Science.gov

Sample records for abundant plant species

  1. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  2. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  3. Plant Trait-Species Abundance Relationships Vary with Environmental Properties in Subtropical Forests in Eastern China

    PubMed Central

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  4. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  5. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.

    PubMed

    Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D

    2010-08-05

    The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.

  6. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  7. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    EPA Science Inventory

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  8. Plant community responses to long-term fertilization: changes in functional group abundance drive changes in species richness.

    PubMed

    Dickson, Timothy L; Gross, Katherine L

    2013-12-01

    Declines in species richness due to fertilization are typically rapid and associated with increases in aboveground production. However, in a long-term experiment examining the impacts of fertilization in an early successional community, we found it took 14 years for plant species richness to significantly decline in fertilized plots, despite fertilization causing a rapid increase in aboveground production. To determine what accounted for this lag in the species richness response, we examined several potential mechanisms. We found evidence suggesting the abundance of one functional group-tall species with long-distance (runner) clonality-drove changes in species richness, and we found little support for other mechanisms. Tall runner species initially increased in abundance due to fertilization, then declined dramatically and were not abundant again until later in the experiment, when species richness and the combined biomass of all other functional groups (non-tall runner) declined. Over 86 % of the species found throughout the course of our study are non-tall runner, and there is a strong negative relationship between non-tall runner and tall runner biomass. We therefore suggest that declines in species richness in the fertilized treatment are due to high tall runner abundance that decreases the abundance and richness of non-tall runner species. By identifying the functional group that drives declines in richness due to fertilization, our results help to elucidate how fertilization decreases plant richness and also suggest that declines in richness due to fertilization can be lessened by controlling the abundance of species with a tall runner growth form.

  9. Predicting recovery criteria for threatened and endangered plant species on the basis of past abundances and biological traits.

    PubMed

    Neel, Maile C; Che-Castaldo, Judy P

    2013-04-01

    Recovery plans for species listed under the U.S. Endangered Species Act are required to specify measurable criteria that can be used to determine when the species can be delisted. For the 642 listed endangered and threatened plant species that have recovery plans, we applied recursive partitioning methods to test whether the number of individuals or populations required for delisting can be predicted on the basis of distributional and biological traits, previous abundance at multiple time steps, or a combination of traits and previous abundances. We also tested listing status (threatened or endangered) and the year the recovery plan was written as predictors of recovery criteria. We analyzed separately recovery criteria that were stated as number of populations and as number of individuals (population-based and individual-based criteria, respectively). Previous abundances alone were relatively good predictors of population-based recovery criteria. Fewer populations, but a greater proportion of historically known populations, were required to delist species that had few populations at listing compared with species that had more populations at listing. Previous abundances were also good predictors of individual-based delisting criteria when models included both abundances and traits. The physiographic division in which the species occur was also a good predictor of individual-based criteria. Our results suggest managers are relying on previous abundances and patterns of decline as guidelines for setting recovery criteria. This may be justifiable in that previous abundances inform managers of the effects of both intrinsic traits and extrinsic threats that interact and determine extinction risk.

  10. Models of experimentally derived competitive effects predict biogeographical differences in the abundance of invasive and native plant species.

    PubMed

    Xiao, Sa; Ni, Guangyan; Callaway, Ragan M

    2013-01-01

    Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4-9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact.

  11. Species interactions in an Andean bird-flowering plant network: phenology is more important than abundance or morphology.

    PubMed

    Gonzalez, Oscar; Loiselle, Bette A

    2016-01-01

    Biological constraints and neutral processes have been proposed to explain the properties of plant-pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers) and flowering plants in high elevation forests (i.e., "elfin" forests) of the Andes, we explore the importance of biological constraints and neutral processes (random interactions) to explain the observed species interactions and network metrics, such as connectance, specialization, nestedness and asymmetry. In cold environments of elfin forests, which are located at the top of the tropical montane forest zone, many plants are adapted for pollination by birds, making this an ideal system to study plant-pollinator networks. To build the network of interactions between birds and plants, we used direct field observations. We measured abundance of birds using mist-nets and flower abundance using transects, and phenology by scoring presence of birds and flowers over time. We compared the length of birds' bills to flower length to identify "forbidden interactions"-those interactions that could not result in legitimate floral visits based on mis-match in morphology. Diglossa flowerpiercers, which are characterized as "illegitimate" flower visitors, were relatively abundant. We found that the elfin forest network was nested with phenology being the factor that best explained interaction frequencies and nestedness, providing support for biological constraints hypothesis. We did not find morphological constraints to be important in explaining observed interaction frequencies and network metrics. Other network metrics (connectance, evenness and asymmetry), however, were better predicted by abundance (neutral process) models. Flowerpiercers, which cut holes and access flowers at their base and, consequently, facilitate nectar access for other hummingbirds, explain why morphological mis-matches were relatively unimportant in this system. Future work should focus on how changes in

  12. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  13. Species interactions in an Andean bird–flowering plant network: phenology is more important than abundance or morphology

    PubMed Central

    Loiselle, Bette A.

    2016-01-01

    Biological constraints and neutral processes have been proposed to explain the properties of plant–pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers) and flowering plants in high elevation forests (i.e., “elfin” forests) of the Andes, we explore the importance of biological constraints and neutral processes (random interactions) to explain the observed species interactions and network metrics, such as connectance, specialization, nestedness and asymmetry. In cold environments of elfin forests, which are located at the top of the tropical montane forest zone, many plants are adapted for pollination by birds, making this an ideal system to study plant–pollinator networks. To build the network of interactions between birds and plants, we used direct field observations. We measured abundance of birds using mist-nets and flower abundance using transects, and phenology by scoring presence of birds and flowers over time. We compared the length of birds’ bills to flower length to identify “forbidden interactions”—those interactions that could not result in legitimate floral visits based on mis-match in morphology. Diglossa flowerpiercers, which are characterized as “illegitimate” flower visitors, were relatively abundant. We found that the elfin forest network was nested with phenology being the factor that best explained interaction frequencies and nestedness, providing support for biological constraints hypothesis. We did not find morphological constraints to be important in explaining observed interaction frequencies and network metrics. Other network metrics (connectance, evenness and asymmetry), however, were better predicted by abundance (neutral process) models. Flowerpiercers, which cut holes and access flowers at their base and, consequently, facilitate nectar access for other hummingbirds, explain why morphological mis-matches were relatively unimportant in this system. Future work should

  14. Soil freezing and N deposition: transient vs multi-year effects on plant productivity and relative species abundance.

    PubMed

    Vankoughnett, Mathew R; Henry, Hugh A L

    2014-06-01

    Plant responses to increased atmospheric nitrogen (N) deposition must be considered in the context of a rapidly changing climate. Reductions in snow cover with climate warming can increase the exposure of herbaceous plants to freezing, but it is unclear how freezing damage may interact with increased N availability, and to what extent freezing effects may extend over multiple years. We explored potential interactions between freezing damage and N availability in the context of plant productivity and relative species abundance in a temperate old field using both snow removal and mesocosm experiments, and assessed the legacy effects of the freezing damage over 3 yr. As expected, N addition increased productivity and freezing damage decreased productivity, but these factors were nonadditive; N addition increased productivity disproportionately in the snow removal plots, whereas extreme freezing diminished N addition responses in the mesocosm experiment. Freezing altered relative species abundances, although only the most severe freezing treatments exhibited legacy effects on total productivity over multiple growing seasons. Our results emphasize that while both increased N deposition and freezing damage can have multi-year effects on herbaceous communities, the interactions between these global change factors are contingent on the intensities of the treatments.

  15. Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest

    PubMed Central

    Gianoli, Ernesto; Saldaña, Alfredo; Jiménez-Castillo, Mylthon

    2012-01-01

    Climbing plants are a key component of rainforests, but mechanistic approaches to their distribution and abundance are scarce. In a southern temperate rainforest, we addressed whether the dominance of climbing plants across light environments is associated with the expression of ecophysiological traits. In mature forest and canopy gaps, we measured leaf size, specific leaf area, photosynthetic rate, and dark respiration in six of the most abundant woody vines. Mean values of traits and their phenotypic change (%) between mature forest and canopy gaps were predictor variables. Leaf size and specific leaf area were not significantly associated with climbing plant dominance. Variation in gas-exchange traits between mature forest and canopy gaps explained, at least partly, the dominance of climbers in this forest. A greater increase in photosynthetic rate and a lower increase in dark respiration rate when canopy openings occur were related to the success of climbing plant species. Dominant climbers showed a strategy of maximizing exploitation of resource availability but minimizing metabolic costs. Results may reflect phenotypic plasticity or genetic differentiation in ecophysiological traits between light environments. It is suggested that the dominant climbers in this temperate rainforest would be able to cope with forest clearings due to human activities. PMID:22685611

  16. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    USGS Publications Warehouse

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  17. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin.

    PubMed

    Preston, Todd M

    2015-04-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82%. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  18. Relative importance of phenotypic trait matching and species' abundances in determining plant-avian seed dispersal interactions in a small insular community.

    PubMed

    González-Castro, Aarón; Yang, Suann; Nogales, Manuel; Carlo, Tomás A

    2015-03-05

    Network theory has provided a general way to understand mutualistic plant-animal interactions at the community level. However, the mechanisms responsible for interaction patterns remain controversial. In this study we use a combination of statistical models and probability matrices to evaluate the relative importance of species morphological and nutritional (phenotypic) traits and species abundance in determining interactions between fleshy-fruited plants and birds that disperse their seeds. The models included variables associated with species abundance, a suite of variables associated with phenotypic traits (fruit diameter, bird bill width, fruit nutrient compounds), and the species identity of the avian disperser. Results show that both phenotypic traits and species abundance are important determinants of pairwise interactions. However, when considered separately, fruit diameter and bill width were more important in determining seed dispersal interactions. The effect of fruit compounds was less substantial and only important when considered together with abundance-related variables and/or the factor 'animal species'.

  19. Multiple Pleistocene refugia and Holocene range expansion of an abundant southwestern American desert plant species (Melampodium leucanthum, Asteraceae).

    PubMed

    Rebernig, Carolin A; Schneeweiss, Gerald M; Bardy, Katharina E; Schönswetter, Peter; Villaseñor, Jose L; Obermayer, Renate; Stuessy, Tod F; Weiss-Schneeweiss, Hanna

    2010-08-01

    Pleistocene climatic fluctuations had major impacts on desert biota in southwestern North America. During cooler and wetter periods, drought-adapted species were isolated into refugia, in contrast to expansion of their ranges during the massive aridification in the Holocene. Here, we use Melampodium leucanthum (Asteraceae), a species of the North American desert and semi-desert regions, to investigate the impact of major aridification in southwestern North America on phylogeography and evolution in a widespread and abundant drought-adapted plant species. The evidence for three separate Pleistocene refugia at different time levels suggests that this species responded to the Quaternary climatic oscillations in a cyclic manner. In the Holocene, once differentiated lineages came into secondary contact and intermixed, but these range expansions did not follow the eastwardly progressing aridification, but instead occurred independently out of separate Pleistocene refugia. As found in other desert biota, the Continental Divide has acted as a major migration barrier for M. leucanthum since the Pleistocene. Despite being geographically restricted to the eastern part of the species' distribution, autotetraploids in M. leucanthum originated multiple times and do not form a genetically cohesive group.

  20. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  1. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  2. Abundance of introduced species at home predicts abundance away in herbaceous communities.

    PubMed

    Firn, Jennifer; Moore, Joslin L; MacDougall, Andrew S; Borer, Elizabeth T; Seabloom, Eric W; HilleRisLambers, Janneke; Harpole, W Stanley; Cleland, Elsa E; Brown, Cynthia S; Knops, Johannes M H; Prober, Suzanne M; Pyke, David A; Farrell, Kelly A; Bakker, John D; O'Halloran, Lydia R; Adler, Peter B; Collins, Scott L; D'Antonio, Carla M; Crawley, Michael J; Wolkovich, Elizabeth M; La Pierre, Kimberly J; Melbourne, Brett A; Hautier, Yann; Morgan, John W; Leakey, Andrew D B; Kay, Adam; McCulley, Rebecca; Davies, Kendi F; Stevens, Carly J; Chu, Cheng-Jin; Holl, Karen D; Klein, Julia A; Fay, Philip A; Hagenah, Nicole; Kirkman, Kevin P; Buckley, Yvonne M

    2011-03-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  3. Eupalopsellidae and Stigmaeidae (Acari: Prostigmata) within citrus orchards in Florida: species distribution, relative and seasonal abundance within trees, associated vines, and ground cover plants.

    PubMed

    Childers, Carl C; Ueckermann, Eduard A

    2014-10-01

    Seven citrus orchards on reduced- to no-pesticide spray programs were sampled for predacious mites in the families Eupalopsellidae and Stigmaeidae (Acari: Prostigmata) in central and south central Florida. Inner and outer canopy leaves, fruit, twigs, and trunk scrapings were sampled monthly between August 1994 and January 1996. Open flowers were sampled in March from five of the sites. Two species of eupalopsellid mites (Exothorhis caudata Summers and Saniosulus harteni (van-Dis and Ueckermann)) were identified from 252 specimens collected within citrus tree canopies within the seven citrus orchards of which 249 were E. caudata. Only two E. caudata were collected from ground cover plants within five of the seven orchards. Eight species of Stigmaeidae were identified from 5,637 specimens: Agistemus floridanus Gonzalez, A. terminalis Gonzalez, Eustigmaeus arcuata (Chandhri), E. sp. near arcuata, E. segnis (Koch), Mediostigmaeus citri (Rakha and McCoy), Stigmaeus seminudus Wood, and Zetzellia languida Gonzalez were collected from within citrus tree canopies from seven orchard sites. Agistemus floridanus was the only species in either family that was abundant with 5,483 collected from within citrus tree canopies compared with only 39 from vine or ground cover plants. A total of 431 samples from one or more of 82 vines and ground cover plants were sampled monthly between September 1994 and January 1996 in five of these orchards and one or more eupalopsellids or stigmaeids were collected from 19 of these plants. Richardia brasiliensis (Meg.) Gomez had nine A. floridanus from 5 of 25 samples collected from this plant. Solanum sp. had five A. floridanus from three samples taken. Both eupalopsellid and stigmaeid species numbers represented <1 % of the total numbers of phytoseiid species taken from the same plants. The two remaining orchards were on full herbicide programs and ground cover plants were absent. Agistemus floridanus was more abundant in the citrus orchards

  4. Herbivore regulation of plant abundance in aquatic ecosystems.

    PubMed

    Wood, Kevin A; O'Hare, Matthew T; McDonald, Claire; Searle, Kate R; Daunt, Francis; Stillman, Richard A

    2017-05-01

    Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta-analysis of the outcomes of plant-herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore-plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with

  5. Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition.

    PubMed

    Maron, John L; Laney Smith, Alyssa; Ortega, Yvette K; Pearson, Dean E; Callaway, Ragan M

    2016-08-01

    Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their effects in isolation. We sampled soil from two intermountain grassland communities where we also measured the relative abundance of plant species. In greenhouse experiments, we quantified the direction and magnitude of plant-soil feedbacks for 10 target species that spanned a range of abundances in the field. In soil from both sites, plant-soil feedbacks were mostly negative, with more abundant species suffering greater negative feedbacks than rare species. In contrast, the average response to competition for each species was unrelated with its abundance in the field. We also determined how competitive response varied among our target species when plants competed in live vs. sterile soil. Interspecific competition reduced plant size, but the strength of this negative effect was unchanged by plant-soil feedbacks. Finally, when plants competed interspecifically, we asked how conspecific-trained, heterospecific-trained, and sterile soil influenced the competitive responses of our target species and how this varied depending on whether target species were abundant or rare in the field. Here, we found that both abundant and rare species were not as harmed by competition when they grew in heterospecific-trained soil compared to when they grew in conspecific-cultured soil. Abundant species were also not as harmed by competition when growing in sterile vs. conspecific-trained soil, but this was not the case for rare species. Our results suggest that abundant plants accrue species-specific soil pathogens to a greater extent than rare species. Thus, negative feedbacks may be critical for preventing abundant species from

  6. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake.

    PubMed

    Saj, Stéphane; Mikola, Juha; Ekelund, Flemming

    2009-08-01

    Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants-Holcus lanatus, Plantago lanceolata and Lotus corniculatus-in soils into which (15)N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.

  7. Environmental correlates of species rank - abundance distributions in global drylands.

    PubMed

    Ulrich, Werner; Soliveres, Santiago; Thomas, Andrew D; Dougill, Andrew J; Maestre, Fernando T

    2016-06-01

    Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: i) assess the influence of climatic and soil characteristics on the observed SADs, ii) infer how environmental variability influences relative abundances, and iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species.

  8. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    USGS Publications Warehouse

    Keeley, Jon E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  9. Severe plant invasions can increase mycorrhizal fungal abundance and diversity.

    PubMed

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-07-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.

  10. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    PubMed Central

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

  11. Null model analysis of species associations using abundance data.

    PubMed

    Ulrich, Werner; Gotelli, Nicholas J

    2010-11-01

    reinforces a previous meta-analysis of presence/absence matrices. However, using two of the metrics we detected a significant pattern of aggregation for plants and for the interaction matrices (which include plant-pollinator data sets). These results suggest that abundance matrices, analyzed with an appropriate null model, may be a powerful tool for quantifying patterns of species segregation and aggregation.

  12. A global database of ant species abundances

    USGS Publications Warehouse

    Gibb, Heloise; Dunn, Rob R.; Sanders, Nathan J.; Grossman, Blair F.; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N.; Angulo, Elena; Armbrecht, Ingre; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Bruhl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Ellison, Aaron M.; Enriquez, Martha L.; Fayle, Tom M.; Feener Jr., Donald H.; Fisher, Brian L.; Fisher, Robert N.; Fitpatrick, Matthew C.; Gomez, Cristanto; Gotelli, Nicholas J.; Gove, Aaron; Grasso, Donato A.; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H.; Majer, Jonathan; McGlynn, Terrence P.; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; Resasco, Julian; Retana, Javier; Silva, Rogerio R.; Sorger, Magdalena D.; Souza, Jorge; Suarez, Andrew V.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Weiser, Michael D.; Yates, Michelle; Parr, Catherine L.

    2017-01-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51,388 ant abundance and occurrence records of more than 2693 species and 7953 morphospecies from local assemblages collected at 4212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type and degree of disturbance. The aim of compiling this dataset was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardised methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing dataset.

  13. A global database of ant species abundances.

    PubMed

    Gibb, Heloise; Dunn, Rob R; Sanders, Nathan J; Grossman, Blair F; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Brühl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A; Ellison, Aaron M; Enriquez, Martha L; Fayle, Tom M; Feener, Donald H; Fisher, Brian L; Fisher, Robert N; Fitzpatrick, Matthew C; Gómez, Crisanto; Gotelli, Nicholas J; Gove, Aaron; Grasso, Donato A; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H; Majer, Jonathan; McGlynn, Terrence P; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M; Resasco, Julian; Retana, Javier; Silva, Rogerio R; Sorger, Magdalena D; Souza, Jorge; Suarez, Andrew; Tista, Melanie; Vasconcelos, Heraldo L; Vonshak, Merav; Weiser, Michael D; Yates, Michelle; Parr, Catherine L

    2017-03-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.

  14. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  15. Bumble bee nest abundance, foraging distance, and host-plant reproduction: implications for management and conservation.

    PubMed

    Geib, Jennifer C; Strange, James P; Galenj, Candace

    2015-04-01

    Recent reports of global declines in pollinator species imply an urgent need to assess the abundance of native pollinators and density-dependent benefits for linked plants. In this study, we investigated (1) pollinator nest distributions and estimated colony abundances, (2) the relationship between abundances of foraging workers and the number of nests they represent, (3) pollinator foraging ranges, and (4) the relationship between pollinator abundance and plant reproduction. We examined these questions in an alpine ecosystem in the Colorado Rocky Mountains, focusing on four alpine bumble bee species (Bombus balteatus, B. flavifrons, B. bifarius, and B. sylvicola), and two host plants that differ in their degrees of pollinator specialization (Trifolium dasyphyllum and T. parryi). Using microsatellites, we found that estimated colony abundances among Bombus species ranged from ~18 to 78 colonies/0.01 km2. The long-tongued species B. balteatus was most common, especially high above treeline, but the subalpine species B. bifarius was unexpectedly abundant for this elevation range. Nests detected among sampled foragers of each species were correlated with the number of foragers caught. Foraging ranges were smaller than expected for all Bombus species, ranging from 25 to 110 m. Fruit set for the specialized plant, Trifolium parryi, was positively related to the abundance of its Bombus pollinator. In contrast, fruit set for the generalized plant, T. dasyphyllum, was related to abundance of all Bombus species. Because forager abundance was related to nest abundance of each Bombus species and was an equally effective predictor of plant fecundity, forager inventories are probably suitable for assessing the health of outcrossing plant populations. However, nest abundance, rather than forager abundance, better reflects demographic and genetic health in populations of eusocial pollinators such as bumble bees. Development of models incorporating the parameters we have measured

  16. Non-phytoseiid Mesostigmata within citrus orchards in Florida: species distribution, relative and seasonal abundance within trees, associated vines and ground cover plants and additional collection records of mites in citrus orchards.

    PubMed

    Childers, Carl C; Ueckermann, Eduard A

    2015-03-01

    Seven citrus orchards on reduced- to no-pesticide spray programs in central and south central Florida were sampled for non-phytoseiid mesostigmatid mites. Inner and outer canopy leaves, fruits, twigs and trunk scrapings were sampled monthly between August 1994 and January 1996. Open flowers were sampled in March from five of the sites. A total of 431 samples from one or more of 82 vine or ground cover plants were sampled monthly in five of the seven orchards. Two of the seven orchards (Mixon I and II) were on full herbicide programs and vines and ground cover plants were absent. A total of 2,655 mites (26 species) within the families: Ascidae, Blattisociidae, Laelapidae, Macrochelidae, Melicharidae, Pachylaelapidae and Parasitidae were identified. A total of 685 mites in the genus Asca (nine species: family Ascidae) were collected from within tree samples, 79 from vine or ground cover plants. Six species of Blattisociidae were collected: Aceodromus convolvuli, Blattisocius dentriticus, B. keegani, Cheiroseius sp. near jamaicensis, Lasioseius athiashenriotae and L. dentatus. A total of 485 Blattisociidae were collected from within tree samples compared with 167 from vine or ground cover plants. Low numbers of Laelapidae and Macrochelidae were collected from within tree samples. One Zygoseius furciger (Pachylaelapidae) was collected from Eleusine indica. Four species of Melicharidae were identified from 34 mites collected from within tree samples and 1,190 from vine or ground cover plants: Proctolaelaps lobatus was the most abundant species with 1,177 specimens collected from seven ground cover plants. One Phorytocarpais fimetorum (Parasitidae) was collected from inner leaves and four from twigs. Species of Ascidae, Blattisociidae, Melicharidae, Laelapidae and Pachylaelapidae were collected from 31 of the 82 vine or ground cover plants sampled, representing only a small fraction of the total number of Phytoseiidae collected from the same plants. Including the

  17. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    PubMed

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  18. Composition of fungal soil communities varies with plant abundance and geographic origin

    PubMed Central

    Reininger, Vanessa; Martinez-Garcia, Laura B.; Sanderson, Laura; Antunes, Pedro M.

    2015-01-01

    Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant ‘abundance’ and ‘origin’. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. PMID:26371291

  19. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  20. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE - 2014

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  1. Soil biota effects on local abundances of three grass species along a land-use gradient.

    PubMed

    Heinze, J; Werner, T; Weber, E; Rillig, M C; Joshi, J

    2015-09-01

    Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.

  2. Predicted correspondence between species abundances and dendrograms of niche similarities

    PubMed Central

    Sugihara, George; Bersier, Louis-Félix; Southwood, T. Richard E.; Pimm, Stuart L.; May, Robert M.

    2003-01-01

    We examine a hypothesized relationship between two descriptions of community structure: the niche-overlap dendrogram that describes the ecological similarities of species and the pattern of relative abundances. Specifically, we examine the way in which this relationship follows from the niche hierarchy model, whose fundamental assumption is a direct connection between abundances and underlying hierarchical community organization. We test three important, although correlated, predictions of the niche hierarchy model and show that they are upheld in a set of 11 communities (encompassing fishes, amphibians, lizards, and birds) where both abundances and dendrograms were reported. First, species that are highly nested in the dendrogram are on average less abundant than species from branches less subdivided. Second, and more significantly, more equitable community abundances are associated with more evenly branched dendrogram structures, whereas less equitable abundances are associated with less even dendrograms. This relationship shows that abundance patterns can give insight into less visible aspects of community organization. Third, one can recover the distribution of proportional abundances seen in assemblages containing two species by treating each branch point in the dendrogram as a two-species case. This reconstruction cannot be achieved if abundances and the dendrogram are unrelated and suggests a method for hierarchically decomposing systems. To our knowledge, this is the first test of a species abundance model based on nontrivial predictions as to the origins and causes of abundance patterns, and not simply on the goodness-of-fit of distributions. PMID:12702773

  3. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  4. Relationships between species richness, evenness, and abundance in a southwestern savanna.

    PubMed

    Bock, Carl E; Jones, Zach F; Bock, Jane H

    2007-05-01

    Species richness and evenness are components of biological diversity that may or may not be correlated with one another and with patterns of species abundance. We compared these attributes among flowering plants, grasshoppers, butterflies, lizards, summer birds, winter birds, and rodents across 48 plots in the grasslands and mesquite-oak savannas of southeastern Arizona. Species richness and evenness were uncorrelated or weakly negatively correlated for each taxonomic group, supporting the conclusion that richness alone is an incomplete measure of diversity. In each case, richness was positively correlated with one or more measures of abundance. By contrast, evenness usually was negatively correlated with the abundance variables, reflecting the fact that plots with high evenness generally were those where all species present were about equally uncommon. Therefore richness, but not evenness, usually was a positive predictor of places of conservation value, if these are defined as places where species of interest are especially abundant. Species diversity was more positively correlated with evenness than with richness among grasshoppers and flowering plants, in contrast to the other taxonomic groups, and the positive correlations between richness and abundance were comparatively weak for grasshoppers and plants as well. Both of these differences can be attributed to the fact that assemblages of plants and grasshoppers were numerically dominated by small subsets of common species (grasses and certain spur-throated grasshoppers) whose abundances differed greatly among plots in ways unrelated to species richness of the groups as a whole.

  5. Geographical range and local abundance of tree species in China.

    PubMed

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2), and >90% of 651 species had ranges >10(5) km(2). There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  6. Geographical Range and Local Abundance of Tree Species in China

    PubMed Central

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  7. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  8. Model reduction for stochastic chemical systems with abundant species

    SciTech Connect

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  9. Ecological niche structure and rangewide abundance patterns of species

    PubMed Central

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A. Townsend; Yáñez-Arenas, Carlos

    2013-01-01

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological niche). We demonstrate consistent negative abundance–ecological distance relationships across all 11 species analysed (turtles to wolves), and that relationships in environmental space are consistently stronger than relationships in geographical space. PMID:23134784

  10. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  11. The decoupling of abundance and species richness in lizard communities.

    PubMed

    Nimmo, Dale G; James, Simon G; Kelly, Luke T; Watson, Simon J; Bennett, Andrew F

    2011-05-01

    1. Patterns of species richness often correlate strongly with measures of energy. The more individuals hypothesis (MIH) proposes that this relationship is facilitated by greater resources supporting larger populations, which are less likely to become extinct. Hence, the MIH predicts that community abundance and species richness will be positively related. 2. Recently, Buckley & Jetz (2010, Journal of Animal Ecology, 79, 358-365) documented a decoupling of community abundance and species richness in lizard communities in south-west United States, such that richer communities did not contain more individuals. They predicted, as a consequence of the mechanisms driving the decoupling, a more even distribution of species abundances in species-rich communities, evidenced by a positive relationship between species evenness and species richness. 3. We found a similar decoupling of the relationship between abundance and species richness for lizard communities in semi-arid south-eastern Australia. However, we note that a positive relationship between evenness and richness is expected because of the nature of the indices used. We illustrate this mathematically and empirically using data from both sets of lizard communities. When we used a measure of evenness, which is robust to species richness, there was no relationship between evenness and richness in either data set. 4. For lizard communities in both Australia and the United States, species dominance decreased as species richness increased. Further, with the iterative removal of the first, second and third most dominant species from each community, the relationship between abundance and species richness became increasingly more positive. 5. Our data support the contention that species richness in lizard communities is not directly related to the number of individuals an environment can support. We propose an alternative hypothesis regarding how the decoupling of abundance and richness is accommodated; namely, an inverse

  12. Multiple peaks of species abundance distributions induced by sparse interactions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u , we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions.

  13. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  14. Plant abundance: the measurement and relationship with seed size

    USGS Publications Warehouse

    Guo, Q.

    2003-01-01

    There are many inconsistencies in early reports describing the relationships between plant abundance and other biotic (e.g., seed size) or abiotic variables (e.g., precipitation). It has been difficult to generalize such relationships when abundance is measured differently (e.g., density, biomass, cover). This article suggests using abundance in two broad categories: numerical abundance (e.g., number of individuals, density) and mass abundance (e.g., biomass, cover). Collective evidence indicates that when abundance is measured the same way, the observed patterns may actually be more consistent.

  15. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    USGS Publications Warehouse

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  16. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances

    PubMed Central

    Boulangeat, Isabelle; Gravel, Dominique; Thuiller, Wilfried

    2014-01-01

    Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model’s performance and that the spatial variations of species presence–absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. PMID:22462813

  17. Relative species abundance of replicator dynamics with sparse interactions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-11-01

    A theory of relative species abundance on sparsely-connected networks is presented by investigating the replicator dynamics with symmetric interactions. Sparseness of a network involves difficulty in analyzing the fixed points of the equation, and we avoid this problem by treating large self interaction u, which allows us to construct a perturbative expansion. Based on this perturbation, we find that the nature of the interactions is directly connected to the abundance distribution, and some characteristic behaviors, such as multiple peaks in the abundance distribution and all species coexistence at moderate values of u, are discovered in a wide class of the distribution of the interactions. The all species coexistence collapses at a critical value of u, u c , and this collapsing is regarded as a phase transition. To get more quantitative information, we also construct a non-perturbative theory on random graphs based on techniques of statistical mechanics. The result shows those characteristic behaviors are sustained well even for not large u. For even smaller values of u, extinct species start to appear and the abundance distribution becomes rounded and closer to a standard functional form. Another interesting finding is the non-monotonic behavior of diversity, which quantifies the number of coexisting species, when changing the ratio of mutualistic relations Δ . These results are examined by numerical simulations, which show that our theory is exact for the case without extinct species, but becomes less and less precise as the proportion of extinct species grows.

  18. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    PubMed

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  19. Estimating abundance in the presence of species uncertainty

    USGS Publications Warehouse

    Chambert, Thierry A; Hossack, Blake R.; Fishback, LeeAnn; Davenport, Jon M.

    2016-01-01

    1.N-mixture models have become a popular method for estimating abundance of free-ranging animals that are not marked or identified individually. These models have been used on count data for single species that can be identified with certainty. However, co-occurring species often look similar during one or more life stages, making it difficult to assign species for all recorded captures. This uncertainty creates problems for estimating species-specific abundance and it can often limit life stages to which we can make inference. 2.We present a new extension of N-mixture models that accounts for species uncertainty. In addition to estimating site-specific abundances and detection probabilities, this model allows estimating probability of correct assignment of species identity. We implement this hierarchical model in a Bayesian framework and provide all code for running the model in BUGS-language programs. 3.We present an application of the model on count data from two sympatric freshwater fishes, the brook stickleback (Culaea inconstans) and the ninespine stickleback (Pungitius pungitius), ad illustrate implementation of covariate effects (habitat characteristics). In addition, we used a simulation study to validate the model and illustrate potential sample size issues. We also compared, for both real and simulated data, estimates provided by our model to those obtained by a simple N-mixture model when captures of unknown species identification were discarded. In the latter case, abundance estimates appeared highly biased and very imprecise, while our new model provided unbiased estimates with higher precision. 4.This extension of the N-mixture model should be useful for a wide variety of studies and taxa, as species uncertainty is a common issue. It should notably help improve investigation of abundance and vital rate characteristics of organisms’ early life stages, which are sometimes more difficult to identify than adults.

