Science.gov

Sample records for abundant organic molecules

  1. Abundance of complex organic molecules in comets

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Debout, V.; Crovisier, J.; Moreno, R.; Boissier, J.; Lis, D.; Colom, P.; Paubert, G.; Dello Russo, N.; Vervack, R.; Weaver, H.

    2014-07-01

    The IRAM-30m submillimetre radio telescope has now an improved sensitivity and versality thanks to its wide-band EMIR receivers and high-resolution FFT spectrometer. Since 2012, we have undertaken ~70 GHz wide spectral surveys in the 1-mm band in several comets: C/2009 P1 (Garradd), C/2011 L4 (PanSTARRS), C/2012 F6 (Lemmon), C/2012 S1 (ISON), and C/2013 R1 (Lovejoy). Since their discovery in comet C/1995 O1 (Hale-Bopp) in 1997 (Bockelée-Morvan et al. 2000, Crovisier et al. 2004a, 2004b), we have detected complex CHO(N)-molecules such as formic acid (HCOOH), formamide (NH_2CHO), acetaldehyde (CH_3CHO), and ethylene glycol ((CH_2OH)_2) in several other comets. HCOOH has now been detected in 6 other comets since 2004, and formamide, ethylene glycol, and acetaldehyde were re-detected for the first time in comets Lemmon or Lovejoy in 2013 (Biver et al. 2014). We will present the abundances relative to water we derive for these species, and the sensitive upper limits we obtain for other complex CHO-bearing molecules. We will discuss the implication of these findings on the origin of cometary material in comparison with observations of such molecules in the interstellar medium.

  2. Organic Molecules in Meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10

  3. Halley's polymeric organic molecules

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.; Boice, D. C.; Korth, A.

    1989-01-01

    The detection of polymeric organic compounds in the mass spectrum of Comet Halley obtained with the Positive Ion Cluster Composition analyzer on Giotto are examined. It is found that, in addition to polyoxymethylene, other polymers and complex molecules may exist in the comet. It is suggested that polymerized hydrogen cyanide may be a source for the observed CN and NH2 jets.

  4. Organic heterocyclic molecules become superalkalis.

    PubMed

    Reddy, G Naaresh; Giri, Santanab

    2016-09-21

    An organic molecule which behaves like a superalkali has been designed from an aromatic heterocyclic molecule, pyrrole. Using first-principles calculation and a systematic two-step approach, we can have superalkali molecules with a low ionization energy, even lower than that of Cs. Couple cluster (CCSD) calculation reveals that a new heterocycle, C3N2(CH3)5 derived from a well-known aromatic heterocycle, pyrrole (C4H5N) has an ionization energy close to 3.0 eV. A molecular dynamics calculation on C3N2(CH3)5 reveals that the structure is dynamically stable. PMID:27530344

  5. Electronic Transport in Organic Molecules

    NASA Astrophysics Data System (ADS)

    Tian, W.; Samanta, M. P.; Henderson, J. I.; Kubiak, C. P.; Datta, S.

    1996-03-01

    A systematic theoretical study of the conductance of a class of organic molecules connected between two gold cantact pads will be presented. This class of molecules consists of oligomers of benzene rings linked at their para-positions and terminated with suitable ligand end groups designed to bond to gold substrates. Such molecules are currently being investigated experimentally for use as interconnectors in nanoscale electronic devices (J.Guay et al, J.Am.Chem.Soc., 115,1869, (1993); M.Dorogi et al, Phys. Rev. B52,9071,(1995); D.B.Janes et al, Superlatt. and Microstruc., in press). Analytical and numerical results will be presented illustrating effects of Metal Induced Gap States (MIGS), end group atoms, geometric and molecular structure on the measured conductance.

  6. Characterization of Interstellar Organic Molecules

    SciTech Connect

    Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.

    2008-11-06

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  7. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  8. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  9. Relative Sizes of Organic Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  10. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.

  11. Search for complex organic molecules in space

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi

    2016-07-01

    It was 1969 when the first organic molecule in space, H2CO, was discovered. Since then many organic molecules were discovered by using the NRAO 11 m (upgraded later to 12 m), Nobeyama 45 m, IRAM 30 m, and other highly sensitive radio telescopes as a result of close collaboration between radio astronomers and microwave spectroscopists. It is noteworthy that many famous organic molecules such as CH3OH, C2H5OH, (CH3)2O and CH3NH2 were detected by 1975. Organic molecules were found in so-called hot cores where molecules were thought to form on cold dust surfaces and then to evaporate by the UV photons emitted from the central star. These days organic molecules are known to exist not only in hot cores but in hot corinos (a warm, compact molecular clump found in the inner envelope of a class 0 protostar) and even protoplanetary disks. As was described above, major organic molecules were known since 1970s. It was very natural that astronomers considered a relationship between organic molecules in space and the origin of life. Several astronomers challenged to detect glycine and other prebiotic molecules without success. ALMA is expected to detect such important materials to further consider the gexogenous deliveryh hypothesis. In this paper I summarize the history in searching for complex organic molecules together with difficulties in observing very weak signals from larger species. The awfully long list of references at the end of this article may be the most useful part for readers who want to feel the exciting discovery stories.

  12. Circularly Polarized Luminescence from Simple Organic Molecules

    PubMed Central

    Sánchez-Carnerero, Esther M.; Agarrabeitia, Antonia R.; Moreno, Florencio; Maroto, Beatriz L.; Muller, Gilles; Ortiz, María J.

    2015-01-01

    This article aims to show the identity of “CPL-active simple organic molecules” as a new concept in Organic Chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and nonaggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  13. Complex organic molecules in organic-poor massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Öberg, Karin I.; Garrod, Robin T.; van Dishoeck, Ewine F.; Bisschop, Suzanne E.

    2015-04-01

    Context. Massive young stellar objects (MYSOs) with hot cores are classic sources of complex organic molecules. The origins of these molecules in such sources, as well as the small- and large-scale differentiation between nitrogen- and oxygen-bearing complex species, are poorly understood. Aims: We aim to use complex molecule abundances toward a chemically less explored class of MYSOs with weak hot organic emission lines to constrain the impact of hot molecular cores and initial ice conditions on the chemical composition toward MYSOs. Methods: We use the IRAM 30 m and the Submillimeter Array to search for complex organic molecules over 8-16 GHz in the 1 mm atmospheric window toward three MYSOs with known ice abundances, but without luminous molecular hot cores. Results: Complex molecules are detected toward all three sources at comparable abundances with respect to CH3OH to classical hot core sources. The relative importance of CH3CHO, CH3CCH, CH3OCH3, CH3CN, and HNCO differ between the organic-poor MYSOs and hot cores, however. Furthermore, the N-bearing molecules are generally concentrated toward the source centers, while most O- and C-bearing molecules are present both in the center and in the colder envelope. Gas-phase HNCO/CH3OH ratios are tentatively correlated with the ratios of NH3 ice over CH3OH ice in the same lines of sight, which is consistent with new gas-grain model predictions. Conclusions: Hot cores are not required to form complex organic molecules, and source temperature and initial ice composition both seem to affect complex organic distributions toward MYSOs. To quantify the relative impact of temperature and initial conditions requires, however, a larger spatially resolved survey of MYSOs with ice detections.

  14. The missing organic molecules on Mars.

    PubMed

    Benner, S A; Devine, K G; Matveeva, L N; Powell, D H

    2000-03-14

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  15. The missing organic molecules on Mars

    PubMed Central

    Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606

  16. The missing organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  17. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  18. Organic chemistry: Precision pruning of molecules

    NASA Astrophysics Data System (ADS)

    Yang, Kin S.; Engle, Keary M.

    2016-05-01

    If organic molecules were trees, then the numerous carbon-hydrogen bonds within them would be leaves. A catalyst that targets one 'leaf' out of many similar other ones looks set to be a huge leap for synthetic chemistry. See Letter p.230

  19. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars). PMID:25467771

  20. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars).

  1. Adsorption of small organic molecules on graphene.

    PubMed

    Lazar, Petr; Karlický, František; Jurečka, Petr; Kocman, Mikuláš; Otyepková, Eva; Šafářová, Klára; Otyepka, Michal

    2013-04-24

    We present a combined experimental and theoretical quantification of the adsorption enthalpies of seven organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate, hexane, and toluene) on graphene. Adsorption enthalpies were measured by inverse gas chromatography and ranged from -5.9 kcal/mol for dichloromethane to -13.5 kcal/mol for toluene. The strength of interaction between graphene and the organic molecules was estimated by density functional theory (PBE, B97D, M06-2X, and optB88-vdW), wave function theory (MP2, SCS(MI)-MP2, MP2.5, MP2.X, and CCSD(T)), and empirical calculations (OPLS-AA) using two graphene models: coronene and infinite graphene. Symmetry-adapted perturbation theory calculations indicated that the interactions were governed by London dispersive forces (amounting to ∼60% of attractive interactions), even for the polar molecules. The results also showed that the adsorption enthalpies were largely controlled by the interaction energy. Adsorption enthalpies obtained from ab initio molecular dynamics employing non-local optB88-vdW functional were in excellent agreement with the experimental data, indicating that the functional can cover physical phenomena behind adsorption of organic molecules on graphene sufficiently well.

  2. Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants.

    PubMed

    Warren, Charles R

    2013-04-01

    Studies of organic nitrogen (N) cycling and uptake by plants have focused on protein amino acids, but the soil solution includes organic N compounds from many other compound classes. The two aims of this study were to characterize the 30-50 most abundant molecules of small (< 250 Da), nonpeptide organic N in the soil solution from six soils, and to determine if two ecologically disparate species (nonmycorrhizal Banksia oblongifolia and mycorrhizal Triticum aestivum) have the ability to take up intact molecules of three quaternary ammonium compounds (betaine, carnitine and acetyl-carnitine). Protein amino acids were dominant components of the pool of small nonpeptide organic N in all soils. The most abundant other compound classes were quaternary ammonium compounds (1-28% of nonpeptide small organic N) and nonprotein amino acids (3-19% of nonpeptide small organic N). B. oblongifolia and T. aestivum took up intact quaternary ammonium compounds from dilute hydroponic solution, while T. aestivum growing in field soil took up intact quaternary ammonium compounds injected into soil. Results of this study show that the pool of organic N in soil is more diverse and plants have an even broader palate than is suggested by most of the literature on organic N.

  3. Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes.

    PubMed

    York, Justin; Spetzler, David; Hornung, Tassilo; Ishmukhametov, Robert; Martin, James; Frasch, Wayne D

    2007-12-01

    The abundance of E. coli F1-ATPase molecules observed to rotate using gold nanorods attached to the gamma-subunit was quantitated. Individual F1 molecules were determined to be rotating based upon time dependent fluctuations of red and green light scattered from the nanorods when viewed through a polarizing filter. The average number of F1 molecules observed to rotate in the presence of GTP, ATP, and without nucleotide was approximately 50, approximately 25, and approximately 4% respectively. In some experiments, the fraction of molecules observed to rotate in the presence of GTP was as high as 65%. These data indicate that rotational measurements made using gold nanorods provide information of the F1-ATPase mechanism that is representative of the characteristics of the enzyme population as a whole.

  4. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  5. Quantum interference of large organic molecules

    PubMed Central

    Gerlich, Stefan; Eibenberger, Sandra; Tomandl, Mathias; Nimmrichter, Stefan; Hornberger, Klaus; Fagan, Paul J.; Tüxen, Jens; Mayor, Marcel; Arndt, Markus

    2011-01-01

    The wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer. Our experiments prove the quantum wave nature and delocalization of compounds composed of up to 430 atoms, with a maximal size of up to 60 Å, masses up to m=6,910 AMU and de Broglie wavelengths down to λdB=h/mv≃1 pm. We show that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence. PMID:21468015

  6. Functional diversity of organic molecule enzyme cofactors.

    PubMed

    Richter, Michael

    2013-10-11

    Covering up to 2013. Cofactor-dependent enzymes which need small organic molecule cofactors to accomplish enzymatic activity are widespread. The number of newly discovered reactions within cofactor-dependent enzyme families increases continuously. A knowledge based categorization of cofactors with respect to their chemical properties shows that within enzymes they are not used for the catalysis of singular types of reactions and functionalities. Therefore, in many cases an unambiguous and narrow classification does not seem sufficient. Rather, the functional diversity of cofactors found in enzymes represents variations around specific themes with regard to a catalysed reaction and the cofactor chemistry. Furthermore, organic cofactor molecules are also used for non-enzymatic functions. Two representative cofactors are exemplarily discussed in detail, thiamin diphosphate (ThDP) as a self-sufficient cofactor and S-adenosyl-L-methionine (SAM), as both a catalytic and building-block-delivering cofactor. A further synopsis on selected examples of organic cofactors emphasizes the discovery and application of new enzymatic activities based on the cofactor-dependent chemistry and shows how bioinspired synthesis approaches expand catalytic and non-catalytic synthesis applications beyond natural solutions.

  7. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  8. Endogenous Synthesis of Prebiotic Organic Molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1996-01-01

    The necessary condition for the synthesis of organic compounds on the primitive earth is the presence of reducing conditions. This means an atmosphere of CH4, CO, or CO2 + H2. The atmospheric nitrogen can be N2 with a trace of NH3, but NH4(+) is needed in the ocean at least for amino acid synthesis. Many attempts have been made to use CO2 + H2O atmospheres for prebiotic synthesis, but these give at best extremely low yields of organic compounds, except in the presence of H2. Even strong reducing agents such as FeS + H2S or the mineral assemblages of the submarine vents fail to give significant yields of organic compounds with CO2. There appears to be a high kinetic barrier to the non-biological reduction of CO2 at low temperatures using geological reducing agents. The most abundant source of energy for prebiotic synthesis is ultraviolet light followed by electric discharges, with electric discharges being more efficient, although it is not clear which was the important energy source. Photochemical process would also make significant contributions. In an atmosphere Of CO2, N2, and H2O with no H2, the production rates of HCN and H2CO would be very low, 0.001 or less than that of a relatively reducing atmosphere. The concentration of organic compounds under these non-reducing conditions would be so low that there is doubt whether the concentration mechanism would be adequate for further steps toward the origin of life. A number of workers have calculated the influx of comets and meteorites on the primitive earth as a source of organic compounds. We conclude that while some organic material was added to the earth from comets and meteorites the amount available from these sources at a given time was at best only a few percent of that from earth bases syntheses under reducing conditions.

  9. The Distribution of Complex Organic Molecules in the Orion KL Molecular Core

    NASA Technical Reports Server (NTRS)

    Kuan, Yi-Jehng; Hsu, Yu-Sen; Charnley, Steven B.; Wang, Kuo-Song

    2011-01-01

    We conducted high angular-resolution observations toward the massive star-forming region Orion KL at 1.3 mm using the Submillimeter Array (SMA). Spectral emission from twelve complex organic molecules was simultaneously imaged. We discuss the distinct chemical characteristics among four sub- regions in Orion KL by comparing the spatial distributions and fractional abundances of these complex molecules. These observations will allow us to test and constrain chemical models of interstellar organic synthesis.

  10. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  11. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  12. Organic Optoelectronic Devices Employing Small Molecules

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt

  13. Circumstellar and interstellar synthesis of organic molecules.

    PubMed

    Tielens, A G; Charnley, S B

    1997-06-01

    We review the formation and evolution of complex circumstellar and interstellar molecules. A number of promising chemical routes are discussed which may lead to the formation of polycyclic aromatic hydrocarbon molecules, fullerenes, and unsaturated hydrocarbon chains in the outflows from stars. Some of the problems with these chemical schemes are pointed out as well. We also review the role of grains in the formation of complex molecules in interstellar molecular clouds. This starts with the formation of simple molecules in an ice grain mantle. UV photolysis and/or thermal polymerization can convert some of these simple molecules into more complex polymeric structures. Some of these species may be released to the gas phase, particularly in the warm regions around newly formed stars. Methanol and formaldehyde seem to play an important role in this drive towards molecular complexity and their chemistry is traced in some detail.

  14. CHEMICAL TRANSPORT FACILITATED BY COLLOIDAL-SIZED ORGANIC MOLECULES

    EPA Science Inventory

    The fluid passing through the pores of soils and geologic materials is not just water with dissolved inorganic chemicals, but a complex mixture of organic and inorganic molecules. Large organic molecules such as humic and fulvic materials may impact the movement of contaminants. ...

  15. X-ray characterization of solid small molecule organic materials

    DOEpatents

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  16. Investigation of claims for interstellar organisms and complex organic molecules

    NASA Astrophysics Data System (ADS)

    Davies, Robert E.; Delluva, Adelaide M.; Koch, Robert H.

    1984-10-01

    For many years, Hoyle, Wickramasinghe and their associates have examined interstellar (IS) absorption features in the ultraviolet, visible and infrared and `identified' them with a variety of organic structures or organisms. Among these there have been generalized, pre-biotic molecules1, polyoxymethylene whiskers2, polysaccharides and hydrocarbons3,4, tryptophan (and inferentially proteins)5-all claimed to be coatings on IS grains. In other cases, the grains1,6 have been described as 10-100% alkanes, alkenes, alkynes or aromatics by mass. In extensions of these claims, the grains are supposed to be microorganisms (such as viruses and bacteria7, algae8, siliceous cells similar to diatoms9, yeasts10 or other eukaryotic cells11) in whole or in part. Finally, a case has been advanced for possible interstellar and interplanetary insects11. The `identifications' in these and many other publications call into question the intrinsic origin of Earth life itself12,13 and the uniqueness and validity of darwinian evolution11. We now report on ultraviolet spectra of specimens of the types cited by these workers and compare our results with infrared and ultraviolet data published previously. We conclude that the identifications claimed by Hoyle, Wickramasinghe and their colleagues are unwarranted.

  17. Photostability of Organic Molecules in Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Monfredini, T.; Wolf, W.; Mendoza, E.; Rocco, M. L.; Lago, A.; Boechat-Roberty, H. M.

    2014-10-01

    Aromatic Infrared Bands, the footprint of molecules like neutral and ionic Polycyclic Aromatic Hydrocarbons (PAHs), have been observed in several astrophysical environments.We present the experimental results of the photoionization and photodissociation of the methyl-benzene (or toluene) molecule, a basic unit for the methylated PAHs, using synchrotron radiation at C1s resonance, ˜ 285 eV (soft X-ray) and time-of-flight mass-spectrometry. Absolute photoionization and photodissociation cross sections have been determined. Then the ionization and destruction rates and half-life of the toluene molecule were also obtained for the X-ray photon flux of the pre-planetary nebula CRL 618.

  18. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOEpatents

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  19. Near-infrared spectroscopy of M dwarfs. I. CO molecule as an abundance indicator of carbon†

    NASA Astrophysics Data System (ADS)

    Tsuji, Takashi; Nakajima, Tadashi

    2014-10-01

    Based on the near-infrared spectra of 42 M dwarfs, carbon abundances are determined from the ro-vibrational lines of the CO (2-0) band. We apply Teff values based on the angular diameters if available or use the Teff values in a log Teff-M3.4 relation (M3.4 is the absolute magnitude at 3.4 μm based on the WISE W1 flux and the Hipparcos parallax) to estimate Teff values of objects for which angular diameters are unknown. Also, we discuss briefly the HR diagram of low-mass stars. On the observed spectrum of the M dwarf, the continuum is depressed by the numerous weak lines of H2O and only the depressed continuum or the pseudo-continuum can be seen. On the theoretical spectrum of the M dwarf, the true continuum can be evaluated easily but the pseudo-continuum can also be evaluated accurately thanks to the recent H2O line database. Then spectroscopic analysis of the M dwarf can be done by referring to the pseudo-continuum both on the observed and theoretical spectra. Since the basic principle of the spectroscopic analysis should be the same whether the true- or pseudo-continuum is referred to, the difficulty related to the continuum in cool stars can in principle be overcome. Then, the numerous CO lines can be excellent abundance indicators of carbon, since almost all the carbon atoms are in stable CO molecules which suffer little effect of the uncertainties in photospheric structure, and carbon abundances in late-type stars can best be determined in M dwarfs rather than in solar type stars. The resulting C/Fe ratios for most M dwarfs are nearly constant at about the solar value based on the classical high carbon abundance rather than on the recently revised lower value. This result implies that the solar carbon abundance is atypical for its metallicity among the stellar objects in the solar neighborhood if the downward revised carbon abundance is correct.

  20. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  1. The Origin of Complex Organic Molecules in Prestellar Cores

    NASA Astrophysics Data System (ADS)

    Vastel, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.

    2014-11-01

    Complex organic molecules (COMs) have been detected in a variety of environments including cold prestellar cores. Given the low temperatures of these objects, these detections challenge existing models. We report here new observations toward the prestellar core L1544. They are based on an unbiased spectral survey of the 3 mm band at the IRAM 30 m telescope as part of the Large Program ASAI. The observations allow us to provide a full census of the oxygen-bearing COMs in this source. We detected tricarbon monoxide, methanol, acetaldehyde, formic acid, ketene, and propyne with abundances varying from 5 × 10-11 to 6 × 10-9. The non-LTE analysis of the methanol lines shows that they are likely emitted at the border of the core at a radius of ~8000 AU, where T ~ 10 K and n H_2 ~2 × 104 cm-3. Previous works have shown that water vapor is enhanced in the same region because of the photodesorption of water ices. We propose that a non-thermal desorption mechanism is also responsible for the observed emission of methanol and COMs from the same layer. The desorbed oxygen and a small amount of desorbed methanol and ethene are enough to reproduce the abundances of tricarbon monoxide, methanol, acetaldehyde, and ketene measured in L1544. These new findings open the possibility that COMs in prestellar cores originate in a similar outer layer rather than in the dense inner cores, as previously assumed, and that their formation is driven by the non-thermally desorbed species.

  2. THE ORIGIN OF COMPLEX ORGANIC MOLECULES IN PRESTELLAR CORES

    SciTech Connect

    Vastel, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.

    2014-11-01

    Complex organic molecules (COMs) have been detected in a variety of environments including cold prestellar cores. Given the low temperatures of these objects, these detections challenge existing models. We report here new observations toward the prestellar core L1544. They are based on an unbiased spectral survey of the 3 mm band at the IRAM 30 m telescope as part of the Large Program ASAI. The observations allow us to provide a full census of the oxygen-bearing COMs in this source. We detected tricarbon monoxide, methanol, acetaldehyde, formic acid, ketene, and propyne with abundances varying from 5 × 10{sup –11} to 6 × 10{sup –9}. The non-LTE analysis of the methanol lines shows that they are likely emitted at the border of the core at a radius of ∼8000 AU, where T ∼ 10 K and n {sub H{sub 2}} ∼2 × 10{sup 4} cm{sup –3}. Previous works have shown that water vapor is enhanced in the same region because of the photodesorption of water ices. We propose that a non-thermal desorption mechanism is also responsible for the observed emission of methanol and COMs from the same layer. The desorbed oxygen and a small amount of desorbed methanol and ethene are enough to reproduce the abundances of tricarbon monoxide, methanol, acetaldehyde, and ketene measured in L1544. These new findings open the possibility that COMs in prestellar cores originate in a similar outer layer rather than in the dense inner cores, as previously assumed, and that their formation is driven by the non-thermally desorbed species.

  3. A new and simple approach to determine the abundance of hydrogen molecules on interstellar ice mantles

    NASA Astrophysics Data System (ADS)

    Hincelin, U.; Chang, Q.; Herbst, E.

    2015-02-01

    Context. Water is usually the main component of ice mantles, which cover the cores of dust grains in cold portions of dense interstellar clouds. When molecular hydrogen is adsorbed onto an icy mantle through physisorption, a common assumption in gas-grain rate-equation models is to use an adsorption energy for molecular hydrogen on a pure water substrate. However, at high density and low temperature, when H2 is efficiently adsorbed onto the mantle, its surface abundance can be strongly overestimated if this assumption is still used. Unfortunately, the more detailed microscopic Monte Carlo treatment cannot be used to study the abundance of H2 in ice mantles if a full gas-grain network is utilized. Aims: We present a numerical method adapted for rate-equation models that takes into account the possibility that an H2 molecule can, while diffusing on the surface, find itself bound to another hydrogen molecule, with a far weaker bond than the H2-water bond, which can lead to more efficient desorption. We label the ensuing desorption "encounter desorption". Methods: The method is implemented first in a simple system consisting only of hydrogen molecules at steady state between gas and dust using the rate-equation approach and comparing the results with the results of a microscopic Monte Carlo calculation. We then discuss the use of the rate-equation approach with encounter desorption embedded in a complete gas-grain chemical network. Results: For the simple system, the rate-equation model with encounter desorption reproduces the H2 granular coverage computed by the microscopic Monte Carlo model at 10 K for a gas density from 104 to 1012 cm-3, and yields up to a factor 4 difference above 1012 cm-3. The H2 granular coverage is also reproduced by a complete gas-grain network. We use the rate-equation approach to study the gas-grain chemistry of cold dense regions with and without the encounter desorption mechanism. We find that the grain surface and gas phase species can be

  4. Electrocatalytic recycling of CO2 and small organic molecules.

    PubMed

    Lee, Jaeyoung; Kwon, Youngkook; Machunda, Revocatus L; Lee, Hye Jin

    2009-10-01

    As global warming directly affects the ecosystems and humankind in the 21st century, attention and efforts are continuously being made to reduce the emission of greenhouse gases, especially carbon dioxide (CO2). In addition, there have been numerous efforts to electrochemically convert CO2 gas to small organic molecules (SOMs) and vice versa. Herein, we highlight recent advances made in the electrocatalytic recycling of CO2 and SOMs including (i) the overall trend of research activities made in this area, (ii) the relations between reduction conditions and products in the aqueous phase, (iii) the challenges in the use of gas diffusion electrodes for the continuous gas phase CO2 reduction, as well as (iv) the development of state of the art hybrid techniques for industrial applications. Perspectives geared to fully exploit the potential of zero-gap cells for CO2 reduction in the gaseous phase and the high applicability on a large scale are also presented. We envision that the hybrid system for CO2 reduction supported by sustainable solar, wind, and geothermal energies and waste heat will provide a long term reduction of greenhouse gas emissions and will allow for continued use of the abundant fossil fuels by industries and/or power plants but with zero emissions.

  5. Sedimentary organic molecules: Origins and information content

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.

    1991-01-01

    To progress in the study of organic geochemistry, we must dissect the processes controlling the composition of sedimentary organic matter. Structurally, this has proven difficult. Individual biomarkers can often be recognized, but their contribution to total organic materials is small, and their presence does not imply that their biochemical cell mates have survived. We are finding, however, that a combination of structural and isotopic lines of evidence provides new information. A starting point is provided by the isotopic compositions of primary products (degradation products of chlorophylls, alkenones derived from coccoliths). We find strong evidence that the isotopic difference between primary carbonate and algal organic material can be interpreted in terms of the concentration of dissolved CO2. Moreover, the isotopic difference between primary and total organic carbon can be interpreted in terms of characteristic isotopic shifts imposed by secondary processes (responsive, for example, to O2 levels in the depositional environment. In favorable cases, isotopic compositions of a variety of secondary products can be interpreted in terms of flows of carbon, and, therefore, in terms of specific processes and environmental conditions within the depositional environment.

  6. The IUPAC Rules for Naming Organic Molecules

    ERIC Educational Resources Information Center

    Skonieczny, Stanislaw

    2006-01-01

    A systematic approach to naming polyfunctional organic compounds is presented. Latest IUPAC rules are incorporated and the table of order of precedence for the major functional groups is assembled. The scope of nomenclature is limited to common functional groups that are covered by undergraduate courses in colleges and universities. (Contains 1…

  7. Analyzing abundance of mRNA molecules with a near-infrared fluorescence technique.

    PubMed

    Chen, Ying; Pan, Yan; Zhang, Beibei; Wang, Jinke

    2014-01-01

    This study describes a simple method for analyzing the abundance of mRNA molecules in a total DNA sample. Due to the dependence on the near-infrared fluorescence technique, this method is named near-infrared fluorescence gene expression detection (NIRF-GED). The procedure has three steps: (1) isolating total RNA from detected samples and reverse-transcription into cDNA with a biotin-labeled oligo dT; (2) hybridizing cDNA to oligonucleotide probes coupled to a 96-well microplate; and (3) detecting biotins with NIRF-labeled streptavidin. The method was evaluated by performing proof-in-concept detections of absolute and relative expressions of housekeeping and NF-κB target genes in HeLa cells. As a result, the absolute expression of three genes, Ccl20, Cxcl2, and Gapdh, in TNF-α-uninduced HeLa cells was determined with a standard curve constructed on the same microplate, and the relative expression of five genes, Ccl20, Cxcl2, Il-6, STAT5A, and Gapdh, in TNF-α-induced and -uninduced HeLa cells was measured by using NIRF-GED. The results were verified by quantitative PCR (qPCR) and DNA microarray detections. The biggest advantage of NIRF-GED over the current techniques lies in its independence of exponential or linear amplification of nucleic acids. Moreover, NIRF-GED also has several other benefits, including high sensitivity as low as several fmols, absolute quantification in the range of 9 to 147 fmols, low cDNA consumption similar to qPCR template, and the current medium throughput in 96-well microplate format and future high throughput in DNA microarray format. NIRF-GED thus provides a new tool for analyzing gene transcripts and other nucleic acid molecules. PMID:24317515

  8. Organic molecules in ices and their release into the gas phase

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith; Oberg, Karin I.; Garrod, Robin; van Dishoeck, Ewine; Rajappan, Mahesh; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues

    2015-08-01

    Organic molecules in the early stages of star formation are mainly produced in icy mantles surrounding interstellar dust grains. Identifying these complex organics and quantifying their abundance during the evolution of young stellar objects is of importance to understand the emergence of life. Simple molecules in ices, up to methanol in size, have been identified in the interstellar medium through their mid-IR vibrations, but band confusion prevents detections of more complex and less abundant organic molecules in interstellar ices. The presence of complex organics on grains can instead be indirectly inferred from observations of their rotational lines in the gas phase following ice sublimation.Thermal sublimation of protostellar ices occurs when icy grains flow toward a central protostar, resulting in the formation of a hot-core or a hot-corinos. The high degree of chemical complexity observed in these dense and warm regions can be the results of i) direct synthesis on the grains followed by desorption, but also to ii) the desorption of precursors from the ice followed by gas-phase chemistry. I will show how spatially resolved millimetric observations of hot cores and cooler protostellar environments, coupled to ice observations can help us pinpoint the ice or gas-phase origin of these organic species.Organic molecules have also recently been observed in cold environments where thermal desorption can be neglected. The presence of these cold molecules in the gas phase is most likely due to non-thermal desorption processes induced by, for e.g., photon-, electron-, cosmic-ray-irradiation, shock, exothermic reactions... I will present laboratory and observational efforts that push our current understanding of these non-thermal desorption processes and how they could be use to quantify the amount of organics in ices.

  9. Cosmic ray synthesis of organic molecules in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Capone, L. A.; Dubach, J.; Whitten, R. C.; Prasad, S. S.; Santhanam, K.

    1980-01-01

    The possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2-CH4-H2 Titan model atmosphere has been studied. The cosmic-ray-induced ionization results in peak electron densities of 2000/cu cm, with NH(+), C3H9(+), and C4H9(+) being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.

  10. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  11. Electrospray deposition of organic molecules on bulk insulator surfaces.

    PubMed

    Hinaut, Antoine; Pawlak, Rémy; Meyer, Ernst; Glatzel, Thilo

    2015-01-01

    Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules.

  12. Anisotropic behavior of organic molecules on prepatterned surfaces

    NASA Astrophysics Data System (ADS)

    Hopp, Stefan Frieder; Heuer, Andreas

    2012-04-01

    The nucleation of organic molecules on surfaces, prepatterned with stripes, is investigated with emphasis on anisotropy effects. Representing the molecules as ellipsoids, the related particle-particle interaction is modeled by means of a generalized Gay-Berne potential for similar biaxial particles. The orientation behavior of these ellipsoidal molecules induced by the stripe pattern is studied for the first monolayer by performing kinetic Monte Carlo simulations. It is shown how the properties of the particle alignment depend on energy scales, temperature, and flux. Based on the fact the particles strictly arrange in rows, it is furthermore instructive to analyze the orientation behavior within the different rows. Finally, the transfer of orientation from a preset row of molecules with fixed orientation to other nucleating particles is examined.

  13. Coordinative alignment of molecules in chiral metal-organic frameworks.

    PubMed

    Lee, Seungkyu; Kapustin, Eugene A; Yaghi, Omar M

    2016-08-19

    A chiral metal-organic framework, MOF-520, was used to coordinatively bind and align molecules of varying size, complexity, and functionality. The reduced motional degrees of freedom obtained with this coordinative alignment method allowed the structures of molecules to be determined by single-crystal x-ray diffraction techniques. The chirality of the MOF backbone also served as a reference in the structure solution for an unambiguous assignment of the absolute configuration of bound molecules. Sixteen molecules representing four common functional groups (primary alcohol, phenol, vicinal diol, and carboxylic acid), ranging in complexity from methanol to plant hormones (gibberellins, containing eight stereocenters), were crystallized and had their precise structure determined. We distinguished single and double bonds in gibberellins, and we enantioselectively crystallized racemic jasmonic acid, whose absolute configuration had only been inferred from derivatives. PMID:27540171

  14. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules.

    PubMed

    Öberg, Karin I

    2016-09-14

    The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and other volatiles) are exposed to UV photons and other sources of dissociative radiation, and if sufficiently mobile the radicals can react to form larger, more complex molecules. The resulting complex organic molecules (COMs) accompany star and planet formation and may eventually seed the origins of life on nascent planets. Experiments of increasing sophistication have demonstrated that known interstellar COMs as well as the prebiotically interesting amino acids can form through ice photochemistry. We review these experiments and discuss the qualitative and quantitative kinetic and mechanistic constraints they have provided. We finally compare the effects of UV radiation with those of three other potential sources of radical production and chemistry in interstellar ices: electrons, ions, and X-rays.

  15. Searching for Bio-Precursors and Complex Organic Molecules in Space using the GBT

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Kisiel, Z.

    2012-01-01

    Using the latest microwave receiver technology, large organic molecules with abundances as low as approx. 10(exp -11) times that of molecular hydrogen are detectable in cold interstellar clouds via their rotational emission line spectra. We report new observations to search for complex molecules, including molecules of possible pre-biotic importance, using the newly-commissioned Kband focal plane array (KFPA) of the NRAO Robert C. Byrd Green Bank Telescope. Spectra are presented of the dense molecular cloud TMC-1, showing strict upper limits on the level of emission from nitrogen-bearing rings pyrimidine, quinoline and iso-quinoline, carbon-chain oxides C60, C70, HC60 and HC70, and the carbon-chain anion C4H-. The typical RMS brightness temperature noise levels we achieved are approx. 1 mK at around 20 GHz.

  16. Search for organic molecules in the outer solar system.

    PubMed

    Encrenaz, T h

    1986-01-01

    Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF).

  17. Search for organic molecules in the outer solar system.

    PubMed

    Encrenaz, T h

    1986-01-01

    Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF). PMID:11537827

  18. Meteors do not break exogenous organic molecules into high yields of diatomics

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Schaller, Emily L.; Laux, Christophe O.; Wilson, Michael A.; Schmidt, Greg; Rairden, Rick L.

    2004-01-01

    Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.

  19. Meteors do not break exogenous organic molecules into high yields of diatomics.

    PubMed

    Jenniskens, Peter; Schaller, Emily L; Laux, Christophe O; Wilson, Michael A; Schmidt, Greg; Rairden, Rick L

    2004-01-01

    Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.

  20. Organic Molecules in Oxygen-Rich Circumstellar Envelopes: Methanol and Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Tielens, A. G. G. M.; Kress, M. E.

    1995-01-01

    The existence of anomalously high abundances of gaseous CH4 has been invoked to explain the unexpectedly high abundances of the carbon-bearing molecules HCN and H2CO in the outflows from O-rich red giants. We have modelled the chemistry that proceeds in the outer envelope when CH4 is injected from the inner envelope. We find that photolysis by the interstellar radiation field drives an ion-neutral chemistry which produces several organic molecules. The calculated abundances of CH3OH, C2H and C2 can be comparable to those calculated for H2CO and HCN. Species such as C2H4, C2H2 and CH3CN can also be abundant. A search for CH3OH and C2H in several O-rich outflows known to exhibit strong HCN emission is needed. As it derives entirely from the CH4 photochain, is insensitive to the envelope temperature distribution, and has accessible transitions at millimetre wavelengths, the detection of the C2H radical would provide further indirect support for the presence of the hypothesized methane.

  1. Recent observations of organic molecules in nearby cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Ohishi, M.; Morimoto, M.; Kaifu, N.; Friberg, P.

    1985-01-01

    Recent investigations of the organic chemistry of relatively nearby cold, dark interstellar clouds are reported. Specifically, the presence of interstellar tricarbon monoxide (C3O) in Taurus Molecular Cloud 1 (TMC-1) is confirmed. The first detection in such regions of acetaldehyde (CH3CHO), the most complex oxygen-containing organic molecule yet found in dark clouds is reported, as well as the first astronomical detection of several molecular rotational transitions, including the J = 18-17 and 14-13 transitions of cyanodiacetylene (HC5N), the 1(01)-0(00) transition of acetaldehyde, and the J = 5-4 transition of C3O. A significant upper limit is set on the abundance of cyanocarbene (HCCN) as a result of the first reported interstellar search for this molecule.

  2. Ultra-Stable Organic Fluorophores for Single-Molecule Research

    PubMed Central

    Zheng, Qinsi; Juette, Manuel F.; Jockusch, Steffen; Wasserman, Michael R.; Zhou, Zhou; Altman, Roger B.; Blanchard, Scott C.

    2013-01-01

    Fluorescence provides a mechanism for achieving contrast in biological imaging that enables investigations of molecular structure, dynamics, and function at high spatial and temporal resolution. Small-molecule organic fluorophores have proven essential for such efforts and are widely used in advanced applications such as single-molecule and super-resolution microscopy. Yet, organic fluorophores, like all fluorescent species, exhibit instabilities in their emission characteristics, including blinking and photobleaching that limit their utility and performance. Here, we review the photophysics and photochemistry of organic fluorophores as they pertain to mitigating such instabilities, with a specific focus on the development of stabilized fluorophores through derivatization. Self-healing organic fluorophores, wherein the triplet state is intramolecularly quenched by a covalently attached protective agent, exhibit markedly improved photostabilities. We discuss the potential for further enhancements towards the goal of developing “ultra-stable” fluorophores spanning the visible spectrum and how such fluorophores are likely to impact the future of single-molecule research. PMID:24177677

  3. Footprint organization of chiral molecules on metallic surfaces

    NASA Astrophysics Data System (ADS)

    Uñac, R. O.; Rabaza, A. V. Gil; Vidales, A. M.; Zgrablich, G.

    2007-10-01

    We study the behavior of chiral molecules adsorbed on clean metallic surfaces using a lattice-gas model and Monte Carlo simulation. The aim is to model and simulate the structure (footprints and organization) formed by molecules on the surface as they adsorb. The model, which is applicable to chiral species like S- and R-alanine, or similar, discloses the conditions to generate different ordered phases that have been observed in experiments by other authors. In our model, each enantiomer may adsorb in two different configurations (species) and several effects are taken into account: inhibition, blockage of neighboring adsorptive sites (steric effects) and promotion of sites representing, in some sense, modifications in the surface properties due to molecule-surface interactions. These adsorption rules are inspired by the enantiomeric character of adsorbed species. We perform a systematic study of the different phases formed in order to qualitatively understand the mechanism for the formation of adsorbate structures experimentally found by other authors.

  4. Unified Microscopic-Macroscopic Monte Carlo Simulations of Complex Organic Molecule Chemistry in Cold Cores

    NASA Astrophysics Data System (ADS)

    Chang, Qiang; Herbst, Eric

    2016-03-01

    The recent discovery of methyl formate and dimethyl ether in the gas phase of cold cores with temperatures as cold as 10 K challenges our previous astrochemical models concerning the formation of complex organic molecules (COMs). The strong correlation between the abundances and distributions of methyl formate and dimethyl ether further shows that current astrochemical models may be missing important chemical processes in cold astronomical sources. We investigate a scenario in which COMs and the methoxy radical can be formed on dust grains via a so-called chain reaction mechanism, in a similar manner to CO2. A unified gas-grain microscopic-macroscopic Monte Carlo approach with both normal and interstitial sites for icy grain mantles is used to perform the chemical simulations. Reactive desorption with varying degrees of efficiency is included to enhance the nonthermal desorption of species formed on cold dust grains. In addition, varying degrees of efficiency for the surface formation of methoxy are also included. The observed abundances of a variety of organic molecules in cold cores can be reproduced in our models. The strong correlation between the abundances of methyl formate and dimethyl ether in cold cores can also be explained. Nondiffusive chemical reactions on dust grain surfaces may play a key role in the formation of some COMs.

  5. VizieR Online Data Catalog: Molecule and grain abundances (Marchand+, 2016)

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commercon, B.; Vaytet, N.

    2016-06-01

    chemistry.tar is the fortran code that was used to compute the following table. abundance.txt is a 3D table giving the abundances of several ionised species over a wide range of density, temperature and cosmic rays ionisation rate, useful in prestellar core collapse conditions. The table is organised as follow : density (cm-3), temperature (K), ionisation rate (s-1), abundance of electrons, abundances of ions (metal (Mg etc.), molecular ions (HCO+), H3+, H+, C+, He+, K+, Na+), abundances of grains (grains +, grain -, neutral grains) for bins 1 to 5 (see Sect. 2.4 of the paper), total abundances of grains, integration time. Format : '(31(e24.17,2X))' Reading : ------------------------------------------------------------------------- read(unit,format) nrho, nT, nX, nvar read(unit,format) read(unit,format) read(unit,format) read(unit,format) do i=1,nX do j=1,nT do k=1,nrho read(unit,format) rho(k), T(j), Xi(i), abundance(k,j,i,1:nvar) end do read(unit,format) read(unit,format) end do read(unit,format) read(unit,format) end do ---------------------------------------------------------------------- The description of each column can be found in the header of the file. You can compute the resistivities using read_table.f90, which creates a table of resistivities with the same parameters and adding the magnetic field dependance (see Sect. 2.1 of the paper for the formulae used). You can use it as a subroutine in your code. (4 data files).

  6. In Situ Detection of Organic Molecules on the Martian Surface With the Mars Organic Molecule Analyzer (MOMA) on Exomars 2018

    NASA Technical Reports Server (NTRS)

    Li, Xiang; Brinckerhoff, William B.; Pinnick, Veronica T; van Amerom, Friso H. W.; Danell, Ryan M.; Arevalo, Ricardo D., Jr.; Getty, Stephanie; Mahaffy, Paul R.

    2015-01-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. The MOMA instrument is centered around a miniaturized linear ion trap (LIT) that facilitates two modes of operation: i) pyrolysisgas chromatography mass spectrometry (pyrGC-MS); and, ii) laser desorptionionization mass spectrometry (LDI-MS) at ambient Mars pressures. The LIT also enables the structural characterization of complex molecules via complementary analytical capabilities, such as multi-frequency waveforms (i.e., SWIFT) and tandem mass spectrometry (MSMS). When combined with the complement of instruments in the rovers Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds.

