature of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Furman, A.

    2014-01-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  12. Spectral Induced Polarization Signature of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Furman, Alex

    2015-04-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  13. Natural organic matter enhanced mobility of nano zerovalent iron.

    PubMed

    Johnson, Richard L; Johnson, Graham O'Brien; Nurmi, James T; Tratnyek, Paul G

    2009-07-15

    Column studies showed that the mobility of nanometer-sized zerovalent iron (nZVI) through granular media is greatly increased in the presence of natural organic matter (NOM). At NOM concentrations of 20 mg/L or greater, the nZVI was highly mobile during transport experiments in 0.15-m long columns packed with medium sand. Below 20 mg/L NOM, mobility of the nZVI was less; however, even at 2 mg/L the nZVI showed significantly increased mobility compared to the no-NOM case. Spectrophotometric and aggregation studies of nZVI suspensions in the presence of NOM suggest that sorption of the NOM onto the nZVI, resulting in a reduced sticking coefficient, may be the primary mechanism of enhanced mobility. Modeling the mobility of nZVI in porous media with filtration theory is challenging, but calibration of a simple model with experimental results from the column experiments reported here allows simulation of transport distances during injection. The simulation results show that the increased mobility due to NOM combined with the decrease in mobility due to decreased velocity with distance from an injection well could produce an injection zone that is wide enough to be useful for remediation but small enough to avoid reaching unwanted receptors. PMID:19708381

  14. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  15. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  16. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  17. Results of the 2008 dissolved organic matter fluorescence intercalibration study

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Butler, K.; Spencer, R. G.; Boehme, J.; Aiken, G.

    2009-12-01

    In 2008, 20 laboratories around the world participated in an intercalibration study of organic matter fluorescence measurements via Excitation-Emission Matrix Spectroscopy (EEMS). The goal was to assess the variability of fluorescence measurements obtained for identical samples (n = 5 natural samples, Suwanee River Fulvic Acid, quinine sulphate and four Starna Fluorescence Reference cells) by different laboratories, and to examine potential sources of this variability. Operator error was found to be a significant source of variability, with 6 laboratories submitting erroneous EEMs in an initial round. Uncorrected EEMs were significantly different from corrected EEMs, particularly at relatively low and relatively high excitation (λex) and emission (λem) wavelengths. When data from each lab were corrected according to a standard set of algorithms, the variability between EEMs for the same sample measured by different labs was wavelength dependent, with EEMs normalized to raman areas more similar at low λex and λem, and EEMs normalized to quinine sulphate equivalents more similar at higher wavelengths. The results confirm the importance of (1) applying spectral corrections prior to comparing fluorescence data acquired on different instruments, (2) full reporting of correction procedures and implementation according to an agreed standard protocol, and (3) strict implementation of quality assurance protocols prior to reporting EEMs.

  18. Mercury reduction and complexation by natural organic matter

    SciTech Connect

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10^6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  19. The Organic Matter Biogeochemistry of the Congo River

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Hernes, P.; Wabakanghanzi, J.; Bienvenu, D. J.; Six, J.

    2015-12-01

    Organic matter (OM) represents a fundamental link between terrestrial and aquatic carbon cycles and plays an essential role in aquatic ecosystem biogeochemistry. The Congo River, which drains pristine tropical forest and savannah is the second largest exporter of terrestrial carbon to the ocean, and represents a historically understudied basin. Our ongoing projects in the Congo Basin aim to provide pertinent information on transport and emissions of carbon by rivers that need to be incorporated into carbon budgets of terrestrial ecosystems. To date the Congo Basin has seen only limited perturbation but the carbon locked away in the Congo, as in other tropical rainforests is increasingly vulnerable to release into the aquatic system and the atmosphere. However, riverine carbon transport (both of OM to the oceans and release of CO2 to the atmosphere) as a driver of global carbon cycling is still largely overlooked. Here we present data from a multi-season field campaign to quantify the transport fluxes, mineralization fluxes, and chemical character of Congo River OM, and to elucidate how these properties relate to each other and vary seasonally driven by hydrology within the Congo Basin. Existing data demonstrates that although tropical rivers do not experience the seasonal climatic extremes of temperate or northern high-latitude rivers, they all demonstrate similar effects due to changing hydrologic inputs with respect to OM dynamics. Specifically flushing periods appear to warrant further study as maximal export of reactive freshly leached plant material occurs during this time period.