  20. The effects of acoustic misclassification on cetacean species abundance estimation.

    PubMed

    Caillat, Marjolaine; Thomas, Len; Gillespie, Douglas

    2013-09-01

    To estimate the density or abundance of a cetacean species using acoustic detection data, it is necessary to correctly identify the species that are detected. Developing an automated species classifier with 100% correct classification rate for any species is likely to stay out of reach. It is therefore necessary to consider the effect of misidentified detections on the number of observed data and consequently on abundance or density estimation, and develop methods to cope with these misidentifications. If misclassification rates are known, it is possible to estimate the true numbers of detected calls without bias. However, misclassification and uncertainties in the level of misclassification increase the variance of the estimates. If the true numbers of calls from different species are similar, then a small amount of misclassification between species and a small amount of uncertainty around the classification probabilities does not have an overly detrimental effect on the overall variance. However, if there is a difference in the encounter rate between species calls and/or a large amount of uncertainty in misclassification rates, then the variance of the estimates becomes very large and this dramatically increases the variance of the final abundance estimate.

  1. Factors affecting Culicoides species composition and abundance in avian nests.

    PubMed

    Martínez-de la Puente, J; Merino, S; Tomás, G; Moreno, J; Morales, J; Lobato, E; Talavera, S; Sarto I Monteys, V

    2009-08-01

    Mechanisms affecting patterns of vector distribution among host individuals may influence the population and evolutionary dynamics of vectors, hosts and the parasites transmitted. We studied the role of different factors affecting the species composition and abundance of Culicoides found in nests of the blue tit (Cyanistes caeruleus). We identified 1531 females and 2 males of 7 different Culicoides species in nests, with C. simulator being the most abundant species, followed by C. kibunensis, C. festivipennis, C. segnis, C. truncorum, C. pictipennis and C. circumscriptus. We conducted a medicationxfumigation experiment randomly assigning bird's nests to different treatments, thereby generating groups of medicated and control pairs breeding in fumigated and control nests. Medicated pairs were injected with the anti-malarial drug Primaquine diluted in saline solution while control pairs were injected with saline solution. The fumigation treatment was carried out using insecticide solution or water for fumigated and control nests respectively. Brood size was the main factor associated with the abundance of biting midges probably because more nestlings may produce higher quantities of vector attractants. In addition, birds medicated against haemoparasites breeding in non-fumigated nests supported a higher abundance of C. festivipennis than the rest of the groups. Also, we found that the fumigation treatment reduced the abundance of engorged Culicoides in both medicated and control nests, thus indicating a reduction of feeding success produced by the insecticide. These results represent the first evidence for the role of different factors in affecting the Culicoides infracommunity in wild avian nests.

  2. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature.

  3. Functional traits predict relationship between plant abundance dynamic and long-term climate warming

    PubMed Central

    Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.

    2013-01-01

    Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400

  4. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  5. Leaf Selection by Two Bornean Colobine Monkeys in Relation to Plant Chemistry and Abundance

    PubMed Central

    Matsuda, Ikki; Tuuga, Augustine; Bernard, Henry; Sugau, John; Hanya, Goro

    2013-01-01

    Focusing on the chemical basis of dietary selection while investigating the nutritional ecology of animals helps understand their feeding biology. It is also important to consider food abundance/biomass while studying the mechanism of animal food selection. We studied leaf selection in two Bornean folivorous primates in relation to plant chemistry and abundance: proboscis monkeys inhabiting a secondary riverine forest and red leaf monkeys inhabiting a primary forest. Both species tended to prefer leaves containing higher protein levels, although more abundant plant species were chosen within the preferred species, probably to maximise energy gain per unit time. However, the two species showed clear differences in their detailed feeding strategy. Red leaf monkeys strictly chose to consume young leaves to adapt to the poor nutritional environment of the primary forest, whereas proboscis monkeys were not highly selective because of the better quality of its common food in the riverine forest. PMID:23695180

  6. Environmental correlates of species rank – abundance distributions in global drylands

    PubMed Central

    Ulrich, Werner; Soliveres, Santiago; Thomas, Andrew D.; Dougill, Andrew J.; Maestre, Fernando T.

    2016-01-01

    Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: i) assess the influence of climatic and soil characteristics on the observed SADs, ii) infer how environmental variability influences relative abundances, and iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species. PMID:27330404

  7. Assessing introduction risk using species' rank-abundance distributions.

    PubMed

    Chan, Farrah T; Bradie, Johanna; Briski, Elizabeta; Bailey, Sarah A; Simard, Nathalie; MacIsaac, Hugh J

    2015-01-22

    Mixed-species assemblages are often unintentionally introduced into new ecosystems. Analysing how assemblage structure varies during transport may provide insights into how introduction risk changes before propagules are released. Characterization of introduction risk is typically based on assessments of colonization pressure (CP, the number of species transported) and total propagule pressure (total PP, the total abundance of propagules released) associated with an invasion vector. Generally, invasion potential following introduction increases with greater CP or total PP. Here, we extend these assessments using rank-abundance distributions to examine how CP : total PP relationships change temporally in ballast water of ocean-going ships. Rank-abundance distributions and CP : total PP patterns varied widely between trans-Atlantic and trans-Pacific voyages, with the latter appearing to pose a much lower risk than the former. Responses also differed by taxonomic group, with invertebrates experiencing losses mainly in total PP, while diatoms and dinoflagellates sustained losses mainly in CP. In certain cases, open-ocean ballast water exchange appeared to increase introduction risk by uptake of new species or supplementation of existing ones. Our study demonstrates that rank-abundance distributions provide new insights into the utility of CP and PP in characterizing introduction risk.

  8. The nature of plant species

    PubMed Central

    Rieseberg, Loren H.; Wood, Troy E.; Baack, Eric J.

    2008-01-01

    Many botanists doubt the existence of plant species1–5, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or ‘units of evolution’. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few ‘botanical horror stories’, such as dandelions, blackberries and oaks6,7. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (>80%), the correspondence of taxonomic species to these clusters is poor (<60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom8, plant species are more likely than animal species to represent reproductively independent lineages. PMID:16554818

  9. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  10. Inferring invasive species abundance using removal data from management actions.

    PubMed

    Davis, Amy J; Hooten, Mevin B; Miller, Ryan S; Farnsworth, Matthew L; Lewis, Jesse; Moxcey, Michael; Pepin, Kim M

    2016-10-01

    Evaluation of the progress of management programs for invasive species is crucial for demonstrating impacts to stakeholders and strategic planning of resource allocation. Estimates of abundance before and after management activities can serve as a useful metric of population management programs. However, many methods of estimating population size are too labor intensive and costly to implement, posing restrictive levels of burden on operational programs. Removal models are a reliable method for estimating abundance before and after management using data from the removal activities exclusively, thus requiring no work in addition to management. We developed a Bayesian hierarchical model to estimate abundance from removal data accounting for varying levels of effort, and used simulations to assess the conditions under which reliable population estimates are obtained. We applied this model to estimate site-specific abundance of an invasive species, feral swine (Sus scrofa), using removal data from aerial gunning in 59 site/time-frame combinations (480-19,600 acres) throughout Oklahoma and Texas, USA. Simulations showed that abundance estimates were generally accurate when effective removal rates (removal rate accounting for total effort) were above 0.40. However, when abundances were small (<50) the effective removal rate needed to accurately estimates abundances was considerably higher (0.70). Based on our post-validation method, 78% of our site/time frame estimates were accurate. To use this modeling framework it is important to have multiple removals (more than three) within a time frame during which demographic changes are minimized (i.e., a closed population; ≤3 months for feral swine). Our results show that the probability of accurately estimating abundance from this model improves with increased sampling effort (8+ flight hours across the 3-month window is best) and increased removal rate. Based on the inverse relationship between inaccurate abundances and

  11. Inferring invasive species abundance using removal data from management actions

    USGS Publications Warehouse

    Davis, Amy J.; Hooten, Mevin B.; Miller, Ryan S.; Farnsworth, Matthew L.; Lewis, Jesse S.; Moxcey, Michael; Pepin, Kim M.

    2016-01-01

    Evaluation of the progress of management programs for invasive species is crucial for demonstrating impacts to stakeholders and strategic planning of resource allocation. Estimates of abundance before and after management activities can serve as a useful metric of population management programs. However, many methods of estimating population size are too labor intensive and costly to implement, posing restrictive levels of burden on operational programs. Removal models are a reliable method for estimating abundance before and after management using data from the removal activities exclusively, thus requiring no work in addition to management. We developed a Bayesian hierarchical model to estimate abundance from removal data accounting for varying levels of effort, and used simulations to assess the conditions under which reliable population estimates are obtained. We applied this model to estimate site-specific abundance of an invasive species, feral swine (Sus scrofa), using removal data from aerial gunning in 59 site/time-frame combinations (480–19,600 acres) throughout Oklahoma and Texas, USA. Simulations showed that abundance estimates were generally accurate when effective removal rates (removal rate accounting for total effort) were above 0.40. However, when abundances were small (<50) the effective removal rate needed to accurately estimates abundances was considerably higher (0.70). Based on our post-validation method, 78% of our site/time frame estimates were accurate. To use this modeling framework it is important to have multiple removals (more than three) within a time frame during which demographic changes are minimized (i.e., a closed population; ≤3 months for feral swine). Our results show that the probability of accurately estimating abundance from this model improves with increased sampling effort (8+ flight hours across the 3-month window is best) and increased removal rate. Based on the inverse relationship between inaccurate abundances and

  12. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    PubMed

    Sonnemann, Ilja; Pfestorf, Hans; Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root

  13. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root

  14. Herbivory: effects on plant abundance, distribution and population growth

    PubMed Central

    Maron, John L; Crone, Elizabeth

    2006-01-01

    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plant–consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics. PMID:17002942

  15. Convergence and divergence in a long-term old-field succession: the importance of spatial scale and species abundance.

    PubMed

    Li, Shao-Peng; Cadotte, Marc W; Meiners, Scott J; Pu, Zhichao; Fukami, Tadashi; Jiang, Lin

    2016-09-01

    Whether plant communities in a given region converge towards a particular stable state during succession has long been debated, but rarely tested at a sufficiently long time scale. By analysing a 50-year continuous study of post-agricultural secondary succession in New Jersey, USA, we show that the extent of community convergence varies with the spatial scale and species abundance classes. At the larger field scale, abundance-based dissimilarities among communities decreased over time, indicating convergence of dominant species, whereas incidence-based dissimilarities showed little temporal tend, indicating no sign of convergence. In contrast, plots within each field diverged in both species composition and abundance. Abundance-based successional rates decreased over time, whereas rare species and herbaceous plants showed little change in temporal turnover rates. Initial abandonment conditions only influenced community structure early in succession. Overall, our findings provide strong evidence for scale and abundance dependence of stochastic and deterministic processes over old-field succession.

  16. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  17. Declines in woodland salamander abundance associated with non-native earthworm and plant invasions.

    PubMed

    Maerz, John C; Nuzzo, Victoria A; Blossey, Bernd

    2009-08-01

    Factors that negatively affect the quality of wildlife habitat are a major concern for conservation. Non-native species invasions, in particular, are perceived as a global threat to the quality of wildlife habitat. Recent evidence indicates that some changes to understory plant communities in northern temperate forests of North America, including invasions by 3 non-native plant species, are facilitated by non-native earthworm invasion. Furthermore, non-native earthworm invasions cause a reduction in leaf litter on the forest floor, and the loss of forest leaf litter is commonly associated with declines in forest fauna, including amphibians. We conducted a mark-recapture study of woodland salamander abundance across plant invasion fronts at 10 sites to determine whether earthworm or plant invasions were associated with reduced salamander abundance. Salamander abundance declined exponentially with decreasing leaf litter volume. There was no significant relationship between invasive plant cover and salamander abundance, independent of the effects of leaf litter loss due to earthworm invasion. An analysis of selected salamander prey abundance (excluding earthworms) at 4 sites showed that prey abundance declined with declining leaf litter. The loss of leaf litter layers due to non-native earthworm invasions appears to be negatively affecting woodland salamander abundance, in part, because of declines in the abundance of small arthropods that are a stable resource for salamanders. Our results demonstrate that earthworm invasions pose a significant threat to woodland amphibian fauna in the northeastern United States, and that plant invasions are symptomatic of degraded amphibian habitat but are not necessarily drivers of habitat degradation.

  18. REMOTE DETECTION OF INVASSIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  19. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  20. Interstellar isomeric species: Energy, stability and abundance relationship

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Arunan, Elangannan

    2016-12-01

    Accurate enthalpies of formation are reported for known and potential interstellar isomeric species using high-level ab initio quantum-chemical calculations. A total of 130 molecules comprising of 31 isomeric groups and 24 cyanide/isocyanide pairs with molecules ranging from 3 to 12 atoms have been considered. The results show an interesting relationship between energy, stability and abundance (ESA) existing among these molecules. Among the isomeric species, isomers with lower enthalpies of formation are more easily observed in the interstellar medium compared to their counterparts with higher enthalpies of formation. Available data in the literature confirm the high abundance of the most stable isomer over other isomers in the different groups considered. Potential for interstellar hydrogen bonding accounts for the few exceptions observed. Thus, in general, it suffices to say that the interstellar abundances of related species could be linked to their stabilities if other factors do not dominate. The immediate consequences of this relationship in addressing some of the whys and wherefores among interstellar molecules and in predicting some possible candidates for future astronomical observations are discussed.

  1. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites

    PubMed Central

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D.; Yin, Wen-Bing; Liu, Xingzhong

    2016-01-01

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature. PMID:27869187

  2. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-07

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.

  3. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network

    PubMed Central

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-01-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  4. Plant community diversity and native plant abundance decline with increasing abundance of an exotic annual grass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly improved with invasion. Thus, disagreement exis...

  5. The relative importance of disturbance and exotic-plant abundance in California coastal sage scrub

    USGS Publications Warehouse

    Fleming, G.M.; Diffendorfer, J.E.; Zedler, P.H.

    2009-01-01

    Many ecosystems of conservation concern require some level of disturbance to sustain their species composition and ecological function. However, inappropriate disturbance regimes could favor invasion or expansion of exotic species. In southern California coastal sage scrub (CSS) fire is a natural disturbance, but because of human influence, frequencies may now be unnaturally high. Other anthropogenic disturbances such as grazing also occur in reserve areas. Managers charged with imposing or tolerating fire or other disturbance within their reserves are concerned that habitat quality may be degraded by an increasing abundance of exotic plants. We used vegetation monitoring data from Camp Pendleton, California, USA, to assess the correlation between past disturbances (frequent fire, agriculture, or grazing and mechanical disturbances) and current exotic species abundance in CSS. We found that disturbance history was only modestly related to exotic abundance overall, but fire frequency showed the strongest association. We also examined whether cover and richness of various native plant life forms (woody species, perennial herbs, and annual herbs) were more strongly influenced by disturbance history or by exotic-plant abundance. Native plant responses varied among life forms, but woody species and annual herbs were generally more strongly and negatively associated with exotic abundance than with disturbance. Effective CSS conservation will require developing means to curb the negative impacts of exotic plants, which may abound with or without severe or recent disturbance. Additionally, more focus should be given to understory herbs showing sensitivity to invasion. Though understudied, native herbs comprise the greatest portion of plant diversity in CSS and are critical to preservation of the community as a whole. ?? 2009 by the Ecological Society of America.

  6. The relative importance of disturbance and exotic-plant abundance in California coastal sage scrub.

    PubMed

    Fleming, Genie M; Diffendorfer, James E; Zedler, Paul H

    2009-12-01

    Many ecosystems of conservation concern require some level of disturbance to sustain their species composition and ecological function. However, inappropriate disturbance regimes could favor invasion or expansion of exotic species. In southern California coastal sage scrub (CSS) fire is a natural disturbance, but because of human influence, frequencies may now be unnaturally high. Other anthropogenic disturbances such as grazing also occur in reserve areas. Managers charged with imposing or tolerating fire or other disturbance within their reserves are concerned that habitat quality may be degraded by an increasing abundance of exotic plants. We used vegetation monitoring data from Camp Pendleton, California, USA, to assess the correlation between past disturbances (frequent fire, agriculture, or grazing and mechanical disturbances) and current exotic species abundance in CSS. We found that disturbance history was only modestly related to exotic abundance overall, but fire frequency showed the strongest association. We also examined whether cover and richness of various native plant life forms (woody species, perennial herbs, and annual herbs) were more strongly influenced by disturbance history or by exotic-plant abundance. Native plant responses varied among life forms, but woody species and annual herbs were generally more strongly and negatively associated with exotic abundance than with disturbance. Effective CSS conservation will require developing means to curb the negative impacts of exotic plants, which may abound with or without severe or recent disturbance. Additionally, more focus should be given to understory herbs showing sensitivity to invasion. Though understudied, native herbs comprise the greatest portion of plant diversity in CSS and are critical to preservation of the community as a whole.

  7. When Can Species Abundance Data Reveal Non-neutrality?

    PubMed Central

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S.; Cornell, Stephen J.

    2015-01-01

    Species abundance distributions (SAD) are probably ecology’s most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  8. Plant Species Recovery on a Compacted Skid Road.

    PubMed

    Demir, Murat; Makineci, Ender; Gungor, Beyza Sat

    2008-05-15

    This study was executed to determine the plant species of herbaceous cover in a skid road subjected to soil compaction due to timber skidding in a beech (Fagus orientalis Lipsky.) stand. Our previous studies have shown that ground based timber skidding destroys the soils extremely, and degradations on ecosystem because of the timber skidding limit recovery and growth of plant cover on skid roads. However, some plant species show healthy habitat, recovery and they can survive after the extreme degradation in study area. We evaluated composition of these plant species and their cover-abundance scales in 100 m x 3 m transect. 15 plant species were determined belongs to 12 plant families and Liliaceae was the highest representative plant family. Smilax aspera L., Epimedium pubigerum (DC.) Moren et Decaisne, Carex distachya Desf. var. distachya Desf., Pteridium aquilinum (L.) Kuhn., Trachystemon orientalis (L.) G. Don, Hedera helix L. have the highest coverabundance scale overall of determined species on compacted skid road.

  9. The Importance of Pollinator Generalization and Abundance for the Reproductive Success of a Generalist Plant

    PubMed Central

    Maldonado, María Belén; Lomáscolo, Silvia Beatriz; Vázquez, Diego Pedro

    2013-01-01

    Previous studies have examined separately how pollinator generalization and abundance influence plant reproductive success, but none so far has evaluated simultaneously the relative importance of these pollinator attributes. Here we evaluated the extent to which pollinator generalization and abundance influence plant reproductive success per visit and at the population level on a generalist plant, Opuntia sulphurea (Cactaceae). We used field experiments and path analysis to evaluate whether the per-visit effect is determined by the pollinator’s degree of generalization, and whether the population level effect (pollinator impact) is determined by the pollinator’s degree of generalization and abundance. Based on the models we tested, we concluded that the per-visit effect of a pollinator on plant reproduction was not determined by the pollinators’ degree of generalization, while the population-level impact of a pollinator on plant reproduction was mainly determined by the pollinators’ degree of generalization. Thus, generalist pollinators have the greatest species impact on pollination and reproductive success of O. sulphurea. According to our analysis this greatest impact of generalist pollinators may be partly explained by pollinator abundance. However, as abundance does not suffice as an explanation of pollinator impact, we suggest that vagility, need for resource consumption, and energetic efficiency of generalist pollinators may also contribute to determine a pollinator’s impact on plant reproduction. PMID:24116049

  10. The importance of pollinator generalization and abundance for the reproductive success of a generalist plant.

    PubMed

    Maldonado, María Belén; Lomáscolo, Silvia Beatriz; Vázquez, Diego Pedro

    2013-01-01

    Previous studies have examined separately how pollinator generalization and abundance influence plant reproductive success, but none so far has evaluated simultaneously the relative importance of these pollinator attributes. Here we evaluated the extent to which pollinator generalization and abundance influence plant reproductive success per visit and at the population level on a generalist plant, Opuntia sulphurea (Cactaceae). We used field experiments and path analysis to evaluate whether the per-visit effect is determined by the pollinator's degree of generalization, and whether the population level effect (pollinator impact) is determined by the pollinator's degree of generalization and abundance. Based on the models we tested, we concluded that the per-visit effect of a pollinator on plant reproduction was not determined by the pollinators' degree of generalization, while the population-level impact of a pollinator on plant reproduction was mainly determined by the pollinators' degree of generalization. Thus, generalist pollinators have the greatest species impact on pollination and reproductive success of O. sulphurea. According to our analysis this greatest impact of generalist pollinators may be partly explained by pollinator abundance. However, as abundance does not suffice as an explanation of pollinator impact, we suggest that vagility, need for resource consumption, and energetic efficiency of generalist pollinators may also contribute to determine a pollinator's impact on plant reproduction.

  11. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  12. Abundant Microsatellite Diversity and Oil Content in Wild Arachis Species

    PubMed Central

    Ren, Xiaoping; Chen, Yuning; Xiao, Yingjie; Zhao, Xinyan; Tang, Mei; Huang, Jiaquan; Upadhyaya, Hari D.; Liao, Boshou

    2012-01-01

    The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great

  13. Seasonal changes in plant diversity and abundance in Northeastern pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number and identity of plant species varies by season and location. We sampled pastures on five grazing farms (four dairy, one beef): two in New York, two in Pennsylvania, and one in Maryland. Pasture plant composition was measured on five to seven pastures in the spring (April-May), summer (Jul...

  14. Evolutionary responses of native plant species to invasive plants: a review.

    PubMed

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  15. Species composition and abundance of Brevipalpus spp. on different citrus species in Mexican orchards.

    PubMed

    Salinas-Vargas, D; Santillán-Galicia, M T; Valdez-Carrasco, J; Mora-Aguilera, G; Atanacio-Serrano, Y; Romero-Pescador, P

    2013-08-01

    We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed.

  16. Estimating species – area relationships by modeling abundance and frequency subject to incomplete sampling

    USGS Publications Warehouse

    Yamaura, Yuichi; Connor, Edward F.; Royle, Andy; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-01-01

    Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied

  17. Metagenomic abundance estimation and diagnostic testing on species level

    PubMed Central

    Lindner, Martin S.; Renard, Bernhard Y.

    2013-01-01

    One goal of sequencing-based metagenomic community analysis is the quantitative taxonomic assessment of microbial community compositions. In particular, relative quantification of taxons is of high relevance for metagenomic diagnostics or microbial community comparison. However, the majority of existing approaches quantify at low resolution (e.g. at phylum level), rely on the existence of special genes (e.g. 16S), or have severe problems discerning species with highly similar genome sequences. Yet, problems as metagenomic diagnostics require accurate quantification on species level. We developed Genome Abundance Similarity Correction (GASiC), a method to estimate true genome abundances via read alignment by considering reference genome similarities in a non-negative LASSO approach. We demonstrate GASiC’s superior performance over existing methods on simulated benchmark data as well as on real data. In addition, we present applications to datasets of both bacterial DNA and viral RNA source. We further discuss our approach as an alternative to PCR-based DNA quantification. PMID:22941661

  18. Plant characteristics associated with natural enemy abundance at Michigan native plants.

    PubMed

    Fiedler, A K; Landis, D A

    2007-08-01

    Habitat management is a type of conservation biological control that focuses on increasing natural enemy populations by providing them with plant resources such as pollen and nectar. Insects are known to respond to a variety of plant characteristics in their search for plant-provided resources. A better understanding of the specific characteristics used by natural enemy insects in selecting these resources could greatly improve efficiency in screening plants for habitat management. We examined 5 previously tested and widely recommended resource plants and 43 candidate plants to test whether the number and type of natural enemies and herbivores at each plant were predicted by plant characteristics including: period of peak bloom, floral area, maximum flower height, hue, chroma, and corolla size. Natural enemy abundance increased with week of peak bloom and greater floral area across all plants tested. Ordination of plant characteristics indicated that increasing floral area, period of peak bloom, maximum flower height, and decreasing corolla width grouped together into a single principal component. Both natural enemy and herbivore abundance increased significantly with the principal component for this set of characteristics, but the relationship with herbivore abundance was weaker. These results indicate that, for a given time of the season, selection of plants with the largest floral area has potential to increase natural enemy abundance in habitat management plantings and streamline plant selection for habitat management.

  19. Enhanced aphid abundance in spring desynchronizes predator-prey and plant-microorganism interactions.

    PubMed

    Fuchs, Benjamin; Breuer, Tatjana; Findling, Simone; Krischke, Markus; Mueller, Martin J; Holzschuh, Andrea; Krauss, Jochen

    2017-02-01

    Climate change leads to phenology shifts of many species. However, not all species shift in parallel, which can desynchronize interspecific interactions. Within trophic cascades, herbivores can be top-down controlled by predators or bottom-up controlled by host plant quality and host symbionts, such as plant-associated micro-organisms. Synchronization of trophic levels is required to prevent insect herbivore (pest) outbreaks. In a common garden experiment, we simulated an earlier arrival time (~2 weeks) of the aphid Rhopalosiphum padi on its host grass Lolium perenne by enhancing the aphid abundance during the colonization period. L. perenne was either uninfected or infected with the endophytic fungus Epichloë festucae var. lolii. The plant symbiotic fungus produces insect deterring alkaloids within the host grass. Throughout the season, we tested the effects of enhanced aphid abundance in spring on aphid predators (top-down) and grass-endophyte (bottom-up) responses. Higher aphid population sizes earlier in the season lead to overall higher aphid abundances, as predator occurrence was independent of aphid abundances on the pots. Nonetheless, after predator occurrence, aphids were controlled within 2 weeks on all pots. Possible bottom-up control of aphids by increased endophyte concentrations occurred time delayed after high herbivore abundances. Endophyte-derived alkaloid concentrations were not significantly affected by enhanced aphid abundance but increased throughout the season. We conclude that phenology shifts in an herbivorous species can desynchronize predator-prey and plant-microorganism interactions and might enhance the probability of pest outbreaks with climate change.

  20. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores.

    PubMed

    Yang, Zhongling; Hautier, Yann; Borer, Elizabeth T; Zhang, Chunhui; Du, Guozhen

    2015-09-01

    Nutrient supply and herbivores can regulate plant species composition, biodiversity and functioning of terrestrial ecosystems. Nutrient enrichment frequently increases plant productivity and decreases diversity while herbivores tend to maintain plant diversity in productive systems. However, the mechanisms by which nutrient enrichment and herbivores regulate plant diversity remain unclear. Abundance-based mechanisms propose that fertilization leads to the extinction of rare species due to random loss of individuals of all species. In contrast, functional-based mechanisms propose that species exclusion is based on functional traits which are disadvantageous under fertilized conditions. We tested mechanistic links between fertilization and diversity loss in the presence or absence of consumers using data from a 4-year fertilization and fencing experiment in an alpine meadow. We found that both abundance- and functional-based mechanisms simultaneously affected species loss in the absence of herbivores while only abundance-based mechanisms affected species loss in the presence of herbivores. Our results indicate that an abundance-based mechanism may consistently play a role in the loss of plant diversity with fertilization, and that diversity decline is driven primarily by the loss of rare species regardless of a plant's functional traits and whether or not herbivores are present. Increasing efforts to conserve rare species in the context of ecosystem eutrophication is a central challenge for grazed grassland ecosystems.

  1. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax

  2. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species.

    PubMed

    Yang, Zhongling; Zhang, Qian; Su, Fanglong; Zhang, Chunhui; Pu, Zhichao; Xia, Jianyang; Wan, Shiqiang; Jiang, Lin

    2017-01-01

    Daytime warming and nighttime warming have the potential to influence plant community structure and ecosystem functions. However, their impacts on ecological stability remain largely unexplored. We conducted an eight-year field experiment to compare the effects of daytime and nighttime warming on the temporal stability of a temperate steppe in northern China. Our results showed that the cover and stability of dominant species, stability of subordinate species, and compensatory dynamics among species strongly influenced community-level stability. However, daytime, but not nighttime, warming significantly reduced community temporal stability mainly through the reduction in the abundance of dominant, stable species. These findings demonstrate the differential effects of daytime and nighttime warming on community stability and emphasize the importance of understanding the changes of dominant species for accurately predicting community dynamics under climate warming.

  3. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness.

    PubMed

    Carvalheiro, Luísa Gigante; Biesmeijer, Jacobus Christiaan; Benadi, Gita; Fründ, Jochen; Stang, Martina; Bartomeus, Ignasi; Kaiser-Bunbury, Christopher N; Baude, Mathilde; Gomes, Sofia I F; Merckx, Vincent; Baldock, Katherine C R; Bennett, Andrew T D; Boada, Ruth; Bommarco, Riccardo; Cartar, Ralph; Chacoff, Natacha; Dänhardt, Juliana; Dicks, Lynn V; Dormann, Carsten F; Ekroos, Johan; Henson, Kate S E; Holzschuh, Andrea; Junker, Robert R; Lopezaraiza-Mikel, Martha; Memmott, Jane; Montero-Castaño, Ana; Nelson, Isabel L; Petanidou, Theodora; Power, Eileen F; Rundlöf, Maj; Smith, Henrik G; Stout, Jane C; Temitope, Kehinde; Tscharntke, Teja; Tscheulin, Thomas; Vilà, Montserrat; Kunin, William E

    2014-11-01

    Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.

  4. A parasitic plant increases native and exotic plant species richness in vernal pools

    PubMed Central

    Graffis, Andrea M.; Kneitel, Jamie M.

    2015-01-01

    Species interactions are well known to affect species diversity in communities, but the effects of parasites have been less studied. Previous studies on parasitic plants have found both positive and negative effects on plant community diversity. Cuscuta howelliana is an abundant endemic parasitic plant that inhabits California vernal pools. We tested the hypothesis that C. howelliana acts as a keystone species to increase plant species richness in vernal pools through a C. howelliana removal experiment at Beale Air Force Base in north-central California. Vernal pool endemic plants were parasitized more frequently, and Eryngium castrense and Navarretia leucocephala were the most frequently parasitized host plant species of C. howelliana. Cuscuta howelliana caused higher plant species richness, both natives and exotics, compared with removal plots. However, there was no single plant species that significantly increased with C. howelliana removal. Decreases in Eryngium castrense percent cover plots with C. howelliana is a plausible explanation for differences in species richness. In conclusion, C. howelliana led to changes in species composition and increases in plant species richness, consistent with what is expected from the effects of a keystone species. This research provides support for a shift in management strategies that focus on species-specific targets to strategies that target maintenance of complex species interactions and therefore maximize biodiversity and resilience of ecosystems. PMID:26307042

  5. SPECIES-ABUNDANCE-BIOMASS RESPONSES BY ESTUARINE MACROBENTHOS TO SEDIMENT CHEMICAL CONTAMINATION.

    EPA Science Inventory

    Macrobenthic community responses can be measured through concerted changes in univariate metrics, including species richness, total abundance, and total biomass. The classic model of pollution effects on marine macroinvertebrate communities recognizes that species/abundance/bioma...

  6. Astrochem: Abundances of chemical species in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Maret, Sébastien; Bergin, Edwin A.

    2015-07-01

    Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

  7. An extensive comparison of species-abundance distribution models

    PubMed Central

    Baldridge, Elita; Harris, David J.; Xiao, Xiao

    2016-01-01

    A number of different models have been proposed as descriptions of the species-abundance distribution (SAD). Most evaluations of these models use only one or two models, focus on only a single ecosystem or taxonomic group, or fail to use appropriate statistical methods. We use likelihood and AIC to compare the fit of four of the most widely used models to data on over 16,000 communities from a diverse array of taxonomic groups and ecosystems. Across all datasets combined the log-series, Poisson lognormal, and negative binomial all yield similar overall fits to the data. Therefore, when correcting for differences in the number of parameters the log-series generally provides the best fit to data. Within individual datasets some other distributions performed nearly as well as the log-series even after correcting for the number of parameters. The Zipf distribution is generally a poor characterization of the SAD. PMID:28028483

  8. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change.

