Science.gov

Sample records for abundant phenolic compounds

  1. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  2. Removal of phenolic compounds in soil

    SciTech Connect

    Nam-Koong, W.

    1988-01-01

    The objective of this research was an evaluation of the removal rates of phenolic compounds in soil. Seventeen phenolic compounds with similar structure were chosen. Relative toxicity of phenolic compounds also was determined by the Microtox{sup TM} System to evaluate the relationship between the toxicity of the phenolic compounds and removal rate. The amount of ATP in the soil was measured by a Lumac/3M biocounter to evaluate any effect of phenolic compounds on the soil microbial activity. Preferential removal of phenolic compounds occurred in mixtures. The presence of phenol and/or o-cresol reduced the removal rate of 2,4-dichlorophenol. Reapplications of the phenolic compounds did not change the removal rate of the compounds. There was good correlation between the relative toxicity of phenolic compounds and zero order removal rates. The less toxic phenolic compounds were removed more rapidly. No lag phase was observed for the removal of phenolic compounds when the compounds were applied to soil below the toxic level. Phenolic compounds had a significant effect on soil microbial activity based on ATP measurement. The increase in soil ATP was related to a rapid removal of phenol. A gradual decrease in soil ATP was observed with the removal of 2,4-dichlorophenol.

  3. Chemicals from coal. Utilization of coal-derived phenolic compounds

    SciTech Connect

    Song, C.; Schobert, H.H.

    1999-07-01

    This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

  4. Phenolic Compounds in Particles of Mainstream Waterpipe Smoke

    PubMed Central

    2013-01-01

    Introduction: Waterpipe tobacco smoking has in recent years become a popular international phenomenon, particularly among youth. While it has been shown to deliver significant quantities of several carcinogenic and toxic substances, phenols, an important class of chemical compounds thought to promote DNA mutation and cardiovascular diseases, however, has not been studied. Due to the relatively low temperature characteristic of waterpipe tobacco during smoking (i.e., <450 °C), it was hypothesized that phenolic compounds, which form at approximately 300 °C, will be found in abundance in waterpipe smoke. Methods: In this study, phenolic compounds in the particle phase of waterpipe mainstream smoke were quantified. Waterpipe and cigarette mainstream smoke generated using standard methods were collected on glass fiber pads and analyzed using gas chromatography/mass spectroscopy selected ion current profile chromatogram method for quantification. Results: We found that relative to a single cigarette, a waterpipe delivers at least 3 times greater quantities of the 7 analyzed phenols (phenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol, and hydroquinone). Moreover, phenol derivatives such as methylcatechol, and flavorings such as vanillin, ethyl vanillin, and benzyl alcohol were found in quantities up to 1,000 times greater than the amount measured in the smoke of a single cigarette. Conclusion: The large quantities of phenols and phenol derivatives in waterpipe smoke add to the growing evidence that habitual waterpipe use may increase the risk of cancer and cardiovascular diseases. PMID:23178319

  5. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, Foster A.

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.

  6. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  7. Phenolic compounds and antioxidant capacity of virgin olive oil.

    PubMed

    Franco, Ma Nieves; Galeano-Díaz, Teresa; López, Oscar; Fernández-Bolaños, José G; Sánchez, Jacinto; De Miguel, Concepción; Gil, Ma Victoria; Martín-Vertedor, Daniel

    2014-11-15

    The characterisation of virgin olive oil from Arbequina, Carrasqueña, Corniche, Manzanilla Cacereña, Morisca, Picual, and Verdial de Badajoz varieties according to the individual phenolic compounds at different ripening stage was carried out. In all olive oil varieties studied, secoiridoid derivatives were most abundant, followed by phenolic alcohols, flavonoids and phenolic acids. The secoiridoid derivatives of hydroxytyrosol were the most important complex phenols for Picual and Carrasqueña, whereas the tyrosol derivatives were the major ones found in Manzanilla Cacereña, and Verdial de Badajoz. For secoiridoid derivatives of hydroxytyrosol and tyrosol, Arbequina was the oil variety showing the lowest concentration. Tyrosol, hydroxytyrosol, vanillic acid, p-cumaric acid, luteolin, and apigenin levels were greater in early harvested samples in almost all oils analysed. Antioxidant activity measurements (antiradical, lipid peroxide inhibition, H2O2 and NO scavenging) were also accomplished for the seven varieties in the first ripening stage. PMID:24912728

  8. Phenolic compounds in Ross Sea water

    NASA Astrophysics Data System (ADS)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  9. Adsorption of phenolic compounds on fly ash

    SciTech Connect

    Akgerman, A.; Zardkoohi, M.

    1996-03-01

    Adsorption isotherms for adsorption of phenol, 3-chlorophenol, and 2,4-dichlorophenol from water onto fly ash were determined. These isotherms were modeled by the Freundlich isotherm. The fly ash adsorbed 67, 20, and 22 mg/g for phenol, chlorophenol, and 2,4-dichlorophenol, respectively, for the highest water phase concentrations used. The affinity of phenolic compounds for fly ash is above the expected amount corresponding to a monolayer coverage considering that the surface area of fly ash is only 1.87 m{sup 2}/g. The isotherms for contaminants studied were unfavorable, indicating that adsorption becomes progressively easier as more solutes are taken up. Phenol displayed a much higher affinity for fly ash than 3-chlorophenol and 2,4-dichlorophenol.

  10. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting.

    PubMed

    Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž

    2016-11-01

    The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. PMID:27211614

  11. [Phenolic compounds in branches of Tamarix rasissima].

    PubMed

    Li, Juan; Li, Wei-Qi; Zheng, Ping; Wang, Rui; Yu, Jian-Qiang; Yang, Jian-Hong; Yao, Yao

    2014-06-01

    To study the chemical constituents of the branches of Tamarix rasissima, repeated silica gel column chromatography, Sephadex LH-20 chromatography and recrystallization were applied for chemical constituents isolation and purification. Ten phenolic compounds were isolated from the n-BuOH fraction and their structures were elucidated by physical properties and spectra analysis such as UV, ESI-MS and NMR as monodecarboxyellagic acid (1), ellagic acid (2), 3, 3'-di-O-methylellagic acid (3), 3, 3'-di-O-methylellagic acid-4-O-beta-D-glucopyranoside (4), 3, 3'-di-O-methylellagic acid-4'-O-alpha-D-arabinfuranoside (5), ferulic acid (6), isoferulic acid (7), caffeic acid (8), 4-O-acetyl-caffeic acid (9), and 4-methyl-1, 2-benzenediol (10). All compounds except for isoferulic acid were isolated firstly from this plant except for isoferulic acid, and compounds 5, 9 and 10 were obtained from Tamarix genus for the first time. PMID:25272840

  12. The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana.

    PubMed

    Değirmencioğlu, Nurcan; Gürbüz, Ozan; Herken, Emine Nur; Yıldız, Aysun Yurdunuseven

    2016-03-01

    In this study, the changes in phenolic composition, total phenolic content, and antioxidant capacity of tarhanas supplemented with oat flour (OF) at the levels of 20-100% (w/w) after three drying treatments (sun-, oven-, and microwave drying) were investigated. A total of seventeen phenolic standards have been screened in tarhanas, and the most abundant flavonol and phenolic acid compounds were kaempferol (23.62mg/g) and 3-hydroxy-4-metoxy cinnamic acid (9.60mg/g). The total phenolic content amount gradually increased with the addition of OF to tarhana, but decidedly higher total phenolic content was found in samples oven dried at 55°C as compared with other methods. The microwave- and oven dried tarhana samples showed higher TEACDPPH and TEACABTS values than those dried with the other methods, respectively, in higher OF amounts. Consequently, oven- and microwave-drying can be recommended to retain the highest for phenolic compounds as well as maximal antioxidant capacity in OF supplemented tarhana samples. PMID:26471596

  13. Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Wei; Tan, Je-Zhen; Seng, Chye-Eng

    2013-06-01

    The objective of this study was to evaluate the performance of phenol-acclimated activated sludge in the presence of various phenolic compounds in the separated batch reactors. The phenol-acclimated activated sludge was observed to be capable of completely removing phenol, o-cresol, m-cresol, and 4-chlorophenol. Nevertheless, in the presence of 2-chlorophenol and 3-chlorophenol merely at 50 mg/L, incomplete removal of these phenolic compounds were noticed. The specific oxygen uptake rate patterns obtained for phenol, o-cresol, m-cresol, and 4-chlorophenol could be used to approximate the end point of these phenolic compounds removal as well as to monitor the growth of biomass. As the 2-chlorophenol and 3-chlorophenol were only partially removed in the mixed liquor, the patterns of specific oxygen uptake rate attained for these phenolic compounds were not feasible for the similar estimation. The calculated toxicity percentages show the toxicity effects of phenolic compounds on the phenol-acclimated activated sludge followed the order of 2-chlorophenol ≈ 3-chlorophenol > 4-chlorophenol > o-cresol ≈ m-cresol > phenol.

  14. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    PubMed Central

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET). PMID:22593694

  15. Novel biosensors for environmental monitoring of phenolic compounds

    SciTech Connect

    Chen, O.; Wang, J.

    1995-12-01

    This presentation will describe new strategies for amperometric biosensing of phenolic compounds. The class enzyme tyrosinase is employed in connection with these biosensing schemes. The enzyme can tolerate the high temperature of screen-printing/drying processes used for fabricating disposable sensor strips. In addition to single-use electrodes, we will describe the characteristic of a remote enzyme electrode for field monitoring of phenolic compounds. Finally, a novel bioamplification scheme for enhancing the sensitivity of phenol biosensing will be reported.

  16. Olive oil phenolic compounds affect the release of aroma compounds.

    PubMed

    Genovese, Alessandro; Caporaso, Nicola; Villani, Veronica; Paduano, Antonello; Sacchi, Raffaele

    2015-08-15

    Twelve aroma compounds were monitored and quantified by dynamic headspace analysis after their addition in refined olive oil model systems with extra virgin olive oil (EVOO) biophenols to simulate EVOO aroma. The influence of polyphenols on aroma release was studied under simulated mouth conditions by using human saliva, and SPME-GC/MS analysis. While few differences were observed in orthonasal assay (without saliva), interesting results were obtained for retronasal aroma. Biophenols caused generally the lowest headspace release of almost all volatile compounds. However, only ethyl esters and linalool concentrations were significantly lower in retronasal than orthonasal assay. Saliva also caused higher concentration of hexanal, probably due to hydroperoxide lyase (HPL) action on linoleyl hydroperoxides. Epicatechin was compared to EVOO phenolics and the behaviour was dramatically different, likely to be due to salivary protein-tannin binding interactions, which influenced aroma headspace release. These results were also confirmed using two extra virgin olive oils. PMID:25794752

  17. Inhibition of enzymatic cellulolysis by phenolic compounds.

    PubMed

    Tejirian, Ani; Xu, Feng

    2011-03-01

    Phenolics derived from lignin and other plant components can pose significant inhibition on enzymatic conversion of cellulosic biomass materials to useful chemicals. Understanding the mechanism of such inhibition is of importance for the development of viable biomass conversion technologies. In native plant cell wall, most of the phenolics and derivatives are found in polymeric lignin. When biomass feedstocks are pretreated (prior to enzymatic hydrolysis), simple or oligomeric phenolics and derivatives are often generated from lignin modification/degradation, which can inhibit biomass-converting enzymes. To further understand how such phenolic substances may affect cellulase reaction, we carried out a comparative study on a series of simple and oligomeric phenolics representing or mimicking the composition of lignin or its degradation products. Consistent to previous studies, we observed that oligomeric phenolics could exert more inhibition on enzymatic cellulolysis than simple phenolics. Oligomeric phenolics could inactivate cellulases by reversibly complexing them. Simple and oligomeric phenolics could also inhibit enzymatic cellulolysis by adsorbing onto cellulose. Individual cellulases showed different susceptibility toward these inhibitions. Polyethylene glycol and tannase could respectively bind and degrade the studied oligomeric phenolics, and by doing so mitigate the oligomeric phenolic's inhibition on cellulolysis. PMID:22112906

  18. Laccase-mediated detoxification of phenolic compounds. [Rhizoctonia praticola

    SciTech Connect

    Bollag, J.M.; Shuttleworth, K.L.; Anderson, D.H. )

    1988-12-01

    The ability of a polyphenoloxidase, the laccase of the fungus Rhizoctonia praticola, to detoxify phenolic pollutants was examined. The growth of the fungus could be inhibited by phenolic compounds, and the effective concentration was dependent on the substituents of the phenol. A toxic amount of a phenolic compound was added to a fungal growth medium in the presence or absence of a naturally occurring phenol, and half of the replicates also received laccase. The medium was then inoculated with R. praticola, and the levels of phenols in the medium were monitored by high-performance liquid chromatography analysis. The addition of the laccase reversed the inhibitory effect of 2,6-xylenol, 4-chloro-2-methylphenol, and p-cresol. Other compounds, e.g., o-cresol and 2,4-dichlorophenol, were detoxified only when laccase was used in conjunction with a natural phenol such as syringic acid. The toxicity of p-chlorophenol and 2,4,5-trichlorophenol could not be overcome by any additions. The ability of the laccase to alter the toxicity of the phenols appeared to be related to the capacity of the enzyme to decrease the levels of the parent compound by transformation or cross-coupling with another phenol.

  19. Safety evaluation of olive phenolic compounds as natural antioxidants.

    PubMed

    Farag, R S; El-Baroty, G S; Basuny, Amany M

    2003-05-01

    Free and total polyphenolic compounds were extracted from the fruits and leaves of the Picual cultivar. The safety limits of these compounds were recognized by measuring the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of high-density lipoprotein (HDL) cholesterol and total lipids of rat serum. The free and total phenolic compounds (400, 800, and 1600 ppm) and butylated hydroxy toluene (BHT) (200 ppm) were daily ingested for 7 weeks. The administration of olive total and free phenolic compounds at 400 and 800 ppm did not cause any significant changes on ALT and AST activities and serum total lipids. These compounds at 1600 ppm caused significant increase in ALT and AST activities and the content of total lipids. Both olive phenolic compounds were superior to that of BHT in increasing HDL-cholesterol level. Nutritional experiments demonstrated that BHT at 200 ppm caused an enlargement in the kidney and liver of the rat compared with the administration of total and free olive phenolic compounds at 1200 and 1600 ppm. Microscopical examination of kidney and liver tissues of rats administered free and total phenolic compounds at 1200 ppm had the same histological character as that of control rats, while the administration of BHT (200 ppm) and phenolic compounds (1600 ppm) induced severe damage to the tissues of the rat kidney and liver. PMID:12775365

  20. Phenolic compounds: their journey after intake.

    PubMed

    Velderrain-Rodríguez, G R; Palafox-Carlos, H; Wall-Medrano, A; Ayala-Zavala, J F; Chen, C-Y O; Robles-Sánchez, M; Astiazaran-García, H; Alvarez-Parrilla, E; González-Aguilar, G A

    2014-02-01

    Plant foods are rich in phenolic compounds (PCs) that display multifaceted bioactions in health promotion and disease prevention. To exert their bioactivity, they must be delivered to and absorbed in the gastrointestinal (GI) tract, transported in circulation, and reach the target tissues. During the journey from ingestion to target tissues and final excretion, PCs are subjected to modifications by many factors during their absorption, deposition, metabolism and excretion (ADME) and consequently their bioefficacy may be modified. Consistent with all nutrients in foods, PCs must first be released from the food matrix through mechanical, chemical, and enzymatic forces to facilitate absorption along the GI tract, particularly in the upper small intestine section. Further, glycosylation of PCs directs the route of their absorption with glycones being transported through active transportation and aglycones through passive diffusion. After enteral absorption, the majority of PCs are extensively transformed by the detoxification system in enterocytes and liver for excretion in bile, feces, and urine. The journey of PCs from consumption to excretion appears to be comparable to many synthetic medications, but with some dissimilarities in their fate and bioactivity after phase I and II metabolism. The overall bioavailability of PCs is determined mainly by chemical characteristics, bioaccessibility, and ADME. In this review, factors accounting for variation in PCs bioavailability are discussed because this information is crucial for validation of the health benefits of PCs and their mechanism of action. PMID:24336740

  1. Identification and quantification of phenolic compounds from the forage legume sainfoin ( Onobrychis viciifolia ).

    PubMed

    Regos, Ionela; Urbanella, Andrea; Treutter, Dieter

    2009-07-01

    Phenolic compounds of sainfoin ( Onobrychis viciifolia ) variety Cotswold Common are assumed to contribute to its nutritive value and bioactive properties. A purified acetone/water extract was separated by Sephadex LH-20 gel chromatography. Sixty-three phenolic and other aromatic compounds were identified by means of chemical, chromatographic, and spectroscopic methods. Reverse phase HPLC with diode array and chemical reaction detection was used to investigate the phenolic composition of different plant organs. All plant parts showed specific phenolic profiles. Moreover, there were considerable variations in the phenolic content among individual plants of the same variety. The three most abundant phenolic compounds were found to be arbutin [predominant in petiols, 17.7 mg/g of dry weight (DW)], rutin (predominant in leaves, 19.9 mg/g of DW), and catechin (predominant flavanol in petiols, 3.5 mg/g of DW). The present study reveals that the phenolic profile of sainfoin is even more complex than hitherto assumed. PMID:19456170

  2. Phenolic Compounds in the Potato and Its Byproducts: An Overview.

    PubMed

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato's skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the "alternative" food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  3. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    PubMed Central

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  4. Biotransformation and bioconversion of phenolic compounds obtainment: an overview.

    PubMed

    Madeira Junior, Jose Valdo; Teixeira, Camilo Barroso; Macedo, Gabriela Alves

    2015-03-01

    Phenolic compounds have recently been recognized for their influence on human metabolism, acting in the prevention of some chronic diseases as well as proving to be important antioxidants in food. Nevertheless, the extraction and concentration processes are usually carried out by organic solvent extraction from natural sources and can generate some drawbacks like phenolic compound degradation, lengthy process times and low yields. As a solution, some eco-friendly technologies, including solid-state fermentation (SSF) or enzymatic-assisted reaction, have been proposed as alternative processes. This article reviews the extraction of phenolic compounds from agro-industrial co-products by solid-state fermentation, even as friendly enzyme-assisted extractions. It also discusses the characteristics of each bioprocess system and the variables that affect product formation, as well as the range of substrates, microorganisms and enzymes that can be useful for the production of bioactive phenolic compounds. PMID:23855523

  5. Phenolic compounds in Rosaceae fruit and nut crops.

    PubMed

    Ogah, Onwuchekwa; Watkins, Carolyn S; Ubi, Benjamin Ewa; Oraguzie, Nnadozie C

    2014-10-01

    The demand for new fruit cultivars with high levels of phytochemicals, in particular phenolic compounds, has received increasing attention from biochemists, pharmaceutical companies, plant breeders, and the general public due to their health benefits. This review focuses on the economically important Rosaceae, which contains varying proportions and concentrations of these compounds. The paper discusses the common phenolics in the Rosaceae including phenolic acids, flavonols, flavanols, anthocyanins, and dihydrochalcones. The nonextractable phenolics are also presented but not discussed in detail. The metabolism and bioavailability of phenolics, as well as human and environmental factors that affect their concentration and composition, are highlighted. Furthermore, the paper presents different approaches for biofortification and posits that breeding may be the most viable and sustainable option as it improves other fruit quality traits simultaneously and increases confidence in adoption of new cultivars with enhanced consumer appeal. PMID:25198667

  6. Isolation and identification of plant phenolic compounds in birch leaves: Air pollution stress and leaf phenolics

    NASA Astrophysics Data System (ADS)

    Loponen, Jyrki Mikael

    Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with

  7. Phenolic compound in beans as protection against mycotoxins.

    PubMed

    Telles, Annie Campello; Kupski, Larine; Furlong, Eliana Badiale

    2017-01-01

    Phenolic compounds, their inhibitory activity against fungal amylase and the occurrence of aflatoxins were determined in edible beans. The free, conjugated and bounded phenolic compounds and their phenolic acid profiles were determined in ten bean varieties. A method for aflatoxin B1, B2, G1 and G2 determination and confirmation by LC-MS/MS was validated. The red and carioca beans presented the highest total phenolic content (1.8 and 1.2mg.g(-1), respectively); the fradinho and white beans the lowest (0.18 and 0.19mg.g(-1), respectively). In the free and conjugated forms, chlorogenic acid was present in 60% of the samples, while in the bounded phenolic, ferulic acid was in 90% of the samples. The phenolic extracts were able to inhibit fungal amylase, and the PCA analysis confirmed that the relation between the chlorogenic and gallic acids is important to this effect. The absence of aflatoxins in samples confirm the protector effects of these phenolic compounds. PMID:27507478

  8. Antioxidant activities and phenolic compounds of date plum persimmon ( Diospyros lotus L.) fruits.

    PubMed

    Gao, Hui; Cheng, Ni; Zhou, Juan; Wang, Bini; Deng, Jianjun; Cao, Wei

    2014-05-01

    In the present study, phenolic compounds are extracted from the date plum persimmon fruits using water, methanol and acetone as solvents. Antioxidant activities of the phenolic extracts are measured using four different tests, namely, DPPH, hydroxyl radical scavenging activities, chelating and reducing power assays. All the extracts show dose dependent DPPH radical scavenging activity, reducing and chelating powers and moreover, they are well correlated with the total phenolic and total flavonoid substances, suggesting direct contribution of phenolic compounds to these activities. In further, the extracts are identified and quantified by HPLC-ECD. Results show that gallic acid is the most abundant phenolic compound, with amounts ranging between 45.49and 287.47 μg/g dry sample. Myricetin is the dominant flavonoid in all extracts. Its level varied from 2.75 μg/g dry sample in acetone extract to 5.28 μg/g dry sample in water extract. On the basis of the results obtained, the date plum persimmon fruits phenolic extract is a potential source of natural antioxidants owing to its significant antioxidant activities. PMID:24803703

  9. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    PubMed

    Herceg, Zoran; Kovačević, Danijela Bursać; Kljusurić, Jasenka Gajdoš; Jambrak, Anet Režek; Zorić, Zoran; Dragović-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds. PMID:26213024

  10. Pressurized liquid extraction of phenolic compounds from rice (Oryza sativa) grains.

    PubMed

    Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G

    2016-02-01

    An analytical pressurized liquid extraction (PLE) process has been studied for the extraction of phenolic compounds from rice grains. A fractional factorial design (2(7-2)) with a centre point was used to optimize PLE parameters such as solvent composition (EtOAc in MeOH), extraction temperature, pressure, flushing, static extraction time, solvent-purge and sample weight. Extraction temperature, solvent and static extraction time were found to have a significant effect on the response value. The optimized method was validated for selectivity, linearity, limits of detection and quantification, recovery and precision. The validated method was successfully applied for the analysis of a wide variety of rice grains. Seventeen phenolic compounds were detected in the sample and guaiacol, ellagic acid, vanillic acid and protocatechuic acid were identified as the most abundant compounds. Nonetheless, different species of rice show very varied compound diversity and levels of compounds in their grain compositions. PMID:26304372

  11. Monitoring of environmental phenolic endocrine disrupting compounds in treatment effluents and river waters, Korea.

    PubMed

    Ko, Eun-Joung; Kim, Kyoung-Woong; Kang, Seo-Young; Kim, Sang-Don; Bang, Sun-Baek; Hamm, Se-Yeong; Kim, Dong-Wook

    2007-10-15

    The last two decades have witnessed growing scientific and public concerns over endocrine disrupting compounds (EDCs) that have the potential to alter the normal structure or functions of the endocrine system in wildlife and humans. In this study, the phenolic EDCs such as alkylphenol, chlorinated phenol and bisphenol A were considered. They are commonly found in wastewater discharges and in sewage treatment plant. In order to monitor the levels and seasonal variations of phenolic EDCs in various aquatic environments, a total of 15 water samples from the discharged effluent from sewage and wastewater treatment plants and river water were collected for 3 years. Ten environmental phenolic EDCs were determined by GC-MS and laser-induced fluorescence (LIF). GC-MS analysis revealed that most abundant phenolic EDCs were 4-n-heptylphenol, followed by nonlyphenol and bisphenol A during 2002-2003, while 4-t-butylphenol and 4-t-octylphenol were newly detected in aquatic environments in 2004. The category of phenolic EDCs showed similar fluorescence spectra and nearly equal fluorescence decay time. This makes it hard to distinguish each phenolic EDC from the EDCs mixture by LIF. Therefore, the results obtained from LIF analysis were expressed in terms of the fluorescence intensity of the total phenolic EDCs rather than that of the individual EDC. However, LIF monitoring and GC-MS analysis showed consistent result in that the river water samples had lower phenolic EDCs concentration compared to the effluent sample. This revealed a lower fluorescence intensity and the phenolic EDCs concentration in summer was lower than that in winter. For the validation of LIF monitoring for the phenolic EDCs, the correlation between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was obtained (R=0.7379). This study supports the feasibility of the application of LIF into EDCs monitoring in aquatic systems. PMID:19073088

  12. Anaerobic biodegradation of phenolic compounds in digested sludge.

    PubMed Central

    Boyd, S A; Shelton, D R; Berry, D; Tiedje, J M

    1983-01-01

    We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. PMID:6614908

  13. Role of phenolic compounds in peptic ulcer: An overview.

    PubMed

    Sumbul, Sabiha; Ahmad, Mohd Aftab; Mohd, Asif; Mohd, Akhtar

    2011-07-01

    Peptic ulcer is the most common gastrointestinal tract (GIT) disorder in clinical practice, which affects approximately 5-10% of the people during their life. The use of herbal drugs for the prevention and treatment of various diseases is constantly developing throughout the world. This is particularly true with regard to phenolic compounds that probably constitute the largest group of plants secondary metabolites. Phenolic compounds have attracted special attention due to their health-promoting characteristics. In the past ten years a large number of the studies have been carried out on the effects of phenolic compounds on human health. Many studies have been carried out that strongly support the contribution of polyphenols to the prevention of cardiovascular diseases, cancer, osteoporosis, neurodegenerative diseases, and diabetes mellitus, and suggest a role in the prevention of peptic ulcer. Polyphenols display a number of pharmacological properties in the GIT area, acting as antisecretory, cytoprotective, and antioxidant agents. The antioxidant properties of phenolic compounds have been widely studied, but it has become clear that their mechanisms of action go beyond the modulation of oxidative stress. Various polyphenolic compounds have been reported for their anti-ulcerogenic activity with a good level of gastric protection. Besides their action as gastroprotective, these phenolic compounds can be an alternative for the treatment of gastric ulcers. Therefore, considering the important role of polyphenolic compounds in the prevention or reduction of gastric lesions induced by different ulcerogenic agents, in this review, we have summarized the literature on some potent antiulcer plants, such as, Oroxylum indicum, Zingiber officinale, Olea europaea L., Foeniculum vulgare, Alchornea glandulosa, Tephrosia purpurea, and so on, containing phenolic compounds, namely, baicalein, cinnamic acid, oleuropein, rutin, quercetin, and tephrosin, respectively, as active

  14. The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa).

    PubMed

    Jakobek, Lidija; Seruga, Marijan; Krivak, Petra

    2011-06-01

    In the present work, interactions between phenolic compounds from chokeberries and their influence on the antiradical activity was studied. Three fractions were isolated from chokeberries containing different classes of phenolic compounds. The first fraction contained a major part of phenolic acids and flavonols, the second anthocyanins, and the third insoluble phenols and proanthocyanidins. The phenolic compound content was determined using high-performance liquid chromatography, and the antiradical activity using the DPPH test. In order to evaluate the effects of interactions between phenolic compounds on the antiradical activity, the antiradical activity of individual phenolic fractions was compared with that obtained by mixing phenolic fractions. Phenolic mixtures showed the decrease in the antiradical activity in comparison with the individual phenolic fractions. These results suggest the existence of complex interactions among phenolic compounds that caused the decrease of the antiradical activity. Interactions among chokeberry phenols promoted a negative synergism. PMID:21214419

  15. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers' varieties in northeastern Portugal homegardens.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Pinela, José; Carvalho, Ana Maria; Buelga, Celestino Santos; Ferreira, Isabel C F R

    2012-09-01

    Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmers' varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (Amarelo) and round (Batateiro) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long (Comprido) and heart (Coração) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 μg/g fw), including phenolic acids (43.30 μg/g fw) and flavonoids (10.93 μg/g fw). The phenolic compounds profile obtained for the studied varieties is different from other tomato varieties available in different countries, which is certainly related to genetic features, cultivation conditions, and handling and storage methods associated to each sample. PMID:22922837

  16. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    PubMed Central

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data

  17. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    PubMed Central

    Cicerale, Sara; Lucas, Lisa; Keast, Russell

    2010-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro) have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds. PMID:20386648

  18. Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch

    PubMed Central

    Sutela, Suvi; Niemi, Karoliina; Edesi, Jaanika; Laakso, Tapio; Saranpää, Pekka; Vuosku, Jaana; Mäkelä, Riina; Tiimonen, Heidi; Chiang, Vincent L; Koskimäki, Janne; Suorsa, Marja; Julkunen-Tiitto, Riitta; Häggman, Hely

    2009-01-01

    Background The monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis. Results Silver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants. Conclusion The down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus. PMID:19788757

  19. Brassica napus hairy roots and rhizobacteria for phenolic compounds removal.

    PubMed

    González, Paola S; Ontañon, Ornella M; Armendariz, Ana L; Talano, Melina A; Paisio, Cintia E; Agostini, Elizabeth

    2013-03-01

    Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology. PMID:22961561

  20. Removal of phenolic compounds from wastewaters using soybean peroxidase

    SciTech Connect

    Wright, H.; Nicell, J.A.

    1996-11-01

    Toxic and odiferous phenolic compounds are present in wastewaters generated by a variety of industries including petroleum refining, plastics, resins, textiles, and iron and steel manufacturing among others. Due to its commercial availability in purified form, its useful presence in raw plant material, and its proven ability to remove a variety of phenolic contaminants from wastewaters over a wide range of pH and temperature, horseradish peroxidase (HRP) appears to be the peroxidase enzyme of choice in enzymatic wastewater treatment studies. Problems with HRP catalyzed phenol removal, however, include the formation of toxic soluble reaction by-products, the cost of the enzyme, and costs associated with disposal of the phenolic precipitate generated. Enzyme costs are incurred because the enzyme is inactivated during the phenol removal process by various side reactions. While recent work has shown that enzyme inactivation can be reduced using chemical additives, the problem of enzyme cost could be circumvented by using a less expensive source of enzyme. In 1991, the seed coat of the soybean was identified as a very rich source of peroxidase enzyme. Since the seed coat of the soybean is a waste product of the soybean food industry, soybean peroxidase (SBP) has the potential of being a cost effective alternative to HRP in wastewater treatment. In this study, SBP is characterized in terms of its catalytic activity, its stability, and its ability to promote removal of phenolic compounds from synthetic wastewaters. Results obtained are discussed and compared to similar investigations using HRP.

  1. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys.

    PubMed

    Ciulu, Marco; Spano, Nadia; Pilo, Maria I; Sanna, Gavino

    2016-01-01

    Honey is one of the most renowned natural foods. Its composition is extremely variable, depending on its botanical and geographical origins, and the abundant presence of functional compounds has contributed to the increased worldwide interest is this foodstuff. In particular, great attention has been paid by the scientific community towards classes of compounds like phenolic compounds, due to their capability to act as markers of unifloral honey origin. In this contribution the most recent progress in the assessment of new analytical procedures aimed at the definition of the qualitative and quantitative profile of phenolic compounds of honey have been highlighted. A special emphasis has been placed on the innovative aspects concerning the extraction procedures, along with the most recent strategies proposed for the analysis of phenolic compounds. Moreover, the centrality of validation procedures has been claimed and extensively discussed in order to ensure the fitness-for-purpose of the proposed analytical methods. In addition, the exploitation of the phenolic profile as a tool for the classification of the botanical and geographical origin has been described, pointing out the usefulness of chemometrics in the interpretation of data sets originating from the analysis of polyphenols. Finally, recent results in concerning the evaluation of the antioxidant properties of unifloral honeys and the development of new analytical approaches aimed at measuring this parameter have been reviewed. PMID:27070567

  2. Enzymatic oxidation of phenolic compounds in coffee processing wastewater.

    PubMed

    Torres, Juliana Arriel; Batista Chagas, Pricila Maria; Silva, Maria Cristina; dos Santos, Custódio Donizete; Duarte Corrêa, Angelita

    2016-01-01

    Peroxidases can be used in the treatment of wastewater containing phenolic compounds. The effluent from the wet processing of coffee fruits contains high content of these pollutants and although some studies propose treatments for this wastewater, none targets specifically the removal of these recalcitrant compounds. This study evaluates the potential use of different peroxidase sources in the oxidation of caffeic acid and of total phenolic compounds in coffee processing wastewater (CPW). The identification and quantification of phenolic compounds in CPW was performed and caffeic acid was found to be the major phenolic compound. Some factors, such as reaction time, pH, amount of H2O2 and enzyme were evaluated, in order to determine the optimum conditions for the enzyme performance for maximum oxidation of caffeic acid. The turnip peroxidase (TPE) proved efficient in the removal of caffeic acid, reaching an oxidation of 51.05% in just 15 minutes of reaction. However, in the bioremediation of the CPW, the horseradish peroxidase (HRP) was more efficient with 32.70%±0.16 of oxidation, followed by TPE with 18.25%±0.11. The treatment proposed in this work has potential as a complementary technology, since the efficiency of the existing process is intimately conditioned to the presence of these pollutants. PMID:26744933

  3. Five new phenolic compounds from Dendrobium aphyllum.

    PubMed

    Yang, Dan; Liu, Liang-Yan; Cheng, Zhong-Quan; Xu, Feng-Qing; Fan, Wei-Wei; Zi, Cheng-Ting; Dong, Fa-Wu; Zhou, Jun; Ding, Zhong-Tao; Hu, Jiang-Miao

    2015-01-01

    One new phenanthrene, aphyllone A (1) and four new bibenzyl derivatives, aphyllone B (2) and aphyllals C-D (3-5), together with nine known compounds (6-14), were isolated from the stems of Dendrobium aphyllum (Roxb.) C. E. Fischer. The structures of these new compounds were elucidated by means of extensive spectroscopic analyses, and the absolute configuration of compound 1 was determined by single crystal X-ray diffraction and quantum calculations. Compounds 6, 8 and 14 inhibited NO production at the concentration of 25 μM in LPS-stimulated RAW264.7 cells with the inhibition (%) of 32.48, 35.68, and 38.50. Compound 2 possessed significant DPPH radical scavenging activity with scavenging percentage of 87.97% at the concentration of 100 μg/mL. PMID:25447160

  4. Analysis of phenolic compounds extracted from peanut seed testa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea) contain numerous phenolic compounds with antimicrobial and antioxidant properties. These secondary metabolites may be isolated as co-products from peanut skins or testae during peanut processing and have potential use in functional food or feed formulations. Peanut skins w...

  5. Alkaline extraction of phenolic compounds from intact sorghum kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...

  6. Mechanisms of action of phenolic compounds in olive.

    PubMed

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed. PMID:22607645

  7. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors.

    PubMed

    Gülçin, Ilhami; Beydemir, Şükrü

    2013-03-01

    Antioxidant compounds can scavenge free radicals and increase shelf life by retarding the process of lipid peroxidation, which is one of the major reasons for deterioration of food, medicine and pharmaceutical products during processing and storage. An antioxidant molecule has been defined as any substance when found in low concentrations compared to that of an oxidizable substrate significantly delays or inhibits the oxidation. The major antioxidant compounds are especially phenolics and flavonoids, which are responsible for their health benefits. Carbonic anhydrase (EC 4.2.1.1., CA) is a pH regulatory/metabolic enzyme in all life kingdoms, being found in organisms all over the phylogenetic tree. It catalyzes the hydration of carbon dioxide (CO(2)) to bicarbonate (HCO(3) -) and the corresponding dehydration of HCO(3) -in acidic medium with regeneration of CO(2). Also, CA isoforms are found in a variety of tissues where they participate in several important biological processes such as acid-base balance, respiration, carbon dioxide and ion transport, bone resorption, ureagenesis, gluconeogenesis, lipogenesis and electrolyte secretion. On the other hand, the phenyl moiety of phenol was found to lay in the hydrophobic part of the CA active site, where CO(2), the physiologic substrate of the CAs, binds in the precatalytic complex, explaining thus the behavior of phenol as a unique CO(2) competitive inhibitor. This review consists of two main sections. The first section is devoted to main phenolic antioxidant compounds in the foodstuffs and beverages. The second general section is about some definitions of CA inhibitory effects of the main phenolic compounds used for antioxidant activity. The phenolic compounds and acids had marked especially CA I and CA II inhibitory effects and might be used as leads for generating CA isoenzyme inhibitors. This class of compounds may lead to isoform-selective inhibitors targeting just one or few of the medicinally relevant CAs. In

  8. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil.

    PubMed

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Di Maio, Ilona; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  9. Factors influencing phenolic compounds in table olives (Olea europaea).

    PubMed

    Charoenprasert, Suthawan; Mitchell, Alyson

    2012-07-25

    The Mediterranean diet appears to be associated with a reduced risk of several chronic diseases including cancer and cardiovascular and Alzheimer's diseases. Olive products (mainly olive oil and table olives) are important components of the Mediterranean diet. Olives contain a range of phenolic compounds; these natural antioxidants may contribute to the prevention of these chronic conditions. Consequently, the consumption of table olives and olive oil continues to increase worldwide by health-conscious consumers. There are numerous factors that can affect the phenolics in table olives including the cultivar, degree of ripening, and, importantly, the methods used for curing and processing table olives. The predominant phenolic compound found in fresh olive is the bitter secoiridoid oleuropein. Table olive processing decreases levels of oleuropein with concomitant increases in the hydrolysis products hydroxytyrosol and tyrosol. Many of the health benefits reported for olives are thought to be associated with the levels of hydroxytyrosol. Herein the pre- and post-harvest factors influencing the phenolics in olives, debittering methods, and health benefits of phenolics in table olives are reviewed. PMID:22720792

  10. Phenolic Compounds of Cereals and Their Antioxidant Capacity.

    PubMed

    Van Hung, Pham

    2016-01-01

    Phenolic compounds play an important role in health benefits because of their highly antioxidant capacity. In this review, total phenolic contents (TPCs), phenolic acid profile and antioxidant capacity of the extracted from wheat, corn, rice, barley, sorghum, rye, oat, and millet, which have been recently reported, are summarized. The review shows clearly that cereals contain a number of phytochemicals including phenolics, flavonoids, anthocyanins, etc. The phytochemicals of cereals significantly exhibit antioxidant activity as measured by trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity (ORAC), inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol and DNA, Rancimat, inhibition of photochemilumenescence (PCL), and iron(II) chelation activity. Thus, the consumption of whole grains is considered to have significantly health benefits in prevention from chronic diseases such as cardiovascular disease, diabetes, and cancer because of the contribution of phenolic compounds existed. In addition, the extracts from cereal brans are considered to be used as a source of natural antioxidants. PMID:25075608

  11. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    PubMed Central

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Maio, Ilona Di; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  12. Phenolic compounds of 'Galega Vulgar' and 'Cobrançosa' olive oils along early ripening stages.

    PubMed

    Peres, Fátima; Martins, Luisa L; Mourato, Miguel; Vitorino, Conceição; Antunes, Paulo; Ferreira-Dias, Suzana

    2016-11-15

    In this study, the lipophilic and hydrophilic phenol composition of virgin olive oils (VOO) obtained from olives from two of the most important Portuguese cultivars ('Galega Vulgar' and 'Cobrançosa'), harvested at different ripening stages and under two irrigation schemes (rain fed and irrigated), was evaluated. Phenolic alcohols (hydroxytyrosol and tyrosol), phenolic acids and derivatives and flavonoids (luteolin and apigenin), as well as tocopherols were quantified. Lipophilic (>300mgkg(-1)) and hydrophilic phenols (>600mgkg(-1)) were present in high contents in both VOO, for early ripening stages. Gamma-tocopherol content is higher in 'Galega Vulgar' VOO. Total phenols showed a decrease between ripening index 2.5 and 3.5. The dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA), also known as oleacein, was the major phenolic compound identified in both oils. The concentration of free hydroxytyrosol and tyrosol in both VOO is very low while their esterified derivatives, like 3,4-DHPEA-EDA and p-HPEA-EDA, are much more abundant. PMID:27283606

  13. Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects.

    PubMed

    Cuervo, Adriana; Hevia, Arancha; López, Patricia; Suárez, Ana; Diaz, Carmen; Sánchez, Borja; Margolles, Abelardo; González, Sonia

    2016-01-01

    The dietary modulation of gut microbiota, suggested to be involved in allergy processes, has recently attracted much interest. While several studies have addressed the use of fibres to modify intestinal microbial populations, information about other components, such as phenolic compounds, is scarce. The aim of this work was to identify the dietary components able to influence the microbiota in 23 subjects suffering from rhinitis and allergic asthma, and 22 age- and sex-matched controls. The food intake was recorded by means of an annual food frequency questionnaire. Dietary fibre tables were obtained from Marlett et al., and the Phenol-Explorer database was used to assess the phenolic compound intake. The quantification of microbial groups was performed using an Ion Torrent 16S rRNA gene-based analysis. The results showed a direct association between the intake of red wine, a source of stilbenes, and the relative abundance of Bacteroides, and between the intake of coffee, rich in phenolic acids, and the abundance of Clostridium, Lactococcus and Lactobacillus genera. Despite epidemiological analyses not establishing causality, these results support the association between polyphenol-rich beverages and faecal microbiota in allergic patients. PMID:26437130

  14. Phenolic compounds and bioactivities of pigmented rice.

    PubMed

    Deng, Gui-Fang; Xu, Xiang-Rong; Zhang, Yuan; Li, Dan; Gan, Ren-You; Li, Hua-Bin

    2013-01-01

    The pigmented rice has been consumed in China, Japan, and Korea for a long time. It has been used for strengthening kidney function, treating anemia, promoting blood circulation, removing blood stasis, treating diabetes, and ameliorating sight in traditional Chinese medicine. The extracts from pigmented rice are used as natural food colorants in bread, ice cream, and liquor as well as functional food. The pigmented rice is mainly black, red, and dark purple rice, and contains a variety of flavones, tannin, phenolics, sterols, tocols, γ-oryzanols, amino acids, and essential oils. Anthocyanins are thought as major functional components of pigmented rice. Several anthocyanins have been isolated and identified from the pigmented rice, including cyanidin 3-glucoside, cyanidin 3-galactoside, cyanidin 3-rutinoside, cyanidin 3,5-diglucoside, malvidin 3-galactoside, peonidin 3-glucoside, and pelargonidin 3,5-diglucoside. This review provides up-to-date coverage of pigmented rice in regard to bioactive constituents, extraction and analytical methods, and bioactivities. Special attention is paid to the bioactivities including antioxidant and free radical scavenging, antitumor, antiatherosclerosis, hypoglycemic, and antiallergic activities. PMID:23216001

  15. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  16. Extraction of phenolic compounds from a Spodosol profile: an evaluation of three extractants

    SciTech Connect

    Vance, G.F.; Boyd, S.A.; Mokma, D.L.

    1985-12-01

    The authors extracted phenolic compounds from each horizon of a Spodosol profile using three extractants: 0.1 M sodium pyrophosphate at pH 7.0 and 10.2, and 0.5 N sodium hydroxide at pH 13.4. Of 28 standard compounds evaluated seven phenolic compounds were identified: three carboxylic acids - protocatechuic, p-hydroxybenzoic, and vanillic acids; two aldehydes - vanillin and p-hydroxybenzaldehyde; and two cinnamic acids - trans p-coumaric and ferulic acids. The three most abundant compounds evaluated were protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid. The amounts of each phenolic compound extracted increased with increasing pH of the extractant except for protocatechuic acid. Protocatechuic acid was extracted in the highest amounts by sodium pyrophosphate pH 10. The pyrophosphate (pH .10) extracts revealed that protocatechuic acid tended to accumulate in the B horizons, suggesting that it may play a role in the translocation of metal ions during podzolization. The two cinnamic acids, trans p-coumaric and ferulic, were extracted primarily by NaOH. The identification of these cinnamic derivatives in an NaOH extraction of roots separated from the B horizon suggested that their presence may be due to degradation of plant residues by NaOH. Pyrophosphate (pH 7) extracted only small amounts of phenolic compounds. The specificity of pyrophosphate (pH 10) in removing organic complexes of a possible pedogenic nature suggest that it was the better extractant. Sodium pyrophosphate (pH 10) is recommended for use in future pedological studies of phenolic substances.

  17. Characterization of phenolic compounds of thorny and thornless blackberries.

    PubMed

    Kolniak-Ostek, Joanna; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Fecka, Izabela

    2015-03-25

    The aim of this study was to identify and compare the contents of phenolic acids, tannins, anthocyanins, and flavonoid glycosides in thorny and thornless blackberries. Five thorny and nine thornless cultivars were used for this study. Thirty-five phenolic compounds were determined in the examined fruits, and one phenolic acid, three ellagic acid derivatives, one anthocyanin, and six flavonols were characterized for the first time in blackberries. The thornless fruits were characterized by a higher content of anthocyanins (mean = 171.23 mg/100 g FW), ellagitannins (mean = 3.65 mg/100 g FW), and ellagic acid derivatives (mean = 2.49 mg/100 g FW), in comparison to thorny ones. At the same time, in thorny fruits, the contents of hydroxycinnamic acids (mean = 1.42 mg/100 g FW) and flavonols (mean = 5.70 mg/100 g FW) were higher. PMID:25764069

  18. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  19. High pressure extraction of phenolic compounds from citrus peels†

    NASA Astrophysics Data System (ADS)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.

    2014-10-01

    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  20. Perlite filtration of phenolic compounds from cigarette smoke.

    PubMed

    Rostami-Charati, Faramarz; Robati, Gholamreza Moradi; Naghizadeh, Farhad; Hosseini, Shahnaz; Chaichi, Mohammad Javad

    2013-01-01

    Adsorption of phenolic compounds and chemical analysis of them from a local production cigarette (named by Farvardin cigarette) smoke have been investigated by using perlite filtration. In this research, the mainstream smoke was tested by three filtration methods: Perlite filter, Cambridge filter and general cigarette filter. Then the used filter was extracted by pure methanol as solvent. After that, the extracted solution was analysed by GC-MS. By this consideration, the phenolic derivatives such as phenol, hydroquinone, resorcinol, pyrocatechol, m-cresol, p-cresol and o-cresol were detected. The structure of the perlite filtration after absorption was studied by SEM. In addition, its chemical structure was investigated by XRD and XRF. PMID:23190556

  1. A new phenol compound from endophytic Phomopsis sp. DC01.

    PubMed

    Li, Jun-Tian; Chen, Qian-Qian; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2012-11-01

    The strain DC01 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a member of Phomopsis according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Phomopsis sp. DC01 were purified and three compounds including one new phenol compound were obtained. The new compound was identified to be (E )-7-(2-hydroxy-4-(hydroxymethyl)phenyl)-2-methyloct-6-enoic acid (1) based on 1-D NMR, 2-D NMR and HR-ESI data. PMID:22107457

  2. Aquatic pathways model to predict the fate of phenolic compounds

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  3. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS.

    PubMed

    Tasioula-Margari, Maria; Tsabolatidou, Eleftheria

    2015-01-01

    The aim of this study was to evaluate the recovery of individual phenolic compounds extracted from virgin olive oil (VOO), from different Greek olive varieties. Sufficient recoveries (90%) of all individual phenolic compounds were obtained using methanol as an extraction solvent, acetonitrile for residue solubilization, and two washing steps with hexane. Moreover, in order to elucidate structural characteristics of phenolic compounds in VOO, high performance liquid chromatography with a diode array detector (HPLC-DAD) at 280 and 340 nm and HPLC coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) in the negative-ion mode were performed. The most abundant phenolic compounds were oleuropein derivatives with m/z 319 and 377 and ligstroside derivatives with m/z 303, 361. Lignans, such as 1-acetoxypinoresinol and pinoresinol were also present in substantial quantities in the phenolic fraction. However, pinoresinol was co-eluted with dialdehydic form of ligstroside aglycone (DAFLA) and it was not possible to be quantified separately. The phenolic extracts, obtained from different VOO samples, yielded similar HPLC profiles. Differences, however, were observed in the last part of the chromatogram, corresponding to isomers of the aldehydic form of ligstroside aglycone. Oxidized phenolic products, originating from secoiridoids, were also detected. PMID:26783843

  4. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS

    PubMed Central

    Tasioula-Margari, Maria; Tsabolatidou, Eleftheria

    2015-01-01

    The aim of this study was to evaluate the recovery of individual phenolic compounds extracted from virgin olive oil (VOO), from different Greek olive varieties. Sufficient recoveries (90%) of all individual phenolic compounds were obtained using methanol as an extraction solvent, acetonitrile for residue solubilization, and two washing steps with hexane. Moreover, in order to elucidate structural characteristics of phenolic compounds in VOO, high performance liquid chromatography with a diode array detector (HPLC-DAD) at 280 and 340 nm and HPLC coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) in the negative-ion mode were performed. The most abundant phenolic compounds were oleuropein derivatives with m/z 319 and 377 and ligstroside derivatives with m/z 303, 361. Lignans, such as 1-acetoxypinoresinol and pinoresinol were also present in substantial quantities in the phenolic fraction. However, pinoresinol was co-eluted with dialdehydic form of ligstroside aglycone (DAFLA) and it was not possible to be quantified separately. The phenolic extracts, obtained from different VOO samples, yielded similar HPLC profiles. Differences, however, were observed in the last part of the chromatogram, corresponding to isomers of the aldehydic form of ligstroside aglycone. Oxidized phenolic products, originating from secoiridoids, were also detected. PMID:26783843

  5. Antioxidant activity of some foods containing phenolic compounds.

    PubMed

    Karakaya, S; El, S N; Taş, A A

    2001-11-01

    This study was designed to determine the total phenols (TP) and total antioxidant activity (TAA) of some liquid and solid plant foods that are commonly consumed in Turkey. Total phenols were analysed according to the Folin-Ciocalteu method and antioxidant activities of these compounds in aqueous phase were assessed by measuring their direct ABTS.- radical scavenging abilities. Total phenols varied from 68 to 4162 mg/l for liquid foods and from 735 to 3994 mg/kg for solid foods. TAA of liquid and solid foods ranged between 0.61-6.78 mM and 0.63-8.62 mM, respectively. Total antioxidant activities of foods were well correlated with total phenols (r2 = 0.95). According to content of total phenols per serving, liquid foods were in the order of black tea > instant coffee > coke > red wine > violet carrot juice > apricot nectar > Turkish coffee > grape molasses > sage > white wine > linden flower, and solid foods were in the order of red grape > raisins > tarhana > dried black plum > dried apricot > grape > fresh paprika > fresh black plum > Urtica sp. > cherry > fresh apricot > paprika pickle > paprika paste. PMID:11570016

  6. Colorimetric paper bioassay for the detection of phenolic compounds.

    PubMed

    Alkasir, Ramiz S J; Ornatska, Maryna; Andreescu, Silvana

    2012-11-20

    A new type of paper based bioassay for the colorimetric detection of phenolic compounds including phenol, bisphenol A, catechol and cresols is reported. The sensor is based on a layer-by-layer (LbL) assembly approach formed by alternatively depositing layers of chitosan and alginate polyelectrolytes onto filter paper and physically entrapping the tyrosinase enzyme in between these layers. The sensor response is quantified as a color change resulting from the specific binding of the enzymatically generated quinone to the multilayers of immobilized chitosan on the paper. The color change can be quantified with the naked eye but a digitalized picture can also be used to provide more sensitive comparison to a calibrated color scheme. The sensor was optimized with respect to the number of layers, pH, enzyme, chitosan and alginate amounts. The colorimetric response was concentration dependent, with a detection limit of 0.86 (±0.1) μg/L for each of the phenolic compounds tested. The response time required for the sensor to reach steady-state color varied between 6 and 17 min depending on the phenolic substrate. The sensor showed excellent storage stability at room temperature for several months (92% residual activity after 260 days storage) and demonstrated good functionality in real environmental samples. A procedure to mass-produce the bioactive sensors by inkjet printing the LbL layers of polyelectrolyte and enzyme on paper is demonstrated. PMID:23113670

  7. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Carvalho, Ana Maria; Ferreira, Isabel C F R; Santos-Buelga, Celestino

    2012-05-01

    Crataegus monogyna, Cytisus multiflorus, Malva sylvestris and Sambucus nigra have been used as important medicinal plants in the Iberian Peninsula since a long time ago, and are claimed to have various health benefits. This study aimed to determine the phenolic profile and composition of wild medicinal flowers of those species. The analysis was performed by HPLC-DAD-ESI/MS. Flavonoids, and particularly flavonols and flavones, were the main groups in almost all the studied samples. C. multiflorus sample gave the highest levels of total flavonoids (54.5 mg/gdw), being a chrysin derivative the most abundant flavone found (22.3 mg/gdw). C. monogyna revealed the highest concentration in phenolic acids (5.5 mg/gdw) that were not found in C. multiflorus sample; 5-O-caffeoylquinic acid was the most abundant phenolic acid found in the first species, being a procyanidin trimer also found (1.4 mg/gdw). Kaempferol-3-O-rutinoside (0.84 mg/gdw) and quercetin-3-O-rutinoside (14.9 mg/gdw) were the main flavonols present in M. sylvestris and S. nigra, respectively. Due to the well established antioxidant activity of phenolic compounds, the studied wild medicinal flowers could be selected for processing extracts with health-promoting properties or to be incorporate into functional beverages or products with bioactive properties related to oxidative stress. PMID:22342808

  8. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  9. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity.