  20. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria

    PubMed Central

    Smriga, Steven; Fernandez, Vicente I.; Mitchell, James G.; Stocker, Roman

    2016-01-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These “phycospheres” may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  1. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    USGS Publications Warehouse

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and

  2. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  3. Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment

    EPA Science Inventory

    We take a historic approach to explore how concepts of the chemical and physical nature of soil organic matter have evolved over time. We emphasize conceptual and analytical achievements in organic matter research over the last two decades and demonstrate how these developments h...

  4. Carbon and nitrogen in operationally-defined soil organic matter pools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic substances [humic acid (HA), fulvic acid (FA), and insoluble humin], particulate organic matter (POM), and glomalin comprise the majority (ca 75%) of operationally defined extractable soil organic matter (SOM). The purpose of this work was to compare amounts of carbon (C) and nitrogen (N) in H...

  5. Characterization of Plant-derived Dissolved Organic Matter by Multiple Spectroscopic Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. In this study, eight DOM samples from alfalfa, corn, crimson clover, hairy vetch, lupin, soybean, wheat and dairy manure wer...

  6. Inhibition of Phosphorus Sorption to Goethite, Gibbsite, and Kaolin by Fresh and Decomposed Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direct effects of dissolved organic matter (DOM) on the sorption of orthophosphate onto gibbsite, goethite, and kaolin were examined using an one-point phosphorus sorption index and the linear Tempkin isotherm model. Dissolved organic matter extracted from fresh and decomposed agricultural resi...

  7. Effects of Agronomic and Conservation Management Practices On Organic Matter and Associated Properties in Claypan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter plays several important roles in the biogeochemistry of soil and impacts the sustainability and profitability of agroecosystems. Retention and transformation of soil organic matter (SOM) are affected by agronomic and conservation management practices. The primary objective of this stu...

  8. Bacteriohopanepolyol distribution in Yenisei River and Kara Sea suspended particulate matter and sediments traces terrigenous organic matter input

    NASA Astrophysics Data System (ADS)

    De Jonge, Cindy; Talbot, Helen M.; Bischoff, Juliane; Stadnitskaia, Alina; Cherkashov, Georgy; Sinninghe Damsté, Jaap S.

    2016-02-01

    Bacteriohopanepolyols (BHPs) are ubiquitous bacterial membrane lipids, encountered in soils, river and marine suspended particulate matter (SPM) and sediments. Their abundance and distribution provides a direct means to identify bacterial inputs and can be used to trace soil-derived bacterial organic matter (OM) and in some cases the presence of bacterial groups and their activities in aquatic systems. We have studied the BHP distribution in the SPM of a major Siberian River (Yenisei River) that crosses a large latitudinal gradient, draining a large part of Mongolia and Siberian Russia. The Yenisei River is the main river to flow into the Kara Sea, a shelf sea of the Arctic Ocean. We show that the BHP distribution and concentration of SPM and surface sediments of the Yenisei Outflow in the Kara Sea allow to trace soil-marker BHPs and evaluate the performance of the R‧soil index, a proxy developed to trace bacterial soil-derived OM. Soil-marker BHPs are present in the Yenisei River, and their concentration decreases from the Yenisei River Outflow into the offshore marine sediments. The R‧soil correlates well with an independent proxy for bacterial OM, the BIT-index (r2 = 0.82) and has a moderate correlation with the δ13Corg values, a bulk OM proxy for terrigenous input (r2 = 0.44). Consequently, the R‧soil index performs well in the Kara Sea, strengthening its application for tracing bacterial OM in the Arctic Ocean, both in modern and downcore sediments. Furthermore, a suite of BHPs that are characteristic for methanotrophic bacteria, i.e. 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) and 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol), is encountered in the Yenisei Outflow sediments. These components are partly sourced from terrigenous sources, but are likely also produced in-situ in the marine sediments. The distribution of the pentafunctionalized cyclitol ether BHP in the marine systems is noteworthy, and indicates that it can

  9. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    NASA Astrophysics Data System (ADS)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  10. Role of epigeic earthworms on trophic group of nematodes during organic matter decomposition in litter bags under tomato cropping on ultisol