    PubMed

    Alatalo, Juha M; Little, Chelsea J; Jägerbrand, Annika K; Molau, Ulf

    2015-05-07

    Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment.

  9. Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types

    NASA Astrophysics Data System (ADS)

    Jägerbrand, Annika K.; Kudo, Gaku; Alatalo, Juha M.; Molau, Ulf

    2012-07-01

    Due to the climate change, vegetation of tundra ecosystems is predicted to shift toward shrub and tree dominance, and this change may influence bryophytes. To estimate how changes in growing environment and the dominance of vascular plants influence bryophyte abundance, we compared the relationship of occurrence of bryophytes among other plant types in a five-year experiment of warming (T), fertilization (F) and T + F in two vegetation types, heath and meadow, in a subarctic-alpine ecosystem. We compared individual leaf area among shrub species to confirm that deciduous shrubs might cause severe shading effect. Effects of neighboring functional types on the performance of Hylocomium splendens was also analyzed. Results show that F and T + F treatments significantly influenced bryophyte abundance negatively. Under natural conditions, bryophytes in the heath site were negatively related to the abundance of shrubs and lichens and the relationship between lichens and bryophytes strengthened after the experimental period. After five years of experimental treatments in the meadow, a positive abundance relationship emerged between bryophytes and deciduous shrubs, evergreen shrubs and forbs. This relationship was not found in the heath site. Our study therefore shows that the abundance relationships between bryophytes and plants in two vegetation types within the same area can be different. Deciduous shrubs had larger leaf area than evergreen shrubs but did not show any shading effect on H. splendens.

  10. Aboveground and belowground plant traits as drivers of microbial abundance and activity.

    NASA Astrophysics Data System (ADS)

    Baxendale, Catherine; Lavorel, Sandra; Grigulis, Karl; Legay, Nicolas; Krainer, Ute; Bahn, Michael; Kastl, Eva; Pommier, Thomas; Bardgett, Richard

    2013-04-01

    Although there is growing awareness of the roles that plant-soil interactions play in regulating ecosystem processes, our understanding of the role that specific aboveground and belowground plant traits play in defining them is limited. In this study, we aimed to develop a conceptual model linking plant functional trait impacts on soil microbial functional diversity and their coupled effects on ecosystem processes. This was done by replicating three mesocosm studies, based on model sub-alpine grasslands, across three sites in different parts of Europe as part of the pan-European project, VITAL. We manipulated community plant traits by planting communities of varying abundance and dominance of 4 common grassland species. After 1.5 years, we then measured aboveground traits (specific leaf area, leaf dry matter content, leaf nitrogen and carbon content and leaf C:N ratio), belowground traits (specific root length, average diameter, root dry matter content, root nitrogen and carbon content and root C:N ratio) microbial community abundance (using phospholipid fatty acid (PLFA) analysis and gene abundance of nitrifier and denitrifier communities), and microbial activity (via potential nitrification and denitrification rates). We present links between manipulated community traits, microbial properties and ecosystem processes, supporting the role of plant traits in driving microbial properties.

  11. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  12. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  13. Testing surrogacy assumptions: can threatened and endangered plants be grouped by biological similarity and abundances?

    PubMed

    Che-Castaldo, Judy P; Neel, Maile C

    2012-01-01

    There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species.

  14. Plant Species Recovery on a Compacted Skid Road

    PubMed Central

    Demir, Murat; Makineci, Ender; Gungor, Beyza Sat

    2008-01-01

    This study was executed to determine the plant species of herbaceous cover in a skid road subjected to soil compaction due to timber skidding in a beech (Fagus orientalis Lipsky.) stand. Our previous studies have shown that ground based timber skidding destroys the soils extremely, and degradations on ecosystem because of the timber skidding limit recovery and growth of plant cover on skid roads. However, some plant species show healthy habitat, recovery and they can survive after the extreme degradation in study area. We evaluated composition of these plant species and their cover-abundance scales in 100 m x 3 m transect. 15 plant species were determined belongs to 12 plant families and Liliaceae was the highest representative plant family. Smilax aspera L., Epimedium pubigerum (DC.) Moren et Decaisne, Carex distachya Desf. var. distachya Desf., Pteridium aquilinum (L.) Kuhn., Trachystemon orientalis (L.) G. Don, Hedera helix L. have the highest cover-abundance scale overall of determined species on compacted skid road. PMID:27879869

  15. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies.

  16. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment.

    PubMed

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly; Kostenko, Olga; Van der Putten, Wim H; Macel, Mirka

    2016-02-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically balanced plant communities.

  17. Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness.

    PubMed

    Feeley, Kenneth J; Terborgh, John W

    2006-01-01

    Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.

  18. [Traightened on Chinese endemic seed plant species of medicine plants used in Tibetan medicine].

    PubMed

    Zhou, Hua-rong; Mu, Ze-jing; Du, Xiao-lang; He, Jun-wei; Cao, Lan; Zhong, Guo-yue

    2015-09-01

    This paper is in order to discussion with the composition and characteristics of Tibetan medicine plant resources, and promote the reasonable protection and utilization of the resources of Tibetan materia medica. Statistical analysis of species, distributions, and others of Chinese endemic seed plant from Tibetan medicine plants and usually used in the clinic of Tibetan medicine. The results showed that there are 523 species (25%) of Chinese endemic seed plant, belonging to 65 families and 162 genera, in about 2 000 varieties of Tibetan medicine plants recorded in relevant literatures. There are 180 Chinese endemic seed plant species (28%) belonging to 42 families and 72 genera from 625 medicine plants usually used in the clinic of Tibetan medicine. Specifically, the most of these Chinese endemic seed plant species are characteristic crude drug used in Tibetan medicine, and mainly or only distributed in Qinghai-Tibet Plateau. And a few species of them were intersected with traditional Chinese medicines (TCM) and other ethnic medicines. In addition, about 10% are listed in China Species Red List. The Qinghai-Tibet Plateau is the most abundant areas of Areal-types of the Chinese endemic seed plant. This is the biological and ecological reason formation the characteristics of Tibetan medicine plant resources. Therefore, strengthen the research of Chinese endemic seed plants used in Tibetan medicine is great significance for the reasonable protection and utilization of Tibetan medicine plant resources.

  19. SELECTING PLANT SPECIES FOR PESTICIDE REGISTRATION TESTS

    EPA Science Inventory

    Current test protocols used by the US EPA for the registration of pesticides examines plant responses of 10 crop species but may not examine regionally important native plants or crops. In order to test the efficiency of current test protocols we selected six native plant species...

  20. Common European birds are declining rapidly while less abundant species' numbers are rising.

    PubMed

    Inger, Richard; Gregory, Richard; Duffy, James P; Stott, Iain; Voříšek, Petr; Gaston, Kevin J

    2015-01-01

    Biodiversity is undergoing unprecedented global decline. Efforts to slow this rate have focused foremost on rarer species, which are at most risk of extinction. Less interest has been paid to more common species, despite their greater importance in terms of ecosystem function and service provision. How rates of decline are partitioned between common and less abundant species remains unclear. Using a 30-year data set of 144 bird species, we examined Europe-wide trends in avian abundance and biomass. Overall, avian abundance and biomass are both declining with most of this decline being attributed to more common species, while less abundant species showed an overall increase in both abundance and biomass. If overall avian declines are mainly due to reductions in a small number of common species, conservation efforts targeted at rarer species must be better matched with efforts to increase overall bird numbers, if ecological impacts of birds are to be maintained.

  1. Testing the abundant center model using range-wide demographic surveys of two coastal dune plants.

    PubMed

    Samis, Karen E; Eckert, Christopher G

    2007-07-01

    It is widely accepted that species are most abundant at the center of their geographic ranges and become progressively rarer toward range limits. Although the abundant center model (ACM) has rarely been tested with range-wide surveys, it influences much thinking about the ecology and evolution of species' distributions. We tested ACM predictions using two unrelated but ecologically similar plants, Camissonia cheiranthifolia and Abronia umbellata. We intensively sampled both throughout their one-dimensional distributions within the Pacific coastal dunes of North America, from northern Baja California, Mexico, to southern Oregon, USA. Data from > 1100 herbarium specimens indicated that these limits have been stable for at least the last 100 years. Range-wide field surveys detected C. cheiranthifolia at 87% of 124 sites and A. umbellata at 54% of 113 sites, but site occupancy did not decline significantly toward range limits for either species. Permutation analysis did not detect a significant fit of geographical variation in local density to the ACM. Mean density did not correlate negatively with mean individual performance (plant size or number of seeds/plant), probably because both species occur at low densities. Although size and seeds per plant varied widely, central populations tended to have the highest values for size only. For C. cheiranthifolia, we observed asymmetry in the pattern of variation between the northern and southern halves of the range consistent with the long-standing prediction that range limits are imposed by different ecological factors in different parts of the geographical distribution. However, these asymmetries were difficult to interpret and likely reflect evolutionary differentiation as well as plastic responses to ecological variation. Both density and seeds per plant contributed to variation in seed production per unit area. In C. cheiranthifolia only, sites with highest seed production tended to occur at the range center, as

  2. Abundant C4 plants on the Tibetan Plateau during the Lateglacial and early Holocene

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Huang, Yongsong; Morrill, Carrie; Zhao, Jiangtao; Wegener, Pamela; Clemens, Steven C.; Colman, Steven M.; Gao, Li

    2014-03-01

    Plants using the C4 (Hatch-Slack) photosynthetic pathway are key for global food production and account for ca 25% of terrestrial primary productivity, mostly in relatively warm, dry regions. The discovery of modern naturally-occurring C4 plant species at elevations up to 4500 m in Tibet and 3000 m in Africa and South America, however, suggests that C4 plants are present in a wider range of environments than previously thought. Environmental conditions on the Tibetan Plateau, including high irradiance, rainfall focused in summer, and saline soils, can favor C4 plants by offsetting the deleterious effects of low growing season temperature. We present evidence based on leaf wax carbon isotope ratios from Lake Qinghai that C4 plants accounted for 50% of terrestrial primary productivity on the northeastern Tibetan Plateau throughout the Lateglacial and early Holocene. Despite cold conditions, C4 plants flourished due to a combination of factors, including maximum summer insolation, pCO2 ca 250 ppmv, and sufficient summer precipitation. The modern C3 plant-dominated ecosystem around Lake Qinghai was established ca 6 thousand years ago as pCO2 increased and summer temperature and precipitation decreased. C4 plants were also intermittently abundant during the Last Glacial period; we propose that C4 plants contributed a significant portion of local primary productivity by colonizing the exposed, saline Qinghai Lake bed during low stands. Our results contrast with state-of-the-art ecosystem models that simulate <0.5% C4 plant abundance on the Tibetan Plateau in modern and past environments. The past abundance of C4 plants on the Tibetan Plateau suggests a wider temperature range for C4 plants than can be inferred from modern distributions and model simulations, and provides paleoecological evidence to support recent findings that C4 plant evolution and distribution was determined by a combination of climatic and environmental factors (temperature, irradiance, precipitation

  3. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    USGS Publications Warehouse

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  4. Mosquito species succession and physicochemical factors affecting their abundance in rice fields in Mwea, Kenya.

    PubMed

    Muturi, Ephantus J; Mwangangi, Joseph; Shililu, Josephat; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus; Gu, Weidong; Mbogo, Charles; Githure, John; Novak, Robert

    2007-03-01

    The succession of mosquito species and abiotic factors affecting their distribution and abundance in rice (Oryza spp.) fields was investigated over a 16-wk rice growing cycle covering the period between January and May 2006. Fifteen experimental rice plots were sampled for mosquito larvae and characterized based on rice height, number of tillers, floating vegetation cover, water depth, water temperature, turbidity, salinity, pH, dissolved oxygen, total dissolved solids, and conductivity. Microscopic identification of 3,025 larvae yielded nine mosquito species predominated by Anopheles arabiensis Patton (45.0%), Culex quinquefasciatus Say (35.8%), Anopheles pharoensis Theobald (9.0%) and Ficalbia splendens Theobald (7.1%). Other species, including Anopheles rufipes Gough, Anopheles coustani Laveran, Anonopheles maculipalpis Giles, Culex annulioris Theobald, and Culex poicilipes Theobald made up 3.1% of the total collection. Anopheles gambiae s.l., Cx. quinquefasciatus, and An. pharoensis occurred throughout the cycle, but they were more abundant up to 4 wk posttransplanting with peaks after fertilizer application. As rice plants became established, three groups of mosquitoes were recognized: the first groups included An. rufipes, Fl. splendens, and Cx. annulioris, which occurred throughout much of the second half of the rice cycle, whereas the second group included Cx. poicilipes, which was found in the middle of the rice cycle. An. coustani and An. maculipalpis formed the third group occurring toward the end of the cycle. Dissolved oxygen, number of tillers, and rice height were negatively associated with the abundance ofAn. arabiensis and Cx. quinquefasciatus larvae. In addition, Cx. quinquefasciatus also was associated with water depth (-ve) and turbidity (+ve). Abundance of An. pharoensis larvae was significantly associated with water temperature (+ve), the number of tillers (-ve), and rice height (-ve), whereas Fl. splendens was significantly associated with

  5. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    PubMed

    Hansen, Gretchen J A; Carey, Cayelan C

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance) and "occasional" (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions.

  6. The nested assembly of plant facilitation networks prevents species extinctions.

    PubMed

    Verdú, Miguel; Valiente-Banuet, Alfonso

    2008-12-01

    Facilitation is a positive interaction assembling ecological communities and preserving global biodiversity. Although communities acquire emerging properties when many species interact, most of our knowledge about facilitation is based on studies between pairs of species. To understand how plant facilitation preserves biodiversity in complex ecological communities, we propose to move from the study of pairwise interactions to the network approach. We show that facilitation networks behave as mutualistic networks do, characterized by a nonrandom, nested structure of plant-plant interactions in which a few generalist nurses facilitate a large number of species while the rest of the nurses facilitate only a subset of them. Consequently, generalist nurses shape a dense and highly connected network. Interestingly, such generalist nurses are the most abundant species in the community, making facilitation-shaped communities strongly resistant to extinction, as revealed by coextinction simulations. The nested structure of facilitative networks explains why facilitation, by preventing extinction, preserves biodiversity.

  7. Genomic approaches for interrogating the biochemistry of medicinal plant species

    PubMed Central

    Góngora-Castillo, Elsa; Fedewa, Greg; Yeo, Yunsoo; Chappell, Joe; DellaPenna, Dean; Buell, C. Robin

    2013-01-01

    Development of next-generation sequencing, coupled with the advancement of computational methods, has allowed researchers to access the transcriptomes of recalcitrant genomes such as those of medicinal plant species. Through the sequencing of even a few cDNA libraries, a broad representation of the transcriptome of any medicinal plant species can be obtained, providing a robust resource for gene discovery and downstream biochemical pathway discovery. When coupled to estimation of expression abundances in specific tissues from a developmental series, biotic stress, abiotic stress, or elicitor challenge, informative coexpression and differential expression estimates on a whole transcriptome level can be obtained to identify candidates for function discovery. PMID:23084937

  8. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  9. Endangered Species (Plants). LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  10. Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance?

    PubMed

    Stang, Martina; Klinkhamer, Peter G L; van der Meijden, Eddy

    2007-03-01

    A recently discovered feature of plant-flower visitor webs is the asymmetric specialization of the interaction partners: specialized plants interact mainly with generalized flower visitors and specialized flower visitors mainly with generalized plants. Little is known about the factors leading to this asymmetry and their consequences for the extinction risk of species. Previous studies have proposed random interactions proportional to species abundance as an explanation. However, the simulation models used in these studies did not include potential biological constraints. In the present study, we tested the potential role of both morphological constraints and species abundance in promoting asymmetric specialization. We compared actual field data of a Mediterranean plant-flower visitor web with predictions of Monte Carlo simulations including different combinations of the potential factors structuring the web. Our simulations showed that both nectar-holder depth and abundance were able to produce asymmetry; but that the expected degree of asymmetry was stronger if based on both. Both factors can predict the number of interaction partners, but only nectar-holder depth was able to predict the degree of asymmetry of a certain species. What is more, without the size threshold the influence of abundance would disappear over time. Thus, asymmetric specialization seems to be the result of a size threshold and, only among the allowed interactions above this size threshold, a result of random interactions proportional to abundance. The simulations also showed that asymmetric specialization could not be the reason that the extinction risk of specialists and generalists is equalized, as suggested in the literature. In asymmetric webs specialists clearly had higher short-term extinction risks. In fact, primarily generalist visitors seem to profit from asymmetric specialization. In our web, specialists were less abundant than generalists. Therefore, including abundance in the

  11. Does plant species co-occurrence influence soil mite diversity?

    PubMed

    St John, Mark G; Wall, Diana H; Behan-Pelletier, Valerie M

    2006-03-01

    Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity.

  12. Acoustical Scattering, Propagation, and Attenuation Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake

    DTIC Science & Technology

    2012-09-30

    Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake Kelly J. Benoit-Bird College of Oceanic and Atmospheric Sciences 104...Abundant Pacific Schooling Species: Humboldt Squid and Hake 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...with maximum lengths of up to 90 cm. A more recent immigrant to these waters, is the similarly sized and highly abundant jumbo or Humboldt squid

  13. The impact of land abandonment on species richness and abundance in the Mediterranean Basin: a meta-analysis.

    PubMed

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no "one-size-fits-all" conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity.

  14. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis

    PubMed Central

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  15. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and

  16. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  17. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often

  18. Songbird abundance in native and planted grassland varies with type and amount of grassland in the surrounding landscape

    USGS Publications Warehouse

    Davis, Stephen K.; Fisher, Ryan; Skinner, Susan; Shaffer, Terry L.; Brigham, R. Mark

    2013-01-01

    Agriculture and wildlife conservation programs have converted vast amounts of cropland into grasslands planted with exotic species. Understanding how landscape context influences avian use of native and planted grasslands is essential for developing effective conservation strategies in agricultural landscapes. Our primary objective was to determine the extent to which the amount and type of grassland in the surrounding landscape influences the abundance of grassland songbird species on native and planted grassland parcels in southern Saskatchewan and Alberta, Canada. Bird abundance was more strongly influenced by the amount and type of grassland within 400 m of breeding parcels than at larger spatial scales. Grassland specialists responded similarly to habitat and landscape type over both years and provinces. Sprague's pipit (Anthus spragueii) and Baird's sparrow (Ammodramus bairdii) were most common in native grassland parcels surrounded by native grassland and were more likely to occur in planted grasslands surrounded by native grassland. Bobolinks (Dolichonyx oryzivorus) were most common in planted grassland parcels, but their abundance increased with the amount of native grassland surrounding these parcels. Our findings indicate that the suitability of planted grasslands for these species is influenced by their proximity to native grassland. Grassland generalists showed mixed responses to habitat and landscape type over the 2 years (Le Conte's sparrow [Ammodramus leconteii]) and between provinces (Savannah sparrow [Passerculus sandwichensis] and western meadowlark [Sturnella neglecta]). Management to benefit grassland specialists should therefore consider the landscape context when seeding cultivated land to non-native grassland and conserve extant native grassland.

  19. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    PubMed

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated.

  20. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE PAGES

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; ...

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more » inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  1. Mosquitoes of Zika Forest, Uganda: species composition and relative abundance.

    PubMed

    Kaddumukasa, M A; Mutebi, J-P; Lutwama, J J; Masembe, C; Akol, A M

    2014-01-01

    Mosquito collections were conducted in Zika Forest near Entebbe, Uganda, from July 2009 through June 2010 using CO2-baited light traps, ovitraps, and human-baited catches. In total, 163,790 adult mosquitoes belonging to 12 genera and 58 species were captured. Of these, 22 species (38%) were captured in Zika Forest for the first time. All the new records found in the forest in this study had previously been captured in other regions of Uganda, implying that they are native to the country and do not represent new introductions. More than 20 species previously collected in Zika Forest were not detected in our collections, and this may suggest a change in the mosquito fauna during the past 40 yr or variation in species composition from year to year. Arboviruses of public health importance have previously been isolated from >50% of the 58 mosquito species captured in Zika Forest, which suggests ahigh potential for transmission and maintenance of a wide range of arboviruses in Zika Forest.

  2. Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat

    USGS Publications Warehouse

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.

  3. Estimating Abundances of Interacting Species Using Morphological Traits, Foraging Guilds, and Habitat

    PubMed Central

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations – as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities. PMID:24727898

  4. Environmental metabolomics links genotype to phenotype and predicts genotype abundance in wild plant populations.

    PubMed

    Field, Katie J; Lake, Janice A

    2011-08-01

    'The Holy Grail' of plant ecology is to uncover rules that associate species and traits with environmental constraints, community composition and subsequent ecosystem functioning. These aims have been crystallized in recent years within the context of global climate change and environmental pollution, increasing the urgency of the need to predict how vegetation will respond across spatial scales. We investigated whether genetic diversity is associated with the way in which phenotypic plasticity within plant populations is realized and whether this is related to genotype abundance. We used environmental metabolomics to demonstrate biochemical variation between co-occurring genotypes of Carex caryophyllea L. A novel combined metabolomic/functional trait analysis was used to test the functionality of this variation in governing plasticity to variation in edaphic conditions, with particular reference to metabolic pathways that play important roles in growth-related traits. We show that genetic diversity within a wild C. caryophyllea population relates to differences in metabolic composition and functional traits in response to soil nutrient variation, influencing genotype abundance within a community. Our findings highlight the vital role genetic diversity plays within a population in facilitating plant phenotypic plasticity and the potential usefulness of environmental metabolomics to future ecological studies.

  5. Microbial abundance and community in subsurface flow constructed wetland microcosms: role of plant presence.

    PubMed

    Wang, Qian; Xie, Huijun; Ngo, Huu Hao; Guo, Wenshan; Zhang, Jian; Liu, Cui; Liang, Shuang; Hu, Zhen; Yang, Zhongchen; Zhao, Congcong

    2016-03-01

    In this research, the role of plants in improving microorganism growth conditions in subsurface flow constructed wetland (CW) microcosms was determined. In particular, microbial abundance and community were investigated during summer and winter in Phragmites australis-planted CW microcosms (PA) and unplanted CW microcosms (control, CT). Results revealed that the removal efficiencies of pollutants and microbial community structure varied in winter with variable microbial abundance. During summer, PA comprised more dominant phyla (e.g., Proteobacteria, Actinobacteria, and Bacteroidetes), whereas CT contained more Cyanobacteria and photosynthetic bacteria. During winter, the abundance of Proteobacteria was >40 % in PA but dramatically decreased in CT. Moreover, Cyanobacteria and photosynthetic bacterial dominance in CT decreased. In both seasons, bacteria were more abundant in root surfaces than in sand. Plant presence positively affected microbial abundance and community. The potential removal ability of CT, in which Cyanobacteria and photosynthetic bacteria were abundant during summer, was more significantly affected by temperature reduction than that of PA with plant presence.

  6. Urbanization level and woodland size are major drivers of woodpecker species richness and abundance.

    PubMed

    Myczko, Lukasz; Rosin, Zuzanna M; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species.

  7. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  8. Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance.

    PubMed

    Martensen, Alexandre Camargo; Ribeiro, Milton Cezar; Banks-Leite, Cristina; Prado, Paulo Inácio; Metzger, Jean Paul

    2012-12-01

    Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F= 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it

  9. Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden.

    PubMed

    Jägerbrand, Annika K; Alatalo, Juha M

    2015-01-01

    This study investigated the effects of human trampling on cover, diversity and species richness in an alpine heath ecosystem in northern Sweden. We tested the hypothesis that proximity to trails decreases plant cover, diversity and species richness of the canopy and the understory. We found a significant decrease in plant cover with proximity to the trail for the understory, but not for the canopy level, and significant decreases in the abundance of deciduous shrubs in the canopy layer and lichens in the understory. Proximity also had a significant negative impact on species richness of lichens. However, there were no significant changes in species richness, diversity or evenness of distribution in the canopy or understory with proximity to the trail. While not significant, liverworts, acrocarpous and pleurocarpous bryophytes tended to have contrasting abundance patterns with differing proximity to the trail, indicating that trampling may cause shifts in dominance hierarchies of different groups of bryophytes. Due to the decrease in understory cover, the abundance of litter, rock and soil increased with proximity to the trail. These results demonstrate that low-frequency human trampling in alpine heaths over long periods can have major negative impacts on lichen abundance and species richness. To our knowledge, this is the first study to demonstrate that trampling can decrease species richness of lichens. It emphasises the importance of including species-level data on non-vascular plants when conducting studies in alpine or tundra ecosystems, since they often make up the majority of species and play a significant role in ecosystem functioning and response in many of these extreme environments.

  10. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  11. Macroalgal mats and species abundance: a field experiment

    NASA Astrophysics Data System (ADS)

    Hull, S. C.

    1987-11-01

    A field experiment was carried out whereby the density of macroalgae ( Enteromorpha spp.) was manipulated and the resultant changes in sediment infaunal density were monitored. Four densities of Enteromorpha spp. were used: 0,0·3, 1, and 3 kg FW m -2, corresponding to control, low-, medium-, and high-density plots. The experiment ran from May to October 1985 and was sampled on three occasions. By July, the density of Corophium volutator was reduced at all weed levels when compared to control plots, whereas densities of Hydrobia ulvae, Macoma balthica, Nereis diversicolor, and Capitella capitata, all increased. Samples taken in October when the weed mats were buried in the sediment showed fewer differences than in July. Macoma, Nereis, and Capitella were still significantly more abundant at medium and high weed densities. Corophium showed no significant treatment effect. There was, however, a highly significant difference in population size structure for Corophium. Measurements of sediment redox potential and silt content under medium- and high-density plots revealed rapid anoxia with a significant increase in siltation.

  12. Topographic variables improve climate models of forage species abundance in the northeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species distribution modeling has most commonly been applied to presence-only data and to woody species, but detailed predicted abundance maps for forage species would be of great value for agricultural management and land use planning. We used field data from 107 farms across the northeastern Unite...

  13. The myth of plant species saturation

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Barnett, David T.; Jarnevich, Catherine S.; Flather, Curtis; Kartesz, John

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed ‘saturated’ when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA where colonization (i.e. invasion by exotic species) exceeds extirpation by roughly a 24 to 1 margin. We report an alarming temporal trend in plant invasions in the Pacific Northwest over the past 100 years whereby counties highest in native species richness appear increasingly invaded over time. Despite the possibility of some increased awareness and reporting of native and exotic plant species in recent decades, historical records show a significant, consistent long-term increase in exotic species (number and frequency) at county, state and regional scales in the Pacific Northwest. Here, as in other regions of the country, colonization rates by exotic species are high and extirpation rates are negligible. The rates of species accumulation in space in multi-scale vegetation plots may provide some clues to the mechanisms of the invasion process from local to national scales.

  14. A common scaling rule for abundance, energetics, and production of parasitic and free-living species

    USGS Publications Warehouse

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the - 3/4 power. This result indicates "production equivalence," where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic.

  15. A common scaling rule for abundance, energetics, and production of parasitic and free-living species.

    PubMed

    Hechinger, Ryan F; Lafferty, Kevin D; Dobson, Andy P; Brown, James H; Kuris, Armand M

    2011-07-22

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the -¾ power. This result indicates "production equivalence," where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic.

  16. The effect of soil-borne pathogens depends on the abundance of host tree species

    PubMed Central

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen–Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  17. Subtle temperature differences may well determine who wins: a story of three submerged aquatic plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As temperatures increases globally, shifts in the distribution of plant species are expected, with unknown effects on invasive species abundance. It is then of value to understand the role increased temperature may have on invasive species. Although nonhomeothermic organisms are the mercy of environ...

  18. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations

    PubMed Central

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C.

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  19. Seed predation, not seed dispersal, explains the landscape-level abundance of an early-successional plant.

    SciTech Connect

    Orrock, John, L.; Douglas J. Levey; Brent J. Danielson; Ellen I Damschen.

    2006-01-01

    Plants may not occur in a given area if there are no suitable sites for seeds to establish (microsite limitation), if seeds fail to arrive in suitable microsites (dispersal limitation) or if seeds in suitable microsites are destroyed by predators (predator limitation). When dispersal and microsites are not limiting, the role of local seed predators can be important for generating emergent, large-scale patterns of plant abundance across landscapes. Moreover, because predators may generate large-scale patterns that resemble other forms of limitation and predators may target specific species, predator impacts should be more frequently incorporated into experiments on the role of seed limitation and plant community composition.

  20. Acoustical Scattering, Propagation, and Attenuation Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake

    DTIC Science & Technology

    2011-09-30

    Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake Kelly J. Benoit-Bird College of Oceanic and Atmospheric Sciences 104...Attenuation Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...have successfully recruited graduate students that will conduct thesis research as part of this project. RESULTS Both hake and Humboldt squid

  1. Relative importance of phenotypic trait matching and species' abundances in determining plant–avian seed dispersal interactions in a small insular community

    PubMed Central

    González-Castro, Aarón; Yang, Suann; Nogales, Manuel; Carlo, Tomás A.

    2015-01-01

    Network theory has provided a general way to understand mutualistic plant–animal interactions at the community level. However, the mechanisms responsible for interaction patterns remain controversial. In this study we use a combination of statistical models and probability matrices to evaluate the relative importance of species morphological and nutritional (phenotypic) traits and species abundance in determining interactions between fleshy-fruited plants and birds that disperse their seeds. The models included variables associated with species abundance, a suite of variables associated with phenotypic traits (fruit diameter, bird bill width, fruit nutrient compounds), and the species identity of the avian disperser. Results show that both phenotypic traits and species abundance are important determinants of pairwise interactions. However, when considered separately, fruit diameter and bill width were more important in determining seed dispersal interactions. The effect of fruit compounds was less substantial and only important when considered together with abundance-related variables and/or the factor ‘animal species’. PMID:25750409

  2. Assessing the sensitivity of avian species abundance to land cover and climate

    USGS Publications Warehouse

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  3. Extinction risks of Amazonian plant species.

    PubMed

    Feeley, Kenneth J; Silman, Miles R

    2009-07-28

    Estimates of the number, and preferably the identity, of species that will be threatened by land-use change and habitat loss are an invaluable tool for setting conservation priorities. Here, we use collections data and ecoregion maps to generate spatially explicit distributions for more than 40,000 vascular plant species from the Amazon basin (representing more than 80% of the estimated Amazonian plant diversity). Using the distribution maps, we then estimate the rates of habitat loss and associated extinction probabilities due to land-use changes as modeled under 2 disturbance scenarios. We predict that by 2050, human land-use practices will have reduced the habitat available to Amazonian plant species by approximately 12-24%, resulting in 5-9% of species becoming "committed to extinction," significantly fewer than other recent estimates. Contrary to previous studies, we find that the primary determinant of habitat loss and extinction risk is not the size of a species' range, but rather its location. The resulting extinction risk estimates are a valuable conservation tool because they indicate not only the total percentage of Amazonian plant species threatened with extinction but also the degree to which individual species and habitats will be affected by current and future land-use changes.

  4. Species diversity and seasonal abundance of Culicoides biting midges in northwestern Argentina.

    PubMed

    Aybar, C A Veggiani; Juri, M J Dantur; De Grosso, M S Lizarralde; Spinelli, G R

    2010-03-01

    The species diversity and seasonal abundance of biting midges of the genus Culicoides (Diptera: Ceratopogonidae) were studied in northwestern Argentina during the period 2003-2005. A total of 5437 Culicoides specimens were collected using CDC light traps in three areas of the mountainous rainforest area. The most common species were Culicoides paraensis (Goeldi) and C. insignis Lutz, Culicoides lahillei (Iches), C. venezuelensis Ortiz & Mirsa, C. debilipalpis Lutz and C. crescentis Wirth & Blanton were also collected. Culicoides paraensis was abundant during the summer, and C. insignis and C. lahillei during late summer and early fall. Accumulated rainfall was the climatic variable most related to fluctuation in abundance of C. paraensis.

  5. Valuing the recreational benefits of wetland adaptation to climate change: a trade-off between species' abundance and diversity.