    PubMed

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  10. Radiation induced chemical changes of phenolic compounds in strawberries

    NASA Astrophysics Data System (ADS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  11. Phenolic compounds with IL-6 inhibitory activity from Aster yomena.

    PubMed

    Kim, A Ryun; Jin, Qinglong; Jin, Hong-Guang; Ko, Hae Ju; Woo, Eun-Rhan

    2014-07-01

    A new biflavonoid, named asteryomenin (1), as well as six known phenolic compounds, esculetin (2), 4-O-β-D-glucopyranoside-3-hydroxy methyl benzoate (3), caffeic acid (4), isoquercitrin (5), isorhamnetin-3-O-glucoside (6), and apigenin (7) were isolated from the aerial parts of Aster yomena. The structures of compounds (1-7) were identified based on 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Compounds 2-7 were isolated from this plant for the first time. For these isolates, the inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell was examined. Among these isolates, compounds 4 and 7 appeared to have potent inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell, while compounds 1-3 and 5-6 showed moderate activity. PMID:24014305

  12. Green tea yogurt: major phenolic compounds and microbial growth.

    PubMed

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p < 0.05) in air-dried green tea-yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt. PMID:26139940

  13. Release of substituents from phenolic compounds during oxidative coupling reactions.

    PubMed

    Dec, Jerzy; Haider, Konrad; Bollag, Jean-Marc

    2003-07-01

    Phenolic compounds originating from plant residue decomposition or microbial metabolism form humic-like polymers during oxidative coupling reactions mediated by various phenoloxidases or metal oxides. Xenobiotic phenols participating in these reactions undergo either polymerization or binding to soil organic matter. Another effect of oxidative coupling is dehalogenation, decarboxylation or demethoxylation of the substrates. To investigate these phenomena, several naturally occurring and xenobiotic phenols were incubated with various phenoloxidases (peroxidase, laccase, tyrosinase) or with birnessite (delta-MnO(2)), and monitored for chloride release, CO(2) evolution, and methanol or methane production. The release of chloride ions during polymerization and binding ranged between 0.2% and 41.4%. Using the test compounds labeled with 14C in three different locations (carboxyl group, aromatic ring, or aliphatic chain), it was demonstrated that 14CO(2) evolution was mainly associated with the release of carboxyl groups (17.8-54.8% of the initial radioactivity). Little mineralization of 14C-labeled aromatic rings or aliphatic carbons occurred in catechol, ferulic or p-coumaric acids (0.1-0.7%). Demethoxylation ranged from 0.5% to 13.9% for 2,6-dimethoxyphenol and syringic acid, respectively. Methylphenols showed no demethylation. In conclusion, dehalogenation, decarboxylation and demethoxylation of phenolic substrates appear to be controlled by a common mechanism, in which various substituents are released if they are attached to carbon atoms involved in coupling. Electron-withdrawing substituents, such as -COOH and -Cl, are more susceptible to release than electron-donating ones, such as -OCH(3) and -CH(3). The release of organic substituents during polymerization and binding of phenols may add to CO(2) production in soil. PMID:12738292

  14. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs).

    PubMed

    García, Aránzazu; Rodríguez-Juan, Elisa; Rodríguez-Gutiérrez, Guillermo; Rios, José Julian; Fernández-Bolaños, Juan

    2016-04-15

    Deep eutectic solvents (DESs) are "green" solvents, applied in this study for the extraction of phenolic compounds from virgin olive oil (VOO). Different combinations of DES consisting of choline chloride (ChCl) in various mixing ratios with sugars, alcohols, organic acids, and urea, as well as a mixture of three sugars were used. The yields of the DES extractions were compared with those from conventional 80% (v/v) methanol/water. DES showed a good solubility of phenolic compounds with different polarities. The two most abundant secoiridoid derivatives in olive oil, oleacein and oleocanthal, extracted with ChCl/xylitol and ChCl/1,2-propanediol showed an increase of 20-33% and 67.9-68.3% with respect to conventional extraction, respectively. To our knowledge, this is the first time that phenolic compounds have been extracted from VOO oil using DES. Our results suggest that DES offers an efficient, safe, sustainable, and cost effective alternative to methanol for extraction of bioactive compounds from VOO. PMID:26616988

  15. Isolation and identification of phenolic compounds from Gynura divaricata leaves

    PubMed Central

    Wan, Chunpeng; Yu, Yanying; Zhou, Shouran; Tian, Shuge; Cao, Shuwen

    2011-01-01

    Background: Phenolic constituents were the principle bioactivity compounds exist in Gynura divaricata, little phenolic compounds were reported from the plant previously. Materials and Methods: 60% ethanol extract from the leaves of Gynura divaricata were isolated and purified by column chromatography of Silica gel, ODS and Sephadex LH-20, the structures of the isolated compounds were identified by UV, 1H-NMR, 13C-NMR and MS spectroscopic techniques. Additionally, a high-performance liquid chromatography-diode array detector-electrospray ionization-mass (HPLC-DAD-ESI-MS) analytical method was developed to identify some minor constituents in the n-butanol fraction of the ethanol extract of Gynura divaricata. Results: Six flavonols and one Dicaffeoylquinic acid were isolated from the leaves of Gynura divaricata, and these compounds were identified as follows: quercetin (1), kaempferol (2), kaempferol-3-O-β-D-glucopyranoside (3), quercetin-3-O-rutinoside (4), kaempferol-3,7-di-O-β-D-glucopyranoside (5), kaempferol-3-O-rutinoside-7-O-β-D-glucopyranoside (6), and 3,5-dicaffeoylquinic acid (7). A total of 13 compounds, including 9 flavonol glycosides and 4 phenolic acids, were tentatively identified by comparing their retention time (RT), UV, and MS spectrum values with those that had been identified and the published data. Conclusion: This was the first time to use the HPLC-DAD-ESI-MS method to identify the phytochemicals of the genera Gynura. Moreover, compounds (6) and (7) have been isolated for the first time from the genus Gynura. PMID:21716618

  16. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    PubMed Central

    Klongkumnuankarn, Pornprom; Busaranon, Kesarin; Chanvorachote, Pithi; Sritularak, Boonchoo; Jongbunprasert, Vichien; Likhitwitayawuid, Kittisak

    2015-01-01

    Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8), moscatilin (1), gigantol (3), lusianthridin (4), and dendroflorin (6) showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant. PMID:25685168

  17. Characterization of phenols biodegradation by compound specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    Biodegradation of phenol and alkylphenols has been described under both oxic and anoxic conditions. In the absence of molecular oxygen, the degradation of phenolic compounds is initiated by microorganisms through carboxylation, fumarate addition to the methyl moiety or anoxic hydroxylation of the methyl moiety. Comparatively, under aerobic condition, the initiation mechanisms are revealed to be monoxygenation or dihydroxylation for phenol and ring hydroxylation or methyl group oxidation for cresols. While several studies biochemically characterized the enzymes and reaction mechanisms in the relevant degradation pathways, isotope fractionation patterns were rarely reported possibly due to constraints in current analytical methods. In this study, the carbon isotope fractionation patterns upon the degradation of phenol and cresols by several strains were analyzed by using isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). The corresponding enrichment factors for carbon (ƐC) have been obtained. Cresols degradation by various strains showed generally moderate carbon isotope fractionation patterns with notable differences. For p-cresol degradation, five strains were examined. The aerobic strain Acinetobacter calcoaceticus NCIMB8250 exploits ring hydroxylation by molecular oxygen as initial reaction, and a ƐC value of -1.4±0.2‰ was obtained. Pseudomonas pseudoalcaligenes NCIMB 9867, an aerobic strain initiating cresols degradation via oxygen-dependent side chain hydroxylation, yielded a ƐC value of -2.3±0.2‰. Under nitrate-reducing conditions, Geobacter metallireducens DSM 7210 and Azoarcus buckelii DSM 14744 attacks p-cresol at the side chain by monohydroxylation using water as oxygen source; the two strains produced ƐC values of -3.6±0.4‰ and -2±0.1‰, accordingly. The sulfate-reducing Desulfosarcina cetonica DSM 7267 activating cresols by fumarate addition to the methyl moiety yielded ƐC values of -1.9±0.2‰ for p

  18. Two new phenolic compounds from the seeds of Machilus yunnanensis.

    PubMed

    Long, Hui; Luo, Dan; Yang, Yan; Zhang, Ling; Pu, De-Bing; Li, Jie; Chen, Xue-Jiao; Zhu, Xu; Liu, Shuang; Gao, Jun-Bo; Wang, Yong-Mei; Ji, Xu; Xiao, Wei-Lie

    2016-10-01

    Chemical constituents investigation on the seeds of Machilus yunnanensis led to two new phenolic compounds 8-O-acetyl-phenylethanoid-4-O-β-D-glucopyranoside (1) and (E)-2,3-bis(4-hydroxyphenyl)acrylaldehyde (2), together with 16 known compounds. Their structures were elucidated on the basis of spectroscopic data analysis (IR, MS, 1D, and 2D NMR). Meanwhile, compounds 1-3, 6-13, 17, and 18 were evaluated for vasorelaxant effects on the rat endothelium-intact thoracic aorta rings precontracted with phenylephrine (PE) or KCl. The bioassay results showed that compound 17 had significant vasorelaxant effect on the endothelium-intact thoracic aorta rings precontracted with KCl. PMID:27267812

  19. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    PubMed

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. PMID:27155370

  20. Phenolic compounds characterization and biological activities of Citrus aurantium bloom.

    PubMed

    Karimi, Ehsan; Oskoueian, Ehsan; Hendra, Rudi; Oskoueian, Armin; Jaafar, Hawa Z E

    2012-01-01

    Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts. The obtained total phenolics value for methanolic Citrus aurantium bloom extract was 4.55 ± 0.05 mg gallic acid equivalent (GAE)/g dry weight (DW), and for total flavonoids it was 3.83 ± 0.05 mg rutin equivalent/g DW. In addition, the RP-HPLC analyses of phenolics and flavonoids indicated the presence of gallic acid, pyrogallol, syringic acid, caffeic acid, rutin, quercetin and naringin as bioactive compounds. The antioxidant activity of Citrus aurantium bloom were examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the ferric reducing/antioxidant potential (FRAP). The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of Citrus aurantium bloom at a concentration of 300 μg/mL, with values of 55.3% and 51.7%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. Furthermore, the anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract. Apart from that, the anticancer activity of the methanolic extract was investigated in vitro against human cancer cell lines (MCF-7; MDA-MB-231), human colon adenocarcinoma (HT-29) and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to appreciable

  1. Identification and quantification of phenolic compounds in grapes by HPLC-PDA-ESI-MS on a semimicro separation scale.

    PubMed

    Nicoletti, Isabella; Bello, Cristiano; De Rossi, Antonella; Corradini, Danilo

    2008-10-01

    occurring in the whole berries of nine red and one white grape of different varieties of Vitis vinifera, comprising some autochthonous varieties of south Italy such as Aglianico, Malvasia Nera, Uva di Troia, Negroamaro, Primitivo, and Susumaniello. Large differences in the content of phenolic compounds was found in the investigated grape varieties. As expected, only glycosilated flavonols were quantified, and the total amount of these compounds was higher in the whole berries of red grapes than in the white Moscato, where the most abundant phenolic compound was quercetin 3-O-glucoside. In almost all samples, the most and least abundant anthocyanins were malvidin 3-O-glucoside and cyanidin 3-O-glucoside, respectively, with the exception of Uva di Troia where the least abundant anthocyanin was delphinidin 3-O-glucoside. PMID:18781764

  2. Antioxidant property and storage stability of quince juice phenolic compounds.

    PubMed

    Wojdyło, Aneta; Teleszko, Mirosława; Oszmiański, Jan

    2014-01-01

    The aim of this study was to characterise, in depth, 11 quince cultivars to provide data for their industrial processing into high-quality juices. Polyphenolic composition analyses (identification and quantification), soluble fraction of procyanidins, antioxidant capacity assays and cluster analysis were measured. A total of 19 kinds of polyphenolic compounds were the following in the juices: before and after 6 month of storage time at 4 and 30 °C. Large variations in polyphenolic compounds content were found as affected by quince cultivar. The total phenolics determined by UPLC ranged from 4045 mg to 721 mg/100 mL of juices, and was high correlated with antioxidant activity. During 6 months of storage a significant change was observed in the content of polyphenols, especially in procyanidins (37% and 55%, respectively). This result may be useful for the juice industry as a starting point for the development of tasty quince juices with high levels of bioactive compounds. PMID:24444935

  3. Development of novel antibiofouling materials from natural phenol compounds

    NASA Astrophysics Data System (ADS)

    Chelikani, Rahul; Kim, Dong Shik

    2007-03-01

    Biofilms consist of a gelatinous matrix formed on a solid surface by microbial organisms.Biofilm is caused due to the adhesion of microbes to solid surfaces with production of extracellular polymers and the process of the biofilm formation is reffered to as biofouling.Biofouling causes serious problems in chemical, medical and pharmaceutical industries.Although there have been some antibiofouling materials developed over the years,no plausible results have been found yet.Natural polyphenolic compounds like flavanoids,cathechins have strong antioxidant and antimicrobial properties.Recently,apocynin,a phenol derivative,was polymerized to form oligomers,which can regulate intracellular pathways in cancer cells preventing cell proliferation and migration.These natural phenolic compounds have never been applied to solid surfaces to prevent biofouling.It is thought that probably because of the difficulty to crosslink them to form a stable coating.In this study,some novel polyphenolic compounds synthesized using enzymatic technique from cashew nut shell liquid,a cheap and renewable byproduct of the cashew industry are used as coating materials to prevent biofouling.The interaction of these materials with microbes preventing fouling on surfaces and the chemico-physical properties of the materials causing the antibiofouling effect will be discussed.It is critical to understand the antibiofouling mechanism of these materials for better design and application in various fields.

  4. Characterisation of phenolic compounds in South African plum fruits (Prunus salicina Lindl.) using HPLC coupled with diode-array, fluorescence, mass spectrometry and on-line antioxidant detection.

    PubMed

    Venter, Alet; Joubert, Elizabeth; de Beer, Dalene

    2013-01-01

    Phenolic compounds are abundant secondary metabolites in plums, with potential health benefits believed to be due to their antioxidant activity, amongst others. Phenolic characterisation of South African Prunus salicina Lindl. plums is necessary to fully evaluate their potential health benefits. An HPLC method using diode-array detection (DAD) for quantification of phenolic compounds was improved and fluorescence detection (FLD) was added for quantification of flavan-3-ols. Validation of the HPLC-DAD-FLD method showed its suitability for quantification of 18 phenolic compounds, including flavan-3-ols using FLD, and phenolic acids, anthocyanins and flavonols using DAD. The method was suitable for characterisation of the phenolic composition of 11 South African plum cultivars and selections, including various types with yellow and red skin and flesh. The method was used in conjunction with mass spectrometry (MS) to identify 24 phenolic compounds. Neochlorogenic acid and cyanidin-3-O-glucoside were the major compounds in most of the plums, while cyanidin-3-O-glucoside was absent in Sun Breeze plums with yellow skin and flesh. Post-column on-line coupling of the ABTS•+ scavenging assay with HPLC-DAD enabled qualitative evaluation of the relative contribution of individual phenolic compounds to the antioxidant activity. The flavan-3-ols, neochlorogenic acid and cyanidin-3-O-glucoside displayed the largest antioxidant response peaks. PMID:23644975

  5. Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound.

    PubMed

    Ma, Ya-Qin; Chen, Jian-Chu; Liu, Dong-Hong; Ye, Xing-Qian

    2009-01-01

    Ultrasound-assisted extraction (UAE) has been widely applied in the extraction of a variety of biologically active compounds including phenolic compounds. However, there is an insufficiency of information on simultaneous extraction of these compounds in this area. In the present study, seven phenolic compounds of two families including cinnamic acids (caffeic, p-coumaric, ferulic, sinapic acid), and benzoic acids (protocatechuic, p-hydroxybenzoic, vanillic acid) from citrus (Citrus unshiuMarc) peels were evaluated by UAE. The effects of ultrasonic variables including extraction time, temperature, and ultrasonic power on the yields of seven phenolic acids was investigated. Results showed that the yields of phenolic compounds increased with both ultrasonic time and temperature increased, whereas the opposite occurred with increasing time at higher temperature to some certain. In the case of 40 degrees C, the decrease in the yields of some phenolic compounds was observed with increased time, whereas those of other compounds did not significantly declined. Ultrasonic power has a positive effect on the yields of phenolic acids under study. Among all ultrasound variables, temperature is the most sensitive on stability of phenolic compounds. Moreover, when phenolic compounds from citrus peel extracts were subjected to ultrasound process, the benzoic acids were more stable than the cinnamic acids. Meanwhile, the optimal ultrasound condition was different one compound from another. These were partly attributed to both the differently chemical structures of phenolic acids and the combination effects of ultrasonic variables. PMID:18556233

  6. Characterisation of phenolic compounds in processed fibres from the juice industry.

    PubMed

    Delpino-Rius, Antoni; Eras, Jordi; Vilaró, Francisca; Cubero, Miguel Ángel; Balcells, Mercè; Canela-Garayoa, Ramon

    2015-04-01

    The content of phenolic compounds was determined in nine industrially processed fibres derived from the juice industry. Apple, peach, and pear as non-citrus fruit fibres were examined, as well as orange peel and flesh, tangerine peel and flesh, and lemon flesh as citrus fruit fibres, and carrot as vegetable fibre. The extractable phenolic profile of all fibres was obtained by UPLC-PDA-FLR-MS/MS. Forty phenolic compounds were identified and their concentrations determined. In addition, bound phenolic acids and proanthocyanidins were measured in solid residues in order to determine the phenolic compounds remaining. Also, to allow the comparison of the profiles and contents in the fresh fruit and fibres, we analysed extractable and bound phenolic compounds in lyophilized peel and pulp from fresh fruit. The profile and phenolic content of the fibres was similar to that of the fresh fruit, except for flavan-3-ols, which registered lower values. PMID:25442594

  7. Effectiveness of phenolic compounds against citrus green mould.

    PubMed

    Sanzani, Simona M; Schena, Leonardo; Ippolito, Antonio

    2014-01-01

    Stored citrus fruit suffer huge losses because of the development of green mould caused by Penicillium digitatum. Usually synthetic fungicides are employed to control this disease, but their use is facing some obstacles, such public concern about possible adverse effects on human and environmental health and the development of resistant pathogen populations. In the present study quercetin, scopoletin and scoparone--phenolic compounds present in several agricultural commodities and associated with response to stresses--were firstly tested in vitro against P. digitatum and then applied in vivo on oranges cv. Navelina. Fruits were wound-treated (100 µg), pathogen-inoculated, stored and surveyed for disease incidence and severity. Although only a minor (≤13%) control effect on P. digitatum growth was recorded in vitro, the in vivo trial results were encouraging. In fact, on phenolic-treated oranges, symptoms appeared at 6 days post-inoculation (DPI), i.e., with a 2 day-delay as compared to the untreated control. Moreover, at 8 DPI, quercetin, scopoletin, and scoparone significantly reduced disease incidence and severity by 69%-40% and 85%-70%, respectively, as compared to the control. At 14 DPI, scoparone was the most active molecule. Based on the results, these compounds might represent an interesting alternative to synthetic fungicides. PMID:25153867

  8. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  9. Effect of Fe and Zn treatments on phenolic compounds in spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both minerals and phenolics play a crucial role in maintaining and promoting human health. Although many studies to enhance the concentration of minerals or phenolic compounds in plant-based foods have been conducted, there are few studies elucidating the relationship between minerals and phenolics ...

  10. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.

    PubMed

    Tymchyshyn, Matthew; Xu, Chunbao Charles

    2010-04-01

    Direct liquefaction of lignocellulosic wastes (sawdust and cornstalks) and two model bio-mass compounds (pure lignin and pure cellulose as references) has been conducted in hot-compressed water at temperatures from 250 to 350 degrees C in the presence of 2MPa H(2), for the production of phenolic compounds that may be suitable for the production of green phenol-formaldehyde resins. The liquefaction operations at 250 degrees C for 60 min produced the desirable product of phenolic/neutral oil at a yield of about 53, 32, 32 and 17 wt.% for lignin, sawdust, cornstalk and cellulose, respectively. The yield of phenolic/neutral oil for each feedstock was found to decrease with increasing temperature. As evidenced by GC-MS measurements, significant quantities of phenolic compounds such as 2-methoxy-phenol, 4-ethyl-2-methoxy-phenol, and 2,6-dimethoxy-phenol, were present in the resulting phenolic/neutral oils from the two lignocellulosic wastes and pure lignin. The relative concentration of phenolic compounds in the lignin-derived oil was as high as about 80%. As expected, the liquid products from cellulose contained essentially carboxylic acids and neutral compounds. Addition of Ba(OH)(2) and Rb(2)CO(3) catalysts were found to significantly increase both phenolic/neutral oil and gas yields for all feedstocks except for lignin. PMID:20031393

  11. Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing

    PubMed Central

    Francini, Alessandra; Sebastiani, Luca

    2013-01-01

    This paper summarizes the information on the occurrence of phenolic compounds in apple (Malus x domestica Borkh.) fruit and juice, with special reference to their health related properties. As phytochemical molecules belonging to polyphenols are numerous, we will focus on the main apples phenolic compounds with special reference to changes induced by apple cultivar, breeding approaches, fruit postharvest and transformation into juice. PMID:26784345

  12. Photocatalysis of Phenolic Compounds with Synthesized Nanoparticles TiO2/Sn2

    NASA Astrophysics Data System (ADS)

    Khuanmar, Kulyakorn; Wirojanagud, Wanpen; Kajitvichyanukul, Puangrat; Maensiri, Santi

    This study was aimed to determine the photocatalytic degradation of phenolic compounds contaminated in the pulp and paper wastewater with the synthesized nanoparticle TiO2/Sn2 and the commercial TiO2 (Sigma Aldrich). The studied phenolic compounds included 2-methoxy phenol (guaiacol), 2,6-dimethoxy phenol (syringol) and phenol. The synthesized TiO2/Sn2 was prepared by sol-gel technique, mixture of titanium solution and ethanol/polymer with 2% of tin. The characterization of the synthesized TiO2/Sn2 and the commercial TiO2 were performed by XRD, BET and SEM. The synthesized TiO2/Sn2 were: mixed phase of anatase:rutile of 85: 15, 14 nm crystalline size of anatase (101) and 47 nm rutile (110) and 65.7 m2 g-1 surface area by BET. On the other hand the commercial TiO2 (Sigma aldrich) only showed the anatase phase with particle size of 41 nm and 10.9 m2 g-1 surface area by BET. The photocatalytic degradation were tested on the individual and mixed phenolic compounds. The phenolic compound solution suspended with the catalyst was irradiated with UV light. The photocatalytic degradation of phenolic compounds by such two types was significantly different. TiO2/Sn2 presented the sequential degradation as syringol > guaiacol > phenol for both individual and mixed phenolic compounds. While the commercial TiO2 indicated the degradation as phenol>guaiacol>syringol for the individual phenolic compound and the reverse order of degradation as syringol>guaiacol>phenol for the mixed compounds.

  13. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MS(n).

    PubMed

    Kang, Jinguo; Price, William E; Ashton, John; Tapsell, Linda C; Johnson, Stuart

    2016-11-15

    Hydromethanolic extracts of brown, red, and white sorghum whole grains were analysed by LC-MS(n) in negative ESI mode within the range m/z 150-550amu. Besides the flavonoids already reported in sorghum, a number of flavonoids were also identified in the sorghum grain for the first time, including flavanones, flavonols and flavanonols, and flavan-3-ol derivatives. Various phenylpropane glycerides were also found in the sorghum grain, the majority of them are reported here for the first time, and a few of them were detected with abundant peaks in the extracts, indicating they are another important class of phenolic compounds in sorghum. In addition, phenolamides were also found in sorghum grain, which have not been reported before, and dicaffeoyl spermidine was detected in high abundance in the extracts of all three type sorghum grains. These results confirmed that sorghum is a rich source of various phenolic compounds. PMID:27283625

  14. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins.

    PubMed

    Altemimi, Ammar; Watson, Dennis G; Choudhary, Ruplal; Dasari, Mallika R; Lightfoot, David A

    2016-01-01

    The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655

  15. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins

    PubMed Central

    Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.

    2016-01-01

    The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655

  16. Determination of total phenolic compounds in compost by infrared spectroscopy.

    PubMed

    Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M

    2016-06-01

    Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. PMID:27130128

  17. Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds

    PubMed Central

    Abaza, Leila; Taamalli, Amani; Nsir, Houda; Zarrouk, Mokhtar

    2015-01-01

    Phenolic compounds are becoming increasingly popular because of their potential role in contributing to human health. Experimental evidence obtained from human and animal studies demonstrate that phenolic compounds from Olea europaea leaves have biological activities which may be important in the reduction in risk and severity of certain chronic diseases. Therefore, an accurate profiling of phenolics is a crucial issue. In this article, we present a review work on current treatment and analytical methods used to extract, identify, and/or quantify phenolic compounds in olive leaves. PMID:26783953

  18. HPLC-DAD-ESI/MS(n) profiling of phenolic compounds from Lathyrus cicera L. seeds.

    PubMed

    Ferreres, F; Magalhães, S C Q; Gil-Izquierdo, A; Valentão, P; Cabrita, A R J; Fonseca, A J M; Andrade, P B

    2017-01-01

    Lathyrus cicera L. seeds are of interest for food and feed purposes. Despite the recognized antioxidant activity of the seeds, arising from the phenolic fraction, their phenolic compounds have not been studied in depth yet. Therefore, to determine the phenolics profile of these seeds, a target analysis was performed using high-performance liquid chromatography coupled to photodiode-array detection and electrospray ionization/ion trap mass spectrometry (HPLC-DAD-ESI/MS(n)). Thirty-seven glycosylated flavonoids were identified for the first time in the seeds of this species and, according to their MS fragmentation, clustered in flavonol-3-O-di-/tri-glycosides-7-O-rhamnosides and other flavonol-glycosides, and flavonol-3-O-(cinnamoyl)glycoside-7-O-rhamnosides, flavonol-3-O-(dihydrophaseoyl, cinnamoyl)glycoside-7-O-rhamnosides and flavonol-3-O-(malonyl)glycoside-7-O-rhamnosides. Glycosides of kaempferol were the main flavonoids found (10 non-acylated and 21 acylated), followed by those of quercetin (3) and those of isorhamnetin, apigenin and luteolin (1). The most abundant flavonols were identified as kaempferol-3-O-(2-hexosyl)hexoside-7-O-rhamnosides. The methodology used allowed to increase the knowledge on a relevant phytochemical class of seeds from L. cicera. PMID:27507525

  19. Solubilities of biologically active phenolic compounds: measurements and modeling.

    PubMed

    Queimada, António J; Mota, Fátima L; Pinho, Simão P; Macedo, Eugénia A

    2009-03-19

    Aqueous solubilities of natural phenolic compounds from different families (hydroxyphenyl, polyphenol, hydroxybenzoic, and phenylpropenoic) were experimentally obtained. Measurements were performed on tyrosol and ellagic, protocatechuic, syringic, and o-coumaric acids, at five different temperatures (from 288.2 to 323.2 K), using the standard shake-flask method, followed by compositional analysis using UV spectrophotometry. To verify the accuracy of the spectrophotometric method, some data points were measured by gravimetry, and in general, the values obtained with the two methods are in good agreement (deviations lower than 11%). To adequately understand the solubilization process, melting properties of the pure phenolics were obtained by differential scanning calorimetry (DSC), and apparent acid dissociation constants were measured by potentiometry titration. The aqueous solubilities followed the expected general exponential trend. The melting temperatures did not follow the same solubility tendency, and for tyrosol and ellagic acid, not only the size and extent of hydrogen bonding, but also the energy associated with their crystal structures, determine the solubility. For these binary systems, acid dissociation is not important. Approaches for modeling the measured data were evaluated. These included an excess Gibbs energy equation, the modified UNIQUAC model, and the cubic-plus-association (CPA) equation of state. Particularly for the CPA approach, a new methodology that explicitly takes into account the number and nature of the associating sites and the prediction of the pure-component parameters from molecular structure is proposed. The results indicate that these are appropriate tools for representing the water solubilities of these molecules. PMID:19243119

  20. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties.

    PubMed

    Xu, Yixiang; Burton, Sheanell; Kim, Chyer; Sismour, Edward

    2016-01-01

    Grape pomace is a potential source of natural antioxidant and antimicrobial agents. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties were investigated. White grape pomaces had higher (P < 0.05) solvent extraction yield than red varieties. Concentrations of total phenolic (TPC), total flavonoid (TFC), total anthocyanin (TAC), tannins, condensed tannins (CT), as well as antioxidant capacities (DPPH• and ABTS•+free radical scavenging) differed (P < 0.05) among four pomace extracts. ABTS•+ scavenging capacity was positively correlated with TPC, TFC, tannins, and CT (P < 0.05), whereas DPPH• capacity was positively correlated with TAC (P < 0.05). Nine flavonoid compounds were identified, of which catechin and epicatechin were the two most abundant. Antibacterial activity was observed against Listeria monocytogenes ATCC 7644 and Staphylococcus aureus ATCC 29213, but not against Escherichia coli O157:H7 ATCC 3510 and Salmonella typhimurium ATCC 14028. L. monocytogenes was more susceptible than S. aureus. PMID:26788319

  1. Factors Affecting the Extraction of Intact Ribonucleic Acid from Plant Tissues Containing Interfering Phenolic Compounds

    PubMed Central

    Newbury, H. John; Possingham, John V.

    1977-01-01

    Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134

  2. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years

    PubMed Central

    Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun

    2015-01-01

    Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p < 0.05), and the phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p < 0.05). In particular, chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin were the major phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824

  3. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    PubMed

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). PMID:27485373

  4. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    PubMed Central

    Carpéné, Christian; Hasnaoui, Mounia; Balogh, Balázs; Matyus, Peter; Fernández-Quintela, Alfredo; Rodríguez, Víctor; Mercader, Josep; Portillo, Maria P.

    2016-01-01

    Resveratrol has been reported to inhibit monoamine oxidases (MAO). Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO) in peripheral organs, such as semicarbazide-sensitive AO (SSAO), known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid) behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO. PMID:26881018

  5. Anti-Campylobacter Activities and Resistance Mechanisms of Natural Phenolic Compounds in Campylobacter

    PubMed Central

    Klančnik, Anja; Možina, Sonja Smole; Zhang, Qijing

    2012-01-01

    Background Campylobacter is a major foodborne pathogen and alternative antimicrobials are needed to prevent or decrease Campylobacter contamination in foods or food producing animals. The objectives of this study are to define the anti-Campylobacter activities of natural phenolic compounds of plant origin and to determine the roles of bacterial drug efflux systems in the resistance to these natural phenolics in Campylobacter jejuni. Methodology/Principal Findings Anti-Campylobacter activities were evaluated by an MIC assay using microdilution coupled with ATP measurement. Mutants of the cmeB and cmeF efflux genes and the cmeR transcriptional repressor gene were compared with the wild-type strain for their susceptibilities to phenolics in the absence and presence of efflux-pump inhibitors (EPIs). The phenolic compounds produced significant, but variable activities against both antibiotic-susceptible and antibiotic resistant Campylobacter. The highest anti-Campylobacter activity was seen with carnosic and rosmarinic acids in their pure forms or in enriched plant extracts. Inactivation of cmeB rendered C. jejuni significantly more susceptible to the phenolic compounds, while mutation of cmeF or cmeR only produced a moderate effect on the MICs. Consistent with the results from the efflux pump mutants, EPIs, especially phenylalanine-arginine β-naphthylamide and NMP, significantly reduced the MICs of the tested phenolic compounds. Further reduction of MICs by the EPIs was also observed in the cmeB and cmeF mutants, suggesting that other efflux systems are also involved in Campylobacter resistance to phenolic compounds. Conclusion/Significance Natural phenolic compounds of plant origin have good anti-Campylobacter activities and can be further developed for potential use in controlling Campylobacter. The drug efflux systems in Campylobacter contribute significantly to its resistance to the phenolics and EPIs potentiate the anti-Campylobacter activities of plant phenolic

  6. Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions.

    PubMed

    Vihakas, Matti; Gómez, Isrrael; Karonen, Maarit; Tähtinen, Petri; Sääksjärvi, Ilari; Salminen, Juha-Pekka

    2015-09-01

    Lepidopteran larvae encounter a variety of phenolic compounds while consuming their host plants. Some phenolics may oxidize under alkaline conditions prevailing in the larval guts, and the oxidation products may cause oxidative stress to the larvae. In this study, we aimed to find new ways to predict how phenolic compounds may be modified in the guts of herbivorous larvae. To do so, we studied the ease of oxidation of phenolic compounds from 12 tropical tree species. The leaf extracts were incubated in vitro in alkaline conditions, and the loss of total phenolics during incubation was used to estimate the oxidizability of extracts. The phenolic profiles of the leaf extracts before and after incubation were compared, revealing that some phenolic compounds were depleted during incubation. The leaves of the 12 tree species were each fed to 12 species of lepidopteran larvae that naturally feed on these trees. The phenolic profiles of larval frass were compared to those of in vitro incubated leaf extracts. These comparisons showed that the phenolic profiles of alkali-treated samples and frass samples were similar in many cases. This suggested that certain phenolics, such as ellagitannins, proanthocyanidins, and galloylquinic acid derivatives were modified by the alkaline pH of the larval gut. In other cases, the chromatographic profiles of frass and in vitro incubated leaf extracts were not similar, and new modifications of phenolics were detected in the frass. We conclude that the actual fates of phenolics in vivo are often more complicated than can be predicted by a simple in vitro method. PMID:26364295

  7. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber. PMID:18284136

  8. European marketable grain legume seeds: Further insight into phenolic compounds profiles.

    PubMed

    Magalhães, Sara C Q; Taveira, Marcos; Cabrita, Ana R J; Fonseca, António J M; Valentão, Patrícia; Andrade, Paula B

    2017-01-15

    Twenty-nine mature raw varieties of grain legume seeds (chickpeas, field peas, faba beans, common vetch and lupins) produced in Europe were investigated for their phenolic profile by means of high performance liquid chromatography coupled to diode array detection (HPLC-DAD). To the best of our knowledge, this study reported for the first time the phenolic composition of mature raw seeds of chickpea type Desi, field pea and common vetch. Phenolic acids were predominant compounds in chickpeas, field peas and common vetch compared to flavonoids, whereas the opposite was observed for lupin seeds. Yellow lupins presented the highest levels of total phenolic compounds followed by narrow-leafed lupins (in average 960 and 679mg/kg, dry basis, respectively), whereas Kabuli chickpeas got the lowest ones (in average 47mg/kg, dry basis). Principal component analysis revealed that flavones and total levels of phenolic compounds were responsible for nearly 51% of total data variability. PMID:27542465

  9. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    PubMed

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. PMID:25172736

  10. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    PubMed

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. PMID:25976793

  11. Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer

    NASA Astrophysics Data System (ADS)

    Anbia, Mansoor; Ghaffari, Arezoo

    2009-09-01

    Phenolic compounds are a widespread class of water pollutants that are known to cause serious human health problems; and the demand for effective adsorbents for the removal of toxic compounds is increasing. In this work adsorption of phenol, resorcinol and p-cresol on mesoporous carbon material (CMK-1) and modified with polyaniline polymer (CMK-1/PANI) has been investigated in attempt to explore the possibility of using nanoporous carbon as an efficient adsorbent for pollutants. It was found that CMK-1/PANI exhibits significant adsorption for phenolic derivatives. Batch adsorption studies were carried out to study the effect of various parameters like adsorbent dose, pH, initial concentration and contact time. From the sorption studies it was observed that the uptake of resorcinol was higher than other phenolic derivatives. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data for phenolic compounds.

  12. The Profile and Bioaccessibility of Phenolic Compounds in Cereals Influenced by Improved Extrusion Cooking Treatment

    PubMed Central

    Zeng, Zicong; Liu, Chengmei; Luo, Shunjing; Chen, Jun; Gong, Ersheng

    2016-01-01

    The aim of this study was to investigate the effect of Improved Extrusion Cooking Treatment (IECT) on the phenolics and its bioaccessibility in cereals, represented by brown rice, wheat, and oat. Data showed that total phenolic content and total antioxidant activity in free form were significantly decreased, while the bound form was increased after IECT. After IECT, the total free phenolic acids of brown rice and wheat were significantly decreased by 5.88% and 45.66%, respectively, while the total bound phenolic acids of brown rice, wheat, and oat were significantly increased by 6.45%, 8.78%, and 9.10%, respectively. Brown rice provided the most bioaccessible phenolics and antioxidant compounds, followed by oat and wheat. IECT significantly decreased the bioaccessible phenolics of brown rice and oat by 31.09% and 30.95%, while it had minimal effect on the bioaccessible phenolics of wheat. These results showed that IECT greatly affected the phenolics and its bioaccessibiltiy of cereals, with the effect depending on cereal matrix and the sensitivity of free and bound phenolics. Furthermore, bioaccessible phenolic acids of raw and processed cereals were considerably low, and it slightly contributed to the bioaccessible phenolics. PMID:27513581

  13. The Profile and Bioaccessibility of Phenolic Compounds in Cereals Influenced by Improved Extrusion Cooking Treatment.

    PubMed

    Zeng, Zicong; Liu, Chengmei; Luo, Shunjing; Chen, Jun; Gong, Ersheng

    2016-01-01

    The aim of this study was to investigate the effect of Improved Extrusion Cooking Treatment (IECT) on the phenolics and its bioaccessibility in cereals, represented by brown rice, wheat, and oat. Data showed that total phenolic content and total antioxidant activity in free form were significantly decreased, while the bound form was increased after IECT. After IECT, the total free phenolic acids of brown rice and wheat were significantly decreased by 5.88% and 45.66%, respectively, while the total bound phenolic acids of brown rice, wheat, and oat were significantly increased by 6.45%, 8.78%, and 9.10%, respectively. Brown rice provided the most bioaccessible phenolics and antioxidant compounds, followed by oat and wheat. IECT significantly decreased the bioaccessible phenolics of brown rice and oat by 31.09% and 30.95%, while it had minimal effect on the bioaccessible phenolics of wheat. These results showed that IECT greatly affected the phenolics and its bioaccessibiltiy of cereals, with the effect depending on cereal matrix and the sensitivity of free and bound phenolics. Furthermore, bioaccessible phenolic acids of raw and processed cereals were considerably low, and it slightly contributed to the bioaccessible phenolics. PMID:27513581

  14. Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds are known to form soluble and insoluble complexes with proteins. The objective of this study was to determine if phenolics, such as, caffeic, chlorogenic, and ferulic acids form insoluble and irreversible complexes with major peanut allergens. We also tested whether such complexat...

  15. Using phenolic compounds to reduce the allergenic properties of peanut extracts and peanut butter slurries.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since phenolic compounds may form insoluble complexes with proteins, we determined that their interaction with peanut allergens leads to a reduction in the allergenic properties of peanut extracts and peanut butter slurries. Phenolics, such as, caffeic acid, chlorogenic acid, and ferulic acid were e...

  16. Analysis of the phenolic compounds in longan (Dimocarpus longan lour.) peel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan fruit are susceptible to chilling injury, where the injured peel exhibits discoloration due to water-soaking and enzymatic browning. This peel discoloration is dependent to a large degree on the composition of the phenolic compounds. Yet, the main classes of phenols in longan peel remain la...

  17. The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment

    PubMed Central

    Min, Kyungjin; Freeman, Chris; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also, we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental changes, such as elevated CO2, warming, nitrogen (N) deposition, and drought, could influence the production and form of phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances. Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems. Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental changes on the phenolics production and degradation and subsequent impact on SOM processing. PMID:26495314

  18. Assessment of total (free and bound) phenolic compounds in spent coffee extracts.

    PubMed

    Monente, Carmen; Ludwig, Iziar A; Irigoyen, Angel; De Peña, María-Paz; Cid, Concepción

    2015-05-01

    Spent coffee is the main byproduct of the brewing process and a potential source of bioactive compounds, mainly phenolic acids easily extracted with water. Free and bound caffeoylquinic (3-CQA, 4-CQA, 5-CQA), dicaffeoylquinic (3,4-diCQA, 3,5-diCQA, 4,5-diCQA), caffeic, ferulic, p-coumaric, sinapic, and 4-hydroxybenzoic acids were measured by HPLC, after the application of three treatments (alkaline, acid, saline) to spent coffee extracts. Around 2-fold higher content of total phenolics has been estimated in comparison to free compounds. Phenolic compounds with one or more caffeic acid molecules were approximately 54% linked to macromolecules such as melanoidins, mainly by noncovalent interactions (up to 81% of bound phenolic compounds). The rest of the quantitated phenolic acids were mainly attached to other structures by covalent bonds (62-97% of total bound compounds). Alkaline hydrolysis and saline treatment were suitable to estimate total bound and ionically bound phenolic acids, respectively, whereas acid hydrolysis is an inadequate method to quantitate coffee phenolic acids. PMID:25891228

  19. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects.

    PubMed

    Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R

    2016-03-15

    The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. PMID:26333346

  20. The Bark-Beetle-Associated Fungus, Endoconidiophora polonica, Utilizes the Phenolic Defense Compounds of Its Host as a Carbon Source.

    PubMed

    Wadke, Namita; Kandasamy, Dineshkumar; Vogel, Heiko; Lah, Ljerka; Wingfield, Brenda D; Paetz, Christian; Wright, Louwrance P; Gershenzon, Jonathan; Hammerbacher, Almuth

    2016-06-01

    Norway spruce (Picea abies) is periodically attacked by the bark beetle Ips typographus and its fungal associate, Endoconidiophora polonica, whose infection is thought to be required for successful beetle attack. Norway spruce produces terpenoid resins and phenolics in response to fungal and bark beetle invasion. However, how the fungal associate copes with these chemical defenses is still unclear. In this study, we investigated changes in the phenolic content of Norway spruce bark upon E. polonica infection and the biochemical factors mediating these changes. Although genes encoding the rate-limiting enzymes in Norway spruce stilbene and flavonoid biosynthesis were actively transcribed during fungal infection, there was a significant time-dependent decline of the corresponding metabolites in fungal lesions. In vitro feeding experiments with pure phenolics revealed that E. polonica transforms both stilbenes and flavonoids to muconoid-type ring-cleavage products, which are likely the first steps in the degradation of spruce defenses to substrates that can enter the tricarboxylic acid cycle. Four genes were identified in E. polonica that encode catechol dioxygenases carrying out these reactions. These enzymes catalyze the cleavage of phenolic rings with a vicinal dihydroxyl group to muconoid products accepting a wide range of Norway spruce-produced phenolics as substrates. The expression of these genes and E. polonica utilization of the most abundant spruce phenolics as carbon sources both correlated positively with fungal virulence in several strains. Thus, the pathways for the degradation of phenolic compounds in E. polonica, initiated by catechol dioxygenase action, are important to the infection, growth, and survival of this bark beetle-vectored fungus and may play a major role in the ability of I. typographus to colonize spruce trees. PMID:27208235

  1. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins.

    PubMed

    Díaz-González, María; Vidal, Teresa; Tzanov, Tzanko

    2011-03-01

    Sixteen phenolic compounds, 14 of which naturally occurring, were compared to the synthetic 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and violuric acid (VA) in terms of their ability to act as mediators/enhancers in: (1) laccase oxidation of veratryl alcohol as a lignin model compound, and (2) electrochemical oxidation of kraft and flax lignins. HPLC analysis revealed that the syringyl-type phenols methyl syringate and acetosyringone were the most efficient natural enhancers in the laccase oxidation of veratryl alcohol. Both compounds, though far from the performance of ABTS were able to generate veratraldehyde in amount similar to that obtained with VA. By contrast, the best performing phenolic enhancers for the electrochemical oxidation of lignins were sinapinaldehyde, vanillin, acetovanillone, and syringic acid. Catalytic efficiencies close to those achieved with ABTS and VA were calculated for these phenolic compounds. PMID:21110019

  2. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples.

    PubMed

    Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel

    2013-03-15

    An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills. PMID:23598144

  3. Effect of preozonation on the anaerobic biodegradability of resistant phenolic compounds

    SciTech Connect

    Wang, Y.T.; Pai, P.C.; Latchew, J.L.

    1988-08-01

    Ozone pretreatment studies of four model phenolic compounds were conducted to evaluate the effects of ozonation on the anaerobic biodegradability and toxicity of these compounds. Two types of batch studies, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were performed on samples ozonated upon phenol, o-cresol, 2,5-dichlorophenol and 2,4-dinitrophenol. Experimental results showed that toxic and refractory phenolic compounds were converted to methane gas by means of preozonation. In general, the biodegradable fraction of the oxidation products increased as the ozone dose was increased. The early ozonation products of o-cresol and phenol, however, were more toxic than the initial compounds. The rates of COD and Dissolved Organic Carbon (DOC) reduction through ozonation were faster and products formed were less inhibitory in the basic pH range than in the acid pH range.

  4. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides.

    PubMed

    Mulero, J; Martínez, G; Oliva, J; Cermeño, S; Cayuela, J M; Zafrilla, P; Martínez-Cachá, A; Barba, A

    2015-08-01

    The effect of treating grapes with six fungicides, applied under critical agricultural practices (CAP) on levels of phenolic compounds and antioxidant activity of red wines of Monastrell variety was studied. Vinifications were performed through addition of active dry yeast (ADY). Measurement of phenolic compounds was made with HPLC-DAD. Determination of antioxidant activity was through reaction of the wine sample with the DPPH radical. The wine prepared from grapes treated with quinoxyfen shows a greater increase of phenolic compounds than the control wine. In contrast, the wine obtained from grapes treated with trifloxystrobin showed lower total concentration of phenolic compounds, including stilbenes, whilst treatments with kresoxim-methyl, fluquinconazole, and famoxadone slightly reduced their content. Hence, the use of these last four fungicides could cause a decrease in possible health benefits to consumers. Antioxidant activity hardly varied in the assays with quinoxyfen, fluquinconazole and famoxadone, and decreased in the other wines. PMID:25766797

  5. The impact of milling and thermal processing on phenolic compounds in cereal grains.

    PubMed

    Ragaee, Sanaa; Seetharaman, Koushik; Abdel-Aal, El-Sayed M

    2014-01-01

    Consumption of wholegrain foods has been recommended for healthy diets. The beneficial health properties of wholegrain products have been associated with the presence of higher amounts of dietary fiber and antioxidants and lower calories as compared to their respective refined ones. Phenolic compounds are mainly attributed to antioxidant properties of wholegrain foods. This review article provides a single comprehensive source that describes effects of milling and thermal processing on phenolic compounds and antioxidant properties in cereals. In general, milling and pearling processes affect the distribution of phenolic, compounds and thus antioxidant properties vary among the milling fractions. Thermal processes such as baking and extrusion could cause negative or positive effects on phenolic compounds and antioxidant properties of the end product subject to grain type and processing conditions. Thus factors that enhance health benefits of wholegrain cereal products have been discussed. PMID:24499063

  6. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion.

    PubMed

    Rodríguez-Roque, María Janeth; Rojas-Graü, María Alejandra; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-01-01

    The aim of this research was to evaluate changes in the phenolic compounds, isoflavones and antioxidant activity of soymilk following in vitro gastrointestinal digestion (including dialysis). Gastric digestion significantly influenced the release of bioactive substances from the soymilk matrix, increasing the concentration of total phenolic components (35% as the sum of individuals and 14% by Folin-Ciocalteu [F-C] method), total isoflavone content (22%) and total antioxidant activity (76%). The concentration of all those compounds was reduced significantly in the duodenal fraction in comparison to gastric digestion and their lowest concentration was observed in the dialysed fraction, where phenolic acids were not detected. The bioaccessibility of soymilk phenolic compounds was 15% as the sum of individuals and 20% by F-C assay; isoflavones 36% and constituents with antioxidant activity 27%. Results suggest that most of these compounds were sufficiently available to be absorbed and could contribute health benefits. PMID:23017414

  7. Analysis of phenolic compounds from corn, oat, and wheat bran extracts by LC-MS-PDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds are among the most common secondary metabolites produced by plants and can exhibit a range of bioactive properties including antimicrobial, antioxidant, and antihypertensive. These natural products have applications in nutraceutical, pharmaceutical and functional food or animal fe...

  8. Toxicological aspects of the use of phenolic compounds in disease prevention

    PubMed Central

    Kyselova, Zuzana

    2011-01-01

    The consumption of a diet low in fat and enhanced by fruits and vegetables, especially rich in phenolic compounds, may reduce risks of many civilization diseases. The use of traditional medicines, mainly derived from plant sources, has become an attractive segment in the management of many lifestyle diseases. Concerning the application of dietary supplements (based on phenolic compounds) in common practice, the ongoing debate over possible adverse effects of certain nutrients and dosage levels is of great importance. Since dietary supplements are not classified as drugs, their potential toxicities and interactions have not been thoroughly evaluated. First, this review will introduce phenolic compounds as natural substances beneficial for human health. Second, the potential dual mode of action of flavonoids will be outlined. Third, potential deleterious impacts of phenolic compounds utilization will be discussed: pro-oxidant and estrogenic activities, cancerogenic potential, cytotoxic effects, apoptosis induction and flavonoid-drug interaction. Finally, future trends within the research field will be indicated. PMID:22319251

  9. Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds

    PubMed Central

    Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana

    2014-01-01

    The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249

  10. Fractionation of Phenolic Compounds Extracted from Propolis and Their Activity in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Petelinc, Tanja; Polak, Tomaž; Demšar, Lea; Jamnik, Polona

    2013-01-01

    We have here investigated the activities of Slovenian propolis extracts in the yeast Saccharomyces cerevisiae, and identified the phenolic compounds that appear to contribute to these activities. We correlated changes in intracellular oxidation and cellular metabolic energy in these yeasts with the individual fractions of the propolis extracts obtained following solid-phase extraction. The most effective fraction was further investigated according to its phenolic compounds. PMID:23409133

  11. REMOVAL OF PHENOLIC COMPOUNDS FROM WOOD PRESERVING WASTEWATERS

    EPA Science Inventory

    Laboratory and pilot-scale studies were undertaken to develop economically feasible technologies for the treatment of wastewaters from wood preserving operations. Of prime concern was the removal of phenol and its chlorinated derivatives, in particular, pentachlorophenol. Screeni...

  12. Potentiation of the bioavailability of blueberry phenolic compounds by co-ingested grape phenolic compounds in mice, revealed by targeted metabolomic profiling in plasma and feces.

    PubMed

    Dudonné, Stéphanie; Dal-Pan, Alexandre; Dubé, Pascal; Varin, Thibault V; Calon, Frédéric; Desjardins, Yves

    2016-08-10

    The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability. PMID:27443888

  13. High-temperature operating biosensor for the determination of phenol and related compounds

    SciTech Connect

    Rella, R.; Ferrara, D.; Barison, G.; Doretti, L.

    1996-08-01

    Living phenol-oxidizing Bacillus stearothermophilus cells were immobilized in a hydroxyethyl methacrylate membrane. A thermostable biosensor was developed by coupling the bacterially activated membrane with a dissolved oxygen electrode and was utilized for the amperometric determination of phenols. Linear relationships were obtained for phenol, catechol and some related compounds. The steady-state response was very fast (max. 2 min), faster than other analogous biosensors. Its response was stable, reproducible for months and quite specific. The biosensor may be utilized over a wide temperature (35-55{degrees}C), pH (4.5-8.0) range and in matrices containing compounds toxic for most microorganisms and enzymes used. The best performance was observed at 55{degrees}C and pH 7.2. Owing to its sensitivity, stability and operational simplicity, the phenol biosensor can potentially be applied for the on-line monitoring of phenols in industrial waste effluents. 29 refs., 7 figs., 1 tab.