    NASA Astrophysics Data System (ADS)

    Alam, Syamsu; Lisnawati, Kilowasid, Laode Muhammad Harjoni; Darwis, Asniah, Nurmas, Andi

    2015-09-01

    Epigeic earthworms are often used to restore of soil quality. Trophic group of nematodes plays an important role in driving of decomposition rate of organic matter. Ultisols is characterized with the soil biological quality that is not suitable for the development of vegetable crops. The objective of this study was to analyze the effect of epigeic earthworms on the abundance of nematode trophic groups during the decomposition of organic material in litter bags under cropping of tomato (L. esculentum Mill.) on Ultisols. Epigeic species of earthworms (Lumbricus sp.) were used to modify the soil environment. The experiment treatment consisted of nine combinations of three types of organic matter and three individual levels of earthworms. The organic material consisted of litters of C. odorata, I. cylindrica and Colopogonium sp. The number of earthworms consisted of 0, 20 and 40 individuals plot-1. Each combination of each litter type and number of earthworms was repeated three times in an experimental randomized block design. Research found three trophic groups of nematodes, namely root-herbivorous, bacterivorous and predaceous in the litter bags. Abundance of root-herbivorous between combinations was significantly different at 30 days after exposure. Abundance of bacterivorous nematodes among treatments was significant at 60 days after exposure, which at the 30 and 90 days were not significant. Abundance of predaceous was differed significantly at the 60 and 90 days, and at the 30 days was not significantly different. Constant of decomposition rate of each organic matter under different number of earthworms was similar. Coefficient correlation showed that relation between the constant of decomposition rate with abundance of root-herbivorous was positive at 30 days and negative with bacterivorous at the 90 days. Research concluded that the introduction of epigeic earthworms influenced trophic group dynamics of nematodes during the decomposition of organic material

  11. Soil organic matter on citrus plantation in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais

  12. Biomarkers of Canadian High Arctic Litoral Sediments for Assessment of Organic Matter Sources and Degradation

    NASA Astrophysics Data System (ADS)

    Pautler, B. G.; Austin, J.; Otto, A.; Stewart, K.; Lamoureux, S. F.; Simpson, M. J.

    2009-05-01

    Carbon stocks in the High Arctic are particularly sensitive to global climate change, and investigation of variations in organic matter (OM) composition is beneficial for the understanding of the alteration of organic carbon under anticipated future elevated temperatures. Molecular-level characterization of solvent extractable compounds and CuO oxidation products of litoral sedimentary OM at the Cape Bounty Arctic Watershed Observatory in the Canadian Arctic Archipelago was conducted to determine the OM sources and decomposition patterns. The solvent extracts contained a series of aliphatic lipids, steroids and one triterpenoid primarily of higher plant origin and new biomarkers, iso- and anteiso-alkanes originating from cerastium arcticum (Arctic mouse-ear chickweed, a native angiosperm) were discovered. Carbon preference index (CPI) values for the n-alkanes, n-alkanols and n-alkanoic acids suggests that the OM biomarkers result from fresh material input in early stage of degradation. The CuO oxidation products were comprised of benzyls, lignin phenols and short-chain diacids and hydroxyacids. High abundance of terrestrial OM biomarkers observed at sites close to the river inlet suggests fluvial inputs as an important pathway to deliver OM into the lake. The lignin phenol vegetation index (LPVI) also suggests that the OM origin is mostly from non-woody angiosperms. A relatively high degree of lignin alteration in the litoral sediments is evident from the abundant ratio of acids and aldehydes of the vanillyl and syringyl monomers. This suggests that the lignin contents have been diagenetically altered as the result of a long residence time in this ecosystem. The molecular-level characterization of litoral sedimentary OM in Canadian High Arctic region provides insight into current OM composition,potential responses to future disturbances and the biogeochemical cycling of carbon in the Arctic.

  13. Organic Matter Transformation in the Peat Column at Marcell Experimental Forest: Humification and Vertical Stratification

    SciTech Connect

    Tfaily, Malak; Cooper, Bill; Kostka,; Chanton, Patrick R; Schadt, Christopher Warren; Hanson, Paul J; Iversen, Colleen M; Chanton, Jeff P

    2014-01-01

    A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observed a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.