  7. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids.

    PubMed

    Wang, Tza-Huei; Peng, Yahui; Zhang, Chunyang; Wong, Pak Kin; Ho, Chih-Ming

    2005-04-20

    Here, we report a method capable of quantitative detection of low-abundance DNA/RNA molecules by incorporating confocal fluorescence spectroscopy, molecular beacons, and a molecular-confinement microfluidic reactor. By using a combination of ac and dc fields via a trio of 3-D electrodes in the microreactor, we are able to precisely direct the transport of individual molecules to a minuscule laser-focused detection volume ( approximately 1 fL). A burst of fluorescence photons is detected whenever a molecular beacon-target hybrid flows through the detection region, and the amount of targets can be directly quantified according to the number of recorded single-molecule flow-through events. This assay consumes only attomoles of molecular probes and is able to quantitatively detect subpicomolar DNA targets. A measurement time of less than 2 min is sufficient to complete the detection.

  8. Complex organic molecules along the accretion flow in isolated and externally irradiated protoplanetary disks.

    PubMed

    Walsh, Catherine; Herbst, Eric; Nomura, Hideko; Millar, T J; Weaver, Susanna Widicus

    2014-01-01

    The birth environment of the Sun will have influenced the physical and chemical structure of the pre-solar nebula, including the attainable chemical complexity reached in the disk, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network which includes gas-phase reactions, gas-grain interactions, and thermal grain-surface chemistry. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major chemical alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs can efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot efficiently synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated

  9. Ultrafast electron injection into photo-excited organic molecules.

    PubMed

    Cvetko, Dean; Fratesi, Guido; Kladnik, Gregor; Cossaro, Albano; Brivio, Gian Paolo; Venkataraman, Latha; Morgante, Alberto

    2016-08-10

    Charge transfer rates at metal/organic interfaces affect the efficiencies of devices for organic based electronics and photovoltaics. A quantitative study of electron transfer rates, which take place on the femtosecond timescale, is often difficult, especially since in most systems the molecular adsorption geometry is unknown. Here, we use X-ray resonant photoemission spectroscopy to measure ultrafast charge transfer rates across pyridine/Au(111) interfaces while also controlling the molecular orientation on the metal. We demonstrate that a bi-directional charge transfer across the molecule/metal interface is enabled upon creation of a core-exciton on the molecule with a rate that has a strong dependence on the molecular adsorption angle. Through density functional theory calculations, we show that the alignment of molecular levels relative to the metal Fermi level is dramatically altered when a core-hole is created on the molecule, allowing the lowest unoccupied molecular orbital to fall partially below the metal Fermi level. We also calculate charge transfer rates as a function of molecular adsorption geometry and find a trend that agrees with the experiment. These findings thus give insight into the charge transfer dynamics of a photo-excited molecule on a metal surface. PMID:27444572

  10. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    SciTech Connect

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H.; Duvernay, F.; Chiavassa, T.

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  11. Ion-molecule calculation of the abundance ratio of CCD to CCH in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Adams, Nigel G.; Smith, David; Defrees, D. J.

    1987-01-01

    Laboratory measurements and calculations have been performed to determine the abundance ratio of the deuterated ethynyl radical (CCD) to the normal radical (CCH) which can be achieved in dense interstellar clouds via isotopic fractionation in the C2H2(+) (HD)=C2HD(+)(H2) system of reactions. According to this limited treatment, the CCD/CCH abundance ratio which can be attained is in the range 0.02-0.03 for the Orion molecular cloud and 0.0l-0.02 for TMC-1. These ranges of numbers are in reasonable agreement with the observed values in Orion and TMC-1. However, the analysis of the CCD/CCH abundance ratio is complicated via the presence of competing fractionation mechanisms, especially in the low-temperature source TMC-1.

  12. Ion-molecule calculation of the abundance ratio of CCD to CCH in dense interstellar clouds.

    PubMed

    Herbst, E; Adams, N G; Smith, D; DeFrees, D J

    1987-01-01

    Laboratory measurements and calculations have been performed to determine the abundance ratio of the deuterated ethynyl radical (CCD) to the normal radical (CCH) which can be achieved in dense interstellar clouds via isotopic fractionation in the C2H2+ (HD) = C2HD+ (H2) system of reactions. According to this limited treatment, the CCD/CCH abundance ratio which can be attained is in the range 0.02-0.03 for the Orion molecular cloud and 0.01-0.02 for TMC-1. These ranges of numbers are in reasonable agreement with the observed values in Orion and TMC-1. However, the analysis of the CCD/CCH abundance ratio is complicated via the presence of competing fractionation mechanisms, especially in the low-temperature source TMC-1.

  13. Organic matter formed from hydrolysis of metal carbides of the iron peak of cosmic elemental abundance

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco

    2003-01-01

    This work is a modern revisitation of an old idea of great chemists of the past such as Berthelot, Mendeleev, Cloez and Moissan: the formation of organic matter under pre-biotic conditions starting from the hydrolysis of metal carbides. This idea was originally proposed for the formation of petroleum in the Earth and was extended to other bodies of the solar system by Sokolov at the end of the 19th century. The reason for this revisitation lies in the fact that complex organic matter resembling a petroleum fraction may exist in certain protoplanetary nebulae. The present work starts with a survey of the theory of the inorganic origin of petroleum and reports on current evidence for its derivation from residues of formerly living matter, but also considers theories that admit both a biogenic and an abiogenic origin for petroleum. By considering the cosmic abundance of elements and the evidence concerning the presence of carbides in meteorites, we discuss the formation, structure and hydrolysis products derived from the metal carbides of the iron peak of cosmic elemental abundance. Chromium carbide (Cr3C2) has then been used as a model compound for all the key carbides of the iron peak of the cosmic abundance (Cr, Fe, Ni, V, Mn, Co) and it has been hydrolysed under different conditions and the hydrocarbons formed have been analysed using electronic spectroscopy, high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and by Fourier-transform infrared (FT-IR) spectroscopy. Methane, a series of about 20 different alkenes with single and conjugated double bonds have been detected. Paraffins are formed simultaneously with the alkene series but no acetylenic hydrocarbons have been detected. This study confirms early works considering the easy hydrolysis of the carbides of Cr, Fe, Ni, Mn and Co with the formation of H2, a series of alkanes including methane and a series of alkenes including ethylene. The peculiar behaviour of copper carbide (copper is

  14. Contacting organic molecules by soft methods: towards molecule-based electronic devices.

    PubMed

    Haick, Hossam; Cahen, David

    2008-03-01

    Can we put organic molecules to use as electronic components? The answer to this question is to no small degree limited by the ability to contact them electrically without damaging the molecules. In this Account, we present some of the methods for contacting molecules that do not or minimally damage them and that allow formation of electronic junctions that can become compatible with electronics from the submicrometer to the macroscale. In "Linnaean" fashion, we have grouped contacting methods according to the following main criteria: (a) is a chemical bond is required between contact and molecule, and (b) is the contact "ready-made", that is, preformed, or prepared in situ? Contacting methods that, so far, seem to require a chemical bond include spin-coating a conductive polymer and transfer printing. In the latter, a metallic pattern on an elastomeric polymer is mechanically transferred to molecules with an exposed terminal group that can react chemically with the metal. These methods allow one to define structures from several tens of nanometers size upwards and to fabricate devices on flexible substrates, which is very difficult by conventional techniques. However, the requirement for bifunctionality severely restricts the type of molecules that can be used and can complicate their self-assembly into monolayers. Methods that rely on prior formation of the contact pad are represented by two approaches: (a) use of a liquid metal as electrode (e.g., Hg, Ga, various alloys), where molecules can be adsorbed on the liquid metal and the molecularly modified drop is brought into contact with the second electrode, the molecules can be adsorbed on the second electrode and then the liquid metal brought into contact with them, or bilayers are used, with a layer on both the metal and the second electrode and (b) use of preformed metal pads from a solid substrate and subsequent pad deposition on the molecules with the help of a liquid. These methods allow formation of

  15. Molecule-displacive ferroelectricity in organic supramolecular solids

    NASA Astrophysics Data System (ADS)

    Ye, Heng-Yun; Zhang, Yi; Noro, Shin-Ichiro; Kubo, Kazuya; Yoshitake, Masashi; Liu, Zun-Qi; Cai, Hong-Ling; Fu, Da-Wei; Yoshikawa, Hirofumi; Awaga, Kunio; Xiong, Ren-Gen; Nakamura, Takayoshi

    2013-07-01

    Ferroelectricity is essential to many forms of current technology, ranging from sensors and actuators to optical or memory devices. In this circumstance, organic ferroelectrics are of particular importance because of their potential application in tomorrow's organic devices, and several pure organic ferroelectrics have been recently developed. However, some problems, such as current leakage and/or low working frequencies, make their application prospects especially for ferroelectric memory (FeRAM) not clear. Here, we describe the molecule-displacive ferroelectricity of supramolecular adducts of tartaric acid and 1,4-diazabicyclo[2.2.2]octane N,N'-dioxide. The adducts show large spontaneous polarization, high rectangularity of the ferroelectric hysteresis loops even at high operation frequency (10 kHz), and high performance in polarization switching up to 1 × 106 times without showing fatigue. It opens great perspectives in terms of applications, especially in organic FeRAM.

  16. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  17. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  18. Modeling adsorption and reactions of organic molecules at metal surfaces.

    PubMed

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  19. Modeling adsorption and reactions of organic molecules at metal surfaces.

    PubMed

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  20. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

    PubMed Central

    2014-01-01

    Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic

  1. Preservation of organic molecules at Mars' near-surface

    NASA Astrophysics Data System (ADS)

    Freissinet, Caroline

    2016-07-01

    One of the biggest concerns for the in situ detection of organics on extraterrestrial environment is the preservation potential of the molecules at the surface and subsurface given the harsh radiation conditions and oxidants they are exposed to. The Mars Science Laboratory (MSL) search for hydrocarbons is designed to understand taphonomic windows of organic preservation in the Mars' near-surface. The Sample Analysis at Mars (SAM) instrument on the MSL Curiosity rover discovered chlorohydrocarbon indigenous to a mudstone drilled sample, Cumberland (CB). The discovery of chlorohydrocarbons in the martian surface means that reduced material with covalent bonds has survived despite the severe degrading conditions. However, the precursors of the chlorohydrocarbons detected by pyrolysis at CB remain unknown. Organic compounds in this ancient sedimentary rock on Mars could include polycyclic aromatic hydrocarbons and refractory organic material, either formed on Mars from igneous, hydrothermal, atmospheric, or biological processes or, alternatively, delivered directly to Mars via meteorites, comets, or interplanetary dust particles. It has been postulated that organic compounds in near-surface rocks may undergo successive oxidation reactions that eventually form metastable benzenecarboxylates, including phthalic and mellitic acids. These benzenecarboxylates are good candidates as the precursors of the chlorohydrocarbons detected in SAM pyrolysis at CB. Indeed, recently, SAM performed a derivatization experiments on a CB sample, using the residual vapor of N-methyl-N-tertbutylsilyltrifluoroacetamide (MTBSTFA) leaking into the system. The preliminary interpretations are compatible with the presence of benzocarboxylates, coincidently with long chain carboxylic acids and alcohols. The analysis of this interesting data set to identify these derivatization products, as well as future SAM measurements on Mt Sharp, should shed additional light on the chemical nature and the

  2. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    NASA Astrophysics Data System (ADS)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  3. Organic synthesis toward small-molecule probes and drugs

    PubMed Central

    Schreiber, Stuart L.

    2011-01-01

    Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328

  4. The gas phase origin of complex organic molecules precursors in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2016-05-01

    Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.

  5. Organic molecules in the gas phase of dense interstellar clouds.

    PubMed

    Irvine, W M

    1995-03-01

    Since a previous COSPAR review on this subject, the number of molecular species identified by astronomers in dense interstellar clouds or in the envelopes expelled by evolved stars has grown from about eighty to approximately one hundred. Recent detections in stellar envelopes include the radical CP, the second phosphorus-containing astronomical molecule; SiN, the first astronomical molecule with a Si-N bond; and the HCCN radical. In the dense interstellar clouds recent detections or verifications of previous possible identifications include the H3O+ ion, which is a critical intermediary in the production of H2O and O2; the CCO radical, which is isoelectronic with HCCN; the SO+ ion, which appears to be diagnostic of shock chemistry; two new isomers of cyanoacetylene, HCCNC and CCCNH; and the two cumulenes H2C3 and H2C4. Some recent work is also described on the mapping of interstellar clouds in multiple molecular transitions in order to separate variations in chemical abundance from gradients in physical parameters.

  6. The Census of Complex Organic Molecules in the Solar-type Protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.

    2014-08-01

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (gsim30-40 K) and released in the gas phase at dust temperatures of gsim100 K. However, recent detections of COMs in lsim20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (lsim30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10-10. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  7. The census of complex organic molecules in the solar-type protostar IRAS16293-2422

    SciTech Connect

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.

    2014-08-10

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  8. Analysis of the Spatial Organization of Molecules with Robust Statistics

    PubMed Central

    Lagache, Thibault; Lang, Gabriel; Sauvonnet, Nathalie; Olivo-Marin, Jean-Christophe

    2013-01-01

    One major question in molecular biology is whether the spatial distribution of observed molecules is random or organized in clusters. Indeed, this analysis gives information about molecules’ interactions and physical interplay with their environment. The standard tool for analyzing molecules’ distribution statistically is the Ripley’s K function, which tests spatial randomness through the computation of its critical quantiles. However, quantiles’ computation is very cumbersome, hindering its use. Here, we present an analytical expression of these quantiles, leading to a fast and robust statistical test, and we derive the characteristic clusters’ size from the maxima of the Ripley’s K function. Subsequently, we analyze the spatial organization of endocytic spots at the cell membrane and we report that clathrin spots are randomly distributed while clathrin-independent spots are organized in clusters with a radius of , which suggests distinct physical mechanisms and cellular functions for each pathway. PMID:24349021

  9. On the Teneurin track: a new synaptic organization molecule emerges

    PubMed Central

    Mosca, Timothy J.

    2015-01-01

    To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins. PMID:26074772

  10. INTERSTELLAR ICES AS WITNESSES OF STAR FORMATION: SELECTIVE DEUTERATION OF WATER AND ORGANIC MOLECULES UNVEILED

    SciTech Connect

    Cazaux, S.; Spaans, M.; Caselli, P.

    2011-11-10

    Observations of star-forming environments revealed that the abundances of some deuterated interstellar molecules are markedly larger than the cosmic D/H ratio of 10{sup -5}. Possible reasons for this pointed to grain surface chemistry. However, organic molecules and water, which are both ice constituents, do not enjoy the same deuteration. For example, deuterated formaldehyde is very abundant in comets and star-forming regions, while deuterated water rarely is. In this paper, we explain this selective deuteration by following the formation of ices (using the rate equation method) in translucent clouds, as well as their evolution as the cloud collapses to form a star. Ices start with the deposition of gas-phase CO and O onto dust grains. While reaction of oxygen with atoms (H or D) or molecules (H{sub 2}) yields H{sub 2}O (HDO), CO only reacts with atoms (H and D) to form H{sub 2}CO (HDCO, D{sub 2}CO). As a result, the deuteration of formaldehyde is sensitive to the gas D/H ratio as the cloud undergoes gravitational collapse, while the deuteration of water strongly depends on the dust temperature at the time of ice formation. These results reproduce well the deuterium fractionation of formaldehyde observed in comets and star-forming regions and can explain the wide spread of deuterium fractionation of water observed in these environments.

  11. Modelling complex organic molecules in dense regions: Eley-Rideal and complex induced reaction

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Loison, J. C.; Hickson, K. M.; Gratier, P.; Hersant, F.; Wakelam, V.

    2015-03-01

    Recent observations have revealed the existence of complex organic molecules (COMs) in cold dense cores and pre-stellar cores. The presence of these molecules in such cold conditions is not well understood and remains a matter of debate since the previously proposed `warm-up' scenario cannot explain these observations. In this paper, we study the effect of Eley-Rideal and complex induced reaction mechanisms of gas-phase carbon atoms with the main ice components of dust grains on the formation of COMs in cold and dense regions. Based on recent experiments, we use a low value for the chemical desorption efficiency (which was previously invoked to explain the observed COM abundances). We show that our introduced mechanisms are efficient enough to produce a large amount of COMs in the gas phase at temperatures as low as 10 K.

  12. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  13. Triptycene-Based Organic Molecules of Intrinsic Microporosity

    PubMed Central

    2014-01-01

    Four Organic Molecules of Intrinsic Microporosity (OMIMs) were prepared by fusing triptycene-based components to a biphenyl core. Due to their rigid molecular structures that cannot pack space efficiently, these OMIMs form amorphous materials with significant microporosity as demonstrated by apparent BET surface areas in the range of 515–702 m2 g–1. Bulky cyclic 1′,2′,3′,4′-tetrahydro-1′,1′,4′,4′-tetramethylbenzo units placed on the triptycene termini are especially efficient at enhancing microporosity. PMID:24635193

  14. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

    PubMed

    Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole

    2015-07-14

    Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.

  15. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex. PMID:9259831

  16. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex.

  17. The formation of organic molecules in astronomical ices.

    PubMed

    Schutte, W A

    1995-01-01

    An absorption feature at 3.4 micrometers has been observed in various lines-of-sight through the diffuse interstellar medium. Its position and width lead to an identification with the C-H stretching mode of solid organic material. A possible mechanism for the production of organic solids in the interstellar medium is UV photoprocessing of icy mantles which accrete on dust grains in dense clouds. Furthermore, thermally induced reactions involving formaldehyde molecules in the mantles could be an important source of organics. Laboratory simulation of these processes shows that a large variety of oxygen- and nitrogen-rich species may be produced. It is shown that the occurrence of periodic transient heating events plays an important role in the production of organic material in the ice mantles. Finally, it is pointed out how future missions like the Infrared Space Observatory (ISO) as well as analysis of comet material by Rosetta may be able to clarify the nature and evolution of interstellar organics.

  18. Cometary delivery of organic molecules to the early Earth.

    PubMed

    Chyba, C F; Thomas, P J; Brookshaw, L; Sagan, C

    1990-07-27

    It has long been speculated that Earth accreted prebiotic organic molecules important for the origins of life from impacts of carbonaceous asteroids and comets during the period of heavy bombardment 4.5 x 10(9) to 3.8 x 10(9) years ago. A comprehensive treatment of comet-asteroid interaction with the atmosphere, surface impact, and resulting organic pyrolysis demonstrates that organics will not survive impacts at velocities greater than about 10 kilometers per second and that even comets and asteroids as small as 100 meters in radius cannot be aerobraked to below this velocity in 1-bar atmospheres. However, for plausible dense (10-bar carbon dioxide) early atmospheres, we find that 4.5 x 10(9) years ago Earth was accreting intact cometary organics at a rate of at least approximately 10(6) to 10(7) kilograms per year, a flux that thereafter declined with a half-life of approximately 10(8) years. These results may be put in context by comparison with terrestrial oceanic and total biomasses, approximately 3 x 10(12) kilograms and approximately 6 x 10(14) kilograms, respectively.

  19. Simple Organic Molecules as Catalysts for Enantioselective Synthesis of Amines and Alcohols

    PubMed Central

    Silverio, Daniel L.; Torker, Sebastian; Pilyugina, Tatiana; Vieira, Erika M.; Snapper, Marc L.; Haeffner, Fredrik; Hoveyda, Amir H.

    2012-01-01

    The discovery of new catalysts that can generate complex organic compounds via enantioselective transformations is central to advances in the life sciences;i for this reason, many chemists try to discover catalysts that can be used to produce chiral molecules with a strong preference for one mirror image isomer.ii The ideal catalyst should be devoid of precious elementsiii and should bring reactions to completion in a few hours using operationally simple procedures. In this manuscript, we introduce a set of small organic molecules that can catalyze reactions of unsaturated organoboron reagents with imines and carbonyls; the products of the reactions are enantiomerically pure amines and alcohols, which can be used to synthesize more complex, biologically active molecules. A distinguishing feature of this new catalyst class is the presence of a 'key' proton embedded within their structure. The catalyst is derived from the abundant amino acid valine and was prepared in large quantities in four steps using inexpensive reagents. Reactions are scalable, do not demand stringent conditions, and can be performed with as little as 0.25 mol % catalyst in less than six hours at room temperature to generate products in >85% yield and ≥97:3 enantiomeric ratio. The efficiency, selectivity and operational simplicity of the transformations and the range of boron-based reagents render this advance vital to future progress in chemistry, biology and medicine. PMID:23407537

  20. Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commerçon, B.; Vaytet, N.

    2016-07-01

    We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to nH = 1012 cm-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process. The multi-dimensional multi-species equilibrium abundance table and a copy of the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A18

  1. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  2. Bird diversity and abundance in organic and conventional apple orchards in northern Japan

    PubMed Central

    Katayama, Naoki

    2016-01-01

    Many studies have investigated the benefits of agri-environmental schemes, such as organic farming, on biodiversity conservation in annual systems, but their effectiveness in perennial systems is less well understood, particularly in bird communities in temperate regions of Asia. This study examined the effects of organic farming practices on species richness and abundance of breeding birds in apple orchards in northern Japan. Bird counts were conducted in six pairs of organic and conventional orchards during the breeding season in April and May 2015. The total species richness of birds, estimated by sample- and coverage-based rarefaction and extrapolation curves, was greater in organic orchards than in conventional orchards. Among the three dietary guilds (insectivore, granivore, and omnivore), only insectivorous species were more abundant in organic orchards than in conventional ones. This study offers the first quantitative evidence that organic farming can be beneficial for enhancing the diversity of birds, particularly of insectivores, in fruit orchards in Japan. PMID:27677408

  3. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    PubMed Central

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. Key Points First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition PMID:26690960

  4. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D., Jr.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, J. F.; McAdam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M.-P.; MSL Science Team

    2015-03-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.

  5. Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules

    NASA Astrophysics Data System (ADS)

    Brooke, G.; Popović, S.; Vušković, L.

    2002-05-01

    We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.

  6. Spectromicroscopy Study of the Organic Molecules Utilizing Polarized Radiation

    SciTech Connect

    Hsu, Y.J.; Wei, D.H.; Yin, G.C.; Chung, S.C.; Hu, W.S.; Tao, Y.T.

    2004-05-12

    Spectromicroscopy combined with polarized synchrotron radiation is a powerful tool for imaging and characterizing the molecular properties on surface. In this work we utilized the photoemission electron microscopy (PEEM) with linear polarized radiation provided by an elliptically polarized undulator to investigate the molecular orientations of pentacene on self-assembled monolayer (SAMs) modified gold surface and to observe the cluster domain of mixed monolayers after reorganization on silver. Varying the electric vector parallel or perpendicular to the surface, the relative intensity of {pi}* and {sigma}* transition in carbon K-edge can be used to determine the orientation of the planar-shaped pentacene molecule or long carbon chain of carboxylic acids which are important for organic semiconductor.

  7. ORGANIC MOLECULES AND WATER IN THE INNER DISKS OF T TAURI STARS

    SciTech Connect

    Carr, John S.; Najita, Joan R. E-mail: najita@noao.edu

    2011-06-01

    We report high signal-to-noise Spitzer Infrared Spectrograph spectra of a sample of 11 classical T Tauri stars. Molecular emission from rotational transitions of H{sub 2}O and OH and rovibrational bands of simple organic molecules (CO{sub 2}, HCN, C{sub 2}H{sub 2}) is common among the sources in the sample. The emission shows a range in both flux and line-to-continuum ratio for each molecule and in the flux ratios of different molecular species. The gas temperatures (200-800 K) and emitting areas we derive are consistent with the emission originating in a warm disk atmosphere in the inner planet formation region at radii <2 AU. The H{sub 2}O emission appears to form under a limited range of excitation conditions, as demonstrated by the similarity in relative strengths of H{sub 2}O features from star to star and the narrow range in derived temperature and column density. Emission from highly excited rotational levels of OH is present in all stars; the OH emission flux increases with the stellar accretion rate, and the OH/H{sub 2}O flux ratio shows a relatively small scatter. We interpret these results as evidence for OH production via FUV photodissociation of H{sub 2}O in the disk surface layers. No obvious explanation is found for the observed range in the relative emission strengths of different organic molecules or in their strength with respect to water. We put forward the possibility that these variations reflect a diversity in organic abundances due to star-to-star differences in the C/O ratio of the inner disk gas. Stars with the largest HCN/H{sub 2}O flux ratios in our sample have the largest disk masses. While larger samples are required to confirm this, we speculate that such a trend could result if higher mass disks are more efficient at planetesimal formation and sequestration of water in the outer disk, leading to enhanced C/O ratios and abundances of organic molecules in the inner disk. A comparison of our derived HCN-to-H{sub 2}O column density ratio

  8. Chemical and electrochemical oxidation of small organic molecules

    NASA Astrophysics Data System (ADS)

    Smart, Marshall C.

    Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be

  9. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.

  10. Linear Ion Trap for the Mars Organic Molecule Analyzer

    NASA Astrophysics Data System (ADS)

    Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald

    2014-05-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.

  11. Near-infrared spectroscopy of M dwarfs. II. H2O molecule as an abundance indicator of oxygen†

    NASA Astrophysics Data System (ADS)

    Tsuji, Takashi; Nakajima, Tadashi; Takeda, Yoichi

    2015-04-01

    Based on the near-infrared spectra (R ≈ 20000) of M dwarfs, oxygen abundances are determined from the rovibrational lines of H2O. Although H2O lines in M dwarfs are badly blended with each other and the continuum levels are depressed appreciably by the collective effect of the numerous H2O lines themselves, quantitative analysis of H2O lines has been carried out by referring to the pseudo-continua, consistently defined on the observed and theoretical spectra. For this purpose, the pseudo-continuum on the theoretical spectrum has been evaluated accurately by the use of the recent high-precision H2O line-list. Then, we propose a simple and flexible method of analyzing the equivalent widths (EWs) of blended features (i.e., not necessarily limited to single lines) by the use of a mini-curve-of-growth (CG), which is a small portion of the usual CG around the observed EW. The mini-CG is generated by using the theoretical EWs evaluated from the synthetic spectrum in exactly the same way as the EWs are measured from the observed spectrum. The observed EW is converted to the abundance by the use of the mini-CG, and the process is repeated for all the observed EWs line-by-line or blend-by-blend. In cool M dwarfs, almost all the oxygen atoms left after CO formation are in stable H2O molecules, which suffer little change for the uncertainties due to imperfect modelling of the photospheres. Thus the numerous H2O lines are excellent abundance indicators of oxygen. The oxygen abundances are determined to be log AO (AO = NO/NH) between -3.5 and -3.0 in 38 M dwarfs, but cannot be determined in four early M dwarfs in which H2O lines are detected only marginally. The resulting log AO/AC values plotted against log AC appear to be systematically smaller in the carbon-rich M dwarfs, showing the different formation histories of oxygen and carbon in the chemical evolution of the Galactic disk. Also, AO/AFe ratios in most M dwarfs are closer to the solar AO/AFe ratio, based on the

  12. Spectrophotometric and electrical properties of imperatorin: an organic molecule

    NASA Astrophysics Data System (ADS)

    Mir, Feroz A.

    2015-09-01

    Imperatorin (molecular formula = C16H14O4, molecular mass = 270) an organic molecule was isolated from ethyl acetate extract of the root parts of the plant Prangos pabularia. The optical study was carried out by ultraviolet-visible spectroscopy, and this compound showed an indirect allowed transition. The optical band gap ( E g ) was found around 3.75 eV. Photoluminescence shows various good emission bands. The frequency-dependent real part of the complex ac conductivity was found to follow the universal dielectric response: σ ac ( ω) α ω s [where σ ac ( ω) is the frequency-dependent total conductivity, ω is the frequency, and s is the frequency exponent]. From ac conductivity data analysis, correlated barrier hopping charge-transport mechanism is the dominant electrical transport process shown by this compound. The good emission, less absorption, wide band gap and good electrical properties shown by this compound project them as a bright choice for organic electronic devices.

  13. Equilibrium 2H/ 1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Carbon-bound hydrogen in sedimentary organic matter can undergo exchange over geologic timescales, altering its isotopic composition. Studies investigating the natural abundance distribution of 1H and 2H in such molecules must account for this exchange, which in turn requires quantitative knowledge regarding the endpoint of exchange, i.e., the equilibrium isotopic fractionation factor ( α eq). To date, relevant data have been lacking for molecules larger than methane. Here we describe an experimental method to measure α eq for C-bound H positions adjacent to carbonyl group (H α) in ketones. H at these positions equilibrates on a timescale of days as a result of keto-enol tautomerism, allowing equilibrium 2H/ 1H distributions to be indirectly measured. Molecular vibrations for the same ketone molecules are then computed using Density Functional Theory at the B3LYP/6-311G∗∗ level and used to calculate α eq values for H α. Comparison of experimental and computational results for six different straight and branched ketones yields a temperature-dependent linear calibration curve with slope = 1.081-0.00376 T and intercept = 8.404-0.387 T, where T is temperature in degrees Celsius. Since the dominant systematic error in the calculation (omission of anharmonicity) is of the same size for ketones and C-bound H in most other linear compounds, we propose that this calibration can be applied to analogous calculations for a wide variety of organic molecules with linear carbon skeletons for temperatures below 100 °C. In a companion paper ( Wang et al., 2009) we use this new calibration dataset to calculate the temperature-dependent equilibrium isotopic fractionation factors for a range of linear hydrocarbons, alcohols, ethers, ketones, esters and acids.

  14. Searching for Improved Photoreleasing Abilities of Organic Molecules.

    PubMed

    Šolomek, Tomáš; Wirz, Jakob; Klán, Petr

    2015-12-15

    Photoremovable protecting groups (PPGs) are chemical auxiliaries that provide spatial and temporal control over the release of various molecules: bioagents (neurotransmitters and cell-signaling molecules, Ca(2+) ions), acids, bases, oxidants, insecticides, pheromones, fragrances, etc. A major challenge for the improvement of PPGs lies in the development of organic chromophores that release the desired bioagents upon continuous irradiation at wavelengths above 650 nm, that is, in the tissue-transparent window. Understanding of the photorelease reaction mechanisms, investigated by laser flash photolysis and rationalized with the aid of quantum chemical calculations, allows for achieving this goal. In particular, simple Hückel calculations provide useful guidelines for designing new PPGs, because both the lowest excited singlet and triplet states of conjugated systems can be reasonably well described by a single electronic configuration formed by promotion of a single electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied MO (LUMO) of the ground state configuration. Here we show that Hückel calculations permit rapid identification of common features in the nodal properties of the frontier orbitals of various chromophores that can be classified into distinct chromophore families. If the electronic excitation involves a substantial electron density transfer to an sp(2) carbon atom at which HOMO and LUMO are nearly disjoint, for example, by virtue of symmetry, favorable photoheterolysis can be expected when the corresponding atom carries a leaving group at the α-position. We show examples of photoheterolytic reactions that indicate that the efficiency of photoheterolysis diminishes for chromophores absorbing in the NIR region. We provide a rationale for more efficient photoheterolytic reactions occurring via the triplet state, and we demonstrate the advantages of this mechanistic pathway. Analogies in the structure

  15. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  16. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    NASA Astrophysics Data System (ADS)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  17. The formation of glycine and other complex organic molecules in exploding ice mantles.

    PubMed

    Rawlings, J M C; Williams, D A; Viti, S; Cecchi-Pestellini, C; Duley, W W

    2014-01-01

    Complex Organic Molecules (COMs), such as propylene (CH3CHCH2) and the isomers of C2H4O2 are detected in cold molecular clouds (such as TMC-1) with high fractional abundances (Marcelino et al., Astrophys. J., 2007, 665, L127). The formation mechanism for these species is the subject of intense speculation, as is the possibility of the formation of simple amino acids such as glycine (NH2CH2COOH). At typical dark cloud densities, normal interstellar gas-phase chemistries are inefficient, whilst surface chemistry is at best ill defined and does not easily reproduce the abundance ratios observed in the gas phase. Whatever mechanism(s) is/are operating, it/they must be both efficient at converting a significant fraction of the available carbon budget into COMs, and capable of efficiently returning the COMs to the gas phase. In our previous studies we proposed a complementary, alternative mechanism, in which medium- and large-sized molecules are formed by three-body gas kinetic reactions in the warm high density gas phase. This environment exists, for a very short period of time, after the total sublimation of grain ice mantles in transient co-desorption events. In order to drive the process, rapid and efficient mantle sublimation is required and we have proposed that ice mantle 'explosions' can be driven by the catastrophic recombination of trapped hydrogen atoms, and other radicals, in the ice. Repeated cycles of freeze-out and explosion can thus lead to a cumulative molecular enrichment of the interstellar medium. Using existing studies we based our chemical network on simple radical addition, subject to enthalpy and valency restrictions. In this work we have extended the chemistry to include the formation pathways of glycine and other large molecular species that are detected in molecular clouds. We find that the mechanism is capable of explaining the observed molecular abundances and complexity in these sources. We find that the proposed mechanism is easily capable

  18. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    EPA Science Inventory

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  19. Targeting organic molecules in hydrothermal environments on Mars

    NASA Astrophysics Data System (ADS)

    Parnell, J.; Bowden, S. A.; Lindgren, P.; Wilson, R.; Cooper, J. M.

    2008-09-01

    Hydrothermal deposits on Mars Hydrothermal systems are proposed as environments that could support organic synthesis, the evolution of life or the maintenance of life [1,2,3]. They have therefore been suggested as primary targets for exploration on Mars [1,2,4,].There is now confidence that hydrothermal deposits occur at the martian surface. This is based on a range of criteria that could point towards hydrothermal activity, including volcanic activity, magmatic-driven tectonism, impact cratering in icy terrains, hydrous alteration of minerals and typical hydrothermal mineralogies [4]. The proposals to search for evidence of life at martian hydrothermal sites have been focussed on seeking morphological evidence of microbial activity [5]. Here we discuss the potential to seek a chemical signature of organic matter in hydrothermal systems. Organics in terrestrial hydrothermal systems Terrestrial hydrothermal systems can have large quantities of organic matter because they intersect organic-rich sedimentary rocks or oil reservoirs. Thus the signatures that they contain reflect some preexisting concentration of fossil organic compounds, rather than life which was active in the hydrothermal system. If any extant life was incorporated in these hydrothermal systems, it is swamped by the fossil molecules. Examples of environments where organic materials may become entrained include subsurface hydrothermal mineral deposits, generation of hydrothermal systems by igneous intrusions, and hot fluid venting at the seafloor. Nevertheless, there is value in studying the interactions of hydrothermal systems with fossil organic matter, for information about the survivability of organic compounds, phase relationships between carbonaceous and noncarbonaceous materials, and where in hydrothermal deposits to find evidence of organic matter. Microbial colonization of hot spring systems is feasible at depth within the systems and at the surface where the hydrothermal waters discharge

  20. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  1. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.

    PubMed

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  2. Exploring Molecular Complexity with ALMA: Deuterated complex organic molecules in Sgr B2

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Garrod, R. T.; Menten, K. M.

    2016-05-01

    Apart from the case of methanol, little is known about deuterium fractionation of complex organic molecules in the interstellar medium, especially in high mass star forming regions. We take advantage of the EMoCA spectral line survey to search for deuterated complex organic molecules toward the hot molecular core Sgr B2(N2). We report the secure detection of CH2DCN with a deuteration level of 0.4% and tentative detections of CH2DOH, CH2DCH2CN, CH3CHDCN, and DC3N with levels in the range 0.05-0.12%. Except for methyl cyanide, the measured deuteration levels lie at least a factor of four below the predictions of current astrochemical models. They are also lower than in Orion KL by a factor of a few up to a factor ten. These discrepancies and differences may be due to the higher temperatures that prevail in the Galactic Center region compared to nearby clouds, or they may result from a lower overall abundance of deuterium itself in the Galactic Center region by up to a factor ten.

  3. Nanoparticle bridges for studying electrical properties of organic molecules.

    PubMed

    Leifer, Klaus; Welch, Ken; Jafri, Syed Hassan Mujtaba; Blom, Tobias

    2012-01-01

    The use of single molecules as building blocks for practical electronic devices and sensors has high potential for novel applications due to the versatility of electronic properties of the molecules. Nano-sized molecules offer great potential for further miniaturization of electronic devices. We describe a method where such molecules are used to bridge a nanoparticles-nanoelectrode interface and thus determine the electrical properties of such a junction. We describe in detail the fabrication of the platform, its functionalization with molecules, and the basics of the electrical measurements. This platform has been shown to guide electrical current through a few molecules. The versatility of such nanoparticle-molecule-nanoelectrode heterojunctions makes this platform suitable for both basic molecular electronics measurements and also for molecular sensing devices in biological and medical applications. PMID:22791462

  4. Small molecules as tracers in atmospheric secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  5. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles; Canham, John

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the initial valve design and subsequent improvements that resulted from prototype testing. The initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the initial Valve design was used to develop a second, more robust Aperture Valve. Based on a check-ball design, the ETU / flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, non-magnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  6. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles D.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  7. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  8. Small molecule semiconductors for high-efficiency organic photovoltaics.

    PubMed

    Lin, Yuze; Li, Yongfang; Zhan, Xiaowei

    2012-06-01

    Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

  9. Observing Organic Molecules in Interstellar Gases: Non Equilibrium Excitation.

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Faure, Alexandre; Remijan, Anthony; Szalewicz, Krzysztof

    2014-06-01

    In order to observe quantitatively organic molecules in interstellar gas, it is necessary to understand the relative importance of photonic and collisional excitations. In order to do so, collisional excitation transfer rates have to be computed. We undertook several such studies, in particular for H_2CO and HCOOCH_3. Both species are observed in many astrochemical environments, including star-forming regions. We found that those two molecules behave in their low-lying rotational levels in an opposite way. For cis methyl-formate, a non-equilibrium radiative transfer treatment of rotational lines is performed, using a new set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5 to 30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH_3 -- He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud. A total of 2080 low-lying transitions of methyl formate, with upper levels below 25 K, were treated. These lines are found to probe a cold (30 K), moderately dense (n ˜ 104 cm-3) interstellar gas. In addition, our calculations indicate that all detected emission lines with a frequency below 30 GHz are collisionally pumped weak masers amplifying the background of Sgr B2(N). This result demonstrates the generality of the inversion mechanism for the low-lying transitions of methyl formate. For formaldehyde, we performed a similar non-equilibrium treatment, with H_2 as the collisional partner, thanks to the accurate H_2CO - H_2 potential energy surface . We found very different energy transfer rates for collisions with para-H_2 (J=0) and ortho-H_2 (J=1). The well-known absorption against the cosmological background of the 111→ 101 line is shown to depend critically on the difference of behaviour between para and ortho-H_2, for a wide range of H_2 density. We thank the CNRS-PCMI French national program for continuous support

  10. A new weapon for the interstellar complex organic molecule hunt: the minimum energy principle

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C.

    2010-09-01

    Context. The hunt for the interstellar complex organic molecules (COMs) supposed to be the building blocks of the molecules at the origin of life is a challenging but very expensive task. It starts with laboratory experiments, associated with theoretical calculations, that give the line frequencies and strengths of the relevant molecules to be identified and finishes with observations at the telescopes. Aims: The present study aims to suggest possible guidelines to optimize this hunt. Levering on the minimum energy principle (MEP) presented in a previous study, we discuss the link between thermodynamic stability and detectability of a number of structures in the important families of amides, sugars and aminonitriles. Methods: The question of the relative stability of these different species is addressed by means of quantum density functional theory simulations. The hybrid B3LYP formalism was used throughout. All 72 molecules part of this survey were treated on an equal footing. Each structure, fully optimized, was verified to be a stationary point by vibrational analysis. Results: A comprehensive screening of 72 isomers of CH3NO, C2H5NO, C3H7NO, C2H4O2, C3H6O3 and C2H4N2 chemical formula has been carried out. We found that formamide, acetamide and propanamide (the first two identified in the Inter-Stellar Medium) are the most stable compounds in their families demonstrating at the same time that the peptide bond >N-C=O at the origin of life is the most stable bond that can be formed. Dihydroxyacetone, whose detection awaits for confirmation, is far from being the most stable isomer of its family while aminoacetonitrile, that has been recently identified, is effectively the most stable species. Conclusions: The MEP appears to be a useful tool for optimizing the hunt for new species by identifying the potentially more abundant isomers of a given chemical formula.

  11. ON THE RELATIVE ABUNDANCE OF LiH AND LiH{sup +} MOLECULES IN THE EARLY UNIVERSE: NEW RESULTS FROM QUANTUM REACTIONS

    SciTech Connect

    Bovino, Stefano; Tacconi, Mario; Gianturco, Franco A.; Galli, Daniele; Palla, Francesco

    2011-04-20

    The relative efficiencies of the chemical pathways that can lead to the destruction of LiH and LiH{sup +} molecules, conjectured to be present in the primordial gas and to control molecular cooling processes in the gravitational collapse of the post-recombination era, are revisited by using accurate quantum calculations for the several reactions involved. The new rates are employed to survey the behavior of the relative abundance of these molecules at redshifts of interest for early universe conditions. We find significant differences with respect to previous calculations, the present ones yielding LiH abundances higher than LiH{sup +} at all redshifts.

  12. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    PubMed

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs. PMID:25941812

  13. Organic Matter Degradation Drives Benthic Cyanobacterial Mat Abundance on Caribbean Coral Reefs

    PubMed Central

    Brocke, Hannah J.; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs. PMID:25941812

  14. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    PubMed

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

  15. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  16. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGES

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  17. Nanochannels: hosts for the supramolecular organization of molecules and complexes.

    PubMed

    Calzaferri, Gion

    2012-04-17

    Nanochannels have been used as hosts for supramolecular organization for a large variety of guests. The possibilities for building complex structures based on 2D and especially 3D nanochannel hosts are larger than those based on 1D nanochannel hosts. The latter are, however, easier to understand and to control. They still give rise to a rich world of fascinating objects with very distinguished properties. Important changes are observed if the channel diameter becomes smaller than 10 nm. The most advanced guest-nanochannel composites have been synthesized with nanochannels bearing a diameter of about 1 nm. Impressive complexity has been achieved by interfacing these composites with other objects and by assembling them into specific structures. This is explained in detail. Guest-nanochannel composites that absorb all light in the right wavelength range and transfer the electronic excitation energy via FRET to well-positioned acceptors offer a unique potential for developing FRET-sensitized solar cells, luminescent solar concentrators, color-changing media, and devices for sensing in analytical chemistry, biology, and diagnostics. Successful 1D nanochannel hosts for synthesizing guest-host composites have been zeolite-based. Among them the largest variety of guest-zeolite composites with appealing photochemical, photophysical, and optical properties has been prepared by using zeolite L (ZL) as a host. The reasons are the various possibilities for fine tuning the size and morphology of the particles, for inserting neutral molecules and cations, and for preparing rare earth complexes inside by means of the ship-in-a-bottle procedure. An important fact is that the channel entrances of ZL-based composites can be functonalized and completely blocked, if desired, and furthermore that targeted functionalization of the coat is possible. Different degrees of organizational levels and prospects for applications are discussed, with special emphasis on solar energy conversion

  18. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  19. Observations of some oxygen-containing and sulfur-containing organic molecules in cold dark clouds.