  14. Content of different groups of phenolic compounds in microshoots of Juglans regia cultivars and studies on antioxidant activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic and other compounds were extracted from micropropagated axillary shoots (microshoots) of the walnut (Juglans regia L.) cultivars ‘Chandler’, ‘Howard’, ‘Kerman’, ‘Sunland’, and ‘Z63’. Among cultivars, microshoots showed differences in phenolic compounds, phenolic acids, flavonoids and proant...

  15. Phenolic compounds in flaxseed: a review of their properties and analytical methods. An overview of the last decade.

    PubMed

    Herchi, Wahid; Arráez-Román, David; Trabelsi, Hajer; Bouali, Intidhar; Boukhchina, Sadok; Kallel, Habib; Segura-Carretero, Antonio; Fernández-Gutierrez, Alberto

    2014-01-01

    Flaxseed has been used for centuries for oil extraction. In recent years it has attracted considerable interest as a result of studies which attribute potential health benefits to its components. Among the compounds that present biological activity, phenolic compounds are of special interest. The dietary lignan secoisolariciresinol diglucoside (SDG) reaches high concentrations in flaxseed. Flaxseed contains also other phenolic compounds, such as phenolic acids. Considering the importance of the phenolic fraction of flaxseed, high performance analytical methods have been developed to characterize its complex phenolic pattern. The understanding of the nature of these compounds is crucial for their possible exploitation in drugs and functional foods. PMID:24371194

  16. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass. PMID:26479290

  17. Determination of phenolic compounds in Prunella L. by liquid chromatography-diode array detection.

    PubMed

    Sahin, Saliha; Demir, Cevdet; Malyer, Hulusi

    2011-07-15

    Four species of Prunella L. (Prunella vulgaris L., Prunella laciniata L., Prunella grandiflora L. and Prunella orientalis Bornm.) belong to the family of Lamiaceae and representing popular Western and Chinese herbal medicine were examined for the content of phenolic compounds. Phenolic acids (rosmarinic acid, caffeic acid, ferulic acid, chlorogenic acid, protocatechuic acid), flavonoids (rutin, quercetin) in different quantitative proportions depending on extracts were determined by the rapid, selective and accurate method combining solvent/acid hydrolysis extraction and high performance liquid chromatography-diode array detection (HPLC-DAD). Water, methanol, butanol, acetonitrile, ethyl acetate, hexane and their acidic solutions were used to examine the efficiency of different solvent systems for the extraction of phenolic compounds. Acid hydrolysis extraction was established as the most suitable extraction method for phenolic compounds. PMID:21498022

  18. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits.

    PubMed

    Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof

    2015-01-01

    Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562

  19. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits

    PubMed Central

    Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof

    2015-01-01

    Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562

  20. Phenolic compounds analysis in foods and dietary supplements is not the same using different sample preparation procedures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent epidemiological studies suggest a positive correlation between diets rich in fruits and vegetables and a reduced incidence of chronic diseases. This beneficial effect is partially attributed to secondary phenolic phytochemicals. Phenolic compounds are the most complex group of phytochemical...

  1. Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study

    PubMed Central

    Esmaeili, N; Ebrahimzadeh, H; Abdi, K; Safarian, S

    2011-01-01

    It is well known that phenolic compounds are constituents of many plants. In this study, the total phenolics content in Crocus sativus L. corms in dormancy and waking stages were determined by the Folin-Ciocalteu method. Analysis was carried out by gas chromatography-mass spectrometry (GC-MS) after silylation by N-methyl-N-trimethylsilyl trifluroacetamide (MSTFA) + %1 trimethyl iodosilane (TMIS). Numerous compounds were detected and 11 compounds were identified. The highest phenolics content in waking corms was observed for gentisic acid (5.693 ± 0.057 μg/g) and the lowest for gallic acid (0.416 ± 0.006 μg/g); also these two phenolic compounds are the highest (0.929 ± 0.015 μg/g) and lowest (0.017 ± 0.001 μg/g) phenolics in dormant corms, respectively. The results from quantization and GC-MS analysis showed a high concentration of phenolic compounds in waking corms than the dormant stage. Furthermore, the radical scavenging activities of saffron corms were studied by 1,1-diphenyl-2-pycrylhydrazyl (DPPH) test and EC 50values were determined about 2055 ppm and 8274 ppm for waking and dormant corms, respectively. PMID:21472084

  2. Evolution of aroma and phenolic compounds during ripening of 'superior seedless' grapes.

    PubMed

    Hellín, Pilar; Manso, Angela; Flores, Pilar; Fenoll, José

    2010-05-26

    The evolution of aroma and phenolic compounds was studied during ripening of Vitis vinifera cv. 'Superior Seedless' grapes in two consecutive years. The major free detected compounds were citral, geraniol, and benzyl alcohol whereas geraniol, citral, nerol, citronellol, dienediol I, linalol oxide I, linalol oxide II, benzyl alcohol, and 2-phenylethanol were identified in the glycosidically bound fraction. Concentrations of the main free terpene alcohols responsible for 'Superior Seedless' aroma decreased during grape development, and bound compounds became predominant at grape maturity. Calculation of odor activity values showed that geraniol was the most active odorant followed to a lesser extent by citral and nerol. With regard to phenolic compound evolution, flavan-3-ols and flavonols were maximal at veraison and decreased throughout the ripening, stilbenes content decreased from the first stage, and total phenolics increased to show a maximum in the ripe grapes. At ripening, quercetin 3-O-glucoside and catechin were the main compounds detected in 'Superior Seedless'. PMID:20438135

  3. Two new phenolic compounds from the leaves of Alnus sibirica Fisch. ex Turcz.

    PubMed Central

    Kim, Manh Heun; Park, Kwan Hee; Kim, So Ra; Park, Kwang Jun; Oh, Myeong Hwan; Heo, Jun Hyeok; Yoon, Ki Hoon; Yin, Jun; Yoon, Kyu Hyung; Lee, Min Won

    2016-01-01

    Two new phenolic compounds, 4-O-glucopyranosyl-5-O-caffeoylshikimic acid (1) and 2,3-digalloyl oregonin (2), were isolated along with eight known phenolic compounds (3–10) from an 80% acetone extract of Alnus sibirica leaves. The chemical structures of these compounds were elucidated using 1D/2D nuclear magnetic resonance and high resolution-MS. The anti-oxidative activities of these compounds were determined by assaying their 1,1-diphenyl-2-picrylhydrazyl radical and nitroblue tetrazolium superoxide anion scavenging activity. All of the isolated phenolic compounds (1–10) exhibited potent anti-oxidative activities. In particular, 2 and 4, which are diarylheptanoids, and 10 which is ellagitannin exhibited excellent anti-oxidative activities with almost the same potency as that of the positive controls L-ascorbic acid and allopurinol. PMID:26211877

  4. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables.

    PubMed

    Juániz, Isabel; Ludwig, Iziar A; Huarte, Estibaliz; Pereira-Caro, Gema; Moreno-Rojas, Jose Manuel; Cid, Concepción; De Peña, María-Paz

    2016-04-15

    The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of cell walls and sub cellular compartments during the cooking process that favor the release of these compounds. This increase, specially that observed for chlorogenic acids, was significantly correlated with an increase in the antioxidant capacity measured by DPPH (r=0.70). Griddled vegetables, because of the higher temperature applied during treatment in comparison with frying processes, showed the highest amounts of phenolic compounds with increments of 57.35%, 25.55% and 203.06% compared to raw onion, pepper and cardoon, respectively. PMID:26616976

  5. Determination of the major phenolic compounds in pomegranate juices by HPLC−DAD−ESI-MS.

    PubMed

    Gómez-Caravaca, Ana María; Verardo, Vito; Toselli, Moreno; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2013-06-01

    Traditionally, pomegranate (Punica granatum L.) has been consumed as fresh fruit or as pomegranate juice. In this study, the main phenolic compounds of 12 pomegranate varieties and 5 pomegranate clones were determined by HPLC−DAD−ESI-MS. Two chromatographic methods with a fused-core C18 column and a classical HPLC system were developed. Thirteen anthocyanins and fourteen other phenolic compounds were determined in the pomegranate juices. As far as we are concerned, a new flavonol-glycoside, phellatin or its isomer amurensin, has been tentatively identified for the first time in pomegranate juices. Total phenolic content ranged from 580.8 to 2551.3 mg/L of pomegranate juice. Anthocyanins varied between 20 to 82% of total phenolic content. Flavonoids were 1.6-23.6% of total phenolic compounds, while phenolic acids and ellagitannins were in the range 16.4-65.8%. The five clones reported a phenolic content comparable with that of the other pomegranate samples. PMID:23656584

  6. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  7. Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp.

    PubMed

    Kessy, Honest N E; Hu, Zhuoyan; Zhao, Lei; Zhou, Molin

    2016-01-01

    The effects of different treatment methods on the stability and antioxidant capacity of the bioactive phenolic compounds of litchi pericarps were investigated. Fresh litchi pericarps were open air-dried, steam-blanched for 3 min in combination with hot air oven drying at 60 and 80 °C, and unblanched pericarps were dried in a hot air oven at 40, 60, 70 and 80 °C until equilibrium weight was reached. The total phenolic compounds, flavonoids, anthocyanins, proanthocyanidins and individual procyanidins, and antioxidant activity were analyzed. The combination of blanching and drying at 60 °C significantly (p < 0.05) improved the release of phenolic compounds, individual procyanidins, and the extracts' antioxidant capacity compared with the unblanched hot air oven-dried and open air-dried pericarps. Drying of fresh unblanched litchi pericarps in either open air or a hot air oven caused significant losses (p < 0.05) in phenolic compounds and individual procyanidins, leading to a reduction in the antioxidant activity. A similar increase, retention or reduction was reflected in flavonoids, proanthocyanidins and anthocyanins because they are sub-groups of phenolic compounds. Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging capacity of the treated pericarps were significantly correlated (r ≥ 0.927, p < 0.01) with the total phenolic compounds. Thus, the combination of steam blanching and drying treatments of fresh litchi pericarps could produce a stable and dry litchi pericarp that maintains phenolic compounds and antioxidant capacity as a raw material for further recovery of the phytochemicals. PMID:27271581

  8. Soluble and bound phenolic compounds in different Bolivian purple corn ( Zea mays L.) cultivars.

    PubMed

    Cuevas Montilla, Elyana; Hillebrand, Silke; Antezana, Amalia; Winterhalter, Peter

    2011-07-13

    In nine Bolivian purple corn ( Zea mays L.) varieties the content of phenolic compounds as well as the anthocyanin composition has been determined. The phenotypes under investigation included four red and five blue varieties (Kulli, Ayzuma, Paru, Tuimuru, Oke, Huaca Songo, Colorado, Huillcaparu, and Checchi). In purple corn, phenolic compounds were highly concentrated in cell walls. Thus, simultaneous determination of soluble and bound-form phenolics is essential for analysis, extraction, and quantification. The present study reports the determination of soluble and insoluble-bound fraction of phenolic compounds by HPLC-DAD and HPLC-ESI-MS(n) in Bolivian purple corn varieties. Enzymatic, thermal, and alkaline hydrolyses were used to obtain the cell wall-linked phenolic compounds. Ferulic acid values ranged from 132.9 to 298.4 mg/100 g, and p-coumaric acid contents varied between 251.8 and 607.5 mg/100 g dry weight (DW), respectively, and were identified as the main nonanthocyanin phenolics. The total content of phenolic compounds ranged from 311.0 to 817.6 mg gallic acid equivalents (GAE)/100 g DW, and the percentage contribution of bound to total phenolics varied from 62.1 to 86.6%. The total monomeric anthocyanin content ranged from 1.9 to 71.7 mg cyanidin-3-glucoside equivalents/100 g DW. Anthocyanin profiles are almost the same among the different samples. Differences are observed only in the relative percentage of each anthocyanin. Cyanidin-3-glucoside and its malonated derivative were detected as major anthocyanins. Several dimalonylated monoglucosides of cyanidin, peonidin, and pelargonidin were present as minor constituents. PMID:21639140

  9. Determination of phenolic compounds in honey using dispersive liquid-liquid microextraction.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Pagano, Imma; Carabetta, Sonia; Di Sanzo, Rosa; Russo, Mariateresa; Rastrelli, Luca

    2014-03-21

    Honey is a valuable functional food rich in phenolic compounds with a broad spectrum of biological activities. Analysis of the phenolic compounds in honey is a very promising tool for the quality control, the authentication and characterization of botanical origin, and the nutraceutical research. This work describes a novel approach for the rapid analysis of five phenolic acids and 10 flavonoids in honey. Phenolic compounds were rapidly extracted and concentrated from diluted honey by dispersive liquid-liquid microextraction (DLLME) and then analyzed using high performance liquid chromatography with UV absorbance detection (HPLC-UV). Some important parameters, such as the nature and volume of extraction and dispersive solvents, pH and salt effect were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, an exhaustive extraction for twelve of the investigated analytes (recoveries >70%), with a precision (RSD<10%) highly acceptable for complex matrices, and detection and quantification limits at ppb levels (1.4-12 and 4.7-40ngg(-1), respectively) were attained. The proposed method, compared with the most widely used method in the analysis of phenolic compounds in honey, provided similar or higher extraction efficiency, except in the case of the most hydrophilic phenolic acids. The capability of DLLME to the extraction of other honey phytochemicals, such as abscisic acid, was also demonstrated. The main advantages of developed method are the simplicity of operation, the rapidity to achieve a very high sample throughput and low cost. PMID:24565235

  10. Wide genetic variation in phenolic compound content of seed coats among black soybean cultivars

    PubMed Central

    Phommalath, Siviengkhek; Teraishi, Masayoshi; Yoshikawa, Takanori; Saito, Hiroki; Tsukiyama, Takuji; Nakazaki, Tetsuya; Tanisaka, Takatoshi; Okumoto, Yutaka

    2014-01-01

    Black soybeans have been used as a food source and also in traditional medicine because their seed coats contain natural phenolic compounds such as proanthocyanidin and anthocyanin. The objective of this research is to reveal the genetic variation in the phenolic compound contents (PCCs) of seed coats in 227 black soybean cultivars, most of which were Japanese landraces and cultivars. Total phenolics were extracted from seed coats using an acidic acetone reagent and the proanthocyanidin content, monomeric anthocyanin content, total flavonoids content, total phenolics content, and radical scavenging activity were measured. The cultivars showed wide genetic variation in PCCs. Each of the contents was highly correlated with one another, and was closely associated with radical scavenging activity. PCCs were also moderately associated by flowering date but not associated by seed weight. Cultivars with purple flowers had a tendency to produce higher PCCs compared with cultivars with white flowers, suggesting that the W1 locus for flower color can affect phenolic compound composition and content. Our results suggest that developing black soybean cultivars with high functional phenolic compounds activity is feasible. PMID:25914597

  11. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standardized profiling method based on liquid chromatography with diode array and electrospray ionization/mass spectrometric detection (LC-DAD-ESI/MS) was used to analyze the phenolic components of 16 pear skins (Pyrus spp., varieties and cultivars). More than 30 flavonoids and 13 hydroxycinnamat...

  12. Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions.

    PubMed

    Tchaikovskaya, O N; Nechaev, L V; Yudina, N V; Mal'tseva, E V

    2016-08-01

    The interaction of a number of phenolic compounds, being 'model fragments' of humic acids, with cadmium ions was investigated. The fluorescence quenching method was used to determine the complexation constants of these compounds with cadmium ions. It was established that bonding of phenolic compounds by cadmium ions at рН 7 is weak and reaches a maximum value of 15% for interaction with resorcinol. It was demonstrated that modification of humic acids by the mechanoactivation method increases by three times bonding of cadmium ions, which is caused by strengthening the acid properties of carboxyl and hydroxyl groups at the aromatic ring. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26729402

  13. Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin

    NASA Astrophysics Data System (ADS)

    Scheer, Adam Michael

    Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition

  14. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng

    2014-10-11

    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction. PMID:25144155

  15. CLEANLINESS OF COMMON AIR SAMPLING SORBENTS FOR APPLICATION TO PHENOLIC COMPOUNDS MEASUREMENT USING SUPERCRITICAL FLUID EXTRACTION

    EPA Science Inventory

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. ecently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction me...

  16. Analysis of phenolic compounds for poultry feed by supercritical fluid chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds have generated interest as components in functional feed formulations due to their anti-oxidant, anti-microbial, and anti-fungal properties. These compounds may have greater significance in the future as the routine use of antibiotics is reduced and the prevalence of resistant bac...

  17. Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds.

    PubMed

    Gutiérrez, Juan Manuel; Gutés, Albert; Céspedes, Francisco; del Valle, Manuel; Muñoz, Roberto

    2008-07-15

    Three phenolic compounds, i.e. phenol, catechol and 4-acetamidophenol, were simultaneously determined by voltammetric detection of its oxidation reaction at the surface of an epoxy-graphite transducer. Because of strong signal overlapping, Wavelet Neural Networks (WNN) were used in data treatment, in a combination of chemometrics and electrochemical sensors, already known as the electronic tongue concept. To facilitate calibration, a set of samples (concentration of each phenol ranging from 0.25 to 2.5mM) was prepared automatically by employing a Sequential Injection System. Phenolic compounds could be resolved with good prediction ability, showing correlation coefficients greater than 0.929 when the obtained values were compared with those expected for a set of samples not employed for training. PMID:18585293

  18. Phenolic compounds and the colour of oranges subjected to a combination treatment of waxing and irradiation

    NASA Astrophysics Data System (ADS)

    Moussaid, M.; Lacroix, M.; Nketsia-Tabiri, J.; Boubekri, C.

    2000-03-01

    The effects of waxing, irradiation dose and storage on phenolics and colour of irradiated oranges were investigated. Mature oranges ( Maroc late) waxed or unwaxed were treated with 0, 1 or 2 kGy radiation and stored up to 9 weeks at 20°C and 40-50% r.h. Colour of the oranges, total phenols and flavones in the peel were measured. Phenolic compounds increased with irradiation dose and storage time. Hue angle, value and chroma of the orange colour were more affected by waxing and storage time than the irradiation treatment. Changes in the phenolic compounds were linked with changes in the redness and saturation of the orange colour. Irradiation stimulated synthesis of flavones; waxing controlled changes induced by irradiation.

  19. Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers

    SciTech Connect

    Juang, R.S.; Wu, F.C.; Tseng, R.L.

    1996-05-01

    Phenolic compounds exist widely in the industrial effluents such as those from oil refineries and the coal tar, plastics, leather, paint, pharmaceutical, and steel industries. Since they are highly toxic and are, in general, not amenable to biological degradation, methods of treatment are continuously being modified and developed. Liquid-phase adsorption equilibria of eight phenolic compounds onto activated carbon fibers were measured in the concentration range 40--500 g/m{sup 3} at 303 K. High adsorption capacities were observed for the chlorinated phenols compared to the methyl-substituted phenols. Several two- and three-parameter isotherm equations were tested. Among the equations tried, the three-parameter equation of Jossens et al. based on a heterogeneous surface adsorption theory was found to be the most satisfactory over the entire range of concentration. The widely used two-parameter equations of Langmuir and Freundlich were not applicable to the present adsorption systems.

  20. Subcritical water extraction of antioxidant phenolic compounds from XiLan olive fruit dreg.

    PubMed

    Yu, Xue-Mei; Zhu, Ping; Zhong, Qiu-Ping; Li, Meng-Ying; Ma, Han-Ruo

    2015-08-01

    Olive fruit dreg (OFD), waste from olive softdrink processing, has caused disposal problems. Nevertheless, OFD is a good source of functional ingredients, such as phenolic compounds. This study investigated the extraction conditions of phenolic compounds from OFD by using subcritical water (SCW) extraction method, antioxidant activity of SCW extracts, and components of phenolic compounds by LC-MS. SCW extraction experiments were performed in a batch stainless steel reactor at temperatures ranging from 100 to 180 °C at residence time of 5 to 60 min, and at solid-to-liquid ratio of 1:20 to 1:60. Higher recoveries of phenolic compounds [37.52 ± 0.87 mg gallic acid equivalents (GAE)/g, dry weight (DW)] were obtained at 160 °C, solid-to-liquid ratio of 1:50, and extract time of 30 min than at 2 h extraction with methanol (1.21 ± 0.16 mg GAE/g DW), ethanol (0.24 ± 0.07 mg GAE/g DW), and acetone (0.34 ± 0.01 mg GAE/g DW). The antioxidant activities of the SCW extracts were significantly stronger than those in methanol extracts at the same concentration of total phenolic contents. LC-MS analysis results indicated that SCW extracts contained higher amounts of phenolic compounds, such as chlorogenic acid, homovanillic acid, gallic acid, hydroxytyrosol, quercetin, and syringic acid. SCW at 160 °C, 30 min, and solid-to-liquid ratio of 1:50 may be a good substitute of organic solvents, such as methanol, ethanol, and acetone to recover phenolic compounds from OFD. PMID:26243921

  1. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles.

    PubMed

    Gatselou, Vasiliki; Christodouleas, Dionysios C; Kouloumpis, Antonios; Gournis, Dimitrios; Giokas, Dimosthenis L

    2016-08-17

    This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0-500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications. PMID:27286772

  2. Phenolic compounds from the fruit of Garcinia dulcis.

    PubMed

    Deachathai, S; Mahabusarakam, W; Phongpaichit, S; Taylor, W C

    2005-10-01

    Dulcinoside (1), dulcisisoflavone (2), dulcisxanthone A (3) and sphaerobioside acetate (6) together with 22 known compounds were isolated from the green fruit of G. dulcis. Dulcisflavan (4), dulcisxanthone B (5) and isonormangostin (7) together with 22 known compounds were isolated from the ripe fruit. Compounds 6 and 7 were synthetic known compounds. Their structures were determined by spectroscopic methods. The radical scavenging and antibacterial activities of some of the compounds were investigated. PMID:16111726

  3. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree.

    PubMed

    Filannino, Pasquale; Bai, Yunpeng; Di Cagno, Raffaela; Gobbetti, Marco; Gänzle, Michael G

    2015-04-01

    This study aimed to investigate the metabolism of phenolic acids and flavonoids during lactic acid fermentation of cherry juice and broccoli puree for potential food and pharmaceutical purposes. When fermenting cherry juice and broccoli puree, Lactobacillus spp. exhibited strain-specific metabolism of phenolic acid derivatives. The metabolism of protocatechuic, caffeic and p-coumaric acids through phenolic acid decarboxylases and reductases differed between mMRS and cherry juice and broccoli puree. The synthesis of reduced compounds was the highest during food fermentations and the substrate seemed to modulate the metabolism of phenolic compounds. The reduction of phenolic acids involves a hydrogen donor and the re-oxidation of the reduced co-factor NADH, which may provide a metabolic advantage through NAD(+) regeneration. Quinic acid reduction may replace fructose and pyruvate as hydrogen acceptors, and it may provide an energetic advantage to heterofermentative bacteria when growing in broccoli puree lacking of fructose. This study demonstrated that phenolics metabolism may confer a selective advantage for lactobacilli in vegetable and fruit fermentation, and the metabolic routes are strongly dependent on the intrinsic factors of substrate. Fermented cherry juice and broccoli puree, due to the selected bacterial bioconversion pathways, are enriched in phenolic derivative with high human bioavailability and biological activity. PMID:25475296

  4. Role of phenolic compounds in the antialgal activity of barley straw.

    PubMed

    Pillinger, J M; Cooper, J A; Ridge, I

    1994-07-01

    Barley straw decomposing in well-aerated water releases a substance(s) that inhibits algal growth. Phenolic compounds are toxic to algae but are unlikely to be present in sufficient quantities to account for the extended antialgal action of straw. However, straw is antialgal under conditions that may promote oxidation of phenolic hydroxyl groups to quinones; tannins are antialgal under similar conditions. The toxicity of authentic quinones towardsMicrocystis is confirmed; the quinones are some 10(3) times more antialgal than phenolic acids. The possibility that oxidized lignin derivatives may be involved in straw toxicity towards algae is discussed. PMID:24242651

  5. Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves

    PubMed Central

    Goldsmith, Chloe D.; Vuong, Quan V.; Stathopoulos, Costas E.; Roach, Paul D.; Scarlett, Christopher J.

    2014-01-01

    Olive leaves are an agricultural waste of the olive-oil industry representing up to 10% of the dry weight arriving at olive mills. Disposal of this waste adds additional expense to farmers. Olive leaves have been shown to have a high concentration of phenolic compounds. In an attempt to utilize this waste product for phenolic compounds, we optimized their extraction using water—a “green” extraction solvent that has not yet been investigated for this purpose. Experiments were carried out according to a Box Behnken design, and the best possible combination of temperature, extraction time and sample-to-solvent ratio for the extraction of phenolic compounds with a high antioxidant activity was obtained using RSM; the optimal conditions for the highest yield of phenolic compounds was 90 °C for 70 min at a sample-to-solvent ratio of 1:100 g/mL; however, at 1:60 g/mL, we retained 80% of the total phenolic compounds and maximized antioxidant capacity. Therefore the sample-to-solvent ratio of 1:60 was chosen as optimal and used for further validation. The validation test fell inside the confidence range indicated by the RSM output; hence, the statistical model was trusted. The proposed method is inexpensive, easily up-scaled to industry and shows potential as an additional source of income for olive growers. PMID:26785235

  6. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.)

    PubMed Central

    Iannucci, Anna; Fragasso, Mariagiovanna; Platani, Cristiano; Papa, Roberto

    2013-01-01

    The objectives of this study were to determine the pattern of dry matter (DM) accumulation and the evolution of phenolic compounds in the rhizosphere soil from tillering to the ripe seed stages of wild oat (Avena fatua L.), a widespread annual grassy weed. Plants were grown under controlled conditions and harvested 13 times during the growing season. At each harvest, shoot and root DM and phenolic compounds in the rhizosphere soil were determined. The maximum DM production (12.6 g/plant) was recorded at 122 days after sowing (DAS; kernel hard stage). The increase in total aerial DM with age coincided with reductions in the leaf/stem and source/sink ratios, and an increase in the shoot/root ratio. HPLC analysis shows production of seven phenolic compounds in the rhizosphere soil of wild oat, in order of their decreasing levels: syringic acid, vanillin, 4-hydroxybenzoic acid, syringaldehyde, ferulic acid, p-cumaric acid and vanillic acid. The seasonal distribution for the total phenolic compounds showed two peaks of maximum concentrations, at the stem elongation stage (0.71 μg/kg; 82 DAS) and at the heading stage (0.70 μg/kg; 98 DAS). Thus, wild oat roots exude allelopathic compounds, and the levels of these phenolics in the rhizosphere soil vary according to plant maturity. PMID:24381576

  7. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity.

    PubMed

    Muñiz-Márquez, Diana B; Martínez-Ávila, Guillermo C; Wong-Paz, Jorge E; Belmares-Cerda, Ruth; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2013-09-01

    Bay leaves (BL) (Laurus nobilis L., Family: Laureceae) are traditionally used to treat some symptoms of gastrointestinal problems, such as epigastric bloating, impaired digestion, eructing and flatulence. These biological properties are mainly attributed to its phenolic compounds. In this paper, ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. (Laureceae) was studied. Effects of several experimental factors, such as sonication time, solid/liquid ratio and concentration of solvent on extraction of phenolic compounds were evaluated through a randomized complete block design with factorial treatment arrangement (3(3)). The best extraction conditions were: 1g plant sample with 12 mL of 35% ethanol, for 40 min, obtaining a yield of phenolic compounds of 17.32±1.52 mg g(-1) of plant. In addition, free radical-scavenging potential of DPPH and lipid oxidation inhibition, by linoleic acid peroxidation of the selected extract was measured in order to evidence their antioxidant properties. Results indicated that high amounts of phenolic compounds can be extracted from L. nobilis by ultrasound-assisted extraction technology. PMID:23523026

  8. An update on dietary phenolic compounds in the prevention and management of rheumatoid arthritis.

    PubMed

    Rosillo, María Angeles; Alarcón-de-la-Lastra, Catalina; Sánchez-Hidalgo, Marina

    2016-07-13

    Certain nutritional components influence the cellular metabolism and interfere in the pathological inflammatory process, so that they may act as a coadjuvant in the treatment of many chronic inflammatory diseases, including rheumatoid arthritis (RA). Particularly, a wide range of evidence has demonstrated the beneficial roles of dietary phenolic compounds in RA because of their ability to modulate pro-oxidant and pro-inflammatory pathways reducing the onset of arthritic disease progression. These natural phenolic compounds can modulate both the action and the production of inflammatory mediators either directly or indirectly by modulating the action of other molecules involved in RA pathology. Subsequently, the purpose of this article is to review the main in vitro and in vivo studies in RA, which have documented interesting insights into the antioxidant, anti-inflammatory, and immunomodulatory properties of dietary phenolic compounds focusing on their molecular action mechanisms involved in RA. The observations reported above are promising and suggest that the dietary phenolic compounds may influence the course of RA, ameliorating the RA symptoms and downregulating the inflammation at the molecular level; however, most of the studies conducted to date have been preclinical. Thus, future studies should therefore focus more on understanding the efficacy of these phenolic compounds in humans and bringing them to the forefront of the treatment of chronic human diseases. PMID:27295367

  9. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships.

    PubMed

    Al Shukor, Nadin; Van Camp, John; Gonzales, Gerard Bryan; Staljanssens, Dorien; Struijs, Karin; Zotti, Moises J; Raes, Katleen; Smagghe, Guy

    2013-12-01

    In this study, 22 phenolic compounds were investigated to inhibit the angiotensin-converting enzyme (ACE). Tannic acid showed the highest activity (IC50 = 230 μM). The IC50 values obtained for phenolic acids and flavonoids ranged between 0.41 and 9.3 mM. QSAR analysis confirmed that the numbers of hydroxyl groups on the benzene ring play an important role for activity of phenolic compounds and that substitution of hydroxyl groups by methoxy groups decreased activity. Docking studies indicated that phenolic acids and flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. Other compounds, such as resveratrol and pyrogallol, may inhibit ACE via interactions with amino acids at the active site, thereby blocking the catalytic activity of ACE. These structure-function relationships are useful for designing new ACE inhibitors and potential blood-pressure-lowering compounds based on phenolic compounds. PMID:24219111

  10. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    PubMed

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  11. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    PubMed Central

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  12. Extraction and concentration of phenolic compounds from water and sediment

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.

    1980-01-01

    Continuous liquid-liquid extractors are used to concentrate phenols at the ??g l-1 level from water into dichloromethane; this is followed by Kuderna-Danish evaporative concentration and gas chromatography. The procedure requires 5 h for 18 l of sample water. Overall concentration factors around 1000 are obtained. Overall concentration efficiencies vary from 23.1 to 87.1%. Concentration efficiencies determined by a batch method suitable for sediments range from 18.9 to 73.8%. ?? 1980.

  13. Antimicrobial Properties of Natural Phenols and Related Compounds

    PubMed Central

    Jurd, L.; King, A. D.; Mihara, K.; Stanley, W. L.

    1971-01-01

    Obtusastyrene (4-cinnamylphenol) displays effective antimicrobial activity in vitro against a variety of gram-positive bacteria, yeasts, and molds. The activity of obtusastyrene is not appreciably affected by pH, and its minimal inhibitory concentrations, 12 to 25 μg/ml for bacteria and 12 to 100 μg/ml for fungi, compare favorably with those of a number of synthetic, phenolic antimicrobial agents. PMID:5553287

  14. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review.

    PubMed

    Martínková, L; Kotik, M; Marková, E; Homolka, L

    2016-04-01

    The phylum Basidiomycota include organisms with enormous bioremediation potential. A variety of processes were proposed at the lab scale for using these fungi and their phenol oxidases in the degradation of phenolics. Here we present a survey of this topic using literature published mostly over the last 10 years. First, the sources of the enzymes are summarized. The laccase and tyrosinase were mainly from Trametes versicolor and Agaricus bisporus, respectively. Recently, however, new promising wild-type producers of the enzymes have emerged and a number of recombinant strains were also constructed, based mainly on yeasts or Aspergillus strains as hosts. The next part of the study summarizes the enzyme and whole-cell applications for the degradation of phenols, polyphenols, cresols, alkylphenols, naphthols, bisphenols and halogenated (bis)phenols in model mixtures or real wastewaters from the food, paper and coal industries, or municipal and hospital sewage. The enzymes were applied as free (crude or purified) enzymes or as enzymes immobilized in various supports or CLEAs, and optionally recycled or used in continuous mode. Alternatively, growing cultures or harvested mycelia were used instead. The products, which were characterized as quinones and their polymers in some cases, could be eliminated by filtration, flocculation or adsorption onto chitosan. The purity of a treated wastewater was monitored using a sensitive aquatic organism. It is concluded that low-cost sources of these enzymes should be searched for and the benefits of enzymatic, biological and physico-chemical methods could be combined to make the processes fit for industrial use. PMID:26874626

  15. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed).

    PubMed

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  16. Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content.

    PubMed

    Yang, Mei; Zheng, Chang; Zhou, Qi; Liu, Changsheng; Li, Wenlin; Huang, Fenghong

    2014-02-26

    Rapeseeds were treated with microwaves under 800 W for 0, 1, 2, 3, 4, 5, 6, 7, and 8 min at a frequency of 2450 MHz, and oil was extracted with a press to investigate the influence on phenolic compounds, including sinapine, the main free phenolic acids, and canolol content in the rapeseeds and oil from them. The results indicated that sinapine and sinapic acid was the main phenolic compound and free phenolic acid in the rapeseed, respectively, and canolol was the main phenolic compound in the oil from rapeseed by cold press. Microwave treatment significantly influenced phenolic compounds content in the rapeseeds and oil from them. The sinapine, sinapic acid, and canolol content in rapeseed first increased and then decreased depending on the period of microwave radiation (p < 0.05). The canolol content of 7 min microwave pretreatment rapeseed increased to the maximum and was approximately six times greater than that of the unroasted rapeseed. The amount of canolol formed was significantly correlated with the content of sinapic acid and sinapine (for sinapic acid, r = -0.950, p < 0.001, for sinapine, r = -0.828, p < 0.05) and also the loss of sinapic acid and sinapine (for sinapic acid, r = 0.997, p < 0.001, for sinapine, r = 0.952, p < 0.05) during roasting. There were differences in the transfer rate of difference phenolic compounds to the oil extracted by press. Almost all of the sinapine remained in the cold-pressed cake and only 1.4-2.7% of the sinapic acid, whereas approximately 56-83% of the canolol was transferred to the oil. The transfer ratio of canolol significantly increased with microwave radiation time (p < 0.001). Microwave pretreatment of rapeseed benefited improving the oxidative stability of oil. PMID:24476101

  17. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed)

    PubMed Central

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  18. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the changes in total phenolic content (TPC), total flavonoid content (TFC), individual phenolic compound content, DPPH radical scavenging activity and antioxidant capacity measured by FRAP assay of four phenolic fractions (free, esterified, glycosided and insoluble-bound) fro...

  19. Aquatic Pathways Model to predict the fate of phenolic compounds. Appendixes A through D

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.L.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. We have developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for the distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. The model was developed to estimate the fate of liquids derived from coal. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation of a spill of solvent-refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor. Results of a simulated spill of a coal liquid (SRC-II) into a pond show that APM predicted the allocation of 12 phenolic components among six compartments at 30 hours after a small spill. The simulation indicated that most of the introduced phenolic compounds were biodegraded. The phenolics remaining in the aquatic system partitioned according to their molecular weight and structure. A substantial amount was predicted to remain in the water, with less than 0.01% distributed in sediment or fish.

  20. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi.

    PubMed

    Guo, Ya-Jun; Deng, Gui-Fang; Xu, Xiang-Rong; Wu, Shan; Li, Sha; Xia, En-Qin; Li, Fang; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-11-01

    Edible macro-fungi are widely consumed as food sources for their flavors and culinary features. In order to explore the potential of macro-fungi as a natural resource of bioactive compounds, the antioxidant properties and polysaccharide contents of 49 edible macro-fungi from China were evaluated systematically. A positive correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be main contributors of antioxidant capacities of these macro-fungi. Furthermore, many bioactive compounds such as gallic, homogentisic, protocatechuic, and p-hydroxybenzoic acid were identified and quantified. The macro-fungi species Thelephora ganbajun Zang, Boletus edulis Bull., Volvariella volvacea Sing, Boletus regius Krombh, and Suillus bovinus Kuntze displayed the highest antioxidant capacities and total phenolic contents, indicating their potential as important dietary sources of natural antioxidants. PMID:22868715

  1. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels.

    PubMed

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan

    2015-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes. PMID:26503801

  2. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora walt.

    PubMed

    Oszmiański, Jan; Kolniak-Ostek, Joanna; Biernat, Agata

    2015-01-01

    In plants, flavonoids play an important role in biological processes. They are involved in UV-scavenging, fertility and disease resistance. Therefore, in this study, we attempted to quantify and characterize phenolic compounds in Aesculus parviflora Walt. leaves and Aesculus glabra leaves partly suffering from attack by a leaf mining insect (C. ohridella). A total of 28 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in Aesculus parviflora and A. glabra leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polymeric procyanidins in leaves of Aesculus parviflora than in Aesculus glabra may explain their greater resistance to C. ohridella insects. PMID:25635381

  3. Sorghum flour fractions: correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index.

    PubMed

    Moraes, Érica Aguiar; Marineli, Rafaela da Silva; Lenquiste, Sabrina Alves; Steel, Caroline Joy; de Menezes, Cícero Beserra; Queiroz, Valéria Aparecida Vieira; Maróstica Júnior, Mário Roberto

    2015-08-01

    Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5 ± 0.41; WSF 77.2 ± 0.33; and SB 60.3 ± 0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI. PMID:25766808

  4. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    PubMed Central

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes. PMID:26503801

  5. The Protective Role of Phenolic Compounds Against Doxorubicin-induced Cardiotoxicity: A Comprehensive Review.

    PubMed

    Razavi-Azarkhiavi, Kamal; Iranshahy, Milad; Sahebkar, Amirhossein; Shirani, Kobra; Karimi, Gholamreza

    2016-01-01

    Although doxorubicin (DOX) is among the most widely used anticancer agents, its clinical application is hampered owing to its cardiotoxicity. Adjuvant therapy with an antioxidant has been suggested as a promising strategy to reduce DOX-induced adverse effects. In this context, many phenolic compounds have been reported to protect against DOX-induced cardiotoxicity. The cardioprotective effects of phenolic compounds are exerted via multiple mechanisms including inhibition of reactive oxygen species generation, apoptosis, NF-κB, p53, mitochondrial dysfunction, and DNA damage. In this review, we present a summary of the in vitro, in vivo, and clinical findings on the protective mechanisms of phenolic compounds against DOX-induced cardiotoxicity. PMID:27341037

  6. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-10-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  7. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves.

    PubMed

    Pereira, Ana Paula; Ferreira, Isabel C F R; Marcelino, Filipa; Valentão, Patricia; Andrade, Paula B; Seabra, Rosa; Estevinho, Leticia; Bento, Albino; Pereira, José Alberto

    2007-01-01

    We report the determination of phenolic compounds in olive leaves by reversed-phase HPLC/DAD, and the evaluation of their in vitro activity against several microorganisms that may be causal agents of human intestinal and respiratory tract infections, namely gram positive (Bacillus cereus, B. subtilis and Staphylococcus aureus), gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) and fungi (Candida albicans and Cryptococcus neoformans). Seven phenolic compounds were identified and quantified: caffeic acid, verbascoside, oleuropein, luteolin 7-O-glucoside, rutin, apigenin 7-O-glucoside and luteolin 4'-O-glucoside. At low concentrations olive leaves extracts showed an unusual combined antibacterial and antifungal action, which suggest their great potential as nutraceuticals, particularly as a source of phenolic compounds. PMID:17873849

  8. Identification of Phenolic Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Euphorbia Tirucalli L.

    PubMed Central

    de Araújo, Keline Medeiros; de Lima, Alessandro; Silva, Jurandy do N.; Rodrigues, Larissa L.; Amorim, Adriany G. N.; Quelemes, Patrick V.; dos Santos, Raimunda C.; Rocha, Jefferson A.; de Andrades, Éryka O.; Leite, José Roberto S. A.; Mancini-Filho, Jorge; da Trindade, Reginaldo Almeida

    2014-01-01

    Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC), and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid. PMID:26784670

  9. Monitoring the phenolic compounds of Greek extra-virgin olive oils during storage.

    PubMed

    Kotsiou, Kali; Tasioula-Margari, Maria

    2016-06-01

    Extra virgin olive oil (EVOO) samples, of five Greek olive varieties, were stored in dark glass bottles (headspace 0.5%) in a basement without central heating for 24 months. Quantitative variations of the phenolic compounds and their degradation products were monitored over time. The differences observed in the initial total phenolic compounds concentration (ranging between 250.77 and 925.75 mg/kg) were attributed to extraction system, olive variety, and maturity stage. Even after 24 months, the degree of reduction in total phenolic compounds did not exceed 31%. The reduction was more pronounced in dialdehydic forms of oleuropein and ligstroside aglycones (DAFOA and DAFLA), indicating a more active participation in the hydrolysis and oxidation processes of the more polar secoiridoids. The initial total phenolic content was the main factor correlated to the degradation rate of the phenolic compounds. The decrease in secoiridoid derivatives, gave rise to hydroxytyrosol and tyrosol content and to the formation of four oxidized products. PMID:26830587

  10. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date.

    PubMed

    Vagiri, Michael; Conner, Sean; Stewart, Derek; Andersson, Staffan C; Verrall, Susan; Johansson, Eva; Rumpunen, Kimmo

    2015-04-01

    Blackcurrant leaves are an essential source of phenolic compounds and this study investigated their variation relative to leaf positions and harvest date. The phenolic content varied between harvest dates, although leaf position on the shoot and interactions also played an important role. The contents of quercetin-malonyl-glucoside, kaempferol-malonyl-glucoside isomer and kaempferol-malonyl-glucoside were higher than that of the other identified phenolic compounds, whereas epigallocatechin was the lowest for all investigated leaf positions and harvest dates. The content of several of the compounds was highest in June, while quercetin-glucoside, kaempferol-glucoside and total phenols, increased towards the end of the season. Leaf position influenced the content of myricetin-malonyl-glucoside, myricetin-malonyl-glucoside isomer, quercetin-malonyl-glucoside and kaempferol-glucoside at the end of the season. Knowledge relating to the influence of ontogenetic and harvest time on the content of specific phenolic compounds might contribute in tailoring functional foods or pharmaceutical products using blackcurrant leaves as natural ingredients. PMID:25442534

  11. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. PMID:26986086

  12. Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles.

    PubMed

    Bernal, M; Llorens, L; Julkunen-Tiitto, R; Badosa, J; Verdaguer, D

    2013-09-01

    The variation in the leaf content of phenolic compounds has been related to the UV-B changes of the environment in which plants grow. In this context, we aimed to investigate: a) whether the seasonal and altitudinal changes in the content of phenolic compounds of Buxus sempervirens L. leaves and cuticles could be related to the natural fluctuations in UV-B levels and b) the possible use of specific phenolic compounds as biomarkers of ambient UV-B levels. To achieve these goals we sampled, every three months during one year, leaves of B. sempervirens along an altitudinal gradient. At the lowest and the highest altitudes, we also conducted a UV-exclusion experiment to discern whether the observed changes could be attributed to the natural variation in UV-B. Results show that total phenolic content of leaves was lower in June than in the other sampling dates, which suggests a leaf ontogenic rather than a UV-B effect on the leaf content of these compounds. Regarding the elevational gradient, the overall amount of phenolic acids and neolignan of entire leaves increased with altitude while the total amount of flavonoids in leaf cuticles decreased. However, the lack of a significant effect of our UV-exclusion treatment on the content of these compounds suggests that the observed variations along the altitudinal gradient would respond to other factors rather than to UV-B. Concomitantly, we did not find any phenolic compound in leaves or cuticles of B. sempervirens that could be considered as a biomarker of ambient UV-B levels. PMID:23845826

  13. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity.

    PubMed

    Takahashi, Ryoichi; Ono, Kenjiro; Takamura, Yusaku; Mizuguchi, Mineyuki; Ikeda, Tokuhei; Nishijo, Hisao; Yamada, Masahito

    2015-09-01

    Lewy bodies, mainly composed of α-synuclein (αS), are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies. Epidemiological studies showed that green tea consumption or habitual intake of phenolic compounds reduced Parkinson's disease risk. We previously reported that phenolic compounds inhibited αS fibrillation and destabilized preformed αS fibrils. Cumulative evidence suggests that low-order αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds (myricetin (Myr), curcumin, rosmarinic acid (RA), nordihydroguaiaretic acid, and ferulic acid) on αS oligomerization. Using methods such as photo-induced cross-linking of unmodified proteins, circular dichroism spectroscopy, the electron microscope, and the atomic force microscope, we showed that Myr and RA inhibited αS oligomerization and secondary structure conversion. The nuclear magnetic resonance analysis revealed that Myr directly bound to the N-terminal region of αS, whereas direct binding of RA to monomeric αS was not detected. Electrophysiological assays for long-term potentiation in mouse hippocampal slices revealed that Myr and RA ameliorated αS synaptic toxicity by inhibition of αS oligomerization. These results suggest that Myr and RA prevent the αS aggregation process, reducing the neurotoxicity of αS oligomers. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds on α-synuclein (αS) oligomerization. Phenolic compounds, especially Myricetin (Myr) and Rosmarinic acid (RA), inhibited αS oligomerization and secondary structure conversion. Myr and RA ameliorated αS synaptic toxicity on the experiment of long-term potentiation. Our results suggest that Myr and RA prevent αS aggregation process and reduce the neurotoxicity of αS oligomers. Phenolic compounds are good

  14. Rapid methods for extracting and quantifying phenolic compounds in citrus rinds.

    PubMed

    Magwaza, Lembe Samukelo; Opara, Umezuruike Linus; Cronje, Paul J R; Landahl, Sandra; Ortiz, Jose Ordaz; Terry, Leon A

    2016-01-01

    Conventional methods for extracting and quantifying phenolic compounds in citrus rinds are time consuming. Rapid methods for extracting and quantifying phenolic compounds were developed by comparing three extraction solvent combinations (80:20 v/v ethanol:H2O; 70:29.5:0.5 v/v/v methanol:H2O:HCl; and 50:50 v/v dimethyl sulfoxide (DMSO):methanol) for effectiveness. Freeze-dried, rind powder was extracted in an ultrasonic water bath at 35°C for 10, 20, and 30 min. Phenolic compound quantification was done with a high-performance liquid chromatography (HPLC) equipped with diode array detector. Extracting with methanol:H2O:HCl for 30 min resulted in the optimum yield of targeted phenolic acids. Seven phenolic acids and three flavanone glycosides (FGs) were quantified. The dominant phenolic compound was hesperidin, with concentrations ranging from 7500 to 32,000 μg/g DW. The highest yield of FGs was observed in samples extracted, using DMSO:methanol for 10 min. Compared to other extraction methods, methanol:H2O:HCl was efficient in optimum extraction of phenolic acids. The limit of detection and quantification for all analytes were small, ranging from 1.35 to 5.02 and 4.51 to 16.72 μg/g DW, respectively, demonstrating HPLC quantification method sensitivity. The extraction and quantification methods developed in this study are faster and more efficient. Where speed and effectiveness are required, these methods are recommended. PMID:26788305

  15. Development and application of UHPLC-MS/MS method for the determination of phenolic compounds in Chamomile flowers and Chamomile tea extracts.

    PubMed

    Nováková, Lucie; Vildová, Anna; Mateus, Joana Patricia; Gonçalves, Tiago; Solich, Petr

    2010-09-15

    UHPLC-MS/MS method using BEH C18 analytical column was developed for the separation and quantitation of 12 phenolic compounds of Chamomile (Matricaria recutita L.). The separation was accomplished using gradient elution with mobile phase consisting of methanol and formic acid 0.1%. ESI in both positive and negative ion mode was optimized with the aim to reach high sensitivity and selectivity for quantitation using SRM experiment. ESI in negative ion mode was found to be more convenient for quantitative analysis of all phenolics except of chlorogenic acid and kaempherol, which demonstrated better results of linearity, accuracy and precision in ESI positive ion mode. The results of method validation confirmed, that developed UHPLC-MS/MS method was convenient and reliable for the determination of phenolic compounds in Chamomile extracts with linearity >0.9982, accuracy within 76.7-126.7% and precision within 2.2-12.7% at three spiked concentration levels. Method sensitivity expressed as LOQ was typically 5-20 nmol/l. Extracts of Chamomile flowers and Chamomile tea were subjected to UHPLC-MS/MS analysis. The most abundant phenolic compounds in both Chamomile flowers and Chamomile tea extracts were chlorogenic acid, umbelliferone, apigenin and apigenin-7-glucoside. In Chamomile tea extracts there was greater abundance of flavonoid glycosides such as rutin or quercitrin, while the aglycone apigenin and its glycoside were present in lower amount. PMID:20801328

  16. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds.

    PubMed

    Faridi Esfanjani, Afshin; Jafari, Seid Mahdi

    2016-10-01

    Phenolic compounds are major micronutrients in our diet,(1) and evidence for their role in the prevention of degenerative diseases such as cancer, inflammation and neurodegenerative diseases is emerging. The easily destruction against environment stresses and low bioavailability of phenolics are main limitations of their application. Therefore, nano-encapsulated phenolics as a fine delivery system can solve their restrictions. Polymeric nanoparticles and natural nano-carriers are one of the most effective and industrial techniques which can be used for protection and delivery of phenolics. In this review, preparation, application and characterization of polymeric based nano-capsules and natural nano-carriers for phenolics have been considered and discussed including polymeric nanoparticles, polymeric complex nanoparticles, cyclodextrins, nano-caseins, nanocrystals, electrospun nano-fibers, electro-sprayed nano-particles, and nano-spray dried particles. Our main goal was to cover the relevant recent studies in the past few years. Although a number of different types of polymeric and natural based nano-scale delivery systems have been developed, there are relatively poor quantitative understanding of their in vivo absorption, permeation and release. Also, performing toxicity experiments, residual solvent analysis and studying their biological fate during digestion, absorption, and excretion of polymeric nanoparticle and natural nano-carriers containing phenolics should be considered in future researches. In addition, future investigations could focus on application of phenolic nano-scale delivery systems in pharmaceuticals and functional foods. PMID:27419648

  17. Vegetational variation of phenolic compounds in Epilobium angustifolium.

    PubMed

    Jürgenson, Siiri; Matto, Vallo; Raal, Ain

    2012-01-01

    Epilobium angustifolium L. herbs are used in ethnomedicine to treat benign prostate hyperplasia. The aim of the study was to investigate the phenolic contents in distinct E. angustifolium organs during the whole vegetational period from May to October. The plants were obtained from a remote habitat in Estonia and spectrophotometrically analysed for the total polyphenol, tannin, and flavonoid contents. The total polyphenol content was the highest in roots (85 mg g(-1)) and stems (67 mg g(-1)) in July. The total flavonoid content was the highest in leaves (2.36 mg g(-1)) and flowers (2.09 mg g(-1)) and it remained relatively stable during the summer months. The highest tannin content was found in small growing plants in May; in older ones it declined, whereas the absolute yield per plant was greater. In sum, the aerial organs without stems collected in July-August are the best choice to get E. angustifolium plant material with stable high phenolic content. PMID:22149976

  18. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders.

    PubMed

    Nunes, Juliana C; Lago, Mabel G; Castelo-Branco, Vanessa N; Oliveira, Felipe R; Torres, Alexandre Guedes; Perrone, Daniel; Monteiro, Mariana

    2016-04-15

    We studied the chemical composition of oven and freeze dried guava powders for future use as antioxidant-rich flavour enhancers. Among thirty-one volatiles in guava powders, terpenes were predominant, even after both drying processes. In contrast, esters and aldehydes, volatiles characteristic of fresh guava fruit, appeared to have been decreased by drying. Insoluble phenolics were predominant and among the sixteen compounds identified, quercetin-3-O-rutinoside and naringenin corresponded to 56% of total phenolics. Drying processes decreased total phenolics contents by up to 44%. Oven drying promoted the release of insoluble flavonoids, generating mainly quercetin. Antioxidant capacity also decreased due to both drying processes, but guava powders still presented similar antioxidant capacity in comparison to other tropical fruit powders. Our results suggest that oven drying is a viable option for the production of a functional ingredient that would improve the phenolic content of cereal foods while adding desirable guava flavour. PMID:26617030

  19. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel.