    PubMed

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  6. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species' Abundance and Diversity

    NASA Astrophysics Data System (ADS)

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M.

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  7. Remembrance of things past: modelling the relationship between species' abundances in living communities and death assemblages.

    PubMed

    Olszewski, Thomas D

    2012-02-23

    Accumulations of dead skeletal material are a valuable archive of past ecological conditions. However, such assemblages are not equivalent to living communities because they mix the remains of multiple generations and are altered by post-mortem processes. The abundance of a species in a death assemblage can be quantitatively modelled by successively integrating the product of an influx time series and a post-mortem loss function (a decay function with a constant half-life). In such a model, temporal mixing increases expected absolute dead abundance relative to average influx as a linear function of half-life and increases variation in absolute dead abundance values as a square-root function of half-life. Because typical abundance distributions of ecological communities are logarithmically distributed, species' differences in preservational half-life would have to be very large to substantially alter species' abundance ranks (i.e. make rare species common or vice-versa). In addition, expected dead abundances increase at a faster rate than their range of variation with increased time averaging, predicting greater consistency in the relative abundance structure of death assemblages than their parent living community.

  8. Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance

    PubMed Central

    Tuya, Fernando; Vanderklift, Mathew A.; Wernberg, Thomas; Thomsen, Mads S.

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat. PMID:21629654

  9. Gradients in the number of species at reef-seagrass ecotones explained by gradients in abundance.

    PubMed

    Tuya, Fernando; Vanderklift, Mathew A; Wernberg, Thomas; Thomsen, Mads S

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity ('species density'  =  number of species per area and 'species richness'  =  number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat.

  10. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark

  11. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species

    PubMed Central

    Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle

    2015-01-01

    Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409

  12. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.

  13. Species interaction mechanisms maintain grassland plant species diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

  14. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  15. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  16. Fluctuation in seed abundance has contrasting effects on the fate of seeds from two rapidly germinating tree species in an Asian tropical forest.

    PubMed

    Cao, Lin; Guo, Cong; Chen, Jin

    2017-01-01

    The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers, thus promoting seed survival. However, for rapidly germinating seeds in tropical forests, high seed abundance may limit dispersal as the seeds usually remain under parent trees for long periods, which may lead to high mortality due to rodent predation or fungal infestations. By tracking 2 species of rapidly germinating seeds (Pittosporopsis kerrii, family Icacinaceae; Camellia kissi, family Theaceae), which depend on dispersal by scatter-hoarding rodents, we investigated the effects of seed abundance at the community level on predation and seed dispersal in the tropical forest of Xishuangbanna Prefecture, Southwest China. We found that high seed abundance at the community level was associated with delayed and reduced seed removal, decreased dispersal distance and increased pre-dispersal seed survival for both plant species. High seed abundance was also associated with reduced seed caching of C. kissi, but it showed little effect on seed caching of P. kerrii. However, post-dispersal seed survival for the 2 plant species followed the reverse pattern. High seed abundance in the community was associated with higher post-dispersal survival of P. kerrii seeds, but with lower post-dispersal survival of C. kissi seeds. Our results suggest that different plant species derive benefit from fluctuations in seed production in different ways.

  17. Experimentally reducing species abundance indirectly affects food web structure and robustness.

    PubMed

    Barbosa, Milton; Fernandes, G Wilson; Lewis, Owen T; Morris, Rebecca J

    2017-03-01

    Studies on the robustness of ecological communities suggest that the loss or reduction in abundance of individual species can lead to secondary and cascading extinctions. However, most such studies have been simulation-based analyses of the effect of primary extinction on food web structure. In a field experiment we tested the direct and indirect effects of reducing the abundance of a common species, focusing on the diverse and self-contained assemblage of arthropods associated with an abundant Brazilian shrub, Baccharis dracunculifolia D.C. (Asteraceae). Over a 5-month period we experimentally reduced the abundance of Baccharopelma dracunculifoliae (Sternorrhyncha: Psyllidae), the commonest galling species associated with B. dracunculifolia, in 15 replicate plots paired with 15 control plots. We investigated direct effects of the manipulation on parasitoids attacking B. dracunculifoliae, as well as indirect effects (mediated via a third species or through the environment) on 10 other galler species and 50 associated parasitoid species. The experimental manipulation significantly increased parasitism on B. dracunculifoliae in the treatment plots, but did not significantly alter either the species richness or abundance of other galler species. Compared to control plots, food webs in manipulated plots had significantly lower values of weighted connectance, interaction evenness and robustness (measured as simulated tolerance to secondary extinction), even when B. dracunculifoliae was excluded from calculations. Parasitoid species were almost entirely specialized to individual galler species, so the observed effects of the manipulation on food web structure could not have propagated via the documented trophic links. Instead, they must have spread either through trophic links not included in the webs (e.g. shared predators) or non-trophically (e.g. through changes in habitat availability). Our results highlight that the inclusion of both trophic and non

  18. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis.

  19. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  20. Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity.

    PubMed

    Liu, Yinzhan; Reich, Peter B; Li, Guoyong; Sun, Shucun

    2011-06-01

    Phenological mismatches due to climate change may have important ecological consequences. In a three-year study, phenological shifts due to experimental warming markedly altered trophic relationships between plants and insect herbivores, causing a dramatic decline of reproductive capacity for one of the plant species. In a Tibetan meadow, the gentian (Gentiana formosa) typically flowers after the peak larva density of a noctuid moth (Melanchra pisi) that primarily feeds on a dominant forb (anemone, Anemone trullifolia var. linearis). However, artificial warming of approximately 1.5 degrees C advanced gentian flower phenology and anemone vegetative phenology by a week, but delayed moth larvae emergence by two weeks. The warming increased larval density 10-fold, but decreased anemone density by 30%. The phenological and density shifts under warmed conditions resulted in the insect larvae feeding substantially on the gentian flowers and ovules; there was approximately 100-fold more damage in warmed than in unwarmed chambers. This radically increased trophic connection reduced gentian plant reproduction and likely contributed to its reduced abundance in the warmed chambers.

  1. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  2. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data.

  3. Disentangling effects of vector birth rate, mortality rate, and abundance on spread of a plant pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For insect-transmitted plant pathogens, rates of pathogen spread are a function of vector abundance. While vector abundance is recognized to be important, parameters that govern vector population size receive little attention. For example, epidemiological models often fix vector population size by a...

  4. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  5. Germination and early plant development of ten plant species ...

    EPA Pesticide Factsheets

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  6. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    PubMed Central

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most

  7. Cryobanking of plant species, promise and status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, the PAGRP has over 4,000 unique samples of clonally propagated species and about 49,000 seed samples in long-term liquid nitrogen storage. Cryopreservation of plant genetic resources has several advantages over germplasm maintenance in field or in vitro; the main of the advantages are pro...

  8. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    PubMed Central

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  9. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees.

    PubMed

    Dexter, Kyle; Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  10. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  11. Regeneration niche differentiates functional strategies of desert woody plant species

    PubMed Central

    Briggs, John M.

    2010-01-01

    Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1741-y) contains supplementary

  12. Egyptian plant species as new ozone indicators.

    PubMed

    Madkour, Samia A; Laurence, J A

    2002-01-01

    The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).

  13. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities.

    PubMed

    Binckley, Christopher A; Resetarits, William J

    2005-09-22

    Distribution and abundance patterns at the community and metacommunity scale can result from two distinct mechanisms. Random dispersal followed by non-random, site-specific mortality (species sorting) is the dominant paradigm in community ecology, while habitat selection provides an alternative, largely unexplored, mechanism with different demographic consequences. Rather than differential mortality, habitat selection involves redistribution of individuals among habitat patches based on perceived rather than realized fitness, with perceptions driven by past selection. In particular, habitat preferences based on species composition can create distinct patterns of positive and negative covariance among species, generating more complex linkages among communities than with random dispersal models. In our experiments, the mere presence of predatory fishes, in the absence of any mortality, reduced abundance and species richness of aquatic beetles by up to 80% in comparison with the results from fishless controls. Beetle species' shared habitat preferences generated distinct patterns of species richness, species composition and total abundance, matching large-scale field patterns previously ascribed to random dispersal and differential mortality. Our results indicate that landscape-level patterns of distribution and species diversity can be driven to a large extent by habitat selection behaviour, a critical, but largely overlooked, mechanism of community and metacommunity assembly.

  14. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.

  15. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  16. Habitat partitioning by five congeneric and abundant Choerodon species (Labridae) in a large subtropical marine embayment

    NASA Astrophysics Data System (ADS)

    Fairclough, D. V.; Clarke, K. R.; Valesini, F. J.; Potter, I. C.

    2008-04-01

    The habitats occupied by the juveniles and adults of five morphologically similar, diurnally active and abundant Choerodon species in the large subtropical environment of Shark Bay, a "World Heritage Property" on the west coast of Australia, have been determined. The densities of the two life cycle stages of each Choerodon species in those habitats were used in various analyses to test the hypotheses that: (1) habitats are partitioned among these species and between their juveniles and adults; (2) such habitat partitioning is greatest in the case of the two Western Australian endemic species, i.e. Choerodon rubescens and Choerodon cauteroma; and (3) the extent of habitat partitioning between both of these two species and the only species that is widely distributed in the Indo-West Pacific, i.e. Choerodon schoenleinii, will be less pronounced. Initially, catches of each of the five congeneric species, obtained during other studies in Shark Bay by angling, spearfishing and otter trawling, were collated to elucidate the broad distribution of these species in that embayment. Underwater visual census was then used to determine the densities of the juveniles and adults of each Choerodon species at sites representing the four habitat types in which one or more of these species had been caught, i.e. reefs in marine waters at the western boundary of the bay and seagrass, reefs and rocky shorelines in the two inner gulfs. The compositions of the Choerodon species over marine (entrance channel) reefs and in seagrass were significantly different and each differed significantly from those in both inner gulf reefs and rocky shorelines, which were, however, not significantly different. Choerodon rubescens was restricted to exposed marine reefs, and thus occupied a different habitat and location of the bay than C. cauteroma, the other endemic species, which was almost exclusively confined to habitats found in the inner gulfs. Choerodon cauteroma differed from other Choerodon

  17. Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries

    PubMed Central

    Mougeot, J-L. C.; Stevens, C. B.; Paster, B. J.; Brennan, M. T.; Lockhart, P. B.; Mougeot, F. K. B

    2017-01-01

    ABSTRACT An association between oral bacteria and atherosclerosis has been postulated. A limited number of studies have used 16S RNA gene sequencing-based metagenomics approaches to identify bacteria at the species level from atherosclerotic plaques in arterial walls. The objective of this study was to establish detailed oral microbiome profiles, at both genus and species level, of clinically healthy coronary and femoral artery tissues from patients with atherosclerosis. Tissue specimens were taken from clinically non-atherosclerotic areas of coronary or femoral arteries used for attachment of bypass grafts in 42 patients with atherosclerotic cardiovascular disease. Bacterial DNA was sequenced using the MiSeq platform, and sequence reads were screened in silico for nearly 600 oral species using the HOMINGS ProbeSeq species identification program. The number of sequence reads matched to species or genera were used for statistical analyses. A total of 230 and 118 species were detected in coronary and femoral arteries, respectively. Unidentified species detected by genus-specific probes consisted of 45 and 30 genera in coronary and in femoral artery tissues, respectively. Overall, 245 species belonging to 95 genera were detected in coronary and femoral arteries combined. The most abundant species were Porphyromonas gingivalis, Enterococcus faecalis, and Finegoldia magna based on species probes. Porphyromonas, Escherichia, Staphylococcus, Pseudomonas, and Streptococcus genera represented 88.5% mean relative abundance based on combined species and genus probe detections. Porphyromonas was significantly more abundant than Escherichia (i.e. 46.8% vs. 19.3%; p = 0.0005). This study provides insight into the presence and types of oral microbiome bacterial species found in clinically non-atherosclerotic arteries. PMID:28326156

  18. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland.

  19. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.

    PubMed

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-03-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.

  20. A Spectroscopic Survey of Metallic Species Abundances in the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Flynn, B. C.; Stern, S. A.

    1996-12-01

    The first results of an ongoing effort to search for new species in the lunar atmosphere are presented. The observations in terms of the degree to which atomic metal abundances in the lunar atmosphere are stoichiometric, that is, proportional to surface abundances (as the Na:K ratio is), are discussed. Na and K are the only atmospheric constituents to have been observed from Earth, but Apollo sample returns established that a variety of species are more abundant in the lunar surface than either Na or K. Simple stoichiometric arguments (i.e., assuming atmospheric production proportional to surface abundance) predict that relatively abundant lunar surface constituents such as Si, Al, Ca, Mg, Fe, and Ti should be more abundant in the lunar atmosphere than either Na or K. The 2.7-m coudé and 2.1-m cassegrain echelle spectrographs at the University of Texas McDonald Observatory were used to investigate this hypothesis by searching for solar resonant scattering lines of nine metallic species between 3700 and 9700 Å. Spectra were taken 20 arcsec above the apparent subsolar limb of the Moon near quarter phase on 30 July 1994 and 10-12 March 1995. Upper limits were obtained for the first time for the abundant lunar surface species Si, Al, Ca, Fe, and Ti, as well as Ba and the alkalis Li, Rb, and Cs. In the cases of Si, Ca, Fe, and Ti, the derived upper limits are more than an order of magnitude lower than the simple stoichiometric model predicts. The upper limits for Li and Al are less constraining. The Ba, Rb, and Cs upper limits lead to the conclusion that those species are not stoichiometrically overabundant above the detection threshold in the atmosphere. It is concluded that the stoichiometric Na:K ratio is peculiar in that the mechanism(s) that produce the lunar Na and K atmosphere somehow favor those atomic species over many more or comparably abundant lunar surface species.

  1. Microbiome interplay: plants alter microbial abundance and diversity within the built environment.

    PubMed

    Mahnert, Alexander; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    The built indoor microbiome has importance for human health. Residents leave their microbial fingerprint but nothing is known about the transfer from plants. Our hypothesis that indoor plants contribute substantially to the microbial abundance and diversity in the built environment was experimentally confirmed as proof of principle by analyzing the microbiome of the spider plant Chlorophytum comosum in relation to their surroundings. The abundance of Archaea, Bacteria, and Eukaryota (fungi) increased on surrounding floor and wall surfaces within 6 months of plant isolation in a cleaned indoor environment, whereas the microbial abundance on plant leaves and indoor air remained stable. We observed a microbiome shift: the bacterial diversity on surfaces increased significantly but fungal diversity decreased. The majority of cells were intact at the time of samplings and thus most probably alive including diverse Archaea as yet unknown phyllosphere inhabitants. LEfSe and network analysis showed that most microbes were dispersed from plant leaves to the surrounding surfaces. This led to an increase of specific taxa including spore-forming fungi with potential allergic potential but also beneficial plant-associated bacteria, e.g., Paenibacillus. This study demonstrates for the first time that plants can alter the microbiome of a built environment, which supports the significance of plants and provides insights into the complex interplay of plants, microbiomes and human beings.

  2. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance?

    NASA Astrophysics Data System (ADS)

    Leewis, Lies; van Bodegom, Peter M.; Rozema, Jelte; Janssen, Gerard M.

    2012-11-01

    Coastal squeeze is the largest threat for sandy coastal areas. To mitigate seaward threats, erosion and sea level rise, sand nourishment is commonly applied. However, its long-term consequences for macroinvertebrate fauna, critical to most ecosystem services of sandy coasts, are still unknown. Seventeen sandy beaches - nourished and controls - were sampled along a chronosequence to investigate the abundance of four dominant macrofauna species and their relations with nourishment year and relevant coastal environmental variables. Dean's parameter and latitude significantly explained the abundance of the spionid polychaete Scolelepis squamata, Beach Index (BI), sand skewness, beach slope and latitude explained the abundance of the amphipod Haustorius arenarius and Relative Tide Range (RTR), recreation and sand sorting explained the abundance of Bathyporeia sarsi. For Eurydice pulchra, no environmental variable explained its abundance. For H. arenarius, E. pulchra and B. sarsi, there was no relation with nourishment year, indicating that recovery took place within a year after nourishment. Scolelepis squamata initially profited from the nourishment with "over-recolonisation". This confirms its role as an opportunistic species, thereby altering the initial community structure on a beach after nourishment. We conclude that the responses of the four dominant invertebrates studied in the years following beach nourishment are species specific. This shows the importance of knowing the autecology of the sandy beach macroinvertebrate fauna in order to be able to mitigate the effects of beach nourishment and other environmental impacts.

  3. Nutrient availability modifies species abundance and community structure of Fucus-associated littoral benthic fauna.

    PubMed

    Korpinen, Samuli; Jormalainen, Veijo; Pettay, Esko

    2010-01-01

    The brown alga Fucus vesiculosus is a foundation species in the Baltic Sea littoral, hosting a rich faunal community. We compared the species composition and diversity of invertebrate macrofauna living on F. vesiculosus between sites differing in their eutrophication status and exposure to waves at three different times during a season. We determined the size, nitrogen and phlorotannin content of the alga. The invertebrate community differed substantially between sites near fish farms and those in more pristine environment. Snails and bivalves were more abundant on the Fucus stands near fish farms than on control stands, where crustaceans were more abundant. The abundance of molluscs decreased with the increasing shore exposure, while gammaridean amphipods dominated on the exposed shores. Abundance of several taxa increased during the proceeding growing season. The density of the most important herbivore of F. vesiculosus, Idotea balthica, varied 100-fold during the season being the lowest in June and the highest in August when the generation born in the summer started to feed on Fucus. Thus, the diversity and composition of Fucus-associated invertebrate fauna varies both with environmental conditions of the stand and seasonally. Although the negative effects of eutrophication on distribution and abundance of Fucus stands are well documented, a moderate increase of nutrients was found to increase the species richness of Fucus-associated fauna in early summer.

  4. Estimating Lion Abundance using N-mixture Models for Social Species

    PubMed Central

    Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.

    2016-01-01

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283

  5. Estimating Lion Abundance using N-mixture Models for Social Species.

    PubMed

    Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E

    2016-10-27

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.

  6. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  7. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.

    PubMed

    Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M

    2016-03-31

    Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens.

  8. The abundance of Zoogloea ramigera in sewage treatment plants.

    PubMed Central

    Rosselló-Mora, R A; Wagner, M; Amann, R; Schleifer, K H

    1995-01-01

    Zoogloea ramigera has long been considered the typical activated sludge bacterium responsible for the formation of activated sludge flocs. On the basis of the results of a comparative sequence analysis, we designed three oligonucleotide probes complementary to characteristic regions of the 16S rRNAs of Z. ramigera ATCC 19544T (T = type strain) and two misclassified strains, Z. ramigera ATCC 25935 and ATCC 19623. Dissociation temperatures were determined, and probe specificities, as well as the potential of probes for whole-cell hybridization, were evaluated by using numerous reference organisms. Several activated sludge samples were examined with these probes by using both the in situ and dot blot hybridization methods. Only the type strain probe hybridized to cells that accumulated in the typical branched gelatinous matrices, the so-called Zoogloea fingers. This probe revealed cells in most of the activated sludge samples studied. We found that relatively high levels of Z. ramigera cells (up to approximately 10% of the total number of cells) and typical morphology tended to be linked to overloading of sewage plants. The probe directed to rejected type strain Z. ramigera ATCC 19623 bound to only a few cells. Cells that reacted with the probe complementary to Z. ramigera ATCC 25935, which was originally isolated from a trickling filter, were not observed in activated sludge. PMID:7574608

  9. Floristic characteristics of alien invasive seed plant species in China.

    PubMed

    Wang, Congyan; Liu, Jun; Xiao, Hongguang; Zhou, Jiawei; DU, Daolin

    2016-01-01

    This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS) in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  10. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam.

    PubMed

    Campbell, Earl W; Adams, Amy A Yackel; Converse, Sarah J; Fritts, Thomas H; Rodda, Gordon H

    2012-05-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout-vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  11. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    USGS Publications Warehouse

    Campbell, Earl W.; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  12. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.

  13. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    PubMed

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  14. Species diversity and abundance of ticks in three habitats in southern Italy.

    PubMed

    Dantas-Torres, Filipe; Otranto, Domenico

    2013-04-01

    A 2-year study was conducted from March 2010 to March 2012 in a forested area in southern Italy to evaluate the species diversity and abundance of free-living ticks in 3 different habitats: (i) a meadow habitat within an enclosure inhabited by roe deer (Capreolus capreolus); (ii) a man-made trail located in a high-altitude, forested area; and (iii) a grassland near a house inhabited by 3 people. In total, 10,795 ticks were collected. Ixodes ricinus was the most abundant species (69.0%), followed by Haemaphysalis inermis (19.1%), Rhipicephalus turanicus (6.7%), Dermacentor marginatus (3.2%), and Hyalomma marginatum (1.0%). The least frequently collected species were Rhipicephalus bursa, Haemaphysalis parva, Haemaphysalis sulcata, and Haemaphysalis concinna, representing together less than 1% of the collections. Immature ticks predominated over adult ticks. In particular, immature stages of Ix. ricinus (i.e., 3246 larvae and 3554 nymphs) represented 63% of the total number of ticks collected. High levels of species diversity and abundance of ticks were recorded in all habitats and the daily number of ticks collected was negatively correlated with daily mean temperature, evapotranspiration, and saturation deficit. This study indicates that the southern Italian climate is suitable for different tick species, which may find a preferred 'climate niche' during a specific season, when a combination of factors (e.g., suitable meteorological and environmental conditions) associated with the presence of suitable hosts will facilitate their development and reproduction.

  15. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Mellin, C.; Andréfouët, S.; Ponton, D.

    2007-12-01

    Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

  16. Abundance of biting midge species (Diptera: Ceratopogonidae, Culicoides spp.) on cattle farms in Korea.

    PubMed

    Oem, Jae-Ku; Chung, Joon-Yee; Kwon, Mee-Soon; Kim, Toh-Kyung; Lee, Tae-Uk; Bae, You-Chan

    2013-01-01

    Culicoides biting midges were collected on three cattle farms weekly using light traps overnight from May to October between 2010 and 2011 in the southern part of Korea. The seasonal and geographical abundance of Culicodes spp. were measured. A total of 16,538 biting midges were collected from 2010 to 2011, including seven species of Culicoides, four of which represented 98.42% of the collected specimens. These four species were Culicodes (C.) punctatus (n = 14,413), C. arakawae (n = 1,120), C. oxystoma (n = 427), and C. maculatus (n = 318). C. punctatus was the predominant species (87.15%).

  17. Variation within and between Frankliniella thrips species in host plant utilization.

    PubMed

    Baez, Ignacio; Reitz, Stuart R; Funderburk, Joseph E; Olson, Steve M

    2011-01-01

    Anthophilous flower thrips in the genus Frankliniella (Thysanoptera: Thripidae) exploit ephemeral plant resources and therefore must be capable of successfully locating appropriate hosts on a repeated basis, yet little is known of interspecific and intraspecific variation in responses to host plant type and nutritional quality. Field trials were conducted over two seasons to determine if the abundance of males and females of three common Frankliniella species, F. occidentalis (Pergande), F. tritici (Fitch) and F. bispinosa (Morgan), their larvae, and a key predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae) were affected by host plant type and plant nutritional quality. Two host plants, pepper, Capsicum annuum L. (Solanales: Solanaceae) and tomato, Solanum lycopersicum L. that vary in suitability for these species were examined, and their nutritional quality was manipulated by applying three levels of nitrogen fertilization (101 kg/ha, 202 kg/ha, 404 kg/ha). F. occidentalis females were more abundant in pepper than in tomato, but males did not show a differential response. Both sexes of F. tritici and F. bispinosa were more abundant in tomato than in pepper. Larval thrips were more abundant in pepper than in tomato. Likewise, O. insidiosus females and nymphs were more abundant in pepper than in tomato. Only F. occidentalis females showed a distinct response to nitrogen fertilization, with abundance increasing with fertilization. These results show that host plant utilization patterns vary among Frankliniella spp. and should not be generalized from results of the intensively studied F. occidentalis. Given the different pest status of these species and their differential abundance in pepper and tomato, it is critical that scouting programs include species identifications for proper management.

  18. Helminth parasitism in two closely related South African rodents: abundance, prevalence, species richness and impinging factors.

    PubMed

    Spickett, Andrea; Junker, Kerstin; Krasnov, Boris R; Haukisalmi, Voitto; Matthee, Sonja

    2017-04-01

    We investigated patterns of helminth infection in two closely related rodents (social Rhabdomys pumilio occurring mainly in xeric habitats and solitary R. dilectus occurring mainly in mesic habitats) at 20 localities in different biomes of South Africa and asked if between-species differences were mainly caused by difference in sociality or difference in environmental conditions of their respective habitats. Helminths recovered from the gastrointestinal tract totalled 11 nematode and 5 cestode species from R. pumilio and 19 nematode and 7 cestode species from R. dilectus. In both hosts, mean abundance and prevalence of nematodes were higher compared to cestodes. Cestode infection as well as nematode abundance, species richness or prevalence did not differ between the two rodents. However, incidence of nematode infection was significantly higher in R. dilectus than in R. pumilio. Moreover, nematode numbers and species richness in infracommunities of R. pumilio inhabiting the relatively more xeric Karoo biome were significantly lower than in those inhabiting the relatively less xeric Fynbos biome. Although we could not unequivocally distinguish between effects of host sociality and environmental factors on the number of individuals and species of helminths in the two hosts, differences in the incidence of nematode infection between R. pumilio and R. dilectus as well as differences in the number of nematode individuals and species between R. pumilio from the Fynbos and the Karoo suggested the effect of environmental conditions on helminth infection to be more important than that of sociality.

  19. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance.

  20. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  1. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  2. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA, ...

  3. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA,...

  4. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    , and all these 84 species seem endemic to Antarctica south of the Polar Front. Comparing diversity and abundances based on epibenthic sledge samples, there is no clear relationship between Antarctic deep-sea gastropod abundance and species richness with depth. However, both Antarctic and adjacent deep-sea areas are still far from being adequately sampled to allow more comprehensive conclusions.

  5. Prevalence of avian haemosporidian parasites is positively related to the abundance of host species at multiple sites within a region.

    PubMed

    Ellis, Vincenzo A; Medeiros, Matthew C I; Collins, Michael D; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2017-01-01

    Parasite prevalence is thought to be positively related to host population density owing to enhanced contagion. However, the relationship between prevalence and local abundance of multiple host species is underexplored. We surveyed birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) at multiple sites across eastern North America to test whether the prevalence of these parasites in a host species at a particular site is related to that host's local abundance. Prevalence was positively related to host abundance within most sites, although the effect was stronger and more consistent for Plasmodium than for Haemoproteus. In contrast, prevalence was not related to variation in the abundance of most individual host species among sites across the region. These results suggest that parasite prevalence partly reflects the relative abundances of host species in local assemblages. However, three nonnative host species had low prevalence despite being relatively abundant at one site, as predicted by the enemy release hypothesis.

  6. Species Abundance Distribution of Ectoparasites on Norway Rats (Rattus norvegicus) from a Localized Area in Southwest China

    PubMed Central

    Guo, Xian Guo; Dong, Wen Ge; Men, Xing Yuan; Qian, Ti Jun; Wu, Dian; Ren, Tian Guang; Qin, Feng; Song, Wen Yu; Yang, Zhi Hua; Fletcher, Quinn E

    2016-01-01

    Background: The species of ectoparasites that live on a specific host in a geographical region form an ectoparasite community. Species abundance distributions describe the number of individuals observed for each different species that is encountered within a community. Based on properties of the species abundance distribution, the expected total number of species present in the community can be estimated. Methods: Preston’s lognormal distribution model was used to fit the expected species abundance distribution curve. Using the expected species abundance distribution curve, we estimated the total number of expected parasite species present and the amount of species that were likely missed by our sampling in the field. Results: In total, 8040 ectoparasites (fleas, sucking lice, gamasid mites and chigger mites) were collected from 431 Norway rats (Rattus norvegicus) from a localized area in southwest China. These ectoparasites were identified to be 47 species from 26 genera in 10 families. The majority of ectoparasite species were chigger mites (family Trombiculidae) while the majority of individuals were sucking lice in the family Polyplacidae. The expected species abundance distribution curve demonstrated the classic pattern that the majority of ectoparasite species were rare and that there were a few common species. The total expected number of ectoparasite species on R. norvegicus was estimated to be 85 species, and 38 species were likely missed by our sampling in the field. Conclusions: Norway rats harbor a large suite of ectoparasites. Future field investigations should sample large numbers of host individuals to assess ectoparasite populations. PMID:27308277

  7. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    PubMed

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  8. Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island

    PubMed Central

    2012-01-01

    Background Microzooplankton consisting of protists and metazoa <200 μm. It displays unique feeding mechanisms and behaviours that allow them to graze cells up to five times their own volume. They can grow at rates which equal or exceed prey growth and can serve as a viable food source for metazoans. Moreover, they are individually inconspicuous, their recognition as significant consumers of oceanic primary production. The microzooplankton can be the dominant consumers of phytoplankton production in both oligo- and eutrophic regions of the ocean and are capable of consuming >100% of primary production. Results The microzooplankton of the South Andaman Sea were investigated during September 2011 to January 2012. A total of 44 species belong to 19 genera were recorded in this study. Tintinnids made larger contribution to the total abundance (34%) followed in order by dinoflagellates (24%), ciliates (20%) and copepod nauplii (18%). Foraminifera were numerically less (4%). Tintinnids were represented by 20 species belong to 13 genera, Heterotrophic dinoflagellates were represented by 17 species belong to 3 genera and Ciliates comprised 5 species belong to 3 genera. Eutintinus tineus, Tintinnopsis cylindrical, T. incertum, Protoperidinium divergens, Lomaniella oviformes, Strombidium minimum were the most prevalent microzooplankton. Standing stock of tintinnids ranged from 30–80 cells.L-1 and showed a reverse distribution with the distribution of chlorophyll a relatively higher species diversity and equitability was found in polluted harbour areas. Conclusions The change of environmental variability affects the species composition and abundance of microzooplankton varied spatially and temporarily. The observations clearly demonstrated that the harbor area differed considerably from other area in terms of species present and phytoplankton biomass. Further, the phytoplankton abundance is showed to be strongly influenced by tintinnid with respect to the relationship of

  9. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change.

  10. Fluctuations in production and abundance of commercial species in the Red Lakes, Minnesota, with special reference to changes in the walleye population

    USGS Publications Warehouse

    Smith, Lloyd L.; Krefting, Laurits W.

    1954-01-01

    The Red Lakes in northwestern Minnesota comprise 275,000 acres of water which support a commercial fishery producing up to 1.5 million pounds of fish per year. Walleye, Stizostedion vitreum vitreum (Mitchill), and yellow perch, Perca flavescens (Mitchill), are the principal species. Statistics for the past 37 years have been analyzed and fluctuations in the abundance of the important species calculated for the 24-year period, 1930–1953. The fishing is carried on exclusively with 3 1/2-inch-mesh (extension measure) gill nets by Chippewa Indians and the catch is marketed through a cooperative fishery enterprise. There have been wide fluctuations in the abundance of principal species but, although fishing effort has increased greatly during the past few years no trends have developed. Changes in walleye abundance have been shown to be independent of changes or levels of fishing effort, and to be determined by strength of individual year classes. Gear competition has no effect on abundance estimates. Strength of year classes is not correlated with size of brood stock, abundance of competing species, or amount of hatchery fish planted. Weather conditions cannot be correlated with observed changes in strength of year classes. Implications for management include provision of adequate prediction of abundance, and annual adjustment of fishing practices to make greatest use of the available stock. Gear limitations should be designed to secure harvest at optimum size of fish and to provide a suitable economic status for the fisherman.