  14. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex. PMID:9259831

  15. Changes in dissolved organic matter during stream drying and rewetting

    NASA Astrophysics Data System (ADS)

    von Schiller, D.; Acuña, V.; Graeber, D.; Martí, E.; Ribot, M.; Sabater, S.; Timoner, X.; Tockner, K.

    2012-04-01

    Dissolved organic matter (DOM) is a complex mixture of organic compounds, which represents an essential source of carbon (C) and nutrients in aquatic ecosystems. In addition, DOM can play a key ecological role by modifying the optical properties of waters, mediating the availability of metals and influencing trophic food web structure. While the effects of drying and rewetting on DOM dynamics in terrestrial soils is a well studied subject, less is known about its effects in aquatic ecosystems, especially in streams. This is an important gap of knowledge since temporary streams that naturally cease to flow are found worldwide. Moreover, many streams with perennial flow are currently facing flow intermittency due to the effects of water extraction or changes in land-use and climate. The aim of this study was to evaluate the effects of stream flow intermittency on the spatial and temporal variability of DOM. The study was performed in a 300-m long reach of the Fuirosos stream (Catalonia, NE Spain) during the drying (June to July) and rewetting (October to November) phases. We sampled at several points along the study reach every 3 to 4 days. We assessed DOM amount by measuring the concentration of dissolved organic C and nitrogen (N). We characterized DOM composition using spectroscopic measurements, size-exclusion chromatography and C:N stoichiometry. Results showed two markedly distinct biogeochemical shifts between the drying and the rewetting phases. During the transition from continuous to fragmented flow we observed an increase in the magnitude and spatial variability of DOM concentrations and DOM was dominated by compounds from aquatic origin. After flow recovery, we also observed a pronounced increase in DOM concentration, but during this hydrologic phase DOM was dominated by compounds of terrestrial origin. Taken together, these results emphasize the relevance of flow intermittency in regulating stream DOM dynamics not only in terms of its availability but

  16. Soil Organic Matter Effects on Phosphorus Sorption: a Path Analysis

    SciTech Connect

    Kang, J.; Hesterberg, D; Osmond, D

    2009-01-01

    While P sorption in mineral soils has been extensively studied, P sorption behavior in organic-rich soils is less known. This study was conducted to determine the relationships between Langmuir P sorption maxima (S{sub max}) and selected physicochemical properties of soils, with particular emphasis on organic matter (OM) content. The S{sub max} values were determined for 72 soil samples from the North Carolina Coastal Plain, along with pH, clay and OM contents, oxalate-extractable P (P{sub ox}), Al (Al{sub ox}), and Fe (Fe{sub ox}), and Mehlich 3 extractable P (P{sub M3}), Al (Al{sub M3}), and Fe (Fe{sub M3}). Path analysis was used to examine direct and indirect effects of soil properties on S{sub max}. In the oxalate path analysis, the direct effects of clay, Al{sub ox}, and Fe{sub ox} on S{sub max} were significant in the order Al{sub ox} > clay > Fe{sub ox} (P < 0.05). The S{sub max} was highly influenced by the indirect effect of Al{sub ox} and Fe{sub ox} through OM content. A two-piece segmented linear relationship existed between S{sub max} and OM and the regression slope in soils with OM {le} 49 g kg{sup -1} was 10-fold greater than that for soils with OM > 49 g kg{sup -1}. This finding suggested that noncrystalline or organically bound Al and Fe in the soils with OM > 49 g kg{sup -1} is less effective for P sorption than in the soils with lower OM content. In the Mehlich 3 path analysis, the direct effects of clay, OM, and Al{sub M3} on S{sub max} were significant in the order Al{sub M3} > OM > clay (P < 0.05) while the direct effect of Fe{sub M3} on S{sub max} was not significant. Oxalate may be better suited than Mehlich 3 as an extractant for predicting P sorption capacity in the Coastal Plain soils.