    PubMed

    Wu, Zhi-Gang; Xu, Hai-Yan; Ma, Qiong; Cao, Ye; Ma, Jian-Nan; Ma, Chao-Mei

    2012-12-15

    Eleven compounds were isolated from potato peels and identified. Their structures were determined by interpretation of UV, MS, 1D, and 2D NMR spectral data and by comparison with reported data. The main components of the potato peels were found to be chlorogenic acid and other phenolic compounds, accompanied by 2 glycoalkaloids, 3 low-molecular-weight amide compounds, and 2 unsaturated fatty acids, including an omega-3 fatty acid. The potato peels showed more potent radical scavenging activity than the flesh. The quantification of the 11 components indicated that the potato peels contained a higher amount of phenolic compounds than the flesh. These results suggest that peel waste from the industry of potato chips and fries may be a source of useful compounds for human health. PMID:22980823

  20. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds

    PubMed Central

    Rangel-Huerta, Oscar D.; Pastor-Villaescusa, Belen; Aguilera, Concepcion M.; Gil, Angel

    2015-01-01

    The prevalence of cardiovascular diseases (CVD) is rising and is the prime cause of death in all developed countries. Bioactive compounds (BAC) can have a role in CVD prevention and treatment. The aim of this work was to examine the scientific evidence supporting phenolic BAC efficacy in CVD prevention and treatment by a systematic review. Databases utilized were Medline, LILACS and EMBASE, and all randomized controlled trials (RCTs) with prospective, parallel or crossover designs in humans in which the effects of BAC were compared with that of placebo/control were included. Vascular homeostasis, blood pressure, endothelial function, oxidative stress and inflammatory biomarkers were considered as primary outcomes. Cohort, ecological or case-control studies were not included. We selected 72 articles and verified their quality based on the Scottish Intercollegiate Guidelines Network, establishing diverse quality levels of scientific evidence according to two features: the design and bias risk of a study. Moreover, a grade of recommendation was included, depending on evidence strength of antecedents. Evidence shows that certain polyphenols, such as flavonols can be helpful in decreasing CVD risk factors. However, further rigorous evidence is necessary to support the BAC effect on CVD prevention and treatment. PMID:26132993

  1. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  2. Phenolic compounds from the flowers of Garcinia dulcis.

    PubMed

    Deachathai, S; Mahabusarakam, W; Phongpaichit, S; Taylor, W C; Zhang, Y-J; Yang, C-R

    2006-03-01

    Dulcisxanthones C-F and dulcinone together with 22 known compounds were isolated from the flowers of Garcinia dulcis. Their structures were determined by spectroscopic methods. The abilities of some of these compounds to act as radical scavengers and antibacterial agents were investigated. PMID:16325214

  3. Phenolic compounds from the rhizomes of Dioscorea bulbifera.

    PubMed

    Liu, Hai; Tsim, Karl W K; Chou, Gui-Xin; Wang, Jun-Ming; Ji, Li-Li; Wang, Zheng-Tao

    2011-11-01

    One new bibenzyl, 7, and one new diarylheptanone, diobulbinone A (18), together with sixteen known compounds, 1-6 and 8-17, have been isolated form the rhizomes of Dioscorea bulbifera. Their structures were elucidated by NMR and MS analyses. Compound 7 showed high antioxidant capacity in FRAP assay and DPPH radical-scavenging activity. PMID:22083923

  4. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders.

    PubMed

    Raudone, Lina; Raudonis, Raimondas; Liaudanskas, Mindaugas; Viskelis, Jonas; Pukalskas, Audrius; Janulis, Valdimaras

    2016-05-01

    Apples (Malus domestica L.) are the most common source of phenolic compounds in northern European diet. Besides pectins, dietary fibers, vitamins, and oligosaccharides they contain phenolic compounds of different classes. Apple powders are convenient functional forms retaining significant amounts of phenolic antioxidants. In this study reducing and radical scavenging profiles of freeze-dried powders of "Aldas,ˮ "Auksis,ˮ "Connel Red,ˮ "Ligol,ˮ "Lodel,ˮ and "Rajkaˮ were determined and phenolic constituents were identified using ultra high-performance liquid chromatography coupled to quadrupole and time-of-flight mass spectrometers. A negative ionization mode was applied and seventeen compounds: phenolic acids (coumaroylquinic, chlorogenic), flavonoids (quercetin derivatives), and procyanidin derivatives (B1, B2, and C1) were identified in all tested apple samples. Total values of Trolox equivalents varied from 7.72 ± 0.32 up to 20.02 ± 0.52 and from 11.10 ± 0.57 up to 21.42 ± 0.75 μmol/g of dry weight of apple powder in FRAP (ferric reducing antioxidant power) and ABTS (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) postcolumn assays, respectively. The greatest Trolox equivalent values were determined for apples of "Aldasˮ cultivar. Chlorogenic acid and procyanidin C1 were the most significant contributors to total reducing and radical scavenging activity in all apple cultivars tested, therefore they could be considered as markers of antioxidant activity. PMID:27002313

  5. Optimization of ultrasound-assisted extraction of phenolic compounds from Cimicifugae rhizoma with response surface methodology

    PubMed Central

    Liu, Lin; Shen, Bao-Jia; Xie, Dong-Hao; Cai, Bao-Chang; Qin, Kun-Ming; Cai, Hao

    2015-01-01

    Background: Cimicifugae rhizoma was a Ranunculaceae herb belonging to the composite family, and the roots of C. rhizoma have been widely used in tradition Chinese medicine. Materials and Methods: Ultrasound-assisted extraction (UAE) of phenolic compounds from C. rhizoma. Caffeic acid (CA), isoferulic acid (IA), ferulic acid (FA), and total phenols were quantified by high-performance liquid chromatography-diode array detection and ultraviolet-visible spectrophotometer. Effects of several experimental parameters, such as ultrasonic power (W), extraction temperature (°C), and ethanol concentration (%) on extraction efficiencies of phenolic compounds from C. rhizoma were evaluated. Results: The results showed that the optimal UAE condition was obtained with ultrasonic power of 377.35 W, extraction temperature of 70°C, and ethanol concentration of 58.37% for total phenols, and ultrasonic power of 318.28 W, extraction temperature of 59.65°C, and ethanol concentration of 64.43% for combination of CA, IA, FA. Conclusions: The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient for the extraction of phenolic compounds from plant materials. PMID:26600711

  6. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle).

    PubMed

    Cortez-García, Rosa María; Ortiz-Moreno, Alicia; Zepeda-Vallejo, Luis Gerardo; Necoechea-Mondragón, Hugo

    2015-03-01

    Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20% reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13 and 20%, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle. PMID:25595638

  7. Biodegradation of selected phenolic compounds in a simulated sandy surficial Florida aquifer

    SciTech Connect

    Lin, C.

    1989-01-01

    In this research the sorption and biodegradation of phenol, 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) were investigated. The soil materials used were characterized as fine grained sands with negligible organic carbon contents. Freundlich sorption coefficients of 0.0158 for phenol and 0.0547 for 2,4-DCP were found. Pentachlorophenol was more strongly adsorbed with an adsorption coefficient to 1.12. In multi-compound systems competitive sorption was evident, and adsorption capacities were reduced by a margin ranging from 709S, for phenol to 309 for both DCP and PCP. All three compounds exhibited nonlinear sorption behavior with a range of exponent values from 0.56 to 0.7. Desorption coefficients showed little difference from adsorption for phenol and 2,4-DCP, but were significantly different for PCP, indicating hysteresis of PCP sorptions. The retardation factors were 1.03 for phenol, 1.16 for 2,4-DCP and 2.26 for PCP. In batch biodegradation studies using indigenous soil bacteria phenol degraded quickly t{sub {1/2}} = 12 hours and was completely destroyed within three days. 2,4-DCP was also completely degraded but had taken 23 days (t = 7 days). PCP was resistant to biodegradation with an average half-life of 120 days. In multi-compound systems, phenol gradation rates dropped off to O.4 day{sup {minus}1} (t{sub {1/2}} = 1.7 days) but PCP degradation rates increased to 0.008 day{sup {minus}1} (t{sub {1/2}} = 86 days). Biodegradation rates in column studies were obviously greater than in batch experiments, with the rate increase for PCP degradation being especially noticeable (t{sub {1/2}} = 12 days), because of larger bacterial population and the dynamic flow conditions made the substrates more available to the bacteria.

  8. Anti-amyloidogenic properties of some phenolic compounds.

    PubMed

    Porzoor, Afsaneh; Alford, Benjamin; Hügel, Helmut M; Grando, Danilla; Caine, Joanne; Macreadie, Ian

    2015-01-01

    A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer's disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties. PMID:25898401

  9. Phenolic compounds and antioxidant activity of olive leaf extracts.

    PubMed

    Kontogianni, Vassiliki G; Gerothanassis, Ioannis P

    2012-01-01

    The total phenolic content and antioxidant activities of olive leaf extracts were determined. Plant material was extracted with methanol and fractionated with solvents of increasing polarity, giving certain extracts. The qualitative changes in the composition of the extracts were determined after the storage of leaves for 22 h at 37°C, before the extraction. Total polyphenol contents in extracts were determined by the Folin-Ciocalteu procedure. They were also analysed by liquid chromatography-mass spectrometry. Their antioxidant activities were evaluated using the diphenyl picrylhydrazyl method and the β-carotene linoleate model assay. Moreover, the effects of different crude olive leaf extracts on the oxidative stability of sunflower oil at 40°C and sunflower oil-in-water emulsions (10% o/w) at 37°C, at a final concentration of crude extract 200 mg kg(-1) oil, were tested and compared with butylated hydroxyl toluene. PMID:22060136

  10. Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity.

    PubMed

    You, Yanli; Duan, Xuewu; Wei, Xiaoyi; Su, Xinguo; Zhao, Mouming; Sun, Jian; Ruenroengklin, Neungnapa; Jiang, Yueming

    2007-01-01

    Chinese water chestnut (CWC) is one of the most popular foods among Asian people due to its special taste and medical function. Experiments were conducted to test the antioxidant activity and then determine the major phenolic compound components present in CWC. CWC phenolic extract strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radicals, superoxide anions and hydroxyl radicals, which was superior to ascorbic acid and butylated hydroxytoluene (BHT), two commercial used antioxidants. Furthermore, the CWC extract was found to have a relatively higher reducing power, compared with BHT. The major phenolic compounds present in CWC tissues were extracted, purified and identified by high-performance liquid chromatograph (HPLC) as (-)-gallocatechin gallate, (-)-epicatechin gallate and (+)-catechin gallate. This study suggests that CWC tissues exhibit great potential for antioxidant activity and may be useful for their nutritional and medicinal functions. PMID:17851436

  11. Phenolic compounds from the seeds of Garcinia dulcis.

    PubMed

    Deachathai, Suwanna; Phongpaichit, Souwalak; Mahabusarakam, Wilawan

    2008-01-01

    Dulcisxanthone G, 1,3,6-trihydroxy-2-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-8-(3-methyl-2-butenyl)xanthone, together with 13 known compounds were isolated from the seeds of Garcinia dulcis. Their structures were determined by analysis of 1D and 2D NMR spectroscopic data. The activities on antibacterial and antioxidation of the isolated compounds were examined. PMID:19023789

  12. Voltammetric response of ferroceneboronic acid to diol and phenolic compounds as possible pollutants.

    PubMed

    Takahashi, Shigehiro; Abiko, Naoyuki; Haraguchi, Nobuhiro; Fujita, Hiroyuki; Seki, Eriko; Ono, Tetsuya; Yoshida, Kentaro; Anzai, Jun-ichi

    2011-01-01

    A voltammetric determination of possible organic pollutants such as diol and phenolic compounds in water was studied using ferroceneboronic acid (FBA) as a redox-active marker. A cyclic voltammogram of FBA exhibited a pair of oxidation and reduction peaks at 230 and 170 mV at pH 7.0, respectively, while another pair of redox peaks was observed in the presence of diol or phenolic compounds tested. The results were rationalized based on the formation of boronate esters of FBA with the added compounds. The changes in the redox peak currents were dependent on the concentration of the additives, suggesting a usefulness of FBA in the electrochemical determination of these compounds in water. PMID:22066227

  13. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.

    PubMed

    Dicko, Mamoudou H; Gruppen, Harry; Traore, Alfred S; van Berkel, Willem J H; Voragen, Alphons G J

    2005-04-01

    The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties. PMID:15796598

  14. Profiling Methods for the Determination of Phenolic Compounds in Foods and Dietary Supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profiling methods are needed to separate and detect all the phenolic compounds in a single extract of a food material. These methods must be comprehensive, rapid, and rich in spectral information. Fourteen methods have been selected from the recent literature that meet, or have the potential to meet...

  15. A high-performance liquid chromatographic determination of major phenolic compounds in tobacco smoke

    SciTech Connect

    Risner, C.H.; Cash, S.L. )

    1990-05-01

    A high-performance liquid chromatographic (HPLC) method is developed that simultaneously quantifies the dihydroxy compounds hydroquinone, resorcinol, and catechol and the monohydroxy compounds phenol, m + p-cresol and o-cresol in cigarette smoke. Particulate matter samples collected on Cambridge pads and in impingers by conventional trapping techniques are simply (no derivatization required) subjected to reversed-phase gradient liquid chromatography. Samples of both mainstream and sidestream smoke can be analyzed. Selective fluorescence detection is used to monitor the mobile phase effluent, by which these phenolic compounds are detected in the nanogram range. The detector response is linear, overall precision is good, and recoveries are greater than 95 percent. The total run time, excluding extraction, is one hour. The procedure has been applied to tobacco products whose smoke contains varying amounts of these phenols. Kentucky Reference Cigarette 1R4F was found to contain substantially more of these compounds than a new cigarette that heats but does not burn tobacco (New Cigarette). The method is compared with other procedures used to determine phenolics in cigarette smoke.

  16. Impact of Grapevine leafroll associated virus -2 and -3, on Phenolic Compounds: Commercial Vineyard Example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Making premium wine begins in the vineyard with the production of high quality fruit. Recent reports on the incidence and spread of GLRaVs in vineyards in Oregon and Washington led to this study on the impact of these viruses on phenolic compounds in fruit. ‘Pinot noir’ is the dominant and most valu...

  17. Effect of phenolic compounds on the allergenic properties of peanut extracts and peanut butter slurries.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds (PCs) are phytochemicals and antioxidants with known health benefits. They are known to bind to proteins as soluble and insoluble complexes. As soluble complexes, with major peanut allergens formed in the presence of polyphenol oxidase (PPO), PCs have been shown to be able to redu...

  18. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  19. Phenolic acids are in vivo atheroprotective compounds appearing in serum of rats after blueberry consumption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have recently been shown to have cardio-protective effects and prevention of atherosclerosis in rodent models. However, the bioactive compounds in BB responsible for these effects have not yet been characterized. Seven phenolic acids were identified as metabolites in serum of rats ...

  20. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius

    SciTech Connect

    Aston, John E.; Apel, William A.; Lee, Brady D.; Thompson, David N.; Lacey, Jeffrey A.; Newby, Deborah T.; Reed, David. W.; Thompson, Vicki S.

    2015-11-05

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence of 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.

  1. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius

    DOE PAGESBeta

    Aston, John E.; Apel, William A.; Lee, Brady D.; Thompson, David N.; Lacey, Jeffrey A.; Newby, Deborah T.; Reed, David. W.; Thompson, Vicki S.

    2015-11-05

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less

  2. Xylella fastidiosa infection of grapevines affects xylem levels of phenolic compounds and pathogenesis-related proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease (PD), caused by the xylem-dwelling pathogen Xylella fastidiosa (X.f.), is a serious threat to grape production. The effects of X.f. infection six months post-inoculation on defense-associated proteins and phenolic compounds found in xylem sap and tissue were evaluated. Defense-assoc...

  3. Method and device for the detection of phenol and related compounds. [in an electrochemical cell

    NASA Technical Reports Server (NTRS)

    Schiller, J. G.; Liu, C. C. (Inventor)

    1979-01-01

    A method is described which permits the selective oxidation and potentiometric detection of phenol and related compounds in an electrochemical cell. An anode coated with a gel immobilized oxidative enzyme and a cathode are each placed in an electrolyte solution. The potential of the cell is measured by a potentiometer connected to the electrodes.

  4. Impact of Grapevine leafroll associated virus -2 and -3, on Phenolic Compounds: Commercial Vineyard Example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This proceeding and presentation summarized our results concerning the impact of Grapevine leafroll associated viruses (GLRaVs) on phenolic compounds, and other fruit maturity indices, in ‘Pinot noir’ grapes grown in the Willamette Valley of Oregon, USA. Grape clusters were collected from two commer...

  5. Computational Studies of Free Radical-Scavenging Properties of Phenolic Compounds

    PubMed Central

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade. PMID:25547098

  6. Solid-phase extraction of antipyrine dye for spectrophotometric determination of phenolic compounds in water.

    PubMed

    Morita, Emi; Nakamura, Eiko

    2011-01-01

    In order to determine phenolic compounds in water, we propose a method based on the reaction of phenolic compounds with 4-aminoantipyrine in the presence of peroxodisulfate at pH 10 to form antipyrine dye and the solid-phase extraction of dye with a Varian Bond Elut Plexa cartridge. Dye collected on the cartridge is eluted with acetonitrile and the absorbance is measured at 475 nm. In our experiments, recovery ratios of >90% were obtained for phenol, o-aminophenol, m-aminophenol, o-methoxyphenol, m-methoxyphenol, p-methoxyphenol, o-cresol, m-cresol, o-chlorophenol, m-chlorophenol, p-chlorophenol, 2,5-dimethylphenol, and 2,4-dichlorophenol. The calibration curve obeyed Beer's law in the range 0 - 0.30 µg ml(-1) phenol. The precision of repeated tests (n = 4) was 1.7% of the phenol solution (0.10 µg ml(-1)); the detection limit was 0.0011 µg ml(-1). Recovery tests using river water, waste water, and sewage influent gave highly satisfactory results. PMID:21558654

  7. The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil.

    PubMed

    Koca, Nülüfer; Karaman, Şengül

    2015-01-01

    The effects of methyl jasmonate (MeJA), spermine (Spm), epibrassinolide (EBL) and l-phenylalanine on sweet basil (Ocimum basilicum L.) were studied to determine the amount of phenolic compounds and enzymatic activity of phenylalanine ammonia-lyase (PAL). Total phenolic and total flavonoid contents of sweet basils were determined by a spectrophotometer, and individual phenolic compounds and activity of PAL were analysed by HPLC/UV. The highest total phenolic (6.72 mg GAE/g) and total flavonoid contents (0.92 mg QE/g) obtained from 1.0 mM Spm+MeJA application. Rosmarinic acid (RA) and caffeic acid contents significantly enhanced after the applications but no such differences observed in chicoric acid content or PAL activity. RA was the main phenolic acid in all samples and its concentration varied from 1.04 to 2.70 mg/gFW. As a result the combinations of Spm+MeJA and EBL+MeJA can induce secondary metabolites effectively and those interactions play important role in the production of phytochemicals in plants. PMID:25053088

  8. Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars.

    PubMed

    Xu, Ying; Fan, Mingtao; Ran, Junjian; Zhang, Tingjing; Sun, Huiye; Dong, Mei; Zhang, Zhe; Zheng, Haiyan

    2016-05-01

    Polyphenols are the predominant ingredients in apple seeds. However, few data are available on the phenolic profile or antioxidant activity in apple seeds in previous researches. In this study, low-molecular-weight phenolic compounds and antioxidant activity in seeds, peels, and flesh of seven apple cultivars grown in northwest China were measured and analyzed using HPLC and FRAP, DPPH, ABTS assays, respectively. HPLC analysis revealed phloridzin as the dominant phenolic compound in the seeds with its contents being 240.45-864.42 mg/100 gDW. Total phenolic content (TPC) measured by the Folin-Ciocalteu assay in apple seed extracts of seven cultivars ranged from 5.74 (Golden Delicious) to 17.44 (Honeycrisp) mgGAE/gDW. Apple seeds showed higher antioxidant activity than peels or flesh; antioxidant activity in seeds varied from 57.59 to 397.70 μM Trolox equivalents (TE)/g FW for FRAP, from 37.56 to 64.31 μM TE/g FW for DPPH, and from 220.52 to 708.02 μM TE/g FW for ABTS. TPC in apple seeds was significantly correlated with all three assays. Principal component analysis (PCA) indicated that Honeycrisp was characterized with high contents of total polyphenols and phloridzin. Our findings suggest that phenolic extracts from apple seeds have good commercial potential as a promising antioxidant for use in food or cosmetics. PMID:27081364

  9. Computational studies of free radical-scavenging properties of phenolic compounds.

    PubMed

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade. PMID:25547098

  10. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  11. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  12. Phenol

    Integrated Risk Information System (IRIS)

    Phenol ; CASRN 108 - 95 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  13. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6'-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6''-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase. PMID:24683352

  14. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    DOE PAGESBeta

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery

  15. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers.

    PubMed

    Mauri-Aucejo, Adela R; Ponce-Català, Patricia; Belenguer-Sapiña, Carolina; Amorós, Pedro

    2015-03-01

    An analytical method for the determination of phenolic compounds in air samples based on the use of cyclodextrin-silica hybrid microporous composite samplers is proposed. The method allows the determination of phenol, guaiacol, cresol isomers, eugenol, 4-ethylphenol and 4-ethylguaiacol in workplaces according to the Norm UNE-EN 1076:2009 for active sampling. Therefore, the proposed method offers an alternative for the assessment of the occupational exposure to phenol and cresol isomers. The detection limits of the proposed method are lower than those for the NIOSH Method 2546. Storage time of samples almost reaches 44 days. Recovery values for phenol, guaiacol, o-cresol, m-cresol, p-cresol, 4-ethylguaiacol, eugenol and 4-ethylphenol are 109%, 99%, 102%, 94%, 94%, 91%, 95% and 102%, respectively with a coefficient of variation below 6%. The method has been applied to the assessment of exposure in different areas of a farm and regarding the quantification of these compounds in the vapors generated by burning incense sticks and an essential oil marketed as air fresheners. The acquired results are comparable with those provided from a reference method for a 95% of confidence level. The possible use of these samplers for the sampling of other toxic compounds such as phthalates is evaluated by qualitative analysis of extracts from incense sticks and essential oil samples. PMID:25618708

  16. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities.

    PubMed

    Zhang, Yu-Bo; Wu, Peng; Zhang, Xiao-Li; Xia, Chao; Li, Guo-Qiang; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2015-01-01

    Three new phenolic compounds 1-3 and twenty known ones 4-23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR) and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin. PMID:26556329

  17. Phenolic compounds in five Epilobium species collected from Estonia.

    PubMed

    Remmel, Indrek; Vares, Lauri; Toom, Lauri; Matto, Vallo; Raal, Ain

    2012-10-01

    Epilobium species have been traditionally used as medicinal plants to treat benign prostate hyperplasia. The present study investigated the content of polyphenols, tannins, and flavonoids in Epilobium parviflorum Schreb., E. hirsutum L., E. adenocaulon Hausskn., E. montanum L., and E. palustre L. growing in Estonia. The total contents of polyphenols, tannins, and flavonoids were studied using UV spectroscopy with subsequent HPLC quantification of gallic acid, ellagic acid, and quercetin as marker compounds. All roots, stems, leaves, and flowers of the plants investigated contained comparable amounts of polyphenols, tannins, and flavonoids. There was a clear positive correlation between the contents of tannins and flavonoids in various plant parts. The content of these biologically active compounds suggests the use of E. parviflorum, E. hirsutum, E. adenocaulon, E. montanum, and E. palustre collected from Estonia as herbs both individually or as a blend. PMID:23156999

  18. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions

    PubMed Central

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%–65.63% of total transfer rate) and for flavonoids (0.18%–0.67% of total transfer rate). ‘Picual’ was the cultivar that transferred secoiridoids to oil at the highest rate, whereas ‘Changlot Real’ was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  19. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  20. Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds.

    PubMed

    Song, Juhee; Seol, Nam Gyu; Kim, Mi-Ja; Lee, JaeHwan

    2016-08-01

    Eight phenolic compounds including: p-coumaric acid, vanillic acid, caffeic acid, chlorogenic acid, trolox, quercetin, curcumin, and resveratrol were treated with riboflavin (RF) photosensitization and in vitro antioxidant capacities of the mixtures were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2' azino bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. Mixtures containing p-coumaric acid and vanillic acid under RF photosensitization showed increases in ferric ion reducing ability and radical scavenging activity of DPPH, whereas mixtures of other compounds had decreases in both radical scavenging ability and ferric reducing antioxidant power. Hydroxycoumaric acid and conjugated hydroxycoumaric and coumaric acids were tentatively identified from RF photosensitized p-coumaric acid, whereas dimmers of vanillic acid were tentatively identified from RF photosensitized vanillic acid. RF photosensitization may be a useful method to enhance antioxidant properties like ferric ion reducing abilities of some selected phenolic compounds. PMID:27387389

  1. Profiling the phenolic compounds of Artemisia pectinata by HPLC-PAD-MSn.

    PubMed

    Ma, Chao-Mei; Hattori, Masao; Chen, Hu-Biao; Cai, Shao-Qing; Daneshtalab, Mohsen

    2008-01-01

    An HPLC-PAD-MS(n) method was employed to profile the phenolic compounds of the aerial part of Artemisia pectinata (Neopallasia pectinata), a plant with no previous reports concerning its phenolic constituents. Three isomers of trans-caffeoylquinic acid accompanied by cis-5-caffeoylquinic acid, six isomers of trans-dicaffeoylquinic acid, two isomers of methyl trans-dicaffeoylquinate (including one new isomer), a trans-caffeoylferuloylquinic acid and three flavanoids were identified unambiguously by analysis of their UV and MS(n) spectra in comparison with standard compounds that were isolated from natural sources, or synthesised, or were surrogate standards (green coffee extract). Other compounds were identified by analysis of their UV and MSn data in comparison with those reported in the literature. MS(n) experiments also suggested the presence of groups of dicaffeoylquinic acid glycosides, caffeoylquinic acid diglycosides, caffeoylquinic acid glycosides and quinic acid diglycosides. PMID:17994537

  2. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products. PMID:26471529

  3. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries.

    PubMed

    Kajdzanoska, Marina; Petreska, Jasmina; Stefova, Marina

    2011-05-25

    Eight different solvent mixtures containing acetone or methanol pure or combined with an acid (acetic, formic, hydrochloric) were tested for their efficiency for extraction of phenolic compounds from strawberries belonging to five groups of polyphenols: anthocyanins, flavonols, flavan-3-ols, hydroxycinnamic acid derivatives and conjugated forms of ellagic acid. Twenty-eight compounds from these five groups have been detected and quantified using HPLC-DAD-ESI-MS(n). The yield of each phenolic compound and group was evaluated with regard to the extraction solvent composition. Acetone containing extraction mixtures were superior to the ones containing methanol for extraction yield of total phenolic compounds, which was especially pronounced for the groups of flavan-3-ols and conjugated forms of ellagic acid. The mixture acetone/acetic acid (99:1, v/v) gave the best results for the qualitative and quantitative assay of the polyphenols present in strawberries since all 28 compounds were detected only in these extracts in quantities higher or comparable to the other extraction solvents tested. PMID:21495681

  4. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    PubMed Central

    Tan, Chao; Wang, Qunxing; Luo, Chunhua; Chen, Sai; Li, Qianyuan; Li, Peng

    2013-01-01

    Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1), quercetin (2), kaempferol-3-O-β-D-glucopyranoside (3), kaempferol-3-O-rutinoside (4), rutin (5), chlorogenic acid (6) and 3,5-dicaffeoylquinic acid methyl ester (7). All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively. PMID:23358246

  5. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

    PubMed

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    The presence of inhibitors compounds after pretreatment of lignocellulosic materials affects the saccharification and fermentation steps in bioethanol production processes. Even though, external addition of laccases selectively removes the phenolic compounds from lignocellulosic prehydrolysates, when it is coupled to saccharification step, lower hydrolysis yields are attained. Vanillin, syringaldehyde and ferulic acid are phenolic compounds commonly found in wheat-straw prehydrolysate after steam-explosion pretreatment. These three phenolic compounds were used in this study to elucidate the inhibitory mechanisms of laccase-derived compounds after laccase treatment. Reaction products derived from laccase oxidation of vanillin and syringaldehyde showed to be the strongest inhibitors. The presence of these products causes a decrement on enzymatic hydrolysis yield of a model cellulosic substrate (Sigmacell) of 46.6 and 32.6%, respectively at 24 h. Moreover, a decrease in more than 50% of cellulase and β-glucosidase activities was observed in presence of laccase and vanillin. This effect was attributed to coupling reactions between phenoxyl radicals and enzymes. On the other hand, when the hydrolysis of Sigmacell was performed in presence of prehydrolysate from steam-exploded wheat straw a significant inhibition on enzymatic hydrolysis was observed independently of laccase treatment. This result pointed out that the other components of wheat-straw prehydrolysate are affecting the enzymatic hydrolysis to a higher extent than the possible laccase-derived products. PMID:25740593

  6. Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties.

    PubMed

    Kosińska, Agnieszka; Karamać, Magdalena; Estrella, Isabel; Hernández, Teresa; Bartolomé, Begoña; Dykes, Gary A

    2012-05-01

    Avocado processing by the food and cosmetic industries yields a considerable amount of phenolic-rich byproduct such as peels and seeds. Utilization of these byproducts would be favorable from an economic point of view. Methanolic (80%) extracts obtained from lyophilized ground peels and seeds of avocado (Persea americana Mill.) of the Hass and Shepard varieties were characterized for their phenolic compound profiles using the HPLC-PAD technique. The structures of the identified compounds were subsequently unambiguously confirmed by ESI-MS. Compositional analysis revealed that the extracts contained four polyphenolic classes: flavanol monomers, proanthocyanidins, hydroxycinnamic acids, and flavonol glycosides. The presence of 3-O-caffeoylquinic acid, 3-O-p-coumaroylquinic acid, and procyanidin A trimers was identified in seeds of both varieties. Intervarietal differences were apparent in the phenolic compound profiles of peels. Peels of the Shepard variety were devoid of (+)-catechin and procyanidin dimers, which were present in the peels of the Hass variety. Peels of both varieties contained 5-O-caffeoylquinic acid and quercetin derivatives. The differences in the phenolic profiles between varietals were also apparent in the different antioxidant activity of the extracts. The peel extracts had a higher total phenolic compound content and antioxidant activity when compared to the seed extracts. The highest TEAC and ORAC values were apparent in peels of the Haas variety in which they amounted to 0.16 and 0.47 mmol Trolox/g DW, respectively. No significant (p > 0.05) differences were apparent between the TEAC values of seeds of the two varieties but the ORAC values differed significantly (p < 0.05). Overall these findings indicate that both the seeds and peel of avocado can be utilized as a functional food ingredient or as an antioxidant additive. PMID:22494370

  7. Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract.

    PubMed

    Singh, Harpal; Dixit, Sameer; Verma, Praveen Chandra; Singh, Pradhyumna Kumar

    2014-03-26

    Tomatoes are one of the most consumed crops in the whole world because of their versatile importance in dietary food as well as many industrial applications. They are also a rich source of secondary metabolites, such as phenolics and flavonoids. In the present study, we described a method to produce these compounds from hairy roots of tomato (THRs). Agrobacterium rhizogenes strain A4 was used to induce hairy roots in the tomato explants. The Ri T-DNA was confirmed by polymerase chain reaction amplification of the rolC gene. Biomass accumulation of hairy root lines was 1.7-3.7-fold higher compared to in vitro grown roots. Moreover, THRs efficiently produced several phenolic compounds, such as rutin, quercetin, kaempferol, gallic acid, protocatechuic acid, ferulic acid, colorogenic acid, and caffeic acid. Gallic acid [34.02 μg/g of dry weight (DW)] and rutin (20.26 μg/g of DW) were the major phenolic acid and flavonoid produced by THRs, respectively. The activities of reactive oxygen species enzymes (catalase, ascorbate peroxidase, and superoxide dismutase) were quantified. The activity of catalase in THRs was 0.97 ± 0.03 mM H2O2 min(-1) g(-1), which was 1.22-fold (0.79 ± 0.09 mM H2O2 min(-1) g(-1)) and 1.59-fold (0.61 ± 0.06 mM H2O2 min(-1) g(-1)) higher than field grown and in vitro grown roots, respectively. At 100 μL/g concentration, the phenolic compound extract caused 53.34 and 40.00% mortality against Helicoverpa armigera and Spodoptera litura, respectively, after 6 days. Surviving larvae of H. armigera and S. litura on the phenolic compound extract after 6 days showed 85.43 and 86.90% growth retardation, respectively. PMID:24635720

  8. Determination of phenolic compounds and their antioxidant activity in fruits and cereals.

    PubMed

    Stratil, P; Klejdus, B; Kubán, V

    2007-03-15

    Three methods, FCM (with Folin-Ciocalteu reagent), PBM (Price and Butler) and AAPM (with 4-aminoantipyrine) for assessment of phenolic compounds and three commonly used methods, TEAC (Trolox equivalent antioxidant capacity), DPPH (with diphenyl-picrylhydrazyl radical), and FRAP (ferric reducing antioxidant power) for evaluation of antioxidant capacity, were modified to a semimicroscale (total volume 1ml) with minimum consumption (to 100mul) of a sample and thereby applicable for fast screening. Appropriate standards and extracts of 17 kinds of fruit and six kinds of cereal were assessed for total content of phenolic compounds and total antioxidant capacity by each of these methods. The results of analyses of commonly used standards (gallic, caffeic and ferulic acids, (+)-catechin, Trolox, fenol and FeSO(4)) for these methods and identical plant extract showed different reactivity of principal reagent of the methods with individual standards and therefore with phenolic substances of extracts as well. However, the trends of the measured values of extracts could be compared, though their absolute values differ proportionally. At assessments of phenolic compounds it is important to determine content of ascorbic acid at roughly the same time and correct the obtained values according to its contribution to the increase in absorbance calculated on the basis of absorbance equations, especially for samples with a higher content. The same is true for reducing saccharides; they can significantly "elevate" values of contents of phenolic compounds and antioxidant activities (by even more than 50%), especially in samples of sweeter fruits. The saccharides should therefore be removed or a correction applied reflecting their concentration. PMID:19071517

  9. Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds.

    PubMed

    de Souza, Cristina Giatti Marques; Tychanowicz, Giovana Kirst; de Souza, Daniela Farani; Peralta, Rosane Marina

    2004-01-01

    The effect of several phenolic and aromatic monomers structurally-related to lignin on production of laccase by the white rot fungus P. pulmonarius (Fr.) Quélet has been studied. In the absence of an inducer, laccase was maximally produced after depletion of carbon and nitrogen sources. Among 15 phenolic and aromatic compounds tested, ferulic acid and vanillin were the most efficient inducers, increasing the production of laccase activity up to 10 times. A mixture of ferulic acid and vanillin was more efficient to induce the production of laccase than the isolated phenolics. At least three laccase isoforms designated as lcc1, lcc2 and lcc3 were identified by eletrophoretic analysis of P. pulmonarius culture filtrates. The lcc1 and lcc2 isoforms were produced by non-induced cultures, while lcc3 was found only in induced-culture filtrates. PMID:15069672

  10. Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.

    PubMed

    Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten

    2016-03-01

    Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA. PMID:26716730

  11. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.

    PubMed

    Lee, Kyung Min; Min, Kyoungseon; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Um, Youngsoon

    2015-01-01

    Lignocellulosic biomass is being preferred as a feedstock in the biorefinery, but lignocellulosic hydrolysate usually contains inhibitors against microbial fermentation. Among these inhibitors, phenolics are highly toxic to butyric acid-producing and butanol-producing Clostridium even at a low concentration. Herein, we developed an electrochemical polymerization method to detoxify phenolic compounds in lignocellulosic hydrolysate for efficient Clostridium fermentation. After the electrochemical detoxification for 10h, 78%, 77%, 82%, and 94% of p-coumaric acid, ferulic acid, vanillin, and syringaldehyde were removed, respectively. Furthermore, 71% of total phenolics in rice straw hydrolysate were removed without any sugar-loss. Whereas the cell growth and metabolite production of Clostridium tyrobutyricum and Clostridium beijerinckii were completely inhibited in un-detoxified hydrolysate, those in detoxifying rice straw hydrolysate were recovered to 70-100% of the control cultures. The electrochemical detoxification method described herein provides an efficient strategy for producing butanol and butyric acid through Clostridium fermentation with lignocellulosic hydrolysate. PMID:25863199

  12. Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO₂ in Labisia pumila (Myrisinaceae).

    PubMed

    Jaafar, Hawa Z E; Ibrahim, Mohd Hafiz; Karimi, Ehsan

    2012-01-01

    A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO₂ (400, 800 and 1,200 μmol·mol⁻¹) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO₂ concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO₂ levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO₂ (1,200 μmol·mol⁻¹) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO₂ conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 μg·g⁻¹ DW) and pumila (25 μg·g⁻¹ DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO₂ enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO₂ levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO₂ enrichment conditions. PMID:22634843

  13. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China.

    PubMed

    Xiong, Lina; Yang, Jiajia; Jiang, Yirong; Lu, Baiyi; Hu, Yinzhou; Zhou, Fei; Mao, Shuqin; Shen, Canxi

    2014-04-01

    The free and bound phenolic compounds in 10 common Chinese edible flowers were investigated using reversed phase high-performance liquid chromatography. Their antioxidant capacities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity, oxygen radical absorption capacity (ORAC), ferric reducing antioxidant power (FRAP), and cellular antioxidant activity (CAA). Free factions were more prominent in phenolic content and antioxidant capacity than bound fractions. Paeonia suffruticosa and Flos lonicerae showed the highest total phenolic content (TPC) 235.5 mg chlorogenic acid equivalents/g of dry weight and total flavonoid content 89.38 mg rutin equivalents/g of dry weight. The major phenolic compounds identified were gallic acid, chlorogenic acid, and rutin. P. suffruticosa had the highest antioxidant capacity in the DPPH, ABTS, and ORAC assays, which were 1028, 2065, 990 μmol Trolox equivalents/g of dry weight, respectively, whereas Rosa chinensis had the highest FRAP value (2645 μmol Fe(2+) equivalents /g of dry weight). The P. suffruticosa soluble phenolics had the highest CAA, with the median effective dose (EC50 ) 26.7 and 153 μmol quercetin equivalents/100 g of dry weight in the phosphate buffered saline (PBS) and no PBS wash protocol, respectively. TPC was strongly correlated with antioxidant capacity (R = 0.8443 to 0.9978, P < 0.01), which indicated that phenolics were the major contributors to the antioxidant activity of the selected edible flowers. PMID:24621197

  14. Assessment of the distribution of phenolic compounds and contribution to the antioxidant activity in Tunisian fig leaves, fruits, skins and pulps using mass spectrometry-based analysis.

    PubMed

    Ammar, Sonda; del Mar Contreras, María; Belguith-Hadrich, Olfa; Segura-Carretero, Antonio; Bouaziz, Mohamed

    2015-12-01

    The phenolic composition of leaves, fruits, skins and pulps from two F. carica cultivars, 'Temri' and 'Soltani', was studied in order to understand its contribution to the antioxidant activity. A total of 116 compounds were characterized based on the results obtained by reversed-phase ultra-high performance liquid chromatography coupled to diode array and mass spectrometry detection. In general, the leaves of both cultivars and the skin of 'Soltani' presented richer qualitative profiles compared to the other plant parts. Using the negative ionization mode, qualitative profiles of the same part of the studied figs were similar. In this regard, rutin was the main compound in fruits, skins and leaves, but with different relative amounts. Alternatively, an isomer of prenylhydroxygenistein was the major compound in the pulps. In the positive ionization mode, 9 anthocyanins were characterized in 'Soltani' skin, only two of them being also present in the green cultivar 'Temri'. The main anthocyanins were cyanidin 3-rutinoside and cyanidin 3,5-diglucoside, depending on the cultivar and fruit part. In this ionization mode, 15 furanocoumarins were also detected in the leaves of both the studied cultivars with methoxypsoralen and psoralen being the most relatively abundant. In addition, our findings showed a good correlation between the antioxidant activity, total phenol content, and abundance of some phenolic subfamilies such as hydroxybenzoic acids, flavonols, flavones, hydroxycoumarins and furanocoumarins with r > 0.97. PMID:26390136

  15. Characterization of free and conjugated phenolic compounds in fruits of selected wild plants.

    PubMed

    Ahmad, Naveed; Zuo, Yuegang; Lu, Xiaofei; Anwar, Farooq; Hameed, Sohail

    2016-01-01

    A gas chromatography-mass spectrometric (GC-MS) method was utilized for the separation, and systematic characterization of phenolic compounds as trimethylsilyl derivatives in fruits of wild plants including Olive, Jujube and Common Fig. Both the free and conjugate phenolic acids (rarely determined before and several are reported first time here) were characterized. A baseline separation of the 20 phenolics was achieved in 25 min with standard calibration curves linear over the concentration range from the detection limits to 20 μg/mL. Total of fourteen phenolic acids were identified in wild Olive fruit, eight in wild Jujube fruit and ten in wild Common Fig fruit, out of which 2,4-dihydroxybenzoic acid and trans-cinnamic acid were dominant in these fruits with concentration of 87.02, 5.25 and 14.16 mg/kg and 32.43, 5.77 and 11.70 mg/kg (dry weight), respectively. The results of this study support the utilization of the tested wild fruits as a potential source of valuable phenolics for functional food and nutraceutical applications. PMID:26212944

  16. Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought.

    PubMed

    Aninbon, C; Jogloy, S; Vorasoot, N; Patanothai, A; Nuchadomrong, S; Senawong, T

    2016-04-01

    Terminal drought reduces pod yield and affected the phenolic content of leaves, stems and seed of peanut (Arachis hypogaea L.). The aim of this study was to investigate the effects of end of season water deficit on phenolic content in drought tolerant and sensitive genotypes of peanuts. Five peanut genotypes were planted under two water regimes, field capacity and 1/3 available water. Phenolic content was analyzed in seeds, leaves, and stems. The results revealed that terminal drought decreased phenolic content in seeds of both tolerant and sensitive genotypes. Phenolic content in leaves and stems increased under terminal drought stress in both years. This study provides basic information on changes in phenolic content in several parts of peanut plants when subjected to drought stress. Future studies to define the effect of terminal drought stress on specific phenolic compounds and antioxidant properties in peanut are warranted. PMID:26593473

  17. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments.

    PubMed

    Guiné, Raquel P F; Barroca, Maria João; Gonçalves, Fernando J; Alves, Mariana; Oliveira, Solange; Mendes, Mateus

    2015-02-01

    Bananas (cv. Musa nana and Musa cavendishii) fresh and dried by hot air at 50 and 70°C and lyophilisation were analysed for phenolic contents and antioxidant activity. All samples were subject to six extractions (three with methanol followed by three with acetone/water solution). The experimental data served to train a neural network adequate to describe the experimental observations for both output variables studied: total phenols and antioxidant activity. The results show that both bananas are similar and air drying decreased total phenols and antioxidant activity for both temperatures, whereas lyophilisation decreased the phenolic content in a lesser extent. Neural network experiments showed that antioxidant activity and phenolic compounds can be predicted accurately from the input variables: banana variety, dryness state and type and order of extract. Drying state and extract order were found to have larger impact in the values of antioxidant activity and phenolic compounds. PMID:25172734

  18. Consequences of plant phenolic compounds for productivity and health of ruminants.

    PubMed

    Waghorn, Garry C; McNabb, Warren C

    2003-05-01

    Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders. PMID:14506885

  19. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    PubMed

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. PMID:23561175

  20. Antioxidant Properties of Phenolic Compounds in Renewable Parts of Crataegus pinnatifida inferred from Seasonal Variations.

    PubMed

    Luo, Meng; Yang, Xuan; Hu, Jiao-Yang; Jiao, Jiao; Mu, Fan-Song; Song, Zhuo-Yue; Gai, Qing-Yan; Qiao, Qi; Ruan, Xin; Fu, Yu-Jie

    2016-05-01

    In this study, the effect of seasonal variations on Crataegus pinnatifida, changes in antioxidant activity and active components in C. pinnatifida leaves, roots, twigs, and fruits from May to October were investigated. Through correlation analysis of climatic factors and 7 phenolic compounds yield, the phenolic compounds content was positively correlated with temperatures and daytime. The correlation coefficient of temperatures and daytime were 0.912 and 0.829, respectively. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging and reducing power tests were employed to evaluate the antioxidant activity of the C. pinnatifida. C. pinnatifida leaves exhibited significant advantages in terms of higher phenolic contents and excellent antioxidant activities. Principal component analysis (PCA) revealed that 2 main PC characterize the C. pinnatifida phenolic composition (82.1% of all variance). C. pinnatifida leaves in September possessed remarkable antioxidant activity. The results elucidate that C. pinnatifida leaves, as renewable parts, are suitable for application as antioxidant ingredients. PMID:27074499

  1. Content of phenolic compounds and free polyamines in black chokeberry (Aronia melanocarpa) after application of polyamine biosynthesis regulators.

    PubMed

    Hudec, Jozef; Bakos, Dusan; Mravec, Dusan; Kobida, L'ubomír; Burdová, Maria; Turianica, Ivan; Hlusek, Jaroslav

    2006-05-17

    The total contents of anthocyanins, flavonoids, and phenolics in 60 samples of black chokeberries (Aronia melanocarpa), after treating with catabolites of polyamine biosynthesis (KPAb) and ornithine decarboxylase inhibitor, were analyzed spectrophotometrically, and quercetin and free polyamine contents were analyzed by RP-HPLC with UV detection. The average total contents of the individual substances and phenolic subgroups in control berries were as follows (mg x kg(-1)): anthocyanines, 6408; flavonoids, 664; phenolics, 37,600; quercetin, 349. KPAb decreased total contents of anthocyanines and phenolics only slightly but significantly increased the content of flavonoids. This caused an important change in the abundance of flavonoids in the pigment complex. The absolute content of quercetin was increased, but its ratio to flavonoids content was decreased. Ornithine decarboxylase inhibitor had a markedly different effect as it significantly increased total content of anthocyanins and total phenolics, inhibited the total content of free polyamines, and stimulated the processes of saccharides transformation to phenolic pigments. PMID:19127735

  2. HPLC-DAD-ESI-MS analysis of phenolic compounds during ripening in exocarp and mesocarp of tomato fruit.

    PubMed

    Carrillo-López, Armando; Yahia, Elhadi

    2013-12-01

    Identification of phenolic compounds was done by means of liquid chromatography (HPLC) coupled to mass spectrometry (MS) using the electrospray ionization interface (ESI). Quantification of phenolic compounds was carried out by using HPLC with diode array detector (DAD) in exocarp and mesocarp of tomato fruit at 6 different ripeness stages (mature-green, breakers, turning, pink, light-red, and red). Several phenolic compounds were identified including chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, and rutin and some combined phenolic acids were tentatively identified, mainly glycosides, such as caffeoyl hexose I, caffeoyl hexose II, caffeoylquinic acid isomer, dicaffeoylquinic acid, p-coumaroyl hexose I, p-coumaroyl hexose II, feruloyl hexose I, feruloyl hexose II, siringyl hexose, and caffeoyl deoxyhexose hexose. Fruit exocarp had higher quantities of total soluble phenolics (TSP) compared to mesocarp. During ripening, TSP increased in both exocarp and mesocarp, mainly in exocarp. While rutin increased, chlorogenic acid decreased in both tissues: exocarp and mesocarp. PMID:24171765

  3. Effects of natural phenolic compounds on the antioxidant activity of lactoferrin in liposomes and oil-in-water emulsions.

    PubMed

    Medina, Isabel; Tombo, Isabel; Satué-Gracia, M Teresa; German, J Bruce; Frankel, Edwin N

    2002-04-10

    The effect of natural phenolic compounds on the antioxidant and prooxidant activity of lactoferrin was studied in liposomes and oil-in-water emulsions containing iron. The antioxidants tested with lactoferrin were alpha-tocopherol, ferulic acid, coumaric acid, tyrosol, and natural phenolic extracts obtained from three different extra-virgin olive oils and olive mill wastewater. The natural extracts of olive oils and mill wastewaters were composed mainly of polyphenols and simple phenolics, respectively. Lipid oxidation at 30 degrees C was determined by the formation of hydroperoxides and fluorescent compounds resulting from oxidized lipid interactions. All phenolic compounds showed synergistic properties in reinforcing the antioxidant activity of lactoferrin in lipid systems containing iron. The highest synergistic effects were observed for the phenolic extracts rich in polyphenols of extra-virgin olive oils and lactoferrin. This synergistic effect was higher in liposomes than in emulsions. PMID:11929302

  4. Influence of olive oil phenolic compounds on headspace aroma release by interaction with whey proteins.

    PubMed

    Genovese, Alessandro; Caporaso, Nicola; De Luca, Lucia; Paduano, Antonello; Sacchi, Raffaele

    2015-04-22

    The release of volatile compounds in an oil-in-water model system obtained from olive oil-whey protein (WP) pairing was investigated by considering the effect of phenolic compounds. Human saliva was used to simulate mouth conditions by retronasal aroma simulator (RAS) analysis. Twelve aroma compounds were quantified in the dynamic headspace by SPME-GC/MS. The results showed significant influences of saliva on the aroma release of virgin olive oil (VOO) volatiles also in the presence of WP. The interaction between WP and saliva leads to lower headspace release of ethyl esters and hexanal. Salivary components caused lower decrease of the release of acetates and alcohols. A lower release of volatile compounds was found in the RAS essay in comparison to that in orthonasal simulation of only refined olive oil (without addition of saliva or WP), with the exception of hexanal and 1-penten-3-one, where a significantly higher release was found. Our results suggest that the extent of retronasal odor (green, pungent) of these two volatile compounds is higher than orthonasal odor. An extra VOO was used to verify the release in model systems, indicating that WP affected aroma release more than model systems, while saliva seems to exert an opposite trend. A significant increase in aroma release was found when phenolic compounds were added to the system, probably due to the contrasting effects of binding of volatile compounds caused by WP, for the polyphenol-protein interaction phenomenon. Our study could be applied to the formulation of new functional foods to enhance flavor release and modulate the presence and concentrations of phenolics and whey proteins in food emulsions/dispersions. PMID:25832115

  5. Effects of aliphatic acids, furfural, and phenolic compounds on Debaryomyces hansenii CCMI 941.

    PubMed

    Duarte, Luís C; Carvalheiro, Florbela; Neves, Inês; Gírio, Francisco M

    2005-01-01

    Debaryomyces hansenii is a polyol overproducing yeast that can have a potential use for upgrading lignocellulosic hydrolysates. Therefore, the establishment of its tolerance to metabolic inhibitors found in hydrolysates is of major interest. We studied the effects of selected aliphatic acids, phenolic compounds, and furfural. Acetic acid favored biomass production for concentrations <6.0 g/L. Formic acid was more toxic than acetic acid and induced xylitol accumulation (maximum yield of 0.21 g/g of xylose). All tested phenolics strongly decreased the specific growth rate. Increased toxicity was found for hydroquinone, syringaldehyde, and 4-methylcatechol and was correlated to the compound's hydrophobicity. Increasing the amount of furfural led to longer lag phases and had a detrimental effect on specific growth rate and biomass productivity. PMID:15917618

  6. Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum Kunth).