  11. Dominant species, rather than diversity, regulates temporal stability of plant communities.

    PubMed

    Sasaki, Takehiro; Lauenroth, William K

    2011-07-01

    A growing body of empirical evidence suggests that the temporal stability of communities typically increases with diversity. The counterview to this is that dominant species, rather than diversity itself, might regulate temporal stability. However, empirical studies that have explicitly examined the relative importance of diversity and dominant species in maintaining community stability have yielded few clear-cut patterns. Here, using a long-term data set, we examined the relative importance of changes in diversity components and dominance hierarchy following the removal of a dominant C4 grass, Bouteloua gracilis, in stabilizing plant communities. We also examined the relationships between the variables of diversity and dominance hierarchy and the statistical components of temporal stability. We found a significant negative relationship between temporal stability and species richness, number of rare species, and relative abundance of rare species, whereas a significant positive relationship existed between temporal stability and relative abundance of the dominant species. Variances and covariances summed over all species significantly increased with increasing species richness, whereas they significantly decreased with increasing relative abundance of dominant species. We showed that temporal stability in a shortgrass steppe plant community was controlled by dominant species rather than by diversity itself. The generality of diversity-stability relationships might be restricted by the dynamics of dominant species, especially when they have characteristics that contribute to stability in highly stochastic systems. A clear implication is that dominance hierarchies and their changes might be among the most important ecological components to consider in managing communities to maintain ecosystem functioning.

  12. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil

    NASA Astrophysics Data System (ADS)

    Amorim, Felipe W.; Wyatt, Graham E.; Sazima, Marlies

    2014-11-01

    Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15-20 km away from the study site. Specialization index ( H 2 ' = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.

  13. Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant.

    PubMed

    Ma, Liping; Zhang, Xu-Xiang; Cheng, Shupei; Zhang, Zongyao; Shi, Peng; Liu, Bo; Wu, Bing; Zhang, Yan

    2011-07-01

    Integrons are elements that encode a site-specific recombination system that recognizes and captures mobile gene cassettes and are closely related to multiple resistances of environmental microorganisms. This study was undertaken to determine the efficiency of an activated sludge process to remove integrons. The prevalence and characteristics of class 1 integrons were investigated for bacterial species isolated from the activated sludge of Nanjing Jiangxinzhou sewage treatment plant (STP, China). A total of 189 bacterial strains were isolated from influent water, activated sludge and effluent water, and PCR-RFLP (Polymerase chain reaction--restriction fragment length polymorphism) of 16S rRNA gene showed that the isolated bacteria were Escherichia coli, Aeromonas veronii, Klebsiella spp., Aeromonas salmonicida and Aeromonas media. PCRs showed that 57 isolates contained class 1 integronase gene intI1. The integron detection frequency in the isolated strains was 20.4% for influent, 30.9% for activated sludge and 38.9% for effluent. Quantitative real-time PCR assay showed that the abundance of integrons in effluent was higher than that in influent. This study indicates that class 1 integrons are wide-spread in STPs which might be involved in multiple resistances in the activated sludge characterized by high biomass and biodiversity.

  14. Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery

    NASA Astrophysics Data System (ADS)

    Stagakis, Stavros; Vanikiotis, Theofilos; Sykioti, Olga

    2016-09-01

    The advancing technology of hyperspectral remote sensing offers the opportunity of accurate land cover characterization of complex natural environments. In this study, a linear spectral unmixing algorithm that incorporates a novel hierarchical Bayesian approach (BI-ICE) was applied on two spatially and temporally adjacent CHRIS/PROBA images over a forest in North Pindos National Park (Epirus, Greece). The scope is to investigate the potential of this algorithm to discriminate two different forest species (i.e. beech - Fagus sylvatica, pine - Pinus nigra) and produce accurate species-specific abundance maps. The unmixing results were evaluated in uniformly distributed plots across the test site using measured fractions of each species derived by very high resolution aerial orthophotos. Landsat-8 images were also used to produce a conventional discrete-type classification map of the test site. This map was used to define the exact borders of the test site and compare the thematic information of the two mapping approaches (discrete vs abundance mapping). The required ground truth information, regarding training and validation of the applied mapping methodologies, was collected during a field campaign across the study site. Abundance estimates reached very good overall accuracy (R2 = 0.98, RMSE = 0.06). The most significant source of error in our results was due to the shadowing effects that were very intense in some areas of the test site due to the low solar elevation during CHRIS acquisitions. It is also demonstrated that the two mapping approaches are in accordance across pure and dense forest areas, but the conventional classification map fails to describe the natural spatial gradients of each species and the actual species mixture across the test site. Overall, the BI-ICE algorithm presented increased potential to unmix challenging objects with high spectral similarity, such as different vegetation species, under real and not optimum acquisition conditions. Its

  15. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.

    PubMed

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C; Semple, Kirk T

    2013-02-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of (14)C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of (14)C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of (14)C-phenanthrene degradation; lag phase, maximum rates and total extents of (14)C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities.

  16. Plankton studies in San Francisco Bay; II, Phytoplankton abundance and species composition, July 1977-December 1979

    USGS Publications Warehouse

    Wong, Raymond L. J.; Cloern, James E.

    1981-01-01

    Data are presented on the phytoplankton species composition and abundance in San Francisco Bay from July 1977 through December 1979. Phytoplankton identification and enumerations were made at selected stations. Sample collections were made at selected stations in the main channel of the Bay from Rio Vista on the Sacramento River to Calaveras Point in South San Francisco Bay, and at shoal stations in the central portion of South San Francisco Bay, San Pablo Bay, and Suisun Bay. Also reported, from October 1978 through December 1979, are the calculated phytoplankton carbon and percent nondiatom carbon, and the species list. This study is one component of an ongoing interdisciplinary study of San Francisco Bay. (USGS)

  17. Tracking lags in historical plant species' shifts in relation to regional climate change.

    PubMed

    Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M

    2017-03-01

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change.

  18. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  19. Indirect effects of biocontrol of an invasive riparian plant (Tamarix) alters habitat and reduces herpetofauna abundance

    USGS Publications Warehouse

    Bateman, H.L.; Merritt, D.M.; Glenn, E.P.; Nagler, P.L.

    2014-01-01

    The biological control agent (tamarisk leaf beetle, Diorhabda spp.) is actively being used to defoliate exotic saltcedar or tamarisk (Tamarix spp.) in riparian ecosystems in western USA. The Virgin River in Arizona and Nevada is a system where tamarisk leaf beetle populations are spreading. Saltcedar biocontrol, like other control methods, has the potential to affect non-target species. Because amphibians and reptiles respond to vegetation changes in habitat and forage in areas where beetles are active, herpetofauna are model taxa to investigate potential impacts of biocontrol defoliation. Our objectives related herpetofauna abundance to vegetation cover and indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI) and timing of biocontrol defoliation. We captured herpetofauna and ground-dwelling arthropods in trap arrays and measured vegetation using remotely sensed images and on-the-ground measurements at 16–21 sites 2 years before (2009–2010) and 2 years following (2011–2012) biocontrol defoliation. Following defoliation, riparian stands (including stands mixed with native and exotic trees and stands of monotypic exotic saltcedar) had significantly lower NDVI and EVI values and fewer captures of marked lizards. Total captures of herpetofauna (toads, lizards, and snakes) were related to higher vegetation cover and sites with a lower proportion of saltcedar. Our results suggest that effects of biocontrol defoliation are likely to be site-specific and depend upon the proportion of native riparian trees established prior to biocontrol introduction and defoliation. The mechanisms by which habitat structure, microclimate, and ultimately vertebrate species are affected by exotic plant biocontrol riparian areas should be a focus of natural-resource managers.

  20. Edge Effects Influence the Abundance of the Invasive Halyomorpha halys (Hemiptera: Pentatomidae) in Woody Plant Nurseries.

    PubMed

    Venugopal, P Dilip; Martinson, Holly M; Bergmann, Erik J; Shrewsbury, Paula M; Raupp, Michael J

    2015-06-01

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål), has caused severe economic losses in the United States and is also a major nuisance pest invading homes. In diverse woody plant nurseries, favored host plants may be attacked at different times of the season and in different locations in the field. Knowledge of factors influencing H. halys abundance and simple methods to predict where H. halys are found and cause damage are needed to develop effective management strategies. In this study, we examined H. halys abundance on plants in tree nurseries as a function of distance from field edges (edge and core samples) and documented the abundance in tree nurseries adjoining different habitat types (corn, soybean, residential areas, and production sod). We conducted timed counts for H. halys on 2,016 individual trees belonging to 146 unique woody plant cultivars at two commercial tree nurseries in Maryland. Across three years of sampling, we found that H. halys nymphs and adults were more abundant at field edges (0-5 m from edges) than in the core of fields (15-20 m from edges). Proximity of soybean fields was associated with high nymph and adult abundance. Results indicate that monitoring efforts and intervention tactics for this invasive pest could be restricted to field edges, especially those close to soybean fields. We show clearly that spatial factors, especially distance from edge, strongly influence H. halys abundance in nurseries. This information may greatly simplify the development of any future management strategies.

  1. Predicting probability of occurrence and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial scales

    USGS Publications Warehouse

    Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.

    2014-01-01

    We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.

  2. Shifts in Campylobacter species abundance may reflect general microbial community shifts in periodontitis progression

    PubMed Central

    Henne, Karsten; Fuchs, Felix; Kruth, Sebastian; Horz, Hans-Peter; Conrads, Georg

    2014-01-01

    Background Oral Campylobacter species have been found to be associated with periodontitis progression. While the etiological significance of Campylobacter rectus is quite established, the association of C. gracilis, C. concisus, and C. curvus with health or disease remains contradictory. Objectives This study hypothesizes that the proportion of species within the Campylobacter genus rather than the absolute abundance of a single species is a suitable indicator for periodontitis progression. Design Subgingival plaque from 90 periodontitis patients and gingival sulcus fluid of 32 healthy individuals were subjected to a newly developed nested PCR approach, in which all Campylobacter spp. were amplified simultaneously. The resulting mixture of 16S-rRNA-gene-amplicons were separated by single-stranded conformation polymorphism (SSCP) gel electrophoresis, followed by sequencing and identification of excised bands and relative quantification of band intensities. In all samples, the abundance of selected periodontitis marker species was determined based on DNA hybridization on a microarray. Results The highly prevalent Campylobacter community was composed of varying proportions of C. rectus, C. gracilis, C. concisus, and C. curvus. Cluster analysis based on SSCP-banding pattern resulted in distinct groups which in turn coincided with significant differences in abundance of established periodontitis marker species (Tannerella forsythia, Porphyromonas gingivalis, and Fusobacterium nucleatum) and progression. Conclusions The shift in the Campylobacter community composition seems to display the general microbial community shift during clinical progression in a simplified manner. The focus on members of the Campylobacter in this study suggests that this genus can be an indicator of ecological changes in the subgingival oral microflora. PMID:25412608

  3. Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages

    NASA Astrophysics Data System (ADS)

    Warnock, Jonathan P.; Scherer, Reed P.

    2015-07-01

    Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing

  4. Analysis of the factors that affect the distribution and abundance of three Neobuxbaumia species (Cactaceae) that differ in their degree of rarity

    NASA Astrophysics Data System (ADS)

    Ruedas, Marcela; Valverde, Teresa; Zavala-Hurtado, José Alejandro

    2006-03-01

    We studied three species of columnar cacti in the genus Neobuxbaumia which differ in their degree of rarity: Neobuxbaumia macrocephala (the rarest), Neobuxbaumia tetetzo (intermediate), and Neobuxbaumia mezcalaensis (the most common). To investigate the ecological factors that limit their distribution and abundance, we surveyed 80 localities within the region of Tehuacan-Cuicatlán, in Central Mexico. At each locality we measured several environmental variables, and the density of the Neobuxbaumia populations present. We used a principal component analysis (PCA) to identify the factors that are associated to the presence/absence of each species. Additionally, we carried out multiple regressions between environmental variables and population density to test whether the variation in these variables was related to changes in abundance. The results show that factors significantly affecting the distribution of these species are mean annual temperature, altitude, rainfall, and soil properties such as texture and organic matter content. N. mezcalaensis reaches maximum population densities of 14,740 plants per ha (average density = 3943 plants per ha) and is associated with localities with relatively abundant rainfall. N. tetetzo shows maximum population densities of 14,060 plants per ha (average = 3070 plants per ha), and is associated with sites located at high latitudes and with high phosphorous content in the soil. The rarest species, N. macrocephala, shows maximum densities of 1180 plants per ha (average = 607 plants per ha) and is associated with localities with high soil calcium content. The distribution of this species is limited to sites with specific values of the environmental variables recorded, conferring it a high habitat specificity which accounts for its rarity.

  5. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks

    PubMed Central

    Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.

    2015-01-01

    Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to

  6. New pasture plants intensify invasive species risk.

    PubMed

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  7. Moisture conditions and the presence of bryophytes determine fescue species abundance in a dry calcareous grassland.

    PubMed

    Otsus, Merit; Zobel, Martin

    2004-01-01

    Festuca ovina is the abundant matrix-forming species and F. rubra a subordinate species in shallow-soil calcareous grasslands. F. pratensis is a transient species, occurring sparsely in this community. We hypothesised that the different abundances of these three species are primarily due to the differential effect of moisture conditions on their germination and early establishment, and that the effect of the pattern of rainfall intensity depends on the presence or absence of a bryophyte layer. We studied the dependence of the germination and establishment of the three fescue species on the moisture conditions both in the laboratory and in the patches of intact grassland community (microcosms). In a laboratory germination experiment, F. pratensis showed the highest, F. rubra, the intermediate and F. ovina, the lowest drought tolerance. In microcosms, the establishment of F. ovina was the highest. At the same time, the annual mortality of seedlings of F. ovina was the lowest. All three species responded positively to an increasing irrigation level. Differently from F. ovina, F. rubra showed a positive response only in plots from which the bryophyte layer had been removed, while F. pratensis responded positively to both irrigation and bryophyte removal. We conclude that moisture conditions have a differential effect on the three fescue species mainly in the seedling establishment, not in the germination phase. For the successful establishment of F. rubra and F. pratensis, the coincidence of high rainfall and local disturbance, removing bryophytes, is required. The presence or absence of bryophytes had no effect on establishment in dry years, while in rainy years the removal of bryophytes has a clear positive effect.

  8. The seasonal abundance of phlebotomine sand flies, Lutzomyia species in Florida.

    PubMed

    Mann, Rajinder S; Kaufman, Phillip E

    2010-03-01

    The seasonality of phlebotomine sand flies was studied in Florida, utilizing colored light-emitting diode- and attractant-baited Mosquito Magnet MM-X traps from September 2006 to September 2008 at San Felasco Hammock Preserve State Park, Gainesville, FL. A total of 6,278 sand flies were collected from 314 actual nights and 1,692 total trap-nights, yielding 3.7 sand flies per trap-night. Lutzomyia shannoni was the predominant species, constituting 55% to 80% of the total sand fly populations collected during the studies. Both L. shannoni and L. vexator populations were highly seasonal and were moderately influenced by weather factors. Lutzomyia shannoni populations peaked in May and showed reduced activity during December, January, and February. This species was active throughout the year and showed positive and negative correlations with average monthly temperature and relative humidity, respectively. Lutzomyia vexator showed peak activity during August and October with an activity lull from December to March. This species showed a positive correlation with average monthly temperature. No correlations were observed with either species for average daily, weekly, or 1- to 8-wk-lagging precipitation, number of rainy days, wind speed, or lunar phases. Lutzomyia shannoni abundance was weakly correlated to L. vexator abundance. No other Lutzomyia spp. were collected during the study.

  9. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  10. Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuing challenge in Orthoptera ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variatio...

  11. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  12. Effect of plant species on nitrogen recovery in aquaponics.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system.

  13. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania.

    PubMed

    Leonard, Alfonce; Rwegasira, Gration M

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer's fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania.

  14. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania

    PubMed Central

    Leonard, Alfonce; Rwegasira, Gration M.

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer’s fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785

  15. Bacterial colonization and extinction on marine aggregates: stochastic model of species presence and abundance

    PubMed Central

    Kramer, Andrew M; Lyons, M Maille; Dobbs, Fred C; Drake, John M

    2013-01-01

    Organic aggregates provide a favorable habitat for aquatic microbes, are efficiently filtered by shellfish, and may play a major role in the dynamics of aquatic pathogens. Quantifying this role requires understanding how pathogen abundance in the water and aggregate size interact to determine the presence and abundance of pathogen cells on individual aggregates. We build upon current understanding of the dynamics of bacteria and bacterial grazers on aggregates to develop a model for the dynamics of a bacterial pathogen species. The model accounts for the importance of stochasticity and the balance between colonization and extinction. Simulation results suggest that while colonization increases linearly with background density and aggregate size, extinction rates are expected to be nonlinear on small aggregates in a low background density of the pathogen. Under these conditions, we predict lower probabilities of pathogen presence and reduced abundance on aggregates compared with predictions based solely on colonization. These results suggest that the importance of aggregates to the dynamics of aquatic bacterial pathogens may be dependent on the interaction between aggregate size and background pathogen density, and that these interactions are strongly influenced by ecological interactions and pathogen traits. The model provides testable predictions and can be a useful tool for exploring how species-specific differences in pathogen traits may alter the effect of aggregates on disease transmission. PMID:24340173

  16. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.

    PubMed

    Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie

    2015-07-15

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.

  17. Integration of non-indigenous species within the interspecific abundance-occupancy relationship

    NASA Astrophysics Data System (ADS)

    Rigal, François; Whittaker, Robert J.; Triantis, Kostas A.; Borges, Paulo A. V.

    2013-04-01

    There is a broad consensus that habitat disturbance and introduction of non-indigenous species may dramatically modify community structure, particularly in insular ecosystems. However, it is less clear whether emergent macroecological patterns are similarly affected. The positive interspecific abundance-occupancy relationship (IAOR) is one of the most pervasive macroecological patterns, yet has rarely been analyzed for oceanic island assemblages. We use an extensive dataset for arthropods from six islands within the Azorean archipelago to test: (1) whether indigenous and non-indigenous species are distributed differently within the IAOR; and (2) to the extent that they are, can differences can be attributed to two indices of disturbance. We implemented modeling averaged methods using five of the most common IAOR models to derive an averaged IAOR fit for each island. After testing if species colonization status (indigenous versus non-indigenous) may explain the residuals of the IAOR, we identified true negative and positive outliers and tested the effect of colonization status on the likelihood of a species being a positive or negative outlier. We found that the indigenous and non-indigenous species are randomly distributed on both sides of the overall IAOR. Only for Flores Island, were non-indigenous species more aggregated than indigenous species. We were unable to detect a meaningful relationship between deviation from the IAOR and disturbance, despite the undoubted impact of both severe habitat loss and non-indigenous species on these oceanic islands. Our results show that the non-indigenous species have been integrated alongside indigenous species in the contemporary Azorean arthropod communities such that they are mostly undetectable by the study of the IAOR.

  18. Bumble bee nest abundance, foraging distance, and host-plant reproduction: implications for management and conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent reports of global declines in pollinator species imply an urgent need to assess native pollinator population sizes and density dependent benefits for linked plants. Here, we estimated effective population sizes (Ne) of four native bumblebee species, Bombus balteatus, B. flavifrons, B. bifariu...

  19. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    PubMed

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thébault, Aurélie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).

  20. Teaching the Species Concept Using Hybrid Plants and Habitats.

    ERIC Educational Resources Information Center

    Wilson, C. M.; Oldham, J. H.

    1984-01-01

    Describes a field exercise which links ecology and taxonomy in the teaching of the species concept. Two common hedgerow plants (red and white campions) are used as a pair of "species" that are normally distinct. Plants of intermediate character can be encountered, and the status of these plants is investigated. (Author/JN)

  1. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae).

    PubMed

    Betcher, Meghan A; Fung, Jennifer M; Han, Andrew W; O'Connor, Roberta; Seronay, Romell; Concepcion, Gisela P; Distel, Daniel L; Haygood, Margo G

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.

  2. Monitoring species richness and abundance of shorebirds in the western Great Basin

    USGS Publications Warehouse

    Warnock, N.; Haig, S.M.; Oring, L.W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inacessibilty of sites, and few ornithologist. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determined species diversity. Acrial surveys of three large alkali lakcs in Oregon (Goose, Summer, and abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebirds sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of 5-10% negative declines in population of these birds would take a minimum of 7-23 years comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  3. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Campbell Grant, Evan H.; Jung, Robin E.; Rice, Karen C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  4. Distribution and abundance of decapod crustacean larvae in the southeastern Bering Sea with emphasis on commercial species. Final report

    SciTech Connect

    Armstrong, D.A.; Incze, L.S.; Wencker, D.L.; Armstrong, J.L.

    1981-01-01

    Contents include: Distribution and abundance of king crab larvae, Paralithodes camtschatica and P. platypus in the southeast Bering Sea; Distribution and abundance of the larvae of tanner crabs in the southeastern Bering Sea; Distribution and abundance of other brachyuran larvae in the southeastern Bering Sea with emphasis on Erimacrus isenbeckii; Distribution and abundance of shrimp larvae in the southeastern Bering Sea with emphasis on pandalid species; Distribution and abundance of hermit crabs (Paguridae) in the southeasternBering Sea; Possible oil impacts on decapod larbae in the southeastern Bering Sea with emphesis on the St. George Basin.

  5. Abundance of Woody Riparian Species in the Western USA in Relation to Phenology, Climate, and Flow Regime

    NASA Astrophysics Data System (ADS)

    Auble, G. T.; Friedman, J. M.; Scott, M. L.; Shafroth, P. B.; Merigliano, M. M.; Freehling, M. D.; Evans, R. E.; Griffin, E. R.

    2004-12-01

    We randomly selected 475 long-term U.S. Geological Survey stream gaging stations in 17 western states to relate the presence and abundance of woody species to environmental factors. Along a 1.3-km reach near each station we measured the cover of all species on a list of the 44 most abundant large woody riparian species in the region. We used logistic regression to fit the response of four abundant species to growing degree days and mean precipitation. Then we related relative abundance of these 4 species to timing of the flood peak in sites where the likelihood of occurrence was greater than 0.5. The exotics Tamarix ramosissima (saltcedar) and Elaeagnus angustifolia (Russian-olive) are now the third and fourth most frequently occurring large woody riparian species in the western U.S. and the second and fifth most abundant. In climatically suitable areas, species differences in reproductive phenology produce different relations of abundance to flow regime. Because of its limited period of seed release and viability in early summer, cottonwood (Populus deltoides) is disadvantaged where floods occur in the spring or fall. Abundances of saltcedar, because of its long period of seed release; Russian-olive, because of seed dormancy; and Salix exigua, because of the importance of vegetative spread, are much less sensitive to flood timing.

  6. Influence of Apis mellifera L. (Hymenoptera: Apidae) on the Use of the Most Abundant and Attractive Floral Resources in a Plant Community.

    PubMed

    Polatto, L P; Chaud-Netto, J

    2013-12-01

    Some factors influence the distribution of abundance of floral visitors, especially the amount and quality of the floral resources available, the size of the area occupied by the visitor, habitat heterogeneity, and the impact caused by natural enemies and introduced species. The objective of this research was to evaluate the distribution of abundance of the foraging activity of native floral visitors and Apis mellifera L. in the most abundant and attractive food sources in a secondary forest fragment with features of Cerrado-Atlantic Forest. Some plant species were selected and the frequency of foraging made by floral visitors was recorded. A high abundance of visits in flowers was performed by A. mellifera. Two factors may have influenced this result: (1) the occupation of the forest fragment predominantly by vines and shrubs at the expenses of vegetation with arboreal characteristics that favored the encounter of the flowering plants by A. mellifera; (2) rational beekeeping of A. mellifera, causing the number of natural swarms which originate annually from colonies of commercial apiaries and colonies previously established in the environment to be very high, thus leading to an increase in the population size of this bee species in the study site. The frequent occurrence of human-induced fire and deforestation within the forest fragment may have reduced the population size of the bee species, including A. mellifera. As the populations of A. mellifera have the capacity to quickly occupy the environment, this species possibly became dominant after successive disturbances made in the forest fragment.

  7. Environmental correlates of abundances of mosquito species and stages in discarded vehicle tires.

    PubMed

    Yee, Donald A; Kneitel, Jamie M; Juliano, Steven A

    2010-01-01

    Discarded vehicle tires are a common habitat for container mosquito larvae, although the environmental factors that may control their presence or abundance within a tire are largely unknown. We sampled discarded vehicle tires in six sites located within four counties of central Illinois during the spring and summer of 2006 to determine associations between a suite of environmental factors and community composition of container mosquitoes. Our goal was to find patterns of association between environmental factors and abundances of early and late instars. We hypothesized that environmental factors correlated with early instars would be indicative of oviposition cues, whereas environmental factors correlated with late instars would be those important for larval survival. We collected 13 species of mosquitoes, with six species (Culex restuans, Cx. pipiens, Aedes albopictus, Cx. salinarius, Ae. atropalpus, and Ae. triseriatus) accounting for r95% of all larvae. There were similar associations between congenerics and environmental factors, with Aedes associated with detritus type (fine detritus, leaves, seeds) and Culex associated with factors related to the surrounding habitat (human population density, canopy cover, tire size) or microorganisms (bacteria, protozoans). Although there was some consistency in factors that were important for early and late instar abundance, there were few significant associations between early and late instars for individual species. Lack of correspondence between factors that explain variation in early versus late instars, most notable for Culex, suggests a difference between environmental determinants of oviposition and survival within tires. Environmental factors associated with discarded tires are important for accurate predictions of mosquito occurrence at the generic level.

  8. New pasture plants intensify invasive species risk

    PubMed Central

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  9. Abundance and species richness of Coreoidea (Hemiptera: Heteroptera) from Parque Estadual do Turvo, Southern Brazil.

    PubMed

    Barcellos, Aline; Schmidt, Letícia S; Brailovsky, Harry

    2008-01-01

    The coreoid fauna from Neotropics is poorly known, especially in terms of community studies. Aiming at contributing to this knowledge, a two-year study was carried out at Parque Estadual do Turvo, Municipality of Derrubadas, state of Rio Grande do Sul, Brazil, to evaluate the composition, abundance and species richness of Coreoidea. Samplings were conducted in the springs of 2003 and 2004 (October), and autumns of 2004 and 2005 (May), using beating tray method, along two trails of the park. Sampling effort (hours X collectors) totaled 153h. A total of 282 individuals of Coreoidea were collected, distributed in 28 species of Alydidae, Coreidae and Rhopalidae. The most abundant species was the coreid Cebrenis supina Brailovsky, representing 16% of the collected individuals, followed by the rhopalids Jadera aeola (Dallas), and Harmostes sp., with 12.1% and 11.7%, respectively. The estimated richnesses by Chao 1, Chao 2, Jackknife 1 and Jackknife 2 indicated that the observed richness corresponds to 70% to 80% of the expected for the area. The estimated richness through rarefaction was significantly higher in spring 2003 and autumn 2004 than in the other periods. There was no significant difference, however, between spring of 2003 and autumn of 2004, and between spring of 2004 and autumn of 2005, for the same parameter. Yucumã and Garcia trails did not differ significantly for the estimated richness. Singletons and doubletons represented 32.1% of the recorded species. Additionally, eight other species were obtained qualitatively by using, besides beating tray without protocol, manual collection.

  10. Assessing Landscape Constraints on Species Abundance: Does the Neighborhood Limit Species Response to Local Habitat Conservation Programs?

    PubMed Central

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffery J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants. PMID:24918779

  11. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico.

    PubMed

    Martinez-Ibarra, J A; Rodriguez, M H; Arredondo-Jimenez, J I; Yuval, B

    1997-11-01

    The availability of flowering plants affected the sugar feeding rates of female Aedes aegypti (L.) in 4 areas of a small city in southern Mexico. The proportion of mosquitoes containing sugar varied from 8 to 21% in 4 areas in direct relation to blooming plant abundance. Human density was similar in the 4 areas (range, 3.9-5.4 per house), whereas the number of flowering plants per house increased on the outskirts (range, 3.1-5.4 plants per house). Equal proportions of sugar positive females were nulliparous or parous, indicating similar sugar feeding at any age. In addition, nearly 60% of positive females were at the Christophers stage II, indicating a greater need for flight fuel during the early stages of egg development. We conclude that Ae. aegypti feeds frequently on nectar and that this activity is modulated by nectar availability.

  12. Water Mites (Acari: Hydrachnida) of Ozark Streams - Abundance, Species Richness, and Potential as Environmental Indicators

    NASA Astrophysics Data System (ADS)

    Radwell, A. J.; Brown, A. V.

    2005-05-01

    Because water mites are tightly linked to other stream metazoans through parasitism and predation, they are potentially effective indicators of environmental quality. Meiofauna (80 μm to 1 mm) were sampled from headwater riffles of 11 Ozark streams to determine relative abundance and densities of major meiofauna taxa. Water mites comprised 15.3% of the organisms collected exceeded only by chironomids (50.2%) and oligochaetes (17.8%), and mean water mite density among the 11 streams was 265 organisms per liter. The two streams that differed the most in environmental quality were sampled using techniques suitable for identification of species. An estimated 32 species from 20 genera and 13 families were found in the least disturbed stream; an estimated 19 species from 13 genera and 8 families were found in the most disturbed stream. This preliminary finding supports the notion that water mite species richness declines in response to environmental disturbance. Many species could only be identified as morphospecies of particular genera, but the ongoing taxonomic revision of Hydrachnida is expected to provide needed information. A collaborative effort between those interested in taxonomy/systematics of water mites and ecologists interested in the significance of water mites in aquatic communities could prove mutually beneficial.

  13. Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments.

    PubMed

    Olvera-Carrillo, Yadira; Luis Reyes, José; Covarrubias, Alejandra A

    2011-04-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families; each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility.

  14. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    PubMed Central

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  15. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

    PubMed Central

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  16. What Determines the Temporal Changes of Species Degree and Strength in an Oceanic Island Plant-Disperser Network?

    PubMed Central

    González-Castro, Aarón; Yang, Suann; Nogales, Manuel; Carlo, Tomás A.

    2012-01-01

    Network models of frugivory and seed dispersal are usually static. To date, most studies on mutualistic networks assert that interaction properties such as species' degree (k) and strength (s) are strongly influenced by species abundances. We evaluated how species' degree and strength change as a function of temporal variation not only in species abundance, but also in species persistence (i.e., phenology length). In a two-year study, we collected community-wide data on seed dispersal by birds and examined the seasonal dynamics of the above-mentioned interaction properties. Our analyses revealed that species abundance is an important predictor for plant strength within a given sub-network. However, our analyses also reveal that species' degree can often be best explained by the length of fruiting phenology (for plants degree) or by the number of fruiting species (for dispersers degree), which are factors that can be decoupled from the relative abundance of the species participating in the network. Moreover, our results suggest that generalist dispersers (when total study period is considered) act as temporal generalists, with degree constrained by the number of plant species displaying fruits in each span. Along with species identity, our findings underscore the need for a temporal perspective, given that seasonality is an inherent property of many mutualistic networks. PMID:22844470

  17. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for

  18. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, J.B.; Allain, L.; Allen, C.

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  19. Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands

    NASA Astrophysics Data System (ADS)

    Blaum, Niels; Rossmanith, Eva; Popp, Alexander; Jeltsch, Florian

    2007-01-01

    Shrub encroachment due to overgrazing has led to dramatic changes of savanna landscapes and is considered to be one of the most threatening forms of rangeland degradation e.g. via habitat fragmentation. Mammalian carnivores are particularly vulnerable to local extinction in fragmented landscapes. However, our understanding of how shrub encroachment affects mammalian carnivores is poor. Here we investigated the relative sensitivities of ten native carnivores to different levels of shrub cover ranging from low (<5%) to high shrub cover (>25%) in 20 southern Kalahari rangeland sites. Relative abundance of carnivores was monitored along 40 sand transects (5 m × 250 m) for each site. Our results show that increasing shrub cover affects carnivore species differently. African wild cats, striped polecats, cape foxes and suricates were negatively affected, whereas we found hump-shaped responses for yellow mongooses, bat-eared foxes and small-spotted genets with maximum abundance at shrub covers between 10 and 18%. In contrast, black-backed jackals, slender mongooses and small spotted cats were not significantly affected by increasing shrub cover. However, a negative impact of high shrub cover above 18% was congruent for all species. We conclude that intermediate shrub cover (10-18%) in savanna landscapes sustain viable populations of small carnivores.