  17. Where is DNA preserved in soil organic matter?

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Beneduce, Luciano; Plaza, César

    2015-04-01

    Deoxyribonucleic acid (DNA) consists of long chains of alternating sugar and phosphate residues twisted in the form of a helix. Upon decomposition of plant and animal debris, this nucleic acid is released into the soil, where its fate is still not completely understood. In fact, although DNA is one of the organic compounds from living cells that is apparently broken down rapidly in soils, it is also potentially capable of being incorporated in (or interact with) the precursors of humic molecules. In order to track DNA occurrence in soil organic matter (SOM) fractions, an experiment was set up as a randomized complete block design with two factors, namely biochar addition and organic amendment. In particular, biochar (BC), applied at a rate of 20 t/ha, was combined with municipal solid waste compost (BC+MC) at a rate equivalent to 75 kg/ha of potentially available N, and with sewage sludge (BC+SS) at a rate equivalent to 75 kg/ha of potentially available N. Using a physical fractionation method, free SOM located between aggregates (unprotected C pool; FR), SOM occluded within macroaggregates (C pool weakly protected by physical mechanisms; MA), SOM occluded within microaggregates (C pool strongly protected by physical mechanisms; MI), and SOM associated with the mineral fractions (chemically-protected C pool; MIN) were separated from soil samples. DNA was then isolated from each fraction of the two series, as well as from the unamended soil (C) and from the bulk soils (WS), using Powersoil DNA isolation kit (MoBio, CA, USA) with a modified protocol. Data clearly show that the DNA survived the SOM fractionation, thus suggesting that physical fractionation methods create less artifacts compared to the chemical ones. Moreover, in both BC+MC and BC+SS series, most of the isolated DNA was present in the FR fraction, followed by the MA and the MI fractions. No DNA was recovered from the MIN fraction. This finding supports the idea that most of the DNA occurring in the SOM

  18. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed. PMID:26676540

  19. The impacts of thermokarst on sediment, organic matter, and macroinvertebrate community dynamics in arctic headwater streams

    NASA Astrophysics Data System (ADS)

    Flinn, M.; Kampman, J.; Larouche, J. R.; Bowden, W. B.

    2010-12-01

    Recent research has documented changes in arctic climate that influence permafrost degradation and the incidence of thermokarst formation. In 2009 and 2010, we examined several thermokarst failures on headwater streams near Toolik Lake, AK, and the Kelly River area of the Noatak National Preserve, AK, USA. We quantified significant differences between reference (upstream) and impacted stream reaches affected by these thermokarst features. Sediment deposition at Toolik in 2009, measured with sediment traps, showed no differences in the organic fractions; however, the inorganic fraction was ~2x higher (P<0.05) in the impacted reaches. In 2010, when discharge was lower and less flashy, the pattern reversed and only organic fractions varied between the impacted and reference reach. The patterns of benthic organic matter and fine sediment (stovepipe core) generally showed a 2-fold increase in the impacted reaches indicating that impacts may have a legacy over several years. Significant increases of ammonium (P<0.05) and benthic chlorophyll-a (P<0.01, rock scrubs) were significantly higher in the impacted reaches and increased sharply downstream of the thermokarst, especially in late summer (2009). Benthic macroinvertebrates showed a variable response in abundance and biomass in the impacted reaches. Collector-gatherers (Diptera, Chironomidae) abundance and biomass doubled in the impacted reaches by late summer, mostly due to Dicrotopus, Psudokiefferiella, and Rheotanytarsus. Nemoura (Plecoptera, Nemouridae), a shredding stonefly, abundance and biomass were over 5x higher in the impacted reaches (P<0.01). The increase in the collector-gatherer group was offset by a significant decrease in grazers. Baetis (Ephemeroptera, Baetidae) and Orthocladius (Diptera, Chironomidae) showed a 3-fold decrease in the impacted reaches (P<0.05). Results from several years of research indicate that thermokarst failures result in impacts that respond on different temporal scales. High

  20. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  1. Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole

    2014-11-01

    Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.

  2. Experimental evidence of dust-induced shaping of surface dissolved organic matter in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    Pulido-Villena, Elvira; Djaoudi, Kahina; Barani, Aude; Charrière, Bruno; Delmont, Anne; Hélias-Nunige, Sandra; Marc, Tedetti; Wambeke France, Van