    PubMed

    Vasco, Catalina; Riihinen, Kaisu; Ruales, Jenny; Kamal-Eldin, Afaf

    2009-09-23

    The phenolic compounds in mortiño (Vaccinium floribundum Kunth, family Ericaceae) from the páramos of Ecuador were studied by LC-DAD-MS/MS for the first time. (-)-Epicatechin, one dimer A and one trimer A were found at a total concentration of 18 mg/100 g FW. Of the flavonol glycosides (38 mg/100 g FW), quercetin and myricetin were found as -3-O-hexosides, -3-O-pentosides and -3-O-deoxyhexosides. Chlorogenic and neochlorogenic acids together with caffeic/ferulic acid derivatives were found as predominant components among the hydroxycinnamic acids in the berry. Anthocyanins, including cyanidin and delphinidin derivatives, were the major phenolic compound class quantified (345 mg cyanidin-3-O-glucoside/100 g FW). PMID:19719139

  7. Changes in phenolic compounds, colour and antioxidant activity in industrial red myrtle liqueurs during storage.

    PubMed

    Vacca, Vincenzo; Piga, Antonio; Del Caro, Alessandra; Fenu, Paolo A M; Agabbio, Mario

    2003-12-01

    The results of a study on the evolution of phenolic compounds, colour and antioxidant activity in two industrial red myrtle liqueurs during storage in bottles under different bottle headspace (constant or increasing) and exposure to light are reported. In the year of the study, the phenolic compounds showed considerable changes even in the liqueurs stored with constant headspace. The anthocyanins in particular, both free and combined, tended to decrease. As expected, the same phenomena were observed in an accelerated form in the product stored in bottles with increasing headspace. The colour, evaluated according to the classic spectrophotometric parameters of intensity and hue, showed marked variability, especially in samples in which headspace was progressively increased. The two liqueurs showed antioxidant capacity values, expressed as mM of Trolox, comparable to those of red wine. They significantly decreased during storage in the bottles with increasing headspace, while values remained almost constant in the others. PMID:14727776

  8. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of six pressurized liquid extraction parameters (temperature, pressure, particle size, flush volume, static time, and solid to-solvent ratio) on extraction of phenolic compounds from parsley flakes was examined. Parsley extracts were analyzed for their phenolic content by high performa...

  9. Effects of different organic farming methods on the concentration of phenolic compounds in sea buckthorn leaves.

    PubMed

    Heinäaho, Merja; Pusenius, Jyrki; Julkunen-Tiitto, Riitta

    2006-10-01

    The effects of different cultivation methods on the amount of phenolic compounds in leaves of 1-year-old seedlings of two Finnish sea buckthorn (Hippophae rhamnoides L. ssp. rhamnoides) cultivars 'Terhi' and 'Tytti' were studied in a field experiment established at coastal area in Merikarvia, western Finland. The cultivation methods included different fertilizers (suitable for organic cultivation), mulches (organic and plastic), and land contours (flat vs low hill surface). Two experiments were conducted. The first allowed the estimation of the effects of cultivar, fertilizer, surface contour, and all their interactions, while the other allowed the estimation of the effects of mulches, land contours, and their interactions for the cultivar 'Tytti'. Eleven different hydrolyzable tannins, pentagalloylglucose, and 14 other phenolic compounds were detected by chemical analysis with high-performance liquid chromatography (HPLC). The amount of phenolic compounds varied between different land contours and mulches. The concentrations of gallic acid, pentagalloylglucose, quercetin-3-rhamnoside, monocoumaroyl astragalin A, total hydrolyzable tannins, and condensed tannins were significantly higher on the flat surface than on the low hill surface. The plastic mulch decreased the concentration of gallic acid, hydrolyzable tannins, and condensed tannins compared to the other mulches used. These results suggest ways to cultivate sea buckthorn to produce large amounts of valuable chemicals, especially tannins in the leaves. PMID:17002439

  10. Microwave-assisted autohydrolysis of Prunus mume stone for extraction of polysaccharides and phenolic compounds.

    PubMed

    Tsubaki, S; Ozaki, Y; Azuma, J

    2010-03-01

    Stone of Prunus mume (P. mume) is a by-product of pickled P. mume industry. Stones of native and pickled P. mume, mainly composed of holocellulose (83.8 +/- 1.8% and 65.1 +/- 0.3%, respectively) and acid-insoluble lignin (25.3 +/- 2.2% and 30.6 +/- 0.9%, respectively), were autohydrolyzed by microwave heating to extract polysaccharides and phenolic compounds. By heating at 200 to 230 degrees C, 48.0% to 60.8% of polysaccharide and 84.1% to 97.9% of phenolic compound were extracted in water along with partial degradation of hemicelluloses and lignin. The extracted liquors showed antioxidant activity against hydroxyl radical and DPPH radical originated from phenolic compounds. The pickled P. mume stone showed higher autohydrolyzability and microwave absorption capacity than the native stone due to absorbed salts and acids during pickling in fruit juice of P. mume with external addition of sodium chloride. Pickling process in salty and weak acidic juice seemed to be a kind of pretreatment for softening the stones prior to autohydrolysis induced by microwave heating. PMID:20492219

  11. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum

    PubMed Central

    Zárate-Chaves, Carlos Andrés; Romero-Rodríguez, María Camila; Niño-Arias, Fabián Camilo; Robles-Camargo, Jorge; Linares-Linares, Melva; Rodríguez-Bocanegra, María Ximena; Gutiérrez-Rojas, Ivonne

    2013-01-01

    The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds) were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture. PMID:24159308

  12. High-performance liquid chromatographic determination of phenolic compounds in rice.

    PubMed

    Tian, Su; Nakamura, Kozo; Cui, Tong; Kayahara, Hiroshi

    2005-01-21

    A method has been developed for the determination of 6'-O-feruloylsucrose, 6'-O-sinapoylsucrose, ferulic acid, sinapinic acid, p-coumaric acid, chlorogenic (3-caffeoylquinic) acid, caffeic acid, protocatechuic acid, hydroxybenzoic acid, vanillic acid, and syringic acid in rice. The rice samples were extracted with 70% ethanol, filtered, and defatted. The defatted aqueous solution was subjected to solid-phase extraction using a C18 silica gel cartridge; no analyte was lost in this procedure. The 70% acidic methanol elution was analyzed directly by HPLC and HPLC-ESI-MS. Phenolic compounds were separated with a C18 reversed-phase column by gradient elution using 0.025% trifluoroacetic acid in purified water (A)--acetonitrile (B) (0 min, 5% B; 5 min, 9% B; 15 min, 9% B; 22 min, 11% B; and 38 min, 18% B) as the mobile phase at a flow rate of 0.8 ml/min. Detection limits ranged from 0.10 to 0.35 ng per injection (5 microl). Relative standard deviations of 0.22-3.95% and recoveries of 99-108% were obtained for simultaneous determination of these phenolic compounds. This method was applied to analysis of phenolic compounds in brown rice and germinated brown rice soaked in 32 degrees C water for varying durations. PMID:15700463

  13. Capillary zone electrophoretic determination of phenolic compounds in chess (Bromus inermis L.) plant extracts.

    PubMed

    Sterbová, Dagmar; Vlcek, Jirí; Kubán, Vlastimil

    2006-02-01

    A simple CZE method for quantification of phenolic compounds (vanillin, cinnamic, sinapic, chlorogenic, syringic, ferulic, benzoic, p-coumaric, vanillic, p-hydroxybenzoic, rosmarinic, caffeic, gallic and protocatechuic acids) in less than 10 min using 20 mM sodium tetraborate (pH 9.2) with 5% v/v methanol as a BGE and with UV detection at 254 nm is described. The LODs (3 S/N) ranged between 0.02 and 0.12 microg/ mL. Repeatabilities (RSDs) were 0.66-1.8 and 1.56-4.23% for migration times and peak areas (n = 5), respectively. The method was applied to the determination of phenolic compounds in chess (Bromus inermis L.) after Soxhlet extraction and purification of the crude extracts with SPE procedures. The results compared well with those obtained by liquid chromatographic method. B. inermis was found as a suitable model plant containing a broad spectrum of phenolic compounds in easily detectable concentrations and as a potential source of antioxidants. PMID:16524108

  14. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-11-01

    The inhibitory effects of furan derivatives [i.e. furfural and 5-hydroxymethylfurfural (5-HMF)] and phenolic compounds (i.e. vanillin and syringaldehyde) on dark hydrogen fermentation from glucose were comparatively evaluated. Phenolic compounds exhibited stronger inhibition on hydrogen production and glucose consumption than furan derivatives under the same 15mM concentration. Furan derivatives were completely degraded after 72h fermentation, while over 55% of phenolic compounds remained unconverted after 108h fermentation. The inhibition coefficients of vanillin (14.05) and syringaldehyde (11.21) were higher than those of 5-HMF (4.35) and furfural (0.64). Vanillin exhibited the maximum decrease of hydrogen yield (17%). The consumed reducing power by inhibitors reduction from R-CHO to RCH2OH was a possible reason contributed to the decreased hydrogen yield. Vanillin exhibited the maximum delay of peak times of hydrogen production rate and glucose consumption. Soluble metabolites and carbon conversion efficiency decreased with inhibitors addition, which were consistent with hydrogen production. PMID:26247976

  15. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. PMID:27373451

  16. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles.

    PubMed

    Nezhad, M Reza Hormozi; Alimohammadi, M; Tashkhourian, J; Razavian, S Mehdi

    2008-11-01

    An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations. PMID:18222104

  17. Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts.

    PubMed

    Seo, Jeong-Min; Arasu, Mariadhas Valan; Kim, Yeon-Bok; Park, Sang Un; Kim, Sun-Ju

    2015-06-15

    The present study aimed to investigate the effects of different l-phenylalanine (l-Phe) concentrations and various light-emitting diodes (LEDs) on the accumulation of phenolic compounds (chlorogenic acid, vitexin, rutin, quercetin, cyanidin 3-O-glucoside, and cyanidin 3-O-rutinoside) in Tartary buckwheat sprouts. We found that 5mM was the optimum l-Phe concentration for the synthesis of total and individual phenolic compounds. The highest rutin (53.09 mg/g DW) and chlorogenic acid (5.62 mg/g DW) content was observed with Red+Blue and white lights. Comprehensive differences in total and individual anthocyanin content were observed between different lights; however, the total anthocyanin content (9.12 mg/g DW) was 1.5-fold higher in blue light. The expression levels of regulatory genes, such as FtDFR and FtANS, were 7.1-fold higher with l-Phe treatment. Gene expression results showed that the phenolic compounds in Tartary buckwheat sprouts increased with the use of l-Phe and LED lights. PMID:25660878

  18. Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS.

    PubMed

    Hu, Xin; Chen, Lin; Shi, Shuyun; Cai, Ping; Liang, Xuejuan; Zhang, Shuihan

    2016-05-30

    Lonicerae macranthoides with strong antioxidant activity is commonly used in traditional Chinese medicine and folk tea/beverage. However, detailed information about its antioxidant activity and bioactive compounds is limited. Then at first, we comparatively evaluated total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities of water extract, petroleum ether, ethyl acetate and n-butanol fractions of L. macranthoides. Ethyl acetate fraction exhibited the highest level of TPC (207.38 mg GAE/g DW), TFC (53.06 mg RE/g DW) and the best DPPH scavenge activity and reducing power. n-Butanol fraction showed the best ABTS(+) and O2(-) scavenging activities. Interestingly, water extract, ethyl acetate and n-butanol fractions showed stronger antioxidant activities than positive control, butylated hydroxytoluene (BHT). After that, thirty-one antioxidant phenolic compounds, including twenty-two phenolic acids and nine flavonoids, were screened by DPPH-HPLC experiment and then identified using HPLC-DAD-QTOF-MS/MS. It is noted that twenty-one compounds (1, 3-4, 6-17, 19, 23, 26, 28-29, and 31), as far as was known, were discovered from L. macranthoide for the first time, and eleven of them (3-4, 10-17, and 23) were reported in Lonicera species for the first time. Results indicated that L. macranthoides could serve as promising source of rich antioxidants in foods, beverages and medicines for health promotion. PMID:26970594

  19. Evaluation of phenolic compounds in maté ( Ilex paraguariensis) processed by gamma radiation

    NASA Astrophysics Data System (ADS)

    Furgeri, C.; Nunes, T. C. F.; Fanaro, G. B.; Souza, M. F. F.; Bastos, D. H. M.; Villavicencio, A. L. C. H.

    2009-07-01

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The maté ( Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrão or tererê, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of tererê beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of tererê beverage processed by gamma radiation.

  20. Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase.

    PubMed

    Torres, Juliana Arriel; Chagas, Pricila Maria Batista; Silva, Maria Cristina; Dos Santos, Custódio Donizete; Corrêa, Angelita Duarte

    2016-01-01

    The use of oxidoredutive enzymes in removing organic pollutants has been the subject of much research. The oxidation of phenolic compounds in the presence of chemical additives has been the focus of this study. In this investigation, the influence of the additives polyethylene glycol and Triton X-100 was evaluated in the phenol oxidation, caffeic acid, chlorogenic acid and total phenolic compounds present in coffee processing wastewater (CPW) at different pH values, performed by turnip peroxidase and peroxidase extracted from soybean seed hulls. The influence of these additives was observed only in the oxidation of phenol and caffeic acid. In the oxidation of other studied phenolic compounds, the percentage of oxidation remained unchanged in the presence of these chemical additives. In the oxidation of CPW in the presence of additives, no change in the oxidation of phenolic compounds was observed. Although several studies show the importance of evaluating the influence of additives on the behaviour of enzymes, this study found a positive response from the economic point of view for the treatment of real wastewater, since the addition of these substances showed no influence on the oxidation of phenolic compounds, which makes the process less costly. PMID:26502790

  1. The Bark-Beetle-Associated Fungus, Endoconidiophora polonica, Utilizes the Phenolic Defense Compounds of Its Host as a Carbon Source1[OPEN

    PubMed Central

    Wadke, Namita; Kandasamy, Dineshkumar; Vogel, Heiko; Wingfield, Brenda D.; Paetz, Christian

    2016-01-01

    Norway spruce (Picea abies) is periodically attacked by the bark beetle Ips typographus and its fungal associate, Endoconidiophora polonica, whose infection is thought to be required for successful beetle attack. Norway spruce produces terpenoid resins and phenolics in response to fungal and bark beetle invasion. However, how the fungal associate copes with these chemical defenses is still unclear. In this study, we investigated changes in the phenolic content of Norway spruce bark upon E. polonica infection and the biochemical factors mediating these changes. Although genes encoding the rate-limiting enzymes in Norway spruce stilbene and flavonoid biosynthesis were actively transcribed during fungal infection, there was a significant time-dependent decline of the corresponding metabolites in fungal lesions. In vitro feeding experiments with pure phenolics revealed that E. polonica transforms both stilbenes and flavonoids to muconoid-type ring-cleavage products, which are likely the first steps in the degradation of spruce defenses to substrates that can enter the tricarboxylic acid cycle. Four genes were identified in E. polonica that encode catechol dioxygenases carrying out these reactions. These enzymes catalyze the cleavage of phenolic rings with a vicinal dihydroxyl group to muconoid products accepting a wide range of Norway spruce-produced phenolics as substrates. The expression of these genes and E. polonica utilization of the most abundant spruce phenolics as carbon sources both correlated positively with fungal virulence in several strains. Thus, the pathways for the degradation of phenolic compounds in E. polonica, initiated by catechol dioxygenase action, are important to the infection, growth, and survival of this bark beetle-vectored fungus and may play a major role in the ability of I. typographus to colonize spruce trees. PMID:27208235

  2. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract.

    PubMed

    Xu, Guihua; Ye, Xingqian; Chen, Jianchu; Liu, Donghong

    2007-01-24

    This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel. PMID:17227062

  3. Immobilization of tyrosinase on modified diatom biosilica: enzymatic removal of phenolic compounds from aqueous solution.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    2013-01-15

    Acid and plasma treated diatom-biosilica particles, were modified with 3-aminopropyl triethoxysilane (APTES), and activated with glutaraldehyde. Then, tyrosinase was immobilized onto the pre-activated biosilica by covalent bonding. The biosilica properties were determined using SEM, and FTIR. The enzyme system has been characterized as a function of pH, temperature and substrate concentration. Optimum pH of the free and immobilized enzyme was found to be pH 7.0. Optimum temperatures of the free and immobilized enzymes were determined as 35 and 45 °C respectively. The biodegradation of phenolic compounds (i.e., phenol, para-cresol and phenyl acetate) has been studied by means of immobilized tyrosinase in a batch system. The immobilized tyrosinase retained about 74% of its original activity after 10 times repeated use in the batch system. Moreover, the storage stability of the tyrosinase-biosilica system resulted excellent, since they maintained more than 67% of the initial activity after eighth week storage. Highly porous structure of biosilica can provide large surface area for immobilization of high quantity enzyme. The porous structure of the biosilica can decrease diffusion limitation both substrate phenols and their products. Finally, the immobilized tyrosinase was used in a batch system for degradation of three different phenols. PMID:23245881

  4. Phenolic compounds and antioxidant activity of Italian extra virgin olive oil Monti Iblei.

    PubMed

    Galvano, Fabio; La Fauci, Luca; Graziani, Giulia; Ferracane, Rosalia; Masella, Roberta; Di Giacomo, Claudia; Scacco, Antonio; D'Archivio, Massimo; Vanella, Luca; Galvano, Giacomo

    2007-12-01

    The profile of phenolic compounds, antioxidant capacity, oxidative stability, and chemical characteristics (free acidity, peroxide value, specific extinction K232 and K270 values, and DeltaK) of 22 commercial extra virgin olive oil (EVOO) samples coming from the denomination of protected origin (DPO) Monti Iblei and obtained from olives harvested in the period September-December 2005 in the production area of the province of Siracusa (Sicily, Italy) were evaluated. The content of total phenols, expressed as gallic acid equivalents, ranged from 14.80 to 121.20 mg/100 g, with a mean value of 53.72 mg/100 g, mainly attributable to deacetoxyligstroside aglycone, deacetoxyoleuropein aglycone, oleuropein aglycone, and ligstroside aglycone. The mean values of Trolox equivalent antioxidant capacity (TEAC) and of oxidative stability were 54.76 and 11.99 hours, respectively. Both TEAC and oxidative stability were positively correlated to the phenol content and to the percentage of inclusion of the olive cultivar "Tonda Iblea." The high mean content of phenols, besides conferring prolonged oxidative stability, likely confers to the DPO Monti Iblei EVOO marked potential beneficial effects for human health. PMID:18158836

  5. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc.

    PubMed

    Hsu, Chin-Lin; Fang, Song-Chwan; Yen, Gow-Chin

    2013-08-01

    Nymphaea mexicana Zucc. is an aquatic plant species which belongs to the family Nymphaea and is commonly known as the yellow water lily. The aim of this work was to study the in vitro antiinflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Seven phenolic compounds including vanillic acid, 4-methoxy-3,5-dihydroxybenzoic acid, (2R,3R)-3,7-dihydroxyflavanone, naringenin (4), kaempferol 3-O-(3-O-acetyl-a-L-rhamnopyranoside), kaempferol 3-O-(2-O-acetyl-a-L-rhamnopyranoside), and quercetin 3-(30 0-acetylrhamnoside) (7) were isolated from the flowers of Nymphaea mexicana Zucc. These results revealed that compound 4 has the most prominent inhibitory effect on the LPS-stimulated nitric oxide (NO), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-a) production in RAW 264.7 macrophages. In addition, compound 4 also inhibited LPS-mediated induction of protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and phospho-ERK in RAW 264.7 macrophages. Thus, compound 4 from the flowers of Nymphaea mexicana Zucc. may provide a potential therapeutic approach for inflammation-associated disorders. PMID:23727892

  6. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Gupta, V K; Boopathy, R; Maharaja, P

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 °C and at particle size 300 μm. Enthalpy, free energy and entropy of immobilization were -46.9 kJ mol(-1), -1.19 kJ mol(-1) and -161.36 JK(-1)mol(-1) respectively at pH 7.0, temperature 20 °C and particle size 300 μm. Higher values of ΔH(0) indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 × 10(-2) min(-1). PMID:25427481

  7. Enhanced Production of Phenolic Compounds from Pumpkin Leaves by Subcritical Water Hydrolysis

    PubMed Central

    Ko, Jeong-Yeon; Ko, Mi-Ok; Kim, Dong-Shin; Lim, Sang-Bin

    2016-01-01

    Enhanced production of individual phenolic compounds by subcritical water hydrolysis (SWH) of pumpkin leaves was investigated at various temperatures ranging from 100 to 220°C at 20 min and at various reaction times ranging from 10 to 50 min at 160°C. Caffeic acid, p-coumaric acid, ferulic acid, and gentisic acid were the major phenolic compounds in the hydrolysate of pumpkin leaves. All phenolic compounds except gentisic acid showed the highest yield at 160°C, but gentisic acid showed the highest yield at 180°C. The cumulative amount of individual phenolic compounds gradually increased by 48.1, 52.2, and 78.4 μg/g dry matter at 100°C, 120°C, and 140°C, respectively, and then greatly increased by 1,477.1 μg/g dry matter at 160°C. The yields of caffeic acid and ferulic acid showed peaks at 20 min, while those of cinnamic acid, p-coumaric acid, p-hydroxybenzoic acid, and procatechuic acid showed peaks at 30 min. Antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power values gradually increased with hydrolysis temperature and ranged from 6.77 to 12.42 mg ascorbic acid equivalents/g dry matter and from 4.25 to 8.92 mmol Fe2+/100 g dry matter, respectively. Color L* and b* values gradually decreased as hydrolysis temperature increased from 100°C to 140°C. At high temperatures (160°C to 220°C), L* and b* values decreased suddenly. The a* value peaked at 160°C and then decreased as temperature increased from 160°C to 220°C. These results suggest that SWH of pumpkin leaves was strongly influenced by hydrolysis temperature and may enhanced the production of phenolic compounds and antioxidant activities. PMID:27390730

  8. Enhanced Production of Phenolic Compounds from Pumpkin Leaves by Subcritical Water Hydrolysis.

    PubMed

    Ko, Jeong-Yeon; Ko, Mi-Ok; Kim, Dong-Shin; Lim, Sang-Bin

    2016-06-01

    Enhanced production of individual phenolic compounds by subcritical water hydrolysis (SWH) of pumpkin leaves was investigated at various temperatures ranging from 100 to 220°C at 20 min and at various reaction times ranging from 10 to 50 min at 160°C. Caffeic acid, p-coumaric acid, ferulic acid, and gentisic acid were the major phenolic compounds in the hydrolysate of pumpkin leaves. All phenolic compounds except gentisic acid showed the highest yield at 160°C, but gentisic acid showed the highest yield at 180°C. The cumulative amount of individual phenolic compounds gradually increased by 48.1, 52.2, and 78.4 μg/g dry matter at 100°C, 120°C, and 140°C, respectively, and then greatly increased by 1,477.1 μg/g dry matter at 160°C. The yields of caffeic acid and ferulic acid showed peaks at 20 min, while those of cinnamic acid, p-coumaric acid, p-hydroxybenzoic acid, and procatechuic acid showed peaks at 30 min. Antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power values gradually increased with hydrolysis temperature and ranged from 6.77 to 12.42 mg ascorbic acid equivalents/g dry matter and from 4.25 to 8.92 mmol Fe(2+)/100 g dry matter, respectively. Color L* and b* values gradually decreased as hydrolysis temperature increased from 100°C to 140°C. At high temperatures (160°C to 220°C), L* and b* values decreased suddenly. The a* value peaked at 160°C and then decreased as temperature increased from 160°C to 220°C. These results suggest that SWH of pumpkin leaves was strongly influenced by hydrolysis temperature and may enhanced the production of phenolic compounds and antioxidant activities. PMID:27390730

  9. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk).

    PubMed

    Gómez-Caravaca, Ana María; López-Cobo, Ana; Verardo, Vito; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2016-04-01

    Free and bound phenolic and other polar compounds in mango edible fraction and its by-products (peel, seed, and seed husk) have been determined by HPLC-DAD-ESI-qTOF-MS. This analytical technique has demonstrated to be a valuable platform for the identification and quantification of these compounds in mango. In fact, UV-Vis and mass spectra data allowed the determination of 91 free compounds and 13 bound (cell wall linked) compounds taking into account the four fractions of mango. To our knowledge, this is the first time that mango seed husk has been studied regarding its phenolic compounds. The method proposed showed LODs between 0.006 and 0.85 μg/mL and accuracy ranged from 94.8 and 100.7%. Mango peel presented the highest concentration of free polar compounds followed by seed, pulp, and seed husk. It is also important to highlight that bound phenolic compounds had never been determined in mango pulp, seed, and seed husk before. Furthermore, ellagic acid was the most abundant bound compound in the four mango fractions analyzed. These results show that mango pulp and its by-products are a good source of phenolic and other polar compounds. In particular, mango seed contains a high total concentration of ellagic acid (650 mg/100 g dry weight). PMID:26703086

  10. Breads enriched with guava flour as a tool for studying the incorporation of phenolic compounds in bread melanoidins.

    PubMed

    Alves, Genilton; Perrone, Daniel

    2015-10-15

    In the present study we aimed at studying, for the first time, the incorporation of phenolic compounds into bread melanoidins. Fermentation significantly affected the phenolics profile of bread doughs. Melanoidins contents continuously increased from 24.1 mg/g to 71.9 mg/g during baking, but their molecular weight decreased at the beginning of the process and increased thereafter. Enrichment of white wheat bread with guava flour increased the incorporation of phenolic compounds up to 2.4-fold. Most phenolic compounds showed higher incorporation than release rates during baking, leading to increases from 3.3- to 13.3-fold in total melanoidin-bound phenolics. Incorporation patterns suggested that phenolic hydroxyls, but not glycosidic bonds of melanoidin-bound phenolics are cleaved during thermal processing. Antioxidant capacity of bread melanoidins increased due to enrichment with guava flour and increasing baking periods and was partially attributed to bound phenolics. Moreover, FRAP assay was more sensitive to measure this parameter than TEAC assay. PMID:25952842

  11. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum).

    PubMed

    Khuwijitjaru, Pramote; Sayputikasikorn, Nucha; Samuhasaneetoo, Suched; Penroj, Parinda; Siriwongwilaichat, Prasong; Adachi, Shuji

    2012-01-01

    Cinnamon bark (Cinnamomum zeylanicum) powder was treated with subcritical water at 150 and 200°C in a semi-continuous system at a constant flow rate (3 mL/min) and pressure (6 MPa). Major flavoring compounds, i.e., cinnamaldehyde, cinnamic acid, cinnamyl alcohol and coumarin, were extracted at lower recoveries than the extraction using methanol, suggesting that degradation of these components might occur during the subcritical water treatment. Caffeic, ferulic, p-coumaric, protocatechuic and vanillic acids were identified from the subcritical water treatment. Extraction using subcritical water was more effective to obtain these acids than methanol (50% v/v) in both number of components and recovery, especially at 200°C. Subcritical water treatment at 200°C also resulted in a higher total phenolic content and DPPH radical scavenging activity than the methanol extraction. The DPPH radical scavenging activity and total phenolic content linearly correlated but the results suggested that the extraction at 200°C might result in other products that possessed a free radical scavenging activity other than the phenolic compounds. PMID:22687781

  12. Methanogenic degradation kinetics of phenolic compounds in aquifer-derived microcosms

    USGS Publications Warehouse

    Godsy, E.M.; Goerlitz, D.F.; Grbic-Galic, D.

    1992-01-01

    In this segment of a larger multidisciplinary study of the movement and fate of creosote derived compounds in a sand-and-gravel aquifer, we present evidence that the methanogenic degradation of the major biodegradable phenolic compounds and concomitant microbial growth in batch microcosms derived from contaminated aquifer material can be described using Monod kinetics. Substrate depletion and bacterial growth curves were fitted to the Monod equations using nonlinear regression analysis. The method of Marquardt was used for the determination of parameter values that best fit the experimental data by minimizing the residual sum of squares. The Monod kinetic constants (??max, Ks, Y, and kd) that describe phenol, 2-, 3-, and 4-methylphenol degradation and concomitant microbial growth were determined under conditions that were substantially different from those previously reported for microcosms cultured from sewage sludge. The Ks values obtained in this study are approximately two orders of magnitude lower than values obtained for the anaerobic degradation of phenol in digesting sewage sludge, indicating that the aquifer microorganisms have developed enzyme systems that are adapted to low nutrient conditions. The values for kd are much less than ??max, and can be neglected in the microcosms. The extremely low Y values, approximately 3 orders of magnitude lower than for the sewage sludge derived cultures, and the very low numbers of microorganisms in the aquifer derived microcosms suggest that these organisms use some unique strategies to survive in the subsurface environment. ?? 1992 Kluwer Academic Publishers.

  13. Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum.

    PubMed

    Kuo, Chia-Hung; Chen, Bao-Yuan; Liu, Yung-Chuan; Chang, Chieh-Ming J; Deng, Tzu-Shing; Chen, Jiann-Hwa; Shieh, Chwen-Jen

    2013-01-01

    In this study the phenolic compounds piceid, resveratrol and emodin were extracted from P. cuspidatum roots using ultrasound-assisted extraction. Multiple response surface methodology was used to optimize the extraction conditions of these phenolic compounds. A three-factor and three-level Box-Behnken experimental design was employed to evaluate the effects of the operation parameters, including extraction temperature (30-70 °C), ethanol concentration (40%-80%), and ultrasonic power (90-150 W), on the extraction yields of piceid, resveratrol, and emodin. The statistical models built from multiple response surface methodology were developed for the estimation of the extraction yields of multi-phenolic components. Based on the model, the extraction yields of piceid, resveratrol, and emodin can be improved by controlling the extraction parameters. Under the optimum conditions, the extraction yields of piceid, resveratrol and emodin were 10.77 mg/g, 3.82 mg/g and 11.72 mg/g, respectively. PMID:24362626

  14. Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells.

    PubMed

    Hedbavna, Petra; Rolfe, Stephen A; Huang, Wei E; Thornton, Steven F

    2016-01-01

    This is the first study demonstrating the biodegradation of phenolic compounds and their organic metabolites in contaminated groundwater using bioelectrochemical systems (BESs). The phenols were biodegraded anaerobically via 4-hydroxybenzoic acid and 4-hydroxy-3-methylbenzoic acid, which were retained by electromigration in the anode chamber. Oxygen, nitrate, iron(III), sulfate and the electrode were electron acceptors for biodegradation. Electro-active bacteria attached to the anode, producing electricity (~1.8mW/m(2)), while utilizing acetate as an electron donor. Electricity generation started concurrently with iron reduction; the anode was an electron acceptor as thermodynamically favorable as iron(III). Acetate removal was enhanced by 40% in the presence of the anode. However, enhanced removal of phenols occurred only for a short time. Field-scale application of BESs for in situ bioremediation requires an understanding of the regulation and kinetics of biodegradation pathways of the parent compounds to relevant metabolites, and the syntrophic interactions and carbon flow in the microbial community. PMID:26512868

  15. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material.

    PubMed

    Hurtado-Fernández, Elena; Gómez-Romero, María; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto

    2010-12-15

    Antioxidants are one of the most common active ingredients of nutritionally functional foods which can play an important role in the prevention of oxidation and cellular damage inhibiting or delaying the oxidative processes. In recent years there has been an increased interest in the application of antioxidants to medical treatment as information is constantly gathered linking the development of human diseases to oxidative stress. Within antioxidants, phenolic molecules are an important category of compounds, commonly present in a wide variety of plant food materials. Their correct determination is pivotal nowadays and involves their extraction from the sample, analytical separation, identification, quantification and interpretation of the data. The aim of this review is to provide an overview about all the necessary steps of any analytical procedure to achieve the determination of phenolic compounds from plant matrices, paying particular attention to the application and potential of capillary electroseparation methods. Since it is quite complicated to establish a classification of plant food material, and to structure the current review, we will group the different matrices as follows: fruits, vegetables, herbs, spices and medicinal plants, beverages, vegetable oils, cereals, legumes and nuts and other matrices (including cocoa beans and bee products). At the end of the overview, we include two sections to explain the usefulness of the data about phenols provided by capillary electrophoresis and the newest trends. PMID:20719447

  16. Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties.

    PubMed

    Ruiz, David; Egea, José; Gil, María I; Tomás-Barberán, Francisco A

    2005-11-30

    Thirty-seven apricot varieties, including four new releases (Rojo Pasión, Murciana, Selene, and Dorada) obtained from different crosses between apricot varieties and three traditional Spanish cultivars (Currot, Mauricio, and Búlida), were separated according to flesh color into four groups: white, yellow, light orange, and orange (mean hue angles in flesh were 88.1, 85.0, 77.6, and 72.4, respectively). Four phenolic compound groups, procyanidins, hydroxycinnamic acid derivatives, flavonols, and anthocyanins, were identified by HPLC-MS/MS and individually quantified using HPLC-DAD. Chlorogenic and neochlorogenic acids, procyanidins B1, B2, and B4, and some procyanidin trimers, quercetin 3-rutinoside, kaempferol 3-rhamnosyl-hexoside and quercetin 3-acetyl-hexoside, cyanidin 3-rutinoside, and 3-glucoside, were detected and quantified in the skin and flesh of the different cultivars. The total phenolics content, quantified as the addition of the individual compounds quantified by HPLC, ranged between 32.6 and 160.0 mg 100 g(-1) of edible tissue. No correlation between the flesh color and the phenolic content of the different cultivars was observed. PMID:16302775

  17. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study

    PubMed Central

    2013-01-01

    The phenolic compounds are known by their carcinogenicity and high toxicity as well as creating unpleasant taste and odor in water resources. The present study develops a cost-effective technology for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-chlorophenol (2-CP), and 4-chlorophenol (4-CP). So, two sorbents, rice bran ash (RBA) and biomass of brown algae, Cystoseiraindica, were used and results were compared with the commercially granular activated carbon (GAC). The phenolic compounds were determined using a high performance liquid chromatography (HPLC) under batch equilibrium conditions. The effects of contact time, pH, initial adsorbate concentration, and adsorbent dosages on the removal efficiency were studied. The adsorption data were simulated by isotherm and kinetic models. Results indicated that RBA and GAC had the lowest efficiency for the removal of 2-CP, while the order of removal efficiency for C. indica biomass was as follows: 2-CP > 4-CP > phenol. The efficiency of GAC was higher than those of other adsorbents for all of the phenolic compounds. Furthermore, the adsorption capacity of RBA was found to be higher than that of C. indica biomass. The optimal initial pH for the removal of phenol, 2-CP and 4-CP was determined to be 5, 7, and 7 for RBA, GAC, and algal biomass, respectively. Kinetic studies suggested that the pseudo-second order best fitted the kinetic data. PMID:24355013

  18. Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing.

    PubMed

    Mäder, Jens; Rawel, Harshadrai; Kroh, Lothar W

    2009-07-22

    The influence of a commercial production process for dehydrated potato flakes on the content of free phenolic compounds, total phenolics, and glycoalkaloids in potatoes during the subsequent processing steps was determined. Processing byproducts, such as potato peel (steam peeling), mashed potato residues, and side streams (blanching and cooking waters), have also been investigated. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify caffeic acid, gallic acid, ferulic acid, p-coumaric acid, p-hydoxybenzoic acid, protocatechuic acid, vanillic acid, catechin, and three isomers of caffeoylquinic acid: chlorogenic, neochlorogenic and cryptochlorogenic acid. Determination of the glycoalkaloids alpha-solanine and alpha-chaconine was performed by using a high-performance thin-layer chromatography (HPTLC) method. The deliverables reveal that processing potatoes to potato flakes remarkably diminishes the content of the analyzed compounds, mainly due to peeling and leaching. The influence of thermal exposure is less significant. About 43% of the initial phenolic acids and 10% of the glycoalkaloids remain after processing. The results of the total phenolic content assay by Folin-Ciocalteu reagent are proportional to the content of phenolic compounds determined by HPLC. Steam peeling has a higher influence on glycoalkaloid losses compared to that on phenolics. The highest amounts of phenolic compounds and glycoalkaloids were found in peeling byproduct. During processing, the amount of chlorogenic acid decreased, whereas the concentration of neochlorogenic acid increased due to isomerization. The impact of the results on potato processing technology is discussed. PMID:19534529

  19. Separation of phenols as neutral compounds by micellar electrokinetic capillary chromatography.

    PubMed

    Sayler, Kari; Weinberger, Robert

    2003-10-01

    Separation of phenols as neutral solutes by micellar electrokinetic capillary chromatography provides a quantitative linear dynamic range of 6000-13,000. Since the compounds are injected and separated as neutral solutes, the dispersive processes of anti-stacking and electrodispersion are eliminated. Optimized conditions allow for sub-ppm quantitation of trace impurities in the presence of the major components at various stages of the production of high purity phenols. The background electrolyte consists of 100 mM sodium dodecyl sulfate in 50 mM phosphate buffer pH 7. The method is precise, reliable, and the limits of detection are superior compared to HPLC by a factor of 20. PMID:14558623

  20. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage.

    PubMed

    Bimpilas, Andreas; Tsimogiannis, Dimitrios; Balta-Brouma, Kalliopi; Lymperopoulou, Theopisti; Oreopoulou, Vassiliki

    2015-07-01

    Changes in the principal phenolic compounds and metal content during the vinification process and storage under modified atmosphere (50% N2, 50% CO2) of Merlot and Syrah wines, from grapes cultivated in Greece, have been investigated. Comparing the variation of metals at maceration process, with the variation of monomeric anthocyanins and flavonols, an inverse relationship was noticed, that can be attributed to complexing reactions of polyphenols with particular trace elements. Cu decreased rapidly, whereas a similar behavior that could be expected for Fe and Mn was not confirmed. Differences in the profile of anthocyanins and flavonols in the fresh Merlot and Syrah wines are reported. During 1 year of storage monomeric anthocyanins declined almost tenfold, probably due to polymerization reactions and copigmentation. Also, a decrease in flavonol glycosides and increase in the respective aglycones was observed, attributed to enzymatic hydrolysis. The concentration of total phenols and all metals remained practically constant. PMID:25704697

  1. Isolation and identification of the phenolic compounds from the roots of Sanguisorba officinalis L. and their antioxidant activities.

    PubMed

    Zhang, Shuang; Liu, Xin; Zhang, Zi-Long; He, Lu; Wang, Zhe; Wang, Guang-Shu

    2012-01-01

    Four phenolic compounds were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the basis of chemical and spectroscopic methods, their structures were identified as methyl 4-O-β-D-glucopyranosy-5-hydroxy-3-methoxylbenzoate (1), 3,3′,4′-tri-O-methylellagic acid (2), fisetinidol-(4α-8)-catechin (3), and (+)-catechin (4). Compound 1 is a new phenolic glycoside and compounds 2 and 3 were isolated from the Sanguisorba genus for the first time. Compounds 1–4 were also assayed for their antioxidant activities using the DPPH free radical assay. PMID:23178307

  2. Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (persoon) Pilat].

    PubMed

    Nakajima, Yuki; Nishida, Hiroshi; Matsugo, Seiichi; Konishi, Tetsuya

    2009-06-01

    Previously, we studied the antioxidant potential of Chaga mushroom [Inonotus obliquus (persoon) Pilat] extracts and isolated several small (poly)phenolic compounds as the major antioxidant components in the 80% methanol (MeOH) extract. In the present study, these isolated phenolic ingredients together with several other types of Chaga extracts were examined for cytotoxic effects against normal (IMR90) and cancer (A549, PA-1, U937, and HL-60) cell lines. Results revealed decoctions from both the fruiting body (FB) and sclerotium (ST) parts of Chaga, especially the ST part, showed considerable cytotoxicity toward tumor cells, but the cytotoxicity appeared to be stronger against normal cells than cancer cells. The 80% MeOH ST extract also showed the same trend. On the other hand, the 80% MeOH extract of FB showed significant cytotoxicity towards tumor cell lines without affecting normal cells, for example, the 50% lethal dose was 49.4 +/- 2.9 microg/mL for PA-1 cells versus 123.6 +/- 13.8 microg/mL for normal cells. The phenolic components isolated from the 80% MeOH extracts had markedly greater cancer cell toxicity than the extracts themselves. In particular, two out of seven compounds showed strong cytotoxicity towards several tumor cell lines without giving rise to significant cell toxicity toward normal cells. For example, the 50% lethal dose for 3,4-dihydroxybenzalacetone was 12.2 micromol/L in PA-1 cells but was 272.8 micromol/L in IMR90 cells. Fluorescence-activated cell sorting analysis further revealed these phenolic ingredients have high potentiality for apoptosis induction in PA-1 cells. PMID:19627197

  3. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.

    PubMed

    Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang

    2015-01-01

    Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2. PMID:25437924

  4. In vitro cultures of Brassica oleracea L. var. costata DC: potential plant bioreactor for antioxidant phenolic compounds.

    PubMed

    Taveira, Marcos; Pereira, David M; Sousa, Carla; Ferreres, Federico; Andrade, Paula B; Martins, Anabela; Pereira, José A; Valentão, Patrícia

    2009-02-25

    In this work were studied the phenolic composition of in vitro material (shoots, calli, and roots) of Brassica oleracea var. costata and its antioxidant capacity. Samples were obtained in different culture medium, with distinct supplementations to verify their influence on those parameters. Phenolic determination was achieved by HPLC-DAD. Antioxidant activity was assessed against DPPH. In calli and roots no phenolic compound was identified. In shoots was verified the presence of 36 compounds, which included hydroxycinnamic acids, flavonoids (kaempferol and quercetin derivatives), and hydroxycinnamic acyl glycosides (with a predominance of synapoyl gentiobiosides). MS liquid medium supplemented with 2 mg/L benzylaminopurine (BAP) and 0.1 mg/L naphthaleneacetic acid (NAA) revealed to be the best in vitro condition to produce shoot material with highest phenolic compound contents and stronger antioxidant potential, thus with a possible increase of health benefits. PMID:19192972

  5. Determination of free and bound phenolic compounds in soy isoflavone concentrate using a PFP fused core column.

    PubMed

    Verardo, Vito; Riciputi, Ylenia; Garrido-Frenich, Antonia; Caboni, Maria Fiorenza

    2015-10-15

    In the last years, the consumption of soy-based foods has increased due to the health benefits related to soy bioactives like phenolic compounds. Thus, in the present study, a new chromatographic method using reverse-phase high performance liquid chromatography coupled to diode array detection (RP-HPLC/DAD) was developed using a fused core pentafluorophenyl (PFP) column. The established method allowed the determination of twenty-one free phenolic compounds and eleven bound phenolics in a soy isoflavone concentrate. The method was validated in terms of precision and recovery. Intra and inter-day precision were less than 5% (% RSD) and the recovery was between 97.4% and 103.6%. Limits of quantification (LOQs) ranged between 0.093 and 0.443 μg/mL. Because of that, PFP stationary phase can be easily applied for routine determination of phenolic compounds in soy based foods. PMID:25952864

  6. Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-12-01

    The determination of phenolic compounds in extra virgin olive oils (EVOO) by means of rapid, low-cost, environment-free methods would be a desirable achievement. A natural deep eutectic solvent (DES) based on glucose and lactic acid was considered as extraction solvent for phenolic compounds in EVOO. DESs are green solvents characterized by high availability, biodegradability, safety, and low cost. The spectrophotometric characteristics of DES extracts of 65 EVOO samples were related to the total phenolic content of the oils, assessed by methanol-water extraction coupled to the Folin-Ciocalteu assay. A regression model (ncalibration=45, nvalidation=20), including the absorbance at two wavelengths (257, 324nm), was obtained, with an adjusted R(2)=0.762. Therefore the DES could provide a promising and viable approach for a green screening method of phenolic compounds in EVOO, by means of simple spectrophotometric measurements of extracts, even for on-field analysis (for example in olive mills). PMID:27374504

  7. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

    PubMed

    Zeng, Xiaofei; Borole, Abhijeet P; Pavlostathis, Spyros G

    2015-11-17

    Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable

  8. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn

    PubMed Central

    Navarro-González, Inmaculada; González-Barrio, Rocío; García-Valverde, Verónica; Bautista-Ortín, Ana Belén; Periago, María Jesús

    2014-01-01

    Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu’s reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat—showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified. PMID:25561232

  9. Phenolic compounds from the bark of Oroxylum indicum activate the Ngn2 promoter.

    PubMed

    Fuentes, Rolly G; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-10-01

    A reporter gene assay that detects neurogenin 2 (Ngn2) promoter activity was utilized to identify compounds that induce neuronal differentiation. Ngn2 is a basic helix-loop-helix transcription factor that activates transcription of pro-neural genes. Using this assay system and an activity-guided approach, seven phenolic compounds were isolated from the methanol extract of Oroxylum indicum: 1 oroxylin A, 2 chrysin, 3 hispidulin, 4 baicalein, 5 apigenin, 6 baicalin, and 7 isoverbascoside. Compounds 1 and 2 induced an estimated 2.7-fold increase in Ngn2 promoter activity, whereas 3 increased the activity by 2.5-fold. Furthermore, 1 and 2 enhanced neuronal differentiation of C17.2 cells, which are multipotent stem cells. PMID:26014045

  10. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  11. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGESBeta

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H2 production, as well as the anode microbial community structure were investigated. The five compounds were completelymore » transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  12. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    SciTech Connect

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H2 production, as well as the anode microbial community structure were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H2 needed to

  13. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    PubMed

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions. PMID:16890975

  14. Application of solid-phase extraction for determination of phenolic compounds in barrique wines.

    PubMed

    Matejícek, D; Klejdus, B; Mikes, O; Sterbová, D; Kubán, V

    2003-09-01

    A fast, selective and sensitive chromatographic method has been developed for determination of gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, benzoic, ferulic, sinapic, cinnamic, and ellagic acids and p-hydroxybenzaldehyde, vanillin, syringaldehyde, 2-furfural, 5-methylfurfural, and 5-methoxyfurfural. The compounds from untreated wine samples were pre-concentrated and cleaned using solid-phase extraction on RP-105 polymeric sorbent. The cartridge was conditioned with methanol and water. Co-extracted ballast substances were rinsed from the sorbent with 0.1 mol L(-1) hydrochloric acid-methanol, 1:4 (v/ v). Retained phenolic compounds were selectively eluted with diethyl ether. A linear mobile phase gradient containing 0.3% acetic acid and methanol was used for final baseline chromatographic separation on a Hypersil BDS C18 column. Limits of detection (LOD=3 s(bl)) in the range 5.2 to 181.2 microg L(-1), resolution (R) better than 1.7, and repeatability of 2.7-5.1% (RSD for real samples) were achieved. The method was applied for quantification of individual phenolic compounds in barrique wines. PMID:12923605

  15. Ultrasound-assisted emulsification-microextraction for the determination of phenolic compounds in olive oils.

    PubMed

    Reboredo-Rodríguez, P; Rey-Salgueiro, L; Regueiro, J; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2014-05-01

    A reliable, sensitive and effective method based on ultrasound-assisted emulsification-microextraction (USAEME) coupled to HPLC-DAD has been developed to identify and quantify several target phenolic compounds from extra virgin olive oils (EVOO). This approach is based on the emulsification of a microvolume of polar organic extractant in a non-polar liquid sample by ultrasound radiation and further separation of both liquid phases by centrifugation. The percentage of methanol/water (v/v) in the extractant, the volume of extractant, and the extraction time as three effective parameters on the extraction were optimised by a central composite design (Box-Behnken response surface) method. The optimised method presented recoveries in EVOO between 91% and 115% for the target analytes (except vanillin with 65%) and a satisfactory precision with relative standard deviations (RSD%) lower than 8.4% for repeatability and reproducibility. The method showed good linearity and limits of detection and quantification were in the range 0.001-0.14 and 0.004-0.47mg/kg, respectively. After method validation, it was successfully applied to the analysis of three EVOO samples. All target compounds were detected in all analysed samples. Tyrosol and hydroxytyrosol were the major phenolic compounds, followed by pinoresinol and luteolin. PMID:24360429

  16. Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour.

    PubMed

    Oliveira, Kênia Grasielle de; Queiroz, Valéria Aparecida Vieira; Carlos, Lanamar de Almeida; Cardoso, Leandro de Morais; Pinheiro-Sant'Ana, Helena Maria; Anunciação, Pamella Cristine; Menezes, Cícero Beserra de; Silva, Ernani Clarete da; Barros, Frederico

    2017-02-01

    This study evaluated the effect of storage temperature (4, 25 and 40°C) and time on the color and contents of 3-deoxyanthocyanins, total anthocyanins, total phenols and tannins of sorghum stored for 180days. Two genotypes SC319 (grain and flour) and TX430 (bran and flour) were analyzed. The SC319 flour showed luteolinidin and apigeninidin contents higher than the grain and the TX430 bran had the levels of all compounds higher than the flour. The storage temperature did not affect most of the analyzed variables. The content of most of the compounds reduced during the first 60days when they became stable. At day 180, the retention of the compounds in the genotypes SC319 and TX430 ranged from 56.1-77.9% and 67.3-80.1% (3-deoxyanthocyanins), 88.4-93.8% and 84.6-96.8% (total anthocyanins) and 86.7-86.8 and 89.4-100% (phenols) respectively. The retention of tannins ranged from 56.6 to 85.3%. The color of samples remained stable for 120days. PMID:27596435

  17. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    PubMed

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L. PMID:25416476

  18. Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves.

    PubMed

    Mohanty, Bijayalaxmi; Lakshmanan, Meiyappan; Lim, Sun-Hyung; Kim, Jae Kwang; Ha, Sun-Hwa; Lee, Dong-Yup

    2016-06-01

    Carotenoids and phenolic compounds are important subgroups of secondary metabolites having an array of functional roles in the growth and development of plants. They are also major sources for health and pharmaceutical benefits, and industrially relevant biochemicals. The control of the biosynthesis of these compounds depends mainly on the quality and quantity of different light sources. Thus, to unravel their light-specific transcriptional regulation in rice leaves, we performed promoter analysis of genes upregulated in response to blue and red lights. The analysis results suggested a crosstalk between different phytohormones and the involvement of key transcription factors such as bHLH, bZIP, MYB, WRKY, ZnF and ERF [jasmonic acid inducible], in the regulation of higher accumulation of carotenoids and phenolic compounds upon blue light. Overall, the current analysis could improve our understanding of the light-specific regulatory mechanism involved in the biosynthesis of secondary metabolites via possible critical links between different TFs in rice leaves. PMID:27172458

  19. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV

    PubMed Central

    Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M.

    2014-01-01

    Chamomile (Matricaria chamomilla L.) is a widely used medicinal plant possessing several pharmacological effects due to presence of active compounds. This study describes a method of using ultra performance liquid chromatography (UPLC) coupled with photodiode array (PDA) detector for the separation of phenolic compounds in M. chamomilla and its crude extracts. Separation was conducted on C18 column (150 mm × 2 mm, 1.8 μm) using a gradient elution with a mobile phase consisting of acetonitrile and 4% aqueous acetic acid at 25°C. The method proposed was validated for determination of free and total apigenin and apigenin 7-glucoside contents as bioactive compounds in the extracts by testing sensitivity, linearity, precision and recovery. In general, UPLC produced significant improvements in method sensitivity, speed and resolution. Extraction was performed with methanol, 70% aqueous ethanol and water solvents. Total phenolic and total flavonoid contents ranged from 1.77 to 50.75 gram (g) of gallic acid equivalent (GAE)/100 g and 0.82 to 36.75 g quercetin equivalent (QE)/100 g in dry material, respectively. There was a considerable difference from 40 to 740 mg/100 g for apigenin and 210 to 1110 mg/100 g for apigenin 7-glucoside in dry material. PMID:25598797

  20. Microbial trench-based optofluidic system for reagentless determination of phenolic compounds.

    PubMed

    Sanahuja, David; Giménez-Gómez, Pablo; Vigués, Núria; Ackermann, Tobias Nils; Guerrero-Navarro, Alfons Eduard; Pujol-Vila, Ferran; Sacristán, Jordi; Santamaria, Nidia; Sánchez-Contreras, María; Díaz-González, María; Mas, Jordi; Muñoz-Berbel, Xavier

    2015-04-01

    Phenolic compounds are one of the main contaminants of soil and water due to their toxicity and persistence in the natural environment. Their presence is commonly determined with bulky and expensive instrumentation (e.g. chromatography systems), requiring sample collection and transport to the laboratory. Sample transport delays data acquisition, postponing potential actions to prevent environmental catastrophes. This article presents a portable, miniaturized, robust and low-cost microbial trench-based optofluidic system for reagentless determination of phenols in water. The optofluidic system is composed of a poly(methyl methacrylate) structure, incorporating polymeric optical elements and miniaturized discrete auxiliary components for optical transduction. An electronic circuit, adapted from a lock-in amplifier, is used for system control and interfering ambient light subtraction. In the trench, genetically modified bacteria are stably entrapped in an alginate hydrogel for quantitative determination of model phenol catechol. Alginate is also acting as a diffusion barrier for compounds present in the sample. Additionally, the superior refractive index of the gel (compared to water) confines the light in the lower level of the chip. Hence, the optical readout of the device is only altered by changes in the trench. Catechol molecules (colorless) in the sample diffuse through the alginate matrix and reach bacteria, which degrade them to a colored compound. The absorbance increase at 450 nm reports the presence of catechol simply, quickly (~10 min) and quantitatively without addition of chemical reagents. This miniaturized, portable and robust optofluidic system opens the possibility for quick and reliable determination of environmental contamination in situ, thus mitigating the effects of accidental spills. PMID:25669844

  1. The role of gamma irradiation on the extraction of phenolic compounds in onion (Allium cepa L.)

    NASA Astrophysics Data System (ADS)

    Yang, Eun In; Lee, Eun Mi; Kim, Young Soo; Chung, Byung Yeoup

    2012-08-01

    The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4'-glucoside (Q4'G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4'G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1-256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.