    PubMed

    Irvine, W M; Friberg, P; Kaifu, N; Kawaguchi, K; Kitamura, Y; Matthews, H E; Minh, Y; Saito, S; Ukita, N; Yamamoto, S

    1989-07-15

    Observations of nine oxygen- and sulfur-containing organic molecules have been made toward the cold dark clouds TMC-1 and L134N. We have confirmed the presence of para-ketene (H2C2O) in TMC-1, have for the first time observed ortho-ketene, and find a total ketene column density approximately 1 x 10(13) cm-2. Thioformaldehyde (H2CS) is easily detectable in both TMC-1 and L134N, with a column density about 5 times larger in the former source (approximately 3 x 10(13) cm-2). The fractional abundance of ketene is comparable to the predictions of ion-molecule chemistry, while that of thioformaldehyde in TMC-1 is one to two orders of magnitude greater than that expected from such models at steady state. Interstellar sulfur chemistry thus continues to be poorly understood. We set upper limits for the column densities of formic acid (HCOOH), vinyl alcohol (CH2CHOH), methyl formate (HCO2CH3), formamide (NH2CHO), methyl mercaptan (CH3SH), isothiocyanic acid (HNCS), and thioketene (H2C2S) in both sources.

  20. Observations of irradiated protostars show a lack of complex organic molecules

    NASA Astrophysics Data System (ADS)

    Lindberg, Johan E.; Charnley, Steven B.; Jørgensen, Jes K.; Watanabe, Yoshimasa; Bisschop, Suzanne; Sakai, Nami; Yamamoto, Satoshi

    2015-08-01

    In their youngest stages, protostars are deeply enshrouded in envelopes of gas and dust, material that later accretes onto the central object and the protoplanetary disc. The icy grain mantles are the formation sites for complex organic molecules. The formation of such molecules is strongly affected by external effects such as heating and irradiation, both due to changes in reaction rates and the evaporation of key species from the ice mantles. To understand these effects, we have studied the molecular composition of irradiated protostars.We demonstrate the strengths of unbiased single-dish line surveys, which we use to study the chemical and physical properties of protostellar envelopes. We have performed line surveys of more than 50 sources in the nearby Corona Australis and Ophiuchus star-forming regions using the APEX telescope. Many of the Corona Australis sources are located near the intermediate-mass Herbig Be star R CrA, and we find that despite its moderate luminosity, the irradiation from this star enhances the H2CO temperatures of the nearby protostellar envelopes from 10 K to at least 30-40 K. This drastically elevated temperature should be of crucial importance to the chemistry of these envelopes, due to thermal evaporation of many key species from the dust grain surfaces.Towards R CrA-IRS7B, the most thoroughly investigated object in our study, we find that the chemistry differs greatly from other thoroughly investigated deeply embedded protostars (hot corinos and warm carbon-chain chemistry sources, WCCC). We find low abundances of complex organic molecules such as CH3OCH3 and CH3CN, but instead elevated abundances of CN and some carbon-chain species like HC3N and C2H, although not to the same level as towards typical WCCC sources. We interpret the observed chemical properties as a result of thermal evaporation of CO from the grain mantles and photo-dissociation reactions in the IRS7B envelope, both initiated by the irradiation from R CrA.

  1. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  2. Elucidating Turnover Pathways of Bioactive Small Molecules by Isotopomer Analysis: The Persistent Organic Pollutant DDT

    PubMed Central

    Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen

    2014-01-01

    The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380

  3. Elucidating turnover pathways of bioactive small molecules by isotopomer analysis: the persistent organic pollutant DDT.

    PubMed

    Ehlers, Ina; Betson, Tatiana R; Vetter, Walter; Schleucher, Jürgen

    2014-01-01

    The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science.

  4. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  5. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-01

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  6. Selective laser photolysis of organic molecules in complex matrices

    NASA Astrophysics Data System (ADS)

    Moulin, Christophe; Petit, Alain D.

    1995-03-01

    Natural extracts or essences are largely used in several fields (farm- produce industry, cosmetic, perfumery, biochemistry, etc.). However, most of these complex extracts contain also toxic, carcinogenic or non desirable molecules. By using a laser directly tuned to an absorption band of the unwanted molecules, selective elimination is obtained. Advantages of this procedure are the rapidity, in situ reaction and the possibility to perform quantitative elimination. Examples such as the destruction of thujone in extract of Salvia, bergaptene in essence of Bergamote, phycocyanin in Porphyridium Cruentum or simply dye will be presented and discussed.

  7. Prediction of nonlinear optical properties of large organic molecules

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1992-01-01

    The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.

  8. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    PubMed Central

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  9. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers.

    PubMed

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  10. Detection and mapping of organic molecules in Titan's atmosphere using ALMA

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin

    2016-06-01

    Titan's atmospheric photochemistry results in the production of a wide range of organic molecules, including hydrocarbons, nitriles, aromatics and other complex species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of organic matter in primitive (terrestrial) planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. Results will be presented from our ongoing studies of Titan using ALMA data obtained during the period 2012-2014 [1,2], including detection and mapping of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH. In addition, combining data from multiple ALMA Band 6 observations, we obtained high-resolution spectra with unprecedented sensitivity, enabling the first detection of C2H3CN (vinyl cyanide) on Titan, and derived a mean C2H3CN C2H5CN abundance ratio above 300 km of 0.3. Vinyl cyanide has recently been investigated as a possible constituent of (pre-biotic) vesicle membranes in Titan's liquid CH4 oceans [3]. Radiative transfer models and possible chemical formation pathways for the detected molecules will be discussed. ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere for gases inaccessible to previous studies, and therefore provide new insights into photochemical production and transport, particularly at higher altitudes. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with the molecular distributions found in previous studies at infrared wavelengths by Voyager and Cassini, but high-altitude longitudinal asymmetries in our nitrile data indicate that the mesosphere may be more spatially variable than previously thought.

  11. Preservation of Organic Molecules at Mars' Near-Surface

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Archer, P. D.; Brinckerhoff, W. B.; Brunner, A. E.; Eigenbrode, J. L.; Franz, H. B.; Kashyap, S.; Malespin, C. A.; Millan, M.; Miller, K. E.; Navarro-Gonzalez, R.; Prats, B. D.; Summons, R. E.; Teinturier, S.; Mahaffy, P. R.

    2016-05-01

    Detection of organics at Mars' surface is challenged by its degradation. Curiosity rover was able to detect some organics in a martian mudstone, providing a context for a habitable environment and raising the possibility for detecting biosignatures.

  12. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  13. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  14. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy.

    PubMed

    Rossini, Aaron J; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance (1)H-(2)H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance (2)H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the (2)H solid-state NMR spectra is comparable to that of (1)H spectra obtained with state of the art homonuclear decoupling techniques.

  15. A human interactome in three quantitative dimensions organized by stoichiometries and abundances.

    PubMed

    Hein, Marco Y; Hubner, Nina C; Poser, Ina; Cox, Jürgen; Nagaraj, Nagarjuna; Toyoda, Yusuke; Gak, Igor A; Weisswange, Ina; Mansfeld, Jörg; Buchholz, Frank; Hyman, Anthony A; Mann, Matthias

    2015-10-22

    The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis. PMID:26496610

  16. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  17. Probabilisitc Geobiological Classification Using Elemental Abundance Distributions and Lossless Image Compression in Recent and Modern Organisms

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.

    2005-01-01

    Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable

  18. Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils

    PubMed Central

    Boyce, C. K.; Hazen, R. M.; Knoll, A. H.

    2001-01-01

    The electron microprobe allows elemental abundances to be mapped at the μm scale, but until now high resolution mapping of light elements has been challenging. Modifications of electron microprobe procedure permit fine-scale mapping of carbon. When applied to permineralized fossils, this technique allows simultaneous mapping of organic material, major matrix-forming elements, and trace elements with μm-scale resolution. The resulting data make it possible to test taphonomic hypotheses for the formation of anatomically preserved silicified fossils, including the role of trace elements in the initiation of silica precipitation and in the prevention of organic degradation. The technique allows one to understand the localization of preserved organic matter before undertaking destructive chemical analyses and, because it is nondestructive, offers a potentially important tool for astrobiological investigations of samples returned from Mars or other solar system bodies. PMID:11371632

  19. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  20. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  1. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    PubMed

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs.

  2. Laboratory simulation to support the search for organic molecules at the surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars’ exploration. Understanding the chemical evolution of organic molecules under current Martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters provide new inputs for numerical modeling of current reservoirs of organic molecules on Mars. (1) O. Poch et al., Planetary and Space Science 85, 188-197, http://dx.doi.org/10.1016/j.pss.2013.06.013

  3. Single-Molecule Magnet Behavior of Individual Polyoxometalate Molecules Incorporated within Biopolymer or Metal-Organic Framework Matrices.

    PubMed

    Salomon, William; Lan, Yanhua; Rivière, Eric; Yang, Shu; Roch-Marchal, Catherine; Dolbecq, Anne; Simonnet-Jégat, Corine; Steunou, Nathalie; Leclerc-Laronze, Nathalie; Ruhlmann, Laurent; Mallah, Talal; Wernsdorfer, Wolfgang; Mialane, Pierre

    2016-05-01

    The chemically and structurally highly stable polyoxometalate (POM) single-molecule magnet (SMM) [(FeW9 O34 )2 Fe4 (H2 O)2 ](10-) (Fe6 W18 ) has been incorporated by direct or post-synthetic approaches into a biopolymer gelatin (Gel) matrix and two crystalline metal-organic frameworks (MOFs), including one diamagnetic (UiO-67) and one magnetic (MIL-101(Cr)). Integrity of the POM in the Fe6 W18 @Gel, Fe6 W18 @UiO-67 and Fe6 W18 @MIL-101(Cr) composites was confirmed by a set of complementary techniques. Magnetic studies indicate that the POMs are magnetically well isolated. Remarkably, in Fe6 W18 @Gel, the SMM properties of the embedded molecules are close to those of the crystals, with clear quantum tunneling steps in the hysteresis loops. For the Fe6 W18 @UiO-67 composite, the molecules retain their SMM properties, the energy barrier being slightly reduced in comparison to the crystalline material and the molecules exhibiting a tunneling rate of magnetization significantly faster than for Fe6 W18 @Gel. When Fe6 W18 is introduced into MIL-101(Cr), the width of the hysteresis loops is drastically reduced and the quantum tunneling steps are smeared out because of the magnetic interactions between the antiferromagnetic matrix and the SMM guest molecules. PMID:27080557

  4. Atomic-scale surface roughness of rutile and implications for organic molecule adsorption.

    PubMed

    Livi, Kenneth J T; Schaffer, Bernhard; Azzolini, David; Seabourne, Che R; Hardcastle, Trevor P; Scott, Andrew J; Hazen, Robert M; Erlebacher, Jonah D; Brydson, Rik; Sverjensky, Dimitri A

    2013-06-11

    Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile. PMID:23675906

  5. Orchid bees as bio-indicators for organic coffee farms in Costa Rica: does farm size affect their abundance?

    PubMed

    Hedström, Ingemar; Denzel, Andrew; Owens, Gareth

    2006-09-01

    The potential of Euglossini bees, especially Euglossa, as biological indicators of organic vs nonorganic coffee farms was studied in Atenas and San Isidro, Alajuela, Costa Rica using 1.8-cineole as lure. Observations were made for three days at each of four farms and complemented with data from a year of observations. Orchid bees were in greater abundance in the organic farms (t-Student test). However, lower abundances suggest that an organic farm may be negatively affected by the proximity of non-organic farms, depending on its size and distance. Orchid bees may be indicators of organic coffee farms.

  6. Separation of rare gases and chiral molecules by selective binding in porous organic cages.

    PubMed

    Chen, Linjiang; Reiss, Paul S; Chong, Samantha Y; Holden, Daniel; Jelfs, Kim E; Hasell, Tom; Little, Marc A; Kewley, Adam; Briggs, Michael E; Stephenson, Andrew; Thomas, K Mark; Armstrong, Jayne A; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M; Thallapally, Praveen K; Cooper, Andrew I

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation. PMID:25038731

  7. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    NASA Astrophysics Data System (ADS)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. Mark; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

  8. Adsorption of two gas molecules at a single metal site in a metal–organic framework

    SciTech Connect

    Runčevski, Tomče; Kapelewski, Matthew T.; Torres-Gavosto, Rodolfo M.; Tarver, Jacob D.; Brown, Craig M.; Long, Jeffrey R.

    2016-01-01

    One strategy to markedly increase the gas storage capacity of metal-organic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules--specifically hydrogen, methane, or carbon dioxide.

  9. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    SciTech Connect

    Maverick, Andrew W

    2011-12-17

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ²-diketone ligands as building blocks to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  10. Branched terthiophenes in organic electronics: from small molecules to polymers.

    PubMed

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article.

  11. Laboratory Simulation of Organic Molecules Evolution at the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Noblet, A.; Jaber, M.; Lambert, J.; Georgelin, T.; Szopa, C.; Coll, P.

    2012-10-01

    Understanding the evolution of organic matter on Mars is a major goal since no carbonaceous compound has been definitely detected so far on Mars. In this context, we developed the MOMIE project (for Mars Organic Molecules Irradiation and Evolution) dedicated to simulate the processes which potentially drive the evolution of organics, and evaluate the stability of organic molecules under current environmental conditions at the surface of Mars. The laboratory experiment we developed enables us to study the impact of Martian-like UV irradiation and oxidation processes on organic molecules likely to be found at the surface of Mars (from endogeneous or exogeneous sources). Our samples consist of 10 to 1000 nm thick layers of pure organic molecules or organic molecules adsorbed on minerals. The evolution of the sample is monitored by in situ FTIR spectroscopy and mass spectrometry in order to have access to kinetic data along with a characterization of solid and gaseous products potentially present at the surface of Mars. We can assess the relative stability of several organic layers under UV irradiation and reproduce mineralogical driven oxidation pathways known to be important at Mars. In the frame of the search for organics in Gale crater by the MSL Curiosity rover, we plan to study the evolution of organics adsorbed in nontronite synthesized iron rich clay. Because clay minerals, spotted from orbit, have likely been host for organic compounds since early Mars -when prebiotic chemistry might have flourished-, it seems essential to test the processes these organics may have undergone in these preferential mineral matrixes. Hence, Earth-based testing of the degradation or preservation of organic molecules in mineral matrixes submitted to oxidation and/or irradiation will provide essential insights to guide and discuss in situ analyses at Mars.

  12. Exploring molecular complexity with ALMA (EMoCA): Deuterated complex organic molecules in Sagittarius B2(N2)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Garrod, R. T.; Menten, K. M.

    2016-03-01

    Context. Deuteration is a powerful tracer of the history of the cold prestellar phase in star-forming regions. Apart from methanol, little is known about deuterium fractionation of complex organic molecules in the interstellar medium, especially in regions forming high-mass stars. Aims: Our goal is to detect deuterated complex organic molecules toward the high mass star-forming region Sagittarius B2 (Sgr B2) and derive the level of deuteration for these molecules. Methods: We use a complete 3-mm spectral line survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA) to search for deuterated complex organic molecules toward the hot molecular core Sgr B2(N2). We constructed population diagrams and integrated intensity maps to fit rotational temperatures and emission sizes for each molecule. Column densities are derived by modeling the full spectrum under the assumption of local thermodynamic equilibrium. We compare the results to predictions of two astrochemical models that treat the deuteration process. Results: We report the detection of CH2DCN toward Sgr B2(N2) with a deuteration level of 0.4%, and tentative detections of CH2DOH, CH2DCH2CN, the chiral molecule CH3CHDCN, and DC3N with levels in the range 0.05%-0.12%. A stringent deuteration upper limit is obtained for CH3OD (<0.07%). Upper limits in the range 0.5-1.8% are derived for the three deuterated isotopologues of vinyl cyanide, the four deuterated species of ethanol, and CH2DOCHO. Ethyl cyanide is less deuterated than methyl cyanide by at least a factor five. The [CH2DOH]/[CH3OD] abundance ratio is higher than 1.8. It may still be consistent with the value obtained in Orion KL. Except for methyl cyanide, the measured deuteration levels lie at least a factor four below the predictions of current astrochemical models. The deuteration levels in Sgr B2(N2) are also lower than in Orion KL by a factor of a few up to a factor ten. Conclusions: The discrepancy between the deuteration levels of

  13. Evolution of organic molecules under Mars-like UV radiation with EXPOSE-R2, a photochemistry experiment outside the International Space Station

    NASA Astrophysics Data System (ADS)

    Rouquette, Laura; Stalport, Fabien; Cottin, Hervé; Coll, Patrice; Szopa, Cyril; Saiagh, Kafila; Poch, Olivier; Khalaf, Diana; Chaput, Didier; Grira, Katia; Chaouche, Naila; Dequaire, Tristan

    2016-10-01

    The detection and identification of organic molecules on Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now.The EXPOSE R2 facility has been placed in low Earth orbit (LEO) under solar radiation, outside the International Space Station (ISS) in 2014. One of the EXPOSE R2 experiment, called PSS (Photochemistry on the Space Station), is dedicated to astrobiology- and astrochemistry-related studies. Part of PSS samples have been dedicated to the study of the evolution of organic molecules under Mars-like surface radiation conditions. Indeed, UV radiation above 200 nm reaches the surface of Mars and could degrade organic matter. Organic samples have been exposed directly to the Sun under KBr filters (>200 nm) from November 2014 to February 2016, mimicking the UV radiation conditions of the surface of Mars. Four types of samples were exposed as thin layers of solid molecules: adenine, adenine with nontronite (a kind of clay mineral detected on Mars), chrysene and glycine with nontronite.To characterize the evolution of our samples under irradiation, infrared (IR) transmission analyses were performed, before the launch of EXPOSE R2 to the ISS in 2014, and after the exposure in space and the return on Earth, this year. These analyses allowed determining whether each molecule is preserved or photodegraded, and if so, its photolysis rate. The effect of nontronite on organic molecules preservation has been investigated as well. We also compared these results from LEO with laboratory data, obtained by irradiating organic samples under a UV lamp.

  14. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE PAGES

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; Johnston, Murray V.

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH4+)4(HSO4-)4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH4+)4(SO4-)4] cluster, is able to adsorb an oxygenated organic molecule.more » Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  15. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    SciTech Connect

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; Johnston, Murray V.

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH4+)4(HSO4-)4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH4+)4(SO4-)4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.

  16. A-D-A small molecules for solution-processed organic photovoltaic cells.

    PubMed

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  17. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Steele, A.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  18. Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the “Mars organic molecule irradiation and evolution” (MOMIE) setup

    NASA Astrophysics Data System (ADS)

    Poch, O.; Noblet, A.; Stalport, F.; Correia, J. J.; Grand, N.; Szopa, C.; Coll, P.

    2013-09-01

    Understanding the evolution of organic matter on Mars is a major goal to drive and discuss past, present and future in situ analyses. Here we demonstrate the ability of the MOMIE (for Mars organic molecules irradiation and evolution) laboratory device in giving both in situ qualitative and quantitative data on the evolution of organic molecules under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218±2 K) and pressure (6±1 mbar). We describe the chemical evolution of glycine, an amino acid, which is very rapidly processed when exposed to direct ultraviolet radiations, with a molecular half-life of 231±110 h on Mars consistent with existing results. Moreover we report the first tentative detection of peptide bond formation activated by UV radiation reaching the Mars surface. We show that organics as simple as glycine could experience multiple chemical pathways at Mars, both in the solid and gaseous phase. Finally, we derive the quantum efficiency for the photodestruction of glycine of 2.18±1.45×10-3 molecule photon-1 in the 200-250 nm wavelength range. This value is significantly higher than previous estimates done by methane evolved measurements. Current and future studies performed with this simulation setup could produce kinetic and chemical insights into the evolution of organics on Mars.

  19. Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis

    NASA Astrophysics Data System (ADS)

    François, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes. This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (~700°C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  20. Genetic variability of respiratory complex abundance, organization, and activity in mouse brain

    PubMed Central

    Buck, Kari J.; Walter, Nicole A.R.; Denmark, Deaunne L.

    2013-01-01

    Mitochondrial dysfunction is implicated in the etiology and pathogenesis of numerous human disorders involving tissues with high energy demand. Murine models are widely used to elucidate genetic determinants of phenotypes relevant to human disease, with recent studies of C57BL/6J (B6), DBA/2J (D2) and B6xD2 populations implicating naturally occurring genetic variation in mitochondrial function/dysfunction. Using blue native polyacrylamide gel electrophoresis, immunoblots, and in-gel activity analyses of complexes I, II, IV and V, our studies are the first to assess abundance, organization, and catalytic activity of mitochondrial respiratory complexes and supercomplexes in mouse brain. Remarkable strain differences in supercomplex assembly and associated activity are evident, without differences in individual complexes I, II, III, or IV. Supercomplexes I1III2IV2-3 exhibit robust complex III immunoreactivity and complex I and IV activities in D2, but with little detected in B6 for I1III2IV2, and I1III2IV3 is not detected in B6. I1III2IV1 and I1III2 are abundant and catalytically active in both strains, but significantly more so in B6. Furthermore, while supercomplex III2IV1 is abundant in D2, none is detected in B6. In aggregate, these results indicate a shift toward more highly assembled supercomplexes in D2. Respiratory supercomplexes are thought to increase electron flow efficiency and individual complex stability, and to reduce electron leak and generation of reactive oxygen species. Our results provide a framework to begin assessing the role of respiratory complex suprastructure in genetic vulnerability and treatment for a wide variety of mitochondrial-related disorders. PMID:24164700

  1. Predators alter community organization of coral reef cryptofauna and reduce abundance of coral mutualists

    NASA Astrophysics Data System (ADS)

    Stier, A. C.; Leray, M.

    2014-03-01

    Coral reefs are the most diverse marine systems in the world, yet our understanding of the processes that maintain such extraordinary diversity remains limited and taxonomically biased toward the most conspicuous species. Cryptofauna that live deeply embedded within the interstitial spaces of coral reefs make up the majority of reef diversity, and many of these species provide important protective services to their coral hosts. However, we know very little about the processes governing the diversity and composition of these less conspicuous but functionally important species. Here, we experimentally quantify the role of predation in driving the community organization of small fishes and decapods that live embedded within Pocillopora eydouxi, a structurally complex, reef-building coral found widely across the Indo-Pacific. We use surveys to describe the natural distribution of predators, and then, factorially manipulate two focal predator species to quantify the independent and combined effects of predator density and identity on P. eydouxi-dwelling cryptofauna. Predators reduced abundance (34 %), species richness (20 %), and modified species composition. Rarefaction revealed that observed reductions in species richness were primarily driven by changes in abundance. Additionally, the two predator species uniquely affected the beta diversity and composition of the prey assemblage. Predators reduced the abundance and modified the composition of a number of mutualist fishes and decapods, whose benefit to the coral is known to be both diversity- and density-dependent. We predict that the density and identity of predators present within P. eydouxi may substantially alter coral performance in the face of an increased frequency and intensity of natural and anthropogenic stressors.

  2. Differential adsorption of complex organic molecules isomers at interstellar ice surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Bertin, M.; Mokrane, H.; Romanzin, C.; Michaut, X.; Jeseck, P.; Fillion, J.-H.; Chaabouni, H.; Congiu, E.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Pauzat, , F.; Pilmé, J.; Minot, C.; Ellinger, Y.

    2011-08-01

    Context. Over 20 of the ~150 different species detected in the interstellar and circumstellar media have also been identified in icy environments. For most of the species observed so far in the interstellar medium (ISM), the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle - MEP) with few exceptions such as, for example, CH3COOH/HCOOCH3 and CH3CH2OH/CH3OCH3, whose formation is thought to occur on the icy mantles of interstellar grains. Aims: We investigate whether differences found in the compositions of molecular ices and the surrounding gas phase could originate from differences between the adsorption of one isomer from that of another at the ice surface. Methods: We performed a coherent and concerted theoretical/experimental study of the adsorption energies of the four molecules mentioned above, i.e. acetic acid (AA)/methyl formate (MF) and ethanol (EtOH)/dimethyl ether (DME) on the surface of water ice at low temperature. The question was first addressed theoretically at LCT using solid state periodic density functional theory (DFT) to represent the organized solid support. The experimental determination of the ice/molecule interaction energies was then carried out independently by two teams at LPMAA and LERMA/LAMAp using temperature programmed desorption (TPD) under an ultra-high vacuum (UHV) between 70 and 160 K. Results: For each pair of isomers, theory and experiments both agree that the most stable isomer (AA or EtOH) interacts more efficiently with the water ice than the higher energy isomer (MF or DME). This differential adsorption can be clearly seen in the different desorption temperatures of the isomers. It is not related to their intrinsic stability but instead to both AA and EtOH producing more and stronger hydrogen bonds with the ice surface. Conclusions: We show that hydrogen bonding may play an important role in the release of organic species from grains and propose that, depending on the

  3. Targeted Access to the Genomes of Low Abundance Organisms in Complex Microbial Communities

    SciTech Connect

    Podar, Mircea; Abulencia, Carl; Walcher, Marion; Hutchinson, Don; Zengler, Karsten; Garcia, Joseph; Holland, Trevin; Cotton, Dave; Hauser, Loren John; Keller, Martin

    2007-01-01

    Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism, and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequency, especially those representing yet uncultured taxa-which includes the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms directly isolated from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the community metabolic potential.

  4. Quinone-Catalyzed Selective Oxidation of Organic Molecules.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2015-12-01

    Quinones are common stoichiometric reagents in organic chemistry. Para-quinones with high reduction potentials, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry, or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in copper amine oxidases and mediate the efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed by electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and has important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  5. UV and VUV Ionization of Organic Molecules, Clusters, and Complexes

    NASA Astrophysics Data System (ADS)

    Marksteiner, Markus; Haslinger, Philipp; Sclafani, Michele; Ulbricht, Hendrik; Arndt, Markus

    2009-08-01

    The generation of organic particle beams is studied in combination with photoionization using UV radiation at 266 nm and vacuum ultraviolet (VUV) light at 157 nm. Single-photon ionization with pulsed VUV light turns out to be sensitive enough to detect various large neutral biomolecular complexes ranging from metal-amino acid complexes to nucleotide clusters and aggregates of polypeptides. Different biomolecular clusters are shown to exhibit rather specific binding characteristics with regard to the various metals that are codesorbed in the source. We also find that the ion signal of gramicidin can be increased by a factor of 15 when the photon energy is increased from 4.66 to 7.9 eV.

  6. D-A-D structured organic molecules with diketopyrrolopyrrole acceptor unit for solution-processed organic solar cells

    PubMed Central

    Zhang, Jing; He, Chang; Zhang, Zhi-Guo; Deng, Dan; Zhang, Maojie; Li, Yongfang

    2014-01-01

    Four solution-processable D-A-D structured organic molecules with diketopyrrolopyrrole (DPP) as acceptor unit and triphenylamine (TPA) or (4-hexyl)thieno [3,2-b]thiophene (HTT) as donor unit, DPP8-TPA, DPP8-TPA-OR, DPP6-HTT and DPP8-HTT, were designed and synthesized for the application as donor materials in solution-processed organic solar cells (OSCs). The molecules show broad absorption and relatively lower highest occupied molecular orbital energy levels. Photovoltaic properties of the molecules were investigated by fabricating the bulk-heterojunction OSCs with the molecules as donor and PC71BM as acceptor. Power conversion efficiency of the OSC based on DPP8-HTT reached 1.5% under the illumination of AM1.5, 100 mW cm−2. PMID:24615148

  7. Self-organization of monodentate organic molecules on a solid surface - A Monte Carlo and transfer-matrix study

    NASA Astrophysics Data System (ADS)

    Akimenko, S. S.; Gorbunov, V. A.; Myshlyavtsev, A. V.; Fefelov, V. F.

    2015-09-01

    A lattice gas model of monodentate organic molecules on a solid surface in terms of pair directional interactions has been developed. As a special case of the constructed model the self-organization of CaTBPP on Au(111) surface was studied with Monte Carlo and transfer-matrix methods in the grand canonical ensemble. It is shown that the adsorbed molecules tend to form dimers when the hydrogen bonding between the molecules is relatively strong. Phase behavior of the system in this case can be characterized as the hierarchical self-assembly process. The self-assembly is led by the repulsive interactions between the building blocks those are the dimers of the adsorbate molecules stabilized with the strong hydrogen bonding. When hydrogen bonding is weak, a cross-like structure appears at moderate surface coverages.

  8. Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Menten, K. M.; Schilke, P.; Comito, C.

    2013-11-01

    Context. The discovery of amino acids in meteorites fallen to Earth and the detection of glycine, the simplest of them, in samples returned from a comet to Earth strongly suggest that the chemistry of the interstellar medium is capable of producing such complex organic molecules and that they may be widespread in our Galaxy. Aims: Our goal is to investigate the degree of chemical complexity that can be reached in the interstellar medium, in particular in dense star-forming regions. Methods: We performed an unbiased, spectral line survey toward Sgr B2(N) and (M), two regions where high-mass stars are formed, with the IRAM 30 m telescope in the 3 mm atmospheric transmission window. Partial surveys at 2 and 1.3 mm were performed in parallel. The spectra were analyzed with a simple radiative transfer model that assumes local thermodynamic equilibrium but takes optical depth effects into account. Results: About 3675 and 945 spectral lines with a peak signal-to-noise ratio higher than 4 are detected at 3 mm toward Sgr B2(N) and (M), i.e. about 102 and 26 lines per GHz, respectively. This represents an increase by about a factor of two over previous surveys of Sgr B2. About 70% and 47% of the lines detected toward Sgr B2(N) and (M) are identified and assigned to 56 and 46 distinct molecules as well as to 66 and 54 less abundant isotopologues of these molecules, respectively. In addition, we report the detection of transitions from 59 and 24 catalog entries corresponding to vibrationally or torsionally excited states of some of these molecules, respectively, up to a vibration energy of 1400 cm-1 (2000 K). Excitation temperatures and column densities were derived for each species but should be used with caution. The rotation temperatures of the detected complex molecules typically range from ~50 to 200 K. Among the detected molecules, aminoacetonitrile, n-propyl cyanide, and ethyl formate were reported for the first time in space based on this survey, as were five rare

  9. Analytical Protocols for Analysis of Organic Molecules in Mars Analog Materials

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Brinkerhoff, W.; Buch, A.; Demick, J.; Glavin, D. P.

    2004-01-01

    A range of analytical techniques and protocols that might be applied b in situ investigations of martian fines, ices, and rock samples are evaluated by analysis of organic molecules m Mars analogues. These simulants 6om terrestrial (i.e. tephra from Hawaii) or extraterrestrial (meteoritic) samples are examined by pyrolysis gas chromatograph mass spectrometry (GCMS), organic extraction followed by chemical derivatization GCMS, and laser desorption mass spectrometry (LDMS). The combination of techniques imparts analysis breadth since each technique provides a unique analysis capability for Certain classes of organic molecules.

  10. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life.

    PubMed

    Chyba, C; Sagan, C

    1992-01-01

    Sources of organic molecules on the early Earth divide into three categories: delivery by extraterrestrial objects; organic synthesis driven by impact shocks; and organic synthesis by other energy sources (such as ultraviolet light or electrical discharges). Estimates of these sources for plausible end-member oxidation states of the early terrestrial atmosphere suggest that the heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources. Which sources of prebiotic organics were quantitatively dominant depends strongly on the composition of the early terrestrial atmosphere. In the event of an early strongly reducing atmosphere, production by atmospheric shocks seems to have dominated that due to electrical discharges. Organic synthesis by ultraviolet light may, in turn, have dominated shock production, but only if a long-wavelength absorber such as H2S were supplied to the atmosphere at a rate sufficient for synthesis to have been limited by ultraviolet flux, rather than by reactant abundance. In the apparently more likely case of an early terrestrial atmosphere of intermediate oxidation state, atmospheric shocks were probably of little importance for direct organic production. For [H2]/[CO2] ratios of approximately 0.1, net organic production was some three orders of magnitude lower than for reducing atmospheres, with delivery of intact exogenous organics in interplanetary dust particles (IDPs) and ultraviolet production being the most important sources. At still lower [H2]/[CO2] ratios, IDPs may have been the dominant source of prebiotic organics on the early Earth. Endogenous, exogenous and impact-shock sources of organics could each have made a significant contribution to the origins of life.

  11. Intramolecular Long-Distance Electron Transfer in Organic Molecules

    NASA Astrophysics Data System (ADS)

    Closs, Gerhard L.; Miller, John R.

    1988-04-01

    Intramolecular long-distance electron transfer (ET) has been actively studied in recent years in order to test existing theories in a quantitative way and to provide the necessary constants for predicting ET rates from simple structural parameters. Theoretical predictions of an ``inverted region,'' where increasing the driving force of the reaction will decrease its rate, have begun to be experimentally confirmed. A predicted nonlinear dependence of ET rates on the polarity of the solvent has also been confirmed. This work has implications for the design of efficient photochemical charge-separation devices. Other studies have been directed toward determining the distance dependence of ET reactions. Model studies on different series of compounds give similar distance dependences. When different stereochemical structures are compared, it becomes apparent that geometrical factors must be taken into account. Finally, the mechanism of coupling between donor and acceptor in weakly interacting systems has become of major importance. The theoretical and experimental evidence favors a model in which coupling is provided by the interaction with the orbitals of the intervening molecular fragments, although more experimental evidence is needed. Studies on intramolecular ET in organic model compounds have established that current theories give an adequate description of the process. The separation of electronic from nuclear coordinates is only a convenient approximation applied to many models, but in long-distance ET it works remarkably well. It is particularly gratifying to see Marcus' ideas finally confirmed after three decades of skepticism. By obtaining the numbers for quantitative correlations between rates and distances, these experiments have shown that saturated hydrocarbon fragments can ``conduct'' electrons over tens of angstroms. A dramatic demonstration of this fact has recently been obtained by tunneling electron microscopy on Langmuir-Blodgett films, showing in a

  12. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    NASA Astrophysics Data System (ADS)

    Jiao, Juntao; Xiao, Dengming; Zhao, Xiaoling; Deng, Yunkun

    2016-05-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method. supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)

  13. Abundance of potentially pathogenic micro-organisms in Penaeus monodon larvae rearing systems in India.

    PubMed

    Vaseeharan, Baskaralingam; Ramasamy, Palaniappan

    2003-01-01

    Monodon baculovirls (MBV), external fouling organisms (EFO) and bacteria (especially Vibrio species) were monitored during 1996-1997 at nine different Penaeus monodon rearing hatcheries in India. Total cultivable heterotrophic bacteria, Vibrio-like-bacteria, presumptive Vibrio harveyi, Vibrio anguillarum, Vibrio vulnificus counts were determined from shrimp eggs, post larvae, rearing tank water, source sea water, feed (Artemia nauplii and microencapsulated feed). The MBV infected post larvae and their environment showed higher Vibrio-like-bacteria than uninfected post larvae. An overwhelming predominance of presumptive Vibrio harveyi and Vibrio anguillarum was observed in post larval rearing tank water, MBV infected and uninfected post larvae. Vibrio-like-bacteria in Artemia nauplii clearly showed the possible source of these pathogenic bacteria in the hatchery environments. Quantitative analysis of Vibrio-like-bacteria in hatcheries revealed that when the Vibrio-like-bacteria increases to 2 x 10(2) CFU mortality of the post larvae occurs. Abundance of these micro-organisms in hatchery samples indicated that they are opportunistic pathogens which can invade the shrimp tissue, subsequently cause disease when the post larvae were under stressful conditions.

  14. Effects of multiple levels of social organization on survival and abundance.

    PubMed

    Ward, Eric J; Semmens, Brice X; Holmes, Elizabeth E; Balcomb Iii, Ken C

    2011-04-01

    Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities. PMID:21054527

  15. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    PubMed

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.

  16. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    PubMed

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. PMID:25734356

  17. Selective transformation of carbonyl ligands to organic molecules

    SciTech Connect

    Cutler, A.R.

    1992-05-12

    Studies on the carbonylation of ({eta}{sup 5}-indenyl)(L)(CO)Ru-R complexes (L = CO, PPh{sub 3}; R = CH{sub 2}OMe, CH{sub 3}) have been completed. Particularly noteworthy is that the methoxymethyl complexes readily transform to their acyl derivatives under mild conditions that leave their iron congeners inert towards CO. Surprisingly, even ({eta}{sup 5}-indenyl)(PPh{sub 3}){sub 2}Ru-CH{sub 3} carbonylates and gives ({eta}{sup 5}-indenyl)(PPh{sub 3})(CO)Ru-C(O)CH{sub 3}. Mechanistic studies on the non catalyzed'' hydrosilation of the manganese acyls (CO){sub 5}Mn-C(O)CH{sub 2}R (R = H, OCH{sub 3}, CH{sub 3}) with Et{sub 3}SiH and of cobalt acetyls (CO){sub 3}(PR{sub 3})CoC(O)CH{sub 3} with several monohydrosilanes have been completed. The cobalt acetyls cleanly give ethoxysilanes (not acetaldehyde), and the manganese acyls provide {alpha}-siloxyvinyl complexes Z-(CO){sub 5}Mn-C(OSiEt{sub 3})=CHR (R = H, CH{sub 3}, OCH{sub 3}). Carbonylation and protolytic cleavage of the latter generate pyruvoyl complexes (CO){sub 5}Mn-COCOR (R = CH{sub 3}, CH{sub 2}CH{sub 3}), formally the products of net double carbonylation'' sequences. Studies in progress are concerned with how manganese complexes as diverse as (CO){sub 5}Mn-Y (Y = C(O)R, R, BR - but not SiMe{sub 3} or Mn(CO){sub 5}) and ({eta}{sup 3}-C{sub 3}H{sub 5})Mn(CO){sub 2}L (but not CpMn(CO){sub 3} or CpMn(CO){sub 2}({eta}{sup 2}HSiR{sub 3})) function as efficient hydrosilation catalysts towards Cp(CO){sub 2}FeC(O)CH{sub 3}, for example. These reactions cleanly afford fully characterized {alpha}-siloxyethyl complexes Fp-CH(OSiR{sub 3})CH{sub 3} under conditions where typically Rh(1) hydrosilation catalysts are inactive. Several of these manganese complexes also catalytically hydrosilate organic esters, including lactones, to their ethers R-CH{sub 2}OR; these novel ester reductions occur quantitatively at room temperature and appear to be general in scope.

  18. The Spatial Distribution of Complex Organic Molecules in the L1544 Pre-stellar Core

    PubMed Central

    Jiménez-Serra, Izaskun; Vasyunin, Anton I.; Caselli, Paola; Marcelino, Nuria; Billot, Nicolas; Viti, Serena; Testi, Leonardo; Vastel, Charlotte; Lefloch, Bertrand; Bachiller, Rafael

    2016-01-01

    The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with AV ≥30 mag within the inner 2700 au; and a low-density shell with average AV ~7.5-8 mag located at 4000 au from the core’s center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors ≤3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains. PMID:27733899

  19. The Spatial Distribution of Complex Organic Molecules in the L1544 Pre-stellar Core

    NASA Astrophysics Data System (ADS)

    Jiménez-Serra, Izaskun; Vasyunin, Anton I.; Caselli, Paola; Marcelino, Nuria; Billot, Nicolas; Viti, Serena; Testi, Leonardo; Vastel, Charlotte; Lefloch, Bertrand; Bachiller, Rafael

    2016-10-01

    The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T < 10 K) has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modeling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly extinguished continuum peak with A V ≥ 30 mag within the inner 2700 au; and a low-density shell with average A V ∼ 7.5–8 mag located at 4000 au from the core’s center and bright in CH3OH. Our observations show that CH3O, CH3OCH3, and CH3CHO are more abundant (by factors of ∼2–10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN, and HCCNC show slight enhancements (by factors ≤3), but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modeling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because (i) CO starts freezing out onto dust grains driving an active surface chemistry; (ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and (iii) the density is still moderate to prevent severe depletion of COMs onto grains.

  20. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses.

    PubMed

    Voget, Sonja; Wemheuer, Bernd; Brinkhoff, Thorsten; Vollmers, John; Dietrich, Sascha; Giebel, Helge-Ansgar; Beardsley, Christine; Sardemann, Carla; Bakenhus, Insa; Billerbeck, Sara; Daniel, Rolf; Simon, Meinhard

    2015-02-01

    The RCA (Roseobacter clade affiliated) cluster, with an internal 16S rRNA gene sequence similarity of >98%, is the largest cluster of the marine Roseobacter clade and most abundant in temperate to (sub)polar oceans, constituting up to 35% of total bacterioplankton. The genome analysis of the first described species of the RCA cluster, Planktomarina temperata RCA23, revealed that this phylogenetic lineage is deeply branching within the Roseobacter clade. It shares not >65.7% of homologous genes with any other organism of this clade. The genome is the smallest of all closed genomes of the Roseobacter clade, exhibits various features of genome streamlining and encompasses genes for aerobic anoxygenic photosynthesis (AAP) and CO oxidation. In order to assess the biogeochemical significance of the RCA cluster we investigated a phytoplankton spring bloom in the North Sea. This cluster constituted 5.1% of the total, but 10-31% (mean 18.5%) of the active bacterioplankton. A metatranscriptomic analysis showed that the genome of P. temperata RCA23 was transcribed to 94% in the bloom with some variations during day and night. The genome of P. temperata RCA23 was also retrieved to 84% from metagenomic data sets from a Norwegian fjord and to 82% from stations of the Global Ocean Sampling expedition in the northwestern Atlantic. In this region, up to 6.5% of the total reads mapped on the genome of P. temperata RCA23. This abundant taxon appears to be a major player in ocean biogeochemistry. PMID:25083934

  1. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses

    PubMed Central

    Voget, Sonja; Wemheuer, Bernd; Brinkhoff, Thorsten; Vollmers, John; Dietrich, Sascha; Giebel, Helge-Ansgar; Beardsley, Christine; Sardemann, Carla; Bakenhus, Insa; Billerbeck, Sara; Daniel, Rolf; Simon, Meinhard

    2015-01-01

    The RCA (Roseobacter clade affiliated) cluster, with an internal 16S rRNA gene sequence similarity of >98%, is the largest cluster of the marine Roseobacter clade and most abundant in temperate to (sub)polar oceans, constituting up to 35% of total bacterioplankton. The genome analysis of the first described species of the RCA cluster, Planktomarina temperata RCA23, revealed that this phylogenetic lineage is deeply branching within the Roseobacter clade. It shares not >65.7% of homologous genes with any other organism of this clade. The genome is the smallest of all closed genomes of the Roseobacter clade, exhibits various features of genome streamlining and encompasses genes for aerobic anoxygenic photosynthesis (AAP) and CO oxidation. In order to assess the biogeochemical significance of the RCA cluster we investigated a phytoplankton spring bloom in the North Sea. This cluster constituted 5.1% of the total, but 10–31% (mean 18.5%) of the active bacterioplankton. A metatranscriptomic analysis showed that the genome of P. temperata RCA23 was transcribed to 94% in the bloom with some variations during day and night. The genome of P. temperata RCA23 was also retrieved to 84% from metagenomic data sets from a Norwegian fjord and to 82% from stations of the Global Ocean Sampling expedition in the northwestern Atlantic. In this region, up to 6.5% of the total reads mapped on the genome of P. temperata RCA23. This abundant taxon appears to be a major player in ocean biogeochemistry. PMID:25083934

  2. Attachment limited versus diffusion limited nucleation of organic molecules: Hexaphenyl on sputter-modified mica.

    PubMed

    Tumbek, L; Winkler, A

    2012-08-01

    The nucleation and growth of organic molecules is usually discussed in the framework of diffusion limited aggregation (DLA). In this letter we demonstrate for the rod-like organic molecules hexaphenyl (6P) on sputter-modified mica, that under specific experimental conditions the nucleation has to be described by attachment limited aggregation (ALA). The crucial parameter for the growth mode is the roughness of the substrate surface, as induced by ion sputtering. With decreasing surface roughness the diffusion probability of the molecules increases and the growth mode changes from DLA to ALA. This was derived from the deposition rate dependence of the island density. A critical size of i = 7 molecules was determined for the nucleation of 6P on a moderately sputtered mica surface. PMID:23470898

  3. Attachment limited versus diffusion limited nucleation of organic molecules: Hexaphenyl on sputter-modified mica

    NASA Astrophysics Data System (ADS)

    Tumbek, L.; Winkler, A.