    2016-04-01

    Recent research has shown that dust deposition may impact the functioning of the microbial loop. On one hand, it enhances bacterial mineralization of dissolved organic matter (DOM), and so may limit the carbon export. On the other hand, the interaction between heterotrophic bacteria and DOM in the surface ocean can increase the residence time of DOM, promoting its export and sequestration in the deep ocean. The main goal of this study was to experimentally assess whether the bacterial response to dust deposition is prone to have an effect on the residence time of the DOM pool by modifying its bioavailability. The bacterial degradation of DOM was followed on dust-amended and control treatments during long-term incubations. Dissolved organic carbon concentration decreased by 9 μmol L-1 over the course of the experiment in both control and dust-enriched conditions, with no significant differences between treatments. However, significant differences in DOM optical properties appeared at the latest stage of the incubations suggesting an accumulation of DOM of high molecular weight in the dust-amended treatment. At the end of the incubations, the remaining water was filtered and re-used as a new culture medium for a bacterial natural assemblage. Bacterial abundance and production was lower in the treatment previously submitted to dust enrichment, suggesting a decrease in DOM lability after a dust deposition event. These preliminary results point to a new link between dust and ocean carbon cycle through the modification of the residence time of the DOM pool.

  3. In-Situ Investigation of Interactions between Magnesium Ion and Natural Organic Matter.

    PubMed

    Yan, Mingquan; Lu, Yujuan; Gao, Yuan; Benedetti, Marc F; Korshin, Gregory V

    2015-07-21

    Natural organic matter (NOM) generated in all niches of the environment constitutes a large fraction of the global pool of organic carbon while magnesium is one of the most abundant elements that has multiple roles in both biotic and abiotic processes. Although interactions between Mg(2+) and NOM have been recognized to affect many environmental processes, little is understood about relevant mechanisms and equilibria. This study addressed this deficiency and quantified Mg(2+)-NOM interactions using differential absorbance spectroscopy (DAS) in combination with the NICA-Donnan speciation model. DAS data were obtained for varying total Mg concentrations, pHs from 5.0 to 11.0 and ionic strengths from 0.001 to 0.3 mol L(-1). DAS results demonstrated the existence of strong interactions between magnesium and NOM at all examined conditions and demonstrated that the binding of Mg(2+) by NOM was accompanied by the replacement of protons in the protonation-active phenolic and carboxylic groups. The slope of the log-transformed absorbance spectra of NOM in the range of wavelength 350-400 nm was found to be indicative of the extent of Mg(2+)-NOM binding. The differential and absolute values of the spectral slopes were strongly correlated with the amount of NOM-bound Mg(2+) ions and with the concentrations of NOM-bound protons. PMID:26090773

  4. Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling.

    PubMed

    Jeong, Kwon; Lee, Dae-Sung; Kim, Do-Gun; Ko, Seok-Oh

    2014-06-01

    Effluent organic matter (EfOM) is the major cause of fouling in the low pressure membranes process for wastewater reuse. Coagulation and oxidation of biological wastewater treatment effluent have been applied for the fouling control of microfiltration membranes. However, the change in EfOM structure by pre-treatments has not been clearly identified. The changes of EfOM characteristics induced by coagulation and ozonation were investigated through size exclusion chromatography, UV/Vis spectrophotometry, fluorescence spectrophotometry and titrimetric analysis to identify the mechanisms in the reduction of ultrafiltration (UF) membrane fouling. The results indicated that reduction of flux decline by coagulation was due to modified characteristics of dissolved organic carbon (DOC) content. Total concentration of DOC was not reduced by ozonation. However, the mass fraction of the molecules with molecular weight larger than 5 kDa, fluorescence intensity, aromaticity, highly condensed chromophores, average molecular weight and soluble microbial byproducts decreased greatly after ozonation. These results indicated that EfOM was partially oxidized by ozonation to low molecular weight, highly charged compounds with abundant electron-withdrawing functional groups, which are favourable for alleviating UF membrane flux decline. PMID:25079844

  5. The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment

    PubMed Central

    Min, Kyungjin; Freeman, Chris; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also, we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental changes, such as elevated CO2, warming, nitrogen (N) deposition, and drought, could influence the production and form of phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances. Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems. Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental changes on the phenolics production and degradation and subsequent impact on SOM processing. PMID:26495314

  6. Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

    PubMed Central

    McEnroe, Nicola A.; Williams, Clayton J.; Xenopoulos, Marguerite A.; Porcal, Petr; Frost, Paul C.

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L-1 across the ponds with an average value of 5.3 mg C L-1. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems. PMID:24348908

  7. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  8. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  9. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  10. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been