  2. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    PubMed

    Carbone, Katya; Fiordiponti, Luciano

    2016-01-01

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines. PMID:27455227

  3. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.

    PubMed

    Mosele, Juana I; Macià, Alba; Motilva, Maria-José

    2015-01-01

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health. PMID:26393570

  4. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    PubMed Central

    Stefani, Massimo; Rigacci, Stefania

    2013-01-01

    Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols. PMID:23765219

  5. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents.

    PubMed

    Lou, Shyi-Neng; Lai, Yi-Chun; Hsu, Ya-Siou; Ho, Chi-Tang

    2016-04-15

    The total phenolic and flavonoid content of extracts from peel of kumquat were higher than those from pulp, and those extracted from immature kumquat were higher than those from mature kumquat. The highest levels of phenolic and flavonoid content were obtained in hot water extracts. The flavonoids of kumquat extracted from hot water were mainly soluble conjugated compounds, including C-glycosides, such as 3',5'-di-C-β-glucopyranosylphloretin (DGPP), acacetin 8-C-neohesperidoside (margaritene), acacetin 6-C-neohesperidoside (isomargaritene), apigenin 8-C-neohesperidoside, and O-glycosides, such as acacetin 7-O-neohesperidoside (fortunellin), isosakuranetin 7-O-neohesperidoside (poncirin) and apigenin 7-O-neohesperidoside (rhoifolin). A positive relationship existed between total phenolic content and DPPH scavenging potency (p<0.001). Total flavonoid content showed a similar correlation (p<0.001) to DPPH scavenging potency. The effective flavonoids contributing to antioxidant activity were DGPP and apigenin 8-C-neohesperidoside, which could be extracted in high amounts, by hot water at 90°C, from immature kumquat peel. PMID:26616917

  6. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  7. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol.

    PubMed

    Nazari, Maryam; Kashanian, Soheila; Rafipour, Ronak

    2015-06-15

    Biosensors based on the coupling of a biological entity with a suitable transducer offer an effective route to detect phenolic compounds. Phenol and phenolic compounds are among the most toxic environmental pollutants. Laccases are multi-copper oxidases that can oxide phenol and phenolic compounds. A method is described for construction of an electrochemical biosensor to detect phenolic compounds based on covalent immobilization of laccase (Lac) onto polyaniline (PANI) electrodeposited onto a glassy carbon (GC) electrode via glutaraldehyde coupling. The modified electrode was characterized by voltammetry, Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) techniques. The results indicated that laccase was immobilized onto modified GC electrode by the covalent interaction between laccase and terminal functional groups of the glutaraldehyde. The laccase immobilized modified electrode showed a direct electron transfer reaction between laccase and the electrode. Linear range, sensitivity, and detection limit for this biosensor were 3.2 × 10(-6) to 19.6 × 10(-6)M, 706.7 mAL mol(-1), 2.07 × 10(-6)M, respectively. PMID:25770936

  8. Analysis of phenolic compounds in commercial dried grape pomace by high-performance liquid chromatography electrospray ionization mass spectrometry

    PubMed Central

    Ramirez-Lopez, Lina M; DeWitt, Christina A M

    2014-01-01

    By-products obtained from winemaking processes still contain large amounts of phenolic compounds, especially phenolic acids, flavanols, flavonols, stilbenes, and flavonoids. Enzymatic hydrolysis was used for determination and characterization of phenolic acids, flavanols, flavonols, and stilbenes. Characterization of the flavonoids was achieved using acid hydrolysis with 0.1% hydrochloric acid. In addition, organic solvents as 50% methanol, 70% methanol, 50% acetone, 0.01% pectinase, and 100% petroleum ether were also evaluated. Reversed phase high-performance liquid chromatography (RP-HPLC) with diode array detector was used to identify phenolic compounds. Internal standard quantification was implemented using a five points of the UV-visible absorption data collected at the wavelength of maximum absorbance. A total of 16 phenolic compounds were determined. The content differed from 1.19 to 1124 mg kg−1. Outcomes from HPLC study showed that gallic acid, (+) catechin hydrate, and (−) epicatechin gallate were the major phenolic compounds presented in the sample. Malvidin and pelargonidin 3-O-glucoside were the major anthocyanins monoglucosides. PMID:25473505

  9. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    PubMed Central

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  10. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol

    NASA Astrophysics Data System (ADS)

    Nazari, Maryam; Kashanian, Soheila; Rafipour, Ronak

    2015-06-01

    Biosensors based on the coupling of a biological entity with a suitable transducer offer an effective route to detect phenolic compounds. Phenol and phenolic compounds are among the most toxic environmental pollutants. Laccases are multi-copper oxidases that can oxide phenol and phenolic compounds. A method is described for construction of an electrochemical biosensor to detect phenolic compounds based on covalent immobilization of laccase (Lac) onto polyaniline (PANI) electrodeposited onto a glassy carbon (GC) electrode via glutaraldehyde coupling. The modified electrode was characterized by voltammetry, Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) techniques. The results indicated that laccase was immobilized onto modified GC electrode by the covalent interaction between laccase and terminal functional groups of the glutaraldehyde. The laccase immobilized modified electrode showed a direct electron transfer reaction between laccase and the electrode. Linear range, sensitivity, and detection limit for this biosensor were 3.2 × 10-6 to 19.6 × 10-6 M, 706.7 mA L mol-1, 2.07 × 10-6 M, respectively.

  11. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation.

    PubMed

    Agcam, E; Akyıldız, A; Akdemir Evrendilek, G

    2014-01-15

    Processing of orange juice by pulsed electric fields (PEF) and thermal pasteurisation was carried out to compare changes in total phenolic concentration, hydroxybenzoic acid, hydroxycinnamic acids, flavonols, flavones and flavonones before and after being stored at 4°C for 180days. Changes in the initial total phenolic concentration of the samples varied depending on the applied electric field intensity and thermal pasteurisation. Hesperidin and chlorogenic acids were detected as the most abounded flavonoid and phenolic acids in the orange juice, respectively. Except for syringic acid and neoeriocitrin, the concentration of the phenolic compounds indentified in the orange juice samples enhanced after the PEF or thermal pasteurisation. The samples treated with PEF had more stable flavonoids and phenolic acids than those treated with the thermal pasteurisation. The PEF-treated samples had higher sensory scores than the heat-treated samples. PMID:24054251

  12. Two-dimensional liquid chromatography (LC) of phenolic compounds from the shoots of Rubus idaeus 'Glen Ample' cultivar variety.

    PubMed

    Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława

    2016-03-20

    In this study the application of two-dimensional LC (2D LC) for qualitative analysis of polyphenols and simple phenols in the shoots of Rubus idaeus 'Glen Ample' variety is presented. In the preliminary analysis, the methanol extract of the shoots was analyzed by one-dimensional LC. One-dimensional LC separation profiles of phenolics from R. idaeus 'Glen Ample' shoots were dependent on column type, mobile phase composition and gradient program used. Two-dimensional LC system was built from connecting an octadecyl C-18 silica column in the first dimension and pentafluorophenyl column in the second dimension, coupled with DAD and MS (ESI, APCI, DUIS ionization) detectors. A total of 34 phenolic compounds belonging to the groups of phenolic acids, ellagitannins, flavan-3-ols, flavonols and ellagic acid conjugates were identified in the shoots of R. idaeus 'Glen Ample'. The established 2D LC method offers an effective tool for analysis of phenolics present in Rubus species. PMID:26799975

  13. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms

    PubMed Central

    Los, Renata; Malm, Anna

    2015-01-01

    Background Among many sources of natural bioactive substances, mushrooms constitute a huge and almost unexplored group. Fungal compounds have been repeatedly reported to exert biological effects which have prompted their use in pharmaceutical and cosmetic industry. Therefore, the aim of this study was analysis of chemical composition and biological activity of 31 wild growing mushroom species (including saprophytic and parasitic) from Poland. Methods Qualitative and quantitative LC-ESI-MS/MS analysis of fourteen phenolic acids in the mushrooms analysed was performed. Moreover, total phenolic content was determined by the modified Folin-Ciocalteau method. Antioxidative activity of ethanolic extracts towards DPPH• free radical was examined. Antibacterial activity against Gram-positive (S. epidermidis, S. aureus, B. subtilis, M. luteus) and Gram-negative (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis) microbial strains was analyzed. Results As a result, the first such broad report on polyphenolic composition, antiradical and antimicrobial potential of wild growing Polish mushrooms was developed. Mushroom extracts were found to contain both benzoic (protocatechuic, 4-OH-benzoic, vanillic, syringic) and cinnamic acid derivatives (caffeic, p-coumaric, ferulic). Total phenolic content in mushrooms ranged between 2.79 and 53.13 mg gallic acid equivalent /g of dried extract in Trichaptum fuscoviolaceum and Fomes fomentarius, respectively. Fungi showed much differentiated antiradical activity, from highly active F. fomentarius to poorly effective Russula fragilis (IC50 1.39 to 120.54 mg per mg DPPH•, respectively). A quite considerable relationship between phenolic content and antiradical activity has been demonstrated. Mushrooms varied widely in antimicrobial potential (MIC from 0.156 to 5 mg/ml). Generally, a slightly higher activity against Gram-positive than Gram-negative strains was observed. This is the first study concerning the chemical composition and

  14. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.

    PubMed

    Pereira, Carla; Barros, Lillian; José Alves, Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-07-13

    Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity. PMID:27273551

  15. Gypsy moth caterpillar feeding has only a marginal impact on phenolic compounds in old-growth black poplar.

    PubMed

    Boeckler, G Andreas; Gershenzon, Jonathan; Unsicker, Sybille B

    2013-10-01

    Species of the Salicaceae produce phenolic compounds that may function as anti-herbivore defenses. Levels of these compounds have been reported to increase upon herbivory, but only rarely have these changes in phenolics been studied under natural conditions. We profiled the phenolics of old-growth black poplar (Populus nigra L.) and studied the response to gypsy moth (Lymantria dispar L.) herbivory in two separate field experiments. In a first experiment, foliar phenolics of 20 trees were monitored over 4 weeks after caterpillar infestation, and in a second experiment the bark and foliar phenolics of a single tree were measured over a week. Of the major groups of phenolics, salicinoids (phenolic glycosides) showed no short term response to caterpillar feeding, but after 4 weeks they declined up to 40 % in herbivore damaged and adjacent undamaged leaves on the same branch when compared to leaves of control branches. Flavonol glycosides, low molecular weight flavan-3-ols, and condensed tannins were not affected by herbivory in the first experiment. However, in the single-tree experiment, foliar condensed tannins increased by 10-20 % after herbivory, and low molecular weight flavan-3-ols decreased by 10 % in the leaves but increased by 10 % in the bark. Despite 15 % experimental leaf area loss followed by a 5-fold increase in foliar jasmonate defense hormones, we found no evidence for substantial induction of phenolic defense compounds in old growth black poplar trees growing in a native stand. Thus, if phenolics in these trees function as defenses against herbivory, our results suggest that they act mainly as constitutive defenses. PMID:24154955

  16. Altered transport and metabolism of phenolic compounds in obesity and diabetes: implications for functional food development and assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in application of phenolic compounds from diet or supplements for prevention of chronic diseases has grown significantly, but efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. While food and dietary factors have been the foc...

  17. Comparison of the evolution of low molecular weight phenolic compounds in typical Sherry wines: Fino, Amontillado, and Oloroso.

    PubMed

    García Moreno, M Valme; Barroso, Carmelo García

    2002-12-18

    Changes in the content of low molecular weight phenolic compounds (hydroxybenzoic and hydroxycinnamic acids, aldehydes, and their esterified derivatives, tyrosol and 5-(hydroxymethyl)-2-furaldehyde) during the aging of three different classes of Sherry wine, Fino, Oloroso, and Amontillado, have been studied. The samples studied were taken from each of the scales of the particular aging system applied to the three classes of wine. Clear differences were observed in the behavior of the low molecular weight phenolic in the three classes of wine. The wines subjected to oxidative aging presented a higher phenolic content overall, with the exception of the esterified derivatives of phenolic compounds that are mainly found in the samples that have not undergone any process of oxidation. MANOVA results confirmed that there are significant differences between all of the samples of the three types of wines. Using LDA, a classification of 100% of the samples has been made. PMID:12475270

  18. Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder.

    PubMed

    García-Salas, Patricia; Gómez-Caravaca, Ana María; Arráez-Román, David; Segura-Carretero, Antonio; Guerra-Hernández, Eduardo; García-Villanova, Belén; Fernández-Gutiérrez, Alberto

    2013-11-15

    The healthy properties of citrus fruits have been attributed to ascorbic acid and phenolic compounds, mainly to flavonoids. Flavonoids are important phytonutrients because they have a wide range of biological effects that provide health-related properties. In this context, this study seeks to characterise the phenolic compounds in lemon and their stability in different drying processes (freeze-drying and vacuum-drying) and storage conditions (-18 and 50°C for 1 and 3months). A powerful high-performance liquid chromatography coupled to DAD and electrospray-ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) method has been applied for the separation, identification, and quantification of 19 phenolic compounds and 4 organic acids. To our knowledge, two hydroxycinnamic acids have been identified for the first time in lemon. Folin-Ciocalteu was applied to determine total phenolic compounds and TEAC, FRAP, and ORAC were applied to determine the antioxidant capacity of lemon. Total phenolic content significantly differed in the samples analysed, vacuum-dried lemon showing the highest phenolic content, followed by freeze-dried lemon and, finally, vacuum-dried lemon stored at 50°C for 1 and 3months. The content in furanic compounds was determined to evaluate the heat damage in lemon and it was showed an increase with the thermal treatment because of the triggering of Maillard reaction. As exception of ORAC, antioxidant-capacity assays were not correlated to phenolic content by HPLC due to the formation of antioxidant compounds during Maillard reaction. PMID:23790861

  19. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal.

    PubMed

    Wang, Lifeng; Chen, Chao; Su, Anxiang; Zhang, Yiyi; Yuan, Jian; Ju, Xingrong

    2016-04-01

    The current study aims to investigate the antioxidant activities of various extracts from defatted adlay seed meal (DASM) based on the oxygen radical absorbance capacity (ORAC) assay, peroxyl radical scavenging capacity (PSC) assay and cellular antioxidant activity (CAA) assay. Of all the fractions, the n-butanol fraction exhibited the highest antioxidant activity, followed by crude acetone extract and aqueous fractions. Of the three sub-fractions obtained by Sephadex LH-20 chromatography, sub-fraction 3 possessed the highest antioxidant activity and total phenolic content. There was a strong positive correlation between the total phenolic content and the antioxidant activity. Based on HPLC-DAD-ESI-MS/MS analysis, the most abundant phenolic acid in sub-fraction 3 of DASM was ferulic acid at 67.28 mg/g, whereas the predominant flavonoid was rutin at 41.11 mg/g. Of the major individual compounds in sub-fraction 3, p-coumaric acid exhibited the highest ORAC values, and quercetin exhibited the highest PSC values and CAA values. PMID:26593521

  20. A fast and innovative microextraction technique, μSPEed, followed by ultrahigh performance liquid chromatography for the analysis of phenolic compounds in teas.

    PubMed

    Porto-Figueira, Priscilla; Figueira, José A; Pereira, Jorge A M; Câmara, José S

    2015-12-11

    The objective of this study was to evaluate the efficiency of a promising solid phase microextraction technique, μSPEed, in the analysis of selected phenolic compounds from teas by ultrahigh performance liquid chromatography with photodiode array detection (μSPEed/UHPLC-PDA). The innovative μSPEed configuration uses 3-μm sorbent particles tightly packed in a disposable needle equipped with a pressure-driven valve to withdraw samples in a single direction. The system was operated by the electronic pipette eVol® and different parameters influencing the extraction efficiency, as the nature of sorbent, pH, loading and elution conditions, and solvents were optimized. The best extracting conditions were obtained by loading twice 100μL of tea samples through the PS/DVB-RP sorbent and eluting with 50μL of acidified MeOH 95%. The following chromatographic separation was carried out in an Acquity C18 BEH capillary column using a gradient of 0.1% FA and acetonitrile. The optimized μSPEed/UHPLC-PDA methodology is selective and specific and was properly validated for 8 phenolic compounds widely reported in different teas. Overall, an excellent analytical performance was obtained in the 0.2-20μg/L linear dynamic range (LDR), with very low limits of detection (LODs) and quantification (LOQs), ranging between 3.5-16.8ng/mL and 10.6-50.6ng/mL, respectively, high recoveries (89.3-103.3%), good precision (RSD<5%) and negligible matrix effect. The methodology was used to assess the target polyphenols concentration in several tea samples. Rutin and quercetin-3-glucoside were the most abundant phenolics in all tea samples analysed and, with exception of naringenin and cinnamic acid, which are present in high amounts in the investigated citric teas, remain phenolic compounds are present in trace levels. PMID:26585207

  1. Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ma, Yuanyuan; Kosińska-Cagnazzo, Agnieszka; Kerr, William L; Amarowicz, Ryszard; Swanson, Ruthann B; Pegg, Ronald B

    2014-08-22

    A large variety of phenolic compounds, including phenolic acids (hydroxybenzoic acids, hydroxycinnamic acids, and their esters), stilbenes (trans-resveratrol and trans-piceatannol), flavan-3-ols (e.g., (-)-epicatechin, (+)-catechin, and their polymers {the proanthocyanidins, PACs}), other flavonoids (e.g., isoflavones, flavanols, and flavones, etc.) and biflavonoids (e.g., morelloflavone), were identified in dry-blanched peanut skins (PS) by this study. High-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS(n)) was applied to separate and identify the phenolic constituents. Reversed-phase HPLC was employed to separate free phenolic compounds as well as PAC monomers, dimers, and trimers. PACs with a degree of polymerization (DP) of >4 were chromatographed via hydrophilic interaction liquid chromatography (HILIC). Tentative identification of the separated phenolics was based solely on molecular ions and MS(n) fragmentation patterns acquired by ESI-MS in the negative-ion mode. The connection sequence of PAC oligomers (DP <5) could be deduced mainly through characteristic quinone methide (QM) cleavage ions. When the DP reached 6, only a proportion of the flavan-3-ols could be ascertained in the PACs because of the extremely complicated fragmentation patterns involved. The identification of free phenolic acids, stilbenes, and flavonoids was achieved by authentic commercial standards and also by published literature data. Quantification was performed based on peak areas of the UV (free phenolic compounds) or fluorescence (PACs) signals from the HPLC chromatograms and calibration curves of commercial standards. Overall, PS contain significantly more PACs compared to free phenolic compounds. PMID:25016324

  2. Optimization of antioxidant phenolic compounds extraction from quinoa (Chenopodium quinoa) seeds.

    PubMed

    Carciochi, Ramiro Ariel; Manrique, Guillermo Daniel; Dimitrov, Krasimir

    2015-07-01

    The objective of this study was to optimize the extraction conditions of phenolic and flavonoids compounds from quinoa (Chenopodium quinoa) seeds using ultrasound assistance technology. A randomized central composite face-centered design was used to evaluate the effect of extraction temperature, ethanol concentration in the solvent, and ultrasound power on the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity by response surface analysis. Predicted model equations were obtained to describe the experimental data regarding TPC, TFC and antioxidant activity, with significant variation in the linear, quadratic, and interaction effects of the independent variables. Regression analysis showed that more than 88 % of the variability was explained by the models. The best extraction conditions obtained by simultaneous maximization of the responses were: extraction temperature of 60 °C, 80 % ethanol as solvent and non-application of ultrasounds. Under the optimal conditions, the corresponding predicted response values were 103.6 mg GAE/100 g dry weight (dw), 25.0 mg quercetin equiv./100 g dw and 28.6 % DPPH radical scavenging, for TPC, TFC and antioxidant activity, respectively. The experimental values agreed with those predicted within a 95 % confidence level, indicating the suitability of the employed model. HPLC analysis of the obtained extracts confirmed the highest phenolic compound yield in the extract obtained under optimal extraction conditions. Considering the characteristics of the antioxidant-rich extracts obtained, they could be consider for potential application in the food industry, as nutraceutical and functional foods ingredient or well as replacement of synthetic antioxidants. PMID:26139905

  3. Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances.

    PubMed

    Falleh, Hanen; Jalleli, Inès; Ksouri, Riadh; Boulaaba, Mondher; Guyot, Sylvain; Magné, Christian; Abdelly, Chedly

    2012-03-01

    Mesembryanthemum edule L. is an edible and medicinal halophyte widespread in Tunisia seashore. In this study, parameters of oxidative stress, phenolic compounds and antioxidant activities were comparatively investigated in two M. edule provenances (Jerba and Bizerte, respectively sampled from arid and humid bioclimatic stages). Plants were subjected to 0, 300 and 600mM NaCl treatment under glasshouse conditions. Results showed that M. edule response to salinity depends on provenance (P), salt treatment (T) and their interaction (P×T). (T) affected more significantly the oxidative stress parameters and antioxidant activities than (P) and (P×T). Conversely, (P) was much affluent for tannin polymerization degree and interaction between the two factors (P×T) was more determinants for analyzed antioxidant parameters. The higher salt tolerance of Jerba plants was associated with low levels of malondialdehyde and of electrolyte leakage mainly at 600mM NaCl. Besides, antioxidant activities of Jerba provenance, were more efficient than Bizerte. In addition, avicularin was the major phenolic in both provenances. This compound concentration increased with salinity in Jerba shoots, while it was reduced in Bizerte especially at 600mM NaCl. Overall, the higher salt tolerance of plants from Jerba provenance, and to a lower extent of those from Bizerte, may be partly related to their better capacity to limit oxidative damage when salt-challenged, and this is likely the result of redistribution in phenolic composition. Besides, abiotic factors such as salinity could be determinant in antioxidant potentiality of this medicinal plant. PMID:22305062

  4. Study of the steam distillation of phenolic compounds using ultraviolet spectrometry

    SciTech Connect

    Norwitz, G.; Nataro, N.; Keliher, P.N.

    1986-03-01

    The steam distillation of 42 phenolic compounds was studied by use of a semimicro steam distillation apparatus and ultraviolet spectrometry. In the distillation, the following gave recoveries greater than 95%: phenol, 2-nitrophenol, 2-methoxyphenol, 2-bromophenol, 2-chlorophenol, 2,3- and 2,4-dichlorophenol, 2,4,5- and 2,4,6-trichlorophenol, 2,4-dibromophenol, 2-, 3-, and 4-methylphenol, 4-chloro-2-methylphenol, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-dimethylphenol, 4-tert-butylphenol, 4-tert-amylpheno,, thymol, and carvacrol. The percent recovery for the other phenolic compounds was as follows: 3-nitrophenol, 3.7%; 4-nitrophenol, 1.8; 3-methoxyphenol, 31.1; 4-methoxyphenol, 23.2; 3-bromophenol, 79.6; 4-bromophenol, 67.8; 3-chlorophenol, 93.5; 4-chlorophenol, 91.6; 3,4-dichlorophenol, 64.1; 2,4-dinitrophenol, 21.2; 2,4,6-trinitrophenol, 0.0; 2-aminophenol, 0.1; 3-aminophenol, 0.2; 4-aminophenol, 0.1; pyrocatechol, 1.6; resorcinol, 04.; hydroquinone, 0.0; pyrogallol, 0.7; and phloroglucinol, 0.1. By the examination of the spectra of the undistilled, distilled, and residual solutions, it is concluded that the aminophenols undergo some decomposition and the hydroquinone is almost completely destroyed during the distillation. The important role that hydrogen bonding (intermolecular and intramolecular) plays in the recovery in the steam distillation is examined. 9 references, 2 tables.

  5. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota.

    PubMed

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, M A; Sabater-Jara, Ana Belén

    2016-09-01

    In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway. PMID:27457992

  6. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography.

    PubMed

    Shui, Guanghou; Leong, Lai Peng

    2002-11-15

    A high-performance liquid chromatographic (HPLC) separation method with photo-diode array detection has been developed for the simultaneous determination of organic acids and phenolic compounds in juices and drinks. The chromatographic analysis of organic acids and phenolic compounds was carried out after their elution with sulphuric acid solution (pH 2.5) and methanol from C18 stationary phase. The mobile phase employed was sulphuric acid solution working at a flow-rate of 0.35 ml min(-1) for the whole run, while methanol was linearly increased to 0.45 ml min(-1) from 15 to 75 min followed by a 5-min isocratic elution. Ten organic acid acids were eluted in 30 min and 21 phenolic compounds, which include phenolic acids and flavonoids, were eluted in the following 50 min. Target compounds were detected at 215 nm. The repeatability (n=3) and between day precision of peak area (n=3) were all within 5.0% RSD. The within-day repeatability (n=3) and between-day precision (n=10) of retention times were within 0.3 and 1.6% relative standard deviation (RSD), respectively. The accuracy of the method was confirmed with an average recovery ranging between 85 and 106%. The method was successfully used to measure a variety of organic acids and phenolic compounds in juices and beverages. This method could also be used to evaluate the authenticity, spoilage or micronutrient contents of juices. PMID:12456098

  7. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls. PMID:26471665

  8. Determination of available phenolic compounds in soils by liquid chromatography with solid-phase extraction.

    PubMed

    Matejícek, David; Klejdus, Borivoj; Kubán, Vlastimil

    2002-01-01

    A fast, selective, and sensitive liquid chromatographic (LC) method was developed for determination of derivatives of benzoic and cinnamic acids (gallic, protocatechuic, 2,3,4-trihydroxybenzoic, 4-hydroxybenzoic, vanillic, caffeic, syringic, 4-coumaric, ferulic, sinapic, benzoic, 2-coumaric, cinnamic acids, and 4-hydroxybenzaldehyde and vanillin) in soil samples. The method for sample pretreatment is based on temperature-controlled extraction with water (pH 5.6) for 60 min. Extracts were preconcentrated and purified by solid-phase extraction on OASIS HLB sorbent, with subsequent separation and quantification of individual substances by LC with UV diode-array detection. Limits of detection (3 signal-to-noise LODs) better than 65 ng/g (dry weight) and recoveries from 88 to 99% were found for each compound at absorbance 280 nm. The method was used for determination of bioavailable phenolic compounds in different soil samples. PMID:12477182

  9. Influence of TiO2 Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms

    PubMed Central

    Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia

    2014-01-01

    The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB−1 for H. pluvialis and A. platensis, respectively. PMID:25610914

  10. Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms.

    PubMed

    Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia

    2014-01-01

    The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB (-1) for H. pluvialis and A. platensis, respectively. PMID:25610914

  11. 3,4-Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives.

    PubMed

    Rodríguez, Guillermo; Lama, Antonio; Jaramillo, Sara; Fuentes-Alventosa, José María; Guillén, Rafael; Jiménez-Araujo, Ana; Rodríguez-Arcos, Rocío; Fernández-Bolaños, Juan

    2009-07-22

    The presence of 3,4-dihydroxyphenylglycol (DHPG) was studied in 32 samples and 10 different cultivars of natural table olives, using an accurate method to avoid wrong quantification. Hydroxytyrosol (HT), tyrosol, and verbascoside were also quantified, as these four compounds comprise the majority of the chromatographic profile. Analyses were carried out by HPLC-DAD-UV after extraction of all phenolics, and hydroxytyrosol was the major component in nearly all samples. High levels of DHPG (up to 368 mg/kg of dry weight) were found in the pulp of natural black olives independent of cultivar and processing method, similar to its concentration in the brine in almost all of the samples. The presented data for this antioxidant indicate that natural table olives are a rich source of DHPG and hydroxytyrosol, compounds with interesting nutritional and antioxidant properties. PMID:19545148

  12. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview.

    PubMed

    Castro-Muñoz, Roberto; Yáñez-Fernández, Jorge; Fíla, Vlastimil

    2016-12-15

    Typically, the various agro-food by-products of the food industry are treated by standard membrane processes, such as microfiltration, ultrafiltration and nanofiltration, in order to prepare them for final disposal. Recently, however, new membrane technologies have been developed. The recovery, separation and fractionation of high-added-value compounds, such as phenolic compounds from food processing waste, are major current research challenges. The goal of this paper is to provide a critical review of the main agro-food by-products treated by membrane technologies for the recovery of nutraceuticals. State-of-the-art of developments in the field are described. Particular attention is paid to experimental results reported for the recovery of polyphenols and their derivatives of different molecular weight. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other interesting phenomena that occur during their recovery. PMID:27451244

  13. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity

    PubMed Central

    Tan, Sing Pei; Stathopoulos, Costas; Parks, Sophie; Roach, Paul

    2014-01-01

    Bitter melon (Momordica charantia L.) is a tropical fruit claimed to have medicinal properties associated with its content of phenolic compounds (TPC). The aim of the study was to compare water with several organic solvents (acetone, butanol, methanol and 80% ethanol) for its efficiency at extracting the TPC from freeze-dried bitter melon powder. The TPC of the extracts was measured using the Folin-Ciocalteu reagent and their antioxidant capacity (AC) was evaluated using three assays. Before optimisation, the TPC and AC of the aqueous extract were 63% and 20% lower, respectively, than for the best organic solvent, 80% ethanol. However, after optimising for temperature (80 °C), time (5 min), water-to-powder ratio (40:1 mL/g), particle size (1 mm) and the number of extractions of the same sample (1×), the TPC and the AC of the aqueous extract were equal or higher than for 80% ethanol. Furthermore, less solvent (40 mL water/g) and less time (5 min) were needed than was used for the 80% ethanol extract (100 mL/g for 1 h). Therefore, this study provides evidence to recommend the use of water as the solvent of choice for the extraction of the phenolic compounds and their associated antioxidant activities from bitter melon. PMID:26785242

  14. Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis.

    PubMed

    Desentis-Mendoza, Rosa Martha; Hernandez-Sanchez, Humberto; Moreno, Abel; Rojas del c, Emilio; Chel-Guerrero, Luis; Tamariz, Joaquín; Jaramillo-Flores, María Eugenia

    2006-06-01

    Flavonoids are a big group of polyphenols of low molecular weight with in vitro antioxidant properties. In this study, the laccase and tyrosinase from Ustilago maydis were partially characterized and their effect on the antioxidant activity of some phenolic compounds was investigated. Since enzymatic polymerization of the phenolic compounds was detected, the size of the aggregates was determined and related to their antioxidant activity. Morphology of the polymers was analyzed by atomic force microscopy. The results showed that the laccase- and tyrosinase-catalyzed polymerization of quercetin produced aggregates with relatively low molecular weight and higher antioxidant activity than the monomeric quercetin. In the case of kaempferol, the aggregates reached higher sizes in the first 2 h of reaction and their antioxidant activity was increased. In the last case, the aggregates adopted fractal-ordered shapes similar to coral in the case of the kaempferol-laccase system and to fern in the case of the kaempferol-tyrosinase system. The kaempferol and quercetin polymers at low concentration had strong scavenging effect on Reactive oxygen species (ROS) and inhibition of lipoperoxidation in human hepatic cell line WRL-68. PMID:16768406

  15. Structural characterisation and environmental application of organoclays for the removal of phenolic compounds.

    PubMed

    Park, Yuri; Ayoko, Godwin A; Horváth, Erzsébet; Kurdi, Róbert; Kristof, Janos; Frost, Ray L

    2013-03-01

    Modified montmorillonite was prepared at different surfactant (HDTMA) loadings through ion exchange. The conformational arrangement of the loaded surfactants within the interlayer space of MMT was obtained by computational modelling. The conformational change of surfactant molecules enhance the visual understanding of the results obtained from characterization methods such as XRD and surface analysis of the organoclays. Batch experiments were carried out for the adsorption of p-chlorophenol (PCP) and different conditions (pH and temperature) were used in order to determine the optimum sorption. For comparison purpose, the experiments were repeated under the same conditions for p-nitrophenol (PNP). Langmuir and Freundlich equations were applied to the adsorption isotherm of PCP and PNP. The Freundlich isotherm model was found to be the best fit for both of the phenolic compounds. This involved multilayer adsorptions in the adsorption process. In particular, the binding affinity value of PNP was higher than that of PCP and this is attributable to their hydrophobicities. The adsorption of the phenolic compounds by organoclays intercalated with highly loaded surfactants was markedly improved possibly due to the fact that the intercalated surfactant molecules within the interlayer space contribute to the partition phases, which result in greater adsorption of the organic pollutants. PMID:23207051

  16. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds.

    PubMed

    Kachouri, Faten; Ksontini, Hamida; Kraiem, Manel; Setti, Khaoula; Mechmeche, Manel; Hamdi, Moktar

    2015-12-01

    Eight lactic acid bacteria strains isolated from traditional fermented foods were investigated for their antioxidant activity against DPPH free radicals, β-carotene bleaching assay and linoleic acid test. L. plantarum LAB 1 at a dose of 8.2 10(9) CFU/ml showed the highest DPPH scavenging activity, with inhibition rate of 57.07 ± 0.57 % and an antioxidant activity (TAA = 43.47 ± 0.663 % and AAC = 172.65 ± 5.57), which increase with cell concentrations. When L. plantarum LAB 1 was administered to oxidative enzymes, residual activities decreased significantly with cell concentrations. The use of L. plantarum LAB 1 on olives process, favours the increase of the antioxidant activity (24 %). HPLC results showed a significant increase of orthodiphenols (74 %). Viable cells of strain were implicated directly on minimum media growth with 500 mg/l of olive phenolic compounds. Results showed an increase in their antioxidant activity. CG-SM analysis, identify the presence of compounds with higher antioxidant activity as vinyl phenol and hydroxytyrosol. PMID:26604364

  17. Bioelectrochemical treatment of table olive brine processing wastewater for biogas production and phenolic compounds removal.

    PubMed

    Marone, A; Carmona-Martínez, A A; Sire, Y; Meudec, E; Steyer, J P; Bernet, N; Trably, E

    2016-09-01

    Industry of table olives is widely distributed over the Mediterranean countries and generates large volumes of processing wastewaters (TOPWs). TOPWs contain high levels of organic matter, salt, and phenolic compounds that are recalcitrant to microbial degradation. This work aims to evaluate the potential of bioelectrochemical systems to simultaneously treat real TOPWs and recover energy. The experiments were performed in potentiostatically-controlled single-chamber systems fed with real TOPW and using a moderate halophilic consortium as biocatalyst. In conventional anaerobic digestion (AD) treatment, ie. where no potential was applied, no CH4 was produced. In comparison, Bio-Electrochemical Systems (BES) showed a maximum CH4 yield of 701 ± 13 NmL CH4·LTOPW(-1) under a current density of 7.1 ± 0.4 A m(-2) and with a coulombic efficiency of 30%. Interestingly, up to 80% of the phenolic compounds found in the raw TOPW (i.e. hydroxytyrosol and tyrosol) were removed. A new theoretical degradation pathway was proposed after identification of the metabolic by-products. Consistently, microbial community analysis at the anode revealed a clear and specific enrichment in anode-respiring bacteria (ARB) from the genera Desulfuromonas and Geoalkalibacter, supporting the key role of these electroactive microorganisms. As a conclusion, bioelectrochemical systems represent a promising bioprocess alternative for the treatment and energy recovery of recalcitrant TOPWs. PMID:27208920

  18. Monitoring of phenolic compounds and surfactants in water of Ganga Canal, Haridwar (India)

    NASA Astrophysics Data System (ADS)

    Seth, Richa; Singh, Prashant; Mohan, Manindra; Singh, Rakesh; Aswal, Ravinder Singh

    2013-12-01

    The Ganga Canal emerging out from Ganga River has great ritual importance among pilgrims and tourists at Haridwar, Uttarakhand, India. The Canal is being polluted due to mass bathing, washing, disposal of sewage, industrial waste and these human activities are deteriorating its water quality. To determine the impact of these activities, Ganga Canal water quality at five sites between Haridwar and Roorkee namely Pantdweep, Har Ki Pauri, Singhdwar, Piran Kaliyar and Old Bridge, Roorkee has been analyzed for organic pollutants phenolic compounds and surfactants, which have rarely been assessed and reported so far. The results of analysis show that phenolic compounds are not present in water samples of selected five sites during bi-monthly monitoring from January 2012 to November 2012. The Har Ki Pauri, Singhdwar, Piran Kaliyar and Old Bridge, Roorkee sites have been detected with surfactant concentrations (1.18, 1.63, 3.2 and 2.5 mg/l) more than permissible limit (1.00 mg/l). Also at most of the sites, surfactants' concentration crossed the desirable limit of BIS during the period of analysis. This distribution of surfactants in water has potential risk for skin diseases and cancer and requires regular monitoring with appropriate measures.

  19. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Plyuta, Vladimir; Zaitseva, Julia; Lobakova, Elena; Zagoskina, Natalia; Kuznetsov, Alexander; Khmel, Inessa

    2013-11-01

    In the natural environment, bacteria predominantly exist in matrix-enclosed multicellular communities associated with various surfaces, referred to as biofilms. Bacteria in biofilms are extremely resistant to antibacterial agents thus causing serious problems for antimicrobial therapy. In this study, we showed that different plant phenolic compounds, at concentrations that did not or weakly suppressed bacterial growth, increased the capacity of Pseudomonas aeruginosa PAO1 to form biofilms. Biofilm formation of P. aeruginosa PAO1 was enhanced 3- to 7-fold under the action of vanillin and epicatechin, and 2- to 2.5-fold in the presence of 4-hydroxybenzoic, gallic, cinnamic, sinapic, ferulic, and chlorogenic acids. At higher concentrations, these compounds displayed an inhibiting effect. Similar experiments carried out for comparison with Agrobacterium tumefaciens C58 showed the same pattern. Vanillin, 4-hydroxybenzoic, and gallic acids at concentrations within the range of 40 to 400 μg/mL increased the production of N-3-oxo-dodecanoyl-homoserine lactone in P. aeruginosa PAO1 which suggests a possible relationship between stimulation of biofilm formation and Las Quorum Sensing system of this bacterium. Using biosensors to detect N-acyl-homoserine lactones (AHL), we demonstrated that the plant phenolics studied did not mimic AHLs. PMID:23594262

  20. Treatment of halogenated phenolic compounds by sequential tri-metal reduction and laccase-catalytic oxidation.

    PubMed

    Dai, Yunrong; Song, Yonghui; Wang, Siyu; Yuan, Yu

    2015-03-15

    Halogenated phenolic compounds (HPCs) are exerting negative effects on human beings and ecological health. Zero-valence metal reduction can dehalogenate HPCs rapidly but cannot mineralize them. Enzymatic catalysis can oxidize phenolic compounds but fails to dehalogenate efficiently, and sometimes even produces more toxic products. In this study, [Fe|Ni|Cu] tri-metallic reduction (TMR) and laccase-catalytic oxidation (LCO) processes were combined to sequentially remove HPCs, including triclosan, tetrabromobisphenol A, and 2-bromo-4-fluorophenol in water. The kinetics, pH and temperature dependences of TMR and LCO were obtained. The detailed TMR, LCO, and TMR-LCO transformation pathways of three HPCs were well described based on the identification of intermediate products and frontier molecular orbitals (FMOs) theory. The results showed that the two-stage process worked synergically: TMR that reductively dehalogenated HPCs followed by LCO that completely removed dehalogenated products. TMR was proven to not only improve biodegradability of HPCs but also reduce the yield of potential carcinogenic by-products. Furthermore, a TMR-LCO flow reactor was assembled and launched for 256 h, during which >95% HPCs and >75% TOC were removed. Meanwhile, monitored by microorganism indicators, 83.2%-92.7% acute toxicity of HPCs was eliminated, and the genotoxicity, produced by LCO, was also avoided by using TMR as pretreatment process. PMID:25596562

  1. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity.

    PubMed

    Tan, Sing Pei; Stathopoulos, Costas; Parks, Sophie; Roach, Paul

    2014-01-01

    Bitter melon (Momordica charantia L.) is a tropical fruit claimed to have medicinal properties associated with its content of phenolic compounds (TPC). The aim of the study was to compare water with several organic solvents (acetone, butanol, methanol and 80% ethanol) for its efficiency at extracting the TPC from freeze-dried bitter melon powder. The TPC of the extracts was measured using the Folin-Ciocalteu reagent and their antioxidant capacity (AC) was evaluated using three assays. Before optimisation, the TPC and AC of the aqueous extract were 63% and 20% lower, respectively, than for the best organic solvent, 80% ethanol. However, after optimising for temperature (80 °C), time (5 min), water-to-powder ratio (40:1 mL/g), particle size (1 mm) and the number of extractions of the same sample (1×), the TPC and the AC of the aqueous extract were equal or higher than for 80% ethanol. Furthermore, less solvent (40 mL water/g) and less time (5 min) were needed than was used for the 80% ethanol extract (100 mL/g for 1 h). Therefore, this study provides evidence to recommend the use of water as the solvent of choice for the extraction of the phenolic compounds and their associated antioxidant activities from bitter melon. PMID:26785242

  2. Infusion and decoction of wild German chamomile: bioactivity and characterization of organic acids and phenolic compounds.

    PubMed

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2013-01-15

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognised potential in drug discovery. Herein, the methanol extract of Matricaria recutita L. (German chamomile) and its decoction and infusion (the most consumed preparations of this herb) were submitted to an analysis of phytochemicals and bioactivity evaluation. The antioxidant activity was determined by free radicals scavenging activity, reducing power and inhibition of lipid peroxidation; the antitumour potential was tested in human tumour cell lines (breast, lung, colon, cervical and hepatocellular carcinomas), and the hepatotoxicity was evaluated using a porcine liver primary cell culture (non-tumour cells). All the samples revealed antioxidant properties. The decoction exhibited no antitumour activity (GI(50)>400 μg/mL) which could indicate that this bioactivity might be related to compounds (including phenolic compounds) that were not extracted or that were affected by the decoction procedure. Both plant methanol extract and infusion showed inhibitory activity to the growth of HCT-15 (GI(50) 250.24 and 298.23 μg/mL, respectively) and HeLa (GI(50) 259.36 and 277.67 μg/mL, respectively) cell lines, without hepatotoxicity (GI(50)>400 μg/mL). Infusion and decoction gave higher contents of organic acids (24.42 and 23.35 g/100g dw). Otherwise, the plant methanol extract contained the highest amounts of both phenolic acids (3.99 g/100g dw) and flavonoids (2.59 g/100g dw). The major compound found in all the preparations was luteolin O-acylhexoside. Overall, German chamomile contains important phytochemicals with bioactive properties (mainly antitumour potential selective to colon and cervical carcinoma cell lines) to be explored in the pharmaceutical, food and cosmetics industries. PMID:23122148

  3. Omega-pyridiniumalkylethers of steroidal phenols: new compounds with potent antibacterial and antiproliferative activities.

    PubMed

    Lange, C; Holzhey, N; Schönecker, B; Beckert, R; Möllmann, U; Dahse, H-M

    2004-06-15

    Novel omega-pyridiniumalkylethers of two steroidal phenols were synthesized as compounds with potential antimicrobial activity. 3-Hydroxy-estra-1,3,5(10)-triene-17-one and 1-hydroxy-4-methyl-estra-1,3,5(10)-triene-17-one were reacted with omega,omega'-dibromoalkanes to omega-bromoalkoxy-estra-1,3,5(10)-trienes followed by reaction with pyridine to obtain the desired steroidal omega-pyridiniumalkoxy compounds as bromides. Their antimicrobial activity against strains of multiresistant Staphylococcus aureus (MRSA), a vancomycin resistant Enterococcus faecalis and fast growing mycobacteria depends clearly on the length of the alkyl chain. A strong broadband activity has been found for the compounds with eight or 10 C-atoms; in some cases better than ciprofloxacin or cetylpyridinium salts. In addition, the antiproliferative and cytotoxic activity depends on the chain length, too. The differentiation between antibacterial and cytotoxic activity is better for the steroid hybrid molecules than the cetylpyridinium salts. These new compounds can serve as lead compounds for further optimization. PMID:15158804

  4. [Pollution status of phenolic compounds in the soil and sediment from a chemical industrial park along the Yangtze River].

    PubMed

    Chen, Jiexia; Wei, Enze; Xian, Qiming

    2014-08-01

    A determination method of 12 phenolic compounds in soil and sediment samples by gas chromatography-mass spectrometry (GC-MS) analysis coupled with accelerated solvent extraction (ASE) and gel permeation chromatography (GPC) for clean-up was developed. The method detection limits (MDLs) varied from 0. 410 μg/kg to 13. 1 μg/kg (dry weight), and the average recoveries ranged from 70. 7% to 122% with the relative standard deviations (RSDs) of 1. 2% to 16%. Based on this method, the levels of 12 phenolic compounds were investigated in 17 soil surrounding a chemical industrial park along the Yangtze River and seven sediment samples collected in the river. It was found that 11 of the 12 phenolic compounds were detected in all of the 24 samples, and only hydroquinone was below the MDL. The contents of the total 12 phenolic compounds were 10. 16-30. 66 mg/kg in the soil and 18. 00-29. 83 mg/kg in the sediment, with the average contents of 18. 26 and 22. 51 mg/kg respectively. It showed that 4-nitro- phenol, 4-chloro-3-methylphenol, 2-chlorohydroquinone, 2-methyl-4,6-dinitrophenol and 2,4,6- trichlorophenol were five major phenolic contaminants in the soil and sediment in this study. The pollution levels of the 12 phenolic compounds were low in the soil of the chemical industrial park as well as in the sediment of the Yangtze River, which implied a comparatively low risk for the environment. PMID:25434120

  5. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  6. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis].

    PubMed

    Jiang, Xiaolan; Liu, Yajun; Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  7. Distribution of Phenolic Compounds and Antioxidative Activities in Parts of Sweet Potato (Ipomoea batata L.) plants and in home processed roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured six phenolic compounds by HPLC, the total phenolic content by Folin-Ciocalteu, and antioxidative activities by three methods in the sweet potato plant and in home processed roots. Total phenolic content was highest in the leaves. Eight root varieties were partitioned and analyzed for p...

  8. Differential Effects of Thidiazuron on Production of Anticancer Phenolic Compounds in Callus Cultures of Fagonia indica.

    PubMed

    Khan, Tariq; Abbasi, Bilal Haider; Khan, Mubarak Ali; Shinwari, Zabta Khan

    2016-04-01

    Fagonia indica, a very important anticancer plant, has been less explored for its in vitro potential. This is the first report on thidiazuron (TDZ)-mediated callogenesis and elicitation of commercially important phenolic compounds. Among the five different plant growth regulators tested, TDZ induced comparatively higher fresh biomass, 51.0 g/100 mL and 40.50 g/100 mL for stem and leaf explants, respectively, after 6 weeks of culture time. Maximum total phenolic content (202.8 μg gallic acid equivalent [GAE]/mL for stem-derived callus and 161.3 μg GAE/mL for leaf-derived callus) and total flavonoid content (191.03 μg quercetin equivalent [QE]/mL for stem-derived callus and 164.83 μg QE/mL for leaf-derived callus) were observed in the optimized callus cultures. The high-performance liquid chromatography (HPLC) data indicated higher amounts of commercially important anticancer secondary metabolites such as gallic acid (125.10 ± 5.01 μg/mL), myricetin (32.5 ± 2.05 μg/mL), caffeic acid (12.5 ± 0.52 μg/mL), catechin (9.4 ± 1.2 μg/mL), and apigenin (3.8 ± 0.45 μg/mL). Owing to the greater phenolic content, a better 2-2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity (69.45 % for stem explant and 63.68 % for leaf explant) was observed in optimized calluses. The unusually higher biomass and the enhanced amount of phenolic compounds as a result of lower amounts of TDZ highlight the importance of this multipotent hormone as elicitor in callus cultures of F. indica. PMID:26758711

  9. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  10. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds.

    PubMed

    Murugesan, Kumarasamy; Yang, In-Hee; Kim, Young-Mo; Jeon, Jong-Rok; Chang, Yoon-Seok

    2009-02-01

    In this study, we investigated the efficacy of phenolic extract of wheat bran and lignin-related phenolic compounds as natural redox mediators on laccase-mediated transformation of malachite green (MG) using purified laccase from the white-rot fungus Ganoderma lucidum. G. lucidum laccase was able to decolorize 40.7% MG dye (at 25 mg l(-1)) after 24 h of incubation. Whereas, the addition of phenolic extract of wheat bran enhanced the decolorization significantly (p<0.001) by two- to threefold than that of purified laccase alone. Among various natural phenolic compounds, acetovanillone, p-coumaric acid, ferulic acid, syringaldehyde, and vanillin were the most efficient mediators, as effective as the synthetic mediator 1-hydroxybenzotriazole. Characterization of MG transformation products by HPLC, UV-Vis, and liquid chromatography-mass spectrometry-electrospray ionization analysis revealed that N-demethylation was the key mechanism of decolorization of MG by laccase. Growth inhibition test based on mycelial growth inhibition of white rot fungus Phanerochaete chrysosporium revealed that treatment with laccase plus natural mediators effectively reduced the growth inhibitory levels of MG than that of untreated one. Among all the tested compounds, syringaldehyde showed the highest enhanced decolorization, as a consequence reduced growth inhibition was observed in syringaldehyde-treated samples. The results of the present study revealed that the natural phenolic compounds could alternatively be used as potential redox mediators for effective laccase-mediated decolorization of MG. PMID:19130052

  11. The effect of pro-ecological procedures and insect foraging on the total content of phenol compounds in winter wheat.

    PubMed

    Lamparski, Robert; Balcerek, Maciej; Modnicki, Daniel; Kotwica, Karol; Wawrzyniak, Maria

    2015-06-01

    In laboratory conditions, the effect of pro-ecological procedures (application of effective microorganisms and Asahi SL biostimulator) and foraging by insects [cereal leaf beetle (Oulema melanopa L.) and bird cherry-oat aphid (Rhopalosiphum padi (L.)] on the total content of phenolic compounds in winter wheat, was studied. Correlations between the total content of phenolic compounds (determined by the Folin-Ciocalteau colorimetric method) expressed as the amount of pyrogallol in wheat plants: undamaged, damaged by O. melanopa, damaged by R. padi, the length of feeding scar left by cereal leaf beetle and the number of pricks made by actively feeding insects of bird cherry-oat aphid were analysed. The wheat was treated by EM inoculant and a biostimulator. The mode of application of the preparations used had a significant effect on level the total phenolic compounds in the undamaged wheat and the wheat exposed to foraging by the above-mentioned insects. The plants not exposed to insects foraging contained greater amounts of phenolic compounds than those exposed to the insects. The correlation between the total content of phenols in the wheat damaged by the insects in the 'no-choice' conditions, proved insignificant. PMID:26081273

  12. Use of image analysis to estimate anthocyanin and UV-excited fluorescent phenolic compound levels in strawberry fruit

    PubMed Central

    Yoshioka, Yosuke; Nakayama, Masayoshi; Noguchi, Yuji; Horie, Hideki

    2013-01-01

    Strawberry is rich in anthocyanins, which are responsible for the red color, and contains several colorless phenolic compounds. Among the colorless phenolic compounds, some, such as hydroxycinammic acid derivatives, emit blue-green fluorescence when excited with ultraviolet (UV) light. Here, we investigated the effectiveness of image analyses for estimating the levels of anthocyanins and UV-excited fluorescent phenolic compounds in fruit. The fruit skin and cut surface of 12 cultivars were photographed under visible and UV light conditions; colors were evaluated based on the color components of images. The levels of anthocyanins and UV-excited fluorescent compounds in each fruit were also evaluated by spectrophotometric and high performance liquid chromatography (HPLC) analyses, respectively and relationships between these levels and the image data were investigated. Red depth of the fruits differed greatly among the cultivars and anthocyanin content was well estimated based on the color values of the cut surface images. Strong UV-excited fluorescence was observed on the cut surfaces of several cultivars, and the grayscale values of the UV-excited fluorescence images were markedly correlated with the levels of those fluorescent compounds as evaluated by HPLC analysis. These results indicate that image analyses can select promising genotypes rich in anthocyanins and fluorescent phenolic compounds. PMID:23853516

  13. Mapping the genetic and tissular diversity of 64 phenolic compounds in Citrus species using a UPLC–MS approach

    PubMed Central

    Durand-Hulak, Marie; Dugrand, Audray; Duval, Thibault; Bidel, Luc P. R.; Jay-Allemand, Christian; Froelicher, Yann; Bourgaud, Frédéric; Fanciullino, Anne-Laure

    2015-01-01

    Background and Aims Phenolic compounds contribute to food quality and have potential health benefits. Consequently, they are an important target of selection for Citrus species. Numerous studies on this subject have revealed new molecules, potential biosynthetic pathways and linkage between species. Although polyphenol profiles are correlated with gene expression, which is responsive to developmental and environmental cues, these factors are not monitored in most studies. A better understanding of the biosynthetic pathway and its regulation requires more information about environmental conditions, tissue specificity and connections between competing sub-pathways. This study proposes a rapid method, from sampling to analysis, that allows the quantitation of multiclass phenolic compounds across contrasting tissues and cultivars. Methods Leaves and fruits of 11 cultivated citrus of commercial interest were collected from adult trees grown in an experimental orchard. Sixty-four phenolic compounds were simultaneously quantified by ultra-high-performance liquid chromatography coupled with mass spectrometry. Key Results Combining data from vegetative tissues with data from fruit tissues improved cultivar classification based on polyphenols. The analysis of metabolite distribution highlighted the massive accumulation of specific phenolic compounds in leaves and the external part of the fruit pericarp, which reflects their involvement in plant defence. The overview of the biosynthetic pathway obtained confirmed some regulatory steps, for example those catalysed by rhamnosyltransferases. The results suggest that three other steps are responsible for the different metabolite profiles in ‘Clementine’ and ‘Star Ruby’ grapefruit. Conclusions The method described provides a high-throughput method to study the distribution of phenolic compounds across contrasting tissues and cultivars in Citrus, and offers the opportunity to investigate their regulation and physiological

  14. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells.