    2012-08-01

    The nucleation and growth of organic molecules is usually discussed in the framework of diffusion limited aggregation (DLA). In this letter we demonstrate for the rod-like organic molecules hexaphenyl (6P) on sputter-modified mica, that under specific experimental conditions the nucleation has to be described by attachment limited aggregation (ALA). The crucial parameter for the growth mode is the roughness of the substrate surface, as induced by ion sputtering. With decreasing surface roughness the diffusion probability of the molecules increases and the growth mode changes from DLA to ALA. This was derived from the deposition rate dependence of the island density. A critical size of i = 7 molecules was determined for the nucleation of 6P on a moderately sputtered mica surface.

  4. Robust Manipulation of Magnetism in Dilute Magnetic Semiconductor (Ga,Mn)As by Organic Molecules.

    PubMed

    Wang, Xiaolei; Wang, Hailong; Pan, Dong; Keiper, Timothy; Li, Lixia; Yu, Xuezhe; Lu, Jun; Lochner, Eric; von Molnár, Stephan; Xiong, Peng; Zhao, Jianhua

    2015-12-22

    Surface adsorption of organic molecules provides a new method for the robust manipulation of ferromagnetism in (Ga,Mn)As. Electron acceptor and donor molecules yield significant enhancement and suppression, respectively, of ferromagnetism with modulation of the Curie temperature spanning 36 K. Dip-pen nanolithography is employed to directly pattern monolayers on (Ga,Mn)As, which is presented as a novel pathway toward producing magnetic nanostructures.

  5. The Sample Analysis At Mars Gas Chromatograph (sam-gc) Ability To Detect Organic Molecules At The Mars Surface

    NASA Astrophysics Data System (ADS)

    Francois, Pascaline; Coll, P.; Szopa, C.; Buch, A.; Sternberg, R.; Cabane, M.; Mahaffy, P.

    2012-10-01

    The environmental conditions on Mars might have been favorable for the emergence of Life. The search for clues of a prebiotic chemistry or a biological activity represents one of the main objectives of the Mars Science Laboratory (MSL) mission. The Sample Analysis at Mars Gas Chromatograph (SAM-GC), aboard Curiosity rover, is dedicated to organic molecules research in atmospheric and solid samples. This instrument is constituted of six complementary chromatographic columns which have been selected to provide a broad range of separation and detection capability (volatile, refractory and chiral molecules). In order to treat and interpret the SAM-GC in situ results, it is necessary: (1) to determine the instrument ability to detect targets molecules under the instrument operating conditions and (2) to create a chromatographic and mass spectra data base to help their identification. With this aim we first selected molecules which might be analyzed with SAM-GC using the following criteria: (1) abundance at the Mars surface (2) astrobiological interest, (3) formation during the sample preparation. Then we characterized these target molecules on a laboratory gas chromatograph mass spectrometer (GC-MS) using a Chirasildex (30m x 0,25mm x 0,25µm) column dedicated to the enantiomeric separation and a CLP (30m x 0,25mm x 0,25µm) generalist columns which will be probably the first to be used on Mars. In a second step, we will use a SAM-GC mock-up to mimick the environmental conditions (pressure and temperature) inside Curiosity rover and study its variation impact on analyzes. Finally, we will present a study carried out on a Martian analogs, as Atacama samples.

  6. Isotope substitution extends the lifetime of organic molecules in transmission electron microscopy.

    PubMed

    Chamberlain, Thomas W; Biskupek, Johannes; Skowron, Stephen T; Bayliss, Peter A; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2015-02-01

    Structural characterisation of individual molecules by high-resolution transmission electron microscopy (HRTEM) is fundamentally limited by the element and electron energy-specific interactions of the material with the high energy electron beam. Here, the key mechanisms controlling the interactions between the e-beam and C-H bonds, present in all organic molecules, are examined, and the low atomic weight of hydrogen-resulting in its facile atomic displacement by the e-beam-is identified as the principal cause of the instability of individual organic molecules. It is demonstrated theoretically and proven experimentally that exchanging all hydrogen atoms within molecules with the deuterium isotope, and therefore doubling the atomic weight of the lightest atoms in the structure, leads to a more than two-fold increase in the stability of organic molecules in the e-beam. Substitution of H for D significantly reduces the amount of kinetic energy transferred from the e-beam to the atom (main factor contributing to stability) and also increases the barrier for bond dissociation, primarily due to the changes in the zero-point energy of the C-D vibration (minor factor). The extended lifetime of coronene-d12 , used as a model molecule, enables more precise analysis of the inter-molecular spacing and more accurate measurement of the molecular orientations.

  7. First principles calculation of electron ionization mass spectra for selected organic drug molecules.

    PubMed

    Bauer, Christoph Alexander; Grimme, Stefan

    2014-11-21

    This study presents a showcase for the novel Quantum Chemistry Electron Ionization Mass Spectrometry (QCEIMS) method on five FDA-approved drugs. The method allows a first-principles electronic structure-based prediction of EI mass spectra in principle for any molecule. The systems in this case study are organic substances of nominal masses between 404 and 853 atomic mass units and cover a wide range of functional groups and organic molecular structure motifs. The results demonstrate the widespread applicability of the QCEIMS method for the unbiased computation of EI mass spectra even for larger molecules. Its strengths compared to standard (static) or database driven approaches in such cases are highlighted. Weak points regarding the required computation times or the approximate character of the employed QC methods are also discussed. We propose QCEIMS as a viable and robust way of predicting EI mass spectra for sizeable organic molecules relevant to medicinal and pharmaceutical chemistry.

  8. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    PubMed Central

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  9. Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials.

    PubMed

    Huang, Dazhen; Wang, Chao; Zou, Ye; Shen, Xingxing; Zang, Yaping; Shen, Hongguang; Gao, Xike; Yi, Yuanping; Xu, Wei; Di, Chong-An; Zhu, Daoben

    2016-08-26

    Development of chemically doped high performance n-type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n-type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene-diketopyrrolopyrrole-based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm(-1) and a Seebeck coefficient of 585 μV K(-1) . The newly developed TE material possesses a maximum power factor of 113 μW m(-1)  K(-2) , which is at the forefront for organic small molecule-based n-type TE materials. These studies reveal that fine-tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. PMID:27496293

  10. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    NASA Astrophysics Data System (ADS)

    Ananikov, V. P.; Khemchyan, L. L.; Ivanova, Yu V.; Bukhtiyarov, V. I.; Sorokin, A. M.; Prosvirin, I. P.; Vatsadze, S. Z.; Medved'ko, A. V.; Nuriev, V. N.; Dilman, A. D.; Levin, V. V.; Koptyug, I. V.; Kovtunov, K. V.; Zhivonitko, V. V.; Likholobov, V. A.; Romanenko, A. V.; Simonov, P. A.; Nenajdenko, V. G.; Shmatova, O. I.; Muzalevskiy, V. M.; Nechaev, M. S.; Asachenko, A. F.; Morozov, O. S.; Dzhevakov, P. B.; Osipov, S. N.; Vorobyeva, D. V.; Topchiy, M. A.; Zotova, M. A.; Ponomarenko, S. A.; Borshchev, O. V.; Luponosov, Yu N.; Rempel, A. A.; Valeeva, A. A.; Stakheev, A. Yu; Turova, O. V.; Mashkovsky, I. S.; Sysolyatin, S. V.; Malykhin, V. V.; Bukhtiyarova, G. A.; Terent'ev, A. O.; Krylov, I. B.

    2014-10-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references.

  11. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    SciTech Connect

    Sharma, G. D.

    2011-10-20

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm{sup 2} has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  12. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

  13. Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dappe, Y. J.

    2014-02-01

    Carbon nanotubes are fascinating nano-objects not only from a fundamental point of view but also with respect to their remarkable properties, holding great potential in new materials design. When combined with organic molecules, these properties can be enhanced or modulated in order to fulfil the demand in domains as diverse as molecular electronics, biomaterials or even construction engineering, to name a few. To adequately conceive these hybrid materials it is essential to fully appreciate the nature of molecule-carbon nanotube interactions. In this review, we will discuss some relevant fundamental and applied research done on encapsulated molecules in carbon nanotubes. We will particularly focus on the weak and van der Waals interactions which rule the molecule-tube coupling. Therefore a small state of the art on the theoretical methods used to describe these interactions is presented here. Then, we will discuss various applications of molecular encapsulation, where we will consider structural, magnetic, charge transfer and transport, and optical properties.

  14. Interaction between encapsulated excited organic molecules and free nitroxides: communication across a molecular wall.

    PubMed

    Porel, Mintu; Jockusch, Steffen; Ottaviani, M Francesca; Turro, N J; Ramamurthy, V

    2011-09-01

    Communication between two molecules, one confined and excited (triplet or singlet) and one free and paramagnetic, has been explored through quenching of fluorescence and/or phosphorescence by nitroxides as paramagnetic radical species. Quenching of excited states by nitroxides has been investigated in solution, and the mechanism is speculated to involve charge transfer and/or exchange processes, both of which require close orbital interaction between excited molecule and quencher. We show in this report that such a quenching, which involves electron-electron spin communication, can occur even when there is a molecular wall between the two. The excited state molecule is confined within an organic capsule made up of two molecules of a deep cavity cavitand, octa acid, that exists in the anionic form in basic aqueous solution. The nitroxide is kept free in aqueous solution. (1)H NMR and EPR experiments were carried out to ascertain the location of the two molecules. The distance between the excited molecule and the paramagnetic quencher was manipulated by the use of cationic, anionic, and neutral nitroxide and also by selectively including the cationic nitroxide within the cavity of cucurbituril. Results presented here highlight the role of the lifetime of the encounter complex in electron-electron spin communication when the direct orbital overlap between the two molecules is prevented by the intermediary wall. PMID:21749113

  15. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

    PubMed Central

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-01-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis. PMID:27600198

  16. Involvement of secondary messengers and small organic molecules in auxin perception and signaling.

    PubMed

    Di, Dong-Wei; Zhang, Caiguo; Guo, Guang-Qin

    2015-06-01

    Auxin is a major phytohormone involved in most aspects of plant growth and development. Generally, auxin is perceived by three distinct receptors: TRANSPORT INHIBITOR RESISTANT1-Auxin/INDOLE ACETIC ACID, S-Phase Kinase-Associated Protein 2A and AUXIN-BINDING PROTEIN1. The auxin perception is regulated by a variety of secondary messenger molecules, including nitric oxide, reactive oxygen species, calcium, cyclic GMP, cyclic AMP, inositol triphosphate, diacylglycerol and by physiological pH. In addition, some small organic molecules, including inositol hexakisphosphate, yokonolide B, p-chlorophenoxyisobutyric acid, toyocamycin and terfestatin A, are involved in auxin signaling. In this review, we summarize and discuss the recent progress in understanding the functions of these secondary messengers and small organic molecules, which are now thoroughly demonstrated to be pervasive and important in auxin perception and signal transduction. PMID:25693494

  17. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    PubMed

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials.

  18. Involvement of secondary messengers and small organic molecules in auxin perception and signaling.

    PubMed

    Di, Dong-Wei; Zhang, Caiguo; Guo, Guang-Qin

    2015-06-01

    Auxin is a major phytohormone involved in most aspects of plant growth and development. Generally, auxin is perceived by three distinct receptors: TRANSPORT INHIBITOR RESISTANT1-Auxin/INDOLE ACETIC ACID, S-Phase Kinase-Associated Protein 2A and AUXIN-BINDING PROTEIN1. The auxin perception is regulated by a variety of secondary messenger molecules, including nitric oxide, reactive oxygen species, calcium, cyclic GMP, cyclic AMP, inositol triphosphate, diacylglycerol and by physiological pH. In addition, some small organic molecules, including inositol hexakisphosphate, yokonolide B, p-chlorophenoxyisobutyric acid, toyocamycin and terfestatin A, are involved in auxin signaling. In this review, we summarize and discuss the recent progress in understanding the functions of these secondary messengers and small organic molecules, which are now thoroughly demonstrated to be pervasive and important in auxin perception and signal transduction.

  19. Mars organic molecules irradiation and evolution (MOMIE): Assessing the processes impacting organic matter at Mars surface and subsurface

    NASA Astrophysics Data System (ADS)

    Coll, P. J.; Szopa, C.; Poch, O.; Noblet, A.; Desboeufs, K.; Stalport, F.; Cottin, H.; Buch, A.

    2011-12-01

    The search for organic relics from the early Mars is one of the major science objectives of the next missions to Mars: NASA MSL 2011 and ESA ExoMars 2018. To fulfill these mission goals, the MOMIE project has been developed to study the processes which potentially drive the evolution of organics, and evaluate the stability of organic molecules under current environmental conditions at the Mars surface. An experimental set-up enabling to simulate various interactions encountered by organic matter on Mars is the heart of the project. For instance, the relative influence of hydrogen peroxide (H2O2) diffusion in the soil and of oxidants formed by UV-water ice or UV-minerals interactions can be studied by monitoring an organic sample with infrared spectroscopy. The more complex synergy of different processes will be the UV irradiation of an organic compound adsorbed on a mineral matrix in contact with water ice and/or oxidants.

  20. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGES

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is themore » highest mobility from SMDPPEH ever reported.« less

  1. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    SciTech Connect

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.

  2. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries

    PubMed Central

    Gerzova, Lenka; Babak, Vladimir; Sedlar, Karel; Faldynova, Marcela; Videnska, Petra; Cejkova, Darina; Jensen, Annette Nygaard; Denis, Martine; Kerouanton, Annaelle; Ricci, Antonia; Cibin, Veronica; Österberg, Julia; Rychlik, Ivan

    2015-01-01

    One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A), tet(B) and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France) exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden). Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm’s status as organic or conventional. PMID:26218075

  3. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries.

    PubMed

    Gerzova, Lenka; Babak, Vladimir; Sedlar, Karel; Faldynova, Marcela; Videnska, Petra; Cejkova, Darina; Jensen, Annette Nygaard; Denis, Martine; Kerouanton, Annaelle; Ricci, Antonia; Cibin, Veronica; Österberg, Julia; Rychlik, Ivan

    2015-01-01

    One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A), tet(B) and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France) exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden). Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm's status as organic or conventional.

  4. Self-Powered Electrochemistry for the Oxidation of Organic Molecules by a Cross-Linked Triboelectric Nanogenerator.

    PubMed

    Zheng, Xin; Su, Jingzhen; Wei, Xianjun; Jiang, Tao; Gao, Shuyan; Wang, Zhong Lin

    2016-07-01

    A cross-linked triboelectric nanogenerator with high performance is designed for the first time, which harvests vibrational energy to self-power the electrochemical oxidation of organic molecules. This system lays the groundwork for applications to an environmentally friendly production of important organic molecules and the waste treatment of organic pollutants. PMID:27145038

  5. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes.

    PubMed

    Tauran, Yannick; Anjard, Christophe; Kim, Beomjoon; Rhimi, Moez; Coleman, Anthony W

    2014-10-01

    Three large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I.

  6. EPOXIDATION OF SMALL ORGANIC MOLECULES USING A SPINNING TUBE-IN-TUBE REACTOR

    EPA Science Inventory

    The commodity-scale epoxidation of several organic molecules has been carried out using a Spinning Tube-in-Tube (STTr) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Process Intensification, a...

  7. Kondo effect in a neutral and stable all organic radical single molecule break junction

    NASA Astrophysics Data System (ADS)

    Burzuri, Enrique; Gaudenzi, Rocco; Frisenda, Riccardo; Franco, Carlos; Mas-Torrent, Marta; Rovira, Concepcio; Veciana, Jaume; Alcon, Isaac; Bromley, Stefan T.; van der Zant, Herre S. J.

    Organic radicals are neutral, purely organic molecules exhibiting an intrinsic magnetic moment due to the presence of an unpaired electron in the molecule in its ground state. This property, added to the low spin-orbit coupling makes organic radicals good candidates for molecular spintronics insofar as the radical character is stable in solid state electronic devices. We show that the paramagnetism of the PTM radical molecule, in the shape of a Kondo anomaly is preserved in two- and three-terminal solid-state devices, regardless of mechanical and electrostatic changes. Indeed, our results demonstrate that the Kondo anomaly is robust under electrodes displacement and changes of the electrostatic environment, pointing to a localized orbital in the radical as the source of magnetism. Strong support to this picture is provided by density functional calculations and measurements of the corresponding nonradical specie. We further study polyradical systems, where several unpaired spins interact in the same molecule. This work was supported by the EU FP7 program through project 618082 ACMOL and ERC grant advanced Mols@Mols. It was also supported by the Dutch funding organization NWO (VENI).

  8. Rhodanine dye-based small molecule acceptors for organic photovoltaic cells.

    PubMed

    Kim, Yujeong; Song, Chang Eun; Moon, Sang-Jin; Lim, Eunhee

    2014-08-01

    The solution-processable small molecules based on carbazole or fluorene containing rhodanine dyes at both ends were synthesized and introduced as acceptors in organic photovoltaic cells. The high energy levels of their lowest unoccupied molecular orbitals resulted in a power conversion efficiency of 3.08% and an open circuit voltage of up to 1.03 V.

  9. Adsorption of two gas molecules at a single metal site in a metal–organic framework

    SciTech Connect

    Runčevski, Tomče; Kapelewski, Matthew T.; Torres-Gavosto, Rodolfo M.; Tarver, Jacob D.; Brown, Craig M.; Long, Jeffrey R.

    2016-01-01

    One strategy to markedly increase the gas storage capacity of metal–organic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules—specifically hydrogen, methane, or carbon dioxide.

  10. Enhancing the low frequency THz resonances (< 1 THz) of organic molecules via electronegative atom substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2015-03-01

    Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.

  11. Use of Rigid Liquid Crystalline Polypeptides as Alignment Matrices for Organic Nonlinear Optical Molecules.

    NASA Astrophysics Data System (ADS)

    Tokarski, Zbigniew

    The orientation of nonlinear optical (NLO) organic molecules is crucial for the existence of high values for the macroscopic susceptibilities. The orientation and interaction of several smaller NLO active molecules with an easily alignable polypeptide host was investigated to determine which functional groups and molecular shapes would produce the largest orientation with the host material; these parameters included aromatic vs aliphatic, polar vs nonpolar, saturate vs unsaturated hydrocarbons and the length of the guest molecule. The host materials were either poly ( gamma-benzyl-l-glutamate) (PBLG) or poly ( gamma-ethyl-l-glutamate) (PELG) lyotropic liquid crystals. These host polymers formed pseudo-hexagonal crystalline structures with long rigid alpha -helical backbones. The interstitial alignment of the guest molecules was dictated by the overall alignment of the host polypeptide rigid rods. Within these films many of the guest molecules existed in a metastable state that delayed phase separation for several hours. The rate of phase separation was influenced by the concentration of the guest molecule and on the side chain moiety of the polypeptide. Guest phase separation to a solid or a liquid occurred at a faster rate in PELG films, due to the lack of the side chain induced hindrance, than in PBLG films. An indicator of the occurrence of phase separation was with the onset of opaqueness in the films. The thin polypeptide films containing the aligned guest molecules became optically opaque as the incompatibilities between the side chains of the polypeptides and the guest molecules increased. The nonlinear optical susceptibility measurements were hampered by either the low guest solubility or the low concentration level required to avoid the guest -host incompatibility. Electro-optic and degenerate two and four wave mixing were done and produced signals in solutions but not in the doped films. The semiflexible aromatic guest molecules, such as the derivatives

  12. Scanning tunneling microscopy study of organic molecules and self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Park, Hayn

    In this dissertation I present my findings on alkanethiol self-assembled monolayers (SAM) on Au(111), as well as investigations of the self-assembly and electron transport properties of a custom-synthesized organic molecule (bis-phenyloxazole: BPO) chosen for its interesting physical and electronic structure. Utilizing scanning tunneling microscopy (STM) techniques, we observed unique molecular structures at the boundaries of single-species alkanethiol SAM domains, and propose packing arrangements for the observed structures. We also found evidence for island formation in alkanethiol SAMs; these islands were dynamic and exhibited ordered packing of the adsorbed molecules. For codeposited two-species (dodecanethiol, octanethiol) SAMs, we observed preferential insertion of the longer molecules at domain boundaries, edges, and defect sites, and found that they tended to segregate into separate domains. Scanning tunneling spectroscopy (STS) of the inserted dodecanethiol molecules revealed evidence of conduction resonances within the HOMO-LUMO gap. We explored the charge transport and self-assembly properties of the BPO molecules on a Au(111) surface. The molecules self-assembled into a novel columnar structure after annealing in vacuum. We compare tunneling spectroscopy results to ab initio computations of the molecular orbitals.

  13. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    PubMed

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport.

  14. Nucleation of Organic Molecules via a Hot Precursor State: Pentacene on Amorphous Mica.

    PubMed

    Winkler, Adolf; Tumbek, Levent

    2013-12-01

    Organic thin films have attracted considerable interest due to their applicability in organic electronics. The classical scenario for thin film nucleation is the diffusion-limited aggregation (DLA). Recently, it has been shown that organic thin film growth is better described by attachment-limited aggregation (ALA). However, in both cases, an unusual relationship between the island density and the substrate temperature was observed. Here, we present an aggregation model that goes beyond the classical DLA or ALA models to explain this behavior. We propose that the (hot) molecules impinging on the surface cannot immediately equilibrate to the substrate temperature but remain in a hot precursor state. In this state, the molecules can migrate considerable distances before attaching to a stable or unstable island. This results in a significantly smaller island density than expected by assuming fast equilibration and random diffusion. We have applied our model to pentacene film growth on amorphous Muscovite mica.

  15. Nucleation of Organic Molecules via a Hot Precursor State: Pentacene on Amorphous Mica.

    PubMed

    Winkler, Adolf; Tumbek, Levent

    2013-12-01

    Organic thin films have attracted considerable interest due to their applicability in organic electronics. The classical scenario for thin film nucleation is the diffusion-limited aggregation (DLA). Recently, it has been shown that organic thin film growth is better described by attachment-limited aggregation (ALA). However, in both cases, an unusual relationship between the island density and the substrate temperature was observed. Here, we present an aggregation model that goes beyond the classical DLA or ALA models to explain this behavior. We propose that the (hot) molecules impinging on the surface cannot immediately equilibrate to the substrate temperature but remain in a hot precursor state. In this state, the molecules can migrate considerable distances before attaching to a stable or unstable island. This results in a significantly smaller island density than expected by assuming fast equilibration and random diffusion. We have applied our model to pentacene film growth on amorphous Muscovite mica. PMID:24340130

  16. Nucleation of Organic Molecules via a Hot Precursor State: Pentacene on Amorphous Mica

    PubMed Central

    2013-01-01

    Organic thin films have attracted considerable interest due to their applicability in organic electronics. The classical scenario for thin film nucleation is the diffusion-limited aggregation (DLA). Recently, it has been shown that organic thin film growth is better described by attachment-limited aggregation (ALA). However, in both cases, an unusual relationship between the island density and the substrate temperature was observed. Here, we present an aggregation model that goes beyond the classical DLA or ALA models to explain this behavior. We propose that the (hot) molecules impinging on the surface cannot immediately equilibrate to the substrate temperature but remain in a hot precursor state. In this state, the molecules can migrate considerable distances before attaching to a stable or unstable island. This results in a significantly smaller island density than expected by assuming fast equilibration and random diffusion. We have applied our model to pentacene film growth on amorphous Muscovite mica. PMID:24340130

  17. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    PubMed

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport. PMID:26066398

  18. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  19. The formation of organic molecules in solar system environments: The Miller-Urey Experiment in Space preflight overview

    NASA Astrophysics Data System (ADS)

    Kotler, J.; Ehrenfreund, P.; Martins, Z.; Ricco, A.; Blum, J.; Schraepler, R.; van Dongen, J.; Palmans, A.; Sephton, M.; Cleaves, H. J.

    2011-12-01

    The Miller-Urey Experiment in space (MUE) will investigate the formation of prebiotic organic compounds in the early solar system environment when it is sent to, and later retrieved from, the International Space Station in 2012. The dynamic environment of the solar nebula with the simultaneous presence of gas, particles, and energetic processes, including shock waves, electrical discharges, and radiation may trigger a rich organic chemistry leading to organic molecules. Two gas mixture compositions (CH4, NH3, H2 and N2, H2, CO) will be tested and subjected to continuous spark discharges for 48, 96, and 192 hours. Silicate particles will serve as surfaces on which thin water ice mantles can accrete. The experiment will be performed at low temperatures (-5 °C), slowing hydrolysis and improving chances of detection of initial products, intermediates and their abundances. Conducting the Miller-Urey experiment in the space environment (microgravity) allows us to simulate conditions that could have prevailed in the low gravity, energetic early solar nebula and provides insights into the chemical pathways that may occur as planetary systems form.

  20. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.

    PubMed

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-28

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.

  1. Chemical methods for degradation of target proteins using designed light-activatable organic molecules.

    PubMed

    Tanimoto, Shuho; Takahashi, Daisuke; Toshima, Kazunobu

    2012-08-11

    Molecular design, chemical synthesis, and biological evaluation of several designed organic molecules, which target-selectively degrade proteins upon photo-irradiation, are introduced. The designed molecules for protein photo-degradation include 2-phenylquinoline-steroid hormone hybrids and porphyrin derivatives, both of which selectively photo-degrade estrogen receptor-α, and fullerene-sugar and -sulfonic acid hybrids, which selectively photo-degrade HIV-1 protease and amyloid β, respectively. The information will provide a novel and effective way to control specific functions of proteins, and contribute to the molecular design of novel protein photo-degrading agents, which should find wide application in chemistry, biology, and medicine. PMID:22739361

  2. Indistinguishable near-infrared single photons from an individual organic molecule

    NASA Astrophysics Data System (ADS)

    Trebbia, Jean-Baptiste; Tamarat, Philippe; Lounis, Brahim

    2010-12-01

    By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate postselected polarization-entangled photon pairs as a test bench for applications in quantum information.

  3. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.

    PubMed

    Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S

    2014-10-01

    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.

  4. Spin-boson theory for charge photogeneration in organic molecules: Role of quantum coherence

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2015-01-01

    The charge photogeneration process in organic molecules is investigated by a quantum heat engine model, in which two molecules are modeled by a two-spin system sandwiched between two bosonic baths. The two baths represent the high-temperature photon emission source and the low-temperature phonon environment, respectively. We utilize the time-dependent density matrix renormalization group algorithm to investigate the quantum dynamics of the model. It is found that the transient energy current flowing through the two molecules exhibits two stages. In the first stage the energy current is of a coherent feature and represents the ultrafast delocalization of the charge-transfer state, and in the second stage a steady incoherent current is established. The power conversion efficiency is significantly high and may reach the maximum value of 93 % with optimized model parameters. The long-lived quantum entanglement between the two spins is found to be primarily responsible for the hyperefficiency.

  5. Electrochemical assembly of organic molecules by the reduction of iodonium salts

    DOEpatents

    Dirk, Shawn M.; Howell, Stephen W.; Wheeler, David R.

    2009-06-23

    Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.

  6. Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules.

    PubMed

    Jakobs, Sebastian; Narayan, Awadhesh; Stadtmüller, Benjamin; Droghetti, Andrea; Rungger, Ivan; Hor, Yew S; Klyatskaya, Svetlana; Jungkenn, Dominik; Stöckl, Johannes; Laux, Martin; Monti, Oliver L A; Aeschlimann, Martin; Cava, Robert J; Ruben, Mario; Mathias, Stefan; Sanvito, Stefano; Cinchetti, Mirko

    2015-09-01

    We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.

  7. Complex organic molecules at metal surfaces: bonding, organisation and chirality [review article

    NASA Astrophysics Data System (ADS)

    Barlow, S. M.; Raval, R.

    2003-08-01

    Surface science techniques have now reached a stage of maturity that has enabled their successful deployment in the study of complex adsorption systems. A particular example of this success has been the understanding that has been gained regarding the behaviour of multi-functional organic molecules at metal surfaces. These organic-metal systems show enormous diversity, starting from their local description which can vary in terms of chemical structure, orientation and bonding. Additionally, in many cases, these complex organic molecules self-organise into beautiful, ordered superstructures held together by networks of intermolecular bonds. Both these aspects enable a single organic molecule-metal system to exhibit a wide-ranging and flexible approach to its environment, leading to a variety of adsorption phases, according to the prevailing temperature and coverage conditions. In this review we have attempted to capture this complexity by constructing adsorption phase diagrams from the available literature for complex carboxylic acids, amino acids, anhydrides and ring systems, all deposited under controlled conditions onto defined metal surfaces. These provide an accessible, pictorial basis of the adsorption phases which are then discussed further in the text of the review. Finally, interest has recently focused on the property of chirality that can be bestowed at an achiral metal surface by the adsorption of these complex organic molecules. The creation of such architectures offers the opportunity for ultimate stereocontrol of reactions and responses at surfaces. We have, therefore, specifically examined the various ways in which chirality can be expressed at a surface and provide a framework for classifying chiral hierarchies that are manifested at surfaces, with particular attention being paid to the progression of chirality from a local to a global level.

  8. Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals

    NASA Astrophysics Data System (ADS)

    Morita, Yasushi; Nishida, Shinsuke; Murata, Tsuyoshi; Moriguchi, Miki; Ueda, Akira; Satoh, Masaharu; Arifuku, Kazunori; Sato, Kazunobu; Takui, Takeji

    2011-12-01

    Secondary batteries using organic electrode-active materials promise to surpass present Li-ion batteries in terms of safety and resource price. The use of organic polymers for cathode-active materials has already achieved a high voltage and cycle performance comparable to those of Li-ion batteries. It is therefore timely to develop approaches for high-capacity organic materials-based battery applications. Here we demonstrate organic tailored batteries with high capacity by using organic molecules with degenerate molecular orbitals (MOs) as electrode-active materials. Trioxotriangulene (TOT), an organic open-shell molecule, with a singly occupied MO (SOMO) and two degenerate lowest-unoccupied MOs (LUMOs) was investigated. A tri-tert-butylated derivative ((t-Bu)3TOT)exhibited a high discharge capacity of more than 300 A h kg-1, exceeding those delivered by Li-ion batteries. A tribrominated derivative (Br3TOT) was also shown to increase the output voltage and cycle performance up to 85% after 100 cycles of the charge-discharge processes.

  9. UV photolysis, organic molecules in young disks, and the origin of meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.

    2011-04-01

    The origin of complex organic molecules such as amino acids and their precursors found in meteorites and comets is unknown. Previous studies have accounted for the complex organic inventory of the Solar System by aqueous chemistry on warm meteoritic parent bodies, or by accretion of organics formed in the interstellar medium. This paper proposes a third possibility: that complex organics were created in situ by ultraviolet light from nearby O/B stars irradiating ices already in the Sun's protoplanetary disk. If the Sun was born in a dense cluster near UV-bright stars, the flux hitting the disk from external stars could be many orders of magnitude higher than that from the Sun alone. Such photolysis of ices in the laboratory can rapidly produce amino acid precursors and other complex organic molecules. I present a simple model coupling grain growth and UV exposure in a young circumstellar disk. It is shown that the production may be sufficient to create the Solar System's entire complex organic inventory within 10 6 yr. Subsequent aqueous alteration on meteoritic parent bodies is not ruled out.

  10. Exploring the chemical space of known and unknown organic small molecules at www.gdb.unibe.ch.

    PubMed

    Reymond, Jean-Louis; Blum, Lorenz C; van Deursen, Ruud

    2011-01-01

    Organic small molecules are of particular interest for medicinal chemistry since they comprise many biologically active compounds which are potential drugs. To understand this vast chemical space, we are enumerating all possible organic molecules to create the chemical universe database GDB, which currently comprises 977 million molecules up to 13 atoms of C, N, O, Cl and S. Furthermore, we have established a simple classification method for organic molecules in form of the MQN (molecular quantum numbers) system, which is an equivalent of the periodic system of the elements. Despite its simplicity the 42 dimensional MQN system is surprisingly relevant with respect to bioactivity, as evidenced by the fact that groups of biosimilar compounds form close groups in MQN space. The MQN space of the known organic molecules in PubChem and of the unknown molecules in the Chemical Universe Database GDB-13 can be searched interactively using browser tools freely accessible at www.gdb.unibe.ch. PMID:22289373

  11. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  12. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-01

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03034j

  13. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    SciTech Connect

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-03-17

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  14. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils.

    SciTech Connect

    Zinovev, A. V.; Veryovkin, I. V.; Pellin, M. J.; Materials Science Division

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  15. Linker-induced anomalous emission of organic-molecule conjugated metal-oxide nanoparticles.

    PubMed

    Turkowski, Volodymyr; Babu, Suresh; Le, Duy; Kumar, Amit; Haldar, Manas K; Wagh, Anil V; Hu, Zhongjian; Karakoti, Ajay S; Gesquiere, Andre J; Law, Benedict; Mallik, Sanku; Rahman, Talat S; Leuenberger, Michael N; Seal, Sudipta

    2012-06-26

    Semiconductor nanoparticles conjugated with organic- and dye-molecules to yield high efficiency visible photoluminescence (PL) hold great potential for many future technological applications. We show that folic acid (FA)-conjugated to nanosize TiO(2) and CeO(2) particles demonstrates a dramatic increase of photoemission intensity at wavelengths between 500 and 700 nm when derivatized using aminopropyl trimethoxysilane (APTMS) as spacer-linker molecules between the metal oxide and FA. Using density-functional theory (DFT) and time-dependent DFT calculations we demonstrate that the strong increase of the PL can be explained by electronic transitions between the titania surface oxygen vacancy (OV) states and the low-energy excited states of the FA/APTMS molecule anchored onto the surface oxygen bridge sites in close proximity to the OVs. We suggest this scenario to be a universal feature for a wide class of metal oxide nanoparticles, including nanoceria, possessing a similar band gap (∼3 eV) and with a large surface-vacancy-related density of electronic states. We demonstrate that the molecule-nanoparticle linker can play a crucial role in tuning the electronic and optical properties of nanosystems by bringing optically active parts of the molecule and of the surface close to each other. PMID:22559229

  16. Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles

    SciTech Connect

    Turkowski, Volodymyr; Babu, Suresh; Le, Duy; Kumar, Amit; Haldar, Manas K.; Wagh, Anil V.; Hu, Zhongjian; Karakoti, Ajay S.; Gesquiere, Andre J.; Law, Benedict; Mallik, Sanku; Rahman, Talat S.; Leuenberger, Michael N.; Seal, Sudipta

    2012-06-26

    Semiconductor nanoparticles conjugated with organic- and dye-molecules to yield high efficiency visible photoluminescence (PL) hold great potential for many future technological applications. We show that folic acid (FA)-conjugated to nanosize TiO2 and CeO2 particles demonstrates a dramatic increase of photoemission intensity at wavelengths between 500 and 700 nm when derivatized using aminopropyl trimethoxysilane (APTMS) as spacer-linker molecules between the metal oxide and FA. Using density-functional theory (DFT) and time-dependent DFT calculations we demonstrate that the strong increase of the PL can be explained by electronic transitions between the titania surface oxygen vacancy (OV) states and the low-energy excited states of the FA/APTMS molecule anchored onto the surface oxygen bridge sites in close proximity to the OVs. We suggest this scenario to be a universal feature for a wide class of metal oxide nanoparticles, including nanoceria, possessing a similar band gap (3 eV) and with a large surface-vacancy-related density of electronic states. We demonstrate that the molecule-nanoparticle linker can play a crucial role in tuning the electronic and optical properties of nanosystems by bringing optically active parts of the molecule and of the surface close to each other.

  17. Rectifications in organic single-molecule diodes alkanethiolate-terminated heterocyclics

    NASA Astrophysics Data System (ADS)

    An, Yipeng; Zhang, Mengjun; Wang, Tianxing; Wang, Guangtao; Fu, Zhaoming

    2016-02-01

    Based on the non-equilibrium Green's function formalism combined with the ab initio density functional theory, we investigate the rectifying behaviors of the organic single-molecule S(CH2)11-terminated with a variety of heterocyclics (i.e., BIPY, PHE, PHEPY, and PYR) coupled with two semi-infinite Au electrodes. Our quantum transport calculation results show that the BIPY and PHE nanojunctions show the high-efficiency rectifying effects. While, differently, the current-voltage (I-V) curves of PHEPY and PYR nanojunctions display the insulating and linear characters, respectively. The corresponding electronic transport mechanisms are analyzed in detail. Our calculation results demonstrate that these investigated organic single-molecule nanojunctions have the potential applications in rectifiers and molecular wires.

  18. Exploiting Metallophilicity for the Assembly of Inorganic Nanocrystals and Conjugated Organic Molecules.

    PubMed

    Dalmases, Mariona; Aguiló, Elisabet; Llorca, Jordi; Rodríguez, Laura; Figuerola, Albert

    2016-07-18

    The accurate engineering of interfaces between inorganic nanocrystals and semiconducting organic molecules is currently viewed as key for further developments in critical fields such as photovoltaics and photocatalysis. In this work, a new and unconventional source of interface interaction based on metal-metal bonds is presented. With this aim, an Au(I) organometallic gelator was exploited for the formation of hydrogel-like nanocomposites containing inorganic nanoparticles and conjugated organic molecules. Noteworthy, the establishment of metallophilic interactions at the interface between the two moieties greatly enhances interparticle coupling in the composites. Thus, we believe that this new hybrid system might represent a promising alternative in several fields, such as in the fabrication of improved light-harvesting devices.

  19. Exploiting Metallophilicity for the Assembly of Inorganic Nanocrystals and Conjugated Organic Molecules.

    PubMed

    Dalmases, Mariona; Aguiló, Elisabet; Llorca, Jordi; Rodríguez, Laura; Figuerola, Albert

    2016-07-18

    The accurate engineering of interfaces between inorganic nanocrystals and semiconducting organic molecules is currently viewed as key for further developments in critical fields such as photovoltaics and photocatalysis. In this work, a new and unconventional source of interface interaction based on metal-metal bonds is presented. With this aim, an Au(I) organometallic gelator was exploited for the formation of hydrogel-like nanocomposites containing inorganic nanoparticles and conjugated organic molecules. Noteworthy, the establishment of metallophilic interactions at the interface between the two moieties greatly enhances interparticle coupling in the composites. Thus, we believe that this new hybrid system might represent a promising alternative in several fields, such as in the fabrication of improved light-harvesting devices. PMID:26973083

  20. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs.

    PubMed

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-10-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional‑translational levels of these molecules in canine organs remains to be investigated. In the present study, organ‑specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ‑specific functions to maintain physiological homeostasis. PMID:27600198

  1. Semiempirical evaluation of post-Hartree-Fock diagonal-Born-Oppenheimer corrections for organic molecules.

    PubMed

    Mohallem, José R

    2008-04-14

    Recent post-Hartree-Fock calculations of the diagonal-Born-Oppenheimer correction empirically show that it behaves quite similar to atomic nuclear mass corrections. An almost constant contribution per electron is identified, which converges with system size for specific series of organic molecules. This feature permits pocket-calculator evaluation of the corrections within thermochemical accuracy (10(-1) mhartree or kcal/mol). PMID:18412429

  2. Nature of chalcogen hor ellipsis chalcogen contact interactions in organic donor-molecule salts

    SciTech Connect

    Novoa, J.J.; Whangbo, Myung-Hwan . Dept. of Chemistry); Williams, J.M. )

    1990-01-01

    The nature of chalcogen{hor ellipsis}chalcogen contact interactions in organic donor-molecule salts was examined by performing ab initio SCF-MO/MP2 calculations on H{sub 2}X{hor ellipsis}XH{sub 2}(X = O, S, SE, Te) and MM2 calculations on donor dimers (TXF){sub 2} (X = S, SE, Te) and (BEDX-TTF){sub 2} (X = O, S). 14 refs., 4 figs., 4 tabs.

  3. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    PubMed

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps. PMID:27455707

  4. On the role of meteoritic impacts in the formation of organic molecules.

    PubMed

    Cerroni, P; Martelli, G

    1984-01-01

    It is suggested that the UV radiation, and shock and plasma phenomena which accompanied the hypervelocity impacts of solid bodies (meteorites and comets) onto the surface of the young Earth may have contributed to the synthesis of prebiotic organic molecules in the primitive atmosphere in a larger amount than was thought previously. The mechanisms responsible for this synthesis are discussed using information obtained from recent experimental and theoretical work on macroscopic hypervelocity impacts.

  5. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    PubMed

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  6. Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence.

    PubMed

    Ray, César; Sánchez-Carnerero, Esther M; Moreno, Florencio; Maroto, Beatriz L; Agarrabeitia, Antonia R; Ortiz, María J; López-Arbeloa, Íñigo; Bañuelos, Jorge; Cohovi, Komlan D; Lunkley, Jamie L; Muller, Gilles; de la Moya, Santiago

    2016-06-20

    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.

  7. Three-Dimensional Chemical Structure Search Using the Conformational Code for Organic Molecules (CCOM) Program.

    PubMed

    Izumi, Hiroshi; Nafie, Laurence A; Dukor, Rina K

    2016-05-01

    Searching the 3D structural fragments of organic molecules is challenging because of structural differences between X-ray and theoretically calculated geometries and the conformational flexibility of substituents. The codification program called Conformational Code for Organic Molecules (CCOM) can be used to unambiguously convert 3D conformational data for various molecules to 1D data. Two deviations from Rule E-5.6 of the International Union of Pure and Applied Chemistry (IUPAC) Rules for Nomenclature of Organic Chemistry were introduced to the CCOM program for 3D fragment searching. First, the search for the highest priority atom was limited to a distance of two bonds from the center bond for dihedral angle determination. Second, for indistinguishable atoms in experimentally observed solution structures, the smallest number of atom index in the molecular model was chosen as the priority atom for dihedral angle determination. A search of the 3D conformational fragment mb_3a6c4c of mevastatin () in combination with the SMiles ARbitrary Target Specification (SMARTS) description suggested that a change in the conformation of this fragment may be the driving force for dissociation of mevastatin from its target protein. Chirality 28:370-375, 2016. © 2016 Wiley Periodicals, Inc.

  8. Enzymatic activities and prokaryotic abundance in relation to organic matter along a West-East Mediterranean transect (TRANSMED cruise).

    PubMed

    Zaccone, R; Boldrin, A; Caruso, G; La Ferla, R; Maimone, G; Santinelli, C; Turchetto, M

    2012-07-01

    The distribution of extracellular enzymatic activities (EEA) [leucine aminopeptidase (LAP), ß-glucosidase (GLU), alkaline phosphatase (AP)], as well as that of prokaryotic abundance (PA) and biomass (PB), dissolved organic carbon (DOC), particulate organic carbon and particulate total nitrogen (POC, PTN), was determined in the epi-, meso-, and bathypelagic waters of the Mediterranean Sea along a West-East transect and at one Atlantic station located outside the Strait of Gibraltar. This study represents a synoptical evaluation of the microbial metabolism during early summer. Decreasing trends with depth were observed for most of the parameters (PA, PB, AP, DOC, POC, PTN). Significant differences between the western and eastern basins of the Mediterranean Sea were found, displaying higher rates of LAP and GLU and lower C/N ratios more in the eastern than in the western areas. Conversely, in the epipelagic layer, PA and PB were found to be higher in the western than in the eastern basins. PB was significantly related to DOC concentration (all data, n = 145, r = 0.53, P < 0.01), while significant correlations of EEA with POC and PTN were found in the epipelagic layer, indicating an active response of microbial metabolism to organic substrates. Specific enzyme activities normalized to cell abundance pointed out high values of LAP and GLU in the bathypelagic layer, especially in the eastern basin, while cell-specific AP was high in the epi- and bathypelagic zone of the eastern basin indicating a rapid regeneration of inorganic P for both prokaryotes and phytoplankton needs. Low activity and abundance characterized the Atlantic station, while opposite trends of these parameters were observed along the Mediterranean transect, showing the uncoupling between abundance and activity data. In the east Mediterranean Sea, decomposition processes increased probably in response to mesoscale structures which lead to organic matter downwelling. PMID:22349935

  9. COMPLEX ORGANIC MOLECULES AT HIGH SPATIAL RESOLUTION TOWARD ORION-KL. I. SPATIAL SCALES

    SciTech Connect

    Widicus Weaver, Susanna L.; Friedel, Douglas N. E-mail: friedel@astro.illinois.edu

    2012-08-01

    Here we present high spatial resolution (<1'') observations of molecular emission in Orion-KL conducted using the Combined Array for Research in Millimeter-wave Astronomy. This work was motivated by recent millimeter continuum imaging studies of this region conducted at a similarly high spatial resolution, which revealed that the bulk of the emission arises from numerous compact sources, rather than the larger-scale extended structures typically associated with the Orion Hot Core and Compact Ridge. Given that the spatial extent of molecular emission greatly affects the determination of molecular abundances, it is important to determine the true spatial scale for complex molecules in this region. Additionally, it has recently been suggested that the relative spatial distributions of complex molecules in a source might give insight into the chemical mechanisms that drive complex chemistry in star-forming regions. In order to begin to address these issues, this study seeks to determine the spatial distributions of ethyl cyanide [C{sub 2}H{sub 5}CN], dimethyl ether [(CH{sub 3}){sub 2}O], methyl formate [HCOOCH{sub 3}], formic acid [HCOOH], acetone [(CH{sub 3}){sub 2}CO], SiO, methanol [CH{sub 3}OH], and methyl cyanide [CH{sub 3}CN] in Orion-KL at {lambda} = 3 mm. We find that for all observed molecules, the molecular emission arises from multiple components of the cloud that include a range of spatial scales and physical conditions. Here, we present the results of these observations and discuss the implications for studies of complex molecules in star-forming regions.

  10. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  11. Metal-organic frameworks with functional pores for recognition of small molecules.

    PubMed

    Chen, Banglin; Xiang, Shengchang; Qian, Guodong

    2010-08-17

    Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to discriminate different substrates for selective recognition of specific molecules has proved challenging. The extensive research on synthetic receptors for molecular recognition, particularly on noncovalent complexes self-assembled by hydrogen bonding and metal-organic coordination, has revealed some underlying principles. In particular, these studies have demonstrated that the shapes of the supramolecular receptors play significant roles in their specific and selective recognition of substrates: receptors can offer concave surfaces that complement their convex targets. This Account describes our research to develop a synthetic molecular recognition platform using porous metal-organic frameworks (MOFs). These materials contain functional pores to direct their specific and unique recognition of small molecules through several types of interactions: van der Waals interactions of the framework surface with the substrate, metal-substrate interactions, and hydrogen bonding of the framework surface with the substrate. These materials have potential applications for gas storage, separation, and sensing. We demonstrate a simple strategy to construct a primitive cubic net of interpenetrated microporous MOFs from the self-assembly of the paddle-wheel clusters M(2)(CO(2))(4) (M = Cu(2+), Zn(2+), and Co(2+)) with two types of organic dicarboxylic acid and pillar bidentate linkers. This efficient method allows us to rationally tune the micropores to size-exclusively sort different small gas molecules, leading to the highly selective separation and purification of gases. By optimizing the

  12. Near-unity mass accommodation coefficient of organic molecules of varying structure.

    PubMed

    Julin, Jan; Winkler, Paul M; Donahue, Neil M; Wagner, Paul E; Riipinen, Ilona

    2014-10-21

    Atmospheric aerosol particles have a significant effect on global climate, air quality, and consequently human health. Condensation of organic vapors is a key process in the growth of nanometer-sized particles to climate relevant sizes. This growth is very sensitive to the mass accommodation coefficient α, a quantity describing the vapor uptake ability of the particles, but knowledge on α of atmospheric organics is lacking. In this work, we have determined α for four organic molecules with diverse structural properties: adipic acid, succinic acid, naphthalene, and nonane. The coefficients are studied using molecular dynamics simulations, complemented with expansion chamber measurements. Our results are consistent with α = 1 (indicating nearly perfect accommodation), regardless of the molecular structural properties, the phase state of the bulk condensed phase, or surface curvature. The results highlight the need for experimental techniques capable of resolving the internal structure of nanoparticles to better constrain the accommodation of atmospheric organics.

  13. Laser-induced Native Fluorescence Detection of Organic Molecules in Hydrothermal Vent Rocks

    NASA Astrophysics Data System (ADS)

    Harju, E.; Kidd, R. D.; Bhartia, R.; Conrad, P. G.

    2004-12-01

    We have developed a Multi-channel Deep Ultraviolet Excitation (McDuve) fluorescence detector that has been deployed at several Pacific hydrothermal vent sites [1]. The in situ McDuve detector was able to detect organic molecules at the vent site on rock surfaces and in the water, the signatures being distinguishable one from the other. The McDuve fluorescence detector uses a 224.3 nm helium-silver hollow cathode laser to induce native fluorescence from a sample. Spectral separation is achieved with optical band-pass filters which are coupled to photomultiplier tubes (PMTs) for detection. Samples were recovered at the vent sites and returned from the expedition for bench-top analysis for correlation of the McDuve observations with standard analytical tools-GCMS and X-ray diffraction (for mineralogical ID), as well as with a bench-top version of the McDuve fluorescence detector. Here we report the corroborative results of the laboratory studies. Several preserved samples were subjected to 224.3 nm ultraviolet excitation under wet and dry conditions. Organic molecules were detected on the wet samples analyzed in the lab, corroborating the in situ McDuve data. The fluorescence emission wavelengths associated with the detected organic molecules suggest they are 3-5 ring polycyclic aromatic hydrocarbons [2,3]. The samples were also pyrolized at 500 ºC to decompose any organic molecules present and subsequently reanalyzed. This McDuve analysis revealed a significant decrease in laser induced native fluorescence, a result consistent with the pyrolytic decomposition of the organic content of the rock samples. [1] Conrad, P.G., A.L. Lane, R. Bhartia, W. Hug, (March 2004) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents 35th Lunar Plan. Sci. XXXV, 2055. [2] Karcher, W. (1985), Spectral Atlas of Polycyclic Aromatic Compounds, vol. I, Kluwer Academic Publishing Company, Dordrecht, Holland. [3] Bhartia, R., McDonald, G.D., Salas, E.C., Hug, W., Reid, R

  14. A Quantitative Analysis of Extraction of Organic Molecules from Terrestrial Sedimentary Deposits

    NASA Astrophysics Data System (ADS)

    Kanik, I.; Beegle, L. W.; Abbey, W. A.; Tsapin, A. T.

    2004-12-01

    There are several factors determining the ability to detect organic molecules as part of a robotic astrobiology mission to planets. These include the quantity of organics present in a sample, the efficiency of extracting those organics from the matrix that they reside in (i.e. sample processing) and finally the detection efficiencies of the analytical instrumentation aboard the robotic platform. Once the detection limits of the analytical instrumentation is established, the efficiency of extraction becomes the overriding factor in the detectability of these molecules, and needs to be factored in. We analyzed four different terrestrial field samples, which were initially created in aqueous environments, are sedimentary in nature. These particular samples were chosen because they possibly represent a terrestrial analog of Mars [1] and they represent a best case scenarios for finding organic molecules on the Martian surface. The extraction efficiencies of amino acids (smallest building blocks of life) from the samples using pyrolysis and solvent extraction techniques (with seven different solvents: water, hydrochloric acid, butane, ethanol, isoproponal, methanol, n=propanal) are reported. In order to remove any instrumental bias, we used a standard laboratory bench-top high pressure liquid chromatograph (HPLC). We determined both absolute quantity of organics as well as the D/L ratio to determine the preservation of that information in the processing step. Acknowledgment: The research described here was carried out at the Jet Propulsion Laboratory, and was sponsored by the NASA PIDDP and ASTID program offices. References: [1] Malin M.C. and Edgett K.S. (2003) Science 302 1931-1934.

  15. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  16. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. PMID:24789252

  17. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2015-02-01

    Hybrid systems consisting of organic molecules at inorganic semiconductor surfaces are gaining increasing importance as thin film devices for optoelectronics. The efficiency of such devices strongly depends on the collective behavior of the adsorbed molecules. In the present paper, we propose a novel, coarse-grained model addressing the condensed phases of a representative hybrid system, that is, para-sexiphenyl (6P) at zinc-oxide (ZnO). Within our model, intermolecular interactions are represented via a Gay-Berne potential (describing steric and van-der-Waals interactions) combined with the electrostatic potential between two linear quadrupoles. Similarly, the molecule-substrate interactions include a coupling between a linear molecular quadrupole to the electric field generated by the line charges characterizing ZnO(10-10). To validate our approach, we perform equilibrium Monte Carlo simulations, where the lateral positions are fixed to a 2D lattice, while the rotational degrees of freedom are continuous. We use these simulations to investigate orientational ordering in the condensed state. We reproduce various experimentally observed features such as the alignment of individual molecules with the line charges on the surface, the formation of a standing uniaxial phase with a herringbone structure, as well as the formation of a lying nematic phase.

  18. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications.

  19. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    PubMed

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules. PMID:27346242

  20. Probing the Formation of Complex Organic Molecules in Interstellar Ices - Beyond the FTIR - RGA Limitation

    NASA Astrophysics Data System (ADS)

    Kaiser, Ralf I.

    2015-08-01

    An understanding of the formation of key classes of complex organic molecules (COMs) within interstellar ices is of core value to the laboratory astrophysics community with structural isomers - molecules with the same molecular formula but different connectivities of atoms - serving as a molecular clock and tracers in defining the evolutionary stage of cold molecular clouds and star forming regions. Here, the lack of data on products, branching ratios, and rate constants of their formation and how they depend on the ice temperature and composition limits the understanding how COMs are synthesized. Classically, infrared spectroscopy combined with mass spectrometry of the irradiated and subliming ices have been exploited for the last decades, but the usefulness of these methods has reached the limits when it comes to the identification of CMS in those ices. Here, infrared spectroscopy can only untangle the functional groups of COMs; mass spectrometry coupled with electron impact ionization cannot discriminate structural isomers and suffers from extensive fragmentation. This talk presents a novel approach to elucidate the formation of COMs by exploiting - besides classical infrared, Raman, and ultraviolet-visual spectroscopy - reflectron time-of-flight mass spectrometry (ReTOF) coupled with tunable vacuum ultraviolet (VUV) soft photoionization (ReTOF-PI). This technique has the unique power to identify the molecules based on a cross correlation of their mass-to-charge ratios, their ionization energies (IE), and their sublimation temperatures ultimately unraveling an inventory of individual COMs molecules formed upon interaction of ionizing radiation with interstellar analog ices.

  1. Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alvarez, Laurent; Almadori, Yann; Belhboub, Anouar; Le Parc, Rozenn; Aznar, Raymond; Dieudonné-George, Philippe; Rahmani, Abdelali; Hermet, Patrick; Fossard, Frédéric; Loiseau, Annick; Jousselme, Bruno; Campidelli, Stéphane; Saito, Takeshi; Wang, Guillaume; Bantignies, Jean-Louis

    2016-03-01

    Photoactive pi-conjugated molecules (quaterthiophene and phthalocyanine) are either encapsulated into the hollow core of single-walled carbon nanotubes or noncovalently stacked at their outer surface in order to elaborate hybrid nanosystems with new physical properties, providing practical routes to fit different requirements for potential applications. We are interested in the relationship between the structure and the optoelectronic properties. The structural properties are investigated mainly by x-ray diffraction and/or transmission electron microscopy and Raman spectroscopy. We show that the supramolecular organizations of confined quaterthiophenes depend on the nanocontainer size, whereas phthalocyanine encapsulation leads to the formation of a one-dimensional phase for which the angle between the molecule ring and the nanotube axis is close to 32 deg. Confined phthalocyanine molecules display Raman spectra hardly altered with respect to the bulk phase, suggesting a rather weak interaction with the tubes. In contrast, the vibrational properties of the molecules stacked at the outer surface of tubes display important modifications. We assume a significant curvature of the phthalocyanine induced by the interaction with the tube walls and a change of the central atom position within the molecular ring, in good agreement with our density functional theory calculations.

  2. Racemization as a stereochemical measure of dynamics and robustness in shape-shifting organic molecules

    PubMed Central

    He, Maggie; Bode, Jeffrey W.

    2011-01-01

    Bullvalene is a structurally unique dynamic molecule thought to interconvert among 1.2 million degenerate isomers. The incorporation of different chemical substituents onto the bullvalene core should lead to a “shape-shifting” molecule that can interconvert among thousands of discrete structural isomers. Previous NMR spectroscopy and HPLC studies on substituted bullvalenes ascertained the fact that these compounds are dynamic, but they could not attest to whether the molecules are only interconverting among only a few isomers or if a multitude of structures are being accessed. Here we confirm the remarkable shape-shifting property of a tetrasubstituted bullvalene by means of a racemization experiment. We show that a single, though fleeting, chiral, enantioenriched tetrasubstituted bullvalene isomer can spontaneously equilibrate to a racemic population of dynamic compounds. Despite the fact that conversion from one enantiomer of a bullvalene isomer to the other may require dozens or even hundreds of rearrangements and involve many potential pathways, CD spectroscopy and HPLC analysis of different bullvalene populations showed that multiple pathways exist and result in the complete racemization of an initial enantioenriched chiral bullvalene. These oligosubstituted bullvalenes represent a very rare example of an entity that can spontaneously transform itself into different discrete structures using ambient thermal energy. The confirmation that these shape-shifting organic molecules are chemically robust yet structurally dynamic is an important step toward their further use as materials, sensors, and biologically active compounds. PMID:21873220

  3. Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alvarez, Laurent; Almadori, Yann; Belhboub, Anouar; Le Parc, Rozenn; Aznar, Raymond; Dieudonné-George, Philippe; Rahmani, Abdelali; Hermet, Patrick; Fossard, Frédéric; Loiseau, Annick; Jousselme, Bruno; Campidelli, Stéphane; Saito, Takeshi; Wang, Guillaume; Bantignies, Jean-Louis

    2016-03-01

    Photoactive pi-conjugated molecules (quaterthiophene and phthalocyanine) are either encapsulated into the hollow core of single-walled carbon nanotubes or noncovalently stacked at their outer surface in order to elaborate hybrid nanosystems with new physical properties, providing practical routes to fit different requirements for potential applications. We are interested in the relationship between the structure and the optoelectronic properties. The structural properties are investigated mainly by x-ray diffraction and/or transmission electron microscopy and Raman spectroscopy. We show that the supramolecular organizations of confined quaterthiophenes depend on the nanocontainer size, whereas phthalocyanine encapsulation leads to the formation of a one-dimensional phase for which the angle between the molecule ring and the nanotube axis is close to 32 deg. Confined phthalocyanine molecules display Raman spectra hardly altered with respect to the bulk phase, suggesting a rather weak interaction with the tubes. In contrast, the vibrational properties of the molecules stacked at the outer surface of tubes display important modifications. We assume a significant curvature of the phthalocyanine induced by the interaction with the tube walls and a change of the central atom position within the molecular ring, in good agreement with our density functional theory calculations.

  4. SMIfp (SMILES fingerprint) chemical space for virtual screening and visualization of large databases of organic molecules.

    PubMed

    Schwartz, Julian; Awale, Mahendra; Reymond, Jean-Louis

    2013-08-26

    SMIfp (SMILES fingerprint) is defined here as a scalar fingerprint describing organic molecules by counting the occurrences of 34 different symbols in their SMILES strings, which creates a 34-dimensional chemical space. Ligand-based virtual screening using the city-block distance CBD(SMIfp) as similarity measure provides good AUC values and enrichment factors for recovering series of actives from the directory of useful decoys (DUD-E) and from ZINC. DrugBank, ChEMBL, ZINC, PubChem, GDB-11, GDB-13, and GDB-17 can be searched by CBD(SMIfp) using an online SMIfp-browser at www.gdb.unibe.ch. Visualization of the SMIfp chemical space was performed by principal component analysis and color-coded maps of the (PC1, PC2)-planes, with interactive access to the molecules enabled by the Java application SMIfp-MAPPLET available from www.gdb.unibe.ch. These maps spread molecules according to their fraction of aromatic atoms, size and polarity. SMIfp provides a new and relevant entry to explore the small molecule chemical space.

  5. Factors controlling the abundance of organic sulfur in flash pyrolyzates of Upper Cretaceous kerogens from Sergipe Basin, Brazil

    USGS Publications Warehouse

    Carmo, A.M.; Stankiewicz, B.A.; Mastalerz, Maria; Pratt, L.M.

    1997-01-01

    The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene + dec-1-ene) in the pyrolyzates is variable and may be related to changes in the type of primary organic input and/or to variations in rates of bacterial sulfate reduction. A concomitant increase in S/C and O/C ratios determined in situ using the electron microprobe is observed in AOM and alginites and may be related to a progressive oxidation of the organic matter during sulfurization. The S/C ratio of the AOM is systematically higher than the S C ratio of the alginites. Combined with a thiophene distribution characteristic of pyrolyzates of Type II organic matter, the higher S/C of AOM in Sergipe kerogens suggests that sulfurization and incorporation of low-molecular weight lipids derived from normal marine organic matter into the kerogen structure predominated over direct sulfurization of highly aliphatic algal biomacromolecules.The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene+dec-1-ene) in the pyrolyzates is variable and may be related to changes in

  6. Formation kinetics and abundance of organic nitrates in α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Berkemeier, Thomas; Ammann, Markus; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    Formation of organic nitrates affects the total atmospheric budget of oxidized nitrogen (NOy) and alters the total aerosol mass yield from secondary sources. We investigated the formation of organic nitrate species during ozonolysis of α-pinene and subsequent formation of secondary organic aerosols (SOA) using the short-lived radioactive tracer 13N inside an aerosol flow reactor (Ammann et al., 2001). The results represent direct measurements of the organic nitrate content of α-pinene secondary aerosol and give insight into the kinetics of organic nitrate formation. Organic nitrates constituted up to 40 % of aerosol mass with a pronounced influence during the initial period of particle growth. Kinetic modelling, as well as additional experiments using OH scavengers and UV irradiation, suggests that organic peroxy radicals (RO2) from the reaction of α-pinene with secondarily produced OH are important intermediates in the organic nitrate formation process. Direct oxidation of α-pinene by NO3 was found to be a less efficient pathway for formation of particle phase nitrate. The organic nitrate content decreased very slightly with an increase of relative humidity on the experimental time scale. The experiments show a tight correlation between organic nitrate content and SOA number concentrations, implying that organic nitrates play an important role in nucleation and growth of nanoparticles. Since present in large amounts in organic aerosol, organic nitrates deposited in the lung might have implications for human health as they release nitric acid upon hydrolysis, especially in regions influenced by urban pollution and large sources of monoterpene SOA precursors. References Ammann et al. (2001) Radiochimica Acta 89, 831.

  7. High-density single-particle tracking: quantifying molecule organization and dynamics at the nanoscale.

    PubMed

    Sibarita, Jean-Baptiste

    2014-06-01

    The organization and dynamics of proteins are fundamental parameters for cellular function. Their study, at the single-molecule level, provides precise information on molecular interactions. Over the last 30 years, the single-particle tracking imaging technique has proven its capability to efficiently quantify such parameters in many biological systems, with nanometric accuracy and millisecond temporal resolutions. Nevertheless, the low concentration of labeling required for single-molecule imaging usually prevents the extraction of large statistics. The advent of high-density single-molecule-based super-resolution techniques has revolutionized the field, allowing monitoring of thousands of biomolecules in the minute timescale and providing unprecedented insight into the molecular organization and dynamics of cellular compounds. In this issue, I will review the main principles of single-particle tracking, a highly interdisciplinary technique at the interface between microscopy, image analysis and labeling strategies. I will point out the advantages brought by high-density single-particle tracking which will be illustrated with a few recent biological results.

  8. Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy

    PubMed Central

    He, Xiaochuan; Zhu, Gangbei; Yang, Jianbing; Chang, Hao; Meng, Qingyu; Zhao, Hongwu; Zhou, Xin; Yue, Shuai; Wang, Zhuan; Shi, Jinan; Gu, Lin; Yan, Donghang; Weng, Yuxiang

    2015-01-01

    Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly. PMID:26611323

  9. Spintronic and Electronic Phenomena in Organic Molecules Measured with μSR

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Schulz, Leander; Willis, Maureen; Zhang, Sijie; Misquitta, Alston J.; Drew, Alan J.

    2016-09-01

    The use of implanted muons to probe the spin dynamics and electronic excitations in organic materials is reviewed. At first, a brief introduction to the historical context and background of the muon technique is given, followed by an outline of some of the underlying theoretical models needed to quantitatively interpret data taken on organic molecules. Caution is advised when using certain theoretical models for the interpretation of low-field spin relaxation data. The next section deals with spin dynamics in soft materials, and starts with discussing many of the key results in thin films, followed by a review of bulk measurements in three different materials classes — polymers, biologically active molecules, and small molecules. Finally, we present a detailed discussion of the density functional theory methodology when applied to μSR, and present the common issues encountered when trying to perform these calculations to support muon experiments. In particular, we discuss a method for benchmarking to manage the approximations inherent to the technique and common sources of errors that can sometimes fortuitously cancel.

  10. Guest–host interactions of a rigid organic molecule in porous silica frameworks

    PubMed Central

    Wu, Di; Hwang, Son-Jong; Zones, Stacey I.; Navrotsky, Alexandra

    2014-01-01

    Molecular-level interactions at organic–inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic–inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.0 nm). We used hydrofluoric acid solution calorimetry to obtain the enthalpies of interaction between silica framework materials and TMAAI, and the values range from −56 to −177 kJ per mole of TMAAI. The phase evolution as a function of pore size was investigated by X-ray diffraction, IR, thermogravimetric differential scanning calorimetry, and solid-state NMR. The results suggest the existence of three types of inclusion depending on the pore size of the framework: single-molecule confinement in a small pore, multiple-molecule confinement/adsorption of an amorphous and possibly mobile assemblage of molecules near the pore walls, and nanocrystal confinement in the pore interior. These changes in structure probably represent equilibrium and minimize the free energy of the system for each pore size, as indicated by trends in the enthalpy of interaction and differential scanning calorimetry profiles, as well as the reversible changes in structure and mobility seen by variable temperature NMR. PMID:24449886

  11. An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules.

    PubMed Central

    Gorman, C B; Marder, S R

    1993-01-01

    A computational method was devised to explore the relationship of charge separation, geometry, molecular dipole moment (mu), polarizability (alpha), and hyperpolariz-abilities (beta, gamma) in conjugated organic molecules. We show that bond-length alternation (the average difference in length between single and double bonds in the molecule) is a key structurally observable parameter that can be correlated with hyperpolarizabilities and is thus relevant to the optimization of molecules and materials. By using this method, the relationship of bond-length alternation, mu, alpha, beta, and gamma for linear conjugated molecules is illustrated, and those molecules with maximized alpha, beta, and gamma are described. PMID:11607441

  12. An Investigation of the Interrelationships Between Linear and Nonlinear Polarizabilities and Bond-Length Alternation in Conjugated Organic Molecules

    NASA Astrophysics Data System (ADS)

    Gorman, Christopher B.; Marder, Seth R.

    1993-12-01

    A computational method was devised to explore the relationship of charge separation, geometry, molecular dipole moment (μ), polarizability (α), and hyperpolariz-abilities (β, γ) in conjugated organic molecules. We show that bond-length alternation (the average difference in length between single and double bonds in the molecule) is a key structurally observable parameter that can be correlated with hyperpolarizabilities and is thus relevant to the optimization of molecules and materials. By using this method, the relationship of bond-length alternation, μ, α, β, and γ for linear conjugated molecules is illustrated, and those molecules with maximized α, β, and γ are described.

  13. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  14. Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Astrophysics Data System (ADS)

    Sandford, S. A.; Allamandola, L. J.; Bregman, J.; Ennico, K.; Greene, T.; Hudgins, D.; Strecker, D.

    2001-05-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to HII regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be presented.

  15. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bregman, Jesse; Ennico, Kimberly; Greene, Thomas; Hudgins, Douglas; Strecker, Donald; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.

  16. Detecting and Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 microns (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  17. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  18. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Morozan, A.; Bourgeteau, T.; Tondelier, D.; Geffroy, B.; Jousselme, B.; Artero, V.

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst.

  19. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors.

    PubMed

    Morozan, A; Bourgeteau, T; Tondelier, D; Geffroy, B; Jousselme, B; Artero, V

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst. PMID:27455142

  20. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  1. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  2. The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.

    2002-01-01

    Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.

  3. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  4. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach

    USGS Publications Warehouse

    Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth

    2011-01-01

    Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial

  5. Quantitative Investigation of Post-Burial H Isotope Exchanges in Organic Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sessions, A. L.

    2010-12-01

    The development of compound-specific analyses has presented new challenges to our understanding of the mechanisms that underpin the 2H/1H distribution in ancient organic molecules. In general, the H-isotopic composition of organic compounds is successively determined by 1) biosynthetic fractionations and 2) post-burial fractionations. As burial temperatures increase, C-bound H is potentially exchangeable on timescales of 104-106 years [1]. However, the 2H/1H ratios at the exchange endpoint, i.e., equilibrium 2H/1H fractionation factors (αeq), are poorly known. This is because conventional isotope exchange experiments suffer from extremely slow exchange rates of alkyl H, while theoretical methods are limited by systematic uncertainties. To remedy this situation, we take advantage of keto-enol tautomerism that leads to fast equilibration of H adjacent to a carbonyl group (Hα). Values of αeq can then be obtained experimentally in a reasonable time, and used to calibrate theoretical calculations based on vibrational frequencies from ab initio quantum mechanical simulations. This yields calibration curves applicable to a wide variety of organic H positions, including those in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, ethers, and cyclic hydrocarbon molecules. The molecular equilibrium fractionation relative to water between 0 to 100°C are estimated to be -80 to -90‰ for n-alkyl lipids, -95 to -100‰ for acyclic isoprenoids, -80 to -95‰ for steroids, and -90 to -100‰ for hopanoids. Thus post-burial H exchange will remove the ~50-100‰ biosynthetic fractionations between isoprenoid and n-alkyl lipids, which is consistent with the observed δ2H changes in lipid molecules during thermal maturation [2]. The results can be used to evaluate the extent of H exchange in sedimentary organic matter and oils, which has significant implication on the use of H isotope records in paleoclimatology and petroleum chemistry. [1] Sessions et al. (2004) GCA

  6. Electron Transfer as a Probe of the Interfacial Quantum Dot-Organic Molecule Interaction

    NASA Astrophysics Data System (ADS)

    Peterson, Mark D.

    This dissertation describes a set of experimental and theoretical studies of the interaction between small organic molecules and the surfaces of semiconductor nanoparticles, also called quantum dots (QDs). Chapter 1 reviews the literature on the influence of ligands on exciton relaxation dynamics following photoexcitation of semiconductor QDs, and describes how ligands promote or inhibit processes such as emission, nonradiative relaxation, and charge transfer to redox active adsorbates. Chapter 2 investigates the specific interaction of alkylcarboxylated viologen derivatives with CdS QDs, and shows how a combination of steady-state photoluminescence (PL) and transient absorption (TA) experiments can be used to reveal the specific binding geometry of redox active organic molecules on QD surfaces. Chapter 3 expands on Chapter 2 by using PL and TA to provide information about the mechanisms through which methyl viologen (MV 2+) associates with CdS QDs to form a stable QD/MV2+ complex, suggesting two chemically distinct reactions. We use our understanding of the QD/molecule interaction to design a drug delivery system in Chapter 4, which employs PL and TA experiments to show that conformational changes in a redox active adsorbate may follow electron transfer, "activating" a biologically inert Schiff base to a protein inhibitor form. The protein inhibitor limits cell motility and may be used to prevent tumor metastasis in cancer patients. Chapter 5 discusses future applications of QD/molecule redox couples with an emphasis on efficient multiple charge-transfer reactions -- a process facilitated by the high degeneracy of band-edge states in QDs. These multiple charge-transfer reactions may potentially increase the thermodynamic efficiency of solar cells, and may also facilitate the splitting of water into fuel. Multiple exciton generation procedures, multi-electron transfer experiments, and future directions are discussed.

  7. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  8. Weed seed persistence and microbial abundance in long-term organic and conventional cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed persistence in soil can be influenced by many factors, including crop management. This research was conducted to determine whether organic management systems with higher organic amendments and soil microbial biomass could reduce weed seed persistence compared to conventional management sy...

  9. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy.

    PubMed

    Tentscher, Peter R; Seidel, Robert; Winter, Bernd; Guerard, Jennifer J; Arey, J Samuel

    2015-01-01

    To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), veratrole alcohol (7.68 eV), and imidazole (8.51 eV). We also reanalyzed previously reported experimental PES data for phenol, phenolate, thymidine, and protonated imidazolium cation. We then simulated PE spectra by means of QM/MM molecular dynamics and EOM-IP-CCSD calculations with effective fragment potentials, used to describe the aqueous vertical ionization energies for six molecules, including aniline, phenol, veratrole alcohol, imidazole, methoxybenzene, and dimethylsulfide. Experimental and computational data enable us to decompose the VIEaq into elementary processes. For neutral compounds, the shift in VIE upon solvation, ΔVIEaq, was found to range from ≈-0.5 to -0.91 eV. The ΔVIEaq was further explained in terms of the influence of deforming the gas phase solute into its solution phase conformation, the influence of solute hydrogen-bond donor and acceptor interactions with proximate solvent molecules, and the polarization of about 3000 outerlying solvent molecules. Among the neutral compounds, variability in ΔVIEaq appeared largely controlled by differences in solute-solvent hydrogen-bonding interactions. Detailed computational analysis of the flexible molecule veratrole alcohol reveals that the VIE is strongly dependent on molecular conformation in both gas and aqueous phases. Finally, aqueous reorganization energies of the oxidation half-cell ionization reaction were determined from experimental data or estimated from simulation for the six compounds aniline, phenol, phenolate, veratrole alcohol, dimethylsulfide, and methoxybenzene, revealing a surprising constancy of 2.06 to 2.35 eV. PMID:25516011

  10. Isomeric product detection in the heterogeneous reaction of hydroxyl radicals with aerosol composed of branched and linear unsaturated organic molecules.

    PubMed

    Nah, Theodora; Zhang, Haofei; Worton, David R; Ruehl, Christopher R; Kirk, Benjamin B; Goldstein, Allen H; Leone, Stephen R; Wilson, Kevin R

    2014-12-11

    The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified and quantified using two-dimensional gas chromatography-mass spectrometry. The reactions are measured at low and high [O2] (∼1% vs 10% [O2]) to understand the roles of hydroxyalkyl and hydroxyperoxy radical intermediates in product formation. A key reaction step is OH addition to a C═C double bond to form a hydroxyalkyl radical. In addition, allylic alkyl radicals, formed from H atom abstraction reactions by hydroxyalkyl or OH radicals play important roles in the chemistry of product formation. Functionalization products dominate the squalene reaction at ∼1% [O2], with the total abundance of observed functionalization products being approximately equal to the fragmentation products at 10% [O2]. The large abundance of squalene fragmentation products at 10% [O2] is attributed to the formation and dissociation of tertiary hydroxyalkoxy radical intermediates. For linolenic acid aerosol, the formation of functionalization products dominates the reaction at both ∼1% and 10% [O2], suggesting that the formation and dissociation of secondary hydroxyalkoxy radicals are minor reaction channels for linear molecules. The distribution of linolenic acid functionalization products depends upon [O2], indicating that O2 controls the reaction pathways of the secondary hydroxyalkyl radical. For both reactions, alcohols are formed in favor of carbonyl functional groups, suggesting that there are some key differences between heterogeneous reactions involving allylic radical intermediates and those reactions of OH radicals with simple saturated hydrocarbons.

  11. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry.

    PubMed

    Highland, Margaret A; Schneider, David A; White, Stephen N; Madsen-Bouterse, Sally A; Knowles, Donald P; Davis, William C

    2016-06-01

    Although both domestic sheep (DS) and bighorn sheep (BHS) are affected by similar respiratory bacterial pathogens, experimental and field data indicate BHS are more susceptible to pneumonia. Cross-reactive monoclonal antibodies (mAbs) for use in flow cytometry (FC) are valuable reagents for interspecies comparative immune system analyses. This study describes cross-reactive mAbs that recognize leukocyte differentiation molecules (LDMs) and major histocompatibility complex antigens on DS and BHS leukocytes. Characterization of multichannel eosinophil autofluorescence in this study permitted cell-type specific gating of granulocytes for evaluating LDMs, specifically on neutrophils, by single-label FC. Evaluation of relative abundances of LDMs by flow cytometry revealed greater CD11a, CD11b, CD18 (β2 integrins) and CD 172a (SIRPα) on DS neutrophils and greater CD14 (lipopolysaccharide receptor) on BHS neutrophils. Greater CD25 (IL-2) was identified on BHS lymphocytes following Concavalin A stimulation. While DS and BHS have similar total peripheral blood leukocyte counts, BHS have proportionately more neutrophils.

  12. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Forest Service research paper

    SciTech Connect

    Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.; Cazares, E.; Bednar, L.F.

    1996-05-01

    Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole and crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.

  13. Decomposition of 14C containing organic molecules released from radioactive waste by gamma-radiolysis under repository conditions

    NASA Astrophysics Data System (ADS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nasu, Yuji; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2008-04-01

    Decomposition of 14C containing organic molecules into an inorganic compound has been investigated by γ-ray irradiation experiments under simulated repository conditions for radioactive waste. Lower molecular weight organic acids, alcohols, and aldehydes leached from metallic waste are reacted with OH radicals to give carbonic acid. A decomposition efficiency that expresses consumption of OH radicals by decomposition reaction of organic molecules is proposed. Decomposition efficiency increases with increasing concentration of organic molecules (1×10 -6-1×10 -3 mol dm -3) and is not dependent on dose rate (10-1000 Gy h -1). Observed dependence indicates that decomposition efficiency is determined by reaction probability of OH radicals with organic molecules.

  14. Role of spatial distortions on the quadratic nonlinear optical properties of octupolar organic and metallo-organic molecules

    NASA Astrophysics Data System (ADS)

    Bidault, Sébastien; Brasselet, Sophie; Zyss, Joseph; Maury, Olivier; Le Bozec, Hubert

    2007-01-01

    Following on the recent experimental demonstration of a discrepancy between the nonlinear optical (NLO) behavior of several π-conjugated chromophores and their assumed octupolar symmetry, the authors investigate how geometrical distortions influence the NLO response of multipolar push-pull molecules. Their analytical model is set on a basis of valence-bond and charge-transfer states to estimate the hyperpolarizability of organic and metallo-organic chromophores using the lowest possible number of variables. Since symmetry breakdown changes the definition of the molecular Cartesian framework, tensorial spherical coordinates are implemented. The evolution of the nonlinear molecular anisotropy with possible rotational deviations is then evaluated for two recently studied chromophores. Zero-frequency calculations show that, outside optical resonance, weak geometrical distortions lead to strong anisotropy variations in agreement with experimental data. Their goal is to underscore which molecular engineering strategies should be applied when designing a photoisomerizable nonlinear octupole.

  15. Organic molecules on the surface of water droplets--an energetic perspective.

    PubMed

    Hub, Jochen S; Caleman, Carl; van der Spoel, David

    2012-07-21

    The solubility of organic molecules is a well established property, founded on decades of measurements, the results of which have been tabulated in handbooks. Under atmospheric conditions water droplets may form containing small amounts of other molecules. Such droplets typically have a very large area to volume ratio, which may shift the solvation equilibrium towards molecules residing on the droplet surface. The presence of organic molecules on droplet surfaces is extremely important for reactivity--it is well established that certain chemical reactions are more prevalent under atmospheric conditions than in bulk. Here we present a thermodynamic rationalization of the surface solvation properties of methanol, ethanol, propanoic acid, n-butylamine, diethyl ether, and neopentane based on potential of mean force (PMF) calculations--we have previously demonstrated that an energetic description is a very powerful means of disentangling the factors governing solvation (Caleman et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 6838-6842). All organic molecules investigated here are preferentially solvated on the surface of the droplets rather than in the inside, yet the magnitude of surface preference may differ by orders of magnitude. In order to dissect the energetic contributions that govern surface preference, we decompose the PMF into enthalpic and entropic components, and, in a second step, into contributions from water-water and solute-water interactions. The analysis demonstrates that surface preference is primarily an enthalpic effect, but the magnitude of surface preference of solutes containing large apolar groups is enhanced due to entropy. We introduce an analysis of the droplet PMFs that allows one to extrapolate the results to larger droplets. From this we can estimate the solubility of the solutes in water droplets, demonstrating that the solubility in droplets can be orders of magnitude larger than in bulk water. Our findings have implications for

  16. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.

    PubMed

    Tu, Peijun; Hall, Wiley A; Johnston, Murray V

    2016-04-19

    In this work, highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) derived from biogenic precursors are characterized with high-resolution mass spectrometry. Fresh SOA was generated by mixing ozone with a biogenic precursor (β-pinene, limonene, α-pinene) in a flow tube reactor. Aging was performed by passing the fresh SOA through a photochemical reactor where it reacted with hydroxyl radicals. Although these aerosols were as a whole not highly oxidized, molecular analysis identified a significant number of HOMs embedded within it. HOMs in fresh SOA consisted mostly of monomers and dimers, which is consistent with condensation of extremely low-volatility organic compounds (ELVOCs) that have been detected in the gas phase in previous studies and linked to SOA particle formation. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. HOMs having different combinations of oxygen-to-carbon ratio, hydrogen-to-carbon ratio and average carbon oxidation state are discussed and compared to low volatility oxygenated organic aerosol (LVOOA), which has been identified in ambient aerosol based on average elemental composition but not fully understood at a molecular level. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. PMID:27000653

  17. Remote detection and mapping of organic molecules in Titan's atmosphere using ALMA

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Nixon, Conor A.; Charnley, Steven B.; Palmer, Maureen; Mumma, Michael J.; Molter, Edward; Teanby, Nicholas; Irwin, Patrick GJ; Kisiel, Zbigniew; Serigano, Joseph

    2016-06-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of complex organic matter in a primitive (terrestrial) planetary atmosphere. Underpinned by laboratory measurements, remote and in-situ observations of hydrocarbons, nitriles and oxygen-bearing species provide important new insights in this regard. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. This presentation will focus on results from our ongoing studies of Titan using ALMA during the period 2012-2014, including detection and mapping of rotational emission lines from molecules including HNC, CO, HC3N, CH3CN, C2H3CN and C2H5CN, as well minor isotopologues. Possible chemical formation pathways for these species will be discussed, and the the scope for improved understanding of non-aqueous organic chemistry through laboratory experiments and atmospheric/liquid-phase simulations under Titan-like conditions will be examined.

  18. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  19. Development of new two-dimensional small molecules based on benzodifuran for efficient organic solar cells.

    PubMed

    Du, Zhengkun; Chen, Yanhua; Chen, Weichao; Qiao, Shanlin; Wen, Shuguang; Liu, Qian; Zhu, Dangqiang; Sun, Mingliang; Yang, Renqiang

    2014-09-01

    A new organic small molecule, DCA3TBDF, with a 2D benzo[1,2-b:4,5-b']difuran (BDF) moiety as the central core and octyl cyanoacetate units as the end-capped blocks, was designed and synthesized for solution-processed bulk heterojunction solar cells. DCA3TBDF possesses good solubility in common organic solvents such as toluene, CH2Cl2, chlorobenzene, and CHCl3 and good thermal stability with an onset decomposition temperature with 5% weight-loss occurring at 361 °C. The DCA3TBDF thin film showed a broad absorption at λ=320-700 nm and high crystallinity. Small-molecule organic solar cells based on DCA3TBDF and [6,6]-phenyl-C61-butyric acid methyl ester demonstrated promising power conversion efficiency with a high fill factor under the illumination of AM 1.5G (100 mW cm(-2)). PMID:25044205

  20. Diels-Alder attachment of a planar organic molecule to a dangling bond dimer on a hydrogenated semiconductor surface.

    PubMed

    Godlewski, Szymon; Kawai, Hiroyo; Engelund, Mads; Kolmer, Marek; Zuzak, Rafal; Garcia-Lekue, Aran; Novell-Leruth, Gerard; Echavarren, Antonio M; Sanchez-Portal, Daniel; Joachim, Christian; Saeys, Mark

    2016-06-22

    Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.

  1. Distribution and abundance of benthic organisms in the Sacramento River, California

    USGS Publications Warehouse

    Ferreira, Rodger F.; Green, D. Brady

    1977-01-01

    General comparisons were made between benthic organism samples collected in 1960-61 and 1972-73 from five sites in the Sacramento River between Red Bluff and Knights Landing, Calif. The composition of benthic organisms from both collection periods was similar. The 1972-73 data showed variable patterns in monthly changes at each site and downstream changes each month with number of organisms per square meter, number of taxa per square meter, and diversity index. Generally, the mean number of taxa per square meter and diversity index for all sampling periods were higher in the upper reach than the lower reach of the Sacramento River. (Woodard-USGS)

  2. Pre-biotic organic molecules in hydrothermal quartz veins from the Archaean Yilgarn province, Australia

    NASA Astrophysics Data System (ADS)

    Mayer, Christian; Schreiber, Ulrich; Dyker, Gerald; Kirnbauer, Thomas; Mulder, Ines; Sattler, Tobias; Schöler, Heinfried; Tubbesing, Christoph

    2013-04-01

    According to a model recently published by Schreiber et al. (OLEB 2012), pre-biotic organic molecules as earliest markers for a chemical evolution have been formed in tectonic faults of the first Archaean cratons. These faults are often documented by quartz- and other hydrothermal vein mineralization. During the growth of these quartzes, small portions of hydrothermal fluids are enclosed which conserve the chemical composition of the given fluid medium. According to our model, the preconditions for the geochemical formation of organic molecules are a suitable carbon source (e.g. carbon dioxide), varying P/T conditions, and catalysts. This given, rising hydrothermal fluids such as mineral-rich water and supercritical carbon dioxide in deep faults with contacts to the upper earth mantle offer conditions which allow for reactions similar to the Fischer-Tropsch synthesis. So far, the inclusions which possibly have conserved the products of these reactions have not been analyzed for possible organic constituents. First analytical results of a Mesozoic hydrothermal quartz vein from central Germany (Taunus) reveal that several organic compounds are found in fluid inclusions. However, the true origin of these compounds is unclear due to possible contamination by adjacent Corg-rich metasediments. Therefore, we have extended the study to hydrothermal quartz veins from the Archaean Yilgarn craton, to impact-generated quartz veins of the Shoemaker-Crater as well as to hydrothermal quartz boulders from a 2.7 to 3 billion years old conglomerate near Murchison (Western Australia). In one of the samples from the conglomerate, a wide spectrum of organic compounds such as bromomethane, butane, isoprene, benzene, and toluene have been detected. The time interval between the quartz formation, its erosion and its sedimentation is unknown. Possibly, the analyzed quartz sample was formed in a hydrothermal vein long before any living cells have existed on earth. In this case, the given

  3. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  4. The effect of a thiol-containing organic molecule on molybdenum adsorption onto pyrite

    NASA Astrophysics Data System (ADS)

    Freund, Carla; Wishard, Anthony; Brenner, Ryan; Sobel, Marisa; Mizelle, Jack; Kim, Alex; Meyer, Drew A.; Morford, Jennifer L.

    2016-02-01

    The effect of a small thiol-containing organic molecule on the adsorption of Mo to pyrite was investigated through the use of equilibration experiments with molybdate (MoO42-), tetrathiomolybdate (MoS42-), and 2-mercaptopropionic acid (2MPA). MoO42-, MoS42-, and 2MPA individually adsorb to pyrite through the formation of specific interactions with the mineral surface. In select combination experiments, 2MPA effectively out-competes MoO42- for pyrite surface sites, which is indicative of the relatively weaker MoO42--pyrite interactions. Results suggest that the presence of 2MPA on the pyrite surface would inhibit MoO42- access to catalytic mineral surface sites for the transformation of MoO42- to MoS42-. In contrast, thiols are not expected to be an obstacle to Mo uptake once the "switch point", or the critical H2S concentration required for the formation of MoS42-, has been surpassed. This is due to the stronger adsorption of MoS42- to the pyrite surface. EXAFS results support weak specific interactions with little change to the MoO42- environment upon adsorption to pyrite. In contrast, larger changes to the Mo-S internuclear distances during MoS42- adsorption to pyrite support a more substantial structural change upon adsorption. MoS42- is able to bind to both the pyrite surface and a thiol-containing organic molecule to form a ternary structure on the pyrite surface, and may provide for a molecular-level connection between Mo and thiol-containing organic molecules. Mo(VI) is reduced to Mo(IV) during MoS42- adsorption to pyrite as a result of ligand-induced reduction, thereby confirming that the thiolated form of Mo is necessary for Mo reduction.

  5. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies. PMID:27435212

  6. Modified spontaneous emission of organic molecules in-filled in inverse opals.

    PubMed

    Deng, Lier; Wang, Yongsheng; He, Dawei

    2011-11-01

    Inverse opals were prepared by replication of colloidal crystal templates made from silica spheres 298 nm in diameter. The air between the silica spheres was filled with the mixture of the monomer poly(methyl methacrylate) (PMMA) and the organic molecule Alq3 that can be subsequently polymerized. After removing the silica sphere templates, the photonic bandgap effect on the spontaneous emission of Alq3 were investigated. The dip in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal. PMID:22413286

  7. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  8. Third order optical nonlinearities characteristics of Disperse Red1 organic dye molecules inside of polymeric nanocapsules

    NASA Astrophysics Data System (ADS)

    Sharifimehr, Mohammad Reza; Ayoubi, Kazem; Mohajerani, Ezeddin

    2015-11-01

    Measuring nonlinear optical response of a specific material in a mixture, not only leads to investigate the behavior of a particular component in various circumstances, but also can be a way to select suitable combination and optimum concentration of additives and therefore obtaining the maximum nonlinear optical signals. In this work, by using dual-arm Z-scan technique, the nonlinear refractive index of Disperse Red1 (DR1) organic dye molecules inside the core of prepared polymeric nanocapsules was measured among various materials which prepared nanocapsules were made of them. Then the measured value was compared with nonlinear refractive index of DR1 solved in dichloromethane.

  9. Standoff detection of large organic molecules using Rydberg fingerprint spectroscopy and microwave Rayleigh scattering

    SciTech Connect

    Rudakov, Fedor M; Zhang, Zhili

    2012-01-01

    We present a technique for nonintrusive and standoff detection of large organic molecules using coherent microwave Rayleigh scattering from plasma produced by structure sensitive photoionization through Rydberg states. We test the method on 1,4-diazobicyclooctane. Transitions between the 3s Rydberg state and higher lying Rydberg states are probed using two-color photoionization with 266?nm photons and photons in the range of 460-2400 nm. Photoionization is detected using microwave radiation, which is scattered by the unbounded electrons. Highly resolved Rydberg spectra are acquired in vacuum and in air.

  10. Modified spontaneous emission of organic molecules in-filled in inverse opals.

    PubMed

    Deng, Lier; Wang, Yongsheng; He, Dawei

    2011-11-01

    Inverse opals were prepared by replication of colloidal crystal templates made from silica spheres 298 nm in diameter. The air between the silica spheres was filled with the mixture of the monomer poly(methyl methacrylate) (PMMA) and the organic molecule Alq3 that can be subsequently polymerized. After removing the silica sphere templates, the photonic bandgap effect on the spontaneous emission of Alq3 were investigated. The dip in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal.

  11. Modeling intermolecular interactions of physisorbed organic molecules using pair potential calculations

    SciTech Connect

    Kroeger, Ingo; Stadtmueller, Benjamin; Wagner, Christian; Weiss, Christian; Temirov, Ruslan; Tautz, F. Stefan; Kumpf, Christian

    2011-12-21

    The understanding and control of epitaxial growth of organic thin films is of crucial importance in order to optimize the performance of future electronic devices. In particular, the start of the submonolayer growth plays an important role since it often determines the structure of the first layer and subsequently of the entire molecular film. We have investigated the structure formation of 3,4,9,10-perylene-tetracarboxylic dianhydride and copper-phthalocyanine molecules on Au(111) using pair-potential calculations based on van der Waals and electrostatic intermolecular interactions. The results are compared with the fundamental lateral structures known from experiment and an excellent agreement was found for these weakly interacting systems. Furthermore, the calculations are even suitable for chemisorptive adsorption as demonstrated for copper-phthalocyanine/Cu(111), if the influence of charge transfer between substrate and molecules is known and the corresponding charge redistribution in the molecules can be estimated. The calculations are of general applicability for molecular adsorbate systems which are dominated by electrostatic and van der Waals interaction.

  12. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). PMID:27100009

  13. Trapping and desorption of complex organic molecules in water at 20 K

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Woods, Paul M.; Viti, Serena; Slater, Ben; Brown, Wendy A.

    2015-10-01

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices.

  14. On the nucleation and initial film growth of rod-like organic molecules

    NASA Astrophysics Data System (ADS)

    Winkler, Adolf

    2016-10-01

    In this article, some fundamental topics related to the initial steps of organic film growth are reviewed. General conclusions will be drawn based on experimental results obtained for the film formation of oligophenylene and pentacene molecules on gold and mica substrates. Thin films were prepared via physical vapor deposition under ultrahigh-vacuum conditions and characterized in-situ mainly by thermal desorption spectroscopy, and ex-situ by X-ray diffraction and atomic force microscopy. In this short review article the following topics will be discussed: What are the necessary conditions to form island-like films which are either composed of flat-lying or of standing molecules? Does a wetting layer exist below and in between the islands? What is the reason behind the occasionally observed bimodal island size distribution? Can one describe the nucleation process with the diffusion-limited aggregation model? Do the impinging molecules directly adsorb on the surface or rather via a hot-precursor state? Finally, it will be described how the critical island size can be determined by an independent measurement of the deposition rate dependence of the island density and the capture-zone distribution via a universal relationship.

  15. Trapping and desorption of complex organic molecules in water at 20 K.

    PubMed

    Burke, Daren J; Puletti, Fabrizio; Woods, Paul M; Viti, Serena; Slater, Ben; Brown, Wendy A

    2015-10-28

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices. PMID:26520540

  16. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6).

  17. Effect of carbazole as a donor moiety on the second-order nonlinearity of organic molecules

    NASA Astrophysics Data System (ADS)

    Meshulam, Guilia; Berkovic, Garry; Kotler, Zvi; Ben-Asuly, Amos; Mazor, Royi; Shapiro, Lev; Khodorkovsky, Vladimir

    1999-10-01

    The second order nonlinearity of conjugated organic molecules involving, 1,3 indandione derivatives as an acceptor moiety has been studied. Varying the donor from dialkylamino to the chemically similar substituent, N- carbazolyl resulted in a drastic reduction of electric field induced second harmonic (beta) values. For some molecules, even a small negative value of (beta) was received. Quantum chemical calculations indicate that the decrease occurs as a result of two overlapping transitions, which contribute to (beta) with opposite signs. The charge transfer band gives a positive (beta) zzz along the molecular long axis, while a transition essentially within the carbazole moiety provides a negative (beta zzz contribution to (beta EFISH. Thus, these molecules must be described with a 2D model as opposed to the 'classical' model of 1D nonlinear optical chromophores. The prediction of the 2D model was verified experimentally by using a combination of two methods, EFISH and Hyper-Rayleigh Scattering, which probe different combination of the (beta) tensor elements.

  18. Computational screening of large molecule adsorption by metal-organic frameworks.

    SciTech Connect

    Allendorf, Mark D.; Greathouse, Jeffery A.

    2010-04-01

    Grand canonical Monte Carlo simulations were performed to investigate trends in low-pressure adsorption of a broad range of organic molecules by a set of metal-organic frameworks (MOFs). The organic analytes considered here are relevant to applications in chemical detection: small aromatics (o-, m-, and p-xylene), polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene), explosives (TNT and RDX), and chemical warfare agents (GA and VM). The framework materials included several Zn-MOFs (IRMOFs 1-3, 7, 8), a Cr-MOF (CrMIL-53lp), and a Cu-MOF (HKUST-1). Many of the larger organics were significantly adsorbed by the target MOFs at low pressure, which is consistent with the exceptionally high isosteric heats of adsorption (25 kcal/mol - 60 kcal/mol) for this range of analyte. At a higher loading pressure of 101 kPa, the Zn-MOFs show a much higher volumetric uptake than either CrMIL-53-lp or HKUST-1 for all types of analyte. Within the Zn-MOF series, analyte loading is proportional to free volume, and loading decreases with increasing analyte size due to molecular packing effects. CrMIL-53lp showed the highest adsorption energy for all analytes, suggesting that this material may be suitable for low-level detection of organics.

  19. Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area

    NASA Astrophysics Data System (ADS)

    Pio, C. A.; Alves, C. A.; Duarte, A. C.

    Respirable suspended particles high-volume samples were collected from a coastal-rural site in the centre of Portugal in August 1997 and their solvent-extractable organic compounds were subjected to characterisation by gas chromatography-mass spectrometry. Particles were also analysed by a thermal/optical technique in order to determine their black and organic carbon content. The total lipid extract yields ranged from 20 to 63 μg m -3, containing mainly aliphatic hydrocarbons such as n-alkanes, acids, alcohols, aldehydes, ketones and polycyclic aromatic hydrocarbons. The higher input of vascular plant wax components was demonstrated by the distribution patterns of the n-alkanes, n-alkanoic acids and n-alkanols homologous series, with C max at C 29, C 22/C 24 and C 30, respectively. The CPI values for these series were in the range 1.8-9.7, being indicative of recent biogenic input from microbial lipid residues and flora epicuticular components. Specific natural constituents (e.g. phytosterols, terpenes, etc.) were identified as molecular markers. Some oxidation products from volatile organic precursors were also present in the aerosols. In addition, all samples had a component of petroleum hydrocarbons representing urban and vehicular emissions probably transported from the nearest cities and from the motorway in the vicinity. This data set could be used to make a mass balance with organic carbon, organic extracts and elutable matter, permitting also the comparison with lipid signatures observed for other regions.

  20. Focused Role of an Organic Small-Molecule PBD on Performance of the Bistable Resistive Switching

    NASA Astrophysics Data System (ADS)

    Li, Lei; Sun, Yanmei; Ai, Chunpeng; Lu, Junguo; Wen, Dianzhong; Bai, Xuduo

    2015-11-01

    An undoped organic small-molecule 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and a kind of nanocomposite blending poly(methyl methacrylate) (PMMA) into PBD are employed to implement bistable resistive switching. For the bistable resistive switching indium tin oxide (ITO)/PBD/Al, its ON/OFF current ratio can touch 6. What is more, the ON/OFF current ratio, approaching to 104, is available due to the storage layer PBD:PMMA with the chemical composition 1:1 in the bistable resistive switching ITO/PBD:PMMA/Al. The capacity, data retention of more than 1 year and endurance performance (>104 cycles) of ITO/PBD:PMMA(1:1)/Al, exhibits better stability and reliability of the samples, which underpins the technique and application of organic nonvolatile memory.

  1. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  2. Two-photon absorption in CdSe colloidal quantum dots compared to organic molecules.

    PubMed

    Makarov, Nikolay S; Lau, Pick Chung; Olson, Christopher; Velizhanin, Kirill A; Solntsev, Kyril M; Kieu, Khanh; Kilina, Svetlana; Tretiak, Sergei; Norwood, Robert A; Peyghambarian, Nasser; Perry, Joseph W

    2014-12-23

    We discuss fundamental differences in electronic structure as reflected in one- and two-photon absorption spectra of semiconductor quantum dots and organic molecules by performing systematic experimental and theoretical studies of the size-dependent spectra of colloidal quantum dots. Quantum-chemical and effective-mass calculations are used to model the one- and two-photon absorption spectra and compare them with the experimental results. Currently, quantum-chemical calculations are limited to only small-sized quantum dots (nanoclusters) but allow one to study various environmental effects on the optical spectra such as solvation and various surface functionalizations. The effective-mass calculations, on the other hand, are applicable to the larger-sized quantum dots and can, in general, explain the observed trends but are insensitive to solvent and ligand effects. Careful comparison of the experimental and theoretical results allows for quantifying the range of applicability of theoretical methods used in this work. Our study shows that the small clusters can be in principle described in a manner similar to that used for organic molecules. In addition, there are several important factors (quality of passivation, nature of the ligands, and intraband/interband transitions) affecting optical properties of the nanoclusters. The larger-size quantum dots, on the other hand, behave similarly to bulk semiconductors, and can be well described in terms of the effective-mass models. PMID:25427158

  3. Synthesis of oxygen-free Titan tholins: implications in organic molecules product from hydrolysis

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Raulin, F.; Coll, P.; Buch, A.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Our group identified urea as the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. So the synthesis system has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the terrestrial atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, we performed alkaline pH hydrolysis of oxygen-free tholins in order to verify that organic molecules cited above are indeed in-situ produced. Those results will be exposed on the poster.

  4. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.; Franz, H. B.; Kashyap, S.; Malespin, C. A.; Martin, M.; Millan, M.; Miller, K.; Navarro-González, R.; Prats, B. D.; Steele, A.; Teinturier, S.; Mahaffy, P. R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.

  5. First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications.

    PubMed

    Mohamad, Mazmira; Ahmed, Rashid; Shaari, Amirudin; Goumri-Said, Souraya

    2015-02-01

    Escalating demand for sustainable energy resources, because of the rapid exhaustion of conventional energy resources as well as to maintain the environmental level of carbon dioxide (CO2) to avoid its adverse effect on the climate, has led to the exploitation of photovoltaic technology manifold more than ever. In this regard organic materials have attracted great attention on account of demonstrating their potential to harvest solar energy at an affordable rate for photovoltaic technology. 2-vinyl-4,5-dicyanoimidazole (vinazene) is considered as a suitable material over the fullerenes for photovoltaic applications because of its particular chemical and physical nature. In the present study, DFT approaches are employed to provide an exposition of optoelectronic properties of vinazene molecule and molecular crystal. To gain insight into its properties, different forms of exchange correlation energy functional/potential such as LDA, GGA, BLYP, and BL3YP are used. Calculated electronic structure of vinazene molecule has been displayed via HOMO-LUMO isosurfaces, whereas electronic structure of the vinazene molecular crystal, via electronic band structure, is presented. The calculated electronic and optical properties were analyzed and compared as well. Our results endorse vinazene as a suitable material for organic photovoltaic applications.

  6. Conjugated Polymer-Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells.

    PubMed

    Zhang, Jianqi; Zhang, Yajie; Fang, Jin; Lu, Kun; Wang, Zaiyu; Ma, Wei; Wei, Zhixiang

    2015-07-01

    Ternary organic solar cells are promising candidates for bulk heterojunction solar cells; however, improving the power conversion efficiency (PCE) is quite challenging because the ternary system is complicated on phase separation behavior. In this study, a ternary organic solar cell (OSC) with two donors, including one polymer (PTB7-Th), one small molecule (p-DTS(FBTTH2)2), and one acceptor (PC71BM), is fabricated. We propose the two donors in the ternary blend forms an alloy. A notable averaged PCE of 10.5% for ternary OSC is obtained due to the improvement of the fill factor (FF) and the short-circuit current density (J(sc)), and the open-circuit voltage (V(oc)) does not pin to the smaller V(oc) of the corresponding binary blends. A highly ordered face-on orientation of polymer molecules is obtained due to the formation of an alloy structure, which facilitates the enhancement of charge separation and transport and the reduction of charge recombination. This work indicates that a high crystallinity and the face-on orientation of polymers could be obtained by forming alloy with two miscible donors, thus paving a way to largely enhance the PCE of OSCs by using the ternary blend strategy.

  7. Thermodynamics of water condensation on a primary marine aerosol coated by surfactant organic molecules.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2014-10-23

    A large subset of primary marine aerosols can be initially (immediately upon formation) treated using an "inverted micelle" model. We study the thermodynamics of heterogeneous water condensation on such a marine aerosol. Its hydrophobic organic coating can be processed by chemical reactions with atmospheric species; this enables the marine aerosol to serve as a nucleating center for water condensation. The most probable pathway of such "aging" involves atmospheric hydroxyl radicals that abstract hydrogen atoms from organic molecules coating the aerosol (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on a marine aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous droplets on marine aerosols is most likely to occur via Köhler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for the Köhler activation of such aerosols. Numerical results also corroborate previous suggestions that one can omit some chemical species of aerosols (and other details of their chemical composition) in investigating aerosol effects on climate.

  8. Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V.

    PubMed

    Ni, Wang; Li, Miaomiao; Kan, Bin; Liu, Feng; Wan, Xiangjian; Zhang, Qian; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-01-11

    A new small molecule named DTBTF with thiobarbituric acid as a terminal group was designed and synthesized as an acceptor for organic photovoltaic applications. DTBTF exhibits strong absorption in the visible region, and a relatively high lying LUMO energy level (-3.62 eV). All-small-molecule organic solar cells based on DR3TSBDT:DTBTF blend films show a considerable PCE of 3.84% with a high V(oc) of 1.15 V. PMID:26538446

  9. Raman scattering in organic semiconductors based on erbium biphthalocyanine molecules and chlorine-containing europium-lutetium triphthalocyanine molecules

    SciTech Connect

    Belogorokhov, I. A.; Mamichev, D. A.; Dronov, M. A.; Pushkarev, V. E.; Tomilova, L. G.; Khokhlov, D. R.

    2010-08-15

    The Raman spectra of semiconductor structures based on erbium biphthalocyanine molecules and chlorine-substituted europium-lutetium triphthalocyanine molecules are studied on excitation with Ar{sup +} laser radiation at the wavelength 514 nm. The data on the spectral position of Raman intensity peaks related to vibronic states of the basic molecular groups forming the semiconductor are obtained. Raman lines irrelevant to the known vibronic states of the basic phthalocyanine molecular groups are observed in the ranges 100-500 and 500-900 cm{sup -1}. It is shown that, in the spectra of triphthalocyanine, some lines are structurally complex and shifted with respect to the characteristic lines of molecular groups by several inverse centimeters.

  10. Measurement of the conductance properties of single organic molecules using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gordin, Yoav

    In this work we describe the development and application of a new method for the electrical conductance measurement of single molecules. The issue of reliable theoretical modeling of molecular electronic transport is still very much in debate. The experimental methods used in the field are difficult to realize and interpret; most have very low yield, preventing proper statistical analysis and many have problems in the researchers' ability to characterize the system properly. We address this issue by using self assembly of gold nanoparticle-molecule-gold nanoparticle objects called dimers. This method allows fabrication of molecular junctions with greater ease; moreover it allows individual characterization of the various elements of the junction, removing much of the uncertainties that exist in this kind of measurements. We make use of home grown gold nanoparticles with a few tens of nanometer diameter to form the hybrid dimers. The dimers are large enough to connect between electrodes fabricated using electron beam lithography and to measure the electric properties of the molecule. We have invested significant effort in the characterization of the system, ensuring that the dimers are indeed bridged by the molecules, and that the chances that more than a single molecule exists in a dimer are negligibly small. We have made measurements on single gold nanoparticles, to characterize their properties separately from those of the molecule. These measurements have allowed us to observe single electron transistor (SET) behavior, resulting from the requirement that electrons charge the nanoparticle during transport. We have shown that the energy associated with this charging scales with nanoparticle size as expected. We have performed measurements on single organic molecules, showing that there is a very strong influence of molecular conjugation (the way electronic orbitals are spread along the molecular backbone) on its conductance. The molecules with broken conjugation

  11. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P.

    2014-11-01

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars' exploration. Understanding the chemical evolution of organic molecules under current martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? This paper presents the results of laboratory investigations dedicated to monitor the evolution of organic molecules when submitted to simulated Mars surface ultraviolet radiation (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) conditions. Experiments are done with the MOMIE simulation setup (for Mars Organic Molecules Irradiation and Evolution) allowing both a qualitative and quantitative characterization of the evolution the tested molecules undergo (Poch, O. et al. [2013]. Planet. Space Sci. 85, 188-197). The chemical structures of the solid products and the kinetic parameters of the photoreaction (photolysis rate, half-life and quantum efficiency of photodecomposition) are determined for glycine, urea, adenine and chrysene. Mellitic trianhydride is also studied in order to complete a previous study done with mellitic acid (Stalport, F., Coll, P., Szopa, C., Raulin, F. [2009]. Astrobiology 9, 543-549), by studying the evolution of mellitic trianhydride. The results show that solid layers of the studied molecules have half-lives of 10-103 h at the surface of Mars, when exposed directly to martian UV radiation. However, organic layers having aromatic moieties and reactive chemical groups, as adenine and mellitic acid, lead to the formation of photoresistant solid residues, probably of macromolecular nature, which could exhibit a longer photostability. Such solid organic layers are found in micrometeorites or could have been formed endogenously on Mars. Finally, the quantum efficiencies of photodecomposition at wavelengths from 200 to 250 nm

  12. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  13. Search for organic molecules at the Mars surface: The “Martian Organic Material Irradiation and Evolution” (MOMIE) project

    NASA Astrophysics Data System (ADS)

    Stalport, F.; Coll, P.; Szopa, C.; Raulin, F.

    2008-12-01

    The life on Mars remains an open question because of the lack of proof of its past emergence and its current presence. The only indices of a potential Martian life were provided by the Viking Landers, and the study of the Martian meteorite ALH84001 discovered in the Antarctic. In the two case, the results of experiments could be explained either by the presence of life forms or by abiotic processes. The recent data of Mars Express orbiter and Mars Exploration Rovers show different proofs of a past environment favourable for life. Among the targets we seek, the organic molecules are primordial because they are necessary to the origin of life. A key question is to know if they are present, in which concentration and under which form. Within the framework of a search for organic, we are developing an experimental setup simulating as close as possible the environmental conditions of Mars surface in order to determine how organic species evolve. We present here the first step of the development of this experiment which focuses on the study of the impact of the solar UV radiations reaching the Mars surface on glycine. First results show that glycine does not resist if directly exposed to UV radiations.

  14. Self-Assembling Amphiphilic Molecules: A Possible Relationship Between Interstellar Chemistry and Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Dworkin, Jason P.; Deamer, David W.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Interstellar gas and dust comprise the primary material from which the solar system formed. Evidence that some of this material was organic in nature and survived incorporation into the protosolar nebula is provided by the presence of deuterium-enriched organics in meteorites and interplanetary dust particles. Once the inner planets had sufficiently cooled, late accretionary infall of meteoroids and cosmic dust must have seeded them with some of these complex organic compounds. Delivery of such extraterrestrial compounds may have contributed to the organic inventory necessary for the origin of life. Interstellar ices, the building blocks of comets, tie up a large fraction of the biogenic elements available in molecular clouds. In our efforts to understand their synthesis, chemical composition, and physical properties, we report here that a complex mixture of molecules is produced by ultraviolet (UV) photolysis of realistic, interstellar ice analogs, and that some of the components have properties relevant to the origin of life, including the ability to self-assemble into vesicular structures.

  15. Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, O. J.; Koch, B. P.; Kattner, G.

    2010-12-01

    Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) applications for dissolved organic matter (DOM) focus mainly on carbon, hydrogen, oxygen and nitrogen isotopes. Implementation of sulfur and especially phosphorus in the molecular formula assignment has been questionable because of ambiguous calculated elemental formulas. On the other hand, many compounds bearing these elements are well known to occur in the dissolved state as part of the permanent recycling processes (e.g. phospholipids, phosphonates) but analytics of dissolved organic phosphorus (DOP) and sulfur (DOS) are often hampered by the large inorganic P and S pools. Even less is known about complexation characteristics of the DOM moieties. Although electrochemical methods provide some information about trace metal speciation, the high amount of organic molecules and its insufficient description as chemical functional classes prevent the assignment of trace metals to ligand classes. Nevertheless, it is undoubtful that a varying but extensive amount of transition metals is bond in form of organic complexes. Hyphenation of reversed phase high performance liquid chromatography (RP-HPLC) with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) is a valuable tool to study these metal-organic interactions in a qualitative and quantitative approach. We established a desolvation method that allows direct transfer of high organic solvent loads into the plasma. Thus, in combination with internal standardization and external calibration, the investigation of a broad polarity scale was possible. This approach overcomes previous restrictions to non-organic solvent separation techniques like size

  16. Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Abbey, W. A.; Tsapin, A. T.; Dragoi, D.; Kanik, I.

    2004-01-01

    best terrestrial analogs of Mars and they represent one of the absolute best case scenarios for finding organic molecules on the Martian surface.

  17. Metal-organic and supramolecular architectures based on mechanically interlocked molecules

    NASA Astrophysics Data System (ADS)

    Fernando, Isurika Rosini

    The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized

  18. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-01

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions.

  19. Morphological effects on the small-molecule-based solution-processed organic solar cells.

    PubMed

    Lee, Dong-Chan; Brownell, Lacie V; Yan, Liang; You, Wei

    2014-09-24

    We report a proof-of-concept study on solution-processed organic solar cells (OSCs) based on [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and structurally compact donor molecules which have dithiophene-phenazine-dithiophene (TH-P) and dithiophene-quinoxaline-dithiophene (TH-Q) configurations with decyloxy and methyl side groups, respectively. These molecules formed one-dimensional fibers through self-assembly via weak nonbonding interactions such as π-π and van der Waals interactions even during a fast solvent removal process such as spin-casting. Photophysical and thermal properties of the new donor molecules were characterized with UV-vis absorption and fluorescence spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The electrochemical data determined experimentally were correlated well with theoretical evaluations. The fibers from the two donor molecules showed distinct morphological differences, allowing for in-depth investigations into their influence on the OSC performance. A continuous three-dimensional network of endless one-dimensional nanofibers, with a width of 300-400 nm, were formed from TH-P regardless of the presence of PC61BM, affording spontaneous nanoscale phase separation that facilitates a large donor/acceptor interfacial area. Bulk (BHJ) and planar heterojunctions (PHJ) from TH-P/PC61BM showed a power conversion efficiency (PCE) of 0.38% and 0.30%, respectively, under optimum device conditions. Post thermal annealing led to the increased domain size and a major decrease in Jsc. Meanwhile, shorter, more rigid needles with a large thickness variation were formed from TH-Q. A continuous network of TH-Q was obtained by spin-coating only in the presence of PC61BM, and the PCE of TH-Q/PC61BM BHJ was found to be 0.36%. However, the PHJ showed poor device performance due to TH-Q's inability to form a continuous film by spin-coating. The present study suggests a basic molecular architecture to drive one

  20. Abundance and diversity of total and nitrifying prokaryotes as influenced by biochemical quality of organic inputs combined with mineral nitrogen

    NASA Astrophysics Data System (ADS)

    Muema, Esther; Vanlauwe, Bernard; Röhl, Carolin; Cadisch, Georg; Rasche, Frank

    2014-05-01

    Ammonia-oxidizing bacteria and archaea (AOB, AOA) co-exist in soil, but they respond differently to distinct fertilization strategies in agricultural soils. Accordingly, effects of organic inputs and combination with mineral nitrogen (N) on AOB and AOA remain poorly understood. The aim of this study was to compare soil amendment with contrasting quality of organic inputs (i.e., high quality Tithonia diversifolia (TD; C/N ratio: 13, Lignin: 8.9 %; Polyphenols: 1.7 %), intermediate quality Calliandra calothyrsus (CC; 13; 13; 9.4) and low quality Zea mays (ZM; 59; 5.4; 1.2)), and combination with mineral N on the abundance (i.e., DNA-based gene quantification) and community structure (i.e., T-RFLP analysis) of total bacterial and archaea (16S rRNA gene), as well as AOB and AOA (targeting the amoA gene) communities in a Humic Nitisol. Soils (0-15 cm depth) were sampled prior to the onset of the rainy season in March 2012 in a 10 years old field experiment established in the central highlands of Kenya in 2002. Since the start of the experiment, organic inputs were applied annually at a rate of 4 Mg C ha-1 and mineral N twice a year as calcium ammonium nitrate (5Ca(NO3)2NH4NO3) at a rate of 120 kg N ha-1 growing season-1. Quality of organic inputs posed only a significant effect on the AOB community structure between TD versus ZM and CC versus ZM. Moreover, TD significantly increased the size of AOB over ZM input, while higher abundances for total bacteria, total archaea and AOA were measured in ZM and TD over CC. This was explained by high and available N in TD, but low lignin and polyphenol contents in TD and ZM as opposed to CC. AOB responded sensitively (i.e., complete community structure separation) to mineral N, specifically when combined with low quality ZM. Hence, AOB community was specifically responsive to quality of organic inputs and combination of low organic input with mineral N over AOA and total prokaryotic communities in the studied soil. The results

  1. Search for organic molecules on Mars with the Gas Chromatograph-Mass Spectrometer of the Sample Analysis at Mars experiment onboard the MSL 2011 Curiosity rover

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Francois, P.; Coll, P. J.; Cabane, M.; Coscia, D.; Teinturier, S.; Stalport, F.; Buch, A.; Mahaffy, P. R.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.

    2012-12-01

    In past times, life might have emerged under Martian conditions milder than the present ones, and left some remnants at the surface. Even if this did not happen, prebiotic molecules may have been preserved in the soil, and they might be similar to those that prevailed on the Earth surface some 3.5 to 4 billion years ago. NASA's MSL2011 rover Curiosity will explore the surface and subsurface of Mars, seeking traces of prebiotic or biological activity. Organic signatures are among the main signatures of interest in this frame, and they will be among the main targets of the Gas Chromatograph Quadrupole Mass Spectrometer (GC-QMS) which constitutes the core of the Sample Analysis at Mars (SAM) analytical laboratory, developed by the NASA/GSFC in collaboration with the University of Paris (Fr) and the JPL. The main goal of this instrumentation is indeed to determine molecular abundances and isotopic ratios of organic molecules present in the collected samples, by analyzing gases either sampled from the atmosphere, or obtained from soil processing, either by physical heating or chemical reactions. In order to prepare for the interpretation of the data obtained in situ with the GCQMS of SAM, and due to the complexity of this instrumentation, a number of calibrations are required to determine the exact behaviour of each part of this instrumentation, that is required to correctly treat the signal and obtain a correct interpretation of it. In order to prepare the SAM-GC in situ results treatment and interpretation, it is necessary: (1) to determine the instrument ability to detect targets molecules under the instrument operating conditions and (2) to create data bases to help for the identification and quantification of the molecules that could be detected with SAM. With this aim we first selected molecules which might be analyzed with SAM-GC using the following criteria: (1) abundance at the Mars surface (2) astrobiological interest, (3) formation during the sample

  2. Abundance and Characterization of Dissolved Organic Carbon in Suburban Streams of Baltimore, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Mora, G.; Fazekas, M.

    2014-12-01

    The contribution of streams and rivers to the carbon cycle is significant, transporting to the oceans ~1.4 Pg C/yr, with dissolved carbon corresponding to as much as 0.7 Pg C/yr. Changes in land use have the potential effect of modifying this flux, particularly in urban areas where impervious areas are common. To investigate the effect of urbanization on riverine carbon transport, we studied four first-order streams in Towson, a suburb of Baltimore, Maryland, USA. The watersheds from the studied streams exhibit different levels of urbanization as measured by the percentage of impervious areas. Samples from these four streams were taken weekly, and several chemical constituents were measured either in the field or in the laboratory. These constituents included nitrate, dissolved organic nitrogen, pH, dissolved organic carbon (DOC), total carbon, dissolved inorganic carbon (DIC), phosphate, the carbon isotopic compositions of DOC and DIC, and fluorescence intensity of the DOC. Results show that DOC concentrations were consistently below 5 mg C/L regardless of the level of imperviousness of the watershed. Similarly, carbon isotope ratios were consistent across the studied streams, with values centered around -26.4 per mil, thus suggesting a significant influx of soil-derived organic carbon originated from C3 plants that are common in the watersheds. Confirming this interpretation, fluorescence spectroscopy data suggest a humic-like origin for the DOC of the streams, thus pointing to the heterotrophic nature of the streams. The combined results suggest that the studied streams exhibit similar DOC concentrations, carbon isotopic values, and fluorescence spectra, despite their level of impervious surfaces in their watersheds.

  3. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  4. Abundance of organic compounds photochemically produced in the atmospheres of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Raulin, F.; Bossard, A.; Toupance, G.; Ponnamperuma, C.

    1979-01-01

    Organic photochemical syntheses in the Jovian atmosphere was simulated by irradiating, at 147 nm, gaseous mixtures of methane and ammonia with varying amounts of hydrogen. Some results relevant to the photochemistry of the Jupiter atmosphere at several tens of kilometers above the clouds were obtained: (1) a favorable effect of the pressure of high amounts of H2 on the yield of hydrocarbon synthesis when NH3 is mixed with CH4; (2) a very low yield of synthesis of unsaturated hydrocarbons in such conditions; and (3) the possibility of formation of detectable amounts of HCN and CH3CN.

  5. Intercalation of organic molecules into SnS{sub 2} single crystals

    SciTech Connect

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-02-15

    SnS{sub 2} is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS{sub 2e}n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS{sub 2} after intercalation revealed defects and stacking mismatches among the SnS{sub 2} layers caused by the intercalation. UV-Vis absorption studies showed a red shift in the band edge of the SnS{sub 2} material after intercalation. The band edge was 2.2 eV for pristine SnS{sub 2}; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS{sub 2} single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS{sub 2} after intercalation. Highlights: Black-Right-Pointing-Pointer Organic molecules intercalated inhomogenously between covalently bonded SnS{sub 2} layers. Black-Right-Pointing-Pointer Ethylenediamine (en) intercalate directly into SnS{sub 2}. Black-Right-Pointing-Pointer Phenylenediamine (PPD) and naphthalenediamine (NDA) can be

  6. Rock samples analysis with the pyrolysis system of the Mars Organic Molecule Analyzer (MOMA)

    NASA Astrophysics Data System (ADS)

    Steininger, H.; Goetz, W.; Goesmann, F.

    2012-12-01

    The Mars Organic Molecule Analyzer (MOMA) is a combined pyrolysis gas chromatograph mass spectrometer (GC-MS) and laser desorption mass spectrometer (LD-MS). It will be the key instrument of the ESA/Roscosmos ExoMars 2018 mission to search for extinct and extant life. Additionally the instrument will be able to detect the organic background which has possibly been delivered to Mars by meteorites. Several samples containing a wide range of organic molecules have been tested with a flight analog injection system. The results of the tests were compared to results obtained by a commercial pyrolysis system, the Pyrola pyrolysis unit. The first experimental setup (Pyrola unit) consists of a small quartz tube with an electrically heated platinum filament. A constant helium flow transports the volatilized compounds through an injection needle directly into the injector of the GC. The whole system is heated to 175°C. The second experimental setup (flight analog injection system) consists of a 6 mm diameter platinum oven connected to a microvalve plate to route the gas from the oven to the GC. The microvalves can be switched electrically. The volatiles are subsequently trapped in a cold trap consisting of a Tenax filed tube. Heating this tube releases the volatiles and injects them through an injection needle into the GC. A Varian 4000 GC-MS with RTX-5 column was used to separate and analyze the volatiles generated from both experimental setups. During the experiments several natural rock samples with a broad content of organic material have been analyzed. The sample material was crushed and ground. To obtain comparable results the same amount of sample was used in both setups. Lower temperatures were used in the flight analog injection system due to restrictions of the reusable oven. Lower temperatures normally lead to only a slight decrease in the very heavy and non-volatile compounds but do not change the overall appearance of the chromatogram. Significant differences in

  7. Proton Donor/acceptor Propensities of Ammonia: Rotational Studies of its Molecular Complexes with Organic Molecules

    NASA Astrophysics Data System (ADS)

    Giuliano, Barbara M.; Maris, Assimo; Melandri, Sonia; Favero, Laura B.; Evangelisti, Luca; Caminati, Walther

    2009-06-01

    We studied the rotational spectra of the adducts of ammonia with several organic molecules, namely tert-butanol, glycidol, ethyl alcohol, anisol and 1,4-difluorobenzene. The adducts with glycidol and ethanol have been observed for both conformers of the substrate molecule. Based on the rotational and ^{14}N quadrupole coupling constants of the various complexes, we found a considerably different behaviour of ammonia, with respect to water, in its proton donor/acceptor double role. In the interaction with the three alcohol molecules, NH_{3} acts as a proton acceptor and the OH groups as a proton donor. However, in the case of glycidol-NH_{3}, a secundary N-H\\cdotsO interaction occurrs between ammonia and the ether oxygen. This interaction generates a sizable V_{3} barrier to the internal rotation of the NH_{3} moiety, while NH_{3} undergoes a free rotation in tert-butanol-NH_{3} and in ethanol-NH_{3}. As to the anisole-NH_{3} and 1,4-difluorobenzene-NH_{3} complexes, the NH_{3} group explicits its double proton donor/acceptor role, although through two weak (C_{Me}-H\\cdotsN and N-H\\cdotsπ) H-bonds. There is, however, an important difference between the two complexes, because in the first one NH_{3} lies out of the aromatic plane, while in the second one it is in the plane of the aromatic ring. B. M. Giuliano, M. C. Castrovilli, A. Maris, S. Melandri, W. Caminati and E. A. Cohen, Chem.Phys.Lett., 2008, 463, 330 B. M. Giuliano, S. Melandri, A. Maris, L. B. Favero and W. Caminati, Angew.Chem.Int.Ed., 2009, 48, 1102

  8. Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains.

    PubMed

    Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; Calaza, Florencia; Sterrer, Martin; Freund, Hans-Joachim

    2015-12-22

    Effective CO2 capture and reduction can be achieved through a molecular scale understanding of interaction of CO2 molecules with chemically active sites and the cooperative effects they induce in functional materials. Self-assembled arrays of parallel chains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkers decorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surface restructuring at 77 K (ACS Nano 2014, 8, 8644-8652). We explore the cooperative interactions among CO2 molecules, Au-PDI chains and Au substrates that are responsible for the self-catalyzed capture by low temperature scanning tunneling microscopy (LT-STM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), temperature-programmed desorption (TPD), and dispersion corrected density functional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacial metal-organic polymer characteristics of both a homogeneous and heterogeneous catalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2(δ-) species coordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a full monolayer and, surprisingly, can be imaged with molecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayer to assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains provide a platform for investigating the physical and chemical interactions involved in CO2 capture and reduction. PMID:26548479

  9. Near-Infrared Spectroscopy of Simple Organic Molecules in the GV Tau N Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Gibb, Erika

    2014-06-01

    T Tauri stars are low mass young stars that may serve as analogs to the early solar system. Observations of organic molecules in the protoplanetary disks surrounding T Tauri stars are important for characterizing the chemical and physical processes that lead to planet formation. We used NIRSPEC on Keck 2 to perform a high resolution (λ/Δλ ˜ 25,000) L-band survey of T Tauri star GV Tau N, a nearly edge-on young star in the L1524 molecular cloud. The nearly edge-on orientation is rare but necessary to sample the disk in absorption, rather than the more common emission line measurements. GV Tau N is one of only two sources for which HCN and C_2H_2 have been reported in absorption (Gibb et al. 2007; Doppmann et al. 2008). More recently, we reported the first detection of methane, CH_4 (Gibb & Horne 2013). The rotational temperatures are relatively high, implying that HCN, C_2H_2, CH_4, and water originate in the warm molecular layer of the inner protoplanetary disk. Differences in rotational temperature for different molecules suggest that the absorbing column for each molecule samples a different radial distribution. Doppmann, G. W., Najita, K. R., & Carr, J. S. 2008, ApJ, 685, 298 Gibb, E. L., Van Brunt, K. A., Brittain, S. D., & Rettig, T. W. 2007, ApJ, 660, 1572 Gibb, E. L., Horne, D. 2013, ApJ, 776, L28 E.L.G. was supported by NSF Astronomy grant AST-0908230 and NASA Exobiology grant NNX07AK38G.

  10. Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains.

    PubMed

    Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; Calaza, Florencia; Sterrer, Martin; Freund, Hans-Joachim

    2015-12-22

    Effective CO2 capture and reduction can be achieved through a molecular scale understanding of interaction of CO2 molecules with chemically active sites and the cooperative effects they induce in functional materials. Self-assembled arrays of parallel chains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkers decorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surface restructuring at 77 K (ACS Nano 2014, 8, 8644-8652). We explore the cooperative interactions among CO2 molecules, Au-PDI chains and Au substrates that are responsible for the self-catalyzed capture by low temperature scanning tunneling microscopy (LT-STM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), temperature-programmed desorption (TPD), and dispersion corrected density functional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacial metal-organic polymer characteristics of both a homogeneous and heterogeneous catalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2(δ-) species coordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a full monolayer and, surprisingly, can be imaged with molecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayer to assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains provide a platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.

  11. Organic molecules in the polar ice: from chemical analysis to environmental proxies

    NASA Astrophysics Data System (ADS)

    Barbante, Carlo; Zennaro, Piero; Giorio, Chiara; Kehrwald, Natalie; Benton, Alisa K.; Wolff, Eric W.; Kalberer, Markus; Kirchgeorg, Torben; Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea

    2015-04-01

    The molecular and isotopic compositions of organic matter buried in ice contains information that helps reconstruct past environmental conditions, evaluate histories of climate change, and assess impacts of humans on ecosystems. In recent years novel analytical techniques were developed to quantify molecular compounds in ice cores. As an example, biomass burning markers, including monosaccharide anhydrides, lightweight carboxylic acids, lignin and resin pyrolysis products, black carbon, and charcoal records help in reconstructing past fire activity across seasonal to millennial time scales. Terrestrial biomarkers, such as plant waxes (e.g. long-chain n-alkanes) are also a promising paleo vegetation proxy in ice core studies. Polycyclic aromatic hydrocarbons are ubiquitous pollutants recently detected in ice cores. These hydrocarbons primarily originate from incomplete combustion of organic matter and fossil fuels (e.g. diesel engines, domestic heating, industrial combustion) and therefore can be tracers of past combustion activities. In order to be suitable for paloeclimate purposes, organic molecular markers detected in ice cores should include the following important features. Markers have to be stable under oxidizing atmospheric conditions, and ideally should not react with hydroxyl radicals, during their transport to polar regions. Organic markers must be released in large amounts in order to be detected at remote distances from the sources. Proxies must be specific, in order to differentiate them from other markers with multiple sources. The extraction of glaciochemical information from ice cores is challenging due to the low concentrations of some impurities, thereby demanding rigorous control of external contamination sources and sensitive analytical techniques. Here, we review the analysis and use of organic molecules in ice as proxies of important environmental and climatic processes.

  12. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. PMID:26624204

  13. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.

  14. Effect of flagellates on free-living bacterial abundance in an organically contaminated aquifer.

    PubMed

    Kinner, N E; Harvey, R W; Kazmierkiewicz-Tabaka, M

    1997-07-01

    Little is known about the role of protists in the saturated subsurface. Porous media microcosms, containing bacteria and protists, were used to determine whether flagellates from an organically contaminated aquifer could substantively affect the number of free-living bacteria (FLB). When flagellates were present, the 3-40% maximum breakthrough of fluorescently labelled FLB injected into the microcosms was much lower than the 60-130% observed for killed controls. Grazing and clearance rates (3-27 FLB flag-1 h-1 and 12-23 nl flag-1 h-1, respectively) calculated from the data were in the range reported for flagellates in other aqueous environments. The data provide evidence that flagellate bacterivory is an important control on groundwater FLB populations.

  15. Effect of flagellates on free-living bacterial abundance in an organically contaminated aquifer

    USGS Publications Warehouse

    Kinner, N.E.; Harvey, R.W.; Kazmierkiewicz-Tabaka, M.

    1997-01-01

    Little is known about the role of protists in the saturated subsurface. Porous media microcosms containing bacteria and protists, were used to determine whether flagellates from an organically contaminated aquifer could substantively affect the number of free- living bacteria (FLB). When flagellates were present, the 3-40% maximum breakthrough of fluorescent y labelled FLB injected into the microcosms was much lower than the 60-130% observed for killed controls Grazing and clearance rates (3-27 FLB flag-1 h-1 and 12-23 nI flag-1 h-1, respectively) calculated from the data were in the range reported for flagellates in other aqueous environments. The data provide evidence that flagellate bacterivory is an important control on groundwater FLB populations.

  16. Theoretical study of anisotropic mobility in ladder-type molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Wei, Hui-Ling; Liu, Yu-Fang

    2014-09-01

    The properties of two ladder-type semiconductors {M1: 2,2'-(2,7-dihexy1-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-4,9-diylidene) dimalononitrile and M2: 2,7-dihexy1-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-4,9-dione} as the n-type and ambipolar organic materials are systematically investigated using the first-principle density functional theory combined with the Marcus-Hush electron transfer theory. It is found that the substitution of M1 induces large changes in its electron-transfer mobility of 1.370 cm2 V-1 s-1. M2 has both large electron- and hole-transfer mobility of 0.420 and 0.288 cm2 V-1 s-1, respectively, which indicates that M2 is potentially a high efficient ambipolar organic semiconducting material. Both the M1 and M2 crystals show remarkable anisotropic behavior. A proper design of the n-type and ambipolar organic electronic materials, which may have high mobility performance, is suggested based on the investigated two molecules.

  17. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles

    PubMed Central

    Wang, Xinyu; Parrish, Kevin D.; Malen, Jonathan A.; Chan, Paddy K. L.

    2015-01-01

    Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10−7 m2-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations. PMID:26531766

  18. Photochemistry of organic molecules in the Solar System : Experiments in Terrestrial orbit and laboratory simulations

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Guan, Yuan Yong; Coll, Patrice; Coscia, David; Fray, Nicolas; Macari, Frederique; Raulin, Francois; Stalport, Fabien; Szopa, Cyril; Chaput, Didier; Viso, Michel; Bertrand, Marylene; Chabin, Annie; Thirkell, Laurent; Westall, Frances; Maurel, Marie-Christine; Vergne, Jacques; Brack, André

    Photochemistry is leading the chemical evolution in the Solar System. The VUV photolysis of organic compounds is easy to study in the laboratory, with monochromatic sources, but it is difficult to simulate the whole range of wavelengths corresponding to the most energetic part of the Solar radiation (<190nm). This is why the results obtained in laboratory are difficult to extrapolate to the extraterrestrial environments. Space is the only laboratory allowing the exposure of samples to all the space parameters simultaneously. We present the preparation and follow-up of experiments with exobiological interest, in Terrestrial orbit, (AMINO, PRO- CESS, and UV-olution) organized by the European Space Agency (ESA). The experiments are carried out on a FOTON capsule, using the BIOPAN facility (UVolution Sept.2007), and on the International Space Station, using the EXPOSE facilities on the COLUMBUS European module (PROCESS - beginning Feb 2008) and the Russian module ZARYA (AMINO) (beginning expected by the end of 2008). In this project, organic molecules related to the study of the chemistry of Mars, Titan, meteorites or Comets are exposed in space between 10 days and 18 months (according to the experiment). The evolution of the samples can be studied when the samples are returned to Earth, and compared to the results of ground experiments. Preliminary results of the Uvolution experiment will be presented.

  19. Coupling between diffusion and orientation of pentacene molecules on an organic surface.

    PubMed

    Rotter, Paul; Lechner, Barbara A J; Morherr, Antonia; Chisnall, David M; Ward, David J; Jardine, Andrew P; Ellis, John; Allison, William; Eckhardt, Bruno; Witte, Gregor

    2016-04-01

    The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

  20. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles.

    PubMed

    Wang, Xinyu; Parrish, Kevin D; Malen, Jonathan A; Chan, Paddy K L

    2015-11-04

    Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10(-7) m(2)-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations.

  1. Coupling between diffusion and orientation of pentacene molecules on an organic surface

    NASA Astrophysics Data System (ADS)

    Rotter, Paul; Lechner, Barbara A. J.; Morherr, Antonia; Chisnall, David M.; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William; Eckhardt, Bruno; Witte, Gregor

    2016-04-01

    The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

  2. Sequential photochemical and microbial degradation of organic molecules bound to humic acid

    SciTech Connect

    Amador, J.A.; Zika, R.G. ); Alexander, M. )

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of (2-{sup 14}C)glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of {sup 14}C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A{sub 330}. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  3. Impact of an atmospheric argon plasma jet on a dielectric surface and desorption of organic molecules

    NASA Astrophysics Data System (ADS)

    Damany, Xavier; Pasquiers, Stéphane; Blin-Simiand, Nicole; Bauville, Gérard; Bournonville, Blandine; Fleury, Michel; Jeanney, Pascal; Santos Sousa, João

    2016-08-01

    The propagation of a DC-pulsed argon plasma jet through the surrounding ambient air, and its interaction with an ungrounded glass plate placed on the jet trajectory, was studied by means of fast imaging. The surface plays an important role in the spatio-temporal characteristics of the plasma. Indeed, for an argon jet propagating perpendicularly to the surface, the plasma jet structure changes from filamentary to diffuse when the distance between the nozzle of the capillary tube and the surface is short (≤10 mm). Changing the angle between the capillary tube and the glass plate, and varying the gas flow rate strongly affects the spatial extension of the plasma that develops on the surface. This surface plasma propagates while the plasma in the argon jet is maintained with the same luminous intensity. Finally, this plasma jet shows interesting characteristics for desorption of low volatile organic molecules such as bibenzyl. A maximum removal of bibenzyl is located at the intersection area between the jet axis and the glass surface, and some of the initially deposited molecules are found intact in gas phase. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  4. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; et al

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, andmore » CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  5. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    SciTech Connect

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; Fang, Youxing

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, and CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.

  6. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks.

    PubMed

    Mann, Gregory W; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B

    2016-05-01

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO2-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data. PMID:27155622

  7. Sequential photochemical and microbial degradation of organic molecules bound to humic Acid.

    PubMed

    Amador, J A; Alexander, M; Zika, R G

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of [2-C]glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A(330). Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  8. Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube.

    PubMed

    Xu, Jian; Fan, Jian Fen; Zhang, Ming Ming; Weng, Pei Pei; Lin, Hui Fang

    2016-05-01

    Multiple molecular dynamics simulations have been performed to explore the transport properties of single methane, methanol, and ethanol molecules through the water-filled transmembrane cyclic peptide nanotube (CPNT) of 8 × (WL)₄-POPE, as well as the potential application of this CPNT in the separation of an alcohol/water mixture. Molecular size and hydrophilicity/hydrophobicity were found to significantly influence molecular diffusion behavior in the channel. Methane and ethanol display more explicit distributions in midplane regions, while methanol mainly occurs in α-plane zones. Methane and ethanol drift faster near an α-plane zone, whereas methanol diffuses uniformly throughout the whole transmembrane region. The dipole orientation of channel methanol is significantly affected by the bare carbonyl groups at the tube mouths and flips mainly in gap 4, whereas the rotation of ethanol is blocked. Ball-shaped hydrophobic methane experiences more flips in gap 4. The PMF (potential of mean force) profiles of the three organic molecules disclose their different diffusion behaviors in the CPNT. Amphiphilic alcohols are able to form direct H-bonds with channel water and the tube. Both single and double water bridges with the tube were observed in the methanol and ethanol systems. The different adsorption behaviors of the alcohols and water in the dehydrated CPNT may lead to the potential application of the CPNT as a means of separating alcohols from water. PMID:27083567

  9. Photophysical properties of luminescent silicon nanoparticles surface-modified with organic molecules via hydrosilylation.

    PubMed

    Miyano, Mari; Kitagawa, Yuichi; Wada, Satoshi; Kawashima, Akira; Nakajima, Ayako; Nakanishi, Takayuki; Ishioka, Junya; Shibayama, Tamaki; Watanabe, Seiichi; Hasegawa, Yasuchika

    2016-01-01

    Luminescent silicon nanoparticles have attracted considerable attention for their potential uses in various applications. Many approaches have been reported to protect the surface of silicon nanoparticles and prevent their easy oxidation. Various air-stable luminescent silicon nanoparticles have been successfully prepared. However, the effect of interactions of the π-electron system with the silicon surface on the excited state properties of silicon nanoparticles is unclear. In this study, we have successfully prepared silicon nanoparticles protected with three organic compounds (styrene, 1-decene, and 1-vinyl naphthalene) and have examined their photophysical properties. The ligand π-electron systems on the silicon surface promoted the light harvesting ability for the luminescence through a charge transfer transition between the protective molecules and silicon nanoparticles and also enhanced the radiative rate of the silicon nanoparticles.

  10. Organic molecules on silicon surface: A way to tune metal dependent Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rabinal, M. K.

    2016-09-01

    Effect of covalently bonded organic molecules on p-type Si surfaces, in controlling the performance of metal-silicon Schottky junctions, is studied. Monolayers of 1-dodecyne were formed on hydrated surfaces of p-type Si ((100) orientation) using weak Lewis acid. The chemical modification results in highly homogeneous surfaces. Gold-Si and Aluminum-Si junctions were prepared, both, on modified and unmodified Si surfaces, and I-V characteristics were studied. The results have been interpreted in terms of energy band diagrams. It is demonstrated that the molecular monolayer of 1-dodecyne is effective in controlling the surface states leading to unpinning of the Fermi level and junction responding to the work function of the metal, as expected from theoretical considerations. The simple method presented provides a unique technique to tune the electrical properties of devices with metal-semiconductor interfaces.

  11. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-01

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  12. From Molecules to Cells to Organisms: Understanding Health and Disease with Multidimensional Single-Cell Methods

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    2013-03-01

    The multidimensional nature of many single-cell measurements (e.g. multiple markers measured simultaneously using Fluorescence-Activated Cell Sorting (FACS) technologies) offers unprecedented opportunities to unravel emergent phenomena that are governed by the cooperative action of multiple elements across different scales, from molecules and proteins to cells and organisms. We will discuss an integrated analysis framework to investigate multicolor FACS data from different perspectives: Singular Value Decomposition to achieve an effective dimensional reduction in the data representation, machine learning techniques to separate different patient classes and improve diagnosis, as well as a novel cell-similarity network analysis method to identify cell subpopulations in an unbiased manner. Besides FACS data, this framework is versatile: in this vein, we will demonstrate an application to the multidimensional single-cell shape analysis of healthy and prematurely aged cells.

  13. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules

    NASA Astrophysics Data System (ADS)

    Liu, Dingbin; Wang, Zhuo; Jiang, Xingyu

    2011-04-01

    In recent years, gold nanoparticles (AuNPs) have drawn considerable research attention in the fields of catalysis, drug delivery, imaging, diagnostics, therapy and biosensors due to their unique optical and electronic properties. In this review, we summarized recent advances in the development of AuNP-based colorimetric and fluorescent assays for ions including cations (such as Hg2+, Cu2+, Pb2+, As3+, Ca2+, Al3+, etc) and anions (such as NO2-, CN-, PF6-, F-, I-, oxoanions), and small organic molecules (such as cysteine, homocysteine, trinitrotoluene, melamine and cocaine, ATP, glucose, dopamine and so forth). Many of these species adversely affect human health and the environment. Moreover, we paid particular attention to AuNP-based colorimetric and fluorescent assays in practical applications.

  14. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd M.

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  15. Strategies For Immobilization Of Bioactive Organic Molecules On Titanium Implant Surfaces - A Review.

    PubMed

    Panayotov, Ivan V; Vladimirov, Boyan S; Dutilleul, Pierre-Yves C; Levallois, Bernard; Cuisinier, Frédéric

    2015-01-01

    Numerous approaches have been used to improve the tissue-implant interface of titanium (Ti) and titanium alloy (Ti6Al4V). They all aim at increasing cell migration and attachment to the metal, preventing unspecific protein adsorption and improving post-implantation healing process. Promising methods for titanium and titanium alloy surface modification are based on the immobilization of biologically active organic molecules. New and interesting biochemical approaches to such surface modification include layer-by-layer deposition of polyelectrolyte films, phage display-selected surface binding peptides and self-assembled DNA monolayer systems. The present review summarizes the scientific information about these methods, which are at in vitro or in vivo development stages, and hopes to promote their future application in dental implantology and in oral and maxillofacial surgery.

  16. Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules.

    PubMed

    Brémond, Éric; Savarese, Marika; Su, Neil Qiang; Pérez-Jiménez, Ángel José; Xu, Xin; Sancho-García, Juan Carlos; Adamo, Carlo

    2016-02-01

    In this Letter we report the error analysis of 59 exchange-correlation functionals in evaluating the structural parameters of small- and medium-sized organic molecules. From this analysis, recently developed double hybrids, such as xDH-PBE0, emerge as the most reliable methods, while global hybrids confirm their robustness in reproducing molecular structures. Notably the M06-L density functional is the only semilocal method reaching an accuracy comparable to hybrids'. A comparison with errors obtained on energetic databases (including thermochemistry, reaction barriers, and interaction energies) indicate that most of the functionals have a coherent behavior, showing low (or high) deviations on both energy and structure data sets. Only a few of them are more prone toward one of these two properties. PMID:26730741

  17. Organics and other molecules in the surfaces of Callisto and Ganymede

    USGS Publications Warehouse

    McCord, T.B.; Carlson, R.W.; Smythe, W.D.; Hansen, G.B.; Clark, R.N.; Hibbitts, C.A.; Fanale, F.P.; Granahan, J.C.; Segura, M.; Matson, D.L.; Johnson, T.V.; Martin, P.D.

    1997-01-01

    Five absorption features are reported at wavelengths of 3.4, 3.88, 4.05, 4.25, and 4.57 micrometers in the surface materials of the Galilean satellites Callisto and Ganymede from analysis of reflectance spectra returned by the Galileo mission near-infrared mapping spectrometer. Candidate materials include CO2, organic materials (such as tholins containing C???N and C-H), SO2, and compounds containing an SH-functional group; CO2, SO2, and perhaps cyanogen [(CN)2] may be present within the surface material itself as collections of a few molecules each. The spectra indicate that the primary surface constituents are water ice and hydrated minerals.

  18. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms.

    PubMed

    Goodson, Boyd M

    2002-04-01

    The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI. PMID:12036331

  19. Novel Flourescent Sensors for the Detection of Organic Molecules in Extraterrestrial Samples

    NASA Astrophysics Data System (ADS)

    Adkin, Roy C.; Bruce, James I.; Pearson, Victoria K.

    2015-04-01

    Organic compounds in extraterrestrial samples have mostly been elucidated by destructive analytical techniques therefore information regarding spatial relationships between minerals and organic species is lost. Minerals form under specific chemical and physical conditions so organic compounds associated with these minerals are likely to have formed under the same conditions. It is therefore possible to infer in which cosmological provinces their chemical evolution took place. We will describe progress towards developing fluorescent sensors that may resolve spatial discrimination. Lanthanide elements such as europium and terbium produce well defined line-like, high intensity and long lived fluorescent emissions. Interactions with organic molecules may alter the luminescent emission characteristics. The lanthanide atom needs to be rendered chemically inert but must remain susceptible to these organic molecule interactions. An organic ligand must be employed to attain this. DOTA (1,4,7,10-tetraazacyclododecanetetracetic acid) was chosen as a plausible organic ligand because its structure, a tetra-substituted cyclen ring, and ability to chelate are well characterized. It is also commercially available. Fluorescent lanthanide-DOTA complexes are used in many biological and analytical imaging applications so it is logical to investigate their applicability to fluorimetric analysis of extraterrestrial organics. Lanthanide-DOTA complexes are very stable because the lanthanide metal atom is enveloped within the DOTA structure. Experimental procedures were designed to investigate lanthanide/analyte interactions and their effect upon fluorescent emissions. A range of compounds were chosen giving a good representation of the organics identified in extraterrestrial samples and whether they may to interact with the lanthanide metal ion. An Europium-DOTA baseline fluorescent spectrum was obtained and compared against Europium-DOTA/analyte mixtures of a range of concentrations

  20. "Molecules-in-Medicine": Peer-Evaluated Presentations in a Fast-Paced Organic Chemistry Course for Medical Students

    ERIC Educational Resources Information Center

    Kadnikova, Ekaterina N.

    2013-01-01

    To accentuate the importance of organic chemistry in development of contemporary pharmaceuticals, a three-week unit entitled "Molecules-in-Medicine" was included in the curriculum of a comprehensive one-semester four-credit organic chemistry course. After a lecture on medicinal chemistry concepts and pharmaceutical practices, students…

  1. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  2. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  3. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  4. Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Vasilyev, G.; Ostryakov, V. M.; Pavlov, A. K.; Mahaffy, P.

    2012-07-01

    Detection of the organic matter on Mars is one of the main goals of the future Martian landing missions. Yet, the degradation of organic molecules by cosmic ray irradiation on Mars is often ignored. We calculate the radiation dose accumulation rates from solar and galactic cosmic rays at various depths in the shallow Martian subsurface. We demonstrate that a 1-billion-year outcrop on Mars accumulates the dosage of ˜500 MGy in the top 0-2 cm and ˜50 MGy at 5-10 cm depths. We show that the preservation of ancient complex organic molecules in the shallow (˜10 cm depth) subsurface of rocks could be highly problematic if the exposure age of a geologic outcrop would exceed 300 Myr. We demonstrate that more simple organic molecules with masses ˜100 amu should have a good chance to survive in the shallow subsurface of rocks. Implications to the sampling strategy for the oncoming Martian missions are discussed.

  5. Linear Ion Traps in Space: The Mars Organic Molecule Analyzer (MOMA) Instrument and Beyond

    NASA Astrophysics Data System (ADS)

    Arevalo, Ricardo; Brinckerhoff, William; Mahaffy, Paul; van Amerom, Friso; Danell, Ryan; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Grubisic, Andrej; Goesmann, Fred; Cottin, Hervé

    2015-11-01

    Historically, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, from Venus (Pioneer Venus) to Saturn (Cassini-Huygens). However, linear ion trap (LIT) mass spectrometers have found a niche as smaller, versatile alternatives to traditional quadrupole analyzers.The core astrobiological experiment of ESA’s ExoMars Program is the Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2018 rover. The MOMA instrument is centered on a linear (or 2-D) ion trap mass spectrometer. As opposed to 3-D traps, LIT-based instruments accommodate two symmetrical ion injection pathways, enabling two complementary ion sources to be used. In the case of MOMA, these two analytical approaches are laser desorption mass spectrometry (LDMS) at Mars ambient pressures, and traditional gas chromatography mass spectrometry (GCMS). The LIT analyzer employed by MOMA also offers: higher ion capacity compared to a 3-D trap of the same volume; redundant detection subassemblies for extended lifetime; and, a link to heritage QMS designs and assembly logistics. The MOMA engineering test unit (ETU) has demonstrated the detection of organics in the presence of wt.%-levels of perchlorate, effective ion enhancement via stored waveform inverse Fourier transform (SWIFT), and derivation of structural information through tandem mass spectrometry (MS/MS).A more progressive linear ion trap mass spectrometer (LITMS), funded by the NASA ROSES MatISSE Program, is being developed at NASA GSFC and promises to augment the capabilities of the MOMA instrument by way of: an expanded mass range (i.e., 20 - 2000 Da); detection of both positive and negative ions; spatially resolved (<1 mm) characterization of individual rock core layers; and, evolved gas analysis and GCMS with pyrolysis up to 1300° C (enabling breakdown of refractory phases). The Advanced Resolution Organic Molecule Analyzer (AROMA) instrument, being developed through NASA

  6. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was

  7. Laboratory simulation of interstellar grain chemistry and the production of complex organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Valero, G. J.

    1990-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared (5000 to 500 cm(-1), 2 to 20 microns m), the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these astronomical spectra with the spectra of laboratory ices one can determine the composition and abundance of the icy materials frozen on the cold (10K) dust grains present in the interior of molecular clouds. These grains and their ice mantles may well be the building blocks from which comets are made. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, researchers present the infrared spectra of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds. The last component was incorporated into this particular experiment as a tracer of the behavior of a non-aromatic hydrocarbon. The change in the composition that results from ultraviolet photolysis of this ice mixture using a UV lamp to simulate the interstellar radiation field is shown. Photolysis produces CO, CO2, CH4, HCO, H2CO, as well as a family of moderately volatile hydrocarbons. Less volatile carbonaceous materials are also produced. The evolution of the infrared spectrum of the ice as the sample is warmed up to room temperature is illustrated. Researchers believe that the changes are similar to those which occur as ice is ejected from a comet and warmed up by solar radiation. The warm-up sequence shows that the nitrile or iso-nitrile bearing compound

  8. One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery.

    PubMed

    Zheng, Haoquan; Zhang, Yuning; Liu, Leifeng; Wan, Wei; Guo, Peng; Nyström, Andreas M; Zou, Xiaodong

    2016-01-27

    Many medical and chemical applications require target molecules to be delivered in a controlled manner at precise locations. Metal-organic frameworks (MOFs) have high porosity, large surface area, and tunable functionality and are promising carriers for such purposes. Current approaches for incorporating target molecules are based on multistep postfunctionalization. Here, we report a novel approach that combines MOF synthesis and molecule encapsulation in a one-pot process. We demonstrate that large drug and dye molecules can be encapsulated in zeolitic imidazolate framework (ZIF) crystals. The molecules are homogeneously distributed within the crystals, and their loadings can be tuned. We show that ZIF-8 crystals loaded with the anticancer drug doxorubicin (DOX) are efficient drug delivery vehicles in cancer therapy using pH-responsive release. Their efficacy on breast cancer cell lines is higher than that of free DOX. Our one-pot process opens new possibilities to construct multifunctional delivery systems for a wide range of applications.

  9. Solid-State ¹⁷O NMR studies of organic and biological molecules: Recent advances and future directions.

    PubMed

    Wu, Gang

    2016-02-01

    This Trends article highlights the recent advances published between 2012 and 2015 in solid-state (17)O NMR for organic and biological molecules. New developments in the following areas are described: (1) new oxygen-containing functional groups, (2) metal organic frameworks, (3) pharmaceuticals, (4) probing molecular motion in organic solids, (5) dynamic nuclear polarization, and (6) paramagnetic coordination compounds. For each of these areas, the author offers his personal views on important problems to be solved and possible future directions.

  10. Abundance of Cosmogenic Noble Gases as a Marker of the Organic Degradation by Cosmic Rays in the Surface Martian Rocks. Implications to MSL and Mars 2020

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Vasilyev, G. I.; Ostryakov, V. M.; Pavlov, A. K.; Mahaffy, P.

    2014-07-01

    We conducted a modeling study which links the rates of cosmogenic isotopes production with the radiation accumulation rates on Mars. We calculated the degradation level of the organic molecules at Cumberland based on the observed cosmogenic isotopes.

  11. Seleno groups control the energy-level alignment between conjugated organic molecules and metals

    SciTech Connect

    Niederhausen, Jens; Heimel, Georg; Wilke, Andreas; Rabe, Jürgen P.; Duhm, Steffen; Bürker, Christoph; Schreiber, Frank; Xin, Qian; Vollmer, Antje; Kera, Satoshi; Ueno, Nobuo; Koch, Norbert

    2014-01-07

    The charge injection from metallic electrodes into hole transporting layers of organic devices often suffers from deviations from vacuum-level alignment at the interface. Even for weakly interacting cases, Pauli repulsion causes an interface dipole between the metal and conjugated organic molecules (COMs) (so called “push-back” or “cushion” effect), which leads notoriously to an increase of the hole injection barrier. On the other hand, for chalcogenol self assembled monolayers (SAMs) on metal surfaces, chemisorption via the formation of chalcogen-metal bonds is commonly observed. In these cases, the energy-level alignment is governed by chalcogen-derived interface states in the vicinity of the metal Fermi-level. In this work, we present X-ray and ultraviolet photoelectron spectroscopy data that demonstrate that the interfacial energy-level alignment mechanism found for chalcogenol SAMs also applies to seleno-functionalized COMs. This can be exploited to mitigate the push-back effect at metal contacts, notably also when COMs with low ionization energies are employed, permitting exceedingly low hole injection barriers, as shown here for the interfaces of tetraseleno-tetracene with Au(111), Ag(111), and Cu(111)

  12. Theory of coupled hybrid inorganic/organic systems: Excitation transfer at semiconductor/molecule interfaces

    NASA Astrophysics Data System (ADS)

    Specht, Judith; Verdenhalven, Eike; Theuerholz, Sverre; Knorr, Andreas; Richter, Marten

    2016-03-01

    We derive a theoretical framework for describing hybrid organic-inorganic systems consisting of an ordered organic molecular layer coupled to a semiconductor quantum well (e.g., ZnO). A Heisenberg equation of motion technique based on a density matrix formalism is applied to derive dynamical equations for the composite system on a mesoscopic scale. Our theoretical approach focuses on the inuence of nonradiative Förster excitation transfer across the hybrid interface on linear optical absorption spectra. Therefore, the dielectric screening is discussed at the interface of two materials with different dielectric constants. Moreover, the Förster transfer matrix element is calculated in the point-dipole approximation. For a consistent theoretical description of both constituents (i.e., the molecular layer and the semiconductor substrate), the problem is treated in momentum space. Solving the equations of motion for the microscopic polarizations in frequency space directly leads to an equation for the frequency-dependent linear absorption coefficient. Our theoretical approach forms the basis for studying parameter regimes and geometries with optimized excitation transfer efficiency across the semiconductor/ molecule interface.

  13. Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules

    SciTech Connect

    Nikiforov, Alexander; Gamez, Jose A.; Thiel, Walter; Huix-Rotllant, Miquel; Filatov, Michael

    2014-09-28

    Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.

  14. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions.

    PubMed

    Illig, Steffen; Eggeman, Alexander S; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G; Henri Geerts, Yves; Anthony, John E; Sirringhaus, Henning

    2016-02-22

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.

  15. Microstructural control of calcite via incorporation of intracrystalline organic molecules in shells

    NASA Astrophysics Data System (ADS)

    Okumura, Taiga; Suzuki, Michio; Nagasawa, Hiromichi; Kogure, Toshihiro

    2013-10-01

    It is widely accepted that organic substances regulate or influence the structure of biominerals, but its direct evidences are not plenty. Here we show that the crystallographic microstructures in biotic calcites arise from incorporated intracrystalline organic molecules (IOMs), through a comparison between biotic calcites in shells and synthetic ones with the IOMs extracted from the shells. Although the prismatic layers of a pearl oyster (Pinctada fucata) and a pen shell (Atrina pectinata) morphologically resemble each other, the crystallographic features of constituent calcites are considerably different; in Pinctada, the IOMs are distributed inhomogeneously to form small-angle grain boundaries and associated crystal defects, whereas in Atrina, the IOMs are distributed almost homogeneously and defects are rare in the calcite crystals. We conducted in vitro calcite syntheses in the presence of the IOMs in EDTA-soluble extracts from the prisms. The IOMs in the extracts from Pinctada and Atrina were incorporated into synthetic calcites in a different manner, exhibiting defect-rich/free features as observed in the natural shells. With regard to amino acid compositions of the IOMs, the extract from Atrina has a higher proportion of acidic amino acids than that from Pinctada, implying that acidic proteins do not correlate directly to their affinity for calcium carbonate crystals.

  16. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions

    PubMed Central

    Illig, Steffen; Eggeman, Alexander S.; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G.; Henri Geerts, Yves; Anthony, John E.; Sirringhaus, Henning

    2016-01-01

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder. PMID:26898754

  17. Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers

    NASA Astrophysics Data System (ADS)

    Lassiter, B. E.; Zimmerman, J. D.; Forrest, S. R.

    2013-09-01

    We develop a partially solution-processed small molecule tandem organic photovoltaic cell using an organic/inorganic interlayer structure that provides efficient charge recombination while protecting underlying layers from degradation due to attack from solvents applied during the deposition of subsequent sub-cells. Each sub-cell consists of a functionalized squaraine (fSQ) blend donor that is cast from solution, followed by evaporation of other functional layers. The first fSQ layer is cast from chloroform, while the second is cast from a tetrahydrofuran, thereby minimizing dissolution of the relatively insoluble, underlying fullerene layer that acts to protect the first donor layer. Solvent vapor annealing increases the sub-cell performance while decreasing the damage caused by spin-coating of the second fSQ layer, both of which result from increased film crystallinity that reduces the rate of solvent penetration. The tandem cell has a power conversion efficiency of 6.2% ± 0.3% and an open circuit voltage nearly equal to the sum of the constituent sub-cells.

  18. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions

    NASA Astrophysics Data System (ADS)

    Illig, Steffen; Eggeman, Alexander S.; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G.; Henri Geerts, Yves; Anthony, John E.; Sirringhaus, Henning

    2016-02-01

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.

  19. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions.

    PubMed

    Illig, Steffen; Eggeman, Alexander S; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G; Henri Geerts, Yves; Anthony, John E; Sirringhaus, Henning

    2016-01-01

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder. PMID:26898754

  20. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+).

    PubMed

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl(3)(+) was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl(3)(+) could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl(3)(+) with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M+CCl(3) - HCl](+) for aromatic hydrocarbons, [M - OH](+) for saturated cyclic ether, ketone, and alcoholic compounds, [M - H](+) ion for monoterpenes, M(·+) for sesquiterpenes, [M - CH(3)CO](+) for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl(3)(+) were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds. PMID:21952897

  1. Self-organization of surfactant molecules on solid surface: an STM study of sodium alkyl sulfonates [rapid communication

    NASA Astrophysics Data System (ADS)

    Yin, Xiu-Li; Wan, Li-Jun; Yang, Zheng-Yu; Yu, Jia-Yong

    2005-02-01

    Adsorption and self-organization of sodium alkyl sulfonates (STS and SHS) on HOPG have been studied by using in situ scanning tunneling microscopy (STM). Both SHS and STS molecules adsorb on HOPG surface and form long-range well-ordered monolayers. The molecular rows and the axes of alkyl chain of the molecules cross each other at angles of 60° and 90° in the STS and SHS layers, respectively. Molecular details such as sulfonate functional group (head) and alkyl chain are clearly imaged. The neighboring molecules in different rows form a "head to head" configuration. Structural models for the molecular arrangement of the two adlayers are proposed.

  2. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; Dickie, Diane A.; Yang, Jianzhong; Quinnett, Rachel; Rack, Jeffrey R.; Qin, Yang

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  3. Chemistry of small organic molecules on snow grains: the applicability of artificial snow for environmental studies.

    PubMed

    Kurková, Romana; Ray, Debajyoti; Nachtigallová, Dana; Klán, Petr

    2011-04-15

    The utilization of artificial snow for environmentally relevant (photo)chemical studies was systematically investigated. Contaminated snow samples were prepared by various methods: by shock freezing of the aqueous solutions sprayed into liquid nitrogen or inside a large walk-in cold chamber at -35 °C, or by adsorption of gaseous contaminants on the surface of artificially prepared pure or natural urban snow. The specific surface area of artificial snow grains produced in liquid nitrogen was determined using valerophenone photochemistry (400-440 cm(2) g(-1)) to estimate the surface coverage by small hydrophobic organic contaminants. The dynamics of recombination/dissociation (cage effect) of benzyl radical pairs, photochemically produced from 4-methyldibenzyl ketone on the snow surface, was investigated. The initial ketone loading, c = 10(-6)-10(-8) mol kg(-1), only about 1-2 orders of magnitude higher than the contaminant concentrations commonly found in nature, was already well below monolayer coverage. We found that the efficiency of out-of-cage reactions decreased at much higher temperatures than those previously determined for frozen solutions; however, the cage effect was essentially the same no matter what technique of snow production or ketone deposition/uptake was used, including the experiments with collected natural snow. The experimental observation that the contaminant molecules are initially self-associated even at the lowest concentrations was supported by DFT calculations. We conclude that, contrary to frozen aqueous solutions, in which the impurities reside in a 3D cage (micropocket), contaminant molecules located on the artificial snow grain surface at low concentrations can be visualized in terms of a 2D cage. Artificial snow thus represents a readily available study matrix that can be used to emulate the natural chemical processes of trace contaminants occurring in natural snow.

  4. In situ patterning of organic molecules in aqueous solutions using an inverted electron-beam lithography system

    NASA Astrophysics Data System (ADS)

    Miyazako, Hiroki; Ishihara, Kazuhiko; Mabuchi, Kunihiko; Hoshino, Takayuki

    2016-06-01

    A method for in situ controlling the detachment and deposition of organic molecules such as sugars and biocompatible polymers in aqueous solutions by electron-beam (EB) scan is proposed and evaluated. It was demonstrated that EB irradiation could detach 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers from a silicon nitride membrane. Moreover, organic molecules such as cationic polymers and sugars could be deposited on the membrane by EB irradiation. Spatial distributions of scattered electrons were numerically simulated, and acceleration voltage dependences of the detachment and deposition phenomena were experimentally measured. The simulations and experimental results suggest that the detachment of MPC polymers is mainly due to electrical effects of primary electrons, and that the deposition of organic molecules is mainly due to chemical reactions induced by primary electrons. In view of these findings, the proposed method can be applied to in situ and nanoscale patterning such as the fabrication of cell scaffolds.

  5. Proazaphosphatranes: Versatile molecules with applications in fuel cell technology, biodiesel production and important organic transformations

    NASA Astrophysics Data System (ADS)

    Wadhwa, Kuldeep

    In recent years proazaphosphatranes of type P(RNCH2CH 2)3N have proven their synthetic utility as catalysts and as stoichiometric bases in a variety of organic transformations. Several reports from our group appeared in which the use of proazaphosphatranes for the activation of the silicon to synthesize useful organic intermediates. Herein we report the use of proazaphosphatranes to synthesize various useful small organic molecules by the activation of Si-O and Si-C bonds, along with efforts to gain evidence for silicon group activation. We previously demonstrated that a phosphatranium cation for which the counter anion is nitrate, is an excellent catalyst for aza- and thia-Michael reactions. Evidence was presented that such a nitrate salt in which the cation was bound to a solid support was superior to a commercially available nitrate anion exchange resin. These results prompted us to chemically bind phosphatranium salts to NafionRTM membrane supports to function as nitrate and hydroxide ion conducting membranes for fuel cell applications. Here we report the synthesis of a novel anion exchange fuel cell membrane by chemically attaching proazaphosphatranium and phosphatranium cations under microwave conditions to the sulfonic groups of Nafion-F RTM and the use of solid-state NMR techniques to determine the structure and composition of this anion exchange membrane. A thermally and air stable derivative of a proazaphosphatrane i.e., a benzyl azidoproazaphosphatrane, was discovered in our laboratory which was shown to be an excellent catalyst for biodiesel synthesis via the transesterification of soybean oil and for other Lewis base- catalyzed important organic transformations. However, the heterogeneous analog i.e., a Merrifield resin-bound azidoproazaphosphatrane, was found to be deactivated after 11 cycles for the transesterification of soybean oil. We report here an attempted synthesis of a TeflonRTM - and NafionRTM-bound azidoproazaphosphatrane. Such a solid

  6. The influence of prebiotic-type organic molecules on the crystallization of Al and Mg hydroxides.

    PubMed

    Costanzo, P M; Laszlo, P

    1988-01-01

    It is now well accepted that clays could have concentrated prebiotic organic molecules, protected them from UV radiation and served as templates and catalysts in their prebiotic evolution. A complementary question is: How did prebiotic organics in the oceans, in ground water, or in hydrothermal solutions affect the formation and inorganic evolution of oxides, hydroxides, and clay minerals? In this study predominantly amorphous Al oxyhydroxides (Al gels) and crystalline Mg hydroxyoxides were synthesized, and then crystallized and recrystallized respectively, to Al and Mg hydroxides via wet and dry (w/d) cycling using both water and organic solutions. The products that resulted were examined using IR spectroscopy and X-ray diffraction (XRD). XRD scans of the products formed by w/d cycling of the Al gels with either water or 0.1 M aqueous solutions of methanol or formaldehyde showed that bayerite (alpha Al2O3) was the major phase formed. The acetonitrile treated sample exhibited the most defined XRD peaks, and no crystalline phase could be observed by XRD of the 0.1 M formamide solution treated sample. Cycling the Mg hydroxyoxide with water, or 0.1 M solutions of methanol, formamide, formaldehyde, or acetonitrile resulted in the formation of brucite (Mg(OH)2) (in varying amounts) and of three unidentified phases. One unidentified phase, 'phase II', was observed in the formaldehyde cycled sample (and tentatively identified in the methanol and formamide cycled samples), 'phase III' in the formamide and formaldehyde cycled sample, and 'phase IV' in only the formaldehyde. XRD peaks with a spacing of approximately 11.5 Angstrom (assigned to phase III) suggest intercalation of formamide and formaldehyde into the interlayer spaces of the brucite. Phosphate treatment, prior to w/d cycling with water, and also with the above mentioned organics, while totally preventing subsequent formation of any crystalline Al hydroxide, enhanced the formation of Mg phases, shown by XRD data

  7. Enantiomeric derivatization on the Mars Organic Molecule Analyzer (MOMA) experiment aboard ExoMars 2018: how to unravel martian chirality

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Buch, A.; Szopa, C.; Morisson, M.; Grand, N.; Raulin, F.; Brinckerhoff, W.

    2015-10-01

    The origin of homochirality in life on Earth remains unknown. The answer to this question lies in the study of chirality elsewhere in the Solar System. The Sample Analysis at Mars (SAM) experiment aboard Curiosity established the presence of organic molecules indigenous to a clay-rich sample on Mars [1]. However, SAM does not have the ability to separate between the enantiomers of potential medium- or high- molecular weight organic molecules. One of the wet chemistry experiments to be used in the MOMA instrument of the Exomars mission is designed for the extraction and identification of refractory organic chemical components in solid samples using gas chromatography-mass spectrometry (GCMS), while keeping the chiral center of the molecules intact [2]. This derivatization technique, using dimethylformamide dimethylacetal (DMF-DMA) as a reagent, will allow MOMA to separate the enantiomers of molecules of interest for astrobiology, such as amino acids, sugars or carboxylic acids. We present here the results of laboratory experiments which display the feasability and limitations of the detection of an enantiomeric excess of complex organic molecules in various analog samples, depending on the mineralogy of the Mars analog solid sample.

  8. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    NASA Astrophysics Data System (ADS)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  9. On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes

    SciTech Connect

    Moreira, Rodrigo A.; Melo, Celso P. de

    2014-09-28

    Based on a quantum chemical valence formalism that allows the rigorous construction of best-localized molecular orbitals on specific parts of an extended system, we examined the separability of individual components of model systems relevant to the description of electron transport in molecular devices. We started by examining how to construct the maximally localized electronic density at the tip of a realistic model of a gold electrode. By varying the number of gold atoms included in the local region where to project the total electronic density, we quantitatively assess how many molecular orbitals are entirely localized in that region. We then considered a 1,4-benzene-di-thiol molecule connected to two model gold electrodes and examined how to localize the electronic density of the total system in the extended molecule, a fractional entity comprising the organic molecule plus an increasing number of the closest metal atoms. We were able to identify in a rigorous manner the existence of three physically different electronic populations, each one corresponding to a distinct set of molecular orbitals. First, there are those entirely localized in the extended molecule, then there is a second group of those completely distributed in the gold atoms external to that region, and, finally, there are those delocalized over the entire system. This latter group can be associated to the shared electronic population between the extended molecule and the rest of the system. We suggest that the treatment here presented could be useful in the theoretical analysis of the electronic transport in nanodevices whenever the use of localized molecular states are required by the physics of the specific problem, such as in cases of weak coupling and super-exchange limits.

  10. Resolving the influence of nitrogen abundances on sediment organic matter in macrophyte-dominated lakes, using fluorescence spectroscopy.

    PubMed

    Yao, Xin; Wang, Shengrui; Jiao, Lixin; Yan, Caihong; Jin, Xiangcan

    2015-01-01

    A controlled experiment was designed to resolve the influence of nitrogen abundance on sediment organic matters in macrophyte-dominated lakes using fluorescence analysis. Macrophyte biomass showed coincident growth trends with time, but different variation rates with nitrogen treatment. All plant growth indexes with nitrogen addition (N, NH4Cl 100, 200, 400mg/kg, respectively) were lower than those of the control group. Four humic-like components, two autochthonous tryptophan-like components, and one autochthonous tyrosine-like component were identified using the parallel factor analysis model. The results suggested that the relative component changes of fluorescence in the colonized sediments were in direct relation to the change of root biomass with time. In the experiment, the root formation parameters of the plants studied were significantly affected by adding N in sediments, which may be related to the reason that the root growth was affected by N addition. Adding a low concentration of N to sediments can play a part in supplying nutrients to the plants. However, the intensive uptake of NH4(+) may result in an increase in the intracellular concentration of ammonia, which is highly toxic to the plant cells. Hence, our experiment results manifested that organic matter cycling in the macrophyte-dominated sediment was influenced by nitrogen enrichment through influencing vegetation and relevant microbial activity. PMID:25597678

  11. Optical Signature of Charge Transfer in n-Type Carbon Nanotube Transistors Doped with Printable Organic Molecules

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryo; Matsuzaki, Satoki; Yanagi, Kazuhiro; Takenobu, Taishi

    2012-12-01

    Single-walled carbon nanotubes (SWCNTs) are known to be p-type semiconductors, due to unintentional hole doping. Therefore, air-stable electron dopants are important for the fabrication of logic circuits. Recently, n-type characteristics of SWCNT film transistors have been achieved by using several types of donative organic molecules, and these molecular dopants have opened a route for application. However, it is still unclear whether the cause of n-type operation is the Fermi level shift of SWCNTs or the lowering of the Schottky barrier for electrons. In this study, we found the evidences of electron transfer from organic molecules to SWCNTs using optical measurements.

  12. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries.

    PubMed

    Hubbell, Margaret C; Semotiuk, Andrew J; Thorpe, Richard B; Adeoye, Olayemi O; Butler, Stacy M; Williams, James M; Khorram, Omid; Pearce, William J

    2012-11-15

    Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility. PMID:22992677

  13. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries.

    PubMed

    Hubbell, Margaret C; Semotiuk, Andrew J; Thorpe, Richard B; Adeoye, Olayemi O; Butler, Stacy M; Williams, James M; Khorram, Omid; Pearce, William J

    2012-11-15

    Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility.

  14. Small-molecule organic solar cells with multiple-layer donor

    NASA Astrophysics Data System (ADS)

    Arisawa, Kenta; Harafuji, Kenji

    2015-09-01

    Small-molecule organic solar cells (OSCs) with a multifunction three-layer donor are experimentally investigated to achieve higher power conversion efficiency. The proposed OSC has an indium tin oxide (ITO, anode)/three-layer donor/fullerene (C60, acceptor, 40 nm)/bathocuproine (BCP, cathode buffer, 10 nm)/Ag (cathode, 100 nm) structure. The three-layer donor is composed of 3-nm-thick pentacene/20-nm-thick copper phthalocyanine (CuPc)/5-nm-thick aluminum phthalocyanine chloride (ClAlPc). The OSC achieves a power conversion efficiency of 1.79%, which is 1.7 times as large as that for an OSC with a single-layer donor of 20-nm-thick CuPc. Atomic force microscopy observation is carried out to clarify in detail the surface morphology at typical organic layers. The acceptor C60 is in contact not only with ClAlPc but also with CuPc due to the vertical and wall-like growth of the ClAlPc layer. The open-circuit voltage for the OSC with the ClAlPc/C60 contact is 0.56 V, compared with 0.47 V for the OSC with the CuPc/C60 contact. The thin pentacene layer is uniformly grown on the ITO and serves to achieve a high short-circuit current density Jsc by lowering the barrier height for hole transport between ITO and CuPc. Jsc for the OSC with the thin pentacene layer is 5.60 mA/cm2, compared with 4.32 mA/cm2 for the OSC without the thin pentacene layer.

  15. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyls play an important role in the chemistry of natural organic molecules (NOM) in the environment, and their behavior is dependent on local structural environment within the macromolecule. We studied the structural environments of carboxyl groups in dissolved NOM from the Pine Barrens (New Jersey, USA), and IHSS NOM isolates from soils and river waters using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. It is well established that the energies of the asymmetric stretching vibrations of the carboxylate anion (COO -) are sensitive to the structural environment of the carboxyl group. These energies were compiled from previous infrared studies on small organic acids for a wide variety of carboxyl structural environments and compared with the carboxyl spectral features of the NOM samples. We found that the asymmetric stretching peaks for all NOM samples occur within a narrow range centered at 1578 cm -1, suggesting that all NOM samples examined primarily contain very similar carboxyl structures, independent of sample source and isolation techniques employed. The small aliphatic acids containing hydroxyl (e.g., D-lactate, gluconate), ether/ester (methoxyacetate, acetoxyacetate), and carboxylate (malonate) substitutions on the α-carbon, and the aromatic acids salicylate ( ortho-OH) and furancarboxylate ( O-heterocycle), exhibit strong overlap with the NOM range, indicating that similar structures may be common in NOM. The width of the asymmetric peak suggests that the structural heterogeneity among the predominant carboxyl configurations in NOM is small. Changes in peak area with pH at energies distant from the peak at 1578 cm -1, however, may be indicative of a small fraction of other aromatic carboxyls and aliphatic structures lacking α-substitution. This information is important in understanding NOM-metal and mineral-surface complexation, and in building appropriate structural and mechanistic models of humic materials.

  16. The Correlation of Physical Properties of Organic Molecules with Computed Molecular Surface Areas

    NASA Astrophysics Data System (ADS)

    Mebane, Robert C.; Schanley, Shannon A.; Rybolt, Thomas R.; Bruce, Chrystal D.

    1999-05-01

    Considerable interest has been shown in the calculation of molecular surface areas because molecular behavior is influenced by the outer surface of molecules. The objective of this paper is to show that a student's understanding of molecular properties can be enhanced with the study of molecular surface areas obtained from readily available molecular modeling software. We develop correlations using molecular surface areas (A), or solvent-accessible surface areas (S), for various organic compounds and a variety of physical properties that are sensitive to intermolecular forces of attraction. For n-alkanes, heat of vaporization (DHvap) and the ratio of critical temperature to the square root of critical pressure (Tc/Pc0.5) give linear relationships with A. A linear correlation is also observed between the logarithm of molal aqueous solubility (ln Sol) and the S of ketones and ethyl esters. Distinct curves are obtained when the boiling points of n-alkanes and alcohols are plotted versus their respective solvent-accessible surface areas. The alcohol curve tends to converge with the n-alkane curve with increasing surface area, demonstrating the increasing hydrocarbon contribution to the boiling point of alcohols.

  17. Single Photon Initiated Decomposition Rearrangement Reactions (spidrr) of Organic Molecules Mediated by the Ni+ Cation

    NASA Astrophysics Data System (ADS)

    Bellert, Darrin; Mansell, Adam; Theis, Zachary; Gutierrez, Michael

    2016-06-01

    The Bellert group at Baylor University has developed a novel method for performing single photon initiated decomposition rearrangement reactions (SPIDRR) of organic molecules mediated by a transition metal cation. The advantage that SPIDRR affords is the direct measurement of first order microcanonical rate constants, k(E), determined at resolved internal energies. Furthermore, the SPIDRR technique measures kinetic details of exothermic reactions where product production is limited only by submerged activation barriers (kinetic barriers that are at energies below the separated reactant limit). Thus, such reactions approach unit efficiency, are thermodynamically driven, and are of greater relevance to catalytic research. Direct measurements of k(E) values extend to isotopically labelled species that provide direct measurement of the kinetic isotope effect (KIE), furnishing unique insight into the mechanistic details of a reaction. This talk presents results from the visible photon initiated, Ni+ induced decarbonylation reaction of propionaldehyde. Here a rather unique energy dependent behavior of the measured rate constants was observed and attributed to a dynamic competition between parallel reaction coordinates available to the photo-excited precursor. RRKM calculations in concert with high level DFT is used to support and further experimental results.

  18. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  19. Small Organic Molecules in Pre-Cometary Ices: The Origins of Genetic Material

    NASA Astrophysics Data System (ADS)

    Bredehöft, J. H.; Meierhenrich, U. J.; Thiemann, W.; Rosenbauer, H.; Nuevo, M.; Muñoz Caro, G. M.; D'Hendecourt, L.

    Speaking of genetic material, one thinks of DNA first. An understanding of its fairly complex structure, composed of the sugar deoxyribose, phosphorous acid, and the purine- and pyrimidine-bases, adenine, guanine, cytosine, and thymine has led to the abandonment of theories of its spontaneous creation. In recent times, a number of theories regarding the evolutionary precursors of DNA have been presented. Namely these are the theories of the `RNA-world' (1) and a theory about the precursors of RNA, the so called `PNA-world' (2). In laboratory simulations of inter- and circumstellar pre-cometary ice analogues a number of organic molecules have been identified that corroborate these theories about the evolution of genetic material. Namely these are specific amino acids, which form the necessary material of the backbone of PNA, and a number of purine- and pyrimidine-bases which may have formed the elements of the code itself (3). The delivery of these constituents to earth via impact scenarios of mainly carbonaceous chondrites has also been confirmed in the case of the Murchinson meteorite (4, 5). (1) Gilbert, W., Nature 319, 618 (1986) (2) Egholm, M., Burchardt, O. et al., Nature 365, 566 (1993) (3) Bredehoeft, J.H., diploma, Univ. of Bremen, Germany, 2004. (4) Van der Welden, W. & Schwartz, A.W. , Geochim. cosmochim. Acta 41, 961-968 (1977) (5) Stoks, P.G. & Schwartz A.W., Nature 282, 709-710 (1979)

  20. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  1. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity.

    PubMed

    Zhang, Xiao-Bing; Wang, Zidong; Xing, Hang; Xiang, Yu; Lu, Yi

    2010-06-15

    The catalytic beacon has emerged as a general platform for sensing metal ions and organic molecules. However, few reports have taken advantage of the true potential of catalytic beacons in signal amplification through multiple enzymatic turnovers, as existing designs require either equal concentrations of substrate and DNAzyme or an excess of DNAzyme in order to maintain efficient quenching, eliminating the excess of substrate necessary for multiple turnovers. On the basis of the large difference in the melting temperatures between the intramolecular molecular beacon stem and intermolecular products of identical sequences, we here report a general strategy of catalytic and molecular beacon (CAMB) that combines the advantages of the molecular beacon for highly efficient quenching with the catalytic beacon for amplified sensing through enzymatic turnovers. Such a CAMB design allows detection of metal ions such as Pb(2+) with a high sensitivity (LOD = 600 pM). Furthermore, the aptamer sequence has been introduced into DNAzyme to use the modified CAMB for amplified sensing of adenosine with similar high sensitivity. These results together demonstrate that CAMB provides a general platform for amplified detection of a wide range of targets.

  2. Tandem organic photovoltaics using both solution and vacuum deposited small molecules

    NASA Astrophysics Data System (ADS)

    Lassiter, Brian E.; Zimmerman, Jeramy D.; Panda, Anurag; Xiao, Xin; Forrest, Stephen R.

    2012-08-01

    We demonstrate a tandem organic photovoltaic cell incorporating solution- and vacuum-deposited small molecules as the active layers. A blue and green-absorbing boron subphthalocyanine chloride:C70 graded heterojunction (HJ) sub-cell is combined with a green and red-absorbing functionalized squaraine/C70 bilayer HJ sub-cell, resulting in a tandem cell with a wavelength response from 350 nm to 800 nm. The efficiency of the cells depends on process conditions such as solvent annealing, resulting in nanocrystalline morphology that leads to improved charge and exciton transport compared with un-annealed cells. The incorporation of C70 in both sub-cells leads to an increase of short-circuit current by at least 30% compared to analogous cells using C60. The optimized power conversion efficiency of the tandem cell is 6.6% ± 0.1%, with an open-circuit voltage of 1.97 ± 0.1 V under simulated 1 sun, AM 1.5G illumination. The tandem cell voltage is equal to the sum of the constituent sub-cells, indicating that the transparent, Ag nanoparticle/MoO3 compound charge recombination layer interposed between the cells is nearly lossless.

  3. The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing

    PubMed Central

    Taylor, Rupert G. D.; Bezzu, C. Grazia; Carta, Mariolino; Msayib, Kadhum J.; Walker, Jonathan; Short, Rhys; Kariuki, Benson M.

    2016-01-01

    Abstract Efficient reactions between fluorine‐functionalised biphenyl and terphenyl derivatives with catechol‐functionalised terminal groups provide a route to large, discrete organic molecules of intrinsic microporosity (OMIMs) that provide porous solids solely by their inefficient packing. By altering the size and substituent bulk of the terminal groups, a number of soluble compounds with apparent BET surface areas in excess of 600 m2 g−1 are produced. The efficiency of OMIM structural units for generating microporosity is in the order: propellane>triptycene>hexaphenylbenzene>spirobifluorene>naphthyl=phenyl. The introduction of bulky hydrocarbon substituents significantly enhances microporosity by further reducing packing efficiency. These results are consistent with findings from previously reported packing simulation studies. The introduction of methyl groups at the bridgehead position of triptycene units reduces intrinsic microporosity. This is presumably due to their internal position within the OMIM structure so that they occupy space, but unlike peripheral substituents they do not contribute to the generation of free volume by inefficient packing. PMID:26751824

  4. A benzothiadiazole end capped donor-acceptor based small molecule for organic electronics.

    PubMed

    Sonar, Prashant; Williams, Evan L; Singh, Samarendra P; Manzhos, Sergei; Dodabalapur, Ananth

    2013-10-28

    A benzothiadiazole end-capped small molecule 3,6-bis(5-(benzo-[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-2,5-bis(2-butyloctyl)pyrrolo-[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPP-BTZ) using a fused aromatic moiety DPP (at the centre) is designed and synthesized. BO-DPP-BTZ is a donor–acceptor–donor (D–A–D) structure which possesses a band gap of 1.6 eV and exhibits a strong solid state ordering inferred from ~120 nm red shift of the absorption maxima from solution to thin film. Field-effect transistors utilizing a spin coated thin film of BO-DPP-BTZ as an active layer exhibited a hole mobility of 0.06 cm(2) V(-1) s(-1). Solution-processed bulk heterojunction organic photovoltaics employing a blend of BO-DPP-BTZ and [70]PCBM demonstrated a power conversion efficiency of 0.9%.

  5. Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.

    PubMed

    Tych, Katarzyna M; Hoffmann, Toni; Batchelor, Matthew; Hughes, Megan L; Kendrick, Katherine E; Walsh, Danielle L; Wilson, Michael; Brockwell, David J; Dougan, Lorna

    2015-04-01

    Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.

  6. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction.

    PubMed

    Wang, Ti; Kafle, Tika R; Kattel, Bhupal; Liu, Qingfeng; Wu, Judy; Chan, Wai-Lun

    2016-01-01

    The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening. PMID:27356623

  7. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction

    PubMed Central

    Wang, Ti; Kafle, Tika R.; Kattel, Bhupal; Liu, Qingfeng; Wu, Judy; Chan, Wai-Lun

    2016-01-01

    The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening. PMID:27356623

  8. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Ti; Kafle, Tika R.; Kattel, Bhupal; Liu, Qingfeng; Wu, Judy; Chan, Wai-Lun

    2016-06-01

    The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening.

  9. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction.

    PubMed

    Wang, Ti; Kafle, Tika R; Kattel, Bhupal; Liu, Qingfeng; Wu, Judy; Chan, Wai-Lun

    2016-06-30

    The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening.

  10. Spin-polarization inversion at small organic molecule/Fe{sub 4}N interfaces: A first-principles study

    SciTech Connect

    Zhang, Qian; Mi, Wenbo

    2015-09-21

    We report the first-principles calculations on the electronic structure and simulation of the spin-polarized scan tunneling microscopy graphic of the small organic molecules (benzene, thiophene, and cyclopentadienyl)/Fe{sub 4}N interfaces. It is found that the plane of benzene and thiophene keeps parallel to Fe{sub 4}N surface, while that of cyclopentadienyl does not. For all the systems, the organic molecules bind strongly with Fe{sub 4}N. Due to the hybridization between molecule p{sub z} orbitals and d orbitals of Fe, i.e., Zener interaction, all the three systems realize the spin-polarization inversion, whereas the spatial spin-polarization inversion distribution shows different intensities influenced by the competition between the spin polarization of C p{sub z} and Fe d states.

  11. Impact of local compressive stress on the optical transitions of single organic dye molecules

    NASA Astrophysics Data System (ADS)

    Stöttinger, Sven; Hinze, Gerald; Diezemann, Gregor; Oesterling, Ingo; Müllen, Klaus; Basché, Thomas

    2014-03-01

    The ability to mechanically control the optical properties of individual molecules is a grand challenge in nanoscience and could enable the manipulation of chemical reactivity at the single-molecule level. In the past, light has been used to alter the emission wavelength of individual molecules or modulate the energy transfer quantum yield between them. Furthermore, tensile stress has been applied to study the force dependence of protein folding/unfolding and of the chemistry and photochemistry of single molecules, although in these mechanical experiments the strength of the weakest bond limits the amount of applicable force. Here, we show that compressive stress modifies the photophysical properties of individual dye molecules. We use an atomic force microscope tip to prod individual molecules adsorbed on a surface and follow the effect of the applied force on the electronic states of the molecule by fluorescence spectroscopy. Applying a localized compressive force on an isolated molecule induces a stress that is redistributed throughout the structure. Accordingly, we observe reversible spectral shifts and even shifts that persist after retracting the microscope tip, which we attribute to transitions to metastable states. Using quantum-mechanical calculations, we show that these photophysical changes can be associated with transitions among the different possible conformers of the adsorbed molecule.

  12. Introducing Bond-Line Organic Structures in High School Biology: An Activity that Incorporates Pleasant-Smelling Molecules

    ERIC Educational Resources Information Center

    Rios, Andro C.; French, Gerald

    2011-01-01

    Chemical education occurs in settings other than just the chemistry classroom. High school biology courses are frequently where students are introduced to organic molecules and their importance to cellular chemistry. However, structural representations are often intimidating because students have not been introduced to the language. As part of a…

  13. Very low temperature formaldehyde reactions and the build-up of organic molecules in comets and interstellar ices

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Allamandola, L. J.; Sandford, S. A.

    1995-01-01

    We have investigated thermally promoted reactions of formaldehyde (H2CO) in very low temperature ices. No such reactions occurred in ices of pure formaldehyde. However, addition of trace amounts of ammonia (NH3) were sufficient to catalyze reactions at temperatures as low as 40 K. Similar reactions could take place in interstellar ices and in Comets and produce considerable amounts of organic molecules.

  14. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundance was assessed by utilizing a panel of cross-reactive monoclonal antibodies (mAbs) tested in this study. Characterization of multichannel autofluorescence of eosinophils permitted cell-type specific gating of granulocytes for quantification of LDMs on neutrophils and eosinophils by indirect,...

  15. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  16. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set.

  17. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants

    PubMed Central

    Albertsen, Mads; McIlroy, Simon J.; Stokholm-Bjerregaard, Mikkel; Karst, Søren M.; Nielsen, Per H.

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  18. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.

    PubMed

    Saeki, Akinori; Koizumi, Yoshiko; Aida, Takuzo; Seki, Shu

    2012-08-21

    (-1) s(-1), based on a combination of flash-photolysis TRMC and transient absorption spectroscopy (TAS) measurements. Single-crystal rubrene showed an ambipolarity with anisotropic charge carrier transport along each crystal axis on the nanometer scale. Finally, we describe the charge carrier mobility of a self-assembled nanotube consisting of a large π-plane of hexabenzocoronene (HBC) partially appended with an electron acceptor. The local (intratubular) charge carrier mobility reached 3 cm(2) V(-1) s(-1) for the nanotubes that possessed well-ordered π-stacking, but it dropped to 0.7 cm(2) V(-1) s(-1) in regions that contained greater amounts of the electron acceptor because those molecules reduced the structural integrity of π-stacked HBC arrays. Interestingly, the long-range (intertubular) charge carrier mobility was on the order of 10(-4) cm(2) V(-1) s(-1) and monotonically decreased when the acceptor content was increased. These results suggest the importance of investigating charge carrier mobilities by frequency-dependent charge carrier motion for the development of more efficient organic electronic devices. PMID:22676381

  19. Two-photon photoemission of organic semiconductor molecules on silver(111)

    NASA Astrophysics Data System (ADS)

    Yang, Aram

    Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes. In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a few monolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal. Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.

  20. Diamondoid Structure in a Metal-Organic Framework of Fe4 Single-Molecule Magnets.

    PubMed

    Rigamonti, Luca; Cotton, Carri; Nava, Andrea; Lang, Heinrich; Rüffer, Tobias; Perfetti, Mauro; Sorace, Lorenzo; Barra, Anne-Laure; Lan, Yanhua; Wernsdorfer, Wolfgang; Sessoli, Roberta; Cornia, Andrea

    2016-09-12

    A 3D metal-organic framework (MOF) having single-molecule magnet (SMM) linkers was prepared in crystalline form by using a tetrairon(III) complex functionalised with two divergent pyridyl groups, namely [Fe4 (pPy)2 (dpm)6 ] (1; H3 pPy=2-(hydroxymethyl)-2-(pyridin-4-yl)propane-1,3-diol, Hdpm=dipivaloylmethane). Reaction of 1 with silver(I) perchlorate afforded {[Fe4 (pPy)2 (dpm)6 ]2 Ag}ClO4 (2), which crystallises in a cubic face-centred lattice and exhibits two interlocked diamondoid networks. In 2, the SMMs act as linear ditopic synthons, and silver(I) ions as tetrahedral nodes coordinated by four pyridyl nitrogen atoms. The magnetic properties of 1 (S=5 and D≈-0.4 cm(-1) in the ground spin state) are largely preserved in 2, which shows slow magnetic relaxation with an anisotropy barrier of Ueff /kB =11.46(10) K in zero field and 14.25(8) K in an applied field of 1 kOe. However, crystal symmetry triggers highly noncollinear magnetic anisotropy contributions oriented at 109.47° from each other along the threefold axes of AgN4 tetrahedra, a unique scenario fully confirmed by a single-crystal cantilever torque magnetometry investigation. Magnetisation curves down to 0.03 K demonstrated the occurrence of a wide hysteresis loop when the magnetic field was swept along one of the four Ag-N bonds. By symmetry, the crystalline compound can then be persistently magnetised parallel or antiparallel to the four main diagonals of the unit cell, although the crystals have no overall second-order anisotropy. PMID:27356278

  1. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule.

    PubMed

    Yoshida, Tomoyuki; Shiroshima, Tomoko; Lee, Sung-Jin; Yasumura, Misato; Uemura, Takeshi; Chen, Xigui; Iwakura, Yoichiro; Mishina, Masayoshi

    2012-02-22

    Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.

  2. Two-photon Photoemission of Organic Semiconductor Molecules on Ag(111)

    SciTech Connect

    Yang, Aram

    2008-05-01

    Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes.In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a fewmonolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal.Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.

  3. Supramolecular Organization of Dye Molecules in Zeolite L Channels: Synthesis, Properties, and Composite Materials.

    PubMed

    Cao, Pengpeng; Khorev, Oleg; Devaux, André; Sägesser, Lucie; Kunzmann, Andreas; Ecker, Achim; Häner, Robert; Brühwiler, Dominik; Calzaferri, Gion; Belser, Peter

    2016-03-14

    Sequential insertion of different dyes into the 1D channels of zeolite L (ZL) leads to supramolecular sandwich structures and allows the formation of sophisticated antenna composites for light harvesting, transport, and trapping. The synthesis and properties of dye molecules, host materials, composites, and composites embedded in polymer matrices, including two- and three-color antenna systems, are described. Perylene diimide (PDI) dyes are an important class of chromophores and are of great interest for the synthesis of artificial antenna systems. They are especially well suited to advancing our understanding of the structure-transport relationship in ZL because their core fits tightly through the 12-ring channel opening. The substituents at both ends of the PDIs can be varied to a large extent without influencing their electronic absorption and fluorescence spectra. The intercalation/insertion of 17 PDIs, 2 terrylenes, and 1 quaterrylene into ZL are compared and their interactions with the inner surface of the ZL nanochannels discussed. ZL crystals of about 500 nm in size have been used because they meet the criteria that must be respected for the preparation of antenna composites for light harvesting, transport, and trapping. The photostability of dyes is considerably improved by inserting them into the ZL channels because the guests are protected by being confined. Plugging the channel entrances, so that the guests cannot escape into the environment is a prerequisite for achieving long-term stability of composites embedded in an organic matrix. Successful methods to achieve this goal are described. Finally, the embedding of dye-ZL composites in polymer matrices, while maintaining optical transparency, is reported. These results facilitate the rational design of advanced dye-zeolite composite materials and provide powerful tools for further developing and understanding artificial antenna systems, which are among the most fascinating subjects of current

  4. Rapid heating experiments demonstrate the usefulness of organic molecules as an earthquake thermometer

    NASA Astrophysics Data System (ADS)

    Sheppard, R. E.; Polissar, P. J.; Savage, H. M.

    2012-12-01

    Measuring temperature rise due to an earthquake would elucidate the frictional characteristics of a fault during rapid slip. We developed a new paleothermometer for fault zones using the thermal maturity of organic compounds as a temperature proxy. The kinetics of these reactions are highly nonlinear, and previous experiments to constrain the kinetic parameters have only been accomplished on long time scales. We ran a series of rapid heating experiments designed to determine these parameters specifically on short time scales. Here, we focus on the kinetics of methylphenanthrenes, aromatic molecules whose pattern of methylation changes with thermal maturity. The MPI-1 thermal maturity index is a ratio of methylphenanthrene's refractory 2- and 3-methylphenanthrene isomers relative to the less stable 9- and 1-methylphenanthrene isomers, and thus increases with increasing temperature. Methylphenanthrenes are relevant to the study of fault heating as they are consistently found in faults exhumed from depths shallower than 4km. To address whether methylphenanthrenes react at earthquake rates, we conducted rapid hydrous pyrolysis experiments in a small stainless steel reactor with a carburized inner surface. For each experiment, the reactor was partially filled with water and Woodford Shale, an organic-rich, thermally immature quartzose claystone sampled in central Oklahoma. The reactor was heated for a range of times and temperatures using resistive heating coils. Temperature was controlled using an external thermocouple and a PID controller, while the temperature of the sample was recorded with an internal thermocouple. Steam pressure was monitored using a pressure transducer throughout the experiment. The expelled oil was extracted from the water contained in the reactor using a separatory funnel, and the shale fragments were crushed and extracted via sonication. Both the oil and the shale extractions were then separated using column chromatography. GCMS analysis shows

  5. Polymeric biomaterials for nerve regeneration applications: From promoting cellular organization to the delivery of bioactive molecules

    NASA Astrophysics Data System (ADS)

    Delgado-Rivera, Roberto L.

    Thousands of new cases of injury to the central nervous system (CNS) occur each year in the USA and all over the world. However, despite recent advances, at present there is no cure for the resulting paraplegia or quadriplegia. This research is directed towards engineering biomaterial platforms to promote cellular organization at the surface of polymer scaffolds that will be conducive to proper regeneration of injured CNS. In addition, the formulation of a delivery system for neuroactive molecules using polymer-based materials will be evaluated to establish its potential to treat CNS disorders. Initial studies involved the chemical modification of an electrospun nonwoven matrix of nanofibers with fibroblast growth factor 2 (FGF-2). Nanofibers alone up-regulated FGF-2, albeit to a lesser extent than nanofibers covalently modified with FGF-2. These results underscore the importance of both surface topography and growth factor presentation on cellular function. Moreover, that FGF-2 modified nanofibrillar scaffolds may demonstrate utility in tissue engineering applications for replacement and regeneration of damaged tissue following CNS injury or disease. Subsequent research efforts focused on a novel micropatterning technique called microscale plasma-initiated patterning (microPIP). This patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. FGF-2 and laminin-1 were applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. In this work it, was possible to demonstrate that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization. Finally, a microsphere system capable of encapsulating proteins while minimizing the mechanisms of protein degradation and providing a controlled release was investigated. Microspheres were comprised of

  6. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  7. Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Förstel, Marko; Kaiser, Ralf I.

    2016-01-01

    Complex organic molecules (COM) such as aldehydes, ketones, carboxylic acids, esters, and amides are ubiquitous in the interstellar medium, but traditional gas phase astrochemical models cannot explain their formation routes. By systematically exploiting on line and in situ vacuum ultraviolet photoionization coupled with reflectron time of flight mass spectrometry (PI-ReTOF-MS) and combining these data with infrared spectroscopy (FTIR), we reveal that complex organic molecules can be synthesized within interstellar ices that are condensed on interstellar grains via non-equilibrium reactions involving suprathermal hydrogen atoms at temperatures as low as 5 K. By probing for the first time specific structural isomers without their degradation (fragment-free), the incorporation of tunable vacuum ultraviolet photoionization allows for a much greater understanding of reaction mechanisms that exist in interstellar ices compared to traditional methods, thus eliminating the significant gap between observational and laboratory data that existed for the last decades. With the commission of the Atacama Large Millimeter/Submillimeter Array (ALMA), the number of detections of more complex organic molecules in space will continue to grow - including biorelevant molecules connected to the Origins of Life theme - and an understanding of these data will rely on future advances in sophisticated physical chemistry laboratory experiments.

  8. Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Nakai, Hiromi

    2015-03-01

    The harmonic solvation model (HSM), which was recently developed for evaluating condensed-phase thermodynamics by quantum chemical calculations (Nakai and Ishikawa, 2014), was applied to formation and combustion reactions of simple organic molecules. The conventional ideal gas model (IGM) considerably overestimated the entropies of the liquid molecules. The HSM could significantly improve this overestimation; mean absolute deviations for the Gibbs energies of the formation and combustion reactions were (49.6, 26.7) for the IGM and (9.7, 5.4) for the HSM in kJ/mol.

  9. Searching for amino-acid homochirality on Mars with the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Brault, A.; Szopa, C.; Claude-Geffroy, C.; Coll, P. J.; Grand, N.; Raulin, F.; Pinick, V.; Goesmann, F.

    2012-12-01

    The joint ESA-Roscosmos Exo-Mars-2018 rover mission plans to seek the signs of a past or a present life on Mars. The Mars Organic Molecule Analyzer (MOMA) experiment onboard theExoMars rover will be a key analytical tool in providing molecular information from Mars solid samples, with a specific focus on the characterization of their organic content. In this purpose, one of MOMA's main instruments is a gas chromatograph-mass spectrometer (GC-MS), which provides a unique ability to characterize a broad range of compounds and allow chemical analyses on volatile and refractory species. The challenge with the analysis of this refractory matter embedded in soil is their primary extraction before their analysis by GC-MS. Since the extraction of organic matter is not possible by liquid solvent extraction, we have developed a method based on the thermodesorption and subsequent derivatization of the organic molecules. The goal of the thermodesorption is to extract the organic matter by heating the sample quickly enough not to degrade its organic content. One of the main focuses is to determine the chirality of this organic matter, notably amino acids. Indeed, on Earth, homochirality of molecules is an indicator for the presence of life. Amino acids appear to bear only the left-handed form (L) in living system. However, other refractory compounds can raise interest: nucleobases, carboxylic acids and PAHs are among molecules supported by life as we know it, and all of them can display chirality. The intrinsic chirality of molecules being thermosensitive, the thermodesorption parameters have been adjusted to occur within a range of temperatures from 150 °C to 300 °C over a period of 30 s to 10 min, depending on the chemical compound. Under these conditions, we have shown that amino acids are not degraded and that their chirality is preserved. Once extracted, refractory molecules with labile hydrogens (e.g. amino acids, nucleobases, carboxylic acids, etc.) are derivatized

  10. Scorpionate-type coordination in MFU-4l metal-organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites.

    PubMed

    Denysenko, Dmytro; Grzywa, Maciej; Jelic, Jelena; Reuter, Karsten; Volkmer, Dirk

    2014-06-01

    Postsynthetic metal and ligand exchange is a versatile approach towards functionalized MFU-4l frameworks. Upon thermal treatment of MFU-4l formates, coordinatively strongly unsaturated metal centers, such as zinc(II) hydride or copper(I) species, are generated selectively. Cu(I)-MFU-4l prepared in this way was stable under ambient conditions and showed fully reversible chemisorption of small molecules, such as O2, N2, and H2, with corresponding isosteric heats of adsorption of 53, 42, and 32 kJ mol(-1), respectively, as determined by gas-sorption measurements and confirmed by DFT calculations. Moreover, Cu(I)-MFU-4l formed stable complexes with C2H4 and CO. These complexes were characterized by FTIR spectroscopy. The demonstrated hydride transfer to electrophiles and strong binding of small gas molecules suggests these novel, yet robust, metal-organic frameworks with open metal sites as promising catalytic materials comprising earth-abundant metal elements.

  11. Combustion of Organic Molecules by the Thermal Decomposition of Perchlorate Salts: Implications for Organics at the Mars Phoenix Scout Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Morris, R.V.; Niles, B.; Lauer, H.V.; Archer, P.D.; Sutter, B.; Boynton, W.V.; Golden, D.C.

    2009-01-01

    The Mars 2007 Phoenix Scout Mission successfully landed on May 25, 2008 and operated on the northern plains of Mars for 150 sols. The primary mission objective was to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix landed near 68 N latitude on polygonal terrain created by ice layers that are a few centimeters under loose soil materials. The Phoenix Mission is assessing the potential for habitability by searching for organic molecules in the ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix searched for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [2]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [2]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to 1000 C. Evolved gases, including any organic molecules and their fragments, are simultaneously measured by the mass spectrometer during heating. Phoenix TEGA data are still under analysis; however, no organic fragments have been identified to date in the evolved gas analysis (EGA). The MECA Wet Chemistry Lab (WCL) discovered a perchlorate salt in the Phoenix soils and a mass 32 peak evolved between 325 and 625 C for one surface sample dubbed Baby Bear [3]. The mass 32 peak is attributed to evolved O2 generated during the thermal decomposition of the perchlorate salt. Perchlorates are very strong oxidizers when heated, so it is possible that organic fragments evolved in the temperature range of 300-600 C were combusted by the O2 released during the thermal decomposition of the perchlorate salt. The byproduct of the combustion of organic molecules is CO2. There is a prominent release of CO2 between 200

  12. Lab-on-a-Chip Instrumentation and Method for Detecting Trace Organic and Bioorganic Molecules in Planetary Exploration: The Enceladus Organic Analyzer (EOA)

    NASA Astrophysics Data System (ADS)

    Butterworth, A.; Stockton, A. M.; Turin, P.; Ludlam, M.; Diaz-Aguado, M.; Kim, J.; Mathies, R. A.

    2015-12-01

    Lab-on-a-chip instrumentation is providing an ever more powerful in situ approach for detecting organic molecules relevant for chemical/biochemical evolution in our solar system obviating the cost, risk and long mission duration associated with sample return. Microfabricated analysis systems are particularly feasible when directly sampling from comet comae, or ejecta from icy moons, such as targeting organic molecules in plumes from Enceladus. Furthermore, the superb ppm to ppb sensitivity of chip analyzers, like the Enceladus Organic Analyzer (EOA), coupled with the ability to examine organics with a wide variety of functional groups enhance the probability of detecting organic molecules and determining whether they have a biological origin. The EOA is based on 20 years of research and development of microfabricated capillary electrophoresis (CE) analyzers at Berkeley that provide ppb sensitivity for a wide variety of organic molecules including amino acids, carboxylic acids, amines, aldehydes, ketones and polycyclic aromatic hydrocarbons [1]. Organic molecules are labeled with a fluorescent reagent according to their functional group in a programmable microfluidic processor [2,3] and then separated in a CE system followed by laser-induced fluorescence detection to determine molecular size and concentration. The EOA will be flown through Enceladus plumes and uses a specially designed impact plate/door to capture ice-particles. After closing the door, the material in the capture chamber is dissolved, labeled and analyzed by the microfabricated CE system. Only a few thousand 2 μm diameter particles containing ppm organic concentrations will provide an EOA detectable signal. If amino acids are detected, their chirality is determined because chirality is the best indicator of a biologically produced molecule. We have developed a flight design of this instrument for planetary exploration that is compact (16x16x12 cm), has low mass (3 kg), and requires very low power

  13. The abundance of a single domain cyclophilin in Solanaceae is regulated as a function of organ type and high temperature and not by other environmental constraints.

    PubMed

    Kiełbowicz-Matuk, Agnieszka; Rey, Pascal; Rorat, Tadeusz

    2007-11-01

    The abundance of a single domain cyclophilin (CyP), designated as SsCyP, was investigated in Solanum sogarandinum and Solanum tuberosum plants during development and in response to various environmental constraints. We show that under control conditions, SsCyP is distributed throughout the plant but in an organ-specific manner. In both Solanum species, the highest protein levels are observed in transporting organs and in tubers, and substantial amounts are noticed in open flowers and in stamens. We also show that the SsCyP abundance in leaves strongly decreases with age. In in vitro-grown plantlets of S. sogarandinum, the SsCyP gene is induced by low temperature at the transcript level but not at the protein level, indicating that post-transcriptional mechanisms control SsCyP expression under cold conditions. In in vivo-grown Solanum plants, the organ-dependent SsCyP protein distribution and abundance are not modified by cold, drought, salinity and photooxidative treatments. In contrast, the protein abundance substantially decreases in all organs of Solanum plants subjected to heat shock. We conclude that the SsCyP protein acts mainly during development and does not belong to the group of stress-induced CyPs.

  14. Synthesis of many different types of organic small molecules using one automated process.

    PubMed

    Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D

    2015-03-13

    Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis. PMID:25766227

  15. Synthesis of many different types of organic small molecules using one automated process.

    PubMed

    Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D

    2015-03-13

    Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis.

  16. Synthesis of many different types of organic small molecules using one automated process

    PubMed Central

    Li, Junqi; Ballmer, Steven G.; Gillis, Eric P.; Fujii, Seiko; Schmidt, Michael J.; Palazzolo, Andrea M. E.; Lehmann, Jonathan W.; Morehouse, Greg F.; Burke, Martin D.

    2015-01-01

    Small molecule synthesis usually relies on procedures highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even Csp3-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small molecule synthesis. PMID:25766227

  17. Molecular and structural characterization of dissolved organic matter from the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic molecules

    USGS Publications Warehouse

    Reemtsma, T.; These, A.; Linscheid, M.; Leenheer, J.; Spitzy, A.

    2008-01-01

    Dissolved organic matter isolated from the deep Atlantic Ocean and fractionated into a so-called hydrophobic (HPO) fraction and a very hydrophilic (HPI) fraction was analyzed for the first time by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to resolve the molecular species, to determine their exact masses, and to calculate their molecular formulas. The elemental composition of about 300 molecules was identified. Those in the HPO fraction (14C age of 5100 year) are very similar to much younger freshwater fulvic acids, but less aromatic and more oxygenated molecules are more frequent. This trend continues toward the HPI fraction and may indicate biotic and abiotic aging processes that this material experienced since its primary production thousands of years ago. In the HPI fraction series of nitrogenous molecules containing one, two, or three nitrogens were identified by FTICR-MS. Product ion spectra of the nitrogenous molecules suggest that the nitrogen atoms in these molecules are included in the (alicyclic) backbone of these molecules, possibly in reduced form. These mass spectrometric data suggest that a large set of stable fulvic acids is ubiquitous in all aquatic compartments. Although sources may differ, their actual composition and structure appears to be quite similar and largely independent from their source, because they are the remainder of intensive oxidative degradation processes. ?? 2008 American Chemical Society.

  18. Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation

    PubMed Central

    García-Fraile, Paula; Benada, Oldrich; Cajthaml, Tomáš; Baldrian, Petr

    2015-01-01

    Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55T, which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55T include Bryocella elongata SN10T (95.4% identity), Acidicapsa ligni WH120T (95.2% identity), and Telmatobacter bradus TPB6017T (95.0% identity), revealing that strain S55T should be classified within the phylum Acidobacteria, subdivision 1. Strain S55T is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55T corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55T = NBRC 111238T = CECT 8791T). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55T also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55T being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55T in the carbon cycle in the Picea abies coniferous forest. PMID:26546425

  19. Resin Dynamics Contributes to the NMR Line Broadening of Organic Molecules Grafted onto a Polystyrene Resin

    NASA Astrophysics Data System (ADS)

    Lippens, Guy; Chessari, Gianni; Wieruszeski, Jean-Michel

    2002-06-01

    Despite the use of high resolution magic angle spinning NMR, the NMR linewidth of anchored molecules on the commonly used Merrifield solid phase resins remains larger than that of the corresponding molecules in solution. We investigate the different mechanisms that might be at the origin of this line broadening. Experimentally, we use the CPMG method to determine the 15N relaxation times of a tethered tripeptide and show that the slow resin dynamics significantly contributes to the transverse relaxation.

  20. High-Resolution Imaging in 3-mm and 0.8-mm Bands and Abundances of Shock/Dust Related Molecules Toward the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Takano, S.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We present the results of high-angular-resolution in 3-mm and 0.8-mm band observations with ALMA in cycle-0 toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068. The physical properties of CO isotopic species, CS, CN, and shock and dust related molecules such as HNCO, CH3CN, SO, and CH3OH were estimated using rotation diagrams. We discuss the chemistry of each species, and compare the fractional abundances in the circumnuclear disk (CND) and starburst ring with those of Galactic sources in order to study the overall characteristics.

  1. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  2. Array formatting of the heat-transfer method (HTM) for the detection of small organic molecules by molecularly imprinted polymers.

    PubMed

    Wackers, Gideon; Vandenryt, Thijs; Cornelis, Peter; Kellens, Evelien; Thoelen, Ronald; De Ceuninck, Ward; Losada-Pérez, Patricia; van Grinsven, Bart; Peeters, Marloes; Wagner, Patrick

    2014-06-20

    In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different M