  20. Species richness and abundance of forest birds in relation to radiation at Chernobyl.

    PubMed

    Moller, A P; Mousseau, T A

    2007-10-22

    The effects of low-level radiation on the abundance of animals are poorly known, as are the effects on ecosystems and their functioning. Recent conclusions from the UN Chernobyl forum and reports in the popular media concerning the effects of radiation from Chernobyl on animals have left the impression that the Chernobyl exclusion zone is a thriving ecosystem, filled with an increasing number of rare species. Surprisingly, there are no standardized censuses of common animals in relation to radiation, leaving the question about the ecological effects of radiation unresolved. We conducted standardized point counts of breeding birds at forest sites around Chernobyl differing in level of background radiation by over three orders of magnitude. Species richness, abundance and population density of breeding birds decreased with increasing level of radiation, even after controlling statistically for the effects of potentially confounding factors such as soil type, habitat and height of the vegetation. This effect was differential for birds eating soil invertebrates living in the most contaminated top soil layer. These results imply that the ecological effects of Chernobyl on animals are considerably greater than previously assumed.

  1. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  2. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  3. Phytophthora Species, New Threats to the Plant Health in Korea

    PubMed Central

    Hyun, Ik-Hwa; Choi, Woobong

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues. PMID:25506298

  4. How climate warming impacts the distribution and abundance of two small flatfish species in the North Sea

    NASA Astrophysics Data System (ADS)

    van Hal, Ralf; Smits, Kalle; Rijnsdorp, Adriaan D.

    2010-07-01

    Climate change, specifically temperature, affects the distribution and densities of species in marine and terrestrial ecosystems. Here, we looked at the effect of temperature during winter and spawning period on latitudinal range shifts and changes in abundance of two non-commercial North Sea fish species, solenette ( Buglossidium luteum) and scaldfish ( Arnoglossus laterna). Both species have increased in abundance and moved to the north since the late 1980s, coinciding with a series of mild winters. In 1996, following a very cold winter, the abundance of both species temporarily decreased as they retracted to the south. The shift in temperature affected adult habitat conditions, allowing them to immigrate into new areas where they subsequently reproduced successfully. We can conclude this because recruitment improved following the increase in abundance. The recruitment relates significantly to the higher adult stock and higher temperatures. The predictions of higher average temperatures and milder winters in the North Sea make it likely that these species will increase further in abundance and move northward. The observed increase in abundance of these small flatfish species will affect the North Sea food web and therefore commercial species, e.g. plaice, by predation on juveniles and competition for benthic food resources.

  5. Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions

    PubMed Central

    Ponnusamy, Loganathan; Wesson, Dawn M.; Arellano, Consuelo; Schal, Coby

    2013-01-01

    In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteo-bacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation

  6. Variation in predator species abundance can cause variable selection pressure on warning signaling prey

    PubMed Central

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-01-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  7. Connectivity and conditional models of access and abundance of species in stream networks.

    PubMed

    Chelgren, Nathan D; Dunham, Jason B

    2015-07-01

    Barriers to passage of aquatic organisms at stream road crossings are a major cause of habitat fragmentation in stream networks. Accordingly, large investments have been made to restore passage at these crossings, but often without estimation of population-level benefits. Here, we describe a broad-scale approach to quantifying the effectiveness of passage restoration in terms interpretable at population levels, namely numbers of fish and length of stream gained through restoration, by sampling abundance in a study design that accounts for variable biogeographic species pools, variable stream and barrier configurations, and variable probabilities of capture and detectability for multiple species. We modified an existing zero-inflated negative-binomial model to estimate the probability of site access, abundance conditional on access, and capture probability of individual fish. Therein, we modeled probability of access as a function of gradient, stream road-crossing type, and downstream access by fish simultaneously with a predictive model for abundance at sites accessible to fish. Results indicated that replacement of barriers with new crossing designs intended to allow for greater movement was associated with dramatically higher probability of access for all fishes, including migratory Pacific salmon, trout, sculpin, and lamprey. Conversely, existing non-replaced crossings negatively impacted fish distributions. Assuming no downstream constraints on access, we estimated the potential length of stream restored by the program ranged between 7.33 (lamprey) and 15.28 km (small coastal cutthroat and rainbow trout). These contributions represented a fraction of the total length available upstream (187 km) of replaced crossings. When limited ranges of species were considered, the estimated contributions of culvert replacement were reduced (1.65-km range, for longnose dace to 12.31 km for small coastal cutthroat and rainbow trout). Numbers of fish contributed ranged from

  8. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  9. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  10. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  11. Relative Abundance of Oligosaccharides in Candida Species as Determined by Fluorophore-Assisted Carbohydrate Electrophoresis

    PubMed Central

    Goins, Tresa L.; Cutler, Jim E.

    2000-01-01

    Fluorophore-assisted carbohydrate electrophoresis (FACE) is a straightforward, sensitive method for determining the presence and relative abundance of individual oligomannosyl residues in Candida mannoprotein, the major antigenic determinant located on the outer surface of the yeast cell wall. The single terminal aldehydes of oligomannosyl residues released by hydrolysis were tagged with the charged fluorophore 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) and separated with high resolution on the basis of size by polyacrylamide gel electrophoresis. ANTS fluorescence labeling was not biased by oligomannoside length; therefore, band fluorescence intensity was directly related to the relative abundance of individual oligomannoside moieties in heterogeneous samples. FACE analysis revealed the major oligomannosides released by acid hydrolysis and β-elimination of Fehling-precipitated mannan from Candida albicans, which were the same as those previously reported in studies based on mass and nuclear magnetic spectroscopic analysis. FACE was also amenable to the analysis of samples obtained by direct hydrolysis of whole yeast cells. Whole-cell acid hydrolysis and whole-cell β-elimination of two isolates each of C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, C. rugosa, C. stellatoidea, and C. tropicalis resulted in oligomannoside gel banding patterns that were species and strain specific for the 16 isolates surveyed. Whereas some bands were specific for an individual isolate or species, other bands were shared by two or three species in various groupings. Differences in the mannoprotein composition of C. albicans A9 and four spontaneous cell surface mutants were also detected. Mannan “fingerprints,” or banding pattern profiles, derived from the electrophoretic mobilities of individual bands relative to the migration of acid-hydrolyzed dextran (relative migration index) yielded profiles characteristic of individual isolates not revealed by

  12. Soil organisms shape the competition between grassland plant species.

    PubMed

    Sabais, Alexander C W; Eisenhauer, Nico; König, Stephan; Renker, Carsten; Buscot, François; Scheu, Stefan

    2012-12-01

    Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.

  13. Functional consequences of climate change-induced plant species loss in a tallgrass prairie.

    PubMed

    Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K

    2011-04-01

    Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.

  14. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    the invasive. In fact, in one year fruit set of S. alba was significantly greater in the presence of L. salicaria. The number of invasive pollen grains on native stigmas was extremely low; on average less than one grain per stigma. These fruit set and pollen deposition findings indicate that native plant reproduction was not adversely affected in the short term by these invasive species and that therefore competition between the native and invasive species for pollinators did not occur. Native bee populations monitored in 2004-2005 at sites with and without B. thunbergii and/or F. alnus indicated a greater abundance of native bees at sites with these invasives present. Native bees collected from the native and invasive plants were compared with historical records to assess whether invasive plants favor different bee species than those that formerly predominated on Mount Desert Island. This does not appear to be the case. Several species of bumble bees (Bombus spp.) as well as nine solitary bee species were found that were not documented by the Procter surveys of 1917-1940. Collecting of native bees was limited to the study plants, which may, in part, explain why some bee species documented in the Procter Surveys were not found in the present research. A field guide for identification of native bumble bees has been produced to help Park Natural Resource personnel monitor the status of native bee populations in Acadia. Other educational materials were also developed, aimed at educating Park visitors by exposing them to: 1) the role of native plants and their bee pollinators in terrestrial ecosystems; 2) the effects of invasive plants on native plant-pollinator mutualisms; 3) the need for conserving native bees and other pollinators; and 4) conservation strategies for protecting and enhancing native plant-pollinator mutualisms in the Park. Based on the present findings, Acadia Park Resource Management personnel should continue to closely

  15. Plant and Soil Natural Abundance delta-15N: Indicators of Nitrogen Cycling in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Lovett, G. M.; Weathers, K.; Arthur, M. A.

    2002-12-01

    We examined the potential use of natural abundance 15N of plants and soils as an indicator of forest nitrogen (N) cycling rates within the Catskill Mountains, NY. These watersheds receive among the highest rates of N deposition in the northeastern United States and are beginning to show signs of N saturation. Many studies have shown a link between increased N cycling rates and 15N enrichment of soil and plant pools. Faster rates of N cycling processes, especially nitrification, lead to fractionation of 14/15N, creating N products that are relatively depleted in 15N. This can lead to enrichment of soil pools, as lighter 14N is lost from the system via leaching or denitrification. Plant N pools can become increasingly enriched as they take up 15N-enriched soil N. Despite similar amounts of N deposition across the Catskill Mountains, forests dominated by different tree species appear to vary in the amount of N retained or lost to nearby streams. To determine if plant and soil 15N could be used as indicators of N cycling rates, we collected foliage, wood, litterfall, organic and mineral soil, and fine roots from single species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine roots and soil 15N were highest within sugar maple stands (p<0.05). Sugar maple soils also had the highest rates of net nitrification and N leaching. Therefore, soil 15N appears to correlate with forest N retention and loss. However, 15N enrichment was highest within foliage, litterfall and wood of beech trees (p<0.05). The decoupling between foliage 15N and N cycling, as well as between 15N of foliage and fine roots, illustrates that it may not be possible to use a single plant pool as an indicator of N cycling rates.

  16. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.

    PubMed

    Santos, Fabíola Carvalho; Guyot, Romain; do Valle, Cacilda Borges; Chiari, Lucimara; Techio, Vânia Helena; Heslop-Harrison, Pat; Vanzela, André Luís Laforga

    2015-09-01

    Like other eukaryotes, the nuclear genome of plants consists of DNA with a small proportion of low-copy DNA (genes and regulatory sequences) and very abundant DNA sequence motifs that are repeated thousands up to millions of times in the genomes including transposable elements (TEs) and satellite DNA. Retrotransposons, one class of TEs, are sequences that amplify via an RNA intermediate and reinsert into the genome, are often the major fraction of a genome. Here, we put research on retrotransposons into the larger context of plant repetitive DNA and genome behaviour, showing features of genome evolution in a grass genus, Brachiaria, in relation to other plant species. We show the contrasting amplification of different retroelement fractions across the genome with characteristics for various families and domains. The genus Brachiaria includes both diploid and polyploid species, with similar chromosome types and chromosome basic numbers x = 6, 7, 8 and 9. The polyploids reproduce asexually and are apomictic, but there are also sexual species. Cytogenetic studies and flow cytometry indicate a large variation in DNA content (C-value), chromosome sizes and genome organization. In order to evaluate the role of transposable elements in the genome and karyotype organization of species of Brachiaria, we searched for sequences similar to conserved regions of TEs in RNAseq reads library produced in Brachiaria decumbens. Of the 9649 TE-like contigs, 4454 corresponded to LTR-retrotransposons, and of these, 79.5 % were similar to members of the gypsy superfamily. Sequences of conserved protein domains of gypsy were used to design primers for producing the probes. The probes were used in FISH against chromosomes of accesses of B. decumbens, Brachiaria brizantha, Brachiaria ruziziensis and Brachiaria humidicola. Probes showed hybridization signals predominantly in proximal regions, especially those for retrotransposons of the clades CRM and Athila, while elements of Del and Tat

  17. Binucleation to breed new plant species adaptable to their environments.

    PubMed

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation.

  18. Detection of an Abundant Plant-Based Small RNA in Healthy Consumers

    PubMed Central

    Yang, Jian; Farmer, Lisa M.; Agyekum, Abia A. A.; Elbaz-Younes, Ismail; Hirschi, Kendal D.

    2015-01-01

    The mechanisms of delivery of plant small RNAs to consumers must be investigated in order to harness this technology to positively impact biotechnology. Two groups have used honeysuckle (Lonicera japonica) feeding regimes to detect a plant-based small RNA, termed MIR2911, in sera. Meanwhile, numerous groups have failed to detect dietary plant-based small RNAs in consumers. Here we catalog levels of MIR2911 in different herbs, and suggest that in particular herb MIR2911 levels are elevated. Feeding these different herb-based diets to mice, we found MIR2911 levels in the sera and urine were associated with dietary intake levels. Abundance was not the sole determinate of apparent RNA bioavailability, as gavage-feeding large-doses of synthetic MIR2911 permitted only small transient increases in serum levels. Dietary MIR2911 were not modified in circulation by association with the host’s RNA-induced silencing complex, as the RNA did not co-immunoprecipitate with AGO2. The stability of dietary MIR2911 in circulation differed from synthesized small RNAs, as tail vein administration of various synthetic plant-based small RNAs resulted in rapid clearance. However, synthetic MIR2911 appeared to be more stable than the other plant miRNAs tested. Notably, this uptake of dietary MIR2911 was not related to perturbations in the host’s microbiome or gut permeability. We suggest dietary uptake of MIR2911 is commonplace in healthy consumers, and reproducible detection of plant-based small RNAs in consumers depends on dietary abundance, RNA stability and digestion from within the food-matrix. PMID:26335106

  19. A Comparison of Anammox Bacterial Abundance and Community Structures in Three Different Emerged Plants-Related Sediments.

    PubMed

    Chu, Jinyu; Zhang, Jinping; Zhou, Xiaohong; Liu, Biao; Li, Yimin

    2015-09-01

    Quantitative polymerase chain reaction (qPCR) assays and 16S rRNA gene clone libraries were used to document the abundance, diversity and community structure of anaerobic ammonia-oxidising (anammox) bacteria in the rhizosphere and non-rhizosphere sediments of three emergent macrophyte species (Iris pseudacorus, Thalia dealbata and Typha orientalis). The qPCR results confirmed the existence of anammox bacteria (AMX) with observed log number of gene copies per dry gram sediment ranging from 5.00 to 6.78. AMX was more abundant in T. orientalis-associated sediments than in the other two plant species. The I. pseudacorus- and T. orientalis-associated sediments had higher Shannon diversity values, indicating higher AMX diversity in these sediments. Based on the 16S rRNA gene, Candidatus 'Brocadia', Candidatus 'Kuenenia', Candidatus 'Jettenia' and new clusters were observed with the predominant Candidatus 'Kuenenia' cluster. The I. pseudacorus-associated sediments contained all the sequences of the C. 'Jettenia' cluster. Sequences obtained from T. orientalis-associated sediments contributed more than 90 % sequences in the new cluster, whereas none was found from I. pseudacorus. The new cluster was distantly related to known sequences; thus, this cluster was grouped outside the known clusters, indicating that the new cluster may be a new Planctomycetales genus. Further studies should be undertaken to confirm this finding.

  20. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant interactions with macro-mutualists (e.g., seed dispersers, pollinators) and antagonists (e.g., herbivores, pathogens) often exhibit phylogenetic conservatism, but conservatism of interactions with soil microorganisms is understudied. We assembled one of the best available datasets to examine c...

  1. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system.

    PubMed

    Baldotto, Lílian Estrela Borges; Olivares, Fábio Lopes

    2008-11-01

    Plant surfaces are a favourable niche for bacterial establishment, and hypothetically, plant species differ in their capacity to harbour epiphytic bacterial communities. This study was conducted to evaluate and describe the structural relationship of a bacterial community at the phyllosphere level with different plant species in a tropical ecosystem. Leaf blades of 47 plant species distributed in 27 botanical families were collected on a typical small Brazilian farm and prepared for observation under light and scanning electron microscopy. Naturally occurring bacteria were the most abundant settlers of the phylloplane, followed by fungal spore or hyphae. All plant species studied were colonized by phylloepiphytic bacteria, which were observed as solitary cells, microcolonies, and biofilms. However, independent of the family, the plant species differed in the pattern of phyllosphere colonization, as reflected in bacteria frequency and presence or absence of anatomical features that would favour the association. The phylloepiphytic bacteria were preferentially established on the following sites: epidermal cell wall junctions, glandular and nonglandular trichomes, veins, stomata, and epidermal cell wall surface. Profuse bacteria and fungi colonization was observed, at a level that was at least comparable with temperate regions. Interestingly, fungi seemed to alter the bacteria colonization pattern, most probably by microenvironmental modifications. The trichome type and density as well as the presence of epicuticular wax on the leaf blade surface seemed to be the most determinant anatomical features for the pattern of phyllosphere colonization. The presence of trichomes has a favourable, and epicuticular wax an unfavourable influence on the plant-bacteria interaction.

  2. Plant species dominance shifts across erosion edge-meadow transects in the Swiss Alps.

    PubMed

    Huck, Corinne; Körner, Christian; Hiltbrunner, Erika

    2013-03-01

    While exerting no obvious function under "average" environmental conditions, the presence of certain plant specialists becomes crucial in the event of a complete failure of a community due to severe disturbance such as landslides. Plants capable of growing at erosion edges may act as potential edge-engineers by coping with unstable ground and stabilizing the soil with their roots. We hypothesized that life conditions at erosion edges select for a particular set of specialists or species with specific traits, the identification of which was the aim of the study. Across 17 small-scale transects (0.40 × 1.60 m) from intact meadows to landslide edges (Ursern Valley, Swiss Alps, c. 1,600 m a.s.l.), we quantified plant species abundance by the point intercept method and characterized growth conditions based on Landolt's indicator values, leaf δ(13)C, and volumetric soil moisture in the uppermost soil layers. We observed a clear change of plant species composition and relative abundance from the meadow to the edge, presumably induced by the 25 % lower soil moisture and microclimatic exposure. Species richness at the edge was two-thirds of that in the meadow, but was positively correlated with species richness of the adjacent meadow. Species with "edge-preference" had either (1) rolled or festucoid leaves like Festuca spp., Avenella flexuosa and Nardus stricta, or (2) small, scleromorphic leaves like Vaccinium vitis-idaea, Calluna vulgaris and Thymus ssp. Graminoids with rolled/festucoid leaves were found to be the most dominant edge-specialists. The grass Festuca valesiaca s.l. emerged as the most dominant plant species at the edge, having an 11-times higher cover at the edge than in the meadow. In this montane grassland, a single species contributes to the stabilization of erosion edges and may be regarded as a potential keystone species for slope stability and regeneration after landslides even its role has not so far been established.

  3. Relating large-scale climate variability to local species abundance: ENSO forcing and shrimp in Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; LaPeyre, Megan K.; Keim, B.D.

    2010-01-01

    Climate creates environmental constraints (filters) that affect the abundance and distribution of species. In estuaries, these constraints often result from variability in water flow properties and environmental conditions (i.e. water flow, salinity, water temperature) and can have significant effects on the abundance and distribution of commercially important nekton species. We investigated links between large-scale climate variability and juvenile brown shrimp Farfantepenaeus aztecus abundance in Breton Sound estuary, Louisiana (USA). Our goals were to (1) determine if a teleconnection exists between local juvenile brown shrimp abundance and the El Niño Southern Oscillation (ENSO) and (2) relate that linkage to environmental constraints that may affect juvenile brown shrimp recruitment to, and survival in, the estuary. Our results identified a teleconnection between winter ENSO conditions and juvenile brown shrimp abundance in Breton Sound estuary the following spring. The physical connection results from the impact of ENSO on winter weather conditions in Breton Sound (air pressure, temperature, and precipitation). Juvenile brown shrimp abundance effects lagged ENSO by 3 mo: lower than average abundances of juvenile brown shrimp were caught in springs following winter El Niño events, and higher than average abundances of brown shrimp were caught in springs following La Niña winters. Salinity was the dominant ENSO-forced environmental filter for juvenile brown shrimp. Spring salinity was cumulatively forced by winter river discharge, winter wind forcing, and spring precipitation. Thus, predicting brown shrimp abundance requires incorporating climate variability into models.

  4. Functional identity versus species richness: herbivory resistance in plant communities

    PubMed Central

    Heimann, Juliane; Köhler, Günter; Mitschunas, Nadine; Weisser, Wolfgang W.

    2010-01-01

    The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness. PMID:20429014

  5. Host plant species affects virulence in monarch butterfly parasites.

    PubMed

    de Roode, Jacobus C; Pedersen, Amy B; Hunter, Mark D; Altizer, Sonia

    2008-01-01

    1. Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2. We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers 1970) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3. Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4. The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species-parasite genotype interactions. 5. Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host-parasite dynamics in natural populations.

  6. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  7. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  8. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; Stieve-Caldwell, E.

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.

  9. Modelling the Abundances of Two Major Culicoides (Diptera: Ceratopogonidae) Species in the Niayes Area of Senegal.

    PubMed

    Diarra, Maryam; Fall, Moussa; Lancelot, Renaud; Diop, Aliou; Fall, Assane G; Dicko, Ahmadou; Seck, Momar Talla; Garros, Claire; Allène, Xavier; Rakotoarivony, Ignace; Bakhoum, Mame Thierno; Bouyer, Jérémy; Guis, Hélène

    2015-01-01

    In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work

  10. Individual Species-Area Relationship of Woody Plant Communities in a Heterogeneous Subtropical Monsoon Rainforest

    PubMed Central

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species’ habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species’ interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10–30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  11. Species richness and relative abundance of breeding birds in forests of the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.; Smith, Winston Paul

    1993-01-01

    In 1992, the Vicksburg Field Research Station of the National Wetlands Research Center initiated research on the ecology of migratory birds within forests of the Mississippi Alluvial Valley (MAV). The MAV was historically a nearly contiguous bottomland hardwood forest, however, only remnants remain. These remnants are fragmented and often influenced by drainage projects, silviculture, agriculture, and urban development. Our objectives are to assess species richness and relative abundance, and to relate these to the size, quality, and composition of forest stands. Species richness and relative abundance were estimated for 53 randomly selected forest sites using 1 to 8 point counts per site, depending on the size of the forest fragment. However, statistical comparisons among sites will be restricted to an equal number ofpoint counts within the sites being compared. Point counts, lasting five minutes, were conducted from 11 May to 29 June 1992, foltowing Ralph, Sauer, and Droege (Point Count Standards; memo dated 9 March 1992). Vegetation was measured at the first three points on each site using a modification of the methods employed by Martin and Roper (Condor 90: 5 1-57; 1988). During 252 counts, 7 1 species were encountered, but only 62 species were encountered within a 50-m radius of point center. The mean number of species encountered within 50 m of a point, was 7.3 (s.d. = 2.7) and the mean number of individuals was 11.2 (s.d. = 4.2). The mean number of species detected at any distance was 9.6 (s.d, = 2.8) and the mean number of individuals was 15.6 (s.d. = 7.9). The most frequently encountered warblers in the MAV were Prothonotary Warbler and Northern Parula. Rarely encountered warblers were American Redstart and Worm-eating Warbler. The genera, Quercus, Ulmus, Carya, and Celtis were each encountered at 80 or more of the 152 points at which vegetation was sampled. Species most frequentlyencountered were: sugarberry (Celtis laevagata), water hickory (Caqa

  12. LogCauchy, log-sech and lognormal distributions of species abundances in forest communities

    USGS Publications Warehouse

    Yin, Z.-Y.; Peng, S.-L.; Ren, H.; Guo, Q.; Chen, Z.-H.

    2005-01-01

    Species-abundance (SA) pattern is one of the most fundamental aspects of biological community structure, providing important information regarding species richness, species-area relation and succession. To better describe the SA distribution (SAD) in a community, based on the widely used lognormal (LN) distribution model with exp(-x2) roll-off on Preston's octave scale, this study proposed two additional models, logCauchy (LC) and log-sech (LS), respectively with roll-offs of simple x-2 and e-x. The estimation of the theoretical total number of species in the whole community, S*, including very rare species not yet collected in sample, was derived from the left-truncation of each distribution. We fitted these three models by Levenberg-Marquardt nonlinear regression and measured the model fit to the data using coefficient of determination of regression, parameters' t-test and distribution's Kolmogorov-Smirnov (KS) test. Examining the SA data from six forest communities (five in lower subtropics and one in tropics), we found that: (1) on a log scale, all three models that are bell-shaped and left-truncated statistically adequately fitted the observed SADs, and the LC and LS did better than the LN; (2) from each model and for each community the S* values estimated by the integral and summation methods were almost equal, allowing us to estimate S* using a simple integral formula and to estimate its asymptotic confidence internals by regression of a transformed model containing it; (3) following the order of LC, LS, and LN, the fitted distributions became lower in the peak, less concave in the side, and shorter in the tail, and overall the LC tended to overestimate, the LN tended to underestimate, while the LS was intermediate but slightly tended to underestimate, the observed SADs (particularly the number of common species in the right tail); (4) the six communities had some similar structural properties such as following similar distribution models, having a common

  13. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    USGS Publications Warehouse

    Osland, Michael J.; Feher, Laura; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  14. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  15. Declines in abundance and species richness of birds following a major flood on the upper Mississippi River

    USGS Publications Warehouse

    Knutson, M.G.; Klaas, E.E.

    1997-01-01

    We examined the abundance and species richness of birds breeding in floodplain forests of the Upper Mississippi River in 1992 through 1994, and used a two-way ANOVA with repeated measures to identify effects of a 1993 flood on the bird community. Sixty-five study plots were divided into treatment and control plots based on whether they were flooded in 1993. Among 84 species observed on all plots, 41 species decreased in abundance from 1992 to 1994, 13 increased, 5 were unchanged. Sample sizes were inadequate to evaluate trends for 25 species. Species richness declined over the three-year period. Of 36 species tested with the ANOVA, 20 had a significant main effect of Year. Cool, wet conditions may have contributed to poor reproductive success in 1993, and resulted in widespread decline in floodplain bird abundance during the year following the flood. Bird abundance increased on most unflooded plots in 1993, probably because birds were displaced from flooded plots. This pattern was most striking for neotropical migrants, species preferring habitat edges, lower canopy nesters, and species that forage in the air. We suggest that periodic major flooding may maintain suitable floodplain habitat for Prothonotary Warblers (Protonotaria citrea) in the face of competition from House Wrens (Troglodytes aedon) for nest sites.

  16. Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests.

    PubMed

    Schuldt, Andreas; Baruffol, Martin; Bruelheide, Helge; Chen, Simon; Chi, Xiulian; Wall, Marcus; Assmann, Thorsten

    2014-09-01

    Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom-up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top-down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.

  17. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems.

    PubMed

    Pérez, Jeanneth; Virgen, Armando; Rojas, Julio Cesar; Rebollar-Téllez, Eduardo Alfonso; Alfredo, Castillo; Infante, Francisco; Mikery, Oscar; Marina, Carlos Felix; Ibáñez-Bernal, Sergio

    2014-02-01

    The composition and seasonal occurrence of sandflies were investigated in coffee agroecosystems in the Soconusco region of Chiapas, Mexico. Insect sampling was performed on three plantations located at different altitudes: Finca Guadalupe Zajú [1,000 m above sea level (a.s.l.)], Finca Argovia (613 m a.s.l.) and Teotihuacán del Valle (429 m a.s.l.). Sandflies were sampled monthly from August 2007-July 2008 using three sampling methods: Shannon traps, CDC miniature light traps and Disney traps. Sampling was conducted for 3 h during three consecutive nights, beginning at sunset. A total of 4,387 sandflies were collected during the course of the study: 2,718 individuals in Finca Guadalupe Zajú, 605 in Finca Argovia and 1,064 in Teotihuacán del Valle. The Shannon traps captured 94.3% of the total sandflies, while the CDC light traps and Disney traps captured 4.9% and 0.8%, respectively. More females than males were collected at all sites. While the number of sandflies captured was positively correlated with temperature and relative humidity, a negative correlation was observed between sandfly numbers and rainfall. Five species of sandflies were captured: Lutzomyia cruciata , Lutzomyia texana , Lutzomyia ovallesi , Lutzomyia cratifer / undulata and Brumptomyia sp. Lu. cruciata , constituting 98.8% of the total, was the most abundant species. None of the captured sandflies was infected with Leishmania spp.

  18. Historical abundance and morphology of Didymosphenia species in Naknek Lake, Alaska

    USGS Publications Warehouse

    Pite, D.P.; Lane, K.A.; Hermann, A.K.; Spaulding, S.A.; Finney, B.P.

    2009-01-01

    Since the 1980s, nuisance blooms of Didymosphenia geminata (Lyngbye) M. Schmidt have been documented in sites that are warmer and more mesotrophic than historical records indicate. While the invasion of D. geminata in New Zealand is well documented, it is less clear whether nuisance blooms in North America are a new phenomenon. In order to test the hypothesis that D. geminata blooms have increased in recent years, we examined the historical record of this species in sediments of Naknek Lake, in Katmai National Park, Alaska. Chronological control was established by relating the presence of two ash layers to known volcanic eruptions. We identified two species of Didymosphenia within the sediment record: D. geminata and D. clavaherculis (Ehrenberg) Metzeltin et Lange-Bertalot. This is the first published record of D. clavaherculis in North America. We found no statistically significant change in the numerical presence of D. geminata or D. clavaherculis, as a group, in Naknek Lake between the years 1218 and 2003. While there has been no sudden, or recent, increase in abundance of Didymosphenia in Naknek Lake, morphological features of D. geminata populations in Naknek Lake are distinct compared to morphological features of D. geminata in streams containing nuisance blooms from sites in North America and New Zealand. Variance in the morphology of Didymosphenia cells may help determine relationships between distinct sub-populations and establish the history of habitat invasion.

  19. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems

    PubMed Central

    Pérez, Jeanneth; Virgen, Armando; Rojas, Julio Cesar; Rebollar-Téllez, Eduardo Alfonso; Alfredo, Castillo; Infante, Francisco; Mikery, Oscar; Marina, Carlos Felix; Ibáñez-Bernal, Sergio

    2013-01-01

    The composition and seasonal occurrence of sandflies were investigated in coffee agroecosystems in the Soconusco region of Chiapas, Mexico. Insect sampling was performed on three plantations located at different altitudes: Finca Guadalupe Zajú [1,000 m above sea level (a.s.l.)], Finca Argovia (613 m a.s.l.) and Teotihuacán del Valle (429 m a.s.l.). Sandflies were sampled monthly from August 2007-July 2008 using three sampling methods: Shannon traps, CDC miniature light traps and Disney traps. Sampling was conducted for 3 h during three consecutive nights, beginning at sunset. A total of 4,387 sandflies were collected during the course of the study: 2,718 individuals in Finca Guadalupe Zajú, 605 in Finca Argovia and 1,064 in Teotihuacán del Valle. The Shannon traps captured 94.3% of the total sandflies, while the CDC light traps and Disney traps captured 4.9% and 0.8%, respectively. More females than males were collected at all sites. While the number of sandflies captured was positively correlated with temperature and relative humidity, a negative correlation was observed between sandfly numbers and rainfall. Five species of sandflies were captured: Lutzomyia cruciata , Lutzomyia texana , Lutzomyia ovallesi , Lutzomyia cratifer / undulata and Brumptomyia sp. Lu. cruciata , constituting 98.8% of the total, was the most abundant species. None of the captured sandflies was infected with Leishmania spp. PMID:24271002

  20. [Rare plant species: floristic, phytocoenotic and population approach].

    PubMed

    Zlobin, Iu A

    2011-01-01

    The system of concepts used when estimating the rarity of plants is analyzed and the basic categories of rarity are defined, namely: true, diffuse, peripheral and temporal. The insufficiency of scientific information on ecological and coenotic relationships of rare plants is demonstrated and the necessity of a complex assessment of population system of a rare plant species is substantiated. The importance and limitations of the information on rare plants contained in the Red Books and the Red Lists for phytosozological practice is discussed.

  1. A new device to estimate abundance of moist-soil plant seeds

    USGS Publications Warehouse

    Penny, E.J.; Kaminski, R.M.; Reinecke, K.J.

    2006-01-01

    Methods to sample the abundance of moist-soil seeds efficiently and accurately are critical for evaluating management practices and determining food availability. We adapted a portable, gasoline-powered vacuum to estimate abundance of seeds on the surface of a moist-soil wetland in east-central Mississippi and evaluated the sampler by simulating conditions that researchers and managers may experience when sampling moist-soil areas for seeds. We measured the percent recovery of known masses of seeds by the vacuum sampler in relation to 4 experimentally controlled factors (i.e., seed-size class, sample mass, soil moisture class, and vacuum time) with 2-4 levels per factor. We also measured processing time of samples in the laboratory. Across all experimental factors, seed recovery averaged 88.4% and varied little (CV = 0.68%, n = 474). Overall, mean time to process a sample was 30.3 ? 2.5 min (SE, n = 417). Our estimate of seed recovery rate (88%) may be used to adjust estimates for incomplete seed recovery, or project-specific correction factors may be developed by investigators. Our device was effective for estimating surface abundance of moist-soil plant seeds after dehiscence and before habitats were flooded.

  2. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  3. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    NASA Astrophysics Data System (ADS)

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  4. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    PubMed Central

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  5. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area.

    PubMed

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-23

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  6. Ecological implications of reduced pollen deposition in alpine plants: a case study using a dominant cushion plant species

    PubMed Central

    Reid, Anya; Hooper, Robyn; Molenda, Olivia; Lortie, Christopher J.

    2014-01-01

    The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae), we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination). The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species. PMID:25075305

  7. Ecological implications of reduced pollen deposition in alpine plants: a case study using a dominant cushion plant species.

    PubMed

    Reid, Anya; Hooper, Robyn; Molenda, Olivia; Lortie, Christopher J

    2014-01-01

    The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae), we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination). The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species.

  8. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    PubMed

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  9. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    PubMed Central

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  10. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia.

    PubMed

    Rafraf, Ikbel Denden; Lekunberri, Itziar; Sànchez-Melsió, Alexandre; Aouni, Mahjoub; Borrego, Carles M; Balcázar, José Luis

    2016-12-01

    Antimicrobial resistance is a growing and significant threat to global public health, requiring better understanding of the sources and mechanisms involved in its emergence and spread. We investigated the abundance of antibiotic resistance genes (ARGs) before and after treatment in five wastewater treatment plants (WWTPs) located in different areas of the Monastir Governorate (Tunisia). Three of these WWTPs (Frina, Sahline and Zaouiet) use a conventional activated sludge process as secondary treatment, whereas the WWTP located in Beni Hassen applies an ultraviolet disinfection step after the activated sludge process and the WWTP located in Moknine treats wastewater using naturally aerated lagoons as a secondary treatment process. The abundance of six ARGs (blaCTX-M, blaTEM, qnrA, qnrS, sul I and ermB) and the class 1 integron-integrase gene (intI1) were determined by quantitative PCR. All ARGs and the intI1 gene were detected in the wastewater samples, except the blaCTX-M gene, which was not detected in both influent and effluent samples from Sahline and Beni Hassen WWTPs, and the qnrS gene, which was not detected neither in the WWTP influent in Moknine nor in the WWTP effluent in Beni Hassen. Although the relative concentration of ARGs was generally found to be similar between samples collected before and after the wastewater treatment, the abundance of blaCTX-M, blaTEM, and qnrS genes was higher in the effluent of the Frina WWTP which, unlike other WWTPs, not only receives domestic or industrial sewage but also untreated hospital waste. To the best of our knowledge, this study quantified for the first time the abundance of ARGs in different Tunisian WWTPs, and the results agree with previous studies suggesting that conventional wastewater treatment does not efficiently reduce ARGs. Therefore, these findings could be useful to improve the design or operation of WWTPs.

  11. Pollinator coupling can induce synchronized flowering in different plant species.

    PubMed

    Tachiki, Yuuya; Iwasa, Yoh; Satake, Akiko

    2010-11-21

    Synchronous and intermittent plant reproduction has been identified widely in diverse biomes. While synchronous flowering is normally observed within the same species, different species also flower in synchrony. A well-known example of interspecific synchrony is "general flowering" in tropical rain forests of Southeast Asia. Environmental factors, such as low temperature and drought, have been considered as major trigger of general flowering. However, environmental cues are not enough to explain general flowering because some trees do not flower even when they encounter favorable environmental cues. We propose alternative explanation of general flowering; "pollinator coupling". When species flower synchronously, the elevated pollen and nectar resource may attract increased numbers of generalist pollinators, with a concomitant enhancement of pollination success (facilitation). However, under these circumstances, plants of different species may compete with one another for limited pollinator services, resulting in declines in pollination success for individual species (competition). Here, we present a model describing resource dynamics of individual trees serviced by generalist pollinators. We analyze combinations of conditions under which plants reproduce intermittently with synchronization within species, and/or (sometimes) between different species. We show that plants synchronize flowering when the number of pollinators attracted to an area increases at an accelerating rate with increasing numbers of flowers. In this case, facilitation of flowering by different species exceeds the negative influence of interspecific plant competition. We demonstrate mathematically that co-flowering of different species occurs under a much narrower range of circumstances than intraspecific co-flowering.

  12. Phytotoxins produced by plant pathogenic Streptomyces species.

    PubMed

    Bignell, D R D; Fyans, J K; Cheng, Z

    2014-02-01

    Streptomyces is a large genus consisting of soil-dwelling, filamentous bacteria that are best known for their capability of producing a vast array of medically and agriculturally useful secondary metabolites. In addition, a small number of Streptomyces spp. are capable of colonizing and infecting the underground portions of living plants and causing economically important crop diseases such as potato common scab (CS). Research into the mechanisms of Streptomyces plant pathogenicity has led to the identification and characterization of several phytotoxic secondary metabolites that are known or suspected of contributing to diseases in various plants. The best characterized are the thaxtomin phytotoxins, which play a critical role in the development of CS, acid scab and soil rot of sweet potato. In addition, the best-characterized CS-causing pathogen, Streptomyces scabies, produces a molecule that is predicted to resemble the Pseudomonas syringae coronatine phytotoxin and which contributes to seedling disease symptom development. Other Streptomyces phytotoxic secondary metabolites that have been identified include concanamycins, FD-891 and borrelidin. Furthermore, there is evidence that additional, unknown metabolites may participate in Streptomyces plant pathogenicity. Such revelations have implications for the rational development of better management procedures for controlling CS and other Streptomyces plant diseases.

  13. Plant species richness enhances nitrogen retention in green roof plots.

    PubMed

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  14. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community.

    PubMed

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  15. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community

    PubMed Central

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  16. Edge-interior differences in the species richness and abundance of drosophilids in a semideciduous forest fragment.

    PubMed

    Penariol, Leiza V; Madi-Ravazzi, Lilian

    2013-12-01

    Habitat fragmentation is the main cause of biodiversity loss, as remnant fragments are exposed to negative influences that include edge effects, prevention of migration, declines in effective population sizes, loss of genetic variability and invasion of exotic species. The Drosophilidae (Diptera), especially species of the genus Drosophila, which are highly sensitive to environmental variation, have been used as bioindicators. A twelve-month field study was conducted to evaluate the abundance and richness of drosophilids in an edge-interior transect in a fragment of semideciduous forest in São Paulo State, Brazil. One objective of the study was to evaluate the applied methodology with respect to its potential use in future studies addressing the monitoring and conservation of threatened areas. The species abundance along the transect showed a clear gradient, with species associated with disturbed environments, such as Drosophila simulans, Scaptodrosophila latifasciaeformis and Zaprionus indianus, being collected at the fragment edge and the species D. willistoni and D. mediostriata being found in the fragment's interior. Replacement of these species occurred at approximately 60 meters from the edge, which may be a reflection of edge effects on species abundance and richness because the species found within the habitat fragment are more sensitive to variations in temperature and humidity than those sampled near the edge. The results support the use of this methodology in studies on environmental impacts.

  17. Climate and soil attributes determine plant species turnover in global drylands

    PubMed Central

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These

  18. Determinants of distribution and abundance of two shrub species, Guiera senegalensis and Piliostigma reticulatum, in Peanut Basin, Senegal

    NASA Astrophysics Data System (ADS)

    Lufafa, A.; Diédhiou, I.; Ndiaye, N.; Kizito, F.; Dick, R.; Noller, J. S.

    2005-05-01

    The ability to predict and manage the course of landscape-level ecological change and its longer-term consequences on ecosystem functions (e.g. carbon stabilization and soil degradation mitigation) depends on the ability to understand how a particular ecosystem functions and the mechanisms that control the distribution, configuration and abundance of key species. Guiera senegalensis and Piliostigma reticulatum are two native shrub species that are widely found in Sub-Saharan Africa but unrecognized in their potential role in regulating hydrological and carbon cycles in both natural and agro-ecosystems. Our objective was to conduct a study on the determinants of landscape-level distribution and abundance of these shrub species as a basis for ecological modeling and management of this fragile semiarid environment. Formal Recursive Inference Modeling was used to adduce determinants of species presence while logistic regression and geostatistical approaches were used to estimate shrub abundance within their communities. The results showed that distribution of the shrubs is controlled by four factors: geological substrate, mean annual temperature, mean annual rainfall and landform (profile convexity). Relative abundance within the shrub communities is under the influence of mean annual rainfall, maximum annual temperature and elevation (for G. senegalensis) and mean annual rainfall, mean annual temperature, elevation and landform (profile convexity) (for P. reticulatum). Predictive models for shrub distribution and abundance were generally poor, probably highlighting the weakness of statistical models in analysis and quantification of the spatial structure of ecosystems.

  19. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    PubMed

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar.

  20. [Species-abundance distribution patterns along succession series of Phyllostachys glauca forest in a limestone mountain].

    PubMed

    Shi, Jian-min; Fan, Cheng-fang; Liu, Yang; Yang, Qing-pei; Fang, Kai; Fan, Fang-li; Yang, Guang-yao

    2015-12-01

    To detect the ecological process of the succession series of Phyllostachys glauca forest in a limestone mountain, five niche models, i.e., broken stick model (BSM), niche preemption model (NPM), dominance preemption model (DPM), random assortment model (RAM) and overlap- ping niche model (ONM) were employed to describe the species-abundance distribution patterns (SDPs) of 15 samples. χ² test and Akaike information criterion (AIC) were used to test the fitting effects of the five models. The results showed that the optimal SDP models for P. glauca forest, bamboo-broadleaved mixed forest and broadleaved forest were DPM (χ² = 35.86, AIC = -69.77), NPM (χ² = 1.60, AIC = -94.68) and NPM (χ² = 0.35, AIC = -364.61), respectively. BSM also well fitted the SDP of bamboo-broadleaved mixed forest and broad-leaved forest, while it was unsuitable to describe the SDP of P. glauca forest. The fittings of RAM and ONM in the three forest types were all rejected by the χ² test and AIC. With the development of community succession from P. glauca forest to broadleaved forest, the species richness and evenness increased, and the optimal SDP model changed from DPM to NPM. It was inferred that the change of ecological process from habitat filtration to interspecific competition was the main driving force of the forest succession. The results also indicated that the application of multiple SDP models and test methods would be beneficial to select the best model and deeply understand the ecological process of community succession.

  1. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    NASA Astrophysics Data System (ADS)

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-06-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.

  2. Semiparametric bivariate zero-inflated Poisson models with application to studies of abundance for multiple species

    USGS Publications Warehouse

    Arab, Ali; Holan, Scott H.; Wikle, Christopher K.; Wildhaber, Mark L.

    2012-01-01

    Ecological studies involving counts of abundance, presence–absence or occupancy rates often produce data having a substantial proportion of zeros. Furthermore, these types of processes are typically multivariate and only adequately described by complex nonlinear relationships involving externally measured covariates. Ignoring these aspects of the data and implementing standard approaches can lead to models that fail to provide adequate scientific understanding of the underlying ecological processes, possibly resulting in a loss of inferential power. One method of dealing with data having excess zeros is to consider the class of univariate zero-inflated generalized linear models. However, this class of models fails to address the multivariate and nonlinear aspects associated with the data usually encountered in practice. Therefore, we propose a semiparametric bivariate zero-inflated Poisson model that takes into account both of these data attributes. The general modeling framework is hierarchical Bayes and is suitable for a broad range of applications. We demonstrate the effectiveness of our model through a motivating example on modeling catch per unit area for multiple species using data from the Missouri River Benthic Fishes Study, implemented by the United States Geological Survey.

  3. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    PubMed Central

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  4. Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method.

    PubMed

    Kim, Yu Ji; Lee, Hye Min; Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Kang, Kyu Young; Park, Ki Hun; Kim, Yong Chul; Choi, In Soo; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2013-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant plant leaf protein, hampering deep analysis of the leaf proteome. Here, we describe a novel protamine sulfate precipitation (PSP) method for the depletion of RuBisCO. For this purpose, soybean leaf total proteins were extracted using Tris-Mg/NP-40 extraction buffer. Obtained clear supernatant was subjected to the PSP method, followed by 13% SDS-PAGE analysis of total, PS-supernatant and -precipitation derived protein samples. In a dose-dependent experiment, 0.1% w/v PS was found to be sufficient for precipitating RuBisCO large and small subunits (LSU and SSU). Western blot analysis confirmed no detection of RuBisCO LSU in the PS-supernatant proteins. Application of this method to Arabidopsis, rice, and maize leaf proteins revealed results similar to soybean. Furthermore, 2DE analyses of PS-treated soybean leaf displayed enriched protein profile for the protein sample derived from the PS-supernatant than total proteins. Some enriched 2D spots were subjected to MALDI-TOF-TOF analysis and were successfully assigned for their protein identity. Hence, the PSP method is: (i) simple, fast, economical, and reproducible for RuBisCO precipitation from the plant leaf sample; (ii) applicable to both dicot and monocot plants; and (iii) suitable for downstream proteomics analysis.

  5. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants

    PubMed Central

    Tintor, Nico; Saijo, Yusuke

    2014-01-01

    Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways. PMID:24616730

  6. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland

    PubMed Central

    Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka

    2015-01-01

    Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas. PMID:26565700

  7. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland.

    PubMed

    Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka

    2015-01-01

    Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.

  8. Nitric oxide and reactive oxygen species in plant biotic interactions.

    PubMed

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions.

  9. Widespread plant species: natives vs. aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  10. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  11. Widespread plant species: Natives versus aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  12. (15)N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga).

    PubMed

    de Freitas, Ana Dolores Santiago; de Sa Barretto Sampaio, Everardo Valadares; Menezes, Romulo Simoes Cezar; Tiessen, Holm

    2010-06-01

    Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.

  13. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    PubMed

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  14. [Seasonal evaluation of mammal species richness and abundance in the "Mário Viana" municipal reserve, Mato Grosso, Brasil].

    PubMed

    Rocha, Ednaldo Cândido; Silva, Elias; Martins, Sebastião Venâncio; Barreto, Francisco Cândido Cardoso

    2006-09-01

    We evaluated seasonal species presence and richness, and abundance of medium and large sized mammalian terrestrial fauna in the "Mário Viana" Municipal Biological Reserve, Nova Xavantina, Mato Grosso, Brazil. During 2001, two monthly visits were made to an established transect, 2,820 m in length. Records of 22 mammal species were obtained and individual footprint sequences quantified for seasonal calculation of species richness and relative abundance index (x footprints/km traveled). All 22 species occurred during the rainy season, but only 18 during the dry season. Pseudalopex vetulus (Lund, 1842) (hoary fox), Eira barbara (Linnaeus, 1758) (tayra), Puma concolor (Linnaeus, 1771) (cougar) and Hydrochaeris hydrochaeris (Linnaeus, 1766) (capybara) were only registered during the rainy season. The species diversity estimated using the Jackknife procedure in the dry season (19.83, CI = 2.73) was smaller than in the rainy season (25.67, CI = 3.43). Among the 18 species common in the two seasons, only four presented significantly different abundance indexes: Dasypus novemcinctus Linnaeus, 1758 (nine-banded armadillo), Euphractus sexcinctus (Linnaeus, 1758) (six-banded armadillo), Dasyprocta azarae Lichtenstein, 1823 (Azara's Agouti) and Tapirus terrestris (Linnaeus, 1758) (tapir). On the other hand, Priodontes maximus (Kerr, 1792) (giant armadillo) and Leopardus pardalis (Linnaeus, 1758) (ocelot) had identical abundance index over the two seasons. Distribution of species abundance in the sampled area followed the expected pattern for communities in equilibrium, especially in the rainy season, suggesting that the environment still maintains good characteristics for mammal conservation. The present study shows that the reserve, although only 470 ha in size, plays an important role for conservation of mastofauna of the area as a refuge in an environment full of anthropic influence (mainly cattle breeding in exotic pasture).

  15. Effect of plant extracts on book deteriorated fungal species.

    PubMed

    Kalbende, Swapna P; Dalal, Lalchand P

    2016-05-06

    The aim of the study was to evaluate the effect of leaf extracts of four plants against some isolated fungal species from deteriorated books. Aqueous, methanol and chloroform extracts of selected plant species were screened in vitro for their antifungal activity against some book deteriorating fungal species. Fifteen species belonging to 09 genera were isolated and identified from infested books in library. Aqueous and solvent extracts of leaves of Azadiracta indica, Callistemon citrinus, Eucalyptus lanceolatus and Pongamia pinnata were tested against some dominant fungal species viz. Chaetomium spiralis, Alternaria alternata, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus and Rhizopus stolonifer. Solvent extracts exhibited potent inhibitory activity than aqueous extracts. However, these plant extracts exhibited moderate activity against A. flavus, C. spiralis, R. stolonifer and A. alternata.

  16. A study of Culicoides in Rondônia, in the Brazilian Amazon: species composition, relative abundance and potential vectors.

    PubMed

    Carvalho, L P C; Pereira Júnior, A M; Farias, E S; Almeida, J F; Rodrigues, M S; Resadore, F; Pessoa, F A C; Medeiros, J F

    2017-03-01

    There is very little information available about Culicoides species (Diptera: Ceratopogonidae) in the western Brazilian Amazon. However, studies of the fauna of this region are essential to knowledge of the species and potential vectors within it. Thus, the present study aims to evaluate the abundance, richness and composition of Culicoides species in rural areas in the state of Rondônia, Brazil. Culicoides specimens were collected in forest and pasture environments in the municipality of Porto Velho, using light traps. A total of 1708 individuals (1136 females and 572 males) belonging to 33 species were collected; 28 of these samples represent new records for the state of Rondônia and include the first record of Culicoides contubernalis in Brazil. Culicoides insignis was the most abundant species (86.1%). Species richness was greater in forest areas (32 species, 96.96%), whereas pastures presented the greatest number of Culicoides captured (n = 1540, 90.1%). This study shows that Culicoides populations differ between forest and pasture environments and indicates that the abundance of C. insignis is an important factor in epidemiological vigilance studies in the region.

  17. Evaluating plant invasions from both habitat and species perspectives

    USGS Publications Warehouse

    Chong, G.W.; Otsuki, Y.; Stohlgren, T.J.; Guenther, D.; Evangelista, P.; Villa, C.; Waters, A.

    2006-01-01

    We present an approach to quantitatively assess nonnative plant invasions at landscape scales from both habitat and species perspectives. Our case study included 34 nonnative species found in 142 plots (0.1 ha) in 14 vegetation types within the Grand Staircase-Escalante National Monument, Utah. A plot invasion index, based on nonnative species richness and cover, showed that only 16 of 142 plots were heavily invaded. A species invasive index, based on frequency, cover, and number of vegetation types invaded, showed that only 7 of 34 plant species were highly invasive. Multiple regressions using habitat characteristics (moisture index, elevation, soil P, native species richness, maximum crust development class, bare ground, and rock) explained 60% of variation in nonnative species richness and 46% of variation in nonnative species cover. Three mesic habitats (aspen, wet meadow, and perennial riparian types) were particularly invaded (31 of 34 nonnative species studied were found in these types). Species-specific logistic regression models for the 7 most invasive species correctly predicted occurrence 89% of the time on average (from 80% for Bromus tectorum, a habitat generalist, to 93% for Tamarix spp., a habitat specialist). Even with such a modest sampling intensity (<0.1% of the landscape), this multiscale sampling scheme was effective at evaluating habitat vulnerability to invasion and the occurrence of the 7 most invasive nonnative species. This approach could be applied in other natural areas to develop strategies to document invasive species and invaded habitats.

  18. Colonial, more widely distributed and less abundant bird species undergo wider population fluctuations independent of their population trend

    PubMed Central

    Møller, Anders P.

    2017-01-01

    Understanding temporal variability in population size is important for conservation biology because wide population fluctuations increase the risk of extinction. Previous studies suggested that certain ecological, demographic, life-history and genetic characteristics of species might be related to the degree of their population fluctuations. We checked whether that was the case in a large sample of 231 European breeding bird species while taking a number of potentially confounding factors such as population trends or similarities among species due to common descent into account. When species-specific characteristics were analysed one by one, the magnitude of population fluctuations was positively related to coloniality, habitat, total breeding range, heterogeneity of breeding distribution and natal dispersal, and negatively related to urbanisation, abundance, relative number of subspecies, parasitism and proportion of polymorphic loci. However, when abundance (population size) was included in the analyses of the other parameters, only coloniality, habitat, total breeding range and abundance remained significantly related to population fluctuations. The analysis including all these predictors simultaneously showed that population size fluctuated more in colonial, less abundant species with larger breeding ranges. Other parameters seemed to be related to population fluctuations only because of their association with abundance or coloniality. The unexpected positive relationship between population fluctuations and total breeding range did not seem to be mediated by abundance. The link between population fluctuations and coloniality suggests a previously unrecognized cost of coloniality. The negative relationship between population size and population fluctuations might be explained by at least three types of non-mutually exclusive stochastic processes: demographic, environmental and genetic stochasticity. Measurement error in population indices, which was unknown, may

  19. Colonial, more widely distributed and less abundant bird species undergo wider population fluctuations independent of their population trend.

    PubMed

    Cuervo, José J; Møller, Anders P

    2017-01-01

    Understanding temporal variability in population size is important for conservation biology because wide population fluctuations increase the risk of extinction. Previous studies suggested that certain ecological, demographic, life-history and genetic characteristics of species might be related to the degree of their population fluctuations. We checked whether that was the case in a large sample of 231 European breeding bird species while taking a number of potentially confounding factors such as population trends or similarities among species due to common descent into account. When species-specific characteristics were analysed one by one, the magnitude of population fluctuations was positively related to coloniality, habitat, total breeding range, heterogeneity of breeding distribution and natal dispersal, and negatively related to urbanisation, abundance, relative number of subspecies, parasitism and proportion of polymorphic loci. However, when abundance (population size) was included in the analyses of the other parameters, only coloniality, habitat, total breeding range and abundance remained significantly related to population fluctuations. The analysis including all these predictors simultaneously showed that population size fluctuated more in colonial, less abundant species with larger breeding ranges. Other parameters seemed to be related to population fluctuations only because of their association with abundance or coloniality. The unexpected positive relationship between population fluctuations and total breeding range did not seem to be mediated by abundance. The link between population fluctuations and coloniality suggests a previously unrecognized cost of coloniality. The negative relationship between population size and population fluctuations might be explained by at least three types of non-mutually exclusive stochastic processes: demographic, environmental and genetic stochasticity. Measurement error in population indices, which was unknown, may

  20. Spatial heterogeneity influences native and nonnative plant species richness.

    PubMed

    Kumar, Sunil; Stohlgren, Thomas J; Chong, Geneva W

    2006-12-01

    Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for

  1. Impact of grazing on the species richness of plant communities in Mediterranean temporary pools (western Morocco).

    PubMed

    Bouahim, Siham; Rhazi, Laïla; Amami, Btissam; Sahib, Nargis; Rhazi, Mouhssine; Waterkeyn, Aline; Zouahri, Abdelmjid; Mesleard, François; Muller, Serge D; Grillas, Patrick

    2010-09-01

    The impact of grazing on the vegetation of Moroccan temporary pools has been studied at 2 scales: regional (inter-pools) and local (intra-pools). Half of the 16 forest pools studied is located in a reserve and ungrazed. The other half, located within public forest, is grazed. Vegetation relevés coupled to water-depths measurements were carried out in each pool. The results showed a significant effect of grazing on both scales of analysis. This effect was found in the species composition of the vegetation, which differed between the 2 types of pools, and in the lower species richness and abundance of plant species in the grazed pools. These differences are interpreted as resulting from the selection by herbivores and the differential tolerance of species to disturbance. These impacts are likely to expose certain species to local extinction by reducing their populations.

  2. Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Mattsson, M.; Herrmann, B.; Jones, S.; Neftel, A.; Sutton, M. A.; Schjoerring, J. K.

    2008-06-01

    Species diversity in grasslands usually declines with increasing input of nitrogen from fertilizers or atmospheric nitrogen deposition. Conversely, species diversity may also impact the build-up of soil nitrogen pools. Limited information is available on how plant-atmosphere ammonia exchange is related to species diversity in grasslands. We have here investigated grass species abundance and different foliar nitrogen pools in 4-year-old intensively managed grassland. Apoplastic pH and NH4+ concentrations of the 8 most abundant species were used to calculate stomatal NH3 compensation points. Apoplastic NH4+ concentrations differed considerably among the species, ranging from 13 to 117 μM, with highest values in Festuca pratensis. Also apoplastic pH values varied, from pH 6.0 in Phleum pratense to 6.9 in Dactylis glomerata. The observed differences in apoplastic NH4+ and pH resulted in a large span of predicted values for the stomatal NH3 compensation point which ranged from 0.20 to 6.57 nmol mol-1. Three species (Lolium perenne, Festuca pratensis and Dactylis glomerata) had sufficiently high NH3 compensation points and abundance to contribute to the NH3 emission of the whole field. At the same time, other grass species such as Phleum pratense and Lolium multiflorum had NH3 compensation points below the atmospheric NH3 concentration and could thus contribute to NH3 uptake from the atmosphere. Evaluated across species, leaf bulk-tissue NH4+ concentrations correlated well (r2=0.902) with stomatal NH3 compensation points calculated on the basis of the apoplastic bioassay. This suggests that leaf tissue NH4+ concentrations combined with data for the frequency distribution of the corresponding species can be used for predicting the NH3 exchange potential of a mixed grass sward.

  3. Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem.

    PubMed

    Jiang, Guangshun; Liu, Jun; Xu, Lei; Yu, Guirui; He, Honglin; Zhang, Zhibin

    2013-06-01

    Our Earth is facing the challenge of accelerating climate change, which imposes a great threat to biodiversity. Many published studies suggest that climate warming may cause a dramatic decline in biodiversity, especially in colder and drier regions. In this study, we investigated the effects of temperature, precipitation and a normalized difference vegetation index on biodiversity indices of rodent communities in the current or previous year for both detrended and nondetrended data in semi-arid grassland of Inner Mongolia during 1982-2006. Our results demonstrate that temperature showed predominantly positive effects on the biodiversity of small rodents; precipitation showed both positive and negative effects; a normalized difference vegetation index showed positive effects; and cross-correlation function values between rodent abundance and temperature were negatively correlated with rodent abundance. Our results suggest that recent climate warming increased the biodiversity of small rodents by providing more benefits to population growth of rare or less abundant species than that of more abundant species in Inner Mongolia grassland, which does not support the popular view that global warming would decrease biodiversity in colder and drier regions. We hypothesized that higher temperatures might benefit rare or less abundant species (with smaller populations and more folivorous diets) by reducing the probability of local extinction and/or by increasing herbaceous food resources.

  4. Increasing enemy biodiversity strengthens herbivore suppression on two plant species.

    PubMed

    Straub, Cory S; Snyder, William E

    2008-06-01

    Concern over biodiversity loss, especially at higher trophic levels, has led to a surge in studies investigating how changes in natural enemy diversity affect community and ecosystem functioning. These studies have found that increasing enemy diversity can strengthen, weaken, and not affect prey suppression, demonstrating that multi-enemy effects on prey are context-dependent. Here we ask how one factor, plant species identity, influences multi-enemy effects on prey. We focused on two plant species of agricultural importance, potato (Solanum tuberosum), and collards (Brassica oleracea L.). These species share a common herbivorous pest, the green peach aphid (Myzus persicae), but vary in structural and chemical traits that affect aphid reproductive rates and which may also influence inter-enemy interactions. In a large-scale field experiment, overall prey exploitation varied dramatically among the plant species, with enemies reducing aphid populations by approximately 94% on potatoes and approximately 62% on collards. Increasing enemy diversity similarly strengthened aphid suppression on both plants, however, and there was no evidence that plant species identity significantly altered the relationship between enemy diversity and prey suppression. Microcosm experiments suggested that, on both collards and potatoes, intraspecific competition among natural enemies exceeded interspecific competition. Enemy species showed consistent and significant differences in where they foraged on the plants, and enemies in the low-diversity treatment tended to spend less time foraging than enemies in the high-diversity treatment. These data suggest that increasing enemy diversity may strengthen aphid suppression because interspecific differences in where enemies forage on the plant allow for greater resource partitioning. Further, these functional benefits of diversity appear to be robust to changes in plant species identity.

  5. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  6. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  7. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    PubMed

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  8. When Are Native Species Inappropriate for Conservation Plantings

    EPA Science Inventory

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  9. Predicting foundation bunchgrass species abundances: Model-assisted decision-making in protected-area sagebrush steppe

    USGS Publications Warehouse

    Rodhouse, Thomas J.; Irvine, Kathryn M.; Sheley, Roger L.; Smith, Brenda S.; Hoh, Shirley; Esposito, Daniel M.; Mata-Gonzalez, Ricardo

    2014-01-01

    Foundation species are structurally dominant members of ecological communities that can stabilize ecological processes and influence resilience to disturbance and resistance to invasion. Being common, they are often overlooked for conservation but are increasingly threatened from land use change, biological invasions, and over-exploitation. The pattern of foundation species abundances over space and time may be used to guide decision-making, particularly in protected areas for which they are iconic. We used ordinal logistic regression to identify the important environmental influences on the abundance patterns of bluebunch wheatgrass (Pseudoroegneria spicata), Thurber's needlegrass (Achnatherum thurberianum), and Sandberg bluegrass (Poa secunda) in protected-area sagebrush steppe. We then predicted bunchgrass abundances along gradients of topography, disturbance, and invasive annual grass abundance. We used model predictions to prioritize the landscape for implementation of a management and restoration decision-support tool. Models were fit to categorical estimates of grass cover obtained from an extensive ground-based monitoring dataset. We found that remnant stands of abundant wheatgrass and bluegrass were associated with steep north-facing slopes in higher and more remote portions of the landscape outside of recently burned areas where invasive annual grasses were less abundant. These areas represented only 25% of the landscape and were prioritized for protection efforts. Needlegrass was associated with south-facing slopes, but in low abundance and in association with invasive cheatgrass (Bromus tectorum). Abundances of all three species were strongly negatively correlated with occurrence of another invasive annual grass, medusahead (Taeniatherum caput-medusae). The rarity of priority bunchgrass stands underscored the extent of degradation and the need for prioritization. We found no evidence that insularity reduced invasibility; annual grass invasion represents

  10. Plant species differences in particulate matter accumulation on leaf surfaces.

    PubMed

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  11. (15)N natural abundance in plants of the Amazon River floodplain and potential atmospheric N2 fixation.

    PubMed

    Martinelli, L A; Victoria, R L; Trivelin, P C O; Devol, A H; Richey, J E

    1992-07-01

    The(15)N natural abundance values of various Amazon floodplain (várzea) plants was investigated. Samples of young leaf tissues were collected during three different periods of the river hydrography (low water, mid rising water and high water) and during one period in the Madeira River (high water). A large variation of(15)N abundance was observed, both among the different plant types and between the different flood stages. This variation probably, reflected, in part, the highly variable nature of the floodplain, sometimes dry and oxygenated and at other times inundated and anaerobic and, in part, changes in plant nitrogen metabolism. Comparison of the nitrogen isotopic composition of leguminous plants with that of non-leguminous plants showed that, on average, the(15)N abundance was lower in the legumes than non-legumes, suggesting active N-fixation. Also, the(15)N natural abundance in aquatic grasses of the generaPaspalum, was in general, lower than the(15)N abundance of aquatic grasses of the generaEchinochloa. As both of these grasses grow in the same general habitat, it appears thatPaspalum grasses may also be nitrogen fixers.

  12. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    USGS Publications Warehouse

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  13. Temperature and plant species control over litter decomposition in Alaskan tundra

    SciTech Connect

    Hobbie, S.E.

    1996-11-01

    This study compared effects of increased temperature and litter from different Alaskan tundra plant species on cycling of carbon and nitrogen through litter and soil in microcosms. Warming between 4{degrees} and 10{degrees}C significantly increased rates of soil and litter respiration, litter decomposition, litter nitrogen release, and soil net nitrogen mineralization. Thus, future warming will directly increase rates of carbon and nitrogen cycling through litter and soil in tundra. In addition, differences among species` litter in rates of decomposition, N release, and effects on soil net nitrogen mineralization were sometimes larger than differences between the two temperature treatments within a species. Thus, changes in plant community structure and composition associated with future warming will have important consequences for how elements cycle through litter and soil in tundra. In general, species within a growth form (graminoids, evergreen shrubs, deciduous shrubs, and mosses) were more similar in their effects on decomposition than were species belonging to different growth forms, with gramminoid litter having the fastest rate and litter of deciduous shrubs and mosses having the slowest rates. Differences in rates of litter decomposition were more related to carbon quality than to nitrogen concentration. Increased abundance of deciduous shrubs with future climate warming will promote carbon storage, because of their relatively large allocation to woody stems that decompose slowly. Changes in moss abundance will also have important consequences for future carbon and nitrogen cycling, since moss litter is extremely recalcitrant and has a low potential to immobilize nitrogen. 82 refs., 8 figs., 7 tabs.

  14. Petrified Forest National Park Invasive Plant Species Survey and Mapping; 2002-2005

    USGS Publications Warehouse

    Thomas, Kathryn A.; Hunt, Randall; Arundel, Terry R.; Guertin, P.

    2009-01-01

    We conducted a survey for invasive nonnative plant species at Petrified Forest National Park from 2002 through 2005. The survey employed a unique sampling design consisting of a grid of consecutive one-hectare cells as the sampling units. Our use of predetermined sampling units allowed all observations to be referenced to a fixed area with geographic coordinates that easily transferred to a geographic information system. Our field team surveyed 2,730 sampling units in three select areas for at least 1 year and 879 sampling units for 4 years. During this period we identified 40 different invasive plant species; more than half the invasive plants (22 species) were annual forbs and grasses. Four invasive plant species occurred in 25 percent or more of all sampling units observed in one or more years: Bromus tectorum, Erodium cicutarium, Salsola tragus, and Sisymbrium altissimum. Salsola tragus was the most abundant species in all years and occurred in more than 55 percent of all sampling units surveyed each year.

  15. Mycorrhizal status helps explain invasion success of alien plant species.

    PubMed

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.

  16. Do David and Goliath Play the Same Game? Explanation of the Abundance of Rare and Frequent Invasive Alien Plants in Urban Woodlands in Warsaw, Poland

    PubMed Central

    Mędrzycki, Piotr; Kołaczkowska, Ewa; Ciurzycki, Wojciech; Marciszewska, Katarzyna

    2016-01-01

    Invasive Alien Plants occur in numbers differing by orders of magnitude at subsequent invasion stages. Effective sampling and quantifying niches of rare invasive plants are quite problematic. The aim of this paper is an estimation of the influence of invasive plants frequency on the explanation of their local abundance. We attempted to achieve it through: (1) assessment of occurrence of self-regenerating invasive plants in urban woodlands, (2) comparison of Random Forest modelling results for frequent and rare species. We hypothesized that the abundance of frequent species would be explained better than that of rare ones and that both rare and frequent species share a common hierarchy of the most important determinants. We found 15 taxa in almost two thirds of 1040 plots with a total number of 1068 occurrences. There were recorded 6 taxa of high frequency–Prunus serotina, Quercus rubra, Acer negundo, Robinia pseudoacacia, Impatiens parviflora and Solidago spp.–and 9 taxa of low frequency: Acer saccharinum, Amelanchier spicata, Cornus spp., Fraxinus spp., Parthenocissus spp., Syringa vulgaris, Echinocystis lobata, Helianthus tuberosus, Reynoutria spp. Random Forest’s models’ quality grows with the number of occurrences of frequent taxa but not of the rare ones. Both frequent and rare taxa share a similar hierarchy of predictors’ importance: Land use > Tree stand > Seed source and, for frequent taxa, Forest properties as well. We conclude that there is an ‘explanation jump’ at higher species frequencies, but rare species are surprisingly similar to frequent ones in their determinant’s hierarchy, with differences conforming with their respective stages of invasion. PMID:27992516

  17. Do David and Goliath Play the Same Game? Explanation of the Abundance of Rare and Frequent Invasive Alien Plants in Urban Woodlands in Warsaw, Poland.

    PubMed

    Obidziński, Artur; Mędrzycki, Piotr; Kołaczkowska, Ewa; Ciurzycki, Wojciech; Marciszewska, Katarzyna

    2016-01-01

    Invasive Alien Plants occur in numbers differing by orders of magnitude at subsequent invasion stages. Effective sampling and quantifying niches of rare invasive plants are quite problematic. The aim of this paper is an estimation of the influence of invasive plants frequency on the explanation of their local abundance. We attempted to achieve it through: (1) assessment of occurrence of self-regenerating invasive plants in urban woodlands, (2) comparison of Random Forest modelling results for frequent and rare species. We hypothesized that the abundance of frequent species would be explained better than that of rare ones and that both rare and frequent species share a common hierarchy of the most important determinants. We found 15 taxa in almost two thirds of 1040 plots with a total number of 1068 occurrences. There were recorded 6 taxa of high frequency-Prunus serotina, Quercus rubra, Acer negundo, Robinia pseudoacacia, Impatiens parviflora and Solidago spp.-and 9 taxa of low frequency: Acer saccharinum, Amelanchier spicata, Cornus spp., Fraxinus spp., Parthenocissus spp., Syringa vulgaris, Echinocystis lobata, Helianthus tuberosus, Reynoutria spp. Random Forest's models' quality grows with the number of occurrences of frequent taxa but not of the rare ones. Both frequent and rare taxa share a similar hierarchy of predictors' importance: Land use > Tree stand > Seed source and, for frequent taxa, Forest properties as well. We conclude that there is an 'explanation jump' at higher species frequencies, but rare species are surprisingly similar to frequent ones in their determinant's hierarchy, with differences conforming with their respective stages of invasion.

  18. Impact of plant species evenness, dominant species identity and spatial arrangement on the structure and functioning of soil microbial communities in a model grassland.

    PubMed

    Massaccesi, L; Bardgett, R D; Agnelli, A; Ostle, N; Wilby, A; Orwin, K H

    2015-03-01

    Plant communities, through species richness and composition, strongly influence soil microorganisms and the ecosystem processes they drive. To test the effects of other plant community attributes, such as the identity of dominant plant species, evenness, and spatial arrangement, we set up a model mesocosm experiment that manipulated these three attributes in a full factorial design, using three grassland plant species (Anthoxanthum odoratum, Plantago lanceolata, and Lotus corniculatus). The impact of the three community attributes on the soil microbial community structure and functioning was evaluated after two growing seasons by ester-linked phospholipid fatty-acids analysis, substrate-induced respiration, basal respiration, and nitrogen mineralization and nitrification rates. Our results suggested that the dominant species identity had the most prevalent influence of the three community attributes, with significant effects on most of the measured aspects of microbial biomass, composition and functioning. Evenness had no effects on microbial community structure, but independently influenced basal respiration. Its effects on nitrogen cycling depended on the identity of the dominant plant species, indicating that interactions among species and their effects on functioning can vary with their relative abundance. Systems with an aggregated spatial arrangement had a different microbial community composition and a higher microbial biomass compared to those with a random spatial arrangement, but rarely differed in their functioning. Overall, it appears that dominant species identity was the main driver of soil microorganisms and functioning in these model grassland communities, but that other plant community attributes such as evenness and spatial arrangement can also be important.

  19. Nurse plants transfer more nitrogen to distantly related species.

    PubMed

    Montesinos-Navarro, Alicia; Verdú, Miguel; Querejeta, José Ignacio; Valiente-Banuet, Alfonso

    2017-02-11

    Plant facilitative interactions enhance co-occurrence between distant relatives, partly due to limited overlap in resource requirements. We propose a different mechanism for the coexistence of distant relatives based on positive interactions of nutrient sharing. Nutrients move between plants following source-sink gradients driven by plant traits that allow these gradients to establish. Specifically, nitrogen (N) concentration gradients can arise from variation in leaf N content across plants species. As many ecologically relevant traits, we hypothesize that leaf N content is phylogenetically conserved and can result in N gradients promoting N transfer among distant relatives. In a Mexican desert community governed by facilitation, we labelled nurse plants (Mimosa luisiana) with (15) N and measured its transfer to 14 other species in the community, spanning the range of phylogenetic distances to the nurse plant. Nurses established steeper N source-sink gradients with distant relatives, increasing (15) N transfer towards these species. Nutrient sharing may provide long-term benefits to facilitated plants and may be an overlooked mechanism maintaining coexistence and increasing the phylogenetic diversity of plant communities. This article is protected by copyright. All rights reserved.

  20. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  1. Preferential uptake of soil nitrogen forms by grassland plant species.

    PubMed

    Weigelt, Alexandra; Bol, Roland; Bardgett, Richard D

    2005-02-01

    In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.

  2. Species composition, diversity and relative abundance of amphibians in forests and non-forest habitats on Langkawi Island, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Johana, J.; Muzzneena, A. M.; Grismer, L. L.; Norhayati, A.

    2016-11-01

    Anurans on Langkawi Island, Peninsular Malaysia exhibit variation in their habits and forms, ranging from small (SVL < 25 mm) to large (SVL > 150 mm), and occupy a range of habitats, such as riverine forests, agricultural fields, peat swamps, and lowland and upland dipterocarp forests. These variations provide a platform to explore species diversity, distribution, abundance, microhabitat, and other ecological parameters to understand the distribution patterns and to facilitate conservation and management of sensitive or important species and areas. The objective of this study was to evaluate the diversity and distribution of anuran species in different types of habitat on Langkawi Island. Specimens were collected based on active sampling using the Visual Encounter Survey (VES) method. We surveyed anuran species inhabiting seven types of habitat, namely agriculture (AG), coastal (CL), forest (FT), pond (PD), mangrove (MG), riparian forest (RF) and river (RV). A total of 775 individuals were sampled from all localities, representing 23 species from 12 genera and included all six families of frogs in Malaysia. FT and RF showed high values of Shannon Index, H', 2.60 and 2.38, respectively, followed by the other types of habitat, CL (1.82), RV (1.71), MG (1.56), PD (1.54), and AG (1.53). AG had the highest abundance (156 individuals) compared to other habitat types. Based on Cluster Analysis by using Jaccard coefficient (UPGMA), two groups can be clearly seen and assigned as forested species group (FT and RF) and species associating with human activity (AG, CL, PD, MG and RV). Forest species group is more diverse compared to non-forest group. Nevertheless, non-forest species are found in abundance, highlighting the relevance of these disturbed habitats in supporting the amphibians.

  3. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity.

    PubMed

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS.

  4. Seasonal fecundity is not related to geographic position across a species' global range despite a central peak in abundance.

    PubMed

    Ruskin, Katharine J; Etterson, Matthew A; Hodgman, Thomas P; Borowske, Alyssa C; Cohen, Jonathan B; Elphick, Chris S; Field, Christopher R; Kern, Rebecca A; King, Erin; Kocek, Alison R; Kovach, Adrienne I; O'Brien, Kathleen M; Pau, Nancy; Shriver, W Gregory; Walsh, Jennifer; Olsen, Brian J

    2017-01-01

    The range of a species is determined by the balance of its demographic rates across space. Population growth rates are widely hypothesized to be greatest at the geographic center of the species range, but indirect empirical support for this pattern using abundance as a proxy has been mixed, and demographic rates are rarely quantified on a large spatial scale. Therefore, the texture of how demographic rates of a species vary over its range remains an open question. We quantified seasonal fecundity of populations spanning the majority of the global range of a single species, the saltmarsh sparrow (Ammodramus caudacutus), which demonstrates a peak of abundance at the geographic center of its range. We used a novel, population projection method to estimate seasonal fecundity inclusive of seasonal and spatial variation in life history traits that contribute to seasonal fecundity. We replicated our study over 3 years, and compared seasonal fecundity to latitude and distance among plots. We observed large-scale patterns in some life history traits that contribute to seasonal fecundity, such as an increase in clutch size with latitude. However, we observed no relationship between latitude and seasonal fecundity. Instead, fecundity varied greatly among plots separated by as little as 1 km. Our results do not support the hypothesis that demographic rates are highest at the geographic and abundance center of a species range, but rather they suggest that local drivers strongly influence saltmarsh sparrow fecundity across their global range.

  5. Effects of Habitat-Forming Species Richness, Evenness, Identity, and Abundance on Benthic Intertidal Community Establishment and Productivity

    PubMed Central

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  6. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the

  7. Didehydrophenylalanine, an abundant modification in the beta subunit of plant polygalacturonases

    PubMed Central

    Printz, Bruno; Gutsch, Annelie; Behr, Marc; Renaut, Jenny; Hausman, Jean-Francois

    2017-01-01

    The structure and the activity of proteins are often regulated by transient or stable post- translational modifications (PTM). Different from well-known, abundant modifications such as phosphorylation and glycosylation some modifications are limited to one or a few proteins across a broad range of related species. Although few examples of the latter type are known, the evolutionary conservation of these modifications and the enzymes responsible for their synthesis suggest an important physiological role. Here, the first observation of a new, fold-directing PTM is described. During the analysis of alfalfa cell wall proteins a -2Da mass shift was observed on phenylalanine residues in the repeated tetrapeptide FxxY of the beta-subunit of polygalacturonase. This modular protein is known to be involved in developmental and stress-responsive processes. The presence of this modification was confirmed using in-house and external datasets acquired by different commonly used techniques in proteome studies. Based on these analyses it was found that all identified phenylalanine residues in the sequence FxxY of this protein were modified to α,β-didehydro-Phe (ΔPhe). Besides showing the reproducible identification of ΔPhe in different species arguments that substantiate the fold-determining role of ΔPhe are given. PMID:28207764

  8. Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Mattsson, M.; Herrmann, B.; Jones, S.; Neftel, A.; Sutton, M. A.; Schjoerring, J. K.

    2009-01-01

    Species diversity in grasslands usually declines with increasing input of nitrogen from fertilizers or atmospheric deposition. Conversely, species diversity may also impact the build-up of soil and plant nitrogen pools. One important pool is NH3/NH4+ which also can be exchanged between plant leaves and the atmosphere. Limited information is available on how plant-atmosphere ammonia exchange is related to species diversity in grasslands. We have here investigated grass species abundance and different foliar nitrogen pools in 4-year-old intensively managed grassland. Apoplastic pH and NH4+ concentrations of the 8 most abundant species (Lolium perenne, Phleum pratense, Festuca pratensis, Lolium multiflorum, Poa pratensis, Dactylis glomerata, Holcus lanatus, Bromus mollis) were used to calculate stomatal NH3 compensation points. Apoplastic NH4+ concentrations differed considerably among the species, ranging from 13 to 117 μM, with highest values in Festuca pratensis. Also apoplastic pH values varied, from pH 6.0 in Phleum pratense to 6.9 in Dactylis glomerata. The observed differences in apoplastic NH4+ and pH resulted in a large span of predicted values for the stomatal NH3 compensation point which ranged between 0.20 and 6.57 nmol mol-1. Three species (Lolium perenne, Festuca pratensis and Dactylis glomerata) had sufficiently high NH3 compensation point and abundance to contribute to the bi-directional NH3 fluxes recorded over the whole field. The other 5 grass species had NH3 compensation points considerably below the atmospheric NH3 concentration and were thus not likely to contribute to NH3 emission but only to NH3 uptake from the atmosphere. Evaluated across species, leaf bulk-tissue NH4+ concentrations correlated well (r2=0.902) with stomatal NH3 compensation points calculated on the basis of the apoplastic bioassay. This suggests that leaf tissue NH4+ concentrations combined with data for the frequency distribution of the corresponding species can be used for

  9. Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing.

    PubMed

    Hiiesalu, Inga; Opik, Maarja; Metsis, Madis; Lilje, Liisa; Davison, John; Vasar, Martti; Moora, Mari; Zobel, Martin; Wilson, Scott D; Pärtel, Meelis

    2012-04-01

    Variation in plant species richness has been described using only aboveground vegetation. The species richness of roots and rhizomes has never been compared with aboveground richness in natural plant communities. We made direct comparisons of grassland plant richness in identical volumes (0.1 × 0.1 × 0.1 m) above and below the soil surface, using conventional species identification to measure aboveground richness and 454 sequencing of the chloroplast trnL(UAA) intron to measure belowground richness. We described above- and belowground richness at multiple spatial scales (from a neighbourhood scale of centimetres to a community scale of hundreds of metres), and related variation in richness to soil fertility. Tests using reference material indicated that 454 sequencing captured patterns of species composition and abundance with acceptable accuracy. At neighbourhood scales, belowground richness was up to two times greater than aboveground richness. The relationship between above- and belowground richness was significantly different from linear: beyond a certain level of belowground richness, aboveground richness did not increase further. Belowground richness also exceeded that of aboveground at the community scale, indicating that some species are temporarily dormant and absent aboveground. Similar to other grassland studies, aboveground richness declined with increasing soil fertility; in contrast, the number of species found only belowground increased significantly with fertility. These results indicate that conventional aboveground studies of plant richness may overlook many coexisting species, and that belowground richness becomes relatively more important in conditions where aboveground richness decreases. Measuring plant belowground richness can considerably alter perceptions of biodiversity and its responses to natural and anthropogenic factors.

  10. Generalized Additive Models Used to Predict Species Abundance in the Gulf of Mexico: An Ecosystem Modeling Tool

    PubMed Central

    Drexler, Michael; Ainsworth, Cameron H.

    2013-01-01

    Spatially explicit ecosystem models of all types require an initial allocation of biomass, often in areas where fisheries independent abundance estimates do not exist. A generalized additive modelling (GAM) approach is used to describe the abundance of 40 species groups (i.e. functional groups) across the Gulf of Mexico (GoM) using a large fisheries independent data set (SEAMAP) and climate scale oceanographic conditions. Predictor variables included in the model are chlorophyll a, sediment type, dissolved oxygen, temperature, and depth. Despite the presence of a large number of zeros in the data, a single GAM using a negative binomial distribution was suitable to make predictions of abundance for multiple functional groups. We present an example case study using pink shrimp (Farfantepenaeus duroarum) and compare the results to known distributions. The model successfully predicts the known areas of high abundance in the GoM, including those areas where no data was inputted into the model fitting. Overall, the model reliably captures areas of high and low abundance for the large majority of functional groups observed in SEAMAP. The result of this method allows for the objective setting of spatial distributions for numerous functional groups across a modeling domain, even where abundance data may not exist. PMID:23691223

  11. Comparative cross-species alternative splicing in plants.

    PubMed

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.

  12. Floristic summary of plant species in the air pollution literature

    USGS Publications Warehouse

    Bennett, J.P.

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  13. Chilean blue whales as a case study to illustrate methods to estimate abundance and evaluate conservation status of rare species.

    PubMed

    Williams, Rob; Hedley, Sharon L; Branch, Trevor A; Bravington, Mark V; Zerbini, Alexandre N; Findlay, Ken P

    2011-06-01

    Often abundance of rare species cannot be estimated with conventional design-based methods, so we illustrate with a population of blue whales (Balaenoptera musculus) a spatial model-based method to estimate abundance. We analyzed data from line-transect surveys of blue whales off the coast of Chile, where the population was hunted to low levels. Field protocols allowed deviation from planned track lines to collect identification photographs and tissue samples for genetic analyses, which resulted in an ad hoc sampling design with increased effort in areas of higher densities. Thus, we used spatial modeling methods to estimate abundance. Spatial models are increasingly being used to analyze data from surveys of marine, aquatic, and terrestrial species, but estimation of uncertainty from such models is often problematic. We developed a new, broadly applicable variance estimator that showed there were likely 303 whales (95% CI 176-625) in the study area. The survey did not span the whales' entire range, so this is a minimum estimate. We estimated current minimum abundance relative to pre-exploitation abundance (i.e., status) with a population dynamics model that incorporated our minimum abundance estimate, likely population growth rates from a meta-analysis of rates of increase in large baleen whales, and two alternative assumptions about historic catches. From this model, we estimated that the population was at a minimum of 9.5% (95% CI 4.9-18.0%) of pre-exploitation levels in 1998 under one catch assumption and 7.2% (CI 3.7-13.7%) of pre-exploitation levels under the other. Thus, although Chilean blue whales are probably still at a small fraction of pre-exploitation abundance, even these minimum abundance estimates demonstrate that their status is better than that of Antarctic blue whales, which are still <1% of pre-exploitation population size. We anticipate our methods will be broadly applicable in aquatic and terrestrial surveys for rarely encountered species

  14. Plankton studies in San Francisco Bay; V, Zooplankton species composition and abundance in the South Bay, 1980-1981

    USGS Publications Warehouse

    Hutchinson, Anne

    1982-01-01

    Data are presented that summarize zooplankton species composition and abundance in South San Francisco Bay during 1980 and 1981. Sampling was conducted at least twice monthly at thirteen stations, from the southern extremity of the South Bay to the Golden Gate Bridge between January 1980 and May 1981. Samples were collected by pump at three depths in the shipping channel and one depth over the shoals. Subsamples were enumerated while alive. Total zooplankton biomass as carbon was calculated from estimated carbon quotas and abundances of each organism enumerated.

  15. Disentangling Effects of Vector Birth Rate, Mortality Rate, and Abundance on Spread of Plant Pathogens.

    PubMed

    Sisterson, Mark S; Stenger, Drake C

    2016-04-01

    Models on the spread of insect-transmitted plant pathogens often fix vector population size by assuming that deaths are offset by births. Although such mathematical simplifications are often justified, deemphasizing parameters that govern vector population size is problematic, as reproductive biology and mortality schedules of vectors of plant pathogens receive little empirical attention. Here, the importance of explicitly including parameters for vector birth and death rates was evaluated by comparing results from models with fixed vector population size with models with logistic vector population growth. In fixed vector population size models, increasing vector mortality decreased percentage of inoculative vectors, but had no effect on vector population size, as deaths were offset by births. In models with logistic vector population growth, increasing vector mortality decreased percentage of inoculative vectors and decreased vector population size. Consequently, vector mortality had a greater effect on pathogen spread in models with logistic vector population growth than in models with fixed vector population size. Further, in models with logistic vector population growth, magnitude of vector birth rate determined time required for vector populations to reach large size, thereby determining when pathogen spread occurred quickly. Assumptions regarding timing of vector mortality within a time step also affected model outcome. A greater emphasis of vector entomologists on studying reproductive biology and mortality schedules of insect species that transmit plant pathogens will facilitate identification of conditions associated with rapid growth of vector populations and could lead to development of novel control strategies.

  16. N abundance of nodules as an indicator of N metabolism in n(2)-fixing plants.

    PubMed

    Shearer, G; Feldman, L; Bryan, B A; Skeeters, J L; Kohl, D H; Amarger, N; Mariotti, F; Mariotti, A

    1982-08-01

    This paper expands upon previous reports of (15)N elevation in nodules (compared to other tissues) of N(2)-fixing plants. N(2)-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in (15)N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N(2)-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in (15)N. Thus, (15)N elevation in nodules of these plants depends on active N(2)-fixation. Results obtained so far on the generality of (15)N enrichment in N(2)-fixing nodules suggest that only the nodules of plants which actively fix N(2) and which transport allantoin or allantoic acid exhibit (15)N enrichment.

  17. Type characters of non-native plant species in Great Lakes national parks (USA)

    USGS Publications Warehouse

    Bennett, J.P.; Brundu, G.; Brock, J.; Camarda, I.; Child, L.; Wade, M.

    2001-01-01

    Non-native plant species are increasing in frequency and abundance in many natural areas in the United States. In Midwestern National Parks, as much as one third of the flora may be non-native. It was hypothesized that botanical characters of these species could be used to typify them and improve the methods of predicting invasions. Data on 19 characters of 341 non-native species from the four Great Lakes national lakeshores (Apostle Islands, Indiana Dunes, Pictured Rocks, and Sleeping Bear Dunes) and invasive non-native species for the State of Wisconsin were collected and studied. For many of the species, little data could be found, but for 139 of them, data were collected for at least 80% of the characters. The frequencies of classes of the characters were tabulated and ranked to typify the most common non-native species. This led to a description of a 'type species' just for these four National Parks. Three species of Cirsium, including Canada (C. arvense), marsh (C. palustre) and bull thistle (C. vulgare), matched the type species better than other species. C. vulgare occurs in more National Parks than the other thistles.

  18. Mosquito species diversity and abundance in relation to land use in a riceland agroecosystem in Mwea, Kenya.

    PubMed

    Muturi, Ephantus J; Shililu, Josephat; Jacob, Benjamin; Gu, Weidong; Githure, John; Novak, Robert

    2006-06-01

    We conducted an entomological survey to determine the mosquito species diversity and abundance in relation to land use in the Mwea rice scheme, Kenya. Adult mosquitoes were collected by indoor spraying of houses and outdoors by CDC light traps in three villages representing planned (Mbuinjeru) and unplanned (Kiamachiri) rice agroecosystems and a non-irrigated agroecosystem (Murinduko). During the 12-month sampling period, a total of 98,708 mosquitoes belonging to five genera and 25 species were collected. The five most common species collected during this study were Anopheles arabiensis Patton (52.5%), Culex quinquefasciatus Say (36.7%), Anopheles pharoensis Theobald (5.2%), Anopheles coustani Laveran (1.4%), and Anopheles funestus Giles (1.3%). Anopheles arabiensis, Cx quinquefasciatus, and An. pharoensis were more abundant in rice agroecosystems than in the non-irrigated agroecosystem, and in planned than in the unplanned rice agroecosystems. In contrast, An. funestus was more abundant in the non-irrigated agroecosystem. The mosquito species diversity (H) and evenness (E(H)) in the non-irrigated agroecosystem (Shannon diversity Index, H = 1.507, EH = 0.503) was significantly higher than in the rice agroecosystems (H) = 0.968, E(H) = 0.313, unplanned; and H= 1.040, E(H) = 0.367 planned). Results of lag cross correlation analysis revealed a strong relationship between rainfall and the abundance of An. arabiensis, and C. quinquefasciatus in the non-irrigated agroecosystem but not in the rice agroecosystems. It is inferred from the data that different levels of habitat perturbations with regard to rice cultivation have different effects on mosquito diversity and abundance. This provides an understanding of how mosquito diversity is impacted by different habitat management and rice cropping strategies.

  19. Power to detect trends in abundance of secretive marsh birds: effects of species traits and sampling effort

    USGS Publications Warehouse

    Steidl, Robert J.; Conway, Courtney J.; Litt, Andrea R.

    2013-01-01

    Standardized protocols for surveying secretive marsh birds have been implemented across North America, but the efficacy of surveys to detect population trends has not been evaluated. We used survey data collected from populations of marsh birds across North America and simulations to explore how characteristics of bird populations (proportion of survey stations occupied, abundance at occupied stations, and detection probability) and aspects of sampling effort (numbers of survey routes, stations/route, and surveys/station/year) affect statistical power to detect trends in abundance of marsh bird populations. In general, the proportion of survey stations along a route occupied by a species had a greater relative effect on power to detect trends than did the number of birds detected per survey at occupied stations. Uncertainty introduced by imperfect detection during surveys reduced power to detect trends considerably, but across the range of detection probabilities for most species of marsh birds, variation in detection probability had only a minor influence on power. For species that occupy a relatively high proportion of survey stations (0.20), have relatively high abundances at occupied stations (2.0 birds/station), and have high detection probability (0.50), ≥40 routes with 10 survey stations per route surveyed 3 times per year would provide an 80% chance of detecting a 3% annual decrease in abundance after 20 years of surveys. Under the same assumptions but for species that are less common, ≥100 routes would be needed to achieve the same power. Our results can help inform the design of programs to monitor trends in abundance of marsh bird populations, especially with regards to the amount of sampling effort necessary to meet programmatic goals.

  20. Protozoan Fauna and Abundance in Aeration Tanks of Three Municipal Wastewater Treatment Plants in the Eastern Cape Province of South Africa

    NASA Astrophysics Data System (ADS)

    Sibewu, M.; Momba, M. N. B.; Okoh, A. L.

    This study focuses on the assessment of the protozoan fauna and abundance in the mixed liquors of aeration tanks of the three municipal wastewater treatment plants located in Fort Beaufort, Dimbaza and East London in the Eastern Cape Province of South Africa and their implication to the production of effluents of good quality. The samples were collected between September and December 2005 and protozoa species were identified by direct microscopic observations at x400 magnification by comparison with existing protozoa gallery collections. A total of 68 protozoan genera made up of 44 ciliates, 16 flagellates and 8 others were identified in wastewater treatment plants. Although in all aerobic zones the average density of ciliates was 104 cells mL-1, which indicated that these plants were able to produce clear effluent of good quality, a better performance was found in Dimbaza and East London, which had total protozoan genera of 27 and 26, respectively.

  1. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    PubMed

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  2. Environmental and plant community determinants of species loss following nitrogen enrichment

    USGS Publications Warehouse

    Clark, C.M.; Cleland, E.E.; Collins, S.L.; Fargione, J.E.; Gough, L.; Gross, K.L.; Pennings, S.C.; Suding, K.N.; Grace, J.B.

    2007-01-01

    Global energy use and food production have increased nitrogen inputs to ecosystems worldwide, impacting plant community diversity, composition, and function. Previous studies show considerable variation across terrestrial herbaceous ecosystems in the magnitude of species loss following nitrogen (N) enrichment. What controls this variation remains unknown. We present results from 23 N-addition experiments across North America, representing a range of climatic, soil and plant community properties, to determine conditions that lead to greater diversity decline. Species loss in these communities ranged from 0 to 65% of control richness. Using hierarchical structural equation modelling, we found greater species loss in communities with a lower soil cation exchange capacity, colder regional temperature, and larger production increase following N addition, independent of initial species richness, plant productivity, and the relative abundance of most plant functional groups. Our results indicate sensitivity to N addition is co-determined by environmental conditions and production responsiveness, which overwhelm the effects of initial community structure and composition. ?? 2007 Blackwell Publishing Ltd/CNRS.

  3. The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species.

    PubMed

    Casanova-Katny, M Angélica; Torres-Mellado, Gustavo Adolfo; Palfner, Goetz; Cavieres, Lohengrin A

    2011-10-01

    Positive interactions between cushion plant and associated plants species in the high Andes of central Chile should also include the effects of fungal root symbionts. We hypothesized that higher colonization by arbuscular mycorrhizal (AM) fungi exists in cushion-associated (nursling) plants compared with conspecific individuals growing on bare ground. We assessed the AM status of Andean plants at two sites at different altitudes (3,200 and 3,600 ma.s.l.) in 23 species, particularly in cushions of Azorella madreporica and five associated plants; additionally, AM fungal spores were retrieved from soil outside and beneath cushions. 18 of the 23 examined plant species presented diagnostic structures of arbuscular mycorrhiza; most of them were also colonized by dark-septate endophytes. Mycorrhization of A. madreporica cushions showed differences between both sites (68% and 32%, respectively). In the native species Hordeum comosum, Nastanthus agglomeratus, and Phacelia secunda associated to A. madreporica, mycorrhization was six times higher than in the same species growing dispersed on bare ground at 3,600 ma.s.l., but mycorrhiza development was less cushion dependent in the alien plants Cerastium arvense and Taraxacum officinale at both sites. The ratio of AM fungal spores beneath versus outside cushions was also 6:1. The common and abundant presence of AM in cushion communities at high altitudes emphasizes the importance of the fungal root symbionts in such situations where plant species benefit from the microclimatic conditions generated by the cushion and also from well-developed mycorrhizal networks.

  4. Which ornamental plant <