    PubMed

    Catchpole, Owen; Mitchell, Kevin; Bloor, Stephen; Davis, Paul; Suddes, Amanda

    2015-10-01

    New Zealand propolis is a "European" type propolis obtained by honey bees mainly from exudates of poplar. European type propolis is known to have anti-inflammatory and anti-cancer properties and this activity has been attributed to some of the main constituents such as chrysin and CAPE (caffeic acid phenethyl ester). As part of our studies on how New Zealand propolis might benefit gastro-intestinal health, we carried out in vitro bioactivity-guided fractionation of "Bio30™" propolis using both anti-inflammatory (TNF-α, COX-1, COX-2) and anti-colon cancer (DLD-1 colon cancer cell viability) assays; and determined the phenolic compounds responsible for the activity. The New Zealand wax-free Bio30™ propolis tincture solids had very high levels of the dihydroflavonoids pinocembrin and pinobanksin-3-O-acetate, and high levels of the dimethylallyl, benzyl and 3-methyl-3-butenyl caffeates relative to CAPE. The DLD-1 assays identified strong anti-proliferative activity associated with these components as well as chrysin, galangin and CAPE and a number of lesser known or lower concentration compounds including benzyl ferulate, benzyl isoferulate, pinostrobin, 5-phenylpenta-2,4-dienoic acid and tectochrysin. The phenolic compounds pinocembrin, pinobanksin-3-O-acetate, tectochrysin, dimethylallyl caffeate, 3-methyl-3-butenyl caffeate, benzyl ferulate and benzyl isoferulate also showed good broad spectrum activity in anti-proliferative assays against three other gastro-intestinal cancer cell lines; HCT-116 colon carcinoma, KYSE-30 oesophageal squamous cancer, and NCI-N87 gastric carcinoma. Activity is also observed in anti-inflammatory assays although it appears to be limited to one of the first cytokines in the inflammatory cascade, TNF-α. PMID:26347954

  15. Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba.

    PubMed

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E; Kerkhof, Lee J; Hentschel, Ute; Häggblom, Max M

    2003-07-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the delta subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  16. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.

    PubMed

    Nousiainen, Paula; Kontro, Jussi; Manner, Helmiina; Hatakka, Annele; Sipilä, Jussi

    2014-11-01

    Fungal oxidative enzymes, such as peroxidases and laccases, are the key catalysts in lignin biodegradation in vivo, and consequently provide an important source for industrial ligninolytic biocatalysts. Recently, it has been shown that some syringyl-type phenolics have potential as industrial co-oxidants or mediators, in laccase-catalyzed modification of lignocellulosic material. We have now studied the effect of such mediators with ligninolytic peroxidases on oxidation of the most recalcitrant lignin model compounds. We found that they are able to enhance the manganese peroxidase (MnP) catalyzed oxidation reactions of small non-phenolic compounds, veratryl alcohol and veratrylglycerol β-guaiacyl ether (adlerol), which are not usually oxidized by manganese peroxidases alone. In these experiments we compared two peroxidases from white-rot fungi, MnP from Phlebia sp. Nf b19 and versatile peroxidase (VP) from Bjerkandera adusta under two oxidation conditions: (i) the Mn(III) initiated mediated oxidation by syringyl compounds and (ii) the system involving MnP-dependent lipid peroxidation, both with production of (hydrogen) peroxides in situ to maintain the peroxidase catalytic cycle. It was found that both peroxidases produced α-carbonyl oxidation product of veratryl alcohol in clearly higher yields in reactions mediated by phenoxy radicals than in lipid-peroxyl radical system. The oxidation of adlerol, on the other hand, was more efficient in lipid-peroxidation-system. VP was more efficient than MnP in the oxidation of veratryl alcohol and showed its lignin peroxidase type activity in the reaction conditions indicated by some cleavage of Cα-Cβ-bond of adlerol. Finally, the mediator assisted oxidation conditions were applied in the oxidation of synthetic lignin (DHP) and the structural analysis of the oxidized polymers showed clear modifications in the polymer outcome, e.g. the oxidation resulted in reduced amount of aliphatic hydroxyls indicated by (31)P NMR. PMID

  17. Programmed cell death in plants: protective effect of phenolic compounds against chitosan and H2O2.

    PubMed

    Samuilov, V D; Vasil'ev, L A; Dzyubinskaya, E V; Kiselevsky, D B; Nesov, A V

    2010-02-01

    Addition of chitosan or H2O2 caused destruction of nuclei of epidermal cells (EC) in the epidermis isolated from pea leaves. Phenol, a substrate of the apoplastic peroxidase-oxidase, in concentrations of 10(-10)-10(-6) M prevented the destructive effect of chitosan. Phenolic compounds 2,4-dichlorophenol, catechol, and salicylic acid, phenolic uncouplers of oxidative phosphorylation pentachlorophenol and 2,4-dinitrophenol, and a non-phenolic uncoupler carbonyl cyanide m-chlorophenylhydrazone, but not tyrosine or guaiacol, displayed similar protective effects. A further increase in concentrations of the phenolic compounds abolished their protective effects against chitosan. Malate, a substrate of the apoplastic malate dehydrogenase, replenished the pool of apoplastic NADH that is a substrate of peroxidase-oxidase, prevented the chitosan-induced destruction of the EC nuclei, and removed the deleterious effect of the increased concentration of phenol (0.1 mM). Methylene Blue, benzoquinone, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) capable of supporting the optimal catalytic action of peroxidase-oxidase cancelled the destructive effect of chitosan on the EC nuclei. The NADH-oxidizing combination of TMPD with ferricyanide promoted the chitosan-induced destruction of the nuclei. The data suggest that the apoplastic peroxidase-oxidase is involved in the antioxidant protection of EC against chitosan and H2O2. PMID:20367614

  18. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  19. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound.

    PubMed

    Guo, Jie; Rao, Qunli; Xu, Zhenming

    2008-05-01

    The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m(2), heat deflection temperature of 175 degrees C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits. PMID:17949900

  20. Novel negative resists using thermally stable crosslinkers based on phenolic compounds

    NASA Astrophysics Data System (ADS)

    Kajita, Toru; Kobayashi, Eiichi; Ota, Toshiyuki; Miura, Takao

    1993-09-01

    This is a preliminary report on a family of crosslinkers based on phenolic compounds for negative-working photoresists which are suitable for KrF excimer laser exposure using poly(hydroxystyrene) (PHS) as a base resin. The crosslinkers are benzylic derivatives having etherificated or esterificated phenolic hydroxyl group. Several effects upon the resist performances of chemically amplified (CA) resist systems comprising onium salt, PHS, and the crosslinkers are mainly discussed: i.e., sort of substituent, sort of mother molecular structure, sort of crosslinkable group, baking conditions, PHS's molecular weight, additives, and so on. The CA resist gives quarter-micron line and space pairs without swelling using a KrF excimer laser exposure. Moreover, in this report another effective method for inhibiting the swelling is proposed. Finally, a unique negative resist, which is not a CA resist, is also presented. It gives negative-tone images by thermal crosslinking reaction following photo- induced dissociation of the protective group of crosslinker.

  1. Degradation of Phenolic Compounds and Ring Cleavage of Catechol by Phanerochaete chrysosporium

    PubMed Central

    Leatham, Gary F.; Crawford, R. L.; Kirk, T. Kent

    1983-01-01

    POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-14C]catechol to [14C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [14C]muconic acid into carrier occurred only when evolution of 14CO2 from [14C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO2 turns over faster than does the system responsible for ring cleavage. PMID:16346340

  2. Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Chen, Guangyun; Yue, Wei; Liang, Qiaoli; Wu, Qinan

    2013-05-01

    The present study reports on the extraction of phenolic compounds from sparganii rhizome. Box-Behnken Design (BBD), a widely used form of response surface methodology (RSM), was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Three independent variables including ethanol concentration (%), extraction time (min) and solvent-to-material ratio (mL/g) were studied. The results showed that the optimal UAE condition was obtained with an ethanol concentration of 75.3%, an extraction time of 40min and a solvent-to-material ratio of 19.21mL/g for total phenols, and an ethanol concentration of 80%, an extraction time of 33.54min and solvent-to-material ratio of 22.72mL/g for combination of ρ-hydroxybenzaldehyde, ρ-coumaric acid, vanillic acid, ferulic acid, rutin and kaempferol. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient process as compared to solvent extraction. PMID:23246040

  3. Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans.

    PubMed

    Covas, M I; Miró-Casas, E; Fitó, M; Farré-Albadalejo, M; Gimeno, E; Marrugat, J; De La Torre, R

    2003-01-01

    Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intima in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. Thus, phenolics, which are able to bind LDL, could be effective in preventing lipid peroxidation and atherosclerotic processes. The ability of tyrosol to bind human LDL has been reported. We have demonstrated the bioavailability of tyrosol in humans from virgin olive oil in its natural form. Urinary tyrosol increased, reaching a peak at 0-4 h after virgin olive oil administration. Men and women showed a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. In summary, our results suggest that tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed in in vivo studies. PMID:15134375

  4. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses.

    PubMed

    Chen, Mingshun; Zhao, Yi; Yu, Shujuan

    2015-04-01

    Response surface methodology was used to optimise experimental conditions for ultrasonic-assisted extraction (UAE) of functional components from sugar beet molasses. The central composite design (CCD) was used for the optimisation of extraction parameters in terms of total phenolic contents, antioxidant activities and anthocyanins. Result suggested the optimal conditions obtained by RSM for UAE from sugar beet molasses were as follows: HCl concentration 1.55-1.72 mol/L, ethanol concentration 57-63% (v/v), extraction temperature 41-48 °C, and extraction time 66-73 min. In the optimal conditions, the experimental total phenolic contents were 17.36 mg GAE/100mL, antioxidant activity was 16.66 mg TE/g, and total anthocyanins were 31.81 mg/100g of the sugar beet molasses extract, which were well matched the predicted values. Teen compounds, i.e. gallic acid, vanillin, hydroxybenzoic acid, syringic acid, cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, catechin, delphinidin-3-O-rutinoside, delphinidin-3-O-glucuronide and ferulic acid were determined by HPLC-DAD-MS/MS in sugar beet molasses. PMID:25442590

  5. Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma Mandarin (Citrus unshiu Marc.) peels.

    PubMed

    Ma, Ya-Qin; Ye, Xing-Qian; Fang, Zhong-Xiang; Chen, Jian-Chu; Xu, Gui-Hua; Liu, Dong-Hong

    2008-07-23

    Ultrasound-assisted extraction (UAE) was used to extract phenolic compounds from Satsuma mandarin ( Citrus unshiu Marc.) peels (SMP), and maceration extraction (ME) was used as a control. The effects of ultrasonic time (10, 20, 30, 40, 50, and 60 min), temperature (15, 30, and 40 degrees C), and ultrasonic power (3.2, 8, 30, and 56 W) on phenolic compounds were investigated. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used for the analysis of phenolic acids after alkaline hydrolysis (bound phenolic acids) and flavanone glycosides. The contents of seven phenolic acids (caffeic acid, p-coumaric acid, ferulic acid, sinapic acid, protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid) and two flavanone glycosides (narirutin and hesperidin) in extracts obtained by ultrasonic treatment were significantly higher than in extracts obtained by the maceration method. Moreover, the contents of extracts increased as both treatment time and temperature increased. Ultrasonic power had a positive effect on the contents of extracts. However, the phenolic acids may be degraded by ultrasound at higher temperature for a long time. For example, after ultrasonic treatment at 40 degrees C for 20 min, the contents of caffeic acid, p-coumaric acid, ferulic acid, and p-hydroxybenzoic acid decreased by 48.90, 44.20, 48.23, and 35.33%, respectively. The interaction of ultrasonic parameters probably has a complex effect on the extracts. A linear relationship was observed between Trolox equivalent antioxidant capacity (TEAC) values and total phenolic contents (TPC); the correlation coefficient, R(2), is 0.8288 at 15 degrees C, 0.7706 at 30 degrees C, and 0.8626 at 40 degrees C, respectively. The data indicated that SMPs were rich sources of antioxidants. Furthermore, UAE techniques should be carefully used to enhance the yields of phenolic acids from SMPs. PMID:18572916

  6. Wastes generated during the storage of extra virgin olive oil as a natural source of phenolic compounds.

    PubMed

    Lozano-Sánchez, Jesus; Giambanelli, Elisa; Quirantes-Piné, Rosa; Cerretani, Lorenzo; Bendini, Alessandra; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-11-01

    Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties. PMID:21939275

  7. Gastrointestinal stability and bioavailability of (poly)phenolic compounds following ingestion of Concord grape juice by humans.

    PubMed

    Stalmach, Angelique; Edwards, Christine A; Wightman, Jolynne D; Crozier, Alan

    2012-03-01

    The in vitro gastrointestinal stability of (poly)phenolic compounds in Concord grape juice was compared with recoveries in ileal fluid after the ingestion of the juice by ileostomists. Recoveries in ileal fluid indicated that 67% of hydroxycinnamate tartarate esters, and smaller percentages of the intake of other (poly)phenolic compounds, pass from the small intestine to the colon. The juice was also ingested by healthy subjects with an intact functioning colon. Peak plasma concentrations (C(max) ) ranged from 1.0 nmol/L for petunidin-3-O-glucoside to 355 nmol/L for dihydrocoumaric acid. Urinary excretion, as an indicator of bioavailability, varied from 0.26% for total anthocyanins to 24% for metabolites of hydroxycinnamate tartarate esters. The C(max) times of the anthocyanins indicated that their low level absorption occurred in the small intestine in contrast to hydroxycinnamate metabolites which were absorbed in both the small and the large intestine where the colonic microflora appeared responsible for hydrogenation of the hydroxycinnamate side chain. The bioavailability of the complex mixture of (poly)phenolic compounds in Concord grape juice, was very similar to that observed in previous studies when compounds were either fed individually or as major components in products containing a restricted spectrum of (poly)phenolic compounds. PMID:22331633

  8. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills

    PubMed Central

    Adar, Elanur; Bilgili, Mehmet Sinan

    2015-01-01

    The aim of this study was to investigate the efficiency of four different mineral liners (clay, bentonite, kaoline, and zeolite) which could be utilized to prevent the transport of phenolic compounds to groundwater through alternative liner systems. Four laboratory-scale HDPE reactors with 80 cm height and 40 cm inner diameter were operated for a period of 180 days. Results indicated that the transport of mono- or dichlorophenols is significantly prevented by the liner systems used, while the transport of highly chlorinated phenolic compounds cannot be prevented by the landfill liner system effectively. Highly chlorinated phenolic compounds in groundwater can be found in higher concentrations than the leachate, as a result of the degradation and transformation of these compounds. Thus, the analysis of highly chlorinated phenolic compounds such as 2,4,6-TCP, 2,3,6-TCP, 3,4,5-TCP, and PCP is of great significance for the studies to be conducted on the contamination of groundwater around landfills. PMID:26759828

  9. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves.

    PubMed

    Hokkanen, Juho; Mattila, Sampo; Jaakola, Laura; Pirttilä, Anna Maria; Tolonen, Ari

    2009-10-28

    Phenolic compounds from leaves of lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.), and the natural hybrid of bilberry and lingonberry (Vaccinium x intermedium Ruthe L., hybrid bilberry) were identified using LC/TOF-MS and LC/MS/MS after extraction from the plant material in methanol in an ultrasonicator. The phenolic profiles in the plants were compared using the LC/TOF-MS responses. This is the first thorough report of phenolic compounds in hybrid bilberry. In total, 51 different phenolic compounds were identified, including flavan-3-ols, proanthocyanidins, flavonols and their glycosides, and various phenolic acid conjugates. Of the identified compounds, 35 were detected in bilberry, 36 in lingonberry, and 46 in the hybrid. To our knowledge, seven compounds were previously unreported in Vaccinium genus and many of the compounds are reported for the first time from bilberry and lingonberry. PMID:19788243

  10. Isolation of functional RNA from plant tissues rich in phenolic compounds.

    PubMed

    Schneiderbauer, A; Sandermann, H; Ernst, D

    1991-08-15

    A method for the isolation of RNA from different tissues of trees (seedlings, saplings, and adult trees) is described. Using this procedure it is possible to remove large amounts of disturbing polyphenolic compounds from nucleic acids. The method involves an acetone treatment of the freeze-dried and powdered plant material, the use of high salt concentrations in the extraction buffer and an aqueous two-phase system. These steps were combined with the conventional phenol/chloroform extraction and CsCl centrifugation. The method has been successfully applied to the isolation and purification of RNA from pine (Pinus sylvestris L. and Pinus mugo Turr.), Norway spruce (Picea abies L.), and beech (Fagus sylvatica L.). The functional quality of RNA extracted by this procedure has been characterized by its uv spectrum, by agarose gel electrophoresis with ethidium bromide staining, Northern blot hybridization, and in vitro translation. PMID:1719845

  11. Phenolic compounds and furanic derivatives in the characterization and quality control of Brandy de Jerez.

    PubMed

    Rodríguez Dodero, M C; Guillén Sánchez, D A; Rodríguez, M Schwarz; Barroso, C García

    2010-01-27

    This article shows the results obtained in the study of the extraction profiles from oak wood to distillate of several compounds, low molecular weight phenolics, and furanic derivatives, and the relationship of their contents with those found in commercial sherry brandies and other aged distillates of different geographical origin, in order to research the utility of these analytical variables for explaining the highly specific character of Brandy de Jerez. Using multivariate statistic techniques, the aging system (static by anadas, or dynamic, well known as Soleras y Criaderas) has been confirmed as having a great influence on the analytical profile of aged distillates (discrimination is up to 100%). Differences between commercial brandies and those aged experimentally of equivalent average age have also been confirmed. The Solera Gran Reserva Brandies de Jerez show a clear differentiation from the rest of the distillates of different origin (discrimination is up to 80%), indicating their highly specific character. PMID:20020693

  12. A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound.

    PubMed

    Garcia-Ubasart, Jordi; Colom, Josep F; Vila, Carlos; Gómez Hernández, Nuria; Blanca Roncero, M; Vidal, Teresa

    2012-05-01

    A new biotechnological procedure using laccase in combination with a hydrophobic phenolic compound (lauryl gallate) for the hydrophobization of cellulose fibres and internal sizing of paper was developed. Cellulose fibres from hardwood kraft pulp were incubated with laccase (Lac), in combination with lauryl gallate (LG). The Lac-LG treatment resulted in the internal sizing of paper, and also in significantly reduced water penetration in the handsheets and wettability of the paper surface. Paper was found not to be effectively rendered hydrophobic by LG alone. SEM images of the fibre network revealed the presence of the sizing agent: a product of the reaction between laccase and lauryl gallate. Binding of lauryl gallate to cellulose fibres was suggested by the increase in kappa number of the pulp and further confirmed by IR spectroscopy. PMID:22440576

  13. Simultaneous extraction and biotransformation process to obtain high bioactivity phenolic compounds from Brazilian citrus residues.

    PubMed

    Madeira, Jose Valdo; Macedo, Gabriela Alves

    2015-01-01

    Recent studies have pointed to a reduction in the incidence of some cancers, diabetes, and neuro-degenerative diseases as a result of human health benefits from flavanones. Currently, flavanones are obtained by chemical synthesis or extraction from plants, and these processes are only produced in the glycosylated form. An interesting environmentally friendly alternative that deserves attention regarding phenolic compound production is the simultaneous extraction and biotransformation of these molecules. Orange juice consumption has become a worldwide dietary habit and Brazil is the largest producer of orange juice in the world. Approximately half of the citrus fruit is discarded after the juice is processed, thus generating large amounts of residues (peel and pectinolytic material). Hence, finding an environmentally clean technique to extract natural products and bioactive compounds from different plant materials has presented a challenging task over the last decades. The aim of this study was to obtain phenolics from Brazilian citrus residues with high bioactivity, using simultaneous extraction (cellulase and pectinase) and biotransformation (tannase) by enzymatic process. The highest hesperetin, naringenin and ellagic acid production in the experiment were 120, 80, and 11,250 µg g(-1), respectively, at 5.0 U mL(-1) of cellulase and 7.0 U mL(-1) of tannase at 40°C and 200 rpm. Also, the development of this process generated an increase of 77% in the total antioxidant capacity. These results suggest that the bioprocess obtained innovative results where the simultaneous enzymatic and biotransformatic extracted flavanones from agro-industrial residues was achieved without the use of organic solvents. The methodology can therefore be considered a green technology. PMID:26081498

  14. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus

    PubMed Central

    Kimura, Mitsuhiro; Cutler, Sean; Isobe, Sachiko

    2015-01-01

    Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops. PMID:26176780

  15. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry.

    PubMed

    Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A

    2010-05-01

    The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. PMID:19913228

  16. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities

    PubMed Central

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-01-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products. PMID:25995828

  17. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities.

    PubMed

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-05-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products. PMID:25995828

  18. Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal.

    PubMed

    Jiang, Yanjun; Tang, Wei; Gao, Jing; Zhou, Liya; He, Ying

    2014-02-01

    In this study, horseradish peroxidase (HRP) was encapsulated in phospholipid-templated titania particles through the biomimetic titanification process and used for the treatment of wastewater polluted with phenolic compounds and dye. The encapsulated HRP exhibited improved thermal stability, a wide range of pH stability and high tolerance against inactivating agents. It was observed an increase in Km value for the encapsulated HRP (8.21 mM) when compared with its free counterpart. For practical applications in the removal of phenolic compounds and dye by the encapsulated HRP, the removal efficiency for phenol, 2-chlorophenol, Direct Black-38 were 92.99%, 87.97%, and 79.72%, respectively, in the first treatment cycle. Additionally, the encapsulated HRP showed better removal efficiency than free HRP and a moderately good capability of reutilization. PMID:24411438

  19. Analysis of phenolic compounds in extra virgin olive oil by using reversed-phase capillary electrochromatography.

    PubMed

    Aturki, Zeineb; Fanali, Salvatore; D'Orazio, Giovanni; Rocco, Anna; Rosati, Chiara

    2008-04-01

    In this work, the simultaneous separation of ten phenolic compounds (protocatechuic, p-coumaric, o-coumaric, vanillic, ferulic, caffeic, syringic acids, hydroxytyrosol, tyrosol and oleuropein) in extra virgin olive oils (EVOOs) by isocratic RP CEC is proposed. A CEC method was optimized in order to completely resolve all the analyzed compounds by studying several experimental parameters. The influence of the stationary phase type (C(18) and C(8) modified silica gel), buffer concentration and pH as well as the organic modifier content of the mobile phase on retention factors, selectivity and efficiency were evaluated in details. A capillary column packed with Cogent bidentate C(18) particles for 23 cm and a mobile phase composed by 100 mM ammonium formate buffer pH 3/H(2)O/ACN (5:65:30 v/v/v) allowed the baseline resolution of the compounds under study in less than 35 min setting the applied voltage and temperature at 22 kV and 20 degrees C, respectively. A study, evaluating the intra- and interday precision as well as LOD and LOQ and method linearity was developed in accordance with the analytical procedures for method validation. LODs were in the range of 0.015-2.5 microg/mL, while calibration curves showed a good linearity (r(2) >0.997). The CEC method was applied to the separation and determination of these compounds in EVOO samples after a suitable liquid-liquid extraction procedure. The mean recovery values of the studied compounds ranged between 87 and 99%. PMID:18383030

  20. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon, thyme, mint, oregano, rosemary, sage, and thyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basil, lemon thyme, mint, oregano, rosemary, sage, and thyme are in the mint family of plants that are used as culinary herbs world-wide. These herbs contain phenolic compounds that are believed to have strong antioxidant and anti-inflammatory activities. Therefore, the major phenolic compounds fr...

  1. Analysis of Phenolic Compounds by HPLC and LC/MS in Potato Plant Flowers, Leaves, Stems, and Tubers and in Home Processed Potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato plants synthesize phenolic compounds as protection against bruising and injury from bacteria, fungi, viruses, and insects. Because antioxidative phenolic compounds are also reported to participate in enzymatic browning reactions and to exhibit health-promoting effects in humans, a need exist...

  2. Discrimination of olive oils and fruits into cultivars and maturity stages based on phenolic and volatile compounds.

    PubMed

    Kalua, Curtis M; Allen, Malcolm S; Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D

    2005-10-01

    Olive oil and fruit samples from six cultivars sampled at four different maturity stages were discriminated into cultivars and maturity stages. The variables-volatile and phenolic compounds-that significantly (p < 0.01) discriminated cultivars and maturity stage groups were identified. Separation by stepwise linear discriminant analysis revealed that Manzanilla olive cultivar was separated from cultivars Leccino, Barnea, Mission, Corregiola, and Paragon, whereas cultivars Corregiola and Paragon formed a cluster. The volatile compounds hexanol, hexanal, and 1-penten-3-ol were responsible for the discrimination of cultivars. All maturity stages were discriminated, with the separation of early stages attributed to oil phenolic compounds, tyrosol and oleuropein derivatives, whereas the volatile compounds (E)-2-hexenal, hexanol, 1-penten-3-ol, and (Z)-2-penten-3-ol characterized the separation of all maturity stages and in particular the late stages. Hexanol and 1-penten-3-ol characterized the separation of both cultivars and maturity stages. PMID:16190670

  3. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS.

    PubMed

    Vallverdú-Queralt, Anna; Boix, Nuria; Piqué, Ester; Gómez-Catalan, Jesús; Medina-Remon, Alexander; Sasot, Gemma; Mercader-Martí, Mercè; Llobet, Juan M; Lamuela-Raventos, Rosa M

    2015-08-15

    The zebrafish embryo is a highly interesting biological model with applications in different scientific fields, such as biomedicine, pharmacology and toxicology. In this study, we used liquid chromatography/electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC/ESI-LTQ-Orbitrap-MS) to identify the polyphenol compounds in a red wine extract and zebrafish embryos. Phenolic compounds and anthocyanin metabolites were determined in zebrafish embryos previously exposed to the red wine extract. Compounds were identified by injection in a high-resolution system (LTQ-Orbitrap) using accurate mass measurements in MS, MS(2) and MS(3) modes. To our knowledge, this research constitutes the first comprehensive identification of phenolic compounds in zebrafish by HPLC coupled to high-resolution mass spectrometry. PMID:25794733

  4. Phenolic compounds from Byrsonima crassifolia L. bark: phytochemical investigation and quantitative analysis by LC-ESI MS/MS.

    PubMed

    Maldini, Mariateresa; Montoro, Paola; Pizza, Cosimo

    2011-08-25

    Phytochemical investigation of the methanolic extract of Byrsonima crassifolia's bark led to the isolation of 8 known phenolic compounds 5-O-galloylquinic acid, 3-O-galloylquinic acid, 3,4-di-O-galloylquinic acid, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid, (+)-epicatechin-3-gallate along with (+)-catechin and (+)-epicatechin. Due to their biological value, in the present study, a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, working in multiple reaction monitoring (MRM) mode, has been developed to quantify these compounds. B. crassifolia bark resulted in a rich source of phenolic compounds and particularly of galloyl derivates. The proposed analytical method is promising to be applied to other galloyl derivatives to quantify these bioactive compounds in raw material and final products. PMID:21571480

  5. Phenolic compounds of the inner bark of Betula pendula: seasonal and genetic variation and induction by wounding.

    PubMed

    Liimatainen, Jaana; Karonen, Maarit; Sinkkonen, Jari; Helander, Marjo; Salminen, Juha-Pekka

    2012-11-01

    The contents of individual phenolic compounds in the inner bark of silver birch (Betula pendula Roth) were analyzed by HPLC-DAD. Samples from 21 mature trees originating from three micropropagated parent trees were collected six times over a 1-year period. Significant seasonal variation in the quantities of ten compounds and four chromatographically unresolved compound pairs was found. A majority of the compounds also exhibited significant quantitative variation among birch clones. There were no qualitative differences associated with the season or among the clones. However, wounding of the bark induced the production of new types of bark phenolics: several ellagitannins were detected in the callus tissues of birch for the first time. PMID:23065107

  6. COLBALT-MEDIATED ACTIVATION OF PEROXYMONOSULFATE AND SULFATE RADICAL ATTACK ON PHENOLIC COMPOUNDS, IMPLICATIONS OF CHLORIDE IONS

    EPA Science Inventory

    This study reports on the sulfate radical pathway of room temperature degradation of two phenolic compounds in water. The radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from...

  7. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector.

    PubMed

    Jandera, Pavel; Skeifíková, Veronika; Rehová, Lucie; Hájek, Tomás; Baldriánová, Lucie; Skopová, Gabriela; Kellner, Vladimír; Horna, Ales

    2005-06-01

    Methods were developed for the analysis of natural antioxidants including phenolic compounds and flavonoids in beverages and plant extracts using gradient HPLC with multi-channel electrochemical coulometric detection. Suitability of various reversed-phase columns for this purpose was compared; pH and mobile phase gradients were optimized with respect to the separation selectivity and sensitivity of detection. Because of different target compounds in various sample types, the overlapping resolution maps and the normalized resolution product approaches described earlier were used to select optimum columns and gradients to suit the analysis of the individual sample types. The methods were applied to the analysis of phenolic compounds and flavonoids in beer, wine, tea, and yacon extracts. 32 phenolic compounds were identified and determined, including derivatives of benzoic and cinnamic acids, flavones, and a few related glycosides. Eight-channel CoulArray detection offers high selectivity and sensitivity with limits of detection in the low microg L(-1) range, at least an order of magnitude lower than single-channel coulometric detection using the Coulochem detector. No special sample pretreatment is necessary and, because of the compatibility of the CoulArray detector with gradient elution, phenolic antioxidants of different polarities can be determined in a single run. In addition to the retention times, the ratios of the areas of the pre-dominant and post-dominant peaks to the area of the dominant peak can be used for improved identification of natural antioxidants. PMID:16013828

  8. Preparation and use of maize tassels' activated carbon for the adsorption of phenolic compounds in environmental waste water samples.

    PubMed

    Olorundare, O F; Msagati, T A M; Krause, R W M; Okonkwo, J O; Mamba, B B

    2015-04-01

    The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84-98.49%, 80.75-97.11%, and 78.27-97.08% for BPA, o-NTP, and PCP, respectively). The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes. PMID:25354435

  9. BIOCONTROL AND PLANT PATHOGENIC FUSARIUM OXYSPORUM-INDUCED CHANGES IN PHENOLIC COMPOUNDS IN TOMATO LEAVES AND ROOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biocontrol fungus Fusarium oxysporum strain CS-20 was previously shown to reduce incidence of Fusarium wilt of tomato through an uncharacterized host-mediated response. Since phenolic compounds are involved in the defense response of tomato to pathogens and other stressors, this work was undert...

  10. Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation.

    PubMed

    Mosele, Juana I; Macià, Alba; Romero, Mari-Paz; Motilva, María-José

    2016-06-15

    The natural antioxidants of Arbutus unedo highlight the importance of this fruit as natural source of bioactive compounds. In the present study, to evaluate the stability of phenolic compounds, ascorbic acid and fat-soluble antioxidants (α-tocopherol, β-carotene and lutein), in vitro gastrointestinal digestion was applied to A. unedo fruit. After that, the non-absorbable fraction was anaerobically incubated with human faeces and the metabolic pathway for gallotannins, ellagitannins, flavan-3-ols and anthocyanins from A. unedo fruit was proposed. The results showed that the presence of pectin from the fruit hampered the solubilization of the phenolic compounds (with exception of gallic and ellagic acids) and fat-soluble vitamins during gastric digestion. Degradation of pectin-gel during the duodenal digestion favored the release of the phenolic compounds and fat-soluble antioxidants to the media. The catabolic activity of human microbiota led to the generation of a wide range of simple phenols, such as p-hydroxybenzoic acid and catechol, derived from the catabolism of gallotannins, ellagitannins, flavan-3-ols and anthocyanins. PMID:26868556

  11. Characterization of colored products formed during irradiation of aqueous solutions containing H 2O 2 and phenolic compounds

    NASA Astrophysics Data System (ADS)

    Chang, Jonathan L.; Thompson, Jonathan E.

    2010-02-01

    Irradiation of aqueous (pH = 5) mixtures containing hydrogen peroxide (1 mM) and phenolic compounds (10 mM) were found to produce visible light absorbing solutions over the course of several hours. The kinetics and products of these reactions were studied by UV-VIS absorbance, electrospray mass spectrometry, FTIR, fluorescence, and NMR and compared to humic-like substances commonly found in atmospheric particulate matter. It was determined the reactions leading to formation of color are quite general to this compound class, and the reactions proceeded more rapidly with hydroxyl or methoxy substitution ortho to the phenolic OH. However, para substitution generally slowed formation of colored compounds compared to the unsubstituted form. Mass spectrometry confirms compounds of several hundred Da formed in the reaction mixtures. The IR spectra of the reaction products bear similarity to that observed for authentic aerosol humic-like substances. The results indicate radical coupling of phenols and methoxylated phenols in tropospheric waters may contribute to humic-like particulate matter.

  12. Plant Cell Cancer: May Natural Phenolic Compounds Prevent Onset and Development of Plant Cell Malignancy? A Literature Review.

    PubMed

    Rasouli, Hassan; Farzaei, Mohammad Hosein; Mansouri, Kamran; Mohammadzadeh, Sara; Khodarahmi, Reza

    2016-01-01

    Phenolic compounds (PCs) are known as a chemically diverse category of secondary and reactive metabolites which are produced in plants via the shikimate-phenylpropanoid pathways. These compounds-ubiquitous in plants-are an essential part of the human diet, and are of considerable interest due to their antioxidant properties. Phenolic compounds are essential for plant functions, because they are involved in oxidative stress reactions, defensive systems, growth, and development. A large body of cellular and animal evidence carried out in recent decades has confirmed the anticancer role of PCs. Phytohormones-especially auxins and cytokinins-are key contributors to uncontrolled growth and tumor formation. Phenolic compounds can prevent plant growth by the endogenous regulation of auxin transport and enzymatic performance, resulting in the prevention of tumorigenesis. To conclude, polyphenols can reduce plant over-growth rate and the development of tumors in plant cells by regulating phytohormones. Future mechanistic studies are necessary to reveal intracellular transcription and transduction agents associated with the preventive role of phenolics versus plant pathological malignancy cascades. PMID:27563858

  13. Phenolic Compounds, Volatiles, and Sensory Characteristics of Twelve Sweet Cherry (Prunus avium L.) Cultivars Grown in Turkey.

    PubMed

    Hayaloglu, Ali Adnan; Demir, Nurullah

    2016-01-01

    The paper reports the phenolic, anthocyanin, and volatile compounds and sensory characteristics of 12 cultivars of sweet cherries including cvs. Belge, Bing, Dalbasti, Durona di Cesena, Lambert, Merton Late, Starks Gold, Summit, Sweetheart, Van, Vista, and 0-900 Ziraat. Eight individual phenolic compounds were determined by the HPLC-DAD method. Among these cherries, cvs. Bing, Durona di Cesena, and Lambert contained higher levels of total individual phenolic compounds than the other cultivars. Six anthocyanins were detected in cherries and cyanidin-3-O-rutinoside was principal and it was the highest level in cv. Bing. The major volatiles found were 1-hexanol, (E)-2-hexen-1-ol, benzylalcohol, hexenal, (E)-2-hexenal, and benzaldehyde. Sensory evaluation of the cherries showed that cvs. Belge, Bing, Dalbasti, and Summit have higher textural and flavor scores than others. It was concluded that the same compounds for phenolic or volatiles profiles of sweet cherries were similar in qualitative; however, quantitative differences were observed in these cultivars. PMID:26646816

  14. Effect of mid season drought on phenolic compounds in peanut genotypes with different levels of resistance to drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a major constraint in peanut production. Drought not only reduces pod yield but also may affect phenolic compounds in peanut. This experiment was conducted for two years under field conditions. Soil moisture levels (field capacity and mid season drought stress) were assigned as main pl...

  15. Total Phenolics and Antioxidant Activity of Extracts from Distillers' Dried Grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn is an abundant source of phenolic acids; therefore, distillers’ dried grains (DDG), may exhibit important market value for its phenolic content and antioxidant activity. The purpose of this study was to determine the efficacy of extracting phenolic compounds with antioxidant activity from DDG ...

  16. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia.

    PubMed

    Pantelić, Milica M; Dabić Zagorac, Dragana Č; Davidović, Sonja M; Todić, Slavica R; Bešlić, Zoran S; Gašić, Uroš M; Tešić, Živoslav Lj; Natić, Maja M

    2016-11-15

    Phenolic profile of 13 grapevine varieties was determined, with respect to three different parts of berries: skin, seed and pulp. Identification and quantification of the phenols was done using ultra-high performance liquid chromatography (UHPLC) coupled with a diode array detector and a triple-quadrupole mass spectrometer. The most abundant phenols in grape seeds were found to be flavan-3-ols, most of which are gallocatechin gallate and catechin. The skins were characterized mostly by flavonols, i.e. quercetin and myricetin. Characterization of anthocyanins in the berry skin by UHPLC coupled with Linear Trap Quadrupole and OrbiTrap mass analyzer revealed a total of twenty derivatives of malvidin, delphinidin, petunidin, cyanidin, and peonidin. To the extent of our knowledge this is the first work that shows the presence of malvidin 3,5-O-dihexoside in the berry skin of 'Merlot', 'Cabernet Franc', 'Shiraz' 'Sangiovese', 'Pinot Noir' and 'Prokupac', untypical for Vitis vinifera Linneo species. PMID:27283628

  17. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    PubMed Central

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  18. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds

    PubMed Central

    2012-01-01

    Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585

  19. Glycosylation of Phenolic Compounds by the Site-Mutated β-Galactosidase from Lactobacillus bulgaricus L3

    PubMed Central

    Lu, Lili; Xu, Lijuan; Guo, Yuchuan; Zhang, Dayu; Qi, Tingting; Jin, Lan; Gu, Guofeng; Xu, Li; Xiao, Min

    2015-01-01

    β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values. PMID:25803778

  20. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars.

    PubMed

    Delgado-Torre, M Pilar; Ferreiro-Vera, Carlos; Priego-Capote, Feliciano; Pérez-Juan, Pedro M; Luque de Castro, María Dolores

    2012-03-28

    Most research on the extraction of high-priced compounds from vineyard/wine byproducts has traditionally been focused on grape seeds and skins as raw materials. Vine-shoots can represent an additional source to those materials, the characteristics of which could depend on the cultivar. A comparative study of hydroalcoholic extracts from 18 different vineyard cultivars obtained by superheated liquid extraction (SHLE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (USAE) is here presented. The optimal working conditions for each type of extraction have been investigated by using multivariate experimental designs to maximize the yield of total phenolic compounds, measured by the Folin-Ciocalteu method, and control hydroxymethylfurfural because of the organoleptic properties of furanic derivatives and toxicity at given levels. The best values found for the influential variables on each extraction method were 80% (v/v) aqueous ethanol at pH 3, 180 °C, and 60 min for SHLE; 140 W and 5 min microwave irradiation for MAE; and 280 W, 50% duty cycle, and 7.5 min extraction for USAE. SHLE reported better extraction efficiencies as compared to the other two approaches, supporting the utility of SHLE for scaling-up the process. The extracts were dried in a rotary evaporator, reconstituted in 5 mL of methanol, and finally subjected to liquid-liquid extraction with n-hexane to remove nonpolar compounds that could complicate chromatographic separation. The methanolic fractions were analyzed by both LC-DAD and LC-TOF/MS, and the differences in composition according to the extraction conditions were studied. Compounds usually present in commercial wood extracts (mainly benzoic and hydroxycinnamic acids and aldehydes) were detected in vine-shoot extracts. PMID:22372567

  1. The relationship between phenolic compounds from diet and microbiota: impact on human health.

    PubMed

    Valdés, L; Cuervo, A; Salazar, N; Ruas-Madiedo, P; Gueimonde, M; González, S

    2015-08-01

    The human intestinal tract is home to a complex microbial community called microbiota. This gut microbiota, whilst playing essential roles in the maintenance of the health of the host, is exposed to the impact of external factors such as the use of medication or dietary patterns. Alterations in the composition and/or function of the microbiota have been described in several disease states, underlining the role of the gut microbiota in keeping the health status. Among the different dietary compounds, polyphenols constitute a very interesting group as some of them have been found to possess important biological activities, including antioxidant, anticarcinogenic or antimicrobial activities. The term polyphenol comprises thousands of molecules presenting a phenol ring and are widely distributed in plant foods. The bioactivity of these compounds is highly dependent on their intestinal absorption and often they are ingested as non-absorbable precursors that are transformed into bioactive forms by specific microorganisms in the intestine. Some of these microorganisms have been identified and the enzymatic steps involved have been elucidated. However, little is known about the impact of these ingested polyphenols upon the human gut microbiota. The heterogeneity of the polyphenol compounds and their food sources, as well as their coexistence with other bioactive compounds within a normal diet, together with the complexity of the human gut microbiota make difficult the understanding of the interactions between dietary polyphenols and gut microbes. This is, however, an important area of research which promises to expand our knowledge on the food functionality area through understanding the microbiota-food component interaction. PMID:26068710

  2. Effects of pectinase clarification treatment on phenolic compounds of pummelo (Citrus grandis l. Osbeck) fruit juice.

    PubMed

    Shah, Nor Nadiah Abdul Karim; Rahman, Russly Abdul; Shamsuddin, Rosnah; Adzahan, Noranizan Mohd

    2015-08-01

    The purpose of this study is to investigate the changes occured on phenolic compounds between two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52) post-enzymatic clarification. The changes in polyphenols composition were monitored using High Performance Liquid Chromatography Diode Array Detection and Folin Ciocalteu's method. Clarification treatment of pummelo fruit juice with a commercial pectinase was optimized based on incubation temperature, time and enzyme concentration. Both varieties of pummelo fruit juice were treated with different optimized variables which produced the highest clarities with the least effect to the juice physical quality. Tambun variety was found to have significantly more total phenolic compounds (p <0.05) in comparison to Ledang variety, possibly due to the amount of naringin. Three types of hydroxycinnamic acids (chlorogenic, caffeic and coumaric acid) and three compounds of flavanones (naringin, hesperidin and narirutin) were found in both fruit juices, where naringin and chlorogenic acid were the major contributor to the total phenolic content. Naringin, which gave out bitter aftertaste to the juice, was found to decrease, 1.6 and 0.59 % reduction in Ledang and Tambun respectively, post-enzymatic treatment. The decrease in naringin, albeit nominal, could be a potential benefit to the juice production in reducing the bitterness of the juice. Post-enzymatic analysis furthermore resulted in no significance differences (p <0.05) on the total phenolic compounds of both varieties. This study in summary provides a compositional database for Malaysian pummelo fruit juice of various phenolic compounds, which can provide useful information for evaluating the authenticity and the health benefits from the juice. PMID:26243926

  3. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil.

    PubMed

    Cañas, Ana I; Alcalde, Miguel; Plou, Francisco; Martínez, Maria Jesús; Martínez, Angel T; Camarero, Susana

    2007-04-15

    Efficient transformation of several polycyclic aromatic hydrocarbons (PAHs) was obtained using a fungal laccase in the presence of phenolic compounds related to those formed in nature during the turnover of lignin and humus. The effect of these natural mediators, namely vanillin, acetovanillone, acetosyringone, syringaldehyde, 2,4,6-trimethylphenol, p-coumaric acid, ferulic acid, and sinapic acid, was compared with that of synthetic mediators such as 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). Anthracene was significantly degraded by laccase in the absence of mediators, whereas benzo[a]pyrene and pyrene were weakly transformed (less than 15% after 24 h). Vanillin, acetovanillone, 2,4,6-trimethylphenol, and, above all, p-coumaric acid strongly promoted the removal of PAHs by laccase. 9,10-Anthraquinone was the main product detected from anthracene oxidation by all the laccase-mediator systems. The yield of anthraquinone formed was directly correlated with the amount of p-coumaric acid used. This compound resulted in a better laccase mediator than ABTS and close similarity to HBT, attaining 95% removal of anthracene and benzo[a]pyrene and around 50% of pyrene within 24 h. Benzo[a]pyrene 1,6-, 3,6-, and 6,12-quinones were produced during benzo[a]pyrene oxidation with laccase and p-coumaric acid, HBT, or ABTS as mediators, although use of the latter mediator gave further oxidation products that were not produced by the two other systems. PMID:17533865

  4. Phenolic compounds and browning in sherry wines subjected to oxidative and biological aging.

    PubMed

    Fabios, M; Lopez-Toledano, A; Mayen, M; Merida, J; Medina, M

    2000-06-01

    The composition in hydroxybenzoic and hydroxycinnamic acids, hydroxycinnamic esters, tyrosol, syringaldehyde, and flavan-3-ol derivatives of three different types of sherry wine obtained by aging of the same starting wine under different conditions was studied. So-called "fino" wine was obtained by biological aging under flor yeasts, "oloroso" wine by oxidative aging, and "amontillado" wine by a first stage of biological aging followed by a second oxidative step. On the basis of the results, the wines subjected to oxidative aging exhibited higher phenol contents, in addition to scarcely polar compounds absorbing at 420 nm that were absent in the wines obtained by biological aging. Taking into account that flavan-3-ol derivatives play an important role in wine browning, a model catechin solution was inoculated with flor yeast which, contrary to the findings of other authors in the absence of yeasts, formed no colored compounds. This different behavior may account for the resistance to browning of pale sherry wines in the presence of flor yeasts. PMID:10888514

  5. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion. PMID:26902395

  6. Phenolic Compounds from the Fruits of Medemia argun, a Food and Medicinal Plant of Ancient Egypt.

    PubMed

    Masullo, Milena; Hamed, Arafa I; Mahalel, Usama A; Pizza, Cosimo; Piacente, Sonia

    2016-03-01

    Medemia argun is a mysterious and little known monotypic fan palm from the Nubian Desert Oases of southern Egypt and northern Sudan. Its fruits have been found in the tombs from the 5th Dynasty (ca. 2500 BC) to Roman times (6-7th century AD), including the celebrated tomb of Tutankhamun. In ancient Egypt, the fruits of this palm were widely distributed and were highly valued, as confirmed by their frequent occurrence in offerings in the tombs. In order to elucidate the chemical composition of the phenolic fraction, phytochemical investigation of the BuOH extract of fruits was carried out to afford eight compounds (1-8), among which was the new 2,4-dihydroxy-6-methylacetophenone 2-0-β-D-glucopyranoside (1). With the aim to investigate if the high shelf life of M argun fruits could be related to the occurrence of antioxidant principles that were able to prevent oxidative reactions, the evaluation was carried out of the in vitro antioxidant activity by Trolox equivalent antioxidant capacity (TEAC) assay of the extract and isolated compounds. PMID:27169174

  7. Guaraná (Paullinia cupana) seeds: Selective supercritical extraction of phenolic compounds.

    PubMed

    Marques, Leila Larisa Medeiros; Panizzon, Gean Pier; Aguiar, Bruna Aparecida Alves; Simionato, Ane Stéfano; Cardozo-Filho, Lucio; Andrade, Galdino; de Oliveira, Admilton Gonçalves; Guedes, Terezinha Aparecida; Mello, João Carlos Palazzo de

    2016-12-01

    Approximately 70% of the Brazilian production of guaraná (Paullinia cupana) seeds is absorbed by the beverage industries. Guaraná has several pharmacological properties: energy stimulant, antimicrobial, chemoprophylactic, antigenotoxic, antidepressive, anxiolytic, and anti-amnesic effects. Supercritical carbon dioxide extraction of bioactive compounds from guaraná seeds was carried out and optimized by an orthogonal array design (OA9(3(4))). The factors/levels studied were: modifier(s) (ethanol and/or methanol), extraction time (20, 40, and 60min), temperature (40, 50, and 60°C), and pressure (100, 200, and 300bar). The statistical design was repeated with increasing proportions of modifiers. The percentage of modifier used was proportional to the amount of polar compounds extracted. The best conditions for the supercritical extraction, based on the content of polyphenols, epicatechin/catechin quantification, yield and operating cost, proved to be: 40% ethanol:methanol during 40min, under 40°C, and 100bar. The temperature had a significant effect on the total phenolic content. PMID:27374587

  8. Induced root-secreted phenolic compounds as a belowground plant defense.

    PubMed

    Lanoue, Arnaud; Burlat, Vincent; Schurr, Ulrich; Röse, Ursula S R

    2010-08-01

    Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defence responses. In our report, we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defence through root exudation may be cultivar dependent and higher in wild or less domesticated varieties. PMID:20699651

  9. In Vitro Cytoprotective Effects and Antioxidant Capacity of Phenolic Compounds from the Leaves of Swietenia macrophylla.

    PubMed

    Pamplona, Sônia; Sá, Paulo; Lopes, Dielly; Costa, Edmar; Yamada, Elizabeth; e Silva, Consuelo; Arruda, Mara; Souza, Jesus; da Silva, Milton

    2015-01-01

    Swietenia macrophylla (mahogany) is a highly valued timber species, whereas the leaves are considered to be waste product. A total of 27 phenolic compounds were identified in aqueous extracts from mahogany leaves by comparing retention times and mass spectra data with those of authentic standards using LC-ESI-MS/MS. Polyphenols play an important role in plants as defense mechanisms against pests and pathogens and have potent antioxidant properties. In terms of health applications, interest has increased considerably in naturally occurring antioxidant sources, since they can retard the progress of many important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The antioxidant capacities of two aqueous extracts, M1 (decoction) and M2 (infusion), were measured using TEAC and Folin-Ciocalteau methods. Additionally, M1 was used in order to investigate its potential cytoprotective effects on an in vitro model of neurodegeneration, by using primary cerebellar cultures exposed to methyl mercury (MeHg). Under experimental sub-chronic conditions (72 h), concomitant exposure of the same cultures to MeHg and M1 extract resulted in a statistically significant increase in cell viability in all three concentrations tested (10, 50 and 100 μg/mL), strongly suggesting that due to its high content of antioxidant compounds, the M1 extract provides significant cytoprotection against the MeHg-induced in vitro neurotoxicity. PMID:26501245

  10. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.

    PubMed

    Park, Jihye; Han, Sang Hoon; Sharma, Satyasheel; Han, Sangil; Shin, Youngmi; Mishra, Neeraj Kumar; Kwak, Jong Hwan; Lee, Cheong Hoon; Lee, Jeongmi; Kim, In Su

    2014-05-16

    A copper-catalyzed oxidative coupling of 2-carbonyl-substituted phenols and 1,3-dicarbonyl compounds with a wide range of dibenzyl or dialkyl ethers is described. This protocol provides an efficient preparation of phenol esters and enol esters in good yields with high chemoselectivity. This method represents an alternative protocol for classical esterification reactions. PMID:24762192

  11. Highly Efficient Extraction of Phenolic Compounds by Use of Magnetic Room Temperature Ionic Liquids for Environmental Remediation

    PubMed Central

    Deng, Ning; Li, Min; Zhao, Lijie; Lu, Chengfei; de Rooy, Sergio L.; Warner, Isiah M.

    2011-01-01

    A hydrophobic magnetic room temperature ionic liquid (MRTIL), trihexyltetradecylphosphonium tetrachloroferrate(III) ([3C6PC14][FeCl4]), was synthesized from trihexyltetradecylphosphonium chloride and FeCl3·6H2O. This MRTIL was investigated as a possible separation agent for solvent extraction of phenolic compounds from aqueous solution. Due to its strong paramagnetism, [3C6PC14][FeCl4] responds to an external neodymium magnet, which was employed in the design of a novel magnetic extraction technique. The conditions for extraction, including extraction time, volume ratio between MRTIL and aqueous phase, pH of aqueous solution, and structures of phenolic compounds were investigated and optimized. The magnetic extraction of phenols achieved equilibrium in 20 min and the phenolic compounds were found to have higher distribution ratios under acidic conditions. In addition, it was observed that phenols containing a greater number of chlorine or nitro substitutents exhibited higher distribution ratios. For example, the distribution ratio of phenol (DPh) was 107. In contrast, 3,5-dichlorophenol distribution ratio (D3,5-DCP) had a much higher value of 6372 under identical extraction conditions. When compared with four selected traditional non-magnetic room temperature ionic liquids, our [3C6PC14][FeCl4] exhibited significantly higher extraction efficiency under the same experimental conditions used in this work. Pentachlorophenol, a major component in the contaminated soil sample obtained from a superfund site, was successfully extracted and removed by use of [3C6PC14][FeCl4] with high extraction efficiency. Pentachlorophenol concentration was dramatically reduced from 7.8 μg.mL−1 to 0.2 μg.mL−1 after the magnetic extraction by use of [3C6PC14][FeCl4]. PMID:21783320

  12. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. PMID:27031803

  13. Chemical Stabilization of Soil Organic Nitrogen by Phenolic Lignin Compounds in Anaerobic Agrosystems

    NASA Astrophysics Data System (ADS)

    Olk, D. C.

    2004-12-01

    In tropical Asia, continuous cropping of paddy rice promotes the covalent binding of soil organic nitrogen (N) by phenolic lignin residues, which in turns appears to contribute to substantial long-term declines in availability of soil organic N and in grain yield. A newly developed technique of nuclear magnetic resonance spectroscopy that selects for carbon atoms bound to N was applied to a young humic fraction to directly observe an agronomically significant greater quantity of organic N (difference of 55 kg per hectare) that was bound by lignin residues in a triple-cropped rice soil compared to a nearby aerated soil. The resulting compound was an anilide. Crop residues are the parent material of soil organic matter in agricultural soils, and their anaerobic decomposition was found to slow microbially driven mineralization of both soil organic N and soil phenols during the rice season, compared to aerobic decomposition. Through use of 15N-labeled fertilizer, stabilization of soil organic N was shown to be more extensive than binding of inorganic fertilizer N. Similar results were gained in eastern Arkansas when comparing a more anaerobic continuous rice rotation to the conventional rice-soybean rotation. Future studies of covalently bound N will consider both its seasonal dynamics and its significance to long-term yield trends. Agronomic observations suggest that covalent binding of nutrients by lignin residues might also occur in other agrosystems with anaerobic decomposition of crop residues, including paddy taro in Hawaii and to a lesser extent no-tilled crops in regions with cool, wet springtime weather.

  14. Optimization of Ultrasound-assisted Extraction of Phenolic Compounds from Myrcia amazonica DC. (Myrtaceae) Leaves

    PubMed Central

    de Morais Rodrigues, Mariana Cristina; Borges, Leonardo Luiz; Martins, Frederico Severino; Mourão, Rosa Helena V.; da Conceição, Edemilson Cardoso

    2016-01-01

    Background: Myrcia amazonica. DC is a species predominantly found in northern Brazil, and belongs to the Myrtaceae family, which possess various species used in folk medicine to treat gastrointestinal disorders, infectious diseases, and hemorrhagic conditions and are known for their essential oil contents. Materials and Methods: This study aimed applied the Box–Behnken design combined with response surface methodology to optimize ultrasound-assisted extraction of total polyphenols, total tannins (TT), and total flavonoids (TF) from M. amazonica DC. Results: The results indicated that the best conditions to obtain highest yields of TT were in lower levels of alcohol degree (65%), time (15 min), and also solid: Liquid ratio (solid to liquid ratio; 20 mg: 5 mL). The TF could be extracted with high amounts with higher extraction times (45 min), lower values of solid: Liquid ratio (20 mg: mL), and intermediate alcohol degree level. Conclusion: The exploitation of the natural plant resources present very important impact for the economic development, and also the valorization of great Brazilian biodiversity. The knowledge obtained from this work should be useful to further exploit and apply this raw material. SUMMARY Myrcia amazonica leaves possess phenolic compounds with biological applications;Lower levels of ethanolic strength are more suitable to obtain a igher levels of phenolic compouds such as tannins;Box-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction. Abbreviation used: Nomenclature ES: Ethanolic strength, ET: Extraction time, SLR: Solid to liquid ratio, TFc: Total flavonoid contents, TPc: Total polyphenol contents, TTc: Total tannin contents PMID:27019555

  15. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection.

    PubMed

    Kahoun, David; Rezková, Sona; Veskrnová, Katerina; Královský, Josef; Holcapek, Michal

    2008-08-15

    The objective of this study was the determination of 25 phenolic compounds in different mead samples (honeywines) using high performance liquid chromatography (HPLC) with coulometric-array detection and in case of hydroxymethylfurfural with UV detection. Our method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The method development included the optimization of mobile phase composition, the pH value, conditions of the gradient elution and the flow rate using a window-diagram approach. The developed method was used for the determination of limits of detection and limits of quantitation for individual compounds. The linearity of calibration curves, accuracy and precision (intra- and inter-day) at three concentration levels (low, middle and high concentration range) were verified. Mead samples were diluted with the mobile phase at 1:1 to 1:50 ratio depending on the concentration and filtered through a PTFE filter without any other sample pre-treatment. Phenolic compounds concentration was determined in 50 real samples of meads and correlated with meads composition and hydroxymethylfurfural concentration. The most frequently occurred compounds were protocatechuic acid and vanillic acid (both of them were present in 98% samples), the least occurred compounds were (+)-catechin (10% samples) and sinapic acid (12% samples). Vanillin and ethylvanillin, which are used as artificial additives for the taste improvement, were found in 60% and 42% samples, respectively. Hydroxymethylfurfural concentration, as an indicator of honey quality, was in the range from 2.47 to 158 mg/L. Our method is applicable for the determination of 25 phenolic compounds in mead, honey and related natural samples. PMID:18620360

  16. Comparison of content in phenolic compounds, polyphenol oxidase, and peroxidase in grains of fifty sorghum varieties from burkina faso.

    PubMed

    Dicko, Mamoudou H; Hilhorst, Riet; Gruppen, Harry; Traore, Alfred S; Laane, Colja; van Berkel, Willem J H; Voragen, Alphons G J

    2002-06-19

    Analysis of fifty sorghum [Sorghum bicolor (L.) Moench] varieties used in Burkina Faso showed that they have different contents of phenolic compounds, peroxidase (POX), and polyphenol oxidase (PPO). Most of the varieties (82%) had a tannin content less than 0.25% (w/w). POX specific activity was higher than the monophenolase and o-diphenolase specific activities of PPO. For POX, there was a diversity of isoforms among varieties. No clear correlation could be made between the quantitative composition of the grain in phenolics, PPO, and POX, and resistance of plant to pathogens. In general, varieties good for a thick porridge preparation ("tô") had low phenolic compounds content and a medium POX activity. From the red varieties, those used for local beer ("dolo") had a high content in phenolic compounds and PPO, and a low POX activity. The variety considered good for couscous had a low POX content. The characteristics might be useful as selection markers for breeding for specific applications. PMID:12059160

  17. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano.

    PubMed

    Abderrahim, Fatima; Huanatico, Elizabeth; Segura, Roger; Arribas, Silvia; Gonzalez, M Carmen; Condezo-Hoyos, Luis

    2015-09-15

    Physical features, bioactive compounds and total antioxidant capacity (TAC) of coloured quinoa varieties (Chenopodium quinoa Willd.) from Peruvian Altiplano were studied. Quinoa seeds did not show a pure red colour, but a mixture which corresponded to different fractal colour values (51.0-71.8), and they varied from small to large size. Regarding bioactive compounds, total phenolic (1.23-3.24mg gallic acid equivalents/g) and flavonol contents (0.47-2.55mg quercetin equivalents/g) were highly correlated (r=0.910). Betalains content (0.15-6.10mg/100g) was correlated with L colour parameter (r=-0.569), total phenolics (r=0.703) and flavonols content (r=0.718). Ratio of betaxanthins to betacyanins (0.0-1.41) was negatively correlated with L value (r=-0.744). Whereas, high TAC values (119.8-335.9mmol Trolox equivalents/kg) were negatively correlated with L value (r=-0.779), but positively with betalains (r=0.730), as well as with free (r=0.639), bound (r=0.558) and total phenolic compounds (r=0.676). Unexploited coloured quinoa seeds are proposed as a valuable natural source of phenolics and betalains with high antioxidant capacity. PMID:25863614

  18. Antioxidant activity and characterization of phenolic compounds from bacaba (Oenocarpus bacaba Mart.) fruit by HPLC-DAD-MS(n).

    PubMed

    Abadio Finco, Fernanda D B; Kammerer, Dietmar R; Carle, Reinhold; Tseng, Wen-Hsin; Böser, Sabrina; Graeve, Lutz

    2012-08-01

    The phytochemicals in fruits have been shown to be major bioactive compounds with regard to health benefits. Bacaba (Oenocarpus bacaba Mart.) is a native palm fruit from the Brazilian savannah and Amazon rainforest that plays an important role in the diet of rural communities and is also a source of income for poor people. This paper reports the characterization and analyses of phenolics from bacaba fruit extract. The total phenolic content of bacaba fruit amounted to 1759.27 ± 1.01 mg GAE/100 g, the flavonoid content was 1134.32 ± 0.03 mg CTE/100 g, and the anthocyanin content was 34.69 ± 0.00 mg cyn-3-glc/100 g. The antioxidant activity was evaluated through different assays [ORAC, FRAP, DPPH, TEAC, and cellular antioxidant assay (CAA) assays] and revealed a significant antioxidant capacity for bacaba in comparison to the data available in the literature. The assignment of the phenolic compounds using HPLC-DAD-MS(n) was based on the evaluation of their UV-vis absorption maxima (λ(max)) and mass spectral analyses, and 14 compounds were tentatively identified. The results suggest that bacaba fruits are a promising source of phenolics. PMID:22788720

  19. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    PubMed Central

    Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte

    2015-01-01

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. PMID:26690454

  20. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines.

    PubMed

    Riebel, Matthias; Sabel, Andrea; Claus, Harald; Fronk, Petra; Xia, Ning; Li, Huige; König, Helmut; Decker, Heinz

    2015-01-01

    Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO), including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells) delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used. PMID:26393557

  1. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater.

    PubMed

    Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte

    2015-12-01

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. PMID:26690454

  2. Enhancement of Electron Transfer in Various Photo-Assisted Oxidation Processes for Nitro-Phenolic Compound Conversion

    NASA Astrophysics Data System (ADS)

    Khue, Do Ngoc; Lam, Tran Dai; Minh, Do Binh; Loi, Vu Duc; Nam, Nguyen Hoai; Bach, Vu Quang; Van Anh, Nguyen; Van Hoang, Nguyen; Hu'ng, Dao Duy

    2016-08-01

    The present study focuses on photo-assisted advanced oxidation processes (AOPs) with strongly enhanced electron transfer for degradation of nitro-phenolic compounds in aqueous medium. The effectiveness of these processes was estimated based on the pseudo-first order rate constant k determined from high-performance liquid chromatography. The degradation of four different nitro-phenolic compounds was systematically studied using selected AOPs; these four compounds were nitrophenol, dinitrophenol, trinitrophenol and trinitroresorcin. It was observed that the combination of ultraviolet light with hydrogen peroxide H2O2 enhanced and maintained hydroxyl radicals, and therefore increased the conversion yield of organic pollutants. These AOPs provided efficient and green removal of stable organic toxins found in a wide range of industrial wastewater.

  3. Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. arguta seed flour.

    PubMed

    Zhou, Xiao-Jing; Yan, Lin-Lin; Yin, Pei-Pei; Shi, Ling-Ling; Zhang, Jing-Hua; Liu, Yu-Jun; Ma, Chao

    2014-12-01

    A total of 11 phenolic compounds, as well as sucrose (12) and tryptophan (13), were isolated from cold-pressed Perilla frutescens var. arguta seed flour using column chromatography, and their chemical structures were identified as 3'-dehydroxyl-rosmarinic acid-3-o-glucoside (1), rosmarinic acid-3-o-glucoside (2), rosmarinic acid (3), rosmarinic acid methyl ester (4), luteolin (5), luteolin-5-o-glucoside (6), apigenin (7), caffeic acid (8), caffeic acid-3-o-glucoside (9), vanillic acid (10) and cimidahurinine (11) using NMR and time-of-flight mass spectrometry. Of these components, compound 1 is novel, and this is the first report of compounds 10 and 11 in perilla seeds. HPLC quantification combined with antioxidant activity evaluation revealed that rosmarinic acid and rosmarinic acid-3-o-glucoside were the dominant phenolic antioxidants with strong antioxidant activities. PMID:24996318

  4. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. PMID:26041208

  5. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis.

    PubMed

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves. PMID:27375495

  6. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

    PubMed Central

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves. PMID:27375495

  7. Cytoprotective and antioxidant effects of phenolic compounds from Haberlea rhodopensis Friv. (Gesneriaceae)

    PubMed Central

    Kondeva-Burdina, Magdalena; Zheleva-Dimitrova, Dimitrina; Nedialkov, Paraskev; Girreser, Ulrich; Mitcheva, Mitka

    2013-01-01

    Background: Haberlea rhodopensis Friv. (Gesneriaceae) is a rare poikilohydric endemic and preglacial relict growing in Balkan Peninsula. Previous investigations demonstrated strong antioxidant, antimicrobial and antimutagenic potential of alcoholic extract from the plant. Objective: The isolation of known caffeoyl phenylethanoid glucoside – myconoside and flavone-C-glycosides hispidulin 8-C-(2-O-syringoyl-β-glucopyranoside), hispidulin 8-C-(6-O-acetyl-2-O-syringoyl-β-glucopyranoside), and hispidulin 8-C-(6-O-acetyl-β-glucopyranoside) from the leaves of H. rhodopensis was carried out. The aim of this study was to investigate cyto-protective and antioxidant effects of isolated compounds. Materials and Methods: Antioxidant activity of isolated substances was examined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals; ferric reducing antioxidant power (FRAP) assay and inhibition of lipid peroxidation (LPO) in linoleic acid system by ferric thyocianate method. The compounds were investigated for their possible protective and antioxidant effects against tert-butyl hydroperoxide-induced oxidative stress in isolated rat hepatocytes. The levels of thiobarbituric acid reactive substances were assayed as an index of LPO. Lactate dehydrogenase leakage, cell viability, and reduced glutathione depletion were used as signs of cytotoxicity. Results: Myconoside demonstrated the highest DPPH radical scavenging, ABTS, FRAP, and antioxidant activity in linoleic acid system as well as the highest and statistically most significant protection and antioxidant activity against the toxic agent. Conclusion: Phenolic compounds isolated from H. rhodopensis demonstrated significant cytoprotective, radical scavenging potential, and inhibit lipid peroxidation, moreover, myconoside was found to be a new powerful natural antioxidant. PMID:24124280

  8. Melanocytotoxicity and antimelanoma effects of phenolic amine compounds in mice in vivo

    SciTech Connect

    Alena, F.; Jimbow, K.; Ito, S. )

    1990-06-15

    A phenolic amine compound, 4-S-cysteaminylphenol (4-S-CAP), is a potent depigmenting agent. To develop more efficacious antimelanoma agents, we synthesized four homologues of 4-S-CAP: N-acetyl-4-S-CAP (N-Ac-4-S-CAP), alpha-methyl-4-S-CAP, 4-S-homo-CAP, and N,N'-dimethyl-4-S-CAP. We tested these five compounds in mice in vivo. After s.c. or i.p. injection of saline solution (in control groups) or one of the compounds, follicular melanocytes were examined by light and electron microscopy to assess the degree of melanocytotoxicity; N-Ac-4-S-CAP induced the most depigmentation (98%), whether given i.p. or s.c. After injection of 4-S-CAP or N-Ac-4-S-CAP, the number of murine B16F10 melanoma colonies formed in the lungs was determined; 4-S-CAP and N-Ac-4-S-CAP were almost equally effective, reducing the colonies to 32 and 25% of mean control, respectively. Metabolic studies of the urine showed 9% of 4-S-CAP and 20% of N-Ac-4-S-CAP injected i.p. were excreted unchanged in 24 h; 1.3% of the N-Ac-4-S-CAP was excreted as 4-S-CAP, indicating some conversion. We conclude that N-Ac-4-S-CAP is a suitable model for developing chemotherapy to treat melanoma characterized by high tyrosinase activity and melanin synthesis.

  9. Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis vinifera L.).

    PubMed

    Anđelković, Marko; Radovanović, Blaga; Anđelković, Ana Milenkovic; Radovanović, Vladimir

    2015-09-01

    We investigated the phenolic composition, radical scavenging activity, and antimicrobial activity of grapevine leaf extracts from two red grape varieties, Vranac and Merlot (Vitis vinifera L.). The extracts were prepared from healthy grapevine leaves and those infected by Plasmopara viticola (downy mildew). The phenolic composition of the grapevine leaf extracts was determined using spectrophotometric assays and reverse-phase high performance liquid chromatography (RP-HPLC). The radical scavenging activity of grapevine leaf extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl assay, and their antimicrobial activity was determined by microwell dilution tests. The total phenolic content was higher in healthy grapevine leaf extracts than in infected grapevine leaf extracts. The RP-HPLC analysis detected significant amounts of flavonols, phenolic acids, and flavan-3-ols, and small amounts of stilbenes in the grapevine leaf extracts. Compared with the infected grapevine leaf extracts, the healthy grapevine leaf extracts were richer in flavonols, phenolic acids, and flavan-3-ols, but had lower stilbenes contents. All extracts showed strong free radical scavenging activity, which was strongly correlated with the total phenolic content (R(2) = 0.978). The extracts showed a stronger antimicrobial activity towards Gram-positive bacterial strains than towards Gram-negative bacterial strains and yeast. The phenolic compounds in grapevine leaves were responsible for their strong radical scavenging and antimicrobial activities. Together, these results demonstrate that grapevine leaves have high nutritional value and can be used as a fresh food and to prepare extracts that can be used as additives in food and medicines. PMID:26174183

  10. Removal of molecular weight fractions of COD and phenolic compounds in an integrated treatment of olive oil mill effluents.

    PubMed

    Beccari, M; Carucci, G; Lanz, A M; Majone, M; Petrangeli Papini, M

    2002-01-01

    Previous works (Beccari et al. 1999b; Beccari et al. 2001a; Beccari et al. 2001b) on the anaerobic treatment of olive oil mill effluents (OME) have shown: (a) a pre-treatment based on the addition of Ca(OH)2 and bentonite was able to remove lipids (i.e. the most inhibiting substances present in OME) almost quantitatively; (b) the mixture OME-Ca(OH)2-bentonite, fed to a methanogenic reactor without providing an intermediate phase separation, gave way to high biogas production even at very low dilution ratios; (c) the effluent from the methanogenic reactor still contained significant concentrations of residual phenolic compounds (i.e. the most biorecalcitrant substances present in OME). Consequently, this paper was aimed at evaluating the fate of the phenolic fractions with different molecular weights during the sequence of operations (adsorption on bentonite, methanogenic digestion, activated sludge post-treatment). The results show that a very high percentage (above 80%) of the phenolic fraction below 500 D is removed by the methanogenic process whereas the phenolic fractions above 1,000 D are significantly adsorbed on bentonite; the 8-day activated sludge post-treatment allows an additional removal of about 40% of total filtered phenolic compounds. The complete sequence of treatments was able to remove more than the 96% of the phenolic fraction below 500 D (i.e. the most toxic fraction towards plant germination). Preliminary respirometric tests show low level of inhibition exerted by the effluent from the methanogenic reactor on aerobic activated sludges taken from full-scale municipal wastewater plants. PMID:12713132

  11. Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree.

    PubMed

    Nowicka, Paulina; Wojdyło, Aneta

    2016-04-01

    The aim of this study was to describe the changes in phenolic compounds, antioxidant activity and colour of sour cherry puree supplemented with different natural sweeteners (sucrose, palm sugar, erythritol, xylitol, steviol glycoside, Luo Han Kuo), and natural prebiotic (inulin). A total of 18 types of polyphenolic compounds were assessed in the following sour cherry puree by LC-MS-QTof analysis, before and after 6 months of storage at 4 °C and 30 °C. Total phenolics determined by UPLC-PDA-FL was 1179.6 mg/100 g dm. In samples with addition of sweeteners the content of phenolic compounds ranged from 1133.1 (puree with steviol glycoside) to 725.6 mg/100 g dm (puree with erythritol), and the content of these compounds strongly affected on antioxidant activity. After 6-month storage, protective effects of some additives (palm sugar, erythritol, steviol glycoside, xylitol and inulin) on the polyphenol content, especially on anthocyanins and consequently on colour, and antioxidant activity were noticed. The results showed that some natural sweeteners might be interesting from a nutritional as well as commercial and pharmaceutical perspective. PMID:26593574

  12. Naked eye screening of 11 phenolic compounds and colorimetric determination using polydiacetylene vesicles with α-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Anekthirakun, Pimpimon; Sukwattanasinitt, Mongkol; Tuntulani, Thawatchai; Imyim, Apichat

    2013-07-01

    The colorimetric response (CR) of poly(10,12-pentacosadiynoic acid) vesicles (PPCDA) induced by α-cyclodextrin (α-CD) in an aqueous solution has been studied. Various parameters affecting the CR, such as response time and concentration were investigated. The blue color of 0.01 mM PPCDA solution became pinkish red with the addition of α-CD at the concentration higher than 3 mM. The inhibition of the color transition from blue to red was investigated using 11 phenolic compounds. The color transition could be inhibited and observed by naked eye in the presence of 4 phenolic compounds, i.e. 4-nitrophenol (4-NP) and 4-bromophenol (4-BP) and 4-chlorophenol (4-CP) and 3-nitrophenol (3-NP). A colorimetric method for the determination of these compounds was validated and applied for surface water analysis. The linear range from the plot of CR against phenolic compounds concentration was in the order of 0.5-2.0 mM with R2 more than 0.99. The recoveries were 90-95% with good precision (1-4%RSD, n = 10).

  13. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools.

    PubMed

    Belaid, Chokri; Khadraoui, Moncef; Mseddii, Salma; Kallel, Monem; Elleuch, Boubaker; Fauvarque, Jean Frangois

    2013-01-01

    Problems related with industrials effluents can be divided in two parts: (1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes. This investigation deals with these two aspects, an electrochemical treatment method of an olive mill wastewater (OMW) under platinized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination. The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution. Indeed, 87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation. Moreover, 55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced. On the other hand, UV-Visible spectrophotometry, Gaz chromatography/mass spectrometry, cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR) showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW. It was concluded that electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of all phenolic compounds present in OMW. Among the monitoring analytical tools applied, cyclic voltammetry and 13C NMR a re among th e techniques that are introduced for thefirst time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance. PMID:23586318

  14. Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe).

    PubMed

    Lätti, Anja K; Riihinen, Kaisu R; Jaakola, Laura

    2011-06-01

    Hybridization between species plays an important role in the evolution of secondary metabolites and in the formation of combinations of existing secondary metabolites in plants. We have investigated the content of phenolic compounds in berries and flowers of Vaccinium×intermedium Ruthe, which is a rare natural hybrid between bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). The berries and flowers of the hybrid showed characteristics inherited from both parent species in the distribution and contents of phenolic compounds. Bilberry is known as one of the richest sources of anthocyanins and to have a profile of 15 major forms combining cyanidin, delphinidin, petunidin, peonidin and malvidin with galactose, glucose and arabinose. Lingonberry contains only cyanidin glycosides. Hybrid berries contained all bilberry anthocyanins with pronounced cyanidin content. With regard to proanthocyanidins and flavonol glycosides, the hybrid inherited diverse profiles combining those of both parental species. The distribution of hydroxycinnamic acids was quite uniform in all studied berries. Of the identified compounds, 30 were detected in lingonberry, 46 in bilberry, 53 in hybrid berries and 38 in hybrid flowers. Hence, compared with the parent species, hybrid berries possess a more diverse profile of phenolic compounds and, therefore, can offer interesting material for breeding purposes. PMID:21382629

  15. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds.

    PubMed

    Corbin, Cyrielle; Fidel, Thibaud; Leclerc, Emilie A; Barakzoy, Esmatullah; Sagot, Nadine; Falguiéres, Annie; Renouard, Sullivan; Blondeau, Jean-Philippe; Ferroud, Clotilde; Doussot, Joël; Lainé, Eric; Hano, Christophe

    2015-09-01

    Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil. PMID:25753491

  16. Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential.

    PubMed

    Schroyen, Michel; Vervaeren, Han; Vandepitte, Hanne; Van Hulle, Stijn W H; Raes, Katleen

    2015-09-01

    Pretreatment of lignocellulosic biomass is necessary to enhance the hydrolysis, which is the rate-limiting step in biogas production. Laccase and versatile peroxidase are enzymes known to degrade lignin. Therefore, the impact of enzymatic pretreatment was studied on a variety of biomass. A significant higher release in total phenolic compounds (TPC) was observed, never reaching the inhibiting values for anaerobic digestion. The initial concentration of TPC was higher in the substrates containing more lignin, miscanthus and willow. The anaerobic digestion of these two substrates resulted in a significant lower biomethane production (68.8-141.7 Nl/kg VS). Other substrates, corn stover, flax, wheat straw and hemp reached higher biomethane potential values (BMP), between 241 and 288 Nl/kg VS. Ensilaged maize reached 449 Nl/kg VS, due to the ensilation process, which can be seen as a biological and acid pretreatment. A significant relation (R(2) = 0.89) was found between lignin content and BMP. PMID:26094196

  17. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  18. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.

    PubMed

    Pérez, Miriam; García, Mónica; Blustein, Guillermo

    2015-08-01

    Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. PMID:26210408

  19. Extraction of phenolic compounds from water samples by dispersive micro-solid-phase extraction.

    PubMed

    Babaee, Shirin; Daneshfar, Ali

    2016-07-01

    In this article, the use of magnetically separable sorbent polyaniline/silica-coated nickel nanoparticles is evaluated under a dispersive micro-solid-phase extraction approach for the extraction of phenolic compounds from water samples. The sorbent was prepared by in situ chemical polymerization of aniline on the surface of silica-modified nickel nanoparticles and was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, and vibrating sample magnetometry. Effective variables such as amount of sorbent (milligrams), pH and ionic strength of sample solution, volume of eluent solvent (microliters), vortex, and ultrasonic times (minutes) were investigated by fractional factorial design. The significant variables optimized by a Box-Behnken design were combined by a desirability function. Under the optimized conditions, the calibration graphs of analytes were linear in a concentration range of 0.02-100 μg/mL, and with correlation coefficients more than 0.999. The limits of detection and quantification were in the ranges of 10-23 and 33-77 μg/L, respectively. This procedure was successfully employed in the determination of target analytes in spiked water samples; the relative mean recoveries ranged from 96 to 105%. PMID:27136047

  20. Analysis of Phenolic Compounds in Some Medicinal Herbs by LC-MS.

    PubMed

    Matei, Alina O; Gatea, Florentina; Radu, Gabriel L

    2015-08-01

    In this paper, a liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry in negative mode method was developed for the identification and quantitative determination of 13 individual phenolics (chlorogenic acid, caffeic acid, coumaric acid, ferulic acid, (+)-catechin, (-)-epicatechin, rutin, quercitrin, isoquercitrin, fisetin, isorhamnetin, hesperidin and chrysin) from ethanolic extracts [30, 50 and 70% (w/v)] of Calendula officinalis, Hypericum perforatum, Galium verum and Origanum vulgare and some commercial extracts of these medicinal herbs. Correlation coefficients (r(2)) from calibration curves for all the compounds were between 0.9971 and 0.9996. Limit of detection was in the range of 0.070-0.280 µg/mL and limit of quantification was from 0.233 to 0.932 µg/mL. The method was partially validated and the results obtained are: the intra- and interday relative standard deviation values were within 0.086 and 2.821% and recovery values vary from 95.84% (coumaric acid) to 103.20% (rutin). PMID:25583972

  1. Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds.

    PubMed

    Toraman, Hilal E; Vanholme, Ruben; Borén, Eleonora; Vanwonterghem, Yumi; Djokic, Marko R; Yildiz, Guray; Ronsse, Frederik; Prins, Wolter; Boerjan, Wout; Van Geem, Kevin M; Marin, Guy B

    2016-05-01

    Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil. PMID:26890798

  2. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae).

    PubMed

    Määttä-Riihinen, Kaisu R; Kamal-Eldin, Afaf; Törrönen, A Riitta

    2004-10-01

    High-performance liquid chromatography combined with diode array and electrospray ionization mass spectrometric detection was used to study soluble and insoluble forms of phenolic compounds in strawberries, raspberries (red and yellow cultivated and red wild), arctic bramble, and cloudberries. Hydroxycinnamic acids were present as free forms in cloudberries and mainly as sugar esters in the other berries. Quercetin 3-glucuronide was the typical flavonol glycoside in all of the berries studied. The composition of the predominant anthocyanins can be used to distinguish the studied red Rubus species from each other since cyanidin was glycosylated typically with 3-sophorose (56%) in cultivated red raspberry, with 3-sophorose (30%) and 3-glucose (27%) in wild red raspberry, and with 3-rutinose (80%) in arctic bramble. Ellagic acid was present as free and glycosylated forms and as ellagitannins of varying degrees of polymerization. Comparable levels of ellagitannins were obtained by the analysis of soluble ellagitannins as gallic acid equivalents and by the analysis of ellagic acid equivalents released by acid hydrolysis of the extracts. PMID:15453684

  3. Induction of phenolic compounds in response to Xylella fastidiosa infection in five different grapevine cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, Thompson seedless grapevines infected with Xylella fastidiosa (Xf), the causal agent of Pierce’s disease (PD), were observed to possess greater phenolic levels in xylem sap and tissues than non-infected plants shortly after inoculation. Plants often produce greater levels of phenolic com...

  4. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    PubMed Central

    Chea, Vorleak; Paolucci-Jeanjean, Delphine; Sanchez, José; Belleville, Marie-Pierre

    2014-01-01

    This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1), consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2), whereas at the highest substrate concentration (500 mg·L−1), it was shown that the reaction was limited by the oxygen content. PMID:25295628

  5. Flow injection analysis of phenolic compounds with carbon paste electrodes modified with tyrosinase purchased from different companies

    SciTech Connect

    Lindgren, A.; Emneus, J.; Csoeregi, E.; Gorton, L.; Marko-Varga, G.; Ruzgas, T.

    1996-05-01

    Tyrosinase-modified carbon paste electrodes were prepared using lyophilised powder of the enzyme purchased from different companies. The selectivity of these electrodes for nine phenolic compounds, including six substituted catechols, has been studied. The signals obtained for catechol were always higher than those found for other phenolic compounds. Cyclic voltammetry and flow injection measurements indicated that the response of the tyrosinase-modified carbon paste electrodes was limited by the rate of the enzymatic oxidation of catechols. Different approaches of past electrode preparation have been studied and compared. Direct mixing of enzyme into the graphite powder doped with the osmium based mediator, resulted in the highest sensitivity for the studied substrates. However, substrate selectivity was found to be dependent on the source of enzyme used for electrode preparation.

  6. Reduction of soluble nitrogen and mobilization of plant nutrients in soils from U.S. northern Great Plains agroecosystems by phenolic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic plant secondary metabolites actively participate in a broad range of important reactions that affect livestock, plants and soil. In soil, phenolic compounds can affect nutrient dynamics and mobility of metals but their role in northern Great Plains agroecosystems is largely unknown. We eval...

  7. Theoretical prediction of the relationship between phenol function and COX-2/AP-1 inhibition for ferulic acid-related compounds.

    PubMed

    Murakami, Yukio; Ito, Shigeru; Atsumi, Toshiko; Fujisawa, Seiichiro

    2005-01-01

    Ferulic acid-related compounds possess antioxidant activity. Dehydrodiisoeugenol and ferulic acid dimer (bis-FA), but not the parent monomers isoeugenol and ferulic acid, inhibit lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) gene expression in RAW 264.7 cells. To clarify the mechanism of their inhibitory effects on COX-2 expression, the phenolic O-H bond dissociation enthalpy (BDE) and ionization potential (IP) of 8 ferulic acid-related compounds were calculated by both semi-empirical molecular orbital (AM1, PM3) and ab initio (3-21G* 6-31G*) and density function theory (DFT) (B3LYP) methods. COX-2 inhibition appeared in compounds with phenolic O-H BDE higher than 85.76 kcal/mol, as calculated by the density function theory (DFT) approach. The phenolic O-H BDEs of the most potent compounds, dehydrodiisoeugenol and bis-FA, were 85.99 and 85.76 kcal/mol, respectively. No causal relationship between COX-2 inhibition and IP was found. Neither dehydrodiisoeugenol nor bis-FA possessed significant scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The NSAID-like activity of dehydrodiisoeugenol and bis-FA appears to be related to their phenol function. Binding of activator protein-1 (AP-1) to the 12-tetradecanoylphorbol-13-acetate-responsive element (TRE) sequence in LPS-stimulated cells was inhibited by bis-FA at 1 microM and dehydrodiisoeugenol at 0.1 microM, but not by the parent monomers isoeugenol and ferulic acid. PMID:16277019

  8. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction

    PubMed Central

    Rajha, Hiba N.; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G.; Maroun, Richard G.

    2014-01-01

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications. PMID:25322155

  9. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction.

    PubMed

    Rajha, Hiba N; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G; Maroun, Richard G

    2014-01-01

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications. PMID:25322155

  10. An approach to determination of phenolic compounds in seawater using SPME-GC-MS based on SWCNTs coating

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Wang, Ying; Zeng, Lin

    2016-08-01

    Phenolic compounds have become one kind of the important pollutants of the marine environment. Single-walled Carbon nanotubes, as one-dimensional nano materials, have light weight and perfect hexagonal structure of connections, with many unusual mechanical, chemical and electrical properties. In recent years, with the research of carbon nanotubes and other nano materials, the application prospect is also constantly discussed. In this paper, homemade single-walled carbon nanotubes (SWCNTs) coating was used for establishing an analytical approach to the determination of five kinds of phenolic compounds in seawater using SPME-GC-MS. Optimal conditions: After saturation was conducted with NaCl, and pH was adjusted to 2.0 with H2SO4, the extract was immersed in a water bath at 40°C for GC-MS determination through 40-min agitating extraction at 500 rmin-1 and 3-min desorption at 280°C. The liniearities ranged between 0.01-100 μg L-1, and the determination limits ranged between 1.5-10 ng L-1. The relative standard deviation (RSD, n = 5) was less than 6.5%. For the phenolic compounds obtained from the spiked recovery test for actual seawater samples, the rates of recovery were 87.5%-101.7%, and the RSDs were less than 8.8%, which met the requirements of determination. Due to its simplicity, high efficiency and low consumption, this approach is suitable for the analysis of trace amounts of phenolic compounds in marine waters.

  11. Yuccalides A-C, three new phenolic compounds with spiro-structures from the roots of Yucca gloriosa.

    PubMed

    Nakashima, Ken-Ichi; Abe, Naohito; Oyama, Masayoshi; Inoue, Makoto

    2016-06-01

    Three new phenolic compounds, yuccalides A-C (1-3), were isolated from the roots of Yucca gloriosa L., along with four known compounds (4-7). The structures of the new compounds were established by extensive NMR spectroscopic analyses. Inducible nitric oxide synthase (iNOS) mRNA levels induced by lipopolysaccharide (LPS) in mouse macrophage-like RAW 264.7 cells were effectively suppressed by compounds 2, 4, and 6, all of which had the (2R*, 3R*)-configuration. IL-1β and IL-6 mRNA levels induced by LPS were significantly attenuated by compounds 4, 5, and 6, but not by 2. PMID:27107534

  12. Development and Validation of an HPLC-UV Method for Determination of Eight Phenolic Compounds in Date Palms.

    PubMed

    Al-Rimawi, Fuad; Odeh, Imad

    2015-01-01

    A simple, precise, accurate, and selective method was developed and validated for determination of eight phenolic compounds (gallic acid, p-hydroxybenzoic acid, vanilic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and sinapic acid) in date palms. Separation was achieved on an RP C18 column using the mobile phase methanol-water with 2% acetic acid (18+82, v/v). This method was validated according to the requirements for new methods, which include accuracy, precision, selectivity, robustness, LOD, LOQ, linearity, and range. The method demonstrated good linearity over the range 1-1000 ppm of gallic acid, p-hydroxybenzoic acid, vanilic acid, caffeic acid, and syringic acid with r2 greater than 0.99, and in the range of 3-1000 ppm for p-coumaric acid, ferulic acid, and sinapic acid with r2 greater than 0.99. The recovery of the eight phenolic compounds ranged from 97.1 to 102.2%. The method is selective because adjacent peaks of phenolic compounds were well separated with good resolution. The degree of reproducibility of the results obtained as a result of small deliberate variations in the method parameters and by changing analytical operators proved that the method is robust and rugged. PMID:26525252

  13. Isolation and characterization of phenolic compounds and anthocyanins from Murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity.

    PubMed

    Junqueira-Gonçalves, Maria Paula; Yáñez, Lina; Morales, Carolina; Navarro, Muriel; A Contreras, Rodrigo; Zúñiga, Gustavo E

    2015-01-01

    Berry fruit consumption has become important in the promotion of human health, mainly due to their phenolic compounds, which have been associated with protection against different pathologies, as well as antimicrobial and other biological activities. Consequently, there has been a growing interest in identifying natural antioxidants and antimicrobials from these plants. This study aimed to characterize the phenolic chemical composition and anthocyanin profile of murta (Ugni molinae Turcz.) fruit, and to evaluate the antioxidant and antimicrobial activity of its extracts (ethanolic and methanolic). LC/MS of the ethanolic extracts showed the presence of three major compounds: caffeic acid 3-glu, quercetin-3-glu and quercetin, while in the methanolic acid extract they were cyanidin-3-glucoside, pelargonidin-3-arabinose and delphinidin-3-glucoside. The antioxidant activity of ethanolic extracts (DPPH· and ORAC assays) was higher than that of methanol acid extracts or purified anthocynins. Furthermore, the methanol acid extract showed an inhibitory activity against the bacteria E. coli and S. typhi similar to that of standard antibiotics. The results suggest that the antioxidant activity of the ethanolic extract is regulated by the high content of phenolic compounds and the fruit's characteristic color is due to the content of pelargonidin-3-arabinose and delphinidin-3-glucoside. The obtained results demonstrated the appreciable antioxidant and antibacterial activities, providing opportunities to explore murta extracts as biopreservatives. PMID:25838172

  14. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.

    PubMed

    Wang, Wei; Han, Hongjun

    2012-01-01

    The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. PMID:22033369

  15. Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae.

    PubMed

    Pańka, Dariusz; Piesik, Dariusz; Jeske, Małgorzata; Baturo-Cieśniewska, Anna

    2013-07-15

    Grasses very often form symbiotic associations with Neotyphodium/Epichloë endophytic fungi. These endophytes often allow the host grass to be protected from different pathogens. However, there is little known about the mechanisms of such endophyte influence on the host. Thus, the purpose of this research was to examine the effect of the N. lolii endophyte on the total production of phenolic compounds, VOCs emission and the resistance of three perennial ryegrass genotypes infected by pathogenic Fusarium poae. Analyses of total phenolics content were performed in control (not inoculated) and inoculated plants after 1, 2, 3, 4, 5, and 6 days (DAI) and for VOCs after 0, 3, 6 and 12 DAI. The presence of endophytes significantly reduced the disease index in two of the three genotypes relative to that in E-. Plants infected by N. lolii exhibited higher production of phenolics relative to the E- plants. The highest amounts of phenolics were observed on the second and sixth DAI. Genotype Nl22 showed the strongest effect of the endophyte on the production of phenolics, which increased by over 61%. Both the endophyte infected and non-infected plants emitted most abundantly two GLVs ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate), three terpenes (linalool, (Z)-ocimene, β-caryophyllene) and three shikimic acid pathway derivatives (benzyl acetate, indole, and methyl salicylate). The endophyte presence and the intervals of VOCs detection were a highly significant source of variation for all emitted volatiles (P<0.001). The genotype of the perennial ryegrass significantly affected only the emission of methyl salicylate (P<0.05) and β-caryophyllene (P<0.05). Most of the VOCs ((Z)-3-hexen-1-yl acetate, (Z)-3-hexenal, linalool and methyl salicylate) reached their highest levels of emission on the sixth DAI, when averaged over genotypes and endophyte status. The results highlight the role of Neotyphodium spp. in the mediation of quadro-trophic interactions among plants, symbiotic

  16. Isotope-filtered nD NMR spectroscopy of complex mixtures to unravel the molecular structures of phenolic compounds in tagged soil organic matter.

    PubMed

    Bell, N G A; Graham, M C; Uhrín, D

    2016-08-01

    Unravelling structures of molecules contained in complex, chromatographically inseparable mixtures is a challenging task. Due to the number of overlapping resonances in NMR spectra of these mixtures, unambiguous chemical shift correlations attributable to individual molecules cannot be achieved and thus their structure determination is elusive by this technique. Placing a tag carrying an NMR active nucleus onto a subset of molecules enables (i) to eliminate signals from the non-tagged molecules, and (ii) to obtain a set of correlated chemical shifts and coupling constants belonging to a single molecular type. This approach provides an opportunity for structure determination without the need for compound separation. Focusing on the most abundant functional groups of natural organic matter molecules, the carboxyl and hydroxyl groups were converted into esters and ethers, respectively by introducing (13)CH3O groups. A set of (13)C-filtered nD NMR experiments was designed yielding structures/structural motives of tagged molecules. The relative sensitivity of these experiments was compared and a step-by-step guide how to use these experiments to analyse the structures of methylated phenolics is provided. The methods are illustrated using an operational fraction of soil organic matter, fulvic acid isolated from a Scottish peat bog. Analysis of 33 structures identified in this sample revealed a correlation between the position of the methoxy cross-peaks in the (1)H, (13)C HSQC spectra and the compound type. This information enables profiling of phenolic compounds in natural organic matter without the need to acquire a full set of experiments described here or access to high field cryoprobe NMR spectrometers. PMID:27277943

  17. Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste.

    PubMed

    Chung, Ill-Min; Seo, Su-Hyun; Ahn, Joung-Kuk; Kim, Seung-Hyun

    2011-08-01

    This study reports the effect of processing, fermentation, and aging treatment on the content and profile of 43 phenolic compounds in soybean seeds, soy curd (tofu), and soy paste (ChungGukJang, CGJ). Mean content of phenolic compounds was ranked as soybean seed=CGJ aged for 3days (CGJ-3D)=CGJ aged for 6days (CGJ-6D)>tofu (P<0.0001). Low percent recovery (47.1%) of phenolic compounds in tofu was due to heating (boiling), leaching in water, filtering, coagulation, and whey exclusion during tofu making. Aging period did not affect the mean contents of 43 phenolic compounds in the CGJ, whereas it affected the phenolic acids contents in the CGJ (P<0.01). Benzoic, ferulic, chlorogenic, gentisic, protocatechuic, or β-Resorculic acid was major phenolic compounds in soybean seeds, tofu, CGJ-3D, or CGJ-6D. Especially, the CGJ-3D contained large amounts of isoflavone aglucons and phenolic acids compared to soybean seeds or tofu. PMID:25214084

  18. Separation and characterization of phenolic compounds from U.S. pecans by liquid chromatography-tandem mass spectrometry.

    PubMed

    Robbins, Katherine S; Ma, Yuanyuan; Wells, M Lenny; Greenspan, Phillip; Pegg, Ronald B

    2014-05-14

    The phenolic acids and proanthocyanidins (PACs) of pecans possess bioactive properties, which might be useful in retarding the onset of and ameliorating the status of certain chronic disease states. There is a general lack of information in the literature regarding such compounds, especially the PACs. Crude phenolic extracts pooled from eight commercially significant cultivars were selected based on their relatively high antioxidant capacities. The pooled extracts were separated via Sephadex LH-20 column chromatography into five ethanolic low-molecular-weight (LMW) fractions and one acetonic high-molecular-weight (HMW) fraction. The preparations were then characterized using RP-HPLC-ESI-MS/MS and diol-phase HPLC-ESI-MS/MS in order to determine the key constituents present in the LMW and HMW fractions, respectively. As previously observed in pecan nutmeat, ellagic acid and (+)-catechin were found to be the major phenolics in the LMW fractions. The last eluting LMW fraction did not contain phenolic acids; rather it possessed PAC monomers and dimers. The HMW fraction comprised a majority of its PACs as dimers; yet, monomers, trimers, tetramers, pentamers, and hexamers were also separated and characterized. PMID:24738776

  19. Immobilization of Delftia tsuruhatensis in macro-porous cellulose and biodegradation of phenolic compounds in repeated batch process.

    PubMed

    Juarez Jimenez, B; Reboleiro Rivas, P; Gonzalez Lopez, J; Pesciaroli, C; Barghini, P; Fenice, M

    2012-01-01

    Delftia tsuruhatensis BM90, previously isolated from Tyrrhenian Sea and selected for its ability to degrade a wide array of phenolic compounds, was immobilized in chemically modified macro porous cellulose. The development of bacterial adhesion on the selected carrier was monitored by scanning electron microscopy. Evident colonization started already after 8h of incubation. After 72h, almost all the carrier surface was covered by the bacterial cells. Extracellular bacterial structures, such as pili or fimbriae, contributed to carrier colonization and cell attachment. Immobilized cells of D. tsuruhatensis were tested for their ability to biodegrade a pool of 20 phenols in repeated batch process. During the first activation batch (72h), 90% of phenols degradation was obtained already in 48h. In the subsequent batches (up to 360h), same degradation was obtained after 24h only. By contrast, free cells were slower: to obtain almost same degradation, 48h were needed. Thus, process productivity, achieved by the immobilized cells, was double than that of free cells. Specific activity was also higher suggesting that the use of immobilized D. tsuruhatensis BM90 could be considered very promising in order to obtain an efficient reusable biocatalyst for long-term treatment of phenols containing effluents. PMID:21983235

  20. Surfactant-based ionic liquids for extraction of phenolic compounds combined with rapid quantification using capillary electrophoresis.

    PubMed

    Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M

    2014-09-01

    A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. PMID:24798689

  1. The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves.

    PubMed

    Król, A; Amarowicz, R; Weidner, S

    2015-09-15

    According to some estimates, a 70% increase in crop yield could be achieved if the environmental conditions were close to the optimum ones for a given plant, which is why the identification and control of adverse environmental effects is a top priority in many countries worldwide. This paper contains a discussion of the changes in selected elements of the secondary metabolism in the leaves of two grapevine varieties (Vitis vinifera L.) with a different degree of tolerance to cold stress during prolonged and constant low temperature stress. The analyses have shown that the more-tolerant variety was characterized by a higher content of phenolic compounds, better radical-scavenging capacity and stronger reducing power. However, the cold stress caused a decrease in the concentration of the phenolics and decreased the scavenging capacity in the leaves of both varieties. Four phenolic acids have been identified in the extracts from the leaves of both grapevines: caffeic acid, p-coumaric acid, ferulic acid and a caffeic acid derivative. Caffeic acid appeared in the highest concentrations in all the leaf extracts. Additionally, it has been noted that in the leaves of the varieties susceptible and tolerant to cold stress, the prolonged exposure to low temperature caused a considerable reduction of the content of all identified phenolic acids. The results of the analyses have demonstrated large differences in the functioning of the secondary metabolism in response to the same stressor. PMID:26555272

  2. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): an Andean pseudocereal.

    PubMed

    Peñarrieta, J Mauricio; Alvarado, J Antonio; Akesson, Björn; Bergenståhl, Björn

    2008-06-01

    Total antioxidant capacity (TAC), total phenolic compounds (TPH), total flavonoids (TF) and individual phenolic compounds were determined in canihua collected at approx. 3850 m altitude. The TAC values varied among samples from 2.7 to 44.7 by the ferric reducing antioxidant power (FRAP) method and from 1.8 to 41 by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method expressed as micromol of Trolox equivalents/g dw. The content of TPH was 12.4-71.2 micromol gallic acid equivalents/g dw and that of the TF ranged between 2.2 and 11.4 micromol of catechin equivalents/g dw. The data obtained by the four methods showed several significant correlations. Prior to analysis by HPLC, the samples were subjected to acid hydrolysis and in the water-soluble extracts this led to an up to 20-fold increase in the TAC values in comparison with the values of the nonhydrolysed samples. HPLC analysis showed the presence of eight major compounds identified as catechin gallate, catechin, vanillic acid, kaempferol, ferulic acid, quercetin, resorcinol and 4-methylresorcinol. Their estimated contribution to the TAC value (FRAP method) indicated that resorcinols contributed most of the antioxidant capacity of the water-soluble extract. The results show that canihua is a potential source of natural antioxidant compounds and other bioactive compounds which can be important for human health. PMID:18537130

  3. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 1. Experimental conditions and fate of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Nielsen, Per H.; Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas H.

    1995-11-01

    The transformation of specific organic compounds was investigated by in situ and laboratory experiments in an anaerobic landfill leachate pollution plume at four different distances from the landfill. This paper presents the experimental conditions in the in situ microcosm and laboratory batch microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized as methanogenic, Fe(III)-reducing and NO 3--reducing by the redox sensitive species present in groundwater and sediment and by bioassays. With a few exceptions the aquifer redox conditions were maintained throughout the experiments as monitored by redox sensitive species present in groundwater during the experiments, by redox sensitive species present in the sediment after the experiments and by bioassays performed after the experiments. Transformation of nitrophenol was very fast close to the landfill in strongly reducing conditions, while transformation was slower in the more oxidized part of the plume. Lag phases for the nitrophenols were short (maximum 10 days). Phenol was only transformed in the more distant part of the plume in experiments where NO 3-, Fe(III) and Mn(IV) reduction was dominant. Lag phases for phenol were either absent or lasted up to 2 months. Dichlorophenols were only transformed in experiments representing strongly reducing, presumably methanogenic, redox conditions close to the landfill after lag phases of up to 3 months. Transformation of o-cresol was not observed in any of the experiments throughout the plume. Generally, there was good accordance between the results obtained by in situ and laboratory experiments, both concerning redox conditions and the fate of the phenolic compounds. However, for phenol and 2,4-dichlorophenol, transformation was observed

  4. Phenolic compounds and expression of 4CL genes in silver birch clones and Pt4CL1a lines.

    PubMed

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins. PMID:25502441

  5. Control of wild oat (Avena fatua) using some phenolic compounds I – Germination and some growth parameters

    PubMed Central

    Almaghrabi, Omar A.

    2011-01-01

    The percentage of germination of wild oat was significantly inhibited by increasing the concentrations of phenolic compounds. Ferulic acid was the most effective compound which completely inhibited germination at a concentration of 3.0 mM. At the same time, wheat and barley were slightly affected with different concentrations of the four phenolic compounds. The percentage of germination of wheat significantly decreased with increasing of ferulic acid reaching a maximum inhibition at 3.0 mM concentration. On the other hand, the germination of wheat was not affected with the other three phenolic compounds. The percentage of germination of barley was not affected with all phenolic compounds except for hydroxy phenolic acetic acid which has significant effect at a concentration of 3.0 mM. Salicylic acid significantly inhibited the growth parameters gradually in wild oat, wheat and barley. The shoot/root ratio was decreased in wild oat and barley, while the ratio increased in wheat. The growth parameters were completely inhibited at 3.0 mM of ferulic acid for both wild oat and wheat but slightly inhibited for barley. The shoot/root ratio was increased in all concentrations of ferulic acid except at 3.0 mM which was completely inhibited for both wild oat and wheat, while the ratio was increased in all treatments of ferulic acid in the case of barley. The growth parameters were highly significant and decreased in wild oat, wheat and barley with increasing the concentrations of hydroxybenzoic acid and hydroxyphenyl acetic acid. The shoot/root ratio was not changed in all concentrations except at 3.0 mM in the case of wild oat, the ratio was decreased at 2.0 and 3.0 mM in the case of wheat, while the ratio increased in most of hydroxybenzoic acid concentrations in the case of barley. The shoot/root ratio was increased with increasing of the hydroxyphenyl acetic acid concentrations. PMID:23961157

  6. Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines

    PubMed Central

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins. PMID:25502441

  7. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species

    PubMed Central

    Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George

    2012-01-01

    Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameter