Science.gov

Sample records for abundant renewable resource

  1. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    EPA Science Inventory

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. ...

  2. Renewable Energy Resources in Lebanon

    NASA Astrophysics Data System (ADS)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  3. Hydrogen from renewable resources research

    SciTech Connect

    Takahashi, P.K.; McKinley, K.R.

    1990-07-01

    In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

  4. Renewable resources in the US electricity supply

    SciTech Connect

    Not Available

    1993-03-05

    Renewable resources (solar, wind, geothermal, hydroelectric, biomass, and waste) currently provide nearly 12 percent of the Nation`s electricity supply. Almost 10 of this 12 percent is provided by hydroelectric resources alone. Biomass and municipal solid waste (MSW) together contribute more than 1 percent. All other renewable resources, including geothermal, wind, and solar, together provide less than 1 percent of the total. Many renewable resources are relative newcomers to the electric power market. In particular, electricity generation using geothermal, wind, solar, and MSW resources have had their greatest expansion in the 1980`s. This was a result of significant technological improvements, the implementation of favorable Federal and State policies, and the reaction to the increasing costs of using fossil and nuclear fuels. The use of renewable resources for electricity generation has also been encouraged as less environmentally damaging than fossil fuels. Because renewable energy is available domestically, renewable resources are viewed as more secure than imported fossil fuels. This report, Renewable Resources in the US Electricity Supply, presents descriptions of the history, current use, and forecasted future applications of renewable resources for electricity generation and of the factors that influence those applications.

  5. Renewable resources in the US electricity supply

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Renewable resources (solar, wind, geothermal, hydroelectric, biomass, and waste) currently provide nearly 12 percent of the Nation's electricity supply. Almost 10 of this 12 percent is provided by hydroelectric resources alone. Biomass and municipal solid waste (MSW) together contribute more than 1 percent. All other renewable resources, including geothermal, wind, and solar, together provide less than 1 percent of the total. Many renewable resources are relative newcomers to the electric power market. In particular, electricity generation using geothermal, wind, solar, and MSW resources have had their greatest expansion in the 1980's. This was a result of significant technological improvements, the implementation of favorable Federal and State policies, and the reaction to the increasing costs of using fossil and nuclear fuels. The use of renewable resources for electricity generation has also been encouraged as less environmentally damaging than fossil fuels. Because renewable energy is available domestically, renewable resources are viewed as more secure than imported fossil fuels. Descriptions of the history, current use, and forecasted future applications of renewable resources for electricity generation and of the factors that influence those applications are presented.

  6. Universality classes of foraging with resource renewal

    NASA Astrophysics Data System (ADS)

    Chupeau, M.; Bénichou, O.; Redner, S.

    2016-03-01

    We determine the impact of resource renewal on the lifetime of a forager that depletes its environment and starves if it wanders too long without eating. In the framework of a minimal starving random-walk model with resource renewal, there are three universal classes of behavior as a function of the renewal time. For sufficiently rapid renewal, foragers are immortal, while foragers have a finite lifetime otherwise. In the specific case of one dimension, there is a third regime, for sufficiently slow renewal, in which the lifetime of the forager is independent of the renewal time. We outline an enumeration method to determine the mean lifetime of the forager in the mortal regime.

  7. Thermoset epoxy polymers from renewable resources

    DOEpatents

    East, Anthony; Jaffe, Michael; Zhang, Yi; Catalani, Luiz H

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  8. United States Atlas of Renewable Resources

    DOE Data Explorer

    The Atlas is an interactive application of the renewable energy resources in the contiguous United States, Alaska and Hawaii. It illustrates the geographic distribution of wind, solar, geothermal, and biomass resources, as well as other pertinent information such as transportation network and administrative boundaries.[Copied from http://www.nrel.gov/gis/maps.html

  9. Biodegradable polyesters from renewable resources.

    PubMed

    Tsui, Amy; Wright, Zachary C; Frank, Curtis W

    2013-01-01

    Environmental concerns have led to the development of biorenewable polymers with the ambition to utilize them at an industrial scale. Poly(lactic acid) and poly(hydroxyalkanoates) are semicrystalline, biorenewable polymers that have been identified as the most promising alternatives to conventional plastics. However, both are inherently susceptible to brittleness and degradation during thermal processing; we discuss several approaches to overcome these problems to create a balance between durability and biodegradability. For example, copolymers and blends can increase ductility and the thermal-processing window. Furthermore, chain modifications (e.g., branching/crosslinking), processing techniques (fiber drawing/annealing), or additives (plasticizers/nucleating agents) can improve mechanical properties and prevent thermal degradation during processing. Finally, we examine the impacts of morphology on end-of-life degradation to complete the picture for the most common renewable polymers.

  10. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  11. Valorization of Renewable Carbon Resources for Chemicals.

    PubMed

    Chen, Xi; Zhang, Bin; Wang, Yunzhu; Yan, Ning

    2015-01-01

    The overuse of fossil fuels has caused an energy crisis and associated environment issues. It is desirable to utilize renewable resources for the production of chemicals. This review mainly introduces our recent work on the transformation of renewable carbon resources including the conversion of cellulose, lignin, and chitin into sustainable chemicals. Various transformation routes have been established to form value-added chemicals, and accordingly a variety of effective catalytic systems have been developed, either based on metal catalysis and/or acid-base catalysis, to enable the desired transformation.

  12. Non-Renewable Resources Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This document is designed to help teachers and administrators in Alaska develop secondary and postsecondary training in nonrenewable natural resources. Its competencies reflect those needed for entry-level employment in the following industries as identified by international businesses surveyed in Alaska: gas and petroleum, coal, placer, and…

  13. Energy and other non-renewable resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Anticipated U.S. demands for non-renewable energy and mineral resources exceed domestic supplies essential for economic growth. For the long term changes necessary in the energy supply and demand gap, new technologies and substitute materials as well as legislation and socio-economic strategies are elaborated.

  14. Novel Hydrogels from Renewable Resources

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  15. Tandem synthesis of alternating polyesters from renewable resources

    PubMed Central

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M.

    2011-01-01

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters. PMID:22158441

  16. Role of Smarter Grids in Variable Renewable Resource Integration (Presentation)

    SciTech Connect

    Miller, M.

    2012-07-01

    This presentation discusses the role of smarter grids in variable renewable resource integration and references material from a forthcoming ISGAN issue paper: Smart Grid Contributions to Variable Renewable Resource Integration, co-written by the presenter and currently in review.

  17. Modeling Renewable Water Resources under Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tang, Q.

    2014-12-01

    The impacts of climate change on renewable water resources are usually assessed using hydrological models driven by downscaled climate outputs from global climate models. Most hydrological models do not have explicit parameterization of vegetation and thus are unable to assess the effects of elevated atmospheric CO2 on stomatal conductance and water loss of leaf. The response of vegetation to elevated atmospheric CO2 would reduce evaporation and affect runoff and renewable water resources. To date, the impacts of elevated CO2 on vegetation transpiration were not well addressed in assessment of water resources under climate change. In this study, the distributed biosphere-hydrological (DBH) model, which incorporates a simple biosphere model into a distributed hydrological scheme, was used to assess the impacts of elevated CO2 on vegetation transpiration and consequent runoff. The DBH model was driven by five General Circulation Models (GCMs) under four Representative Concentration Pathways (RCPs). For each climate scenario, two model experiments were conducted. The atmospheric CO2 concentration in one experiment was assumed to remain at the level of 2000 and increased as described by the RCPs in the other experiment. The results showed that the elevated CO2 would result in decrease in evapotranspiration, increase in runoff, and have considerable impacts on water resources. However, CO2 induced runoff change is generally small in dry areas likely because vegetation is usually sparse in the arid area.

  18. FIREX mission requirements document for renewable resources

    NASA Technical Reports Server (NTRS)

    Carsey, F.; Dixon, T.

    1982-01-01

    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.

  19. Renewable Energy Resources in the United Kingdom.

    ERIC Educational Resources Information Center

    Roberts, Michael J.; Thomas, M. Pugh

    1990-01-01

    This paper defines renewable energy and outlines possible sources of this energy. Supplies, and ethics are considered. The position of renewable energy sources in the energy policy of Great Britain are discussed. (CW)

  20. Challenges in Renewable Natural Resources: A Guide to Alternative Futures.

    ERIC Educational Resources Information Center

    Theobald, Robert

    First presented at a United States Department of Agriculture (USDA) conference on renewable resources, this material includes information and discussion on critical issues, policies, and future alternatives for natural resources in the United States. (CO)

  1. Renewable resources in the US electricity supply. [Contains a report on the electricity generating technologies which use renewable resources

    SciTech Connect

    Not Available

    1993-03-05

    Renewable resources (solar, wind, geothermal, hydroelectric, biomass, and waste) currently provide nearly 12 percent of the Nation's electricity supply. Almost 10 of this 12 percent is provided by hydroelectric resources alone. Biomass and municipal solid waste (MSW) together contribute more than 1 percent. All other renewable resources, including geothermal, wind, and solar, together provide less than 1 percent of the total. Many renewable resources are relative newcomers to the electric power market. In particular, electricity generation using geothermal, wind, solar, and MSW resources have had their greatest expansion in the 1980's. This was a result of significant technological improvements, the implementation of favorable Federal and State policies, and the reaction to the increasing costs of using fossil and nuclear fuels. The use of renewable resources for electricity generation has also been encouraged as less environmentally damaging than fossil fuels. Because renewable energy is available domestically, renewable resources are viewed as more secure than imported fossil fuels. This report, Renewable Resources in the US Electricity Supply, presents descriptions of the history, current use, and forecasted future applications of renewable resources for electricity generation and of the factors that influence those applications.

  2. Catalytic Preparation of Pyrrolidones from Renewable Resources

    SciTech Connect

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-12-01

    Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the USDOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals and animal feed products all result from the integrated processing of grains, oil seeds and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the dependence on petroleum. Pyrrolidones fit well with the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including as polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo – catalytic conversion of succinate into pyrrolidones, especially n-methylpyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  3. Renewable resource development in the Ecuadorian rainforest

    SciTech Connect

    Hutton, W.C.; Skaggs, M.M. Jr.

    1995-12-31

    This paper discusses the planning and execution of a multi-million dollar, heavy oil renewable resource development project in the Amazon Basin of Ecuador. The project work is authorized under a risk service contract with PETROECUADOR and employs new technology in order to minimize environmental and cultural impacts on the environment and the inhabitants of the areas. During the peak of the project, over 3,000 workers were employed and managed in the rainforest under special guidelines, in order to avoid damages to the environment. The project guidelines are spelled out in a model Environmental Management Plan (EMP) which employs innovative well pad, road and pipeline construction and platform drilling methods to limit deforestation. Reforestation methods are reviewed; scientific baseline and archaeological pre and post construction methods were followed, and methods to control colonization pressures are executed as a part of the EMP described in this paper. In addition, the EMP covers methods used to minimize the disruption of the indigenous population of the area including medical, educational and other programs employed to reduce disease among the indigenous population of the area. Conventional aspects of the EMP include spill control techniques for remote areas of the rainforest, solid waste recycling programs, drilling and construction waste management, landfarming methods, pipeline construction and underground river crossing methods. All of these methods are employed to minimize the environmental and cultural impact of the project on the environment and its inhabitants.

  4. Harvesting and replenishment policies for renewable natural resources

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    The current paper links the optimal intertemporal use of renewable natural resources to the harvesting activities of various economic agents. Previous contributions cite market forces as a causative factor inducing the extirpation of renewable natural resources. The analysis given here discusses investment in the stock of renewable resources and cites important examples of this activity. By introducing joint harvesting and replenishment strategies into a model of renewable resource use, the analysis adds descriptive reality and relevance to positive and normative discussions of renewable natural resource use. A high price for the yield or a high discount rate tend to diminish the size of the optimum stationary stock of the resource with a non-replenishment harvesting strategy. Optimal non-replenishment harvesting strategies for renewable natural resources will exhaustion or extirpation of the resource if the price of the yield or the discount rate are sufficiently large. However, the availability of a replenishment technology and the use of replenishment activities tends to buffer the resource against exhaustion or extirpation.

  5. Catalytic Preparation of Pyrrolidones from Renewable Resources

    SciTech Connect

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-06-01

    Abstract Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the U.S. DOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals, and animal feed products all result from the integrated processing of grains, oil seeds, and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the USA’s dependence on petroleum. Pyrrolidones fit well into the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo-catalytic conversion of succinate into pyrrolidones, especially n-methyl-2-pyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  6. UNDERGRADUATE EDUCATION IN RENEWABLE NATURAL RESOURCES, AN ASSESSMENT.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    REPORTED ARE THE RECOMMENDATIONS OF THE PANEL ON NATURAL RESOURCE SCIENCE OF THE COMMISSION ON EDUCATION IN AGRICULTURE AND NATURAL RESOURCES FOR IMPROVING UNDERGRADUATE EDUCATION OF SCIENTISTS, MANAGERS, AND OTHER PERSONS PROFESSIONALLY ENGAGED IN DEVELOPING, MANAGING, AND PROTECTING THE RENEWABLE NATURAL RESOURCES OF THE UNITED STATES. THE…

  7. The 1980 Report to Congress on the Nation's Renewable Resources.

    ERIC Educational Resources Information Center

    Wray, Bob; And Others

    This assessment describes the present renewable resources situation and projects future supplies of, and demands for, these resources. It also identifies various means to meet the demands. For selected resources, it also analyzes benefits and costs of meeting the demand. This assessment also shows that demand for forest and rangeland resources…

  8. Abundance models improve spatial and temporal prioritization of conservation resources.

    PubMed

    Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve

    2015-10-01

    Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations.

  9. A CRITICAL INDEX OF FILMS AND FILMSTRIPS IN CONSERVATION DEALING WITH RENEWABLE RESOURCES, NON-RENEWABLE RESOURCES, RESOURCES AND PEOPLE, AND ECOLOGY.

    ERIC Educational Resources Information Center

    TRAIN, RUSSELL E.

    LISTED ARE THE FILMS AND FILMSTRIPS SELECTED FROM OVER 7,000 WHICH HAVE BEEN SCREENED AND EVALUATED BY THE CONSERVATION FOUNDATION'S AUDIOVISUAL CENTER AS THE BEST AVAILABLE IN THE FIELD OF CONSERVATION EDUCATION. PART 1 LISTS FILMS UNDER THE CATEGORIES OF (1) RENEWABLE RESOURCES, (2) NON-RENEWABLE RESOURCES, (3) RESOURCES AND PEOPLE, (4) ECOLOGY,…

  10. Review of dynamic optimization methods in renewable natural resource management

    USGS Publications Warehouse

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  11. Relative resource abundance explains butterfly biodiversity in island communities

    PubMed Central

    Yamamoto, Naoaki; Yokoyama, Jun; Kawata, Masakado

    2007-01-01

    Ecologists have long been intrigued by the factors that control the pattern of biodiversity, i.e., the distribution and abundance of species. Previous studies have demonstrated that coexisting species partition their resources and/or that the compositional similarity between communities is determined by environmental factors, lending support to the niche-assembly model. However, no attempt has been made to test whether the relative amount of resources that reflects relative niche space controls relative species abundance in communities. Here, we demonstrate that the relative abundance of butterfly species in island communities is significantly related to the relative biomasses of their host plants but not to the geographic distance between communities. In the studied communities, the biomass of particular host plant species positively affected the abundance of the butterfly species that used them, and consequently, influenced the relative abundance of the butterfly communities. This indicated that the niche space of butterflies (i.e., the amount of resources) strongly influences butterfly biodiversity patterns. We present this field evidence of the niche-apportionment model that propose that the relative amount of niche space explains the pattern of the relative abundance of the species in communities. PMID:17553963

  12. Study on Insulating Material by Renewable Resources

    NASA Astrophysics Data System (ADS)

    Kurata, Yasuyuki; Kurosumi, Akihiro; Ishikawa, Keita

    Under circumstances such as global warming caused by carbon dioxide and other green house gas and crisis of depletion of fossil resources, recyclable resources such as biomass have captured the world's attention as reproducible resources alternative to petroleum. Therefore the technologies such to manufacture chemicals from recyclable resources have been developed for the achievement of measures for controlling global warming and the low carbon society. Recently, the bioplastic such as polylactic resin is applied to the home appliances and the automobile interior part as substitution of general-purpose plastic Moreover, the insulation oil from the vegetable oil has been put to practical use. The application of recyclable resources is extending in an electric field. In this paper, we introduce the characteristic and the problem of the insulating material made from recyclable resources in the field of the solid insulation.

  13. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  14. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  15. International energy efficiency and renewable energy resources on the Internet

    SciTech Connect

    Brown, M.A.; Meyer, R.D.

    1996-10-01

    A variety of sources of information on energy efficiency and renewable energy technologies are available on the Internet`s World Wide Web. These resources are sponsored and maintained by a myriad of organizations across the country and world. One expeditious way to access these resources is by using the U.S. Department of Energy`s Energy Efficiency and Renewable Energy Network (EREN). This network is a user-friendly computer link to Internet based information on energy conservation and renewable energy technologies and techniques. Numerous international sources of information can be accessed through EREN including the International Energy Agency`s Centre for the Analysis and Dissemination of Demonstrated Energy Technologies (CADDET) and the Greenhouse Gas Technology Information Exchange (GREENTIE). CADDET`s Register of demonstrated energy technologies provides an extensive guide to energy efficient and renewable energy technologies, and GREENTIE`s Directory of supplier information helps users access technology providers and experts.

  16. Regional production and renewable resource exploitation

    SciTech Connect

    Walker, R.T.

    1984-01-01

    This dissertation addresses the problem of regional pollution impact. A model of a two-sector regional economy is developed and optimized using optimal control theory. Pollution externalities are intuitively incorporated into the model in order to investigate how abatement activities affect the optimal process. The sector of the economy dependent on natural resources is then examined exclusively. A simulation methodology is developed whereby profit losses in this sector may be ascertained. This methodology is used to measure the impact of pollution in Chesapeake Bay on the Striped Bass fishery. It is shown that this fishery stands to lose $412,604,000 if current pollution trends persist.

  17. Optimal Groundwater Depletion With Interdependent Nonrenewable and Renewable Resources

    NASA Astrophysics Data System (ADS)

    Mueller, Michael J.

    1983-10-01

    An economic model of the optimal use of a nonrenewable resource, groundwater from a nonrecharging aquifer, which is used as an input in the production of a nonrenewable and a renewable resource, petroleum and agriculture crops, is explained and analyzed. The model is developed in a regional context. The problem is analyzed using a linear allocation parameter, nonlinear cost functions, and optimal control techniques. Results are discussed and interpreted with emphasis on policy applications.

  18. Toward a Regional Geography of Renewable Electrical Energy Resources.

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  19. Estimating Renewable Energy Resources of Russia: Goals and Perspectives

    NASA Astrophysics Data System (ADS)

    Kiseleva, S.; Rafikova, J.; Shakun, V.

    2012-10-01

    During the last several years in some regions of Russian Federation one can observe a growing interest in renewable energy projects motivated by a necessity to have stable, affordable and autonomous energy sources. Besides, there has been an advance in legal initiatives designed to regulate the development of renewable energy sources in Russia. Some governmental regulations having for an object to stimulate this area, have already been accepted. The regulation contains the target value parameters of the output volume of the electric energy output volumes with the use of renewable energy sources (except hydroelectric power plants with the established capacity exceeding 25 MW. The work shows the results of resource estimating wind, solar, biomass energy resources for Russia, using GIS methods, which allow one to provide more exact predictions for the energy development, and therefore to prove investments and to pass to working out the equipment design of energy plants based on renewable energy sources. Current matters are relating to opportunities and perspectives of renewable sector in Russia.

  20. 76 FR 34684 - Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... of Energy Efficiency and Renewable Energy Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design Conditions AGENCY: Office of Energy Efficiency and Renewable... public meeting for interested parties to provide DOE information on existing needs for...

  1. Plant oil renewable resources as green alternatives in polymer science.

    PubMed

    Meier, Michael A R; Metzger, Jürgen O; Schubert, Ulrich S

    2007-11-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute to a sustainable development in the future. Especially plant derived fats and oils bear a large potential for the substitution of currently used petrochemicals, since monomers, fine chemicals and polymers can be derived from these resources in a straightforward fashion. The synthesis of monomers as well as polymers from plant fats and oils has already found some industrial application and recent developments in this field offer promising new opportunities, as is shown within this contribution. (138 references.)

  2. Production scheduling with discrete and renewable additional resources

    NASA Astrophysics Data System (ADS)

    Kalinowski, K.; Grabowik, C.; Paprocka, I.; Kempa, W.

    2015-11-01

    In this paper an approach to planning of additional resources when scheduling operations are discussed. The considered resources are assumed to be discrete and renewable. In most research in scheduling domain, the basic and often the only type of regarded resources is a workstation. It can be understood as a machine, a device or even as a separated space on the shop floor. In many cases, during the detailed scheduling of operations the need of using more than one resource, required for its implementation, can be indicated. Resource requirements for an operation may relate to different resources or resources of the same type. Additional resources are most often referred to these human resources, tools or equipment, for which the limited availability in the manufacturing system may have an influence on the execution dates of some operations. In the paper the concept of the division into basic and additional resources and their planning method was shown. A situation in which sets of basic and additional resources are not separable - the same additional resource may be a basic resource for another operation is also considered. Scheduling of operations, including greater amount of resources can cause many difficulties, depending on whether the resource is involved in the entire time of operation, only in the selected part(s) of operation (e.g. as auxiliary staff at setup time) or cyclic - e.g. when an operator supports more than one machine, or supervises the execution of several operations. For this reason the dates and work times of resources participation in the operation can be different. Presented issues are crucial when modelling of production scheduling environment and designing of structures for the purpose of scheduling software development.

  3. Renewable resource applications of remote sensing in the 1980's

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Calabrese, M. A.

    1980-01-01

    A number of renewable resource applications in the areas of agriculture, land, and water are summarized; and some of the current and future research efforts designed to enhance the utility of this tool are explored. Programs to incorporate microwave sensors with higher resolutions into the resource planning and management processes are also considered. Particular consideration is given to experience with LACIE and AgRISTARS; the current hydrologic land use, watershed physiography, and snow covered area applications of Landsat; and land cover mapping with MSS technology. Needed improvements are discussed with regard to goals of fundamental research, data acquisition requirements, and data handling and merging with other data sources.

  4. Dentin Biomodification: Strategies, Renewable Resources and Clinical Applications

    PubMed Central

    Bedran-Russo, Ana K.; Pauli, Guido F.; Chen, Shao-Nong; McAlpine, James; Castellan, Carina S.; Phansalkar, Rasika S; Aguiar, Thaiane R.; Vidal, Cristina M.P.; Napotilano, José; Nam, Joo-Won; Leme, Ariene A.

    2014-01-01

    Objectives The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. Methods The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. Results Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic collagen cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. Significance Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management. PMID:24309436

  5. Remote renewable energy resources; Long-distance high voltage interconnections

    SciTech Connect

    Hammons, T.J. )

    1992-06-01

    This paper discusses international perspectives on remote energy made possible by high-voltage interconnections. It will discuss large-scale conversion, transfer, and utilization of renewable energy as a strategy to counter environmental problems caused by the combustion of fossil fuels. Potential development of huge renewable hydro resources in Africa, South America, North America, Eastern Siberia, Australia, and South East China, as well as potential development of geothermal and solar energy sources, will also be discussed. These include the proposed 30 GW Inga hydro power complex in Zaire, Central Africa, along the Congo River, where power will be exported to Southern Europe over a distance of 7000 Km, in Columbia with electrical ties through Central America linking South America with the electricity demand in North America, and developments in Siberia linked by cable across the Bering Strait to Alaska, Quebec to New England, Manitoba to midwest United States, Iceland to the United Kingdom, and in the Persian Gulf States.

  6. Mapping and monitoring renewable resources with space SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  7. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.

  8. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. PMID:23800621

  9. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented.

  10. Our Natural Resources: Basic Research Needs in Forestry and Renewable Natural Resources.

    ERIC Educational Resources Information Center

    National Task Force on Basic Research in Forestry and Renewable Natural Resources.

    This report examines basic research needs in forestry and renewable natural resources and determines benefits to be gained from greater investments in basic research. It was prepared by a group of 17 research scientists, each an accomplished investigator in one or more fields. Each contributor reflected on research needs within his own discipline…

  11. 75 FR 48742 - Renewal of the Regional Resource Stewardship Council Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... Renewal of the Regional Resource Stewardship Council Charter AGENCY: Tennessee Valley Authority (TVA....C. Appendix), the TVA Board of Directors has renewed the Regional Resource Stewardship Council... will provide advice to TVA on issues affecting natural resource stewardship activities. Numerous...

  12. Influence of dietary specialization and resource availability on geographical variation in abundance of butterflyfish

    PubMed Central

    Lawton, Rebecca J; Pratchett, Morgan S

    2012-01-01

    Empirical evidence indicates that both niche breadth and resource availability are key drivers of a species’ local abundance patterns. However, most studies have considered the influence of either niche breath or resource availability in isolation, while it is the interactive effects that are likely to influence local abundance. We examined geographic variation in the feeding ecology and distribution of coral-feeding butterflyfish to determine the influence of dietary specialization and dietary resource availability on their local abundance. Dietary composition and abundance of five butterflyfish and coral dietary resource availability were determined at 45 sites across five locations (Lizard Island and Heron Island, Great Barrier Reef; Kimbe Bay, Papua New Guinea; Noumea, New Caledonia; and Moorea, French Polynesia). Multiple regression models using variables representative of total dietary resource availability, availability of specific dietary resources, and interspecific competition were used to determine the best predictors of local abundance across all sites and locations for each species. Factors influencing local abundance varied between butterflyfish with specialized and generalized diets. Dietary resource availability had the strongest influence on the abundance of Chaetodon trifascialis—the most specialized species. Local abundance of C. trifascialis was best predicted by availability of the Acropora corals that it preferentially feeds on. In contrast, abundance of generalist butterflyfish was poorly described by variation in availability of specific resources. Rather, indices of total dietary resource availability best predicted their abundance. Overall, multiple regression models only explained a small proportion of the variation in local abundance for all five species. Despite their relatively specialized diets, dietary resource availability has limited influence on the local abundance of butterflyfish. Only the most specialized species appear to

  13. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  14. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE PAGES

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  15. National Renewable Energy Laboratory Information Resources Catalogue. A collection of energy efficiency and renewable energy information resources

    NASA Astrophysics Data System (ADS)

    1994-05-01

    NREL's first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL's outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be accessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL's series publications written for specific audiences and presenting a wide range of subjects. NREL's General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  16. Renewable Natural Resources/Agriculture Curriculum. Secondary and Postsecondary Articulated Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum is designed to be a handbook for courses in renewable natural resources/agriculture in Alaska. It details the competencies, developed through a survey of renewable natural resources/agriculture employers in Alaska, that such occupations require. The handbook is organized in six sections. Section I introduces the…

  17. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  18. Negative scaling relationship between molecular diversity and resource abundances

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2016-06-01

    Cell reproduction involves replication of diverse molecule species, in contrast to a simple replication system with fewer components. To address this question of diversity, we study theoretically a cell system with catalytic reaction dynamics that grows by uptake of environmental resources. It is shown that limited resources lead to increased diversity of components within the system, and the number of coexisting species increases with a negative power of the resource uptake. The relationship is explained from the optimum growth speed of the cell, determined by a tradeoff between the utility of diverse resources and the concentration onto fewer components to increase the reaction rate.

  19. Excessive abundance of common resources deters social responsibility

    PubMed Central

    Chen, Xiaojie; Perc, Matjaž

    2014-01-01

    We study the evolution of cooperation in the collective-risk social dilemma game, where the risk is determined by a collective target that must be reached with individual contributions. All players initially receive endowments from the available amount of common resources. While cooperators contribute part of their endowment to the collective target, defectors do not. If the target is not reached, the endowments of all players are lost. In our model, we introduce a feedback between the amount of common resources and the contributions of cooperators. We show that cooperation can be sustained only if the common resources are preserved but never excessively abound. This, however, requires a delicate balance between the amount of common resources that initially exist, and the amount cooperators contribute to the collective target. Exceeding critical thresholds in either of the two amounts leads to loss of cooperation, and consequently to the depletion of common resources. PMID:24561876

  20. New Horizons for Hydrogen: Producing Hydrogen from Renewable Resources

    SciTech Connect

    Not Available

    2011-02-01

    Recent events have reminded us of the critical need to transition from crude oil, coal, and natural gas toward sustainable and domestic sources of energy. One reason is we need to strengthen our economy. In 2008 we saw the price of oil reach a record $93 per barrel. With higher oil prices, growing demand for gasoline, and increasing oil imports, an average of $235 billion per year, has left the United States economy to pay for foreign oil since 2005, or $1.2 trillion between 2005 and 2009. From a consumer perspective, this trend is seen with an average gasoline price of $2.50 per gallon since 2005, compared to an average of $1.60 between 1990 and 2004 (after adjusting for inflation). In addition to economic impacts, continued reliance on fossil fuels increases greenhouse gas emissions that may cause climate change, health impacts from air pollution, and the risk of disasters such as the Deepwater Horizon oil spill. Energy efficiency in the form of more efficient vehicles and buildings can help to reduce some of these impacts. However, over the long term we must shift from fossil resources to sustainable and renewable energy sources.

  1. The Rheology and Processing of Renewable Resource Polymers

    NASA Astrophysics Data System (ADS)

    Conrad, Jason D.; Harrison, Graham M.

    2008-07-01

    Bio-based polymers offer an alternative to conventional fossil fuel-based materials, in particular for commodity applications such as single-use products. In this work, we report on the rheology and processing of two bio-based polymers, namely poly-hydroxyalkanoate (PHA) copolymers and poly-lactic acid (PLA), and their blends. These materials are derived from renewable resources, and can degrade under the appropriate conditions. The rheology is investigated in shear, elongation, and transient modes. Of particular importance is the degradation of these materials at typical processing conditions, and the impact of polymer architecture on the extensional properties. Using results from these rheological investigations, appropriate thermal and flow conditions are employed in a DSM Xplore microcompounder, with the cast film attachment, to produce films of PHA copolymers blended with PLA. The resultant films are characterized, as a function of both material composition and processing history, using DSC, WAXD, tensile testing, and SEM, to investigate the effect of varying PHA content on the final properties.

  2. The rheology, degradation, processing, and characterization of renewable resource polymers

    NASA Astrophysics Data System (ADS)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  3. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    SciTech Connect

    Not Available

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  4. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    SciTech Connect

    Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

    2008-07-01

    California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

  5. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    EIA Publications

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  6. Renewable energy resources in a restructured electric industry

    SciTech Connect

    Galen, P.S.

    1996-12-31

    This paper highlights a conference presentation addressing changes in the residential energy sector in view of the increasing competitiveness of the energy market. Renewable energy characteristics are briefly outlined, and capacity and generation data for non-hydroelectric power in 1994 are listed. A review of critical factors in renewables development and policy responses to market impediments is made. Current market barriers are identified, and proposals for Federal policies are made. 17 tabs., 2 figs.

  7. Potential for Producing Hydrogen from Key Renewable Resources in the United States

    SciTech Connect

    Milbrandt, A.; Mann, M.

    2006-02-01

    This study estimates the potential for hydrogen production from key renewable resources (onshore wind, solar photovoltaic, and biomass) by county in the United States. It includes maps that allow the reader to easily visualize the results.

  8. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    NASA Technical Reports Server (NTRS)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  9. Comments on long-term aspects of renewable vs nonrenewable resource substitution

    SciTech Connect

    Goeller, H. E.

    1980-01-01

    There are many cases where materials applications involve the use of nonrenewable materials. In some instances, renewable resources can be substituted for nonrenewable ones; in other cases, there are no readily feasible renewable-resource substitutes for certain nonrenewable-materials applications. The author points out advantages and limitations of renewable resources as substitutes for nonrenewale resources, with particular emphasis on the longer term when economic resources of some of the more-limited chemical elements will be starting to run out or will, or least, become too expensive to use except in absolutely necessary, nonsubstitutable uses. On the one hand, renewable resources will continue to become available through natural processes, in some cases augmented by modern technology, but only at some maximum level. For example, the amount of hydroelectric power available in the world is determined by rainfall and topography. On the other hand, nonrenewable resources are generally regarded as being material souces that, once used, are gone forever. This is certainly true for fossil fuels, where current demands are many orders of magnitude larger than rates of formation of new coal and petroleum. It is not true, however, for some of the atmospheric gases (e.g., nitrogen and argon) which are returned to the atmosphere either directly or through biological processes after use use so that they are truly renewable resources.

  10. CONFRRM Solar Energy Resource Data: Data from the Cooperative Network for Renewable Resource Measurements

    DOE Data Explorer

    The Cooperative Network for Renewable Resource Measurements (CONFRRM) is a cooperative effort between NREL and other agencies to conduct long-term solar radiation and wind measurements at selected locations in the United States. CONFRRM expands the geographic coverage of measurement locations and provides high quality data for determining site-specific resources, as well as data for the validation and testing of models to predict available resources based on meteorological or satellite data. Twelve sites are currently active in the CONFRRM network. CONFRRM complements and provides additional geographic coverage to the National Oceanic and Atmospheric Administration's (NOAA's) Integrated Surface Irradiance Study (ISIS) network. Solar data elements measured and reported by the CONFRRM sites include global horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance measured with a LI-COR pyranometer. Meteorological data include air temperature, relative humidity, pressure, wind speed, wind direction and peak wind speed. Data logger temperature and battery voltage may also be reported. Prior to January 1, 1996, five CONFRRM sites together with South Caroline State College in Orangeburg, South Carolina, made up the Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network, located in the Southeastern United States. In January 1997 the HBCU sites became part of CONFRRM.

  11. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  12. Space: A non-limiting resource in the niches of some abundant coral reef gastropods

    NASA Astrophysics Data System (ADS)

    Reichelt, R. E.

    1982-06-01

    Given the importance attributed to the occupation of space in benthic coral reef communities, this study asks the question: are any particular microhabitat types limiting resources for an assemblage of worm-eating gastropods on Heron reef (Great Barrier Reef). Microhabitat resource use was measured on three occasions, separated by 12 and 20-month periods. The gastropod populations were typical of those of other Indo-Pacific sites with respect to mean shell size and density. Fluctuations in species' size and density are assumed to have not significantly influenced availability of microhabitat resources. Gastropods occurred mainly in the structurally complex “refuge” microhabitats during the day and showed an increased abundance in smooth, exposed, “foraging” microhabitat nocturnally. Nassarius gaudiosus is the most extreme microhabitat specialist diurnally and the most extreme microhabitat generalist nocturnally. A similar, although less pronounced trend was exhibited by other gastropod species. Microhabitat niche overlap was high for Conus coronatus, C. miliaris, C. flavidus, Vasum turbinellus and N. gaudiosus at night and was also high during the day for all these species except N. gaudiosus, which showed little overlap with other gastropod species diurnally. Using gastropod abundance data from all samples, and independently derived microhabitat abundance data, multiple regression analysis demonstrated: 1) A significant relationship between the abundances of N. gaudiosus, C. coronatus, and C. flavidus and the abundance of microhabitat 2 (sand under rocks=“refuge”). 2) No positive association between gastropod abundance and the abundance of microhabitat 7a (thin layer of algal-bound sand on reef limestone). Only N. gaudiosus is abundant in microhabitat 2. Therefore it is concluded that, with some exceptions, microhabitat abundance does not have a significant influence, directly or indirectly, on gastropod abundance. It is possible that density

  13. Production of modern functional materials based on renewable vegetable resources

    NASA Astrophysics Data System (ADS)

    Onishchenko, D. V.; Reva, V. P.

    2013-05-01

    An energy-saving technology for production of variously structured carbon modifications from a renewable vegetable raw material, i.e., the waste of agricultural crops and peat moss, has been developed. Promising functional materials — refractory compounds (tungsten and titanium carbides) and oil sorbents possessing a combination of high operating characteristics — have been formed on the basis of the synthesized carbon modifications.

  14. Classroom Games: The Allocation of Renewable Resources under Different Property Rights and Regulation Schemes.

    ERIC Educational Resources Information Center

    Giraud, Kelly L.; Herrmann, Mark

    2002-01-01

    Describes a renewable resource allocation game designed to stimulate student interest in and understanding of market failure associated with open-access types of resource use. Employs the game to discuss advantages and disadvantages of property rights and regulation schemes. States the game benefits noneconomics majors in natural resource…

  15. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be

  16. Temporal variation in bird and resource abundance across an elevational gradient in Hawaii

    USGS Publications Warehouse

    Hart, Patrick J.; Woodworth, Bethany L.; Camp, Richard J.; Turner, Kathryn; McClure, Katherine; Goodall, Katherine; Henneman, Carlene; Spiegel, Caleb; Lebrun, Jaymi; Tweed, Erik; Samuel, Michael

    2011-01-01

    We documented patterns of nectar availability and nectarivorous bird abundance over ~3 years at nine study sites across an 1,800-m elevational gradient on Hawaii Island to investigate the relationship between resource variation and bird abundance. Flower density (flowers ha-1) and nectar energy content were measured across the gradient for the monodominant 'Ōhi'a (Metrosideros polymorpha). Four nectarivorous bird species were captured monthly in mist nets and surveyed quarterly with point-transect distance sampling at each site to examine patterns of density and relative abundance. Flowering peaks were associated with season but not rainfall or elevation. Bird densities peaked in the winter and spring of each year at high elevations, but patterns were less clear at middle and low elevations. Variability in bird abundance was generally best modeled as a function of elevation, season, and flower density, but the strength of the latter effect varied with species. The low elevations had the greatest density of flowers but contained far fewer individuals of the two most strongly nectarivorous species. There is little evidence of large-scale altitudinal movement of birds in response to 'Ōhi'a flowering peaks. The loose relationship between nectar and bird abundance may be explained by a number of potential mechanisms, including (1) demographic constraints to movement; (2) nonlimiting nectar resources; and (3) the presence of an "ecological trap," whereby birds are attracted by the high resource abundance of, but suffer increased mortality at, middle and low elevations as a result of disease.

  17. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    SciTech Connect

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  18. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  19. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    SciTech Connect

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but

  20. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    PubMed

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. PMID:24578188

  1. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    PubMed

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene.

  2. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  3. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    SciTech Connect

    1999-02-01

    The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

  4. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  5. Thermal infrared remote sensing of surface features for renewable resource applications

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  6. Nigeria`s rich resources for renewable energies

    SciTech Connect

    Ayankoya, J.O.

    1997-12-31

    It has been observed in Nigeria, that there is a correlation between the standard of living as measured by per capita GNP, and per capita energy consumption. As energy use per capita is tied to the importance of population increase it tends to drop during economic slow down. The per capita energy usage is put at 0.2 kw compared to 10 kw for USA and 4 kw for Europe respectively. Furthermore, analysis shows with the increase in population per year and a 2--5% growth in per capita GNP, require an increase of 5--8% in energy supply per year. The Country derives almost all its energy need from fossil fuels (petroleum, gas and coal), hydropower (the only renewable energy used for generating electricity at present) Wood, Animal, Human power and Wind. With the introduction of solar energy, wind energy, micro hydro power, ocean energy, geothermal energy, biomass conversion, and municipal waste energy, the generating of electricity is bound to take a new turn.

  7. Recent wind resource characterization activities at the National Renewable Energy Laboratory

    SciTech Connect

    Elliott, D L; Schwartz, M N

    1997-07-01

    The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

  8. Developing a chemicals/fuels industry from renewable resources

    SciTech Connect

    Villet, R.H.

    1981-01-01

    With the increasing cost and scarcity of nonrenewable resources, the motivation for substituting biomass-derived chemicals for certain key petro-chemicals is likely to grow. Two goals for research and development are recommended: 1) a near-term objective to revive the older fermentation technology based on readily fermentable substrates and to reduce the cost of production to a competetive level; and 2) the longer-term development of a new biotechnology for producing chemicals and fuels efficiently from biomass of various kinds. Current developments in this area are reviewed. (Refs. 28).

  9. Supplement to energy for rural development: Renewable resources and alternative technologies for developing countries

    NASA Astrophysics Data System (ADS)

    The publication energy for rural development: renewable resources and alternative technologies for developing countries, which presented information on a variety of subjects, including direct uses of solar energy (heating, cooling, distillation, crop drying, photovoltaics), indirect uses of solar energy (wind power, hydropower, photosynthesis, biomass), geothermal energy, and energy storage is reviewed. New technologies developed and advances made in technologies are discussed.

  10. RE Atlas: The U.S. Atlas of Renewable Resources (Interactive Map, GIS Data)

    DOE Data Explorer

    This interactive data map allows a user to explore the locations across the U.S. of many different basic, renewable energy resources. The many layers can be activated one at a time or in multiple combinations and the GIS display draws from a rich combination of data collections.

  11. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    SciTech Connect

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  12. Debriefing Can Reduce Misperceptions of Feedback: The Case of Renewable Resource Management

    ERIC Educational Resources Information Center

    Qudrat-Ullah, Hassan

    2007-01-01

    According to the hypothesis of misperception of feedback, people's poor performance in renewable resource management tasks can be attributed to their general tendency to systematically misperceive the dynamics of bioeconomic systems. The thesis of this article is that dynamic decision performance can be improved by helping individuals develop more…

  13. Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA.

    PubMed

    Baral, Anil; Bakshi, Bhavik R; Smith, Raymond L

    2012-02-21

    Recognizing the contributions of ecosystem services and the lack of their comprehensive accounting in life cycle assessment (LCA), an in-depth analysis of their contribution in the life cycle of cellulosic ethanol derived from five different feedstocks was conducted, with gasoline and corn ethanol as reference fuels. The relative use intensity of natural resources encompassing land and ecosystem goods and services by cellulosic ethanol was estimated using the Eco-LCA framework. Despite being resource intensive compared to gasoline, cellulosic ethanol offers the possibility of a reduction in crude oil consumption by as much as 96%. Soil erosion and land area requirements can be sources of concern for cellulosic ethanol derived directly from managed agriculture. The analysis of two broad types of thermodynamic metrics, namely: various types of physical return on investment and a renewability index, which indicate competitiveness and sustainability of cellulosic ethanol, respectively, show that only ethanol from waste resources combines a favorable thermodynamic return on investment with a higher renewability index. However, the production potential of ethanol from waste resources is limited. This finding conveys a possible dilemma of biofuels: combining high renewability, high thermodynamic return on investment, and large production capacity may remain elusive. A plot of renewability versus energy return on investment is suggested as one of the options for providing guidance on future biofuel selection.

  14. 77 FR 58181 - Power Resources, Inc., Smith Ranch Highland Uranium Project; License Renewal Request, Opportunity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit... 2.311.\\3\\ \\3\\ Requesters should note that the filing requirements of the NRC's E-Filing Rule (72 FR... COMMISSION Power Resources, Inc., Smith Ranch Highland Uranium Project; License Renewal Request,...

  15. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    NASA Astrophysics Data System (ADS)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  16. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  17. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished. PMID:24078235

  18. Information resources in the USA on new and renewable energy: a description and directory

    SciTech Connect

    Not Available

    1981-06-01

    This report is a contribution of the United States of America to preparations for the 1981 United Nations Conference on New and Renewable Sources of Energy. It describes the production dissemination, and availability of US scientific and technical information about new and renewable energy resources, the policy framework within which the technologies are developed, and the roles of public and private sectors. It also contains a directory of sources of additional information - printed material, computerized data bases, institutional services, and personal contacts - about the use of new and renewable energy. This report was prepared through the assistance of the Department of Energy's Technical Information Center, with funding and guidance from the Department of Energy and advice from an Interagency Task Force led by the Department of State. Inquiries about its contents should be addressed to the US Department of Energy, Technical Information Center, P.O. Box 62, Oak Ridge, TN 37830.

  19. Migrant labor supply in a booming non-renewable resource economy: Cure and transmission mechanism for de-industrialization?

    NASA Astrophysics Data System (ADS)

    Nulle, Grant Mark

    This paper challenges the determinism that booming resource economies suffer from de-industrialization, the "Dutch Disease". For several decades, economists have attempted to explain how a sudden surge in mineral and energy extraction affects an economy's output and employment from an aggregate and sectoral perspective. Economic theory shows that a "boom" in mineral and energy production is welfare enhancing to the economy experiencing it. However, the phenomenon also induces inter-sectoral adjustments among non-renewable resource (NRR), traditional traded, and non-traded industries that tend to crowd out traditional export sectors such as agriculture and manufacturing. In turn, this paper asks two fundamental questions: 1) Can the inter-sectoral adjustments wrought by a boom in NRR production be mitigated in the resource-abundant economy experiencing it; 2) Can the inter-sectoral adjustments be exported to a neighboring non-resource economy by movements in migrant labor supply? The theoretical model and empirical estimation approach presented in this paper introduces an endogenous migrant labor supply response to booms in NRR output to test the extent traditional tradable sectors shrink in the NRR-abundant economy during the boom and if such effects are exported to a neighboring jurisdiction. Using data at the U.S. county level, the empirical results show that booming economies experience positive and statistically significant rates of real income and traded sector job growth during the boom, attributable to the influx of migrant labor. By contrast, little evidence is found that non-booming counties adjacent to the booming counties experience declines in income or job growth because of labor supply outflows. Instead, the results suggest the larger the number of potential "donor" counties that can supply labor to the booming economies, the more likely the transmission of booming economy effects, namely evidence of de-industrialization, is diffused across all of the

  20. Wind resource estimation and mapping at the National Renewable Energy Laboratory

    SciTech Connect

    Schwartz, M.

    1999-07-01

    The National Renewable Energy Laboratory (NREL) has developed an automated technique for wind resource mapping to aid in the acceleration of wind energy deployment. The new automated mapping system was developed with the following two primary goals: (1) to produce a more consistent and detailed analysis of the wind resource for a variety of physiographic settings, particularly in areas of complex terrain; and (2) to generate high quality map products on a timely basis. Using computer mapping techniques reduces the time it takes to produce a wind map that reflects a consistent analysis of the distribution of the wind resource throughout the region of interest. NREL's mapping system uses commercially available geographic information system software packages. Regional wind resource maps using this new system have been produced for areas of the US, Mexico, Chile, Indonesia, and China. Countrywide wind resource assessments are under way for the Philippines, the Dominican Republic, and Mongolia. Regional assessments in Argentina and Russia are scheduled to begin soon.

  1. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    SciTech Connect

    Wan, Y.; Renne, O.D.; Junfeng, Li

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  2. Solar energy and renewable resources in relation to the 11 PURPA standards. Guideline No. 2

    SciTech Connect

    1980-02-01

    On June 20, 1979, the President directed the Department of Energy (DOE) to develop and publish within 120 days a voluntary guideline, applying specifically to solar energy and renewable resources, for the ratemaking and other regulatory policy standards established under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA). On October 12, 1979, the Department of Energy (DOE) issued a Notice of Proposed Voluntary Guideline and Public Hearings for Solar Energy and Renewable Resources Respecting the Federal Standards Under the Public Utility Regulatory Policies Act of 1978 (PURPA) (44 FR 60236, October 18, 1979). This Notice summarizes in the Preamble the public comments DOE received and presents the voluntary guideline in its final form as the Appendix hereto.

  3. Biomass, microorganisms for special applications, microbial products I, energy from renewable resources

    SciTech Connect

    Rehm, H.J.; Reed, G.

    1982-01-01

    The book contains the following sections: biomass from carbohydrates; biomass from higher n-alkanes; biomass from methane and methanol; phototropic microalgae; edible mushrooms; starter cultures for milk and meat processing; starter cultures for other purposes; microbial soil amelioration; bacteria for nitrogen fixation; microbial insecticides; ethanol fermentation; acetic acid; lactic acid; citric acid; gluconic acid; organic acids of minor importance; amino acids; extracellular polysaccharides; microbial emulsifiers and de-emulsifiers; and energy from renewable resources. 190 figures, 205 tabels. (CKK)

  4. Geologic utility of improved orbital measurement capabilities in reference to non-renewable resources

    NASA Technical Reports Server (NTRS)

    Stewart, H.; Marsh, S.

    1982-01-01

    Spectral and spatial characteristics necessary for future orbital remote sensing systems are defined. The conclusions are based on the past decade of experience in exploring for non-renewable resources with reference to data from ground, aircraft, and orbital systems. Two principle areas of investigation are used in the discussion: a structural interpretation in a basin area for hydrocarbon exploration, and a discrimination of altered areas in the Cuprite district in Nevada.

  5. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    SciTech Connect

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  6. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  7. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  8. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    NASA Astrophysics Data System (ADS)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  9. Coastal resources management guidelines. Coastal Management Publication No. 2. Renewable Resources Information Series

    SciTech Connect

    Snedaker, S.C.; Getter, C.D.

    1985-01-01

    The guidebook is one in a series of publications being produced for the Agency for International Development (AID) by the National Park Service (NPS). Its purpose is to provide expert guidance in planning and management for sustainable coastal development and for the conservation of coastal resources. In addition to the book the coastal series includes a casebook with eight case studies, a report on institutional arrangements for coastal resource management, and a condensed design aids booklet.

  10. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    SciTech Connect

    2009-12-31

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric

  11. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    SciTech Connect

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  12. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  13. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    NASA Astrophysics Data System (ADS)

    Usman Saeed Khan, M.; Maqsood, M. Irfan; Ali, Ehsan; Jamal, Shah; Javed, M.

    2013-06-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, the use of tesla turbine as renewable energy resource using tesla turbine in distributed generation system use of tesla turbine at home for power generation use of tesla turbine in irrigation channels using tesla turbine in hybrid electric vehicles All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  14. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  15. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    PubMed

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  16. Palm olein ozonation as a renewable resource: spectroscopic analysis for monitoring the degree of saturation

    NASA Astrophysics Data System (ADS)

    Wasmi, Bilal A.; Kadhum, Abdul Amir H.; Bakar Mohamed, Abu

    2013-12-01

    The manufacturing of organic compounds by environmentally-friendly methods has been intensively reexamined in recent years. Several excellent methods have been devised to produce organic compounds from renewable resources. The ozonation is one of the high active oxidation methods which lead to producion of organic compounds by the breaking of double bonds. Palm olein as a renewable source is subjected to the ozonation process to break the double bond which leads to the formation of two carbonyl groups as well described by Criegee mechanism. The monitoring of the degree of saturation was obtained by the Fourier transform infrared spectroscopy (FTIR) by observing the change in function groups as a result of ozone consumption and heat of reaction. The reaction time was 2 hrs at different temperatures and without any solvent or participating catalyst. The complete cleavage of a double bond occurred at 150 °C temperature of reaction.

  17. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution.

    PubMed

    Barnett, Allain; Beisner, Beatrix E

    2007-07-01

    While empirical studies linking biodiversity to local environmental gradients have emphasized the importance of lake trophic status (related to primary productivity), theoretical studies have implicated resource spatial heterogeneity and resource relative ratios as mechanisms behind these biodiversity patterns. To test the feasibility of these mechanisms in natural aquatic systems, the biodiversity of crustacean zooplankton communities along gradients of total phosphorus (TP) as well as the vertical heterogeneity and relative abundance of their phytoplankton resources were assessed in 18 lakes in Quebec, Canada. Zooplankton community richness was regressed against TP, the spatial distribution of phytoplankton spectral groups, and the relative biomass of spectral groups. Since species richness does not adequately capture ecological function and life history of different taxa, features which are important for mechanistic theories, relationships between zooplankton functional diversity (FD) and resource conditions were examined. Zooplankton species richness showed the previously established tendency to a unimodal relationship with TP, but functional diversity declined linearly over the same gradient. Changes in zooplankton functional diversity could be attributed to changes in both the spatial distribution and type of phytoplankton resource. In the studied lakes, spatial heterogeneity of phytoplankton groups declined with TP, even while biomass of all groups increased. Zooplankton functional diversity was positively related to increased heterogeneity in cyanobacteria spatial distribution. However, a smaller amount of variation in functional diversity was also positively related to the ratio of biomass in diatoms/chrysophytes to cyanobacteria. In all observed relationships, a greater variation of functional diversity than species richness measures was explained by measured factors, suggesting that functional measures of zooplankton communities will benefit ecological

  18. Multiple timescale stochastic optimization with application to integrating renewable resources in power systems

    NASA Astrophysics Data System (ADS)

    Gangammanavar, Harsha

    The contribution of renewable resources to the energy portfolio across the world has been steadily increasing over the past few years. Several studies predict the continuation of this trend in the future leading to large scale integration of renewable resources into energy networks. A principal challenge associated with this is the intermittency and non-dispatchability of the renewable sources. This necessitates incorporation of faster reserves, storage devices and similar services operating alongside the slow ramping conventional generators in the energy network. To maintain the robustness of such a network, there are proposals to require hourly planning for some resources, and sub-hourly planning for others: an hourly scale may be used for conventional generator production levels and a sub-hourly scale for renewable generator levels and/or storage and transmission network utilization. This dissertation will present a multiple time scale stochastic programming formulation of the economic dispatch problem and algorithmic frameworks to tackle it. The first approach highlights the difference between hourly and sub-hourly planning of economic dispatch and uses the two-stage Stochastic Decomposition (SD) algorithm. The second framework combines three principal components: optimization, dynamic control and simulation. The conventional generator decisions are obtained iteratively by solving a regularized linear problem in the first stage of SD. For these first stage decisions, a policy for recommending the dispatch decisions is identified using an Approximate Dynamic Programming based controller. A vector autoregression based simulator is used to provide the sub-hourly wind generation scenarios. The performance of these algorithms was tested on the IEEE model energy networks and the Illinois energy network. The insights gained regarding the benefits of sub-hourly planning and role of operating reserves/storage in energy network with high renewable penetration will be

  19. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  20. Renewable-energy-resource options for the food-processing industry

    SciTech Connect

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.

    1981-09-01

    The food processing industry generates significant quantities of organic process wastes which often require treatment prior to disposal or result in additional expenses for disposal. The food processing industry also requires fuel and electricity to provide the process energy to convert raw materials into finished food products. Depending on the particular process, organic wastes can represent a potential resource for conversion to energy products that can be used for providing process energy or other energy products. This document reports the results of an evaluation of renewable energy resource options for the food processing industry. The options evaluated were direct combustion for providing process heat, fermentation for ethanol production and anaerobic digestion for generation of methane.

  1. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  2. Of all the planet's renewable resources, fresh water may be the most unforgiving.

    PubMed

    1994-01-01

    Access to water is essential to social and economic development and the stability of cultures and civilizations throughout the world historically. The UN Commission on Sustainable Development in mid-1993 emphasized the importance of transfer of technology to poor countries for improvement in water quality. Less attention has been given to the issue of water availability. The amount of fresh water is finite. The capacity for storage of water has increased over time, but commodity expansion has not improved. Salinization processes have proven to be too costly in dollars, pollution, and nonrenewable fossil fuels. As population grows, the average amount of fresh water available declines. Improvements can only be made in efficiency of usage or conservation. Per capita use of water doubled to 800 cubic meters per person per year. But global use of water increased by 4 times in 50 years. Only 2.5% of the world's 1.4 billion cubic kilometers of water is fit for drinking, crops, or most industrial uses. In Africa and the Middle East water resources are declining in availability and quality. An important feature of water resources is the extent of replenishment in the hydrologic cycle. Water availability from rain and snow amounts to about 113,000 cubic kilometers yearly, of which 72,000 evaporates. Aquifers, rivers, and oceans are renewed with the remaining 41,000 cu km. About 50% returns to oceans and 1/8 is too far from human habitation for use. Estimates of renewable freshwater average 9-14,000 cu km yearly, and a substantial amount is needed to sustain ecosystems in rivers, wetlands, and coastal waters. Internal resources within each country may amount to only about 20% of potential water resources, due to water storage suitability of the land and the extent and condition of infrastructure.

  3. Of all the planet's renewable resources, fresh water may be the most unforgiving.

    PubMed

    1994-01-01

    Access to water is essential to social and economic development and the stability of cultures and civilizations throughout the world historically. The UN Commission on Sustainable Development in mid-1993 emphasized the importance of transfer of technology to poor countries for improvement in water quality. Less attention has been given to the issue of water availability. The amount of fresh water is finite. The capacity for storage of water has increased over time, but commodity expansion has not improved. Salinization processes have proven to be too costly in dollars, pollution, and nonrenewable fossil fuels. As population grows, the average amount of fresh water available declines. Improvements can only be made in efficiency of usage or conservation. Per capita use of water doubled to 800 cubic meters per person per year. But global use of water increased by 4 times in 50 years. Only 2.5% of the world's 1.4 billion cubic kilometers of water is fit for drinking, crops, or most industrial uses. In Africa and the Middle East water resources are declining in availability and quality. An important feature of water resources is the extent of replenishment in the hydrologic cycle. Water availability from rain and snow amounts to about 113,000 cubic kilometers yearly, of which 72,000 evaporates. Aquifers, rivers, and oceans are renewed with the remaining 41,000 cu km. About 50% returns to oceans and 1/8 is too far from human habitation for use. Estimates of renewable freshwater average 9-14,000 cu km yearly, and a substantial amount is needed to sustain ecosystems in rivers, wetlands, and coastal waters. Internal resources within each country may amount to only about 20% of potential water resources, due to water storage suitability of the land and the extent and condition of infrastructure. PMID:12179243

  4. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    PubMed

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa. PMID:23318834

  5. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    PubMed

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  6. SEE HYDROPOWER Project, targeted to improve water resource management for a growing renewable energy production

    NASA Astrophysics Data System (ADS)

    Peviani, Maximo; Alterach, Julio; Danelli, Andrea

    2010-05-01

    The three years SEE HYDROPOWER project started on June 2009, financed by the South-East Transnational Cooperation Programme (EU), aims to a sustainable exploitation of water concerning hydropower production in SEE countries, looking up to renewable energy sources development, preserving environmental quality and preventing flood risk. Hydropower is the most important renewable resource for energy production in the SEE countries but creates ecological impacts on a local scale. If on one hand, hydroelectric production has to be maintained and likely increased following the demand trend and RES-e Directive, on the other hand, hydropower utilisation often involves severe hydrological changes, damages the connectivity of water bodies and injures river ecosystems. The project gives a strong contribution to the integration between the Water Frame and the RES-e Directives in the involved countries. The SEE HYDROPOWER project promotes the optimal use of water, as multiple natural resources, in order to face the increasing regional electrical-energy demand. Furthermore, SEE HYDROPOWER defines specific needs and test methodologies & tools, in order to help public bodies to take decisions about planning and management of water and hydropower concessions, considering all multi-purposes uses, taking into account the environmental sustainability of natural resources and flooding risks. Investigations is carried on to define common strategies & methods for preserving river with particular concerns to aquatic ecosystems, considering the required Minimum Environmental Flow, macro-habitat quality, migratory fishes and related environmental issues. Other problem addressed by the Project is the contrast between Public Administration and Environmental associations on one side and the Hydropower producers on the other side, for the exploitation of water bodies. Competition between water users (for drinking, irrigation, industrial processes, power generation, etc.) is becoming a serious

  7. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera.

    PubMed

    O'Brien, Diane M; Fogel, Marilyn L; Boggs, Carol L

    2002-04-01

    The allocation of nutritional resources to reproduction in animals is a complex process of great evolutionary significance. We use compound-specific stable isotope analysis of carbon (GC/combustion/isotope ratio MS) to investigate the dietary sources of egg amino acids in a nectar-feeding hawkmoth. Previous work suggests that the nutrients used in egg manufacture fall into two classes: those that are increasingly synthesized from adult dietary sugar over a female's lifetime (renewable resources), and those that remain exclusively larval in origin (nonrenewable resources). We predict that nonessential and essential amino acids correspond to these nutrient classes and test this prediction by analyzing egg amino acids from females fed isotopically distinct diets as larvae and as adults. The results demonstrate that essential egg amino acids originate entirely from the larval diet. In contrast, nonessential egg amino acids were increasingly synthesized from adult dietary sugars, following a turnover pattern across a female's lifetime. This study demonstrates that female Lepidoptera can synthesize a large fraction of egg amino acids from nectar sugars, using endogenous sources of nitrogen. However, essential amino acids derive only from the larval diet, placing an upper limit on the use of adult dietary resources to enhance reproductive success.

  8. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera.

    PubMed

    O'Brien, Diane M; Fogel, Marilyn L; Boggs, Carol L

    2002-04-01

    The allocation of nutritional resources to reproduction in animals is a complex process of great evolutionary significance. We use compound-specific stable isotope analysis of carbon (GC/combustion/isotope ratio MS) to investigate the dietary sources of egg amino acids in a nectar-feeding hawkmoth. Previous work suggests that the nutrients used in egg manufacture fall into two classes: those that are increasingly synthesized from adult dietary sugar over a female's lifetime (renewable resources), and those that remain exclusively larval in origin (nonrenewable resources). We predict that nonessential and essential amino acids correspond to these nutrient classes and test this prediction by analyzing egg amino acids from females fed isotopically distinct diets as larvae and as adults. The results demonstrate that essential egg amino acids originate entirely from the larval diet. In contrast, nonessential egg amino acids were increasingly synthesized from adult dietary sugars, following a turnover pattern across a female's lifetime. This study demonstrates that female Lepidoptera can synthesize a large fraction of egg amino acids from nectar sugars, using endogenous sources of nitrogen. However, essential amino acids derive only from the larval diet, placing an upper limit on the use of adult dietary resources to enhance reproductive success. PMID:11930002

  9. The impacts of climate changes in the renewable energy resources in the Caribbean region

    SciTech Connect

    Erickson III, David J

    2010-02-01

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupled with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.

  10. Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources.

    PubMed

    Slater, C Stewart; Savelski, Mariano J; Hitchcock, David; Cavanagh, Eduardo J

    2016-01-01

    An environmental analysis has been conducted to determine the cradle to gate life cycle emissions to manufacture the green solvent, 2-methyl tetrahydrofuran. The solvent is considered a greener chemical since it can be manufactured from renewable resources with a lower life cycle footprint. Analyses have been performed using different methods to show greenness in both its production and industrial use. This solvent can potentially be substituted for other ether and chlorinated solvents commonly used in organometallic and biphasic reactions steps in pharmaceutical and fine chemical syntheses. The 2-methyl tetrahydrofuran made from renewable agricultural by-products is marketed by Penn A Kem under the name ecoMeTHF™. The starting material, 2-furfuraldehyde (furfural), is produced from corn cob waste by converting the available pentosans by acid hydrolysis. An evaluation of each step in the process was necessary to determine the overall life cycle and specific CO2 emissions for each raw material/intermediate produced. Allocation of credits for CO2 from the incineration of solvents made from renewable feedstocks significantly reduced the overall carbon footprint. Using this approach, the overall life cycle emissions for production of 1 kg of ecoMeTHF™ were determined to be 0.191 kg, including 0.150 kg of CO2. Life cycle emissions generated from raw material manufacture represents the majority of the overall environmental impact. Our evaluation shows that using 2-methyl tetrahydrofuran in an industrial scenario results in a 97% reduction in emissions, when compared to typically used solvents such as tetrahydrofuran, made through a conventional chemical route.

  11. Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources.

    PubMed

    Slater, C Stewart; Savelski, Mariano J; Hitchcock, David; Cavanagh, Eduardo J

    2016-01-01

    An environmental analysis has been conducted to determine the cradle to gate life cycle emissions to manufacture the green solvent, 2-methyl tetrahydrofuran. The solvent is considered a greener chemical since it can be manufactured from renewable resources with a lower life cycle footprint. Analyses have been performed using different methods to show greenness in both its production and industrial use. This solvent can potentially be substituted for other ether and chlorinated solvents commonly used in organometallic and biphasic reactions steps in pharmaceutical and fine chemical syntheses. The 2-methyl tetrahydrofuran made from renewable agricultural by-products is marketed by Penn A Kem under the name ecoMeTHF™. The starting material, 2-furfuraldehyde (furfural), is produced from corn cob waste by converting the available pentosans by acid hydrolysis. An evaluation of each step in the process was necessary to determine the overall life cycle and specific CO2 emissions for each raw material/intermediate produced. Allocation of credits for CO2 from the incineration of solvents made from renewable feedstocks significantly reduced the overall carbon footprint. Using this approach, the overall life cycle emissions for production of 1 kg of ecoMeTHF™ were determined to be 0.191 kg, including 0.150 kg of CO2. Life cycle emissions generated from raw material manufacture represents the majority of the overall environmental impact. Our evaluation shows that using 2-methyl tetrahydrofuran in an industrial scenario results in a 97% reduction in emissions, when compared to typically used solvents such as tetrahydrofuran, made through a conventional chemical route. PMID:26889729

  12. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    NASA Astrophysics Data System (ADS)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  13. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    NASA Astrophysics Data System (ADS)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  14. Seeing about soil — management lessons from a simple model for renewable resources

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Klaus; Schappacher, Wilhelm

    2014-02-01

    Employing an effective cellular automata model, we investigate and analyze the build-up and erosion of soil. Depending on the strategy employed for handling agricultural production, in many cases we find a critical dependence on the prescribed production target, with a sharp transition between stable production and complete breakdown of the system. Strategies which are particularly well-suited for mimicking real-world management approaches can produce almost cyclic behavior, which can also either lead to sustainable production or to breakdown. While designed to describe the dynamics of soil evolution, this model is quite general and may also be useful as a model for other renewable resources and may even be employed in other disciplines like psychology.

  15. USDOE/Russian Ministry of Fuel and Energy joint collaboration for renewable energy resources

    SciTech Connect

    Touryan, K.

    1997-12-01

    This paper describes a joint collaboration between the US and Russia to develop renewable energy resources. There are five main goals of the project. First is to establish Intersolarcenter as a sister organization to NREL for joint R&D activities, and to provide training to the staff. Second is to install demonstration systems in parks and selected locations around Moscow. Third is to install pilot projects: a wind/diesel hybrid system at 21 sites in the northern territories; a 500 kW biomass power plant in the Arkhangelsk Region. Fourth is to assist in the start-up operations of a 2 MW/yr Triple Junction amorphous-Si manufacturing facility in Moscow using US technology. Fifth is to explore the possibilities of financing large-scale wind/hybrid and biomass power systems for the nouthern territories (possibly 900 sites).

  16. Bionanocomposites from renewable resources: epoxidized linseed oil-polyhedral oligomeric silsesquioxanes hybrid materials.

    PubMed

    Lligadas, Gerard; Ronda, Joan C; Galià, Marina; Cádiz, Virginia

    2006-12-01

    This study is concerned with the preparation and properties of a new class of bionanocomposites from renewable resources. Epoxidized linseed oil (ELO) and 3-glycidylpropylheptaisobutyl-T8-polyhedral oligomeric silsesquioxane (G-POSS) (2, 5, and 10 wt %) were cross-linked, and Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were employed to characterize the POSS-reinforced oil-based polymer networks. No POSS aggregates were observed for the 2 wt % G-POSS nanocomposite by SEM. POSS-rich particles with diameters of several nanometers were observed in the nanocomposites with 5 and 10 wt % G-POSS. Enhanced glass transition temperatures and storage moduli of the networks in the glassy state and rubber plateau were observed to be higher than those of the POSS-free oil based polymer network, due to the reinforcement effect of POSS cages. PMID:17154483

  17. Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources

    PubMed Central

    Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank

    2015-01-01

    The copoly(2-oxazoline) pNonOx80-stat-pDc=Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9′-enyl-2-oxazoline Dc=Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80-stat-pDc=Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol–ene reactions. PMID:26354027

  18. Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources.

    PubMed

    Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank

    2015-10-26

    The copoly(2-oxazoline) pNonOx80 -stat-pDc(=) Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9'-enyl-2-oxazoline Dc(=) Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80 -stat-pDc(=) Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol-ene reactions.

  19. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for

  20. The Use of Reanalysis Data for Wind Resource Assessment at the National Renewable Energy Laboratory

    SciTech Connect

    Schwartz, M.; George, R.; Elliott, D.

    1999-04-07

    An important component of the National Renewable Energy Laboratory wind resource assessment methodology is the use of available upper-air data to construct detailed vertical profiles for a study region. Currently, the most useful upper-air data for this type of analysis are archived observations from approximately 1800 rawinsonde and pilot balloon stations worldwide. However, significant uncertainty exists in the accuracy of the constructed profiles for many regions. The United States Reanalysis Data Set, recently created by the National Center for Atmospheric Research and the National Centers for Environmental Prediction, has the potential to improve the quality of the vertical profiles. The initial evaluation of the usefulness of the Reanalysis data for wind resource assessment consisted of contrasting reanalysis-derived vertical profiles of the wind characteristics to those generated from upper-air observations for comparable locations. The results indicate that, while reanalysis data can be substituted for upper-air observation data in the assessment methodology for areas of the world where observation data are limited, enough discrepancies with observation data have been noticed to warrant further studies.

  1. Integrating renewable energy resources with energy storage for grid-connected systems

    NASA Astrophysics Data System (ADS)

    Carr, Joseph

    Renewable energy resources have been growing at a rapidly accelerating rate as an alternative for fossil fuels in the modern electric grid. As their penetration increases, variability in these resources, particularly wind and solar, poses a risk of instability on the grid. Energy storage can be used to mitigate this risk as well as provide other benefits to the larger grid. In this dissertation, a novel high frequency common bus multiport converter is proposed as a new integration scheme to improve efficiency of the power electronics interface by reducing the number of conversion steps and to reduce the system size by replacing the line frequency transformer with a high frequency transformer tied to the common bus. Two main innovations are introduced: a new switching scheme for the H-bridges on the common bus which allows them to operate in parallel without interfering in each others operation, and a novel single-phase to three-phase matrix converter which converts the high frequency bus to the line frequency in a single conversion stage. This proposed converter is simulated to develop the inner loop control methodology, then a low power prototype is constructed and tested to verify its operation. The results of these tests demonstrate the feasibility of the proposed ideas as well as suggesting new avenues of research to further improve the proposed system.

  2. 77 FR 2286 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice...

  3. 78 FR 15718 - Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America LLC Horizon Wind Energy LLC v. Bonneville Power Administration; Notice...

  4. Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-09-25

    In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the

  5. Biodegradable polymers derived from renewable resources: Highly branched copolymers of itaconic anhydride

    NASA Astrophysics Data System (ADS)

    Wallach, Joshua Andrew

    In an effort to design cyclic anhydride containing polymers that are derived from renewable resources and have biodegradable characteristics, three copolymer systems using itaconic anhydride have been studied. Two of the systems were copolymers with stearate based monomers; vinyl stearate and stearyl methacrylate, while the third was a copolymer with a methacrylate terminated poly (lactic acid) (PLA) macromonomer. For the stearate systems, stearyl methacrylate showed good copolymerization with equal conversions for both monomers. On the other hand vinyl stearate did not show as good results due to its decreased reactivity, which resulted in a copolymer highly enriched in itaconic anhydride with significant amounts of unreacted vinyl stearate under all copolymer compositions. These differing results were confirmed through analysis of reactivity ratios showing a results that are more favorable for copolymerization for the methacrylate system. Copolymers from both systems showed single melting transitions in a precarious range of 45--50°C arising from the stearyl side groups, though after quenching from the melt this shifted to below room temperature. Anhydride retention was confirmed through structural analysis. Similar to the stearyl methacrylate system, methacrylate terminated PLA macromonomers were copolymerized with itaconic anhydride. PLA's acceptance as a biodegradable material derived from renewable resources, make it a viable choice, with which to design anhydride containing copolymers. Good copolymerization was shown for all compositions studied with retention of the anhydride, though at high itaconic anhydride concentrations conversions were reduced significantly. Copolymers showed glass transition temperatures ranging from 32°C for 85 mole % PLA macromonomer to 73°C for 85 mole % itaconic anhydride. An effort to produce PLA macromonomers through a process of chemical recycling commercial PLA was also undertaken. Promising results were obtained showing

  6. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.

    PubMed

    Tsuge, Yota; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce L- and D-lactate, and succinate from renewable resources.

  7. Hot dry rock geothermal energy -- a renewable energy resource that is ready for development now

    SciTech Connect

    Brown, D.W.; Potter, R.M.; Myers, C.W.

    1990-01-01

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. The earth's heat represents an almost unlimited source of energy that can begin to be exploited within the next decade through the HDR heat-mining concept being actively developed in the United States, Great Britain, Japan, and several other countries. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow- tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  8. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration.

  9. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    PubMed

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  10. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration. PMID:26492854

  11. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate.

    PubMed

    de Araújo, Helvia W Casullo; Fukushima, K; Takaki, Galba M Campos

    2010-10-08

    A new strain of Serratia marcescens UCP1459 isolated from a semi-arid soil produced the natural red pigment prodigiosin, characterized by an uncommon pyrrolylpyrromethane skeleton. Prodigiosin is a promising drug due to its reported antifungal, immunosuppressive and anti-proliferative activities. The objective of this work was to indentify a suitable medium to simultaneously enhance S. marcescens growth and pigment production using renewable resources obtained from industrial wastes. S. marcescens produced the highest level of prodigiosin (49.5 g/L) at 48 h of cultivation using 6% "manipueira" (cassava wastewater) supplemented with mannitol (2%) at pH 7 and 28 °C. Carbohydrates in "manipueira" and mannitol play a role in the enhanced cell growth and prodigiosin production. The purified pigment extracted from the biomass was analyzed by mass spectrophotometry and showed the expected molecular weight of 324 Da corresponding to prodigiosin. In conclusion, we have successfully designed a new, economically feasible medium supporting enhanced S. marcescens growth and a high yield production of prodigiosin.

  12. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    SciTech Connect

    Regan, C.; Lee, S.; Chopra, O.K.; Ma, D.C.; Shack, W.J.

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal.

  13. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  14. Lubricants based on renewable resources--an environmentally compatible alternative to mineral oil products.

    PubMed

    Willing, A

    2001-04-01

    The development of lubricants like, e.g. engine and hydraulic oils was traditionally based on mineral oil as a base fluid. This fact is related to the good technical properties and the reasonable price of mineral oils. The Report to the Club of Rome (W.W. Behrens III, D.H. Meadows, D.I. Meadows, J. Randers, The limits of growth, A Report to the Club of Rome, 1972) and the two oil crises of 1979 and 1983, however, elucidated that mineral oil is on principle a limited resource. In addition, environmental problems associated with the production and use of chemicals and the limited capacity of nature to tolerate pollution became obvious (G.H. Brundtland, et al., in: Hauff, Volker (Ed.), World Commission on Environment and Development (WCED), Report of the Brundtland-Commission, Oxford, UK, 1987), and the critical discussion included besides acid rain, smog, heavy metals, and pesticides also mineral oil (especially oil spills like the case Exxon Valdes). A disadvantage of mineral oil is its poor biodegradability and thus its potential for long-term pollution of the environment. From the early development of lubricants for special applications (e.g. turbojet engine oils) it was known, that fatty acid polyol esters have comparable or even better technical properties than mineral oil. Subsequently, innumerable synthetic esters have been synthesized by systematic variation of the fatty acid and the alcohol components. Whereas the alcohol moiety of the synthetic esters are usually of petrochemical origin, the fatty acids are almost exclusively based on renewable resources. The physico-chemical properties of oleochemical esters can cover the complete spectrum of technical requirements for the development of high-performance industrial oils and lubricants (e.g. excellent lubricating properties, good heat stability, high viscosity index, low volatility and superior shear stability). For a comprehensive review of their technical properties see F. Bongardt, in: Jahrbuchf

  15. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  16. Renewable resources in the chemical industry--breaking away from oil?

    PubMed

    Nordhoff, Stefan; Höcker, Hans; Gebhardt, Henrike

    2007-12-01

    Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.

  17. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    SciTech Connect

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  18. Synthesis of Azidohydrin from Hura crepitans Seed Oil: A Renewable Resource for Oleochemical Industry and Sustainable Development.

    PubMed

    Adewuyi, Adewale; Göpfert, Andrea; Wolff, Thomas; Rao, B V S K; Prasad, R B N

    2012-01-01

    The replacement of petrochemicals by oleochemical feedstocks in many industrial and domestic applications has resulted in an increase in demand for biobased products and as such recognizing and increasing the benefits of using renewable materials. In line with this, the oil extracted from the seed of Hura crepitans was characterized by an iodine value of 120.10 ± 0.70 g Iodine/100 g and a saponification number of 210.10 ± 0.40 mg KOH/g with the dominant fatty acid being C18:2 (52.8 ± 0.10%). The epoxidised fatty acid methyl esters prepared from the oil were used to synthesise the azidohydrin with a yield of 91.20%. The progress of the reaction was monitored and confirmed using FTIR and NMR. This showed the seed oil of Hura crepitans as a renewable resource that can be used to make valuable industrial and domestic products.

  19. Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Seo, Young Il; Yoon, Sang Cheol; Kim, Suam

    2004-05-01

    Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970-75) and after (1978-84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.

  20. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  1. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project

    SciTech Connect

    Wilcox, S. M.; McCormack, P.

    2011-01-01

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  2. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    SciTech Connect

    Elliott, Dennis; Frame, Caitlin; Gill, Carrie; Hanson, Howard; Moriarty, Patrick; Powell, Mark; Shaw, William J.; Wilczak, Jim; Wynne, Jason

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  3. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies using Eco-LCA

    EPA Science Inventory

    Recognizing the contributions of natural resources and the lack of their comprehensive accounting in life cycle assessment (LCA) of cellulosic ethanol, an in-depth analysis of the contribution of natural resources in the life cycle of cellulosic ethanol derived from five differen...

  4. Energy Management Challenges and Opportunities with Increased Intermittent Renewable Generation on the California Electrical Grid

    NASA Astrophysics Data System (ADS)

    Eichman, Joshua David

    Renewable resources including wind, solar, geothermal, biomass, hydroelectric, wave and tidal, represent an opportunity for environmentally preferred generation of electricity that also increases energy security and independence. California is very proactive in encouraging the implementation of renewable energy in part through legislation like Assembly Bill 32 and the development and execution of Renewable Portfolio Standards (RPS); however renewable technologies are not without challenges. All renewable resources have some resource limitations, be that from location, capacity, cost or availability. Technologies like wind and solar are intermittent in nature but represent one of the most abundant resources for generating renewable electricity. If RPS goals are to be achieved high levels of intermittent renewables must be considered. This work explores the effects of high penetration of renewables on a grid system, with respect to resource availability and identifies the key challenges from the perspective of the grid to introducing these resources. The HiGRID tool was developed for this analysis because no other tool could explore grid operation, while maintaining system reliability, with a diverse set of renewable resources and a wide array of complementary technologies including: energy efficiency, demand response, energy storage technologies and electric transportation. This tool resolves the hourly operation of conventional generation resources (nuclear, coal, geothermal, natural gas and hydro). The resulting behavior from introducing additional renewable resources and the lifetime costs for each technology is analyzed.

  5. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].

    PubMed

    Lopes Ferreira, Nicolas

    2008-01-01

    Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals. PMID:18980741

  6. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].

    PubMed

    Lopes Ferreira, Nicolas

    2008-01-01

    Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals.

  7. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  8. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  9. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  10. Optimising the extraction rate of a non-durable non-renewable resource in a monopolistic market: a mathematical programming approach.

    PubMed

    Corominas, Albert; Fossas, Enric

    2015-01-01

    We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.

  11. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Development Office (IEED) authorized by OMB Control Number 1076-0167. This information collection expires June... Number: 1076-0167. Title: Tribal Energy Resource Agreements, 25 CFR 224. Brief Description of...

  12. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  13. Consideration of reference points for the management of renewable resources under an adaptive management paradigm

    USGS Publications Warehouse

    Irwin, Brian J.; Conroy, Michael J.

    2013-01-01

    The success of natural resource management depends on monitoring, assessment and enforcement. In support of these efforts, reference points (RPs) are often viewed as critical values of management-relevant indicators. This paper considers RPs from the standpoint of objective-driven decision making in dynamic resource systems, guided by principles of structured decision making (SDM) and adaptive resource management (AM). During the development of natural resource policy, RPs have been variously treated as either ‘targets’ or ‘triggers’. Under a SDM/AM paradigm, target RPs correspond approximately to value-based objectives, which may in turn be either of fundamental interest to stakeholders or intermediaries to other central objectives. By contrast, trigger RPs correspond to decision rules that are presumed to lead to desirable outcomes (such as the programme targets). Casting RPs as triggers or targets within a SDM framework is helpful towards clarifying why (or whether) a particular metric is appropriate. Further, the benefits of a SDM/AM process include elucidation of underlying untested assumptions that may reveal alternative metrics for use as RPs. Likewise, a structured decision-analytic framework may also reveal that failure to achieve management goals is not because the metrics are wrong, but because the decision-making process in which they are embedded is insufficiently robust to uncertainty, is not efficiently directed at producing a resource objective, or is incapable of adaptation to new knowledge.

  14. Synthesis of Azidohydrin from Hura crepitans Seed Oil: A Renewable Resource for Oleochemical Industry and Sustainable Development

    PubMed Central

    Adewuyi, Adewale; Göpfert, Andrea; Wolff, Thomas; Rao, B. V. S. K.; Prasad, R. B. N.

    2012-01-01

    The replacement of petrochemicals by oleochemical feedstocks in many industrial and domestic applications has resulted in an increase in demand for biobased products and as such recognizing and increasing the benefits of using renewable materials. In line with this, the oil extracted from the seed of Hura crepitans was characterized by an iodine value of 120.10 ± 0.70 g Iodine/100 g and a saponification number of 210.10 ± 0.40 mg KOH/g with the dominant fatty acid being C18:2 (52.8 ± 0.10%). The epoxidised fatty acid methyl esters prepared from the oil were used to synthesise the azidohydrin with a yield of 91.20%. The progress of the reaction was monitored and confirmed using FTIR and NMR. This showed the seed oil of Hura crepitans as a renewable resource that can be used to make valuable industrial and domestic products. PMID:24052854

  15. Geospatial Toolkits and Resource Maps for Selected Countries from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    NREL developed the Geospatial Toolkit (GsT), a map-based software application that integrates resource data and geographic information systems (GIS) for integrated resource assessment. A variety of agencies within countries, along with global datasets, provided country-specific data. Originally developed in 2005, the Geospatial Toolkit was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. Toolkits are available for 21 countries and each one can be downloaded separately. The source code for the toolkit is also available. [Taken and edited from http://www.nrel.gov/international/geospatial_toolkits.html

  16. Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion

    SciTech Connect

    Myers, D. R.

    2012-01-01

    This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

  17. Colorado's Prospects for Interstate Commerce in Renewable Power

    SciTech Connect

    Hurlbut, D. J.

    2009-12-01

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  18. Effect of Diisocyanate Structure on Thermal Properties and Microstructure of Polyurethanes Based on Polyols Derived from Renewable Resources

    NASA Astrophysics Data System (ADS)

    Corcuera, MaAngeles; Rueda, Lorena; Fernández d'Arlas, Borja; Saralegui, Ainara; Marieta, Cristina; Arbelaiz, Aitor; Mondragon, Iñaki; Eceiza, Arantxa

    2010-06-01

    Polyols derived from renewables resources are good candidates to obtaining segmented polyurethane elastomers. Diisocyanates with different chemical structure, aliphatic and aromatic, have been used to synthesize by a two step polymerization procedure polyurethane elastomers with different hard segment content. Microphase separation and thermal stability have been studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The analysis of the H-bonded and non H-bonded urethane carbonyl stretching vibration in the amide I region, the glass transition temperature of the soft and hard segments and the melting temperature and enthalpies of hard segment reveal that aliphatic diisocyanate based polyurethanes present higher phase separation degree and harder segment crystallinity and also superior thermal stability than aromatic diisocyanate-based polyurethanes.

  19. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery.

  20. Materials: Renewable and Nonrenewable Resources. No. 4 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 36 articles originally published in "Science" during 1973-75. The articles are divided into six sections entitled: (1) Policy Considerations; (2) Energy, Environment and Conservation; (3) Perspectives on Needs and Supplies of Resources; (4) Finding the Processing Minerals; (5) High Technology Materials; and (6) Wood and Plant…

  1. The End of Flat Earth Economics & the Transition to Renewable Resource Societies.

    ERIC Educational Resources Information Center

    Henderson, Hazel

    1978-01-01

    A post-industrial revolution is predicted for the future with an accompanying shift of focus from simple, brute force technolgies, based on cheap, accessible resources and energy, to a second generation of more subtle, refined technologies grounded in a much deeper understanding of biological and ecological realities. (Author/BB)

  2. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  3. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification.

    PubMed

    Metzger, J O; Bornscheuer, U

    2006-06-01

    Oils and fats are the most important renewable raw materials of the chemical industry. They make available fatty acids in such purity that they may be used for chemical conversions and for the synthesis of chemically pure compounds. Oleic acid (1) from "new sunflower," linoleic acid (2) from soybean, linolenic acid (3) from linseed, erucic acid (4) from rape seed, and ricinoleic acid (5) from castor oil are most important for chemical transformations offering in addition to the carboxy group one or more C-C-double bonds. New plant oils containing fatty acids with new and interesting functionalities such as petroselinic acid (6) from Coriandrum sativum, calendic acid (7) from Calendula officinalis, alpha-eleostearic acid (8) from tung oil, santalbic acid (9) from Santalum album (Linn.), and vernolic acid (10) from Vernonia galamensis are becoming industrially available. The basic oleochemicals are free fatty acids, methyl esters, fatty alcohols, and fatty amines as well as glycerol as a by-product. Their interesting new industrial applications are the usage as environmentally friendly industrial fluids and lubricants, insulating fluid for electric utilities such as transformers and additive to asphalt. Modern methods of synthetic organic chemistry including enzymatic and microbial transformations were applied extensively to fatty compounds for the selective functionalization of the alkyl chain. Syntheses of long-chain diacids, omega-hydroxy fatty acids, and omega-unsaturated fatty acids as base chemicals derived from vegetable oils were developed. Interesting applications were opened by the epoxidation of C-C-double bonds giving the possibility of photochemically initiated cationic curing and access to polyetherpolyols. Enantiomerically pure fatty acids as part of the chiral pool of nature can be used for the synthesis of nonracemic building blocks. PMID:16604360

  4. Thematic mapper data quality and performance assessment in renewable resource/agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Macdonald, R. B. (Principal Investigator)

    1982-01-01

    A "quick look" investigation of the initial LANDSAT-4, thematic mapper (TM) scene received from Goddard Space Flight Center was performed to gain early insight into the characteristics of TM data. The initial scene, containing only the first four bands of the seven bands recorded by the TM, was acquired over the Detroit, Michigan, area on July 20, 1982. It yielded abundant information for scientific investigation. A wide variety of studies were conducted to assess all aspects of TM data. They ranged from manual analyses of image products to detect obvious optical, electronic, or mechanical defects to detailed machine analyses of the digital data content for evaluation of spectral separability of vegetative/nonvegetative classes. These studies were applied to several segments extracted from the full scene. No attempt was made to perform end-to-end statistical evaluations. However, the output of these studies do identify a degree of positive performance from the TM and its potential for advancing state-of-the-art crop inventory and condition assessment technology.

  5. A Project to Develop an Associate of Science Degree Curriculum in Renewable Energy Resources and Applications in Agriculture. Final Report, July 1, 1980-June 30, 1981.

    ERIC Educational Resources Information Center

    Allen, Keith; Fielding, Marvin R.

    A project was conducted at State Fair Community College (SFCC) in Sedalia, Missouri, to develop an associate of science degree curriculum in renewable energy resources and their application in agriculture. A pilot study, designed to verify and rate the importance of 138 competencies in fuel alcohol production and to ascertain employment…

  6. Resources

    MedlinePlus

    ... Breastfeeding - resources Bulimia - resources Burns - resources Cancer - resources Cerebral palsy - resources Celiac disease - resources Child abuse - resources Chronic fatigue syndrome - resources Chronic pain - ...

  7. "Green" films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films.

    PubMed

    Yang, Dong; Peng, Xinwen; Zhong, Linxin; Cao, Xuefei; Chen, Wei; Zhang, Xueming; Liu, Shijie; Sun, Runcang

    2014-03-15

    Epoxidized soybean oil (ESO), which is a biomass-derived resource, was first used as a novel plasticizer for ethyl cellulose (EC) film preparation. Surface morphologies, mechanical performances, thermal properties, oxygen and water vapor permeabilities of plasticized EC films were detected in detail to evaluate the plasticizing effect of ESO and explore the plastication mechanisms. Results showed that ESO was an effective plasticizer that outstripped conventional plasticizers, i.e. dibutyl phthalate (DBP) and triethyl citrate (TEC) in producing high-quality films. Especially, at plasticizer concentrations of 15-25%, ESO-EC films had preferable mechanical properties and better thermal stability, as well as non-flammability. In addition, the water vapor permeability of ESO-EC films was lower than that of traditional plasticized films. Their oxygen permeability was also remained in a low level. These outstanding performances were related to the relatively high molecular weight, hydrophobicity, chemical structure of ESO, and the intermolecular interactions between ESO and EC chains.

  8. Turning Renewable Resources into Recyclable Polymer: Development of Lignin-Based Thermoplastic

    SciTech Connect

    Saito, Tomonori; Brown, Rebecca H; Hunt, Marcus A; Pickel, Deanna L; Pickel, Joseph M; Messman, Jamie M; Baker, Frederick S; Keller, Martin; Naskar, Amit K

    2012-01-01

    Productive uses of lignin, the third most abundant natural polymer, have been sought for decades. One especially attractive possibility is that of developing value-added products including thermoplastics based on lignin. This possibility warrants special attention due to growth of the modern biofuel industries. However, the polydisperse molecular weight and hyper-branched structure of lignin has hindered the creation of high-performance biopolymers. Here, we report the preparation and characterization of novel lignin-based, partially carbon-neutral thermoplastics. We first altered the molecular weight of lignin, either by fractionation with methanol, or by formaldehyde crosslinking. A crosslinking of lignin increases the molecular weight, exhibiting Mn = 31000 g/mol, whereas that of native lignin is 1840 g/mol. Tuning the molecular weight of lignin enabled successful preparation of novel lignin-derived thermoplastics, when coupled with telechelic polybutadiene soft-segments at proper feed ratios. Characteristic to thermoplastic rubbers, free-standing films of the resulting copolymers exhibit two-phase morphology and associated relaxations in the dynamic mechanical loss spectrum. To our knowledge this article is the first report to demonstrate phase immiscibility, melt-processibility, and biphasic morphology of soft and hard segments in a lignin-based copolymer for all feed ratios of two macromolecular components. The use of higher molecular weight lignin enhanced the resulting shear modulus due to efficient network formation of telechelic polybutadiene bridges. The storage modulus in the rubbery plateau region increased with increasing lignin content. The successful synthesis of novel lignin-based thermoplastics will open a new pathway to biomass utilization and will help conserve petrochemicals.

  9. Wastewater use in algae production for generation of renewable resources: a review and preliminary results

    PubMed Central

    2013-01-01

    Microalgae feedstock production can be integrated with wastewater and industrial sources of carbon dioxide. This study reviews the literature on algae grown on wastewater and includes a preliminary analysis of algal production based on anaerobic digestion sludge centrate from the Howard F. Curren Advanced Wastewater Treatment Plant (HFC AWTP) in Tampa, Florida and secondary effluent from the City of Lakeland wastewater treatment facilities in Lakeland, Florida. It was demonstrated that a mixed culture of wild algae species could successfully be grown on wastewater nutrients and potentially scaled to commercial production. Algae have demonstrated the ability to naturally colonize low-nutrient effluent water in a wetland treatment system utilized by the City of Lakeland. The results from these experiments show that the algae grown in high strength wastewater from the HFC AWTP are light-limited when cultivated indoor since more than 50% of the outdoor illumination is attenuated in the greenhouse. An analysis was performed to determine the mass of algae that can be supported by the wastewater nutrients (mainly nitrogen and phosphorous) available from the two Florida cities. The study was guided by the growth and productivity data obtained for algal growth in the photobioreactors in operation at the University of South Florida. In the analysis, nutrients and light are assumed to be limited, while CO2 is abundantly available. There is some limitation on land, especially since the HFC AWTP is located at the Port of Tampa. The temperature range in Tampa is assumed to be suitable for algal growth year round. Assuming that the numerous technical challenges to achieving commercial-scale algal production can be met, the results presented suggest that an excess of 71 metric tons per hectare per year of algal biomass can be produced. Two energy production options were considered; liquid biofuels from feedstock with high lipid content, and biogas generation from anaerobic

  10. Wastewater use in algae production for generation of renewable resources: a review and preliminary results.

    PubMed

    Dalrymple, Omatoyo K; Halfhide, Trina; Udom, Innocent; Gilles, Benjamin; Wolan, John; Zhang, Qiong; Ergas, Sarina

    2013-01-05

    Microalgae feedstock production can be integrated with wastewater and industrial sources of carbon dioxide. This study reviews the literature on algae grown on wastewater and includes a preliminary analysis of algal production based on anaerobic digestion sludge centrate from the Howard F. Curren Advanced Wastewater Treatment Plant (HFC AWTP) in Tampa, Florida and secondary effluent from the City of Lakeland wastewater treatment facilities in Lakeland, Florida. It was demonstrated that a mixed culture of wild algae species could successfully be grown on wastewater nutrients and potentially scaled to commercial production. Algae have demonstrated the ability to naturally colonize low-nutrient effluent water in a wetland treatment system utilized by the City of Lakeland. The results from these experiments show that the algae grown in high strength wastewater from the HFC AWTP are light-limited when cultivated indoor since more than 50% of the outdoor illumination is attenuated in the greenhouse.An analysis was performed to determine the mass of algae that can be supported by the wastewater nutrients (mainly nitrogen and phosphorous) available from the two Florida cities. The study was guided by the growth and productivity data obtained for algal growth in the photobioreactors in operation at the University of South Florida. In the analysis, nutrients and light are assumed to be limited, while CO2 is abundantly available. There is some limitation on land, especially since the HFC AWTP is located at the Port of Tampa. The temperature range in Tampa is assumed to be suitable for algal growth year round. Assuming that the numerous technical challenges to achieving commercial-scale algal production can be met, the results presented suggest that an excess of 71 metric tons per hectare per year of algal biomass can be produced. Two energy production options were considered; liquid biofuels from feedstock with high lipid content, and biogas generation from anaerobic

  11. Pyrolysis mechanism for recycle renewable resource from polarizing film of waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-15

    Liquid crystal display (LCD) panels mainly consist of polarizing film, liquid crystal and glass substrates. In this study, a novel pyrolysis model and a pyrolysis mechanism to recover the reusable resource from polarizing film of waste LCD panels was proposed. Polarizing film and its major components, such as cellulose triacetate (TAC) and polyvinyl alcohol (PVA) were pyrolyzed, respectively, to model the pyrolysis process. The pyrolysis process mainly generated a large ratio of oil, a few gases and a little residue. Acetic acid was the main oil product and could be easily recycled. The pyrolysis mechanism could be summarized as follows: (i) TAC, the main component of polarizing film, was heated and generated active TAC with a low polymerization, and then decomposed into triacetyl-d-glucose. (ii) Some triacetyl-d-glucose generated triacetyl-d-mannosan and its isomers through an intramolecular dehydration, while most triacetyl-d-glucose generated the main oil product, namely acetic acid, through a six-member cyclic transition state. (iii) Meanwhile, other products formed through a series of bond cleavage, dehydration, dehydrogenation, interesterification and Diels-Alder cycloaddition. This study could contribute significantly to understanding the polarizing film pyrolysis performance and serve as guidance for the future technological parameters control of the pyrolysis process.

  12. Methanol from urban refuse: a liquid fuel from a renewable resource

    SciTech Connect

    Arnason, B.

    1983-12-01

    Despite the recent glut in world oil markets the long run need to develop alternatives to petroleum derived fuels is still apparent. The long lead times required to alter the economy's energy infrastructure and inherent uncertainties about future developments point to the need for alternatives with built-in flexibilities. Methanol can be produced from any carbonaceous matter (natural gas, heavy fuel oil, coal, peat, wood, urban refuse, etc.) and used in place of most conventional fuels. Thus, methanol meets one of the main requirements a candidate future energy carrier must satisfy. Furthermore, whereas a massive synthetic fuels industry based on coal or oil shale could threaten the stability of the global climate, the use of methanol produced from biomass at a sustainable rate would have a minimal impact on the atmospheric carbon dioxide level. In the near term, biomass-based methanol faces two obstacles. First, no established markets exist for fuel methanol. Second, at present wood, which is the main component of the biomass resource; may be too costly a feedstock for methanol production. These are among the problems addressed in this paper. Urban refuse is one form of biomass that does not suffer the cost disadvantage of wood. Rising costs of land and environmental regulations have made landfilling an increasingly unattractive method of waste disposal. Alternative means of waste disposal, including incineration, have proved both expensive and polluting. It is proposed that the production of methanol is and economical and environmentally safe method for disposing of municipal solid waste (MSW) and, therefore, a promising strategy for the early commercialization of advanced biomass conversion technologies.

  13. Studies of the Kaneda Reaction in the Synthesis of Oocydin A/Haterumalide NA and Polyurethanes from Renewable Resources: Polyols from Soybean Oil

    NASA Astrophysics Data System (ADS)

    Schmit, Amanda L.

    This thesis is broken down into two main projects. First, studies of the Kaneda reaction in the synthesis of oocydin A/haterumalide NA and, second, polyurethanes from renewable resources: polyols from soybean oil. In Chapter I, the stereoselectivity of the Kaneda reaction was studied. The driving interest stemmed from the hypothesis that one epimer of an acyclic precursor could give the desired bicyclic core of oocydin A/haterumalide NA. In Chapter II, the work toward new polyols from soybean oil is discussed. Renewable content in polyurethanes on the market is still low because of economics and performance. Our ideas for new polyol systems are presented.

  14. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model

    SciTech Connect

    Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

    2012-06-01

    The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

  15. Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN.

    PubMed

    Papageorgiou, George Z; Tsanaktsis, Vasilios; Bikiaris, Dimitrios N

    2014-05-01

    Poly(ethylene-2,5-furandicarboxylate) (PEF) is a new alipharomatic polyester that can be prepared from monomers derived from renewable resources like furfural and hydroxymethylfurfural. For this reason it has gained high interest recently. In the present work it was synthesized from the dimethylester of 2,5-furandicarboxylic acid and ethylene glycol by applying the two-stage melt polycondensation method. The thermal behavior of PEF was studied in comparison to its terephthalate and naphthalate homologues poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN), which were also synthesized following the same procedure. The equilibrium melting point of PEF was found to be 265 °C while the heat of fusion for the pure crystalline PEF was estimated to be about 137 J g(-1). The crystallization kinetics was analyzed using various models. PET showed faster crystallization rates than PEN and this in turn showed faster crystallization than PEF, under both isothermal and non-isothermal conditions. The spherulitic morphology of PEF during isothermal crystallization was investigated by polarized light microscopy (PLM). A large nucleation density and a small spherulite size were observed for PEF even at low supercoolings, in contrast to PET or PEN. Thermogravimetric analysis indicated that PEF is thermally stable up to 325 °C and the temperature for the maximum degradation rate was 438 °C. These values were a little lower than those for PET or PEN.

  16. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  17. Renewable energy annual 1996

    SciTech Connect

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  18. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint

    SciTech Connect

    Wilcox, S. M.; McCormack, P.

    2011-04-01

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  19. Food Resources of Stream Macronivertebrates Determined by Natural-Abundance stable C and N Isotopes and a 15N Tracer Addition

    SciTech Connect

    Mulholland, P. J.

    2000-01-01

    Trophic relationships were examined using natural-abundance {sup 13}C and {sup 15}N analyses and a {sup 15}N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the {sup 15}N-tracer addition experiment, we added {sup 15}NH{sub 4} to stream water over a 6-wk period in early spring, and measured {sup 15}N:{sup 14}N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the {sup 15}N addition provided data on natural-abundance {sup 13}C:{sup 12}C and {sup 15}N:{sup 14}N ratios. The natural-abundance {sup 15}N analysis proved to be of limited value in identifying food resources of macroinvertebrates because {sup 15}N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the {sup 15}N tracer results were not definitive. The {sup 15}N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N-turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the

  20. Fuels from renewable resources

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Schnell, C.; Gieseler, G.

    Consideration is given to fuel substitution based on regenerative plants. Methanol can be produced from regenerative plants by gasification followed by the catalytic hydration of carbon oxides. Ethanol can be used as a replacement fuel in gasoline and diesel engines and its high-knock rating allows it to be mixed with lead-free gasoline. Due to the depletion of oil and gas reserves, fermentation alcohol is being considered. The raw materials for the fermentation process can potentially include: (1) sugar (such as yeasts, beet or cane sugar); (2) starch (from potatoes or grain) and (3) cellulose which can be hydrolized into glucose for fermentation.

  1. Objective criteria ranking framework for renewable energy policy decisions in Nigeria

    NASA Astrophysics Data System (ADS)

    K, Nwofor O.; N, Dike V.

    2016-08-01

    We present a framework that seeks to improve the objectivity of renewable energy policy decisions in Nigeria. It consists of expert ranking of resource abundance, resource efficiency and resource environmental comfort in the choice of renewable energy options for large scale power generation. The rankings are converted to a more objective function called Resource Appraisal Function (RAF) using dependence operators derived from logical relationships amongst the various criteria. The preferred option is that with the highest average RAF coupled with the least RAF variance. The method can be extended to more options, more criteria, and more opinions and can be adapted for similar decisions in education, environment and health sectors.

  2. Reexamining Sample Size Requirements for Multivariate, Abundance-Based Community Research: When Resources are Limited, the Research Does Not Have to Be.

    PubMed

    Forcino, Frank L; Leighton, Lindsey R; Twerdy, Pamela; Cahill, James F

    2015-01-01

    Community ecologists commonly perform multivariate techniques (e.g., ordination, cluster analysis) to assess patterns and gradients of taxonomic variation. A critical requirement for a meaningful statistical analysis is accurate information on the taxa found within an ecological sample. However, oversampling (too many individuals counted per sample) also comes at a cost, particularly for ecological systems in which identification and quantification is substantially more resource consuming than the field expedition itself. In such systems, an increasingly larger sample size will eventually result in diminishing returns in improving any pattern or gradient revealed by the data, but will also lead to continually increasing costs. Here, we examine 396 datasets: 44 previously published and 352 created datasets. Using meta-analytic and simulation-based approaches, the research within the present paper seeks (1) to determine minimal sample sizes required to produce robust multivariate statistical results when conducting abundance-based, community ecology research. Furthermore, we seek (2) to determine the dataset parameters (i.e., evenness, number of taxa, number of samples) that require larger sample sizes, regardless of resource availability. We found that in the 44 previously published and the 220 created datasets with randomly chosen abundances, a conservative estimate of a sample size of 58 produced the same multivariate results as all larger sample sizes. However, this minimal number varies as a function of evenness, where increased evenness resulted in increased minimal sample sizes. Sample sizes as small as 58 individuals are sufficient for a broad range of multivariate abundance-based research. In cases when resource availability is the limiting factor for conducting a project (e.g., small university, time to conduct the research project), statistically viable results can still be obtained with less of an investment.

  3. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    SciTech Connect

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-03-12

    Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they

  4. A realizable renewable energy future

    PubMed

    Turner

    1999-07-30

    The ability of renewable resources to provide all of society's energy needs is shown by using the United States as an example. Various renewable systems are presented, and the issues of energy payback, carbon dioxide abatement, and energy storage are addressed. Pathways for renewable hydrogen generation are shown, and the implementation of hydrogen technologies into the energy infrastructure is presented. The question is asked, Should money and energy be spent on carbon dioxide sequestration, or should renewable resources be implemented instead.

  5. Renewable energy annual 1995

    SciTech Connect

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  6. A Phenomenological Study of the Metal-Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources

    SciTech Connect

    Idriss, H.; Llorca, J; Chan, S; Blackford, M; Pas, S; Hill, A; Alamgir, F; Rettew, R; Petersburg, C; Barteau, M

    2008-01-01

    The truth about Cats: The metal-oxide interface of a Pd-Rh/CeO{sub 2} catalyst was studied in the context of developing active, selective and durable solid catalytic materials for the production of hydrogen from renewables. The presence of a stable contact between finely dispersed transition-metal clusters (Pd and Rh) on the nanoparticles of the CeO{sub 2} support leads to a highly active and stable catalyst for the steam reforming of ethanol.

  7. Renewable energy and utility regulation

    SciTech Connect

    Not Available

    1991-04-10

    This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

  8. Renewable energy and utility regulation

    SciTech Connect

    Not Available

    1991-04-10

    This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

  9. Financing renewable energy for Village Power application

    SciTech Connect

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  10. Wood fuel technologies and group-oriented Timber Stand Improvement Program: model for waste wood utilization and resource renewal

    SciTech Connect

    Not Available

    1980-01-01

    Progress is reported on the following: educating and assisting landowners in the most efficient and profitable use of wood resources; developing local timber resources as energy alternatives by representing collective interests to Consumers Power, the woodchip industry, firewood retailers, country residents, and woodlot owners; and providing public information on the economics and methods of wood heat as a supplemental energy source. (MHR)

  11. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  12. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect

    Warwick, William M.

    2010-09-30

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  13. 76 FR 36532 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ..., Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of... Resources, LLC, Invenergy Wind North America LLC, and Horizon Wind Energy LLC (Complainants) filed a...

  14. Programs in Renewable Energy

    SciTech Connect

    Not Available

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  15. Renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan

    2016-07-01

    The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.

  16. An optimal renewable energy mix for Indonesia

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Patrizio, Piera; Yowargana, Ping; Kraxner, Florian

    2016-04-01

    Indonesia has experienced a constant increase of the use of petroleum and coal in the power sector, while the share of renewable sources has remained stable at 6% of the total energy production during the last decade. As its domestic energy demand undeniably continues to grow, Indonesia is committed to increase the production of renewable energy. Mainly to decrease its dependency on fossil fuel-based resources, and to decrease the anthropogenic emissions, the government of Indonesia has established a 23 percent target for renewable energy by 2025, along with a 100 percent electrification target by 2020 (the current rate is 80.4 percent). In that respect, Indonesia has abundant resources to meet these targets, but there is - inter alia - a lack of proper integrated planning, regulatory support, investment, distribution in remote areas of the Archipelago, and missing data to back the planning. To support the government of Indonesia in its sustainable energy system planning, a geographic explicit energy modeling approach is applied. This approach is based on the energy systems optimization model BeWhere, which identifies the optimal location of energy conversion sites based on the minimization of the costs of the supply chain. The model will incorporate the existing fossil fuel-based infrastructures, and evaluate the optimal costs, potentials and locations for the development of renewable energy technologies (i.e., wind, solar, hydro, biomass and geothermal based technologies), as well as the development of biomass co-firing in existing coal plants. With the help of the model, an optimally adapted renewable energy mix - vis-à-vis the competing fossil fuel based resources and applicable policies in order to promote the development of those renewable energy technologies - will be identified. The development of the optimal renewable energy technologies is carried out with special focus on nature protection and cultural heritage areas, where feedstock (e.g., biomass

  17. Assessment Planning and Evaluation of Renewable Energy Resources: an Interactive Computer Assisted Procedure. [hydroelectricity, biomass, and windpower in the Pittsfield metropolitan region, Massachusetts

    NASA Technical Reports Server (NTRS)

    Aston, T. W.; Fabos, J. G.; Macdougall, E. B.

    1982-01-01

    Adaptation and derivation were used to develop a procedure for assessing the availability of renewable energy resources on the landscape while simultaneously accounting for the economic, legal, social, and environmental issues required. Done in a step-by-step fashion, the procedure can be used interactively at the computer terminals. Its application in determining the hydroelectricity, biomass, and windpower in a 40,000 acre study area of Western Massachusetts shows that: (1) three existing dam sites are physically capable of being retrofitted for hydropower; (2) each of three general areas has a mean annual windspeed exceeding 14 mph and is conductive to windpower; and (3) 20% of the total land area consists of prime agricultural biomass while 30% of the area is prime forest biomass land.

  18. Renewing U.S. Mathematics: Critical Resources for the Future. Report of the Ad Hoc Committee on Resources for the Mathematical Sciences.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report assesses the adequacy of United States resources in support of mathematics. Section I (the introduction) considers the support of research, the scope of mathematics, and relationships of mathematics to computer science and education. Section II discusses strengths and opportunities in the mathematical sciences by considering…

  19. Building a sustainable market for renewables

    SciTech Connect

    Rader, N.

    1996-12-31

    Opinions regarding marketing approaches for electricity generation from renewable resources are presented in the paper. The Renewables Portfolio Standard of the California Public Utilities Commission is described. This system is based on renewable energy credits. Other marketing approaches, including surcharges, auctioned renewables credit, green pricing, and green marketing are also assessed. It is concluded that the Renewables Portfolio Standard creates a stable economic environment for the renewable energy industries.

  20. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  1. Potential impacts of electric power production utilizing natural gas, renewables and carbon capture and sequestration on US Freshwater resources.

    PubMed

    Tidwell, Vincent C; Malczynski, Leonard A; Kobos, Peter H; Klise, Geoffrey T; Shuster, Erik

    2013-08-01

    Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm(3)/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm(3)/d of water savings.

  2. Renewable Chemicals: Dehydroxylation of Glycerol and Polyols

    PubMed Central

    ten Dam, Jeroen; Hanefeld, Ulf

    2011-01-01

    The production of renewable chemicals is gaining attention over the past few years. The natural resources from which they can be derived in a sustainable way are most abundant in sugars, cellulose and hemicellulose. These highly functionalized molecules need to be de-functionalized in order to be feedstocks for the chemical industry. A fundamentally different approach to chemistry thus becomes necessary, since the traditionally employed oil-based chemicals normally lack functionality. This new chemical toolbox needs to be designed to guarantee the demands of future generations at a reasonable price. The surplus of functionality in sugars and glycerol consists of alcohol groups. To yield suitable renewable chemicals these natural products need to be defunctionalized by means of dehydroxylation. Here we review the possible approaches and evaluate them from a fundamental chemical aspect. PMID:21887771

  3. Renewable chemicals: dehydroxylation of glycerol and polyols.

    PubMed

    ten Dam, Jeroen; Hanefeld, Ulf

    2011-08-22

    The production of renewable chemicals is gaining attention over the past few years. The natural resources from which they can be derived in a sustainable way are most abundant in sugars, cellulose and hemicellulose. These highly functionalized molecules need to be de-functionalized in order to be feedstocks for the chemical industry. A fundamentally different approach to chemistry thus becomes necessary, since the traditionally employed oil-based chemicals normally lack functionality. This new chemical toolbox needs to be designed to guarantee the demands of future generations at a reasonable price. The surplus of functionality in sugars and glycerol consists of alcohol groups. To yield suitable renewable chemicals these natural products need to be defunctionalized by means of dehydroxylation. Here we review the possible approaches and evaluate them from a fundamental chemical aspect. PMID:21887771

  4. Renewable energy scenario in India: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav

    2016-10-01

    Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources

  5. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. PMID:24831706

  6. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production.

  7. Economic exploitation of non-renewable resources in a centrally planned economy: an investigation of the use of natural resources in the USSR

    SciTech Connect

    McKinney, J.A.R.

    1983-01-01

    The time pattern of extraction and consumption chosen in the centrally-planned Soviet economy is the result of decisions made at many levels of the economic hierarchy in response to a variety of signals. In this dissertation, the conditions for the optimal exploitation of nonrenewable resources first derived in Harol Hotelling's classic article are used as a standard against which to judge Soviet practices. The familiar Western theory is adapted to describe the decision-making process in the Soviet extractive branches in order to investigate the hypothesis that a number of features of the Soviet economy are likely to lead to a sub-optimal time pattern of extraction from the country's mineral endowment. The consequences of Soviet policies for the depth of extraction and the volume and allocation of exploration activity are also examined. Although the analysis yields no definite conclusions about the net effect of Soviet resource policies and practices on the time pattern of extraction, there are nonetheless strong reasons for believing that the Soviets have not carried out sufficient conservation. In addition, they appear not to have used their mineral deposits sufficiently intensively, nor to have carried out the right kinds of exploration.

  8. Implications of the Regional Haze Rule on Renewable and Wind Energy Development on Native American Lands in the West

    NASA Astrophysics Data System (ADS)

    Acker, Thomas L.; Auberle, William M.; Duque, Earl P. N.; Jeffery, William D.; Laroche, David R.; Masayesva, Virgil; Smith, Dean H.

    2003-10-01

    A study conducted at Northern Arizona University investigated the barriers and opportunities facing Native American tribes in the West when considering development of their renewable energy resources in order to reduce regional haze. This article summarizes some of the findings of that work with special attention to wind energy. Background information is presented concerning the Regional Haze Rule and the Western Regional Air Partnership, and some of the circumstances surrounding development of tribal energy resources. An assessment of tribal energy issues revealed that many Native American tribes are interested in developing their renewable resources. However, this development should occur within the context of maintaining and strengthening their cultural, social, economic and political integrity. Furthermore, it is shown that Native American lands possess an abundant wind resource. A list of potential actions in which tribes may participate prior to or during development of their wind or renewable resources is provided.

  9. Partitioning of food resources amongst 18 abundant benthic carnivorous fish species in marine waters on the lower west coast of Australia.

    PubMed

    Platell, M E.; Potter, I C.

    2001-06-15

    The volumetric contributions made by prey and plant material to the diets of 4 elasmobranch and 14 teleost species, collected seasonally by trawling from waters along ca. 200 km of the lower west coast of Australia, have been compared. These benthic carnivores, which were all abundant and collectively contributed 83% to the total number of fish caught, represented nine families (Urolophidae, Scorpaenidae, Triglidae, Platycephalidae, Sillaginidae, Carangidae, Gerreidae, Mullidae and Pempherididae). Some species were numerous in both shallow (5-15 m) and deeper (20-35 m) waters and in both northern and southern regions, whereas others were largely confined to one of these water depths or regions. Comparisons between the diets of the different species, which utilised data collected from individuals throughout the study area, demonstrated that the dietary composition of any given species was almost invariably significantly different from that of every other species. This partly reflected the fact that, while errant polychaetes, gammarid amphipods and tanaids were ingested by all species, their contributions to the diets of the different species varied. Furthermore, echinoderms contributed to the diets of just nine species, and this was substantial only in the case of two sillaginid species, while teleosts were never consumed by six species and only made a marked contribution to the diets of the single species of platycephalid. The diet of each species underwent size-related changes, reflecting a shift from the consumption by smaller fish of prey such as amphipods, mysids and copepods, to the ingestion by larger fish of prey such as polychaetes, carid decapods, isopods and small teleosts. The interspecific and intraspecific differences in dietary compositions would spread the food resources amongst and within species, thereby reducing the potential for competition for those resources within the fish community. Non-metric multi-dimensional scaling (MDS) ordination plots

  10. Progress in making hot dry rock geothermal energy a viable renewable energy resource for America in the 21. century

    SciTech Connect

    Duchane, D.V.

    1996-01-01

    An enormous geothermal energy resource exists in the form of rock at depth that is hot but essentially dry. For more than two decades, work has been underway at the Los Alamos National Laboratory to develop and demonstrate the technology to transport the energy in hot dry rock (HDR) to the surface for practical use. During the 1980`s, the world`s largest, deepest and hottest HDR reservoir was created at the Fenton Hill HDR test facility in northern New Mexico. The reservoir is centered in rock at a temperature of about 460 F at a depth of about 11,400 ft. After mating the reservoir to a fully automated surface plant, heat was mined at Fenton Hill for a total period of almost a year in a series of flow tests conducted between 1992 and 1995. These tests addressed the major questions regarding the viability of long-term energy extraction from HDR. The steady-state flow tests at Fenton Hill showed that energy can be produced from an HDR reservoir on a routine basis and that there are no major technical obstacles to implementation of this heat mining technology. Additional brief special flow tests also demonstrated that the energy output from HDR systems can be rapidly increased in a controlled manner to meet sudden changes in power demand.

  11. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  12. Impacts of a 15% Renewable Portfolio Standard

    EIA Publications

    2007-01-01

    This analysis responds to a request from Senator Jeff Bingaman that the Energy Information Administration (EIA) analyze a renewable portfolio standard (RPS) requiring that 15% of U.S. electricity sales be derived from qualifying renewable energy resources.

  13. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  14. Renewable energy development in China

    SciTech Connect

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  15. Renewing governance.

    PubMed

    Loos, Gregory P

    2003-01-01

    Globalization's profound influence on social and political institutions need not be negative. Critics of globalization have often referred to the "Impossible Trinity" because decision-making must 1. respect national sovereignty, 2. develop and implement firm regulation, and 3. allow capital markets to be as free as possible. To many, such goals are mutually exclusive because history conditions us to view policy-making and governance in traditional molds. Thus, transnational governance merely appears impossible because current forms of governance were not designed to provide it. The world needs new tools for governing, and its citizens must seize the opportunity to help develop them. The rise of a global society requires a greater level of generality and inclusion than is found in most policy bodies today. Politicians need to re-examine key assumptions about government. States must develop ways to discharge their regulatory responsibilities across borders and collaborate with neighboring jurisdictions, multilateral bodies, and business. Concepts such as multilateralism and tripartism show great promise. Governments must engage civil society in the spirit of shared responsibility and democratic decision-making. Such changes will result in a renewal of the state's purpose and better use of international resources and expertise in governance. PMID:17208717

  16. 30 CFR 585.427 - How long is a renewal?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How long is a renewal? 585.427 Section 585.427... Administration Lease Or Grant Renewal § 585.427 How long is a renewal? BOEM will set the term of a renewal at the... renewal will continue for as long as the associated activities are conducted and facilities...

  17. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    SciTech Connect

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  18. Renewable Energy Alternatives in Maryland.

    ERIC Educational Resources Information Center

    Welsh, Greg E.; McClellan, Deborah A. S.

    This handbook discusses the renewable energy resources suitable for use in Maryland. It follows a question and answer format with sections about the following alternative renewable energy sources; solar, wind, wood, water, bio-gas/methane, and geothermal. Each section includes a list of recommended readings, appropriate agencies or organizations,…

  19. Seaweed cultivation for renewable resources

    SciTech Connect

    Bird, K.T.; Benson, P.H.

    1987-01-01

    In the 1970's and 80's, major research and development programs were launched to explore the possibility of using marine biomass as a source of energy. This volume, not only reviews the accomplishments of the aforementioned programs, but also describes how this research relates to seaweed cultivation for other products, such as food, feed, and high value chemicals. Topics covered include the features of marine biomass production, biotechnological manipulations of marine algae, and marine biomass conversion to energy, as well as economics. The chapters synthesize a large number of technical reports, journal articles, symposia and conference proceedings and technology transfer meetings.

  20. Sugarbeet as a renewable resource

    SciTech Connect

    Edye, L.A.; Clarke, M.A.

    1995-12-01

    Sugarbeet (Beta vulgaris) is produced annually on the order of 400 million tonnes, in temperate climates. The primary product is sugar (sucrose); other products include feeds (molasses and beet pulp), and raffinose, pectin and arabinan. Recently, production of paper from sugarbeet pulp has begun. A wide range of non-food products is available through microbial and chemical reactions on sugarbeet juices, molasses and sugars. Products of microbial processes (chemical transformations are discussed in the companion presentation on sugarcane) include polymers to use as biodegradable plastics (pullulans, polyhydroxyalkanoates, polylactide) and others for food and non food use (levan, dextran). Basic chemicals, including citric acid and lactic acid, and amino acids, notably lysine, are produced from sugarbeet sources. The production of ethanol, as fuel or as beverage, is well known. Products and processes are outlined, and recent developments are emphasized.

  1. Sugarcane as a renewable resource

    SciTech Connect

    Clarke, M.A.; Edye, L.A.

    1995-12-01

    Sugarcane (Saccharum officinarum) is grown, generally as a perennial crop, in tropical and subtropical areas; some 750 million tonnes are produced each year. Food, feed and energy are the major products of the sugarcane plant; sugarcane fiber, bagasse, fuels the cane processing plants and provides electricity to local grids through cogeneration. A range of chemicals and polymers is available from process streams and sugars. Microbial products are discussed in the comparison paper on sugarbeet. Chemical transformations reviewed herein include production of sucrose mono-, di- and poly-esters, polyurethanes, carboxylic acid derivatives, and thermally stable polymers. Processes and product will be reviewed.

  2. Livestock waste: a renewable resource

    SciTech Connect

    Not Available

    1981-01-01

    The 118 papers presented at this conference provide guidelines for the design of livestock waste management systems. Topics discussed include waste collection, economics, lagoons, land application, methane generation, odor control, refeeding, runoff and storage, and waste treatment for stabilization. Twenty papers, dealing mostly with methane production, have been abstracted separately. 1166 references, 321 figures, 320 tables.

  3. [Institutional Renewal].

    ERIC Educational Resources Information Center

    Brown, Peggy, Ed.

    1983-01-01

    The theme of this journal issue is "Institutional Renewal." Projects designed to address the issues of the 1980s at 18 colleges are described, and 15 definitions of institutional renewal are presented. Participating colleges were provided expert advice through the Association of American College's (AAC) Project Lodestar (renamed Consultation and…

  4. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    NASA Astrophysics Data System (ADS)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  5. Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape simplification and natural habitat loss can negatively affect wild bees. Alternatively, anthropogenic land-use change can potentially diversify landscapes to create complementary habitats that increase overall resource continuity and diversity. We examined the effects of landscape composit...

  6. Renewable energy.

    PubMed

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  7. Our living resources: a report to the nation on the distribution, abundance, and health of U.S. plants, animals, and ecosystems

    USGS Publications Warehouse

    LaRoe, Edward T.; Farris, Gaye S.; Puckett, Catherine E.; Doran, Peter D.; Mac, Michael J.

    1995-01-01

    Another purpose of this report is to help identify gaps in existing resource inventory and monitoring programs. It contains information collected by a variety of existing research and monitoring efforts by scientists in the National Biological Service, other federal and state agencies, academia, and the private sector. The programs that produced the information in this document were not developed in a coordinated fashion to produce an integrated, comprehensive picture of the status and trends of our nation’s resources; rather, each was developed for its own particular purpose, usually to help manage a specific resource. Thus, even though articles vary greatly in scope, design, and purpose, this report has identified and attempted to combine many of the existing information sources into a broad picture of the condition of our resources. In the future, these sources will be complemented by additional information from other sources—such as state agencies and other inventory and monitoring studies—to fill in the gaps of knowledge and to provide a more complete understanding of the status of our living resources.

  8. Thorium: Crustal abundance, joint production, and economic availability

    DOE PAGES

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuelmore » cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.« less

  9. Thorium: Crustal abundance, joint production, and economic availability

    SciTech Connect

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuel cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.

  10. 30 CFR 774.15 - Permit renewals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Permit renewals. 774.15 Section 774.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL...; RENEWAL; TRANSFER, ASSIGNMENT, OR SALE OF PERMIT RIGHTS; POST-PERMIT ISSUANCE REQUIREMENTS; AND...

  11. Integrated renewable energy networks

    NASA Astrophysics Data System (ADS)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Spencer, L.

    2015-12-01

    This multidisciplinary research is focused on studying implementation of diverse renewable energy networks. Our modern economy now depends heavily on large-scale, energy-intensive technologies. A transition to low carbon, renewable sources of energy is needed. We will develop a procedure for designing and analyzing renewable energy systems based on the magnitude, distribution, temporal characteristics, reliability and costs of the various renewable resources (including biomass waste streams) in combination with various measures to control the magnitude and timing of energy demand. The southern Canadian prairies are an ideal location for developing renewable energy networks. The region is blessed with steady, westerly winds and bright sunshine for more hours annually than Houston Texas. Extensive irrigation agriculture provides huge waste streams that can be processed biologically and chemically to create a range of biofuels. The first stage involves mapping existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation, such as ridges, rooftops and valley walls, will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids.

  12. Changes in intrapopulation resource use patterns of an endangered raptor in response to a disease-mediated crash in prey abundance.

    PubMed

    Moleón, Marcos; Sebastián-González, Esther; Sánchez-Zapata, José A; Real, Joan; Pires, Mathias M; Gil-Sánchez, José M; Bautista, Jesús; Palma, Luís; Bayle, Patrick; Guimarães, Paulo R; Beja, Pedro

    2012-11-01

    1. A long-standing question in ecology is how natural populations respond to a changing environment. Emergent optimal foraging theory-based models for individual variation go beyond the population level and predict how its individuals would respond to disturbances that produce changes in resource availability. 2. Evaluating variations in resource use patterns at the intrapopulation level in wild populations under changing environmental conditions would allow to further advance in the research on foraging ecology and evolution by gaining a better idea of the underlying mechanisms explaining trophic diversity. 3. In this study, we use a large spatio-temporal scale data set (western continental Europe, 1968-2006) on the diet of Bonelli's Eagle Aquila fasciata breeding pairs to analyse the predator trophic responses at the intrapopulation level to a prey population crash. In particular, we borrow metrics from studies on network structure and intrapopulation variation to understand how an emerging infectious disease [the rabbit haemorrhagic disease (RHD)] that caused the density of the eagle's primary prey (rabbit Oryctolagus cuniculus) to dramatically drop across Europe impacted on resource use patterns of this endangered raptor. 4. Following the major RHD outbreak, substantial changes in Bonelli's Eagle's diet diversity and organisation patterns at the intrapopulation level took place. Dietary variation among breeding pairs was larger after than before the outbreak. Before RHD, there were no clusters of pairs with similar diets, but significant clustering emerged after RHD. Moreover, diets at the pair level presented a nested pattern before RHD, but not after. 5. Here, we reveal how intrapopulation patterns of resource use can quantitatively and qualitatively vary, given drastic changes in resource availability. 6. For the first time, we show that a pathogen of a prey species can indirectly impact the intrapopulation patterns of resource use of an endangered predator.

  13. RCS auditor trainee manual: renewable resource measures (revised). United States Department of Energy Technical Assistance Program for the Residential Conservation Service Program

    SciTech Connect

    1980-10-01

    This manual describes the use of renewable measures and the procedures used to audit for them. Included are active solar space and water heating systems, passive solar space and water heating systems, and wind energy systems. Sample audit forms are completed for a house in Oklahoma City, Oklahoma. A summary of installation standards for active solar systems is included. (WHK)

  14. 30 CFR 285.427 - How long is a renewal?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How long is a renewal? 285.427 Section 285.427... Grant Renewal § 285.427 How long is a renewal? The MMS will set the term of a renewal at the time of... continue for as long as the associated activities are conducted and facilities properly maintained and...

  15. DSM renewable opportunities in Boston

    SciTech Connect

    Tennis, M.W.; Nogee, A.J.; Coakley, S.; Schoengold, D.

    1995-11-01

    The Union of Concerned Scientists (UCS), in conjunction with MSB Energy Associates, conducted a study for the Boston Edison Demand-Side Management (DSM) Settlement Board on the potential for DSM renewables in the Boston area. DSM renewables are resources that can be used in a distributed utility approach to avoid transmission and distribution (T and D) costs, as well as costs associated with operating and building power plants. The results show that avoided costs in areas with deferrable T and D investments can be nearly twice as high as system-wide average avoided costs. As a result, renewable technologies that might not be considered cost effective as DSM under system-wide average criteria, can produce large shavings for the utility and its customers. Adopting a deliberate program designed to provide sustained orderly development of these renewables is essential in order for renewable technologies to achieve the maximum level of cost-effectiveness and net savings.

  16. 2012 Renewable Energy Data Book

    DOE Data Explorer

    The 2012 Renewable Energy Data Book is 128 pages of data in tables, figures and charts, and text. It provides a look at resources and usage for wind, solar, geothermal, hydro, hydrogen, and biopower. Developed at the National Renewable Energy Laboratory (NREL) for DOE's Office of Energy Efficiency and Renewable Energy (EERE), it was produced by Rachel Gelman, edited by Mike Meshek, and designed by Stacy Buchanan and Erica Augustine and released in October, 2013. Report number for this data book is DOE/GO-102013-4291.

  17. Renewable Energy

    NASA Astrophysics Data System (ADS)

    Boyle, Godfrey

    2004-05-01

    Stimulated by recent technological developments and increasing concern over the sustainability and environmental impact of conventional fuel usage, the prospect of producing clean, sustainable power in substantial quantities from renewable energy sources arouses interest around the world. This book provides a comprehensive overview of the principal types of renewable energy--including solar, thermal, photovoltaics, bioenergy, hydro, tidal, wind, wave, and geothermal. In addition, it explains the underlying physical and technological principles of renewable energy and examines the environmental impact and prospects of different energy sources. With more than 350 detailed illustrations, more than 50 tables of data, and a wide range of case studies, Renewable Energy, 2/e is an ideal choice for undergraduate courses in energy, sustainable development, and environmental science. New to the Second Edition ·Full-color design ·Updated to reflect developments in technology, policy, attitides ·Complemented by Energy Systems and Sustainability edited by Godfrey Boyle, Bob Everett and Janet Ramage, all of the Open University, U.K.

  18. Renewing Schools.

    ERIC Educational Resources Information Center

    McChesney, Jim

    1997-01-01

    This publication reviews works on educational reform that represent attempts to do more than merely respond in knee-jerk fashion to political pressure for reform. Bruce Joyce and Emily Calhoun, in "Learning Experiences in School Renewal: An Exploration of Five Successful Programs" (Eugene, Oregon: ERIC Clearinghouse on Educational Management,…

  19. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers.

    PubMed

    Llevot, Audrey; Dannecker, Patrick-Kurt; von Czapiewski, Marc; Over, Lena C; Söyler, Zafer; Meier, Michael A R

    2016-08-01

    Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources. PMID:27355829

  20. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers.

    PubMed

    Llevot, Audrey; Dannecker, Patrick-Kurt; von Czapiewski, Marc; Over, Lena C; Söyler, Zafer; Meier, Michael A R

    2016-08-01

    Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources.

  1. Renewable energy annual 1997. Volume 1

    SciTech Connect

    1998-02-01

    This report presents information on renewable energy consumption, capacity, and electricity generation data, as well as data on US solar thermal and photovoltaic collector manufacturing activities. The renewable energy resources included in the report are: biomass (wood, ethanol, and biodiesel); municipal solid waste; geothermal; wind; and solar (solar thermal and photovoltaic). The first chapter of the report provides an overview of renewable energy use and capability from 1992 through 1996. It contains renewable energy consumption, capacity, and electricity generation data, as well as descriptive text. Chapter 2 presents current (through 1996) information on the US solar energy industry. A glossary of renewable energy terms is also included. 15 figs., 42 tabs.

  2. Solid biopolymer electrolytes came from renewable biopolymer

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Xingxiang; Qiao, Zhijun; Liu, Haihui

    2009-07-01

    Solid polymer electrolytes (SPEs) have attracted many attentions as solid state ionic conductors, because of their advantages such as high energy density, electrochemical stability, and easy processing. SPEs obtained from starch have attracted many attentions in recent years because of its abundant, renewable, low price, biodegradable and biocompatible. In addition, the efficient utilization of biodegradable polymers came from renewable sources is becoming increasingly important due to diminishing resources of fossil fuels as well as white pollution caused by undegradable plastics based on petroleum. So N, N-dimethylacetamide (DMAc) with certain concentration ranges of lithium chloride (LiCl) is used as plasticizers of cornstarch. Li+ can complexes with the carbonyl atoms of DMAc molecules to produce a macro-cation and leave the Cl- free to hydrogen bond with the hydroxyl or carbonyl of starch. This competitive hydrogen bond formation serves to disrupt the intra- and intermolecular hydrogen bonding existed in starch. Therefore, melt extrusion process conditions are used to prepare conductive thermoplastic starch (TPS). The improvements of LiCl concentration increase the water absorption and conductance of TPS. The conductance of TPS containing 0.14 mol LiCl achieve to 10-0.5 S cm-1 with 18 wt% water content.

  3. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  4. 43 CFR 2916.2-3 - Renewal of leases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LEASES Alaska Fur Farm § 2916.2-3 Renewal of... preference right to a renewal. The timely filing of an application will, however authorize the exclusive...

  5. 43 CFR 2916.2-3 - Renewal of leases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LEASES Alaska Fur Farm § 2916.2-3 Renewal of... preference right to a renewal. The timely filing of an application will, however authorize the exclusive...

  6. 43 CFR 2916.2-3 - Renewal of leases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LEASES Alaska Fur Farm § 2916.2-3 Renewal of... preference right to a renewal. The timely filing of an application will, however authorize the exclusive...

  7. 43 CFR 2916.2-3 - Renewal of leases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LEASES Alaska Fur Farm § 2916.2-3 Renewal of... preference right to a renewal. The timely filing of an application will, however authorize the exclusive...

  8. 75 FR 12743 - Office of Energy Efficiency and Renewable Energy; Request for Information; Weatherization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... of Energy Efficiency and Renewable Energy; Request for Information; Weatherization Assistance Program; Sustainable Energy Resources for Consumers Grants AGENCY: Office of Energy Efficiency and Renewable Energy... Program for residential buildings to include materials, benefits, and renewable and domestic...

  9. Polymers from renewable materials.

    PubMed

    Rus, Anika Zafiah M

    2010-01-01

    With the world facing depletion of its oil reserves, attention is being focused on how the plastics industry will address shortages and price increases in its crucial raw materials. One renewable resource is that of vegetable oils and fats and about a dozen crop plants make up the main vegetable oil-seed market. The main constituents of these oils are saturated and unsaturated fatty acids that are unique to the plant in which they have been developed. Moreover, technological processes can produce more well-defined and pure oils, and the fatty acid contents in the vegetable oils can be altered with modern crop development techniques. This article describes recent advances in utilising such vegetable oils in sourcing new polymeric materials. It also gives the context for the development of polymers based on renewable materials in general.

  10. Solar Resource Assessment

    SciTech Connect

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  11. Status report on renewable energy in the States

    NASA Astrophysics Data System (ADS)

    Swezey, B.; Sinclair, K.

    1992-12-01

    As the concept of integrated resource planning has spread among states and utilities, a reexamination of the role of renewable energy sources in the utility resource mix is taking place. This report documents the findings of a study of state regulatory commissions undertaken to: (1) help assess the state of knowledge and awareness about renewable energy resources and technologies; (2) assess the impacts of state policies on renewable energy development; and (3) identify important information needs. The key findings from this effort are: Renewable energy development has occurred only slowly over the last decade, and a small number of states account for the bulk of development. The development that has occurred has been limited to non-utility entities. Directed state policies have been a key driver in renewable energy development. Those states not currently addressing renewables may need more data and information before they proceed with directed policies. Other important observations are: The cost of renewables is an overriding concern. Regulators distinguish between 'emerging' and 'established' renewable energy technologies. Specific data are lacking on state-level renewable energy development. Detailed renewable resource assessments have yet to be performed in many states. This report identifies renewable energy information needs of state regulators. However, a number of concerns are also identified that must be addressed before renewables will receive serious attention in many of those states with limited renewables experience. Finally, the report catalogs a wide variety of policies that have been utilized in the states to promote greater development of renewable energy.

  12. Status report on renewable energy in the States

    SciTech Connect

    Swezey, B.; Sinclair, K.

    1992-12-01

    As the concept of integrated resource planning has spread among states and utilities, a reexamination of the role of renewable energy sources in the utility resource mix is taking place. This report documents the findings of a study of state regulatory commissions undertaken to: (1) help assess the state of knowledge and awareness about renewable energy resources and technologies; (2) assess the impacts of state policies on renewable energy development; and (3) identify important information needs. The key findings from this effort are: Renewable energy development has occurred only slowly over the last decade, and a small number of states account for the bulk of development. The development that has occurred has been limited to non-utility entities. Directed state policies have been a key driver in renewable energy development. Those states not currently addressing renewables may need more data and information before they proceed with directed policies. Other important observations are: The cost of renewables is an overriding concern. Regulators distinguish between emerging'' and established'' renewable energy technologies. Specific data are lacking on state-level renewable energy development. Detailed renewable resource assessments have yet to be performed in many states. This report identifies renewable energy information needs of state regulators. However, a number of concerns are also identified that must be addressed before renewables will receive serious attention in many of those states with limited renewables experience. Finally, the report catalogs a wide variety of policies that have been utilized in the states to promote greater development of renewable energy.

  13. Status report on renewable energy in the States

    SciTech Connect

    Swezey, B; Sinclair, K

    1992-12-01

    As the concept of integrated resource planning has spread among states and utilities, a reexamination of the role of renewable energy sources in the utility resource mix is taking place. This report documents the findings of a study of state regulatory commissions undertaken to: (1) help assess the state of knowledge and awareness about renewable energy resources and technologies; (2) assess the impacts of state policies on renewable energy development; and (3) identify important information needs. The key findings from this effort are: Renewable energy development has occurred only slowly over the last decade, and a small number of states account for the bulk of development. The development that has occurred has been limited to non-utility entities. Directed state policies have been a key driver in renewable energy development. Those states not currently addressing renewables may need more data and information before they proceed with directed policies. Other important observations are: The cost of renewables is an overriding concern. Regulators distinguish between ``emerging`` and ``established`` renewable energy technologies. Specific data are lacking on state-level renewable energy development. Detailed renewable resource assessments have yet to be performed in many states. This report identifies renewable energy information needs of state regulators. However, a number of concerns are also identified that must be addressed before renewables will receive serious attention in many of those states with limited renewables experience. Finally, the report catalogs a wide variety of policies that have been utilized in the states to promote greater development of renewable energy.

  14. Renewable energy: Renewing the environment

    SciTech Connect

    Noun, R.J.

    1996-12-31

    During the past 20 years, the United States has enacted some of the world`s most comprehensive legislation to protect and preserve its environmental heritage. These regulations have spawned a $115-billion-per-year industry for {open_quotes}green{close_quotes} products and services, with more than 35,000 companies providing jobs for American workers. On the other hand, environmental regulations have placed heavy cost burdens on many U.S. businesses as they struggle to remain competitive in both domestic and foreign markets. How, then, can one reconcile the growing need for environmental protection with the desire for a stronger, healthier economy? Even as Congress debates the value of existing environmental legislation, new threats are appearing on the horizon. For example, extensive storm damage from Hurricane Andrew and other natural disasters has prompted members of the $650-billion insurance industry to begin studying the effects that global warming may have on future property damage claims. More and more people are realizing that the most efficient and economical way to control pollution is to avoid creating it in the first place. And that`s where renewable energy comes in. Technologies based on nonpolluting renewable energy sources such as sunlight and wind can help preserve our environmental heritage without a tangled web of regulations to burden industry. Renewable energy technologies can also help the United States become a world leader in a potential $400-billion-a-year global market for environmentally friendly products.

  15. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues.

  16. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. PMID:21262520

  17. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  18. Renewable energy opportunities in China

    NASA Astrophysics Data System (ADS)

    Wallace, William L.; Simon Tsuo, Y.

    1996-01-01

    Rapid growth in economic development coupled with the absence of an electric grid in large areas of rural China have created a need for new energy sources both in urban centers and the rural countryside. Electric capacity expansion plans call for increased use of coal-fired steam turbines for electricity production that will contribute to increased concerns over environmental pollution. China is rich in renewable energy resources, strategically located in areas of greatest need and economic viability. China is also already one of the world's largest users of renewables, especially hydro, wind, biomass, and solar thermal, and has significant experience with photovoltaics, geothermal and other technologies. The use of renewable energy is being encouraged in expanded programs at the central and provincial government levels, with growing private sector involvement. These conditions create opportunities for U.S. business participation in renewable energy markets in China.

  19. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  20. US Renewable Futures in the GCAM

    SciTech Connect

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  1. Earth-Abundant Materials for Solar Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    McKone, James Robert

    A critical challenge for the 21st century is shifting from the predominant use of fossil fuels to renewables for energy. Among many options, sunlight is the only single renewable resource with sufficient abundance to replace most or all of our current fossil energy use. However, existing photovoltaic and solar thermal technologies cannot be scaled infinitely due to the temporal and geographic intermittency of sunlight. Therefore efficient and inexpensive methods for storage of solar energy in a dense medium are needed in order to greatly increase utilization of the sun as a primary resource. For this purpose we have proposed an artificial photosynthetic system consisting of semiconductors, electrocatalysts, and polymer membranes to carry out photoelectrochemical water splitting as a method for solar fuel generation. This dissertation describes efforts over the last five years to develop critical semiconductor and catalyst components for efficient and scalable photoelectrochemical hydrogen evolution, one of the half reactions for water splitting. We identified and developed Ni--Mo alloy and Ni2P nanoparticles as promising earth-abundant electrocatalysts for hydrogen evolution. We thoroughly characterized Ni-Mo alloys alongside Ni and Pt catalysts deposited onto planar and structured Si light absorbers for solar hydrogen generation. We sought to address several key challenges that emerged in the use of non-noble catalysts for solar fuels generation, resulting in the synthesis and characterization of Ni--Mo nanopowder for use in a new photocathode device architecture. To address the mismatch in stability between non-noble metal alloys and Si absorbers, we also synthesized and characterized p-type WSe2 as a candidate light absorber alternative to Si that is stable under acidic and alkaline conditions.

  2. Renewable energy 1998: Issues and trends

    SciTech Connect

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  3. Solar Renewable Energy. Teaching Unit.

    ERIC Educational Resources Information Center

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  4. Strategic Energy Planning for Renewable Energy Demonstration Center

    SciTech Connect

    Ross, Becky; Crandell, George

    2014-04-10

    The focus of this project is to support the addition of renewable energy technologies to the existing CBMI resource recovery park, known as the Cabazon Resource Recovery Park (CRRP) in Mecca, California. The concept approved for this project was to determine if the resources and the needs existed for the addition of a Renewable Energy Demonstration Center (REDC) at the CRRP. The REDC concept is envisioned to support the need of startup renewable companies for a demonstration site that reduces their development costs.

  5. Renewable energy potential in Colombia

    NASA Astrophysics Data System (ADS)

    Correa Guzman, Jose Luis

    2008-12-01

    Renewable energy flows are very large in comparison with humankind's use of energy. In principle, all our energy needs, both now and into the future, can be met by energy from renewable sources. After many years trying to develop the alternative energy potential of Colombia, a major effort is principally being made since 2000 to explore and assess the renewable resources of the entire country. Until 2000, the availability of conventional energy sources in Colombia prevented renewable energy exploration from reaching a higher level. However, the extreme energy crisis of 1992 - 1993 alerted the authorities and the community to the necessity for exploring alternative energy sources. This energy study is a general approach to the current and future renewable energy scenario of Colombia. It was prepared in response to the increased interest around the world and in particular in Colombia to develop its non-fossil energy prospective. It, therefore, represents a working document giving an initial impression of the possible scale of the main renewables sources as a response to the concern about energy security and fossil fuel dependence problems. The assumptions made and calculations reported may therefore be subject to revision as more information becomes available. The aim of this dissertation is not only to improve the public understanding and discussion of renewable energy matters in Colombia but also to stimulate the development and application of renewable energy, wherever they have prospects of economic viability and environmental acceptability. To achieve such goal this paper reviews several renewable technologies, their availability, contribution and feasibility in Colombia.

  6. Three Affliated Tribes Renewable Energy Feasibility Study

    SciTech Connect

    Belvin Pete; Kent Good; Krista Gordon; Ed McCarthy,

    2006-05-26

    The Three Affliated Tribes on the Fort Berthold Reservation studied the feasibility of a commercial wind facility on land selected and owned by the Tribes and examined the potential for the development of renewable energy resources on Tribal Lands.

  7. Resource Use in Small Island States

    PubMed Central

    Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina

    2014-01-01

    Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption. PMID:25505367

  8. Renewable energy in Indian country

    SciTech Connect

    1995-12-31

    On June 25--27, 1995, at Mesa Verde National Park in southwestern Colorado, the Center for Resource Management (CRM), organized and sponsored a conference in conjunction with the Navajo Nation, EPA, and Bechtel Group, Inc., to deal with issues associated with developing renewable energy resources on Indian lands. Due to the remoteness of many reservation homes and the cost of traditional power line extensions, a large percentage of the Indian population is today without electricity or other energy services. In addition, while they continue to develop energy resources for export, seeing only minimal gain in their own economies, Indian people are also subject to the health and environmental consequences associated with proximity to traditional energy resource development. Renewable energy technologies, on the other hand, are often ideally suited to decentralized, low-density demand. These technologies--especially solar and wind power--have no adverse health impacts associated with generation, are relatively low cost, and can be used in applications as small as a single home, meeting power needs right at a site. Their minimal impact on the environment make them particularly compatible with American Indian philosophies and lifestyles. Unfortunately, the match between renewable energy and Indian tribes has been hampered by the lack of a comprehensive, coordinated effort to identify renewable energy resources located on Indian lands, to develop practical links between Indian people`s needs and energy producers, and to provide the necessary training for tribal leaders and members to plan, implement, and maintain renewable energy systems. Summaries of the presentations are presented.

  9. Current Renewable Energy Technologies and Future Projections

    SciTech Connect

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  10. Electric car with solar and wind energy may change the environment and economy: A tool for utilizing the renewable energy resource

    NASA Astrophysics Data System (ADS)

    Liu, Quanhua

    2014-01-01

    Energy and environmental issues are among the most important problems of public concern. Wind and solar energy may be one of the alternative solutions to overcome energy shortage and to reduce greenhouse gaseous emission. Using electric cars in cities can significantly improve the air quality there. Through our analyses and modeling on the basis of the National Centers for Environment Prediction data we confirm that the amount of usable solar and wind energy far exceeds the world's total energy demand, considering the feasibility of the technology being used. Storing the surplus solar and wind energy and then releasing this surplus on demand is an important approach to maintaining uninterrupted solar- and wind-generated electricity. This approach requires us to be aware of the available solar and wind energy in advance in order to manage their storage. Solar and wind energy depends on weather conditions and we know weather forecasting. This implies that solar and wind energy is predictable. In this article, we demonstrate how solar and wind energy can be forecasted. We provide a web tool that can be used by all to arrive at solar and wind energy amount at any location in the world. The tool is available at http://www.renewableenergyst.org. The website also provides additional information on renewable energy, which is useful to a wide range of audiences, including students, educators, and the general public.

  11. Sustainable development of population and resources.

    PubMed

    Tian, X

    1996-01-01

    China has experienced increased income, urbanization, and changes in consumption. Although per capita consumption in China is low, during 1978-94 China shifted from 5th to 2nd in steel output, 3rd to 1st in coal output, 8th to 5th in petroleum output, 7th to 2nd in power generation, 8th to 1st in output of TVs, and 1st since 1990 in grain, meat, and cotton output. The author states that the rising standard of living proposed by the Chinese Communist Party Central Committee has consequences for the consumption of resources and poses a conflict between population and resource scarcity. The author concludes from a review of the literature that sustainable development is the foundation of any society. Sustainable development also must allow for the prosperity of future generations, while alleviating poverty. Sustainable development means a balance between population and resources. Regional, country, and family boundaries demarcate resource ownership and pose a threat to a rational exploitation and use of resources. International trade is meant to solve imbalances between resources and development. Development translates into the material transformation of resources. The author defines resources as all materials--natural, man-made, or social--that have value. Natural resources are nonrenewable, renewable, and perpetual resources, and scarcity applies to all three groups. Although there are abundant resources in China, there are arable land, mineral, and forest shortages. There are also shortages in the general structure of resources, the structural shortage of similar resources, and structural shortages of conditions and technology for resource exploitation. China has a population surplus and has not reached a stable state of natural increase. Population pressure on resources stems from population size and per capita resource consumption.

  12. Sustainable development of population and resources.

    PubMed

    Tian, X

    1996-01-01

    China has experienced increased income, urbanization, and changes in consumption. Although per capita consumption in China is low, during 1978-94 China shifted from 5th to 2nd in steel output, 3rd to 1st in coal output, 8th to 5th in petroleum output, 7th to 2nd in power generation, 8th to 1st in output of TVs, and 1st since 1990 in grain, meat, and cotton output. The author states that the rising standard of living proposed by the Chinese Communist Party Central Committee has consequences for the consumption of resources and poses a conflict between population and resource scarcity. The author concludes from a review of the literature that sustainable development is the foundation of any society. Sustainable development also must allow for the prosperity of future generations, while alleviating poverty. Sustainable development means a balance between population and resources. Regional, country, and family boundaries demarcate resource ownership and pose a threat to a rational exploitation and use of resources. International trade is meant to solve imbalances between resources and development. Development translates into the material transformation of resources. The author defines resources as all materials--natural, man-made, or social--that have value. Natural resources are nonrenewable, renewable, and perpetual resources, and scarcity applies to all three groups. Although there are abundant resources in China, there are arable land, mineral, and forest shortages. There are also shortages in the general structure of resources, the structural shortage of similar resources, and structural shortages of conditions and technology for resource exploitation. China has a population surplus and has not reached a stable state of natural increase. Population pressure on resources stems from population size and per capita resource consumption. PMID:12320616

  13. Diterpenoid Biopolymers: New Directions for Renewable Materials Engineering

    PubMed Central

    Hillwig, Matthew L.; Mann, Francis M.; Peters, Reuben J.

    2010-01-01

    Most types of ambers are naturally occurring, relatively hard, durable resinite polymers derived from the exudates of trees. This resource has been coveted for thousands of years due to its numerous useful properties in industrial processes, beauty, and purported medicinal properties. Labdane diterpenoid based ambers represent the most abundant and important resinites on earth. These resinites are a dwindling, non-renewable natural resource, so a new source of such materials needs to be established. Recent advances in sequencing technologies and biochemical engineering are rapidly accelerating the rate of identifying and assigning function to genes involved in terpenoid biosynthesis, as well as producing industrial-scale quantities of desired small-molecules in bacteria and yeast. This has provided new tools for engineering metabolic pathways capable of producing diterpenoid monomers that will enable the production of custom-tailored resinite-like polymers. Furthermore, this biosynthetic toolbox is continuously expanding, providing new possibilities for renewing dwindling stocks of naturally occurring resinite materials and engineering new materials for future applications. PMID:20857504

  14. Regional Renewable Energy Cooperatives

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.

    2014-12-01

    We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and

  15. 30 CFR 585.427 - How long is a renewal?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How long is a renewal? 585.427 Section 585.427 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and...

  16. 30 CFR 285.427 - How long is a renewal?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How long is a renewal? 285.427 Section 285.427 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL...

  17. 30 CFR 585.427 - How long is a renewal?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How long is a renewal? 585.427 Section 585.427 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and...

  18. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  19. Acceleration of Rural Industrialization Using Renewable Energy Technolgoy

    NASA Astrophysics Data System (ADS)

    Abdullah, Kamaruddin

    2007-10-01

    Solar, wind, biomass and micro-hydro can be found in abundant in almost all rural area throughout the world. Despite of the fact that there are already so many research results showing the potential application of these renewable resources to substitute fossil fuel and to increase added value of local products, however, up to now very view if any result that has been realized in significant way. A concept of Small Provessing Unit using renewable energy sources have been introduced in Indonesia since 1999, in which domestically developed conversion technology, such as the greenhouse effect (GHE) solar drying system has been applied to process agricultural products such as coffee, cocoa, soices, various types of fishes and sea weeds. In addition, hybrid nocturnal cooling method has also beeing developed and used to help the farmer in extending shelf life of tropical fruits and vegetables and therefore, contributed in reducing post harvest losses. The Small Processing Unit concept as well as the developed renewable energy technology are now gradually being appreciated by both the central and local authorities, the private sectors including the NGO. The demand of such system is also gradually increasing each year and the area of applications have been extended not only within the heavtily inhavited Java Island but also to the other island of Indonesia. Our experiences in dealing with the system have also been transferred to fellow ASEAN engineers as well as those coming from the African continent through training and workshops activities. The future direction of the development will be to enhace the role of the Small Processing Unit (SPU) by providing more value added facilities driven by renewable energy technology.

  20. Renewable technologies program summaries

    NASA Astrophysics Data System (ADS)

    1984-11-01

    The renewable energy research and development program supports development of a mix of technologies that can contribute to both energy supply and improved end-use efficiency. In allocating resources, this office is concentrating on applying federal funds only where they are most effective: in sponsoring research and development (R and D) where the potential payoff is high, but which private industry cannot be expected to pursue because the results are difficult to predict or a return on investment would require an exceptionally long time to be realized. Research efforts in the following areas are summarized: active solar heating and cooling; passive and hybrid solar; photovoltaics; solar thermal; biofuels; wind; ocean energy technology; geothermal; and small-scale hydropower.

  1. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect

    Apt, Jay

    2014-02-14

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  2. Renewable Energy in Fitness Centers

    SciTech Connect

    Chvala, William D.

    2009-09-30

    All military installations have goals for implementing renewable energy projects, but not all have abundant solar energy or have massive feedstock for a large biomass plant. They must build up their renewable portfolio one project at it a time where they make the most sense – most of the time through small projects on specific buildings. During the last few years, Pacific Northwest National Laboratory (PNNL) provided project support to Army Installation Management Command Southeast Region (IMCOM-Southeast) installations. One of the building types visited, the physical fitness center (PFC), almost always yield project ideas. The building lends itself to a number of different technologies, and the high traffic nature is the perfect place to craft an educational message for users and demonstrate an installation’s commitment to sustainable energy development.

  3. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  4. International applications of renewable energy resources. Hearings before the Subcommittee on Energy Conservation and Supply of the Committee on Energy and Natural Resources, United States Senate, Ninety-Sixth Congress, Second Session, August 19 and September 5, 1980

    SciTech Connect

    Not Available

    1980-01-01

    Witnesses at the August 19 and September 5, 1980 hearings focused on the potential impact of solar applications in developing countries and on government involvement in the process. The international market represents an area for commercialization to take place until domestic markets develop. It also presents an opportunity to introduce alternative energy sources to countries not already dependent on fossil fuels and to countries that are overharvesting indigenous resources. The statements of nine witnesses include testimony from the solar industry and government agencies involved in export and international development. (DCK)

  5. Alaska OCS (outer continental shelf) social and economic studies program. Technical report number 90. Effects of renewable-resource harvest disruptions on socioeconomic and sociocultural systems impact analysis, Unalakleet, Norton Sound. Final technical report

    SciTech Connect

    Jorgensen, J.G.; Maxwell, J.A.; Katchatag, V.; Katchatag, P.; Zyllis, V.K.

    1984-01-01

    Part I of this report briefly analyzes the history, culture, and environment of Unalakeet, the ways in which it is used by the natives. The political economy of dependency that overlays the local subsistence economy, the relation between subsistence and the commercial fishery (and the naturally occurring, renewable resources on which both are based), the local and regional social structures (formal and informal), and the wide networks of kinship and friendship which link Unalakleet villagers to persons and families in distant locales. This report contains a brief summary of the field investigations as Part II. Part III explicates the methodology employed to collect and analyze village level and family level data on which the first and fourth parts of the report are based. It also specifies the restrictions and constraints placed on the investigation by the funding agency as well as the impacts analysis. Part IV is conventionally an impacts analysis defines and rationalizes harvest disruptions of increasing severity--low, medium and high--and offers concluding hypotheses about the probable consequences of disruptions at each level.

  6. A Significant Role for Renewables in a Low-Carbon Energy Economy?

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.

    2015-12-01

    Renewables currently make up a small (but growing) fraction of total U.S. electricity generation. In some regions, renewable growth has resulted in instantaneous penetration levels of wind and solar in excess of 60% of demand. With decreasing costs, abundant resource potential and low carbon emissions and water requirements, wind and solar are increasingly becoming attractive new generation options. However, factors such as resource variability and geographic distribution of prime resources raise questions regarding the extent to which our power system can rely on variable generation resources. Here, we describe scenario analyses designed to tackle engineering and economic challenges associated with variable generation, along with insights derived from research results. These analyses demonstrate the operability of high renewable systems and quantify some of the engineering challenges (and solutions) associated with maintaining reliability. Key questions addressed include the operational and economic impacts of increasing levels of variable generation on the U.S. power system. Since reliability and economic efficiency are measured across a variety of time frames, and with a variety of metrics, a suite of tools addressing different system impacts are used to understand how new resources affect incumbent resources and operational practices. We summarize a range of modeled scenarios, focusing on ones with 80% RE in the United States and >30% variable wind and solar in the East and the West. We also summarize the environmental impacts and benefits estimated for these and similar scenarios. Results provide key insights to inform the technical, operational and regulatory evolution of the U.S. power system. This work is extended internationally through the 21st Century Power Partnership's collaborations on power system transformation, with active collaboration in Canada, Mexico, India, China and South Africa, among others.

  7. Generating Resources Supply Curves.

    SciTech Connect

    United States. Bonneville Power Administration. Division of Power Resources Planning.

    1985-07-01

    This report documents Pacific Northwest supply curve information for both renewable and other generating resources. Resources are characterized as ''Renewable'' and ''Other'' as defined in section 3 or the Pacific Northwest Electric Power Planning and Conservation Act. The following resources are described: renewable: (cogeneration; geothermal; hydroelectric (new); hydroelectric (efficiency improvement); solar; and wind); other (nonrenewable generation resources: coal; combustion turbines; and nuclear. Each resource has the following information documented in tabular format: (1) Technical Characteristics; (2) Costs (capital and O and M); (3) Energy Distribution by Month; and (4) Supply Forecast (energy). Combustion turbine (CT) energy supply is not forecasted because of CT's typical peaking application. Their supply is therefore unconstrained in order to facilitate analysis of their operation in the regional electrical supply system. The generic nuclear resource is considered unavailable to the region over the planning horizon.

  8. Solar abundance of osmium

    PubMed Central

    Jacoby, George; Aller, Lawrence H.

    1976-01-01

    The abundance parameter, log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance (by numbers of atoms with respect to hydrogen), has been derived for three lines of osmium by a method of spectrum synthesis. An apparent discordance of the derived abundance with that found from the carbonaceous chondrites is probably to be attributed primarily to errors in the f-values, and blending with unknown contributors. PMID:16592314

  9. US Renewable Futures in the GCAM

    SciTech Connect

    Smith, S. J.; Mizrahi, A. H.; Karas, J. F.; Nathan, M.

    2011-10-01

    This report examines renewable energy deployment in the United States using a version of the Global Change Assessment Model (GCAM) with a detailed representation of renewables; the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sector detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long distance transmission.

  10. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  11. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  12. State of the States 2008. Renewable Energy Development and the Role of Policy

    SciTech Connect

    Brown, Elizabeth; Busche, Sarah

    2008-10-01

    This report details the status of renewable energy development at the state level. Renewable resources are increasing in development overall, but state development varies by resource and rates of change. The report provides insights on the role of policy and other factors contributing to renewable energy development.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  17. Pathways to Decarbonization. Natural Gas and Renewable Energy. Lessons Learned from Energy System Stakeholders

    SciTech Connect

    Pless, Jacquelyn; Arent, Douglas J.; Logan, Jeffrey; Cochran, Jaquelin; Zinaman, Owen; Stark, Camila

    2015-04-30

    Ensuring the resilience, reliability, flexibility, and affordability of the U.S. electric grid is increasingly important as the country addresses climate change and an aging infrastructure. State and federal policy and actions by industry, non-profits, and others create a dynamic framework for achieving these goals. Three principle low-carbon generation technologies have formed the basis for multiple scenarios leading toward a low-carbon, resilient, and affordable power system. While there is no “silver bullet,” one avenue identified by key stakeholders is the opportunity to invest in natural gas (NG) and renewable resources, both of which offer abundant domestic resource bases and contribute to energy independence, carbon mitigation, and economic growth. NG and renewable electricity (RE) have traditionally competed for market share in the power sector, but there is a growing experience base and awareness for their synergistic use (Cochran et al. 2014). Building upon these observations and previous work, the Joint Institute for Strategic Energy Analysis (JISEA), in collaboration with the Center for the New Energy Economy and the Gas Technology Institute, convened a series of workshops in 2014 to explore NG and RE synergies in the U.S. power sector. This report captures key insights from the workshop series, Synergies of Natural Gas and Renewable Energy: 360 Degrees of Opportunity, as well as supporting economic valuation analyses conducted by JISEA researchers that quantify the value proposition of investing in NG and RE together as complements.

  18. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  19. Wind as a renewable energy resource

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Ferraro, R. J.

    1988-12-01

    A description of the United States wind energy technology status, a discussion of recent milestones achieved in wind power, and a call for action in order for competitive wind systems to become practical in an international marketplace is presented in this report. An immediate opportunity to initiate a joint venture project with the government, equipment developers, equipment manufacturers, utilities, and the Electric Power Research Institute is described. The key technical areas of materials technology for reduced airfoil fatigue, airfoil design for optimum new-site performance, and power electronics for variable-speed wind turbines are highlighted.

  20. Hydrogen from renewable resources. Monthly progress report

    SciTech Connect

    Rocheleau, R.E.

    1995-08-01

    This progress report updates two tasks. In the area of hydrogen production, photobiological production and photoelectrochemical production advances are discussed as well as thermochemical production of hydrogen from wet biomass. In the area of hydrogen storage, reversible catalytic dehydrogenation of cycloalkanes by polyhydride complexes and polyhydride systems engineering are presented.

  1. Hydrogen from renewable resources. Monthly progress report

    SciTech Connect

    Rocheleau, R.E.

    1995-09-01

    This report summarizes activities for September 1995 for the following areas of Hydrogen Production Task: Photobiological production; Photoelectrochemical production; and, Thermochemical production of hydrogen from wet biomass. For the Hydrogen Storage Task, these areas are addressed: Reversible catalytic dehydrogenation of cycloalkanes by polyhydride complexes; and, Polyhydride systems engineering.

  2. Hydrogen from renewable resources monthly progress report

    SciTech Connect

    Rocheleau, R.E.

    1995-02-01

    During February, we achieved two significant results in our hydrogen storage activates. Reversible hydrogen uptake and release was measured at room temperature, near ambient pressure on the (IrClH{sub 2}(H{sub 2})Pr{sup i}{sub 3}) complex. Dr. Jensen also observed that certain polyhydzide complexes catalyze the low temperature, reversible dehydrogenation of cycloalkanes to aromatic hydrocarbons at temperatures as low as 130{degrees}C. This discovery may represent a breakthrough in chemical storage of hydrogen as all other cycloalkane dehydrogenation systems require temperatures in excess of 300{degrees}C.

  3. Exporting Education: North America's Infinitely Renewable Resource.

    ERIC Educational Resources Information Center

    Grote, C. Nelson

    1987-01-01

    Offers personal observations about the increasing importance of international education in an ever more complex and interdependent world. Looks at international trends in industry, farm production, and the world economy. Considers ways in which international education activities, such as faculty exchange, can enhance cultural understanding. (DMM)

  4. The heart's content-renewable resources.

    PubMed

    Faucherre, Adèle; Jopling, Chris

    2013-08-20

    Heart regeneration is a huge, complex area involving numerous lines of research ranging from the stem cell therapy to xenografts and bioengineering. This review will focus on two avenues of regenerative research, cardiac progenitor cells and adult cardiomyocyte proliferation, both of which offer great promise for the field of heart regeneration. However, the principles behind how this could be achieved by either technique are very different. Cardiac progenitor cells represent a population of somatic stem cells which reside within the adult heart. These cells appear to have the capacity to proliferate and differentiate into the different cell types found within the adult heart and thus have the potential, if the correct stimuli can be found, to effectively regenerate a heart damaged by ischemia/infarction. Inducing adult cardiomyocytes to proliferate offers a different approach to achieving the same goal. In this case, the cardiomyocytes that remain after the damage has occurred would need to be stimulated into effecting a regenerative response. In this review, we will discuss the current understanding of how heart regeneration could be achieved by either of these very different approaches.

  5. Preface to Special Topic: Marine Renewable Energy

    SciTech Connect

    Pinto, F. T.; Iglesias, G.; Santos, P. R.; Deng, Zhiqun

    2015-12-30

    Marine renewable energy (MRE) is generates from waves, currents, tides, and thermal resources in the ocean. MRE has been identified as a potential commercial-scale source of renewable energy. This special topic presents a compilation of works selected from the 3rd IAHR Europe Congress, held in Porto, Portugal, in 2014. It covers different subjects relevant to MRE, including resource assessment, marine energy sector policies, energy source comparisons based on levelized cost, proof-of-concept and new-technology development for wave and tidal energy exploitation, and assessment of possible inference between wave energy converters (WEC).

  6. Renewable Energy Opportunities for the Army

    SciTech Connect

    Solana, Amy E.; States, Jennifer C.; Chvala, William D.; Weimar, Mark R.; Dixon, Douglas R.

    2008-08-13

    The Department of Defense (DoD) has a goal of obtaining 25% of its domestic electricity from renewable sources by 2025, and also must meet federal renewable energy mandates and schedules. This report describes the analyses undertaken to study the renewable resource potential at 15 Army sites, focusing on grid-connected generation of electricity. The resources analyzed at each site include solar, wind, geothermal, biomass, waste-to-energy, and ground source heat pumps (GSHPs). For each renewable generation resource, an assessment was completed to determine the level of resource availability, and the price at which that resource would be available for electricity generation. Various design alternatives and available technologies were considered in order to determine the best way to utilize each resource and maximize cost-effective electricity generation. Economic analysis used multiple funding options, including investment by an independent power producer (IPP), Energy Savings Performance Contract (ESPC), and Energy Conservation Investment Program (ECIP), and considered tax incentives, renewable energy credits, and other economic factors to reveal the most realistic costs possible. Where resource options proved to be economically viable, implementation approaches were recommended. The intention was to focus each installation’s efforts on realistic projects, moving them from initial assessment through the design and financing to implementation. Many Army sites enjoy very low costs of electricity, limiting the number of cost-effective renewable energy options where resources are available. Waste-to-energy was often a viable option due to the additional revenue gathered from transferred tipping fees. GSHPs were also commonly cost-effective options for replacement in inefficient buildings. Geothermal, wind, and solar resources are found to be more available in certain parts of the country over others, reducing overall potential for use. Wind is variable and often most

  7. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  8. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  9. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  10. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  11. The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    With limited global resources for many of the elements that are found in some of the most common renewable energy technologies, there is a growing need to use "Earth-abundant" elements as a long-term solution to growing energy demands. The dye-sensitized solar cell has the potential to produce low-cost renewable energy, with inexpensive production and most components using Earth-abundant elements. However, the most commonly used material for the cell counter electrode (CE) is platinum, an extremely expensive and rare element. A selection of the materials investigated as alternative CEs are discussed, including metal sulfides, oxides, carbides, and nitrides and carbon-based materials such as carbon nanotubes, graphene, and conductive polymers. As well as having the potential for lower cost, these materials can also produce more-efficient devices due to their high surface area and catalytic activity. Therefore, once issues such as stability have been studied in more detail and scale-up of production methods are considered, there is a very promising future for the replacement of Pt in DSSCs with lower-cost, Earth-abundant alternatives.

  12. The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    With limited global resources for many of the elements that are found in some of the most common renewable energy technologies, there is a growing need to use "Earth-abundant" elements as a long-term solution to growing energy demands. The dye-sensitized solar cell has the potential to produce low-cost renewable energy, with inexpensive production and most components using Earth-abundant elements. However, the most commonly used material for the cell counter electrode (CE) is platinum, an extremely expensive and rare element. A selection of the materials investigated as alternative CEs are discussed, including metal sulfides, oxides, carbides, and nitrides and carbon-based materials such as carbon nanotubes, graphene, and conductive polymers. As well as having the potential for lower cost, these materials can also produce more-efficient devices due to their high surface area and catalytic activity. Therefore, once issues such as stability have been studied in more detail and scale-up of production methods are considered, there is a very promising future for the replacement of Pt in DSSCs with lower-cost, Earth-abundant alternatives. PMID:26727984

  13. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  14. Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, Ulysses J.; Meyer, David M.

    2001-06-01

    We evaluate the stellar abundances often used to represent the total (gas plus dust) composition of the interstellar medium. Published abundances for B stars, young later type (F and G) stars, and the Sun are compared to the modeled dust-phase and measured gas-phase compositions of the interstellar medium. This study uses abundances for the five most populous elements in dust grains-C, O, Mg, Si, and Fe-and the cosmically abundant element, N. We find that B stars have metal abundances that are too low to be considered valid representations of the interstellar medium. The commonly invoked interstellar standard that is two-thirds of the solar composition is also rejected by recent observations. Young (<=2 Gyr) F and G disk stars and the Sun, however, cannot be ruled out as reliable proxies for the total interstellar composition. If their abundances are valid representations of the interstellar medium, then the apparent underabundance of carbon with respect to that required by dust models, i.e., the carbon crisis, is substantially eased.

  15. Development of Electricity Generation from Renewable Energy Sources in Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  16. Renewable Energy Opportunties at Dugway Proving Ground, Utah

    SciTech Connect

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Horner, Jacob A.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Nesse, Ronald J.; Dixon, Douglas R.

    2010-05-31

    This document provides an overview of renewable resource potential at Dugway Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and ground source heat pumps (GSHPs). The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment.

  17. Forest Resources: An Overview

    ERIC Educational Resources Information Center

    Bethel, J. S.; Schreuder, G. F.

    1976-01-01

    Concern for long-term availability of nonrenewable resources has fostered proposals for substitution with renewable resources. Forest products could become the basis for materials substitution and production. Further feasibility studies are needed to determine the technical, economic, energy, and environmental aspects of substitution. (MR)

  18. Revised CTUIR Renewable Energy Feasibility Study Final Report

    SciTech Connect

    John Cox; Thomas Bailor; Theodore Repasky; Lisa Breckenridge

    2005-10-31

    This preliminary assessment of renewable energy resources on the Umatilla Indian Reservation (UIR) has been performed by CTUIR Department of Science and Engineering (DOSE). This analysis focused primarily identifying renewable resources that may be applied on or near the Umatilla Indian Reservation. In addition preliminary technical and economic feasibility of developing renewable energy resources have been prepared and initial land use planning issues identified. Renewable energies examined in the course of the investigation included solar thermal, solar photovoltaic, wind, bioethanol, bio-diesel and bio-pellet fuel. All renewable energy options studied were found to have some potential for the CTUIR. These renewable energy options are environmentally friendly, sustainable, and compliment many of the policy goals of the CTUIR. This report seeks to provide an overall review of renewable energy technologies and applications. It tries to identify existing projects near to the CTUIR and the efforts of the federal government, state government and the private sector in the renewable energy arena. It seeks to provide an understanding of the CTUIR as an energy entity. This report intends to provide general information to assist tribal leadership in making decisions related to energy, specifically renewable energy deve lopment.

  19. Characterization of wind power resource in the United States

    NASA Astrophysics Data System (ADS)

    Gunturu, U. B.; Schlosser, C. A.

    2012-10-01

    Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind profile at 50 m, 80 m, 100 m, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. The wind speeds at 80 m were quantitatively and qualitatively close to the NREL wind map. The possible reasons for overestimation by NREL have been discussed. For long tailed distributions like those of the WPD, the mean is an overestimation and median is suggested for summary representation of the wind resource. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is an increase in intermittency in terms of level crossing rate in low resource regions.

  20. Characterization of wind power resource in the United States

    NASA Astrophysics Data System (ADS)

    Gunturu, U. B.; Schlosser, C. A.

    2012-03-01

    Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind profile at 50 m, 80 m, 100 m, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. The wind speeds at 80 m were quantitatively and qualitatively close to the NREL wind map. The possible reasons for overestimation by NREL have been discussed. For long tailed distributions like those of the WPD, the mean is an overestimation and median is suggested for summary representation of the wind resource. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is an increase in intermittency in terms of level crossing rate in low resource regions.

  1. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  2. Renewable energy and the Fallacy of 'green' jobs

    SciTech Connect

    Lesser, Jonathan A.

    2010-08-15

    As the United States economy continues to struggle, many politicians and energy regulators have adopted a ''green jobs'' mantra. They espouse the view that policies mandating renewable resources will provide both environmental and economic salvation. Quite simply, forcing consumers to buy high-cost electricity from subsidized renewable energy producers will not and cannot improve economic well-being. (author)

  3. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  4. 30 CFR 18.52 - Renewal of fuses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Renewal of fuses. 18.52 Section 18.52 Mineral... § 18.52 Renewal of fuses. Enclosure covers that provide access to fuses, other than headlight, control-circuit, and handheld-tool fuses, shall be interlocked with a circuit-interrupting device. Fuses shall...

  5. Monitoring Butterfly Abundance: Beyond Pollard Walks

    PubMed Central

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly reflect population sizes and trends. This study compares capture-mark-recapture (absolute abundance) and count-index (relative abundance) monitoring methods in three species (Maculinea nausithous and Iolana iolas: Lycaenidae; Minois dryas: Satyridae) in contrasted habitat types. We demonstrate that intraspecific variability in individual detectability under standard monitoring conditions is probably the rule rather than the exception, which questions the reliability of count-based indices to estimate and compare specific population abundance. Our results suggest that the accuracy of count-based methods depends heavily on the ecology and behavior of the target species, as well as on the type of habitat in which surveys take place. Monitoring programs designed to assess the abundance and trends in butterfly populations should incorporate a measure of detectability. We discuss the relative advantages and inconveniences of current monitoring methods and analytical approaches with respect to the characteristics of the species under scrutiny and resources availability. PMID:22859980

  6. Renewable Electricity in the United States: The National Research Council Study and Recent Trends

    NASA Astrophysics Data System (ADS)

    Holmes, K. John; Papay, Lawrence T.

    2011-11-01

    The National Research Council issued Electricity from Renewables: Status, Prospects, and Impediments in 2009 as part of the America's Energy Future Study. The panel that authored this report, the Panel on Electricity from Renewable Sources, worked from 2007 to 2009 gathering information and analysis on the cost, performance and impacts of renewable electricity resources and technologies in the United States. The panel considered the magnitude and distribution of the resource base, the status of renewable electricity technologies, the economics of these technologies, their environmental footprint, and the issues related to scaling up renewables deployment. In its consideration of the future potential for renewable electricity, the panel emphasizes policy, technology, and capital equally because greatly scaling up renewable electricity encounters significant issues that go beyond resource availability or technical capabilities. Here we provide a summary of this report and discuss several recent trends that impact renewable electricity.

  7. Organizing for Renewal Through Participative Governance.

    ERIC Educational Resources Information Center

    Alfred, Richard L.

    1985-01-01

    Faculty will participate in renewal when there is clear evidence that opportunity exists for change in the structure and functioning of academic programs and services and that status quo management may damage the institution's integrity. Faculty must also understand the scope and application of financial information shaping the resource flow. (MSE)

  8. Books on Renewable Energy for Elementary Grades.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Presented is a list of 20 books on renewable energy resources. These books are suitable for children in the elementary grades. Each entry includes the title, author(s) or editor(s), number of pages, price, publication date, recommended grade level(s), and source. (JN)

  9. Renewable Energy Reading List for Young Adults.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Presented is a list of 17 publications dealing with various aspects of renewable energy resources. These publications are suitable for students in grades 6 through 12. Each publication includes title, publication date, source, number of pages, cost, and when applicable, recommended grade level(s). (JN)

  10. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  11. Energy Consumption and Renewable Energy Development Potential on Indian Lands

    EIA Publications

    2000-01-01

    Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.

  12. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  13. State of the States 2008: Renewable Energy Development and the Role of Policy

    SciTech Connect

    Brown, E.; Busche, S.

    2008-10-01

    This report provides insights into the status of renewable energy development at the state level. Renewable resources are increasing in development overall, but state development varies by resource and rates of change. The factors contributing to renewable energy development at the state level are identified and discussed, including the challenges of understanding the role of different factors in development. The report also compiles and evaluates the status of 'best practice' state policy design and connects the existence of some policies with increased renewable energy development through correlation analysis. The report also proposes a strategy for better understanding the role of policy in renewable energy development, based on market-transformation principles. Correlation analysis illustrates the potential for further application of these principles to renewable energy. The final section provides resources for state policy makers for better understanding and developing renewable energy resources.

  14. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  15. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  16. Quinault Indian Nation Renewable Energy Plan

    SciTech Connect

    Don Hopps, Institute for Washington's Future; Jesse Nelson, Institute for Washington's Future

    2006-11-28

    The Quinault Indian Nation (Nation) initiated this study on conservation and production of renewable energy because this approach created the opportunity: • To become self-sufficient and gain greater control over the energy the Nation uses; • To generate jobs and businesses for its members; • To better manage, sustain, and protect its resources; • To express the cultural values of the Nation in an important new arena. The Nation has relatively small energy needs. These needs are concentrated at two separate points: the Quinault Beach Resort and Casino (QBRC) and Taholah on the Quinault Indian Reservation (QIR). Except for the town of Queets, energy needs are small and scattered. The needs vary greatly over the season. The small scale, widely dispersed, and variable nature of these needs presents a unique challenge to the Nation. Meeting these needs requires a resource and technology that is flexible, effective, and portable. Conservation is the most cost-effective way to meet any need. It is especially effective in a situation like this where production would leave a high per unit cost. This plan is based on first gaining energy savings through conservation. Major savings are possible through: 1. Upgrading home appliances on the QIR. 2. Weatherizing homes and facilities. 3. Changes in lighting/ventilation in the QBRC pool room. These elements of the plan are already being implemented and promise to save the Nation around a quarter of its present costs. Wood biomass is the best resource available to the QIN for energy production either on-site or for commercial development. It is abundant, flexible and portable. Its harvesting has high job potential and these jobs are a good fit for the present “skill set” of the QIN. This plan focuses on using wood biomass to produce energy and other value-added products. Our study considered various technologies and approaches to using wood for energy. We considered production for both on-site and commercial production

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  18. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  19. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  20. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  1. Renewable Energy Annual

    EIA Publications

    2012-01-01

    Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore

  2. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  3. Renewing Urban Schools.

    ERIC Educational Resources Information Center

    Mayfield, John

    This paper describes an approach to urban renewal, called the Multi-Function Polis (MFP), which emphasizes education as a key factor in a renewal process that includes development of 21st century industries such as information technology, telecommunications, and environmental management. Focusing on Adelaide, Australia, as an example, the paper…

  4. Renewable Energy Technology

    ERIC Educational Resources Information Center

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  6. Switch: a planning tool for power systems with large shares of intermittent renewable energy.

    PubMed

    Fripp, Matthias

    2012-06-01

    Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.

  7. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  8. Pre-Feasibility Analysis of Pellet Manufacturing on the Former Loring Air Force Base Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Hunsberger, R.; Mosey, G.

    2014-04-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. This site, in Limestone, Maine -- formerly the location of the Loring Air Force Base but now owned by the Aroostook Band of Micmac -- was selected for the potential to produce heating pellets from woody feedstock. Biomass was chosen as the renewable energy resource to evaluate based on abundant woody-biomass resources available in the area. NREL also evaluates potential savings from converting existing Micmac property from oil-fired heating to pellet heating.

  9. Development and improvement of the wind resources map over South Korea

    NASA Astrophysics Data System (ADS)

    Seo, B.-K.; Lee, S.-W.; Byon, J.-Y.; Jeon, S.-H.; Park, Y.-S.; Choi, Y.-J.

    2012-04-01

    Renewable energy has been researched in many countries to restrict the emission of CO2 by substituting the fossil fuel to reduce the global warming. Recently, there has been growing penetration of renewable energy in Korea. Wind energy is one of the most cost-effective energy sources compared with other renewable energy sources in Korea. Since wind energy capacity depends on wind speed, wind resources map can provide the most suitable location for wind power generation. We developed 1-km horizontal resolution wind resources map over South Korea by using the numerical model WRF (Weather Research and Forecasting). We also developed 333-m horizontal resolution wind resources map which conducted numerical experiments using LES (Large Eddy Simulation) model to resolve turbulent features explicitly over the complex terrain with 333m horizontal resolution. In order to investigate the effect of complex terrain, we used high resolution of 100-m grid spacing topography data and 30-m grid spacing land-use data for lateral boundary condition. The wind resources map with 1-km grid resolution over Korea includes hourly wind variations during the TMY (Typical Meteorological Year) for 1998 ~ 2008. It shows abundant wind energy potential over the mountainous region and southwestern coastal region over South Korea, especially in spring and winter season. 1-km and 333-m wind resources map over the complex mountainous region such as Gang-won province showed well agreed with observed data at AWS (Automatic weather station). Moreover, we found that the 333-m wind resources map is more corresponded wind features over the complex terrain of Korea. After post-processing the 1-km wind resources map by using the GIS (Geographic Information System) tools, we have been displaying on web site (http://www.greenmap.go.kr) to provide these wind information for wind energy companies, experts in renewable energy and end users.

  10. Philippines: Small-scale renewable energy update

    SciTech Connect

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  11. Renewable energy projects in the Dominican Republic

    SciTech Connect

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  12. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    SciTech Connect

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  13. Biomass Resources for the Federal Sector

    SciTech Connect

    Not Available

    2005-08-01

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  14. Biomass Resources for the Federal Sector

    SciTech Connect

    R. Robichaud; A. Crawley; and L. Poole: NREL

    2005-09-09

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  15. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  16. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect

    Nathan Lewis Nancy Ryan Gray

    2010-02-26

    from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  17. The Mass Flux of Non-renewable Energy for Humanity

    NASA Astrophysics Data System (ADS)

    Solomon, Edwin

    The global energy supply relies on non-renewable energy sources, coal, crude oil, and natural gas, along with nuclear power from uranium and these finite resources are located within the upper few kilometers of the Earth's crust. The total quantity of non-renewable energy resources consumed relative to the total quantity available is an essential question facing humanity. Analyses of energy consumption was conducted for the period 1800--2014 using data from the U. S. Energy Information Administration (EIA) and World Energy Production, 1800--1985 to determine the balance between non-renewable energy resources consumed and ultimately recoverable reserves. Annual energy consumption was plotted for each non-renewable resource followed by analyses to determine annual growth rates of consumption. Results indicated total energy consumption grew approximately exponentially 3.6% per year from 1800--1975 and was linear from 1975--2014. The ultimately recoverable reserves (URR) plus the total quantity consumed to date equals the total energy resource reserve prior to exploitation (7.15 x 1018 grams). Knowing the original resource quantity and the annual consumption and growth rates, we can forecast the duration of remaining resources using different scenarios. Alternatively, we can use population growth models and consumption trends to determine the per capita allocation trends and model that into the future. Alternative modeling of future resource allocation on a per capita bases suggests that resource lifetime may be significantly less than that predicted from consumption and production dynamics alone.

  18. Attenuation of species abundance distributions by sampling.

    PubMed

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  19. Attenuation of species abundance distributions by sampling

    PubMed Central

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  20. Renewable transportation technologies

    SciTech Connect

    Bull, S.R.

    1995-12-31

    The need for alternative and renewable transportation fuels continues to be high on the nation`s agenda. Substituting these fuels for petroleum can reduce dependence on foreign oil imports, improve air quality, and mitigate greenhouse gases. Renewable fuels offer the same advantages as nonrenewable alternative fuels, and, in addition, provide an inexhaustible supply. The largest potential for significant quantities of liquid renewable fuels is from the production of biofuels from cellulosic biomass such as wastes and energy crops. Advanced vehicles will provide dramatic fuel efficiency improvements and will likely have electric drive systems. An evolution of vehicles is expected to occur, beginning with an electric vehicle that fills niche markets in the near term, to hybrid vehicles by the year 2000, to fuel cell vehicles after the year 2005. With the combination of renewable fuels and high efficiency, advanced vehicles can move the nation toward a sustainable transportation system.

  1. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2

    SciTech Connect

    Hadley, Stanton W; Key, Thomas S; Deb, Rajat

    2009-05-01

    Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

  2. Renewable Energy Atlas of the United States

    SciTech Connect

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  3. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  5. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  6. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  7. Chemical abundance of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Wehinger, Peter

    1988-01-01

    Observations of NH2, (OI) and molecular ion spectra in comets represent virtually all of the volatile fraction of a comet nucleus. Their study leads to the N2, NH3, H2O, CO2, CO content of the nucleus, and thus to important constraints on models of comet formation and chemical processing in the primitive solar nebula. The observations of Comet Halley provide the opportunity for the first comprehensive determination of the abundances in a comet nucleus. The carbon isotope abundance ratio 12 C/13 C = 65 plus or minus 8 has been determined for Comet Halley from resolved rotational line structure in the CN B-X (0,0) band. The ratio is approximately 30 pct lower than the solar system value, 89, indicating either an enhancement of 13CN or a depletion of 12CN in the comet. Scenarios consistent with the observed carbon isotope ratio are: (1) formation of the comet at the periphery of the solar nebula in a fractionation-enriched 13CN region, or hidden from 12CN enrichment sources, and (2) capture of an interestellar comet. Long-slit charge coupled device (CCD) spectra obtained at the time of the spacecraft encounter of Comet Halley have also been analyzed. Scale lengths, production rates and column densities of CH, CN, C2 and NH2 were determined.

  8. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  9. 2008 Renewable Energy Data Book

    SciTech Connect

    Gelman, Rachel

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  10. 2008 Renewable Energy Data Book

    SciTech Connect

    Not Available

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  11. 2011 Renewable Energy Data Book

    SciTech Connect

    R. Gelman

    2013-02-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  12. 2010 Renewable Energy Data Book

    SciTech Connect

    Gelman, Rachel

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  13. 2009 Renewable Energy Data Book

    SciTech Connect

    Gelman, Rachel

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  14. 2014 Renewable Energy Data Book

    SciTech Connect

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  15. 2014 Renewable Energy Data Book

    SciTech Connect

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  16. 30 CFR 585.426 - When must I submit my request for renewal?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When must I submit my request for renewal? 585.426 Section 585.426 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  17. 30 CFR 585.426 - When must I submit my request for renewal?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When must I submit my request for renewal? 585.426 Section 585.426 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  18. 30 CFR 285.426 - When must I submit my request for renewal?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I submit my request for renewal? 285.426 Section 285.426 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE...

  19. 30 CFR 585.426 - When must I submit my request for renewal?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When must I submit my request for renewal? 585.426 Section 585.426 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  20. EDITORIAL: Renewing energy technology Renewing energy technology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2011-06-01

    Renewable energy is now a mainstream concern among businesses and governments across the world, and could be considered a characteristic preoccupation of our time. It is interesting to note that many of the energy technologies currently being developed date back to very different eras, and even predate the industrial revolution. The fuel cell was first invented as long ago as 1838 by the Swiss--German chemist Christian Friedrich Schönbein [1], and the idea of harnessing solar power dates back to ancient Greece [2]. The enduring fascination with new means of harnessing energy is no doubt linked to man's innate delight in expending it, whether it be to satisfy the drive of curiosity, or from a hunger for entertainment, or to power automated labour-saving devices. But this must be galvanized by the sustained ability to improve device performance, unearthing original science, and asking new questions, for example regarding the durability of photovoltaic devices [3]. As in so many fields, advances in hydrogen storage technology for fuel cells have benefited significantly from nanotechnology. The idea is that the kinetics of hydrogen uptake and release may be reduced by decreasing the particle size. An understanding of how effective this may be has been hampered by limited knowledge of the way the thermodynamics are affected by atom or molecule cluster size. Detailed calculations of individual atoms in clusters are limited by computational resources as to the number of atoms that can studied, and other innovative approaches that deal with force fields derived by extrapolating the difference between the properties of clusters and bulk matter require labour-intensive modifications when extending such studies to new materials. In [4], researchers in the US use an alternative approach, considering the nanoparticle as having the same crystal structure as the bulk but relaxing the few layers of atoms near the surface. The favourable features of nanostructures for catalysis

  1. International cooperation for renewable energy transfer

    SciTech Connect

    Wolfe, M.H.

    1992-06-01

    This paper reports that in considering the potential of major renewable energy resources in relation to their remoteness from demand centers, it is necessary to take a global view of the implications of their utilization. The present concerns regarding global warming and environmental degradation from fossil fuel combustion could be given active direction if the positive benefits of renewable energy could be realized on a meaningful scale. The dire prospect of global warming looms large in the scientific consciousness, but strategies to counter the effects of increased release of carbon dioxide and other greenhouse gases are just beginning to emerge along with remedial measures to address other environmental threats. One of the ways to achieve this is to place more reliance on renewable energy. As the impact of small-scale dispersed sources of renewable energy is minimal in comparison with fossil fuel usage, a meaningful impact could only be made by drawing upon major sources of renewable energy, mainly hydropower, tidal, and solar, in large capacity installations concentrated at sites relatively far from demand centers. There are sites that warrant serious consideration in the face of the growing environmental impact of fossil fuel usage. However, to realize this objective, an environmental imperative should be adopted that would place the importance of global environmental security on a par with present concerns for national security.

  2. SMUD Community Renewable Energy Deployment Final Report

    SciTech Connect

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco; Ave, Kathleen

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  3. How Do I Use Renewable Energy in My Region?

    SciTech Connect

    Not Available

    2005-11-01

    NREL can asses renewable energy resource information and integrate it with data using geographic information systems (GIS) and interface the data with key analytical models. Planners and energy developers use these integrated resource assessments to make decisions about the feasibility, cost-effectiveness, and risks of developing projects in specific locations and for regional planning.

  4. Integrating Renewable Electricity on the Grid

    NASA Astrophysics Data System (ADS)

    Crabtree, George; Misewich, Jim; Ambrosio, Ron; Clay, Kathryn; DeMartini, Paul; James, Revis; Lauby, Mark; Mohta, Vivek; Moura, John; Sauer, Peter; Slakey, Francis; Lieberman, Jodi; Tai, Humayun

    2011-11-01

    The demand for carbon-free electricity is driving a growing movement of adding renewable energy to the grid. Renewable Portfolio Standards mandated by states and under consideration by the federal government envision a penetration of 20-30% renewable energy in the grid by 2020 or 2030. The renewable energy potential of wind and solar far exceeds these targets, suggesting that renewable energy ultimately could grow well beyond these initial goals. The grid faces two new and fundamental technological challenges in accommodating renewables: location and variability. Renewable resources are concentrated at mid-continent far from population centers, requiring additional long distance, high-capacity transmission to match supply with demand. The variability of renewables due to the characteristics of weather is high, up to 70% for daytime solar due to passing clouds and 100% for wind on calm days, much larger than the relatively predictable uncertainty in load that the grid now accommodates by dispatching conventional resources in response to demand. Solutions to the challenges of remote location and variability of generation are needed. The options for DC transmission lines, favored over AC lines for transmission of more than a few hundred miles, need to be examined. Conventional high voltage DC transmission lines are a mature technology that can solve regional transmission needs covering one- or two-state areas. Conventional high voltage DC has drawbacks, however, of high loss, technically challenging and expensive conversion between AC and DC, and the requirement of a single point of origin and termination. Superconducting DC transmission lines lose little or no energy, produce no heat, and carry higher power density than conventional lines. They operate at moderate voltage, allowing many "on-ramps" and "off-ramps" in a single network and reduce the technical and cost challenges of AC to DC conversion. A network of superconducting DC cables overlaying the existing

  5. Comparing Resource Adequacy Metrics

    SciTech Connect

    Ibanez, Eduardo; Milligan, Michael

    2014-11-13

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  6. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  7. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect

    Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

    2011-11-14

    This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

  8. Response of Red-Tailed Hawks and Golden Eagles to Topographical Features, Weather, and Abundance of a Dominant Prey Species at the Altamont Pass Wind Resource Area, California: April 1999-December 2000

    SciTech Connect

    Hoover, S.

    2002-06-01

    Studies have shown that raptors flying within the Altamont Pass WRA are vulnerable to fatal turbine collisions, possibly because of their specific foraging and flight behavior. Between June 1999 and June 2000, I conducted 346.5 hours of raptor observations within the Atlamont Pass WRA. Behavior was recorded in relation to characteristics of the topography (slope aspect, elevation, and inclination), the weather, and ground squirrel abundance, as determined by active burrow entrances. The most significant finding of this study revealed that red-tailed hawks and golden eagles flew more in strong winds than in weak winds, particularly along hillsides facing into prevailing winds (as opposed to hillsides shielded from the wind). This is likely a result of the birds' use of declivity currents for lift during flights. These results suggest that certain combinations of topography and weather produce wind currents that are sought out by foraging red-tailed hawks and golden eagles within the Altamont Pass WRA. To decrease raptor mortality, mitigation measures can be targeted to specific areas likely to attract foraging raptors because of their capacity to create particularly favorable wind currents.

  9. Abundances in Sagittarius Stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M.

    The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al.

  10. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  11. Energy efficiency, renewable energy and sustainable development

    SciTech Connect

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  12. Self-Sufficiency Resources.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    These instructional materials were developed as a supplement to the "Alaska State Model Curriculum in Renewable Natural Resources/Agriculture." The topics covered focus on competencies from the curriculum for which materials were not readily available to Alaskan teachers and provide information that may not be sufficiently covered by existing…

  13. Resource Assessment and Tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various resource assessment strategies and tools are needed to ensure bioenergy feedstock materials are produced, harvested, and transported in a sustainable manner. This presentation highlights research accomplishments by the USDA-ARS Renewable Energy Assessment Project (REAP) team along with our u...

  14. Isotope hydrology of deep groundwater in Syria: renewable and non-renewable groundwater and paleoclimate impact

    NASA Astrophysics Data System (ADS)

    Al-Charideh, A.; Kattaa, B.

    2016-02-01

    The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (-7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60-80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (-7.0 ‰) is also similar to modern precipitation with a 14C range of 15-45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (-8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  17. Progress in renewables

    NASA Astrophysics Data System (ADS)

    San Martin, R. L.

    This is a status report on progress made in the conduct of eleven Federally-supported renewable energy programs. Considerable progress has been made in the establishment and development of an infrastructure to support sustained growth. Unique technical problems led to the research and development of materials and designs which have achieved energy conversion efficiencies of up to 25% for electricity and 92% for heat in solar thermal systems. Overall, enough real progress has been made to provide a sound technology base upon which renewable energy systems industries can reasonably continue development.

  18. The status of renewable energy technology

    NASA Astrophysics Data System (ADS)

    Schueler, D. G.

    1992-03-01

    Renewable energy technologies convert naturally occurring phenomena into useful energy forms. These technologies use resources that generally are not depleted, such as the direct energy (heat and light) from the sun and the indirect results of its impact on the earth (wind, falling water, heating effects, plant growth), gravitational forces (the tides), and the heat of the Earth's core (geothermal), as the sources from which they produce useful energy. These very large stores of natural energy represent a resource potential that is incredibly massive, and dwarfs that of equivalent fossil energy resources. The magnitude of these resources is, therefore, not a key constraint on energy production. However, they are generally diffuse and not fully accessible, some are intermittent, and all have distinct regional and local variability. It is these aspects of their character that give rise to difficult, but generally solvable, technical, institutional, and economic challenges inherent in development and use of renewable energy resources. This report discusses the technologies and their associated energy source.

  19. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  20. Profiles in renewable energy: Case studies of successful utility-sector projects

    SciTech Connect

    Anson, S.; Sinclair, K.; Swezey, B.

    1993-10-01

    As considerations of fuel diversity, environmental concerns, and market uncertainties are increasingly factored into electric utility resource planning, renewable energy technologies are beginning to find their place in the utility resource portfolio. This document profiles 10 renewable energy projects, utilizing six different renewable resources, that were built in the US throughout the 1980s. The resources include: biomass, geothermal, hydropower, photovoltaics, solar thermal, and wind. For each project, the factors that were key to its success and the development issues that it faced are discussed, as are the project`s cost, performance, and environmental impacts and benefits.

  1. Public opinion and communicative action around renewable energy projects

    NASA Astrophysics Data System (ADS)

    Fast, Stewart

    This thesis investigates how rural communities negotiate the development of renewable energy projects. Public and local community acceptance of these new technologies in rural areas around the world is uncertain and spatially uneven and represents an area of emerging public policy interest and one where scholarly theory is rapidly developing. This thesis uses Habermasian concepts of public sphere, communicative action and deliberative democracy, as well as the concept of "wicked problems" from the planning studies literature combined with geographical concepts of place and scale to advance theoretical and empirical understanding of how public opinion on renewable energy technologies is formed in place. It documents energy use patterns, attitudes and socio-political relations at a time when considerable state and business efforts are directed at the construction of solar, wind, biomass and small-hydro technologies in rural regions. These concepts and theories are applied in a case study of rural communities in the Eastern Ontario Highlands, an impoverished area undergoing rapid restructuring driven by centralization of services and amenity migration but with abundant natural resources in form of forests, numerous waterways and open space which have attracted a broad range of new energy developments. Overall high levels of support for alternative energy development particularly for solar power were found, albeit for reasons of local energy security and not for reasons of preventing climate change. There was some evidence that seasonal residents are less supportive of hydro and biomass projects than permanent residents possibly reflecting broader trends in rural economies away from productive uses of land to consumptive appreciation of rural landscapes. The thesis suggests that collective action to advance energy projects in the case study area require agreement along three world-claims (truth, rightness and truthfulness) and that communication leading to discourse

  2. NREL's Renewable Energy Development Expertise Reduces Project Risks (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    This National Renewable Energy Laboratory (NREL) success story fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  3. Renewable Energy Opportunities at the Kanto Installations, Japan

    SciTech Connect

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

    2010-09-24

    This document provides an overview of renewable resource development potential at the U.S. Army installations in the Kanto region in Japan, which includes Camp Zama, Yokohama North Dock, Sagamihara Family Housing Area (SFHA), Sagami General Depot, and Akasaka Press Center. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the Huntsville Army Corps of Engineers, and includes the development of a methodology for renewable resource assessment at Army installations located on foreign soil. The methodology is documented in Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations. The site visit to the Kanto installations took place on April 5 and 6, 2010. At the current time, there are some renewable technologies that show economic potential. Because of siting restrictions and the small size of these installations, development of most renewable energy technologies will likely be limited to Camp Zama. Project feasibility is based on installation-specific resource availability and energy costs and projections based on accepted life-cycle cost methods. Development of any renewable energy project will be challenging, as it will require investigation into existing contractual obligations, new contracts that could be developed, the legality of certain partnerships, and available financing avenues, which involves the U.S. Forces Japan (USFJ), the Government of Japan (GOJ), and a number of other parties on both sides. The Army will not be able to implement a project without involvement and approval from the other services and multiple levels of Japanese government. However, implementation of renewable energy projects could be an attractive method for GOJ to reduce greenhouse gas emissions and lower annual utility payments to USFJ. This report recommends projects to pursue and offers approaches to use. The most

  4. Renewable Energy Policy in China: Overview; Renewable Energy in China

    SciTech Connect

    Not Available

    2004-04-01

    China has rich potential for renewable energy development including wind energy, solar, biomass, hydropower, and geothermal. Fact sheet describes Chinas policy for developing renewable energy, policy objectives, subsidies, tax incentives, custom duties, and contact information.

  5. Renewable Energy Business Partnerships in China: Renewable Energy in China

    SciTech Connect

    Not Available

    2004-04-01

    China has rich potential for renewable energy development including wind energy, solar, biomass, hydropower, and geothermal. Fact sheet describes Chinas policy for attracting foreign investment, Chinas tax policy, import duties, currency exchange, and renewable joint ventures in China.

  6. The Caribbean Basin: A prime market for renewables

    SciTech Connect

    Sklar, S.

    1989-04-01

    Countries in the Caribbean basin have high energy prices and need additional electrical generating capacity. Renewable energy and independent power sources could help meet that need. The Caribbean Basin and the Pacific Rim appear to offer the best total market opportunities considering government energy policies, prices of energy, and consumer attitudes on renewable energy applications. The Caribbean Basin was selected for an industry project opportunity review. This area was selected due to its proximity, renewable resource base, need for energy and growth, and potential for private and multidevelopment bank funding of projects. 3 figs.

  7. Dollars from Sense: The Economic Benefits of Renewable Energy

    DOE R&D Accomplishments Database

    1997-09-01

    This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.

  8. Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky

    SciTech Connect

    Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31

    This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

  9. Renewable Energy Opportunities at Fort Drum, New York

    SciTech Connect

    Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

    2010-10-20

    This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

  10. Renewable Energy Opportunities at White Sands Missile Range, New Mexico

    SciTech Connect

    Chvala, William D.; Solana, Amy E.; States, Jennifer C.; Warwick, William M.; Weimar, Mark R.; Dixon, Douglas R.

    2008-09-01

    The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

  11. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    SciTech Connect

    McConnell, Ben W; Hadley, Stanton W; Xu, Yan

    2011-08-01

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, and cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and

  12. Renew, Reflect, and Refresh

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Is that the sound of the last bus leaving the schoolyard? Or the staff's collective sigh of relief? School's out. Now it's time to nurture the lifelong learner deep inside with a summer reading list that will allow teachers to renew, reflect, and refresh. The National Science Education Standards reminds us, "Becoming an effective science teacher…

  13. Mid-Career Renewal

    ERIC Educational Resources Information Center

    Leider, Richard J.

    1976-01-01

    Since "life/career renewal issues will be among the most discussed of society's problems in the next five years and one of the hottest problems business and industry will be faced with," the author reviews work ethic history and recommends approaches individuals may take in view of the probable future. (Author/BP)

  14. Learning about Renewable Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to renewable energy, discussing: (1) the production of electricity from sunlight; (2) wind power; (3) hydroelectric power; (4) geothermal energy; and (5) biomass. Also provided are nine questions to answer (based on the readings), four additional questions to answer (which require additional information), and…

  15. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  16. Renewable energy technologies

    SciTech Connect

    Kristoferson, L.A.; Bokalders, V.

    1986-01-01

    This book provides a valuable overview of the prospects for new and renewable energy technologies and their possible role in energy planning in developing countries. Contents include: biomass energy; production; conversion; utilisation; biomass engines and biomass fuels; solar energy systems; wind energy systems; and hydro energy systems.

  17. A mixed bag: The economic case for renewable energy

    SciTech Connect

    Brower, M.C.; Tennis, M.W.; Denzler, E.W.

    1994-05-01

    Large amounts of renewable energy, including solar, wind, and biomass (wood and plant matter), are available for generating electricity throughout the United States. In some states - especially those in the West and Midwest - the wind and biomass potential alone far exceeds current and foreseeable electricity demand. Moreover, since the 1970s, renewable energy technologies have come down dramatically in cost and have established an impressive record of reliability in grid- and nongrid-connected applications. Despite their promise, however, renewable energy sources are for the most part ignored in utility resource plans. One obstacle is a lack of reliable information about renewable resources and technologies, a problem that is slowly being overcome. Just as important, however, most utility planners fail to recognize the substantial economic benefits of adding renewable energy to their resource mix. In a time of uncertainty about customer load growth, fuel prices, and environmental regulation, renewable energy sources can represent a sound insurance policy against financial losses for utilities and customers alike.

  18. Time to grapple with collateral issues of renewable standards

    SciTech Connect

    2009-08-15

    A number of states with aggressive renewable portfolio standards (RPS) are beginning to get a taste of what is likely to come as more renewable resources are added to the network. Three issues stand out: the need for more transmission capacity; the need for significant additional storage and/or balancing resources, often in the form of thermal peaking units; the costs of these requirements, plus the incremental cost of renewable resources, quickly add up. A study to examine the effect of California's 33 percent RPS mandate by 2020, for example, concludes that meeting the target will cost $8.9 billion in 2020 while saving some $6.3 billion in avoided costs, resulting in a net cost of $2.6 billion, all in 2008 dollars. To meet the target will require building eight major transmission lines and a significant amount of backup thermal generation.

  19. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  20. Space resources. Overview

    NASA Astrophysics Data System (ADS)

    McKay, Mary Fae; McKay, David S.; Duke, Michael B.

    Space resources must be used to support life on the Moon and in the exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. This overview describes the findings of a study on the use of space resources in the development of future space activities and defines the necessary research and development that must precede the practical utilization of these resources. Space resources considered included lunar soil, oxygen derived from lunar soil, material retrieved from near-Earth asteroids, abundant sunlight, low gravity, and high vacuum. The study participants analyzed the direct use of these resources, the potential demand for products from them, the techniques for retrieving and processing space resources, the necessary infrastructure, and the economic tradeoffs.

  1. Space resources. Overview

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and in the exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. This overview describes the findings of a study on the use of space resources in the development of future space activities and defines the necessary research and development that must precede the practical utilization of these resources. Space resources considered included lunar soil, oxygen derived from lunar soil, material retrieved from near-Earth asteroids, abundant sunlight, low gravity, and high vacuum. The study participants analyzed the direct use of these resources, the potential demand for products from them, the techniques for retrieving and processing space resources, the necessary infrastructure, and the economic tradeoffs.

  2. Renewable energy atlas of the United States.

    SciTech Connect

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A.

    2012-05-01

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  3. 30 CFR 585.425 - May I obtain a renewal of my lease or grant before it terminates?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... before it terminates? 585.425 Section 585.425 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... renewal request that involves development of a type of renewable energy not originally authorized in...

  4. 30 CFR 585.425 - May I obtain a renewal of my lease or grant before it terminates?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... before it terminates? 585.425 Section 585.425 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... renewal request that involves development of a type of renewable energy not originally authorized in...

  5. 30 CFR 585.425 - May I obtain a renewal of my lease or grant before it terminates?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... before it terminates? 585.425 Section 585.425 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... renewal request that involves development of a type of renewable energy not originally authorized in...

  6. Factors Affecting Teaching the Concept of Renewable Energy in Technology Assisted Environments and Designing Processes in the Distance Education Model

    ERIC Educational Resources Information Center

    Yucel, A. Seda

    2007-01-01

    The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating…

  7. Renewable energy and wildlife conservation

    USGS Publications Warehouse

    Khalil, Mona

    2016-09-09

    The renewable energy sector is rapidly expanding and diversifying the power supply of the country. Yet, as our Nation works to advance renewable energy and to conserve wildlife, some conflicts arise. To address these challenges, the U.S. Geological Survey (USGS) is conducting innovative research and developing workable solutions to reduce impacts of renewable energy production on wildlife.

  8. Renewable energy and wildlife conservation

    USGS Publications Warehouse

    Khalil, Mona

    2016-01-01

    The renewable energy sector is rapidly expanding and diversifying the power supply of the country. Yet, as our Nation works to advance renewable energy and to conserve wildlife, some conflicts arise. To address these challenges, the U.S. Geological Survey (USGS) is conducting innovative research and developing workable solutions to reduce impacts of renewable energy production on wildlife.

  9. Abundance coefficients, a new method for measuring microorganism relative abundance

    USGS Publications Warehouse

    Forester, R.M.

    1977-01-01

    A new method of measuring the relative abundance of microorganisms by using a set of interrelated coefficients, termed 'abundance coefficients' or 'AC', is proposed. These coefficients provide a means of recording abundance for geometric density categories, and each density measurement represents an approximation of the Poisson parameter ??t. The AC is the natural logarithm of a 'characteristic value,' which is a particular number for each geometric density category. The 'characteristic values' are based upon a probabilistic error statement derived from the Poisson formula, and they present evidence for separation of the geometric category boundaries by e = 2.71828. The proposed AC provide a means for recording species abundance in a manner suitable for arithmetic manipulation, for population structure studies, and for the determination of practical limits for defining the presence or absence of a species. Further, these coefficients provide for both intrasample and intersample abundance comparisons. ?? 1977 Plenum Publishing Corporation.

  10. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  11. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  12. Bolivia renewable energy development

    SciTech Connect

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  13. Renewable energy project development

    SciTech Connect

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  14. Erratum: Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, U. J.; Meyer, D. M.

    2001-09-01

    In the Letter ``Interstellar Abundance Standards Revisited'' by U. J. Sofia and D. M. Meyer (ApJ, 554, L221 [2001]), Table 2 and its footnotes contain several typographical errors. The corrected table is shown below. We note that the solar reference standard now implies a positive abundance of nitrogen in halo dust.

  15. Water in Renewable Polymers: Nonequilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Elabd, Yossef

    2015-03-01

    The design of polymers derived from sustainable resources (renewable polymers) as replacements to nonrenewable plastics for various applications will require an accurate assessment and fundamental understanding of the dynamics water sorption in glassy polymers. In this work, water sorption and diffusion in a number of glassy polymers (including the renewable polymer poly(lactide)) were measured using gravimetric and spectroscopic techniques. Non-Fickian diffusion was observed in all polymers studied, which was indicated by rapid, initial water uptake (driven by a concentration gradient), followed by continuous, gradual uptake of water at later experimental times (driven by slow polymer relaxation). Additionally, water sorption in these glassy polymers was predicted using two nonequilibrium thermodynamic models, where excellent agreement between the model prediction and experimental data was achieved for both models. Furthermore, contrasting physical pictures of water clustering were obtained between the Zimm-Lundberg theory and direct measurements. National Science Foundation.

  16. Canada: Challenges in the Development of Resources. Understanding the Canadian Environment.

    ERIC Educational Resources Information Center

    Dwyer, Robert; Penney, Stephen

    One of a series of student booklets on the Canadian environment, this unit helps secondary students understand what a resource is, consider Canada's many and diverse resources, learn about renewable and non-renewable resources, understand how the use of natural resources affects life-styles, and understand the importance of managing resources…

  17. Indian Renewable Energy Status Report: Background Report for DIREC 2010

    SciTech Connect

    Arora, D. S.; Busche, S.; Cowlin, S.; Engelmeier, T.; Jaritz, J.; Milbrandt, A.; Wang, S.

    2010-10-01

    India has great potential to accelerate use of endowed renewable resources in powering its growing economy with a secure and affordable energy supply. The Government of India recognizes that development of local, renewable resources will be critical to ensure that India is able to meet both economic and environmental objectives and has supported the development of renewable energy through several policy actions. This paper describes the status of renewable energy in India as of DIREC 2010. It begins by describing the institutional framework guiding energy development in India, the main policy drivers impacting energy, and the major policy actions India has taken that impact renewable energy deployment. The paper presents estimates of potential for wind, solar, small hydro, and bioenergy and the deployment of each of these technologies to date in India. The potential for India to meet both large-scale generation needs and provide access to remote, unelectrified populations are covered. Finally, the enabling environment required to facilitate rapid scale of renewables is discussed, including issues of technology transfer and the status of financing in India.

  18. Philippines Wind Energy Resource Atlas Development

    SciTech Connect

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  19. Resource observations from space - Present and future

    NASA Technical Reports Server (NTRS)

    Thome, P. G.; Calabrese, M. A.

    1978-01-01

    The paper deals with some advances which have been made in the field of space remote sensing of the earth's natural resources and in the application of space techniques to the improvement of resource management and better understanding of the physical and dynamic nature of the earth. The current status and planned developments in the management of renewable and nonrenewable resources are reviewed.

  20. How selection structures species abundance distributions

    PubMed Central

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  1. Multi-objective generation scheduling with hybrid energy resources

    NASA Astrophysics Data System (ADS)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  2. Student Outreach With Renewable Energy Technology

    NASA Technical Reports Server (NTRS)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    resources for an Applied Renewable Energy Laboratory offered to both Central State and Wilberforce students. In addition, research endeavors for high school and undergraduates were funded during the summer. The research involved attempts to layer photovoltaic materials on a conducting polymer (polypyrrole) substrate. Two undergraduate students who were interested in polymer research originated this concept. Finally, the university was able to purchase a meteorological station to assist in the analysis of the solar/wind hybrid power system operating at the university.

  3. 30 CFR 285.428 - What effect does applying for a renewal have on my activities and payments?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What effect does applying for a renewal have on my activities and payments? 285.428 Section 285.428 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE...

  4. 30 CFR 585.428 - What effect does applying for a renewal have on my activities and payments?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What effect does applying for a renewal have on my activities and payments? 585.428 Section 585.428 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES...

  5. 30 CFR 585.428 - What effect does applying for a renewal have on my activities and payments?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What effect does applying for a renewal have on my activities and payments? 585.428 Section 585.428 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES...

  6. Reduced Emissions and Lower Costs: Combining Renewable Energy and Energy Efficiency into a Sustainable Energy Portfolio Standard

    SciTech Connect

    Brown, Marilyn A

    2007-01-01

    Combining renewable energy and energy efficiency in Sustainable Energy Portfolio Standards has emerged as a key state and national policy option to achieve greater levels of sustainable energy resources with maximum economic efficiency and equity. One advantage of the SEPS relative to a renewable portfolio standard or a stand-along energy efficiency resource standard is enhanced flexibility and broader options for meeting targets.

  7. Database of State Incentives for Renewable Energy (DSIRE) Program

    SciTech Connect

    Weissman, Jane; Gouchoe, Susan

    2002-11-14

    OAK - B135 Advancement in the use of renewable energy over the past decade is due, in part, to progress in coordinating renewable energy policies, programs and initiatives across all governmental levels and all sectors of business. Through recent efforts by IREC's DSIRE project, information on existing federal, state, local, and utility programs and incentives has been easier for the general public and government agencies to access and, as a result, use of these programs is beginning to increase. Increasing awareness of incentives can directly and positively impact the use of renewable energy. The DSIRE project's primary objective, therefore, is to provide a single resource for all available incentive programs. Information produced by DSIRE is of increasing value to an audience of: · State and local energy offices and regulatory agencies that may be considering new programs or initiatives, or extensions and expansions of past programs; · State regulatory agencies or utility commissions that have approval or influence over the creation of regulatory incentives; · Utility companies who may be considering the creation of new programs and incentives for renewable energy; · Consumers, businesses, and renewable energy industries that need timely information on such incentives for purchasing and business planning; · Schools and youth activity organizations seeking exciting and innovative applications of science and technology; and · Renewable energy, environmental and consumer organizations actively promoting the utilization of renewable energy technologies.

  8. The renewables portfolio standard in Texas: An early assessment

    SciTech Connect

    Wiser, Ryan H.; Langniss, Ole

    2001-11-01

    Texas has rapidly emerged as one of the leading wind power markets in the United States. This development can be largely traced to a well-designed and carefully implemented renewables portfolio standard (RPS). The RPS is a new policy mechanism that has received increasing attention as an attractive approach to support renewable power generation. Though replacing existing renewable energy policies with an as-of-yet largely untested approach in the RPS is risky, early experience from Texas suggests that an RPS can effectively spur renewables development and encourage competition among renewable energy producers. Initial RPS targets in Texas will be far exceeded by the end of 2001, with as much as 930 MW of wind slated for installation this year. RPS compliance costs appear negligible, with new wind projects reportedly contracted for under 3(US)/242/kWh, in part as a result of a 1.7(US)/242/kWh production tax credit, an outstanding wind resource, and an RPS that is sizable enough to drive project economies of scale. Obliged retail suppliers have been willing to enter into long-term contracts with renewable generators, reducing important risks for both the developer and the retail supplier. Finally, the country's first comprehensive renewable energy certificate program has been put into place to monitor and track RPS compliance.

  9. Renewable Energy Feasibility Study Final Report

    SciTech Connect

    Rooney, Tim

    2013-10-30

    The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.

  10. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    SciTech Connect

    Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

    2012-09-01

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

  11. Renewable energy plan of action for American Samoa

    SciTech Connect

    Shupe, J.W. . Pacific Site Office); Stevens, J.W. )

    1990-11-01

    American Samoa has no indigenous fossil fuels and is almost totally dependent for energy on seaborne petroleum. However, the seven Pacific Islands located at 14 degrees south latitude that constitute American Samoa have a wide variety of renewable resources with the potential for substituting for imported oil. Included as possible renewable energy conversion technologies are solar thermal, photovoltaics, wind, geothermal, ocean thermal, and waste-to-energy recovery. This report evaluates the potential of each of these renewable energy alternatives and establishes recommended priorities for their development in American Samoa. Rough cost estimates are also included. Although renewable energy planning is highly site specific, information in this report should find some general application to other tropical insular areas.

  12. High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.

    PubMed

    Boukis, Andreas C; Llevot, Audrey; Meier, Michael A R

    2016-04-01

    A novel and straightforward one-pot multicomponent polycondensation method was established in this work. The Biginelli reaction is a versatile multicomponent reaction of an aldehyde, a β-ketoester (acetoacetate) and urea, which can all be obtained from renewable resources, yielding diversely substituted 3,4-dihydropyrimidin-2(1H)-ones (DHMPs). In this study, renewable diacetoacetate monomers with different spacer chain lengths (C3, C6, C10, C20) were prepared via simple transesterification of renewable diols and commercial acetoacetates. The diacetoacetate monomers were then reacted with renewable dialdehydes, i.e., terephthalaldehyde and divanillin in a Biginelli type step-growth polymerization. The obtained DHMP polymers (polyDHMPs) displayed high molar masses, high glass transition temperatures (Tg) up to 203 °C and good thermal stability (Td5%) of 280 °C. The Tg of the polyDHMPs could be tuned by variation of the structure of the dialdehyde or the diacetoacetate component.

  13. Renewable Energy Positioning System: Energy Positioning: Control and Economics

    SciTech Connect

    2012-03-01

    GENI Project: The University of Washington and the University of Michigan are developing an integrated system to match well-positioned energy storage facilities with precise control technologies so the electric grid can more easily include energy from renewable power sources like wind and solar. Because renewable energy sources provide intermittent power, it is difficult for the grid to efficiently allocate those resources without developing solutions to store their energy for later use. The two universities are working with utilities, regulators, and the private sector to position renewable energy storage facilities in locations that optimize their ability to provide and transmit electricity where and when it is needed most. Expanding the network of transmission lines is prohibitively expensive, so combining well-placed storage facilities with robust control systems to efficiently route their power will save consumers money and enable the widespread use of safe, renewable sources of power.

  14. Role of State Policy in Renewable Energy Development

    SciTech Connect

    Doris, E.; Busche, S.; Hockett, S.; McLaren, J.

    2009-07-01

    State policies can support renewable energy development by driving markets, providing certainty in the investment market, and incorporating the external benefits of the technologies into cost/benefit calculations. Using statistical analyses and policy design best practices, this paper quantifies the impact of state-level policies on renewable energy development in order to better understand the role of policy on development and inform policy makers on the policy mechanisms that provide maximum benefit. The results include the identification of connections between state policies and renewable energy development, as well as a discussion placing state policy efforts in context with other factors that influence the development of renewable energy (e.g. federal policy, resource availability, technology cost, public acceptance).

  15. Renewable Energy Opportunity Assessment

    SciTech Connect

    Hancock, E.; Mas, C.

    1998-11-13

    Presently, the US EPA is constructing a new complex at Research Triangle Park, North Carolina to consolidate its research operations in the Raleigh-Durham area. The National Computer Center (NCC) is currently in the design process and is planned for construction as partof this complex. Implementation of the new technologies can be planned as part of the normal construction process, and full credit for elimination of the conventional technologies can be taken. Several renewable technologies are specified in the current plans for the buildings. The objective of this study is to identify measures that are likely to be both technically and economically feasible.

  16. Mineral Abundance Near Aristarchus Crater

    NASA Astrophysics Data System (ADS)

    Bradford, Alison; Storrs, A.

    2007-12-01

    Mineral Abundance Near Aristarchus Crater Alison Bradford and Alex Storrs Towson University We analyze Hubble Space Telescope (HST) images to determine the abundance of minerals near Aristarchus crater. Following the calibration of Robinson et al. (2007) we present ratio maps of images obtained in August of 2005 showing the abundance of TiO2 and other minerals in this interesting area in the middle of Oceanus Procellarum. A prominent cleft (Schroter's Valley, presumably a collapsed lava tube) makes this region of special interest for analyzing the formation of mare basalts. Reference: Robinson, M.S., et al. (2007): "High resolution mapping of TiO2 abundances on the Moon using the Hubble Space Telescope", GRL 34, L13203

  17. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  18. Renewable Energy Opportunities Saginaw Chippewa Indian Tribe

    SciTech Connect

    Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer

    2008-10-22

    The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.

  19. Analysis of a 10% Renewable Portfolio Standard

    EIA Publications

    2003-01-01

    On May 8, 2003, Senator Jeff Bingaman, the Ranking Minority Member of the Senate Committee on Energy and Natural Resources, requested an analysis of a nationwide Renewable Portfolio Standard (RPS) program proposed to be amended to energy legislation currently pending before the U.S. Senate. With his request Sen. Bingaman provided specific information on the program to be analyzed. This analysis was prepared in response to his request and projects the impact of the proposed program on energy supply, demand, prices, and emissions. The analysis is based on the Annual Energy Outlook 2003 (AEO2003) projections of energy supply, demand, and prices through 2025, as updated in May 2003.

  20. Nonconventional energy resources. [Includes glossary

    SciTech Connect

    Pryde, P.R.

    1983-01-01

    Worldwide energy problems suggest that unconventional energy sources will contribute an increasing share of energy supplies. The chapters of this book present a rationale for developing unconventional resources, but they also look at the practical aspects of environmental, social, and economic impacts assocated with their development. The introduction reviews several possible scenarios, then gives an overview of the contributions that can be made by renewable, semi-renewable, nondepletable, and nonrenewable energy resources. It stresses the importance of conversion efficiency and net energy, both local and global environmental issues, and economics. A separate abstract was prepared for 10 chapters selected for the Energy Data Base (EDB) and Energy Abstracts for Policy Analysis (EAPA).

  1. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  2. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    SciTech Connect

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  3. Clean energy choices: Tips on buying and using renewable energy at home

    SciTech Connect

    NREL

    2000-04-07

    This brochure provides information on how consumers can use renewable energy in and around the home. Information on buying green power; using renewables to generate power; using passive and active solar and geothermal heat pumps to heat, cool and light buildings; and using alternative fuels and vehicles is included. Resources at the end of each chapter help readers find more information.

  4. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Not Available

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  5. ALS renewal moves forward

    NASA Astrophysics Data System (ADS)

    Falcone, R. W.; Feinberg, B.; Hussain, Z.; Kirz, J.; Krebs, G. F.; Padmore, H. A.; Robin, D. S.; Robinson, A. L.

    2007-11-01

    As the result of an extensive long-term planning process involving all its stakeholders—management, staff, and users—the ALS has seen its future and is aggressively moving ahead to implement its vision for keeping the facility at the cutting edge for the next 2-3 decades. The evolving strategic plan now in place aims to renew the ALS so it can address a new generation of fundamental questions about size dependent and dimensional-confinement phenomena at the nanoscale; correlation and complexity in physical, biological, and environmental systems; and temporal evolution, assembly, dynamics and ultrafast phenomena. The renewal spans three areas: (1) increased staffing at beamlines to support the growing user community and safety professionals to keep an increasingly complex facility hazard free; (2) implementing advances in accelerator, insertion device, beamline, and detector technology that will make it possible for ALS users to address emerging grand scientific and technological challenges with incisive world-class tools; and (3) construction of a user support building and guest housing that will increase the safety and user friendliness of the ALS by providing users office, meeting, experiment staging, and laboratory space for their work and on-site accommodations at reasonable rates.

  6. Federal Renewable Energy Screening Assistant

    SciTech Connect

    Shelpuk, B; Walker, A

    1994-10-01

    The Federal Renewable Energy Screening Assistant is a software tool to be used by energy auditors to prioritize future studies of potentially cost-effective renewable energy applications at federal facilities. This paper describes the structure and function of the tool, gives an inventory of renewable energy technologies represented in the tool, and briefly describes the algorithms used to rank opportunities by the savings-to-investment ratio.

  7. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  8. 76 FR 23230 - Segregation of Lands-Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... potential future wind or solar energy generation ROW authorization under the BLM's ROW regulations, in order... the Interior should seek to have approved non- hydropower renewable energy projects (solar, wind, and... the BLM a tool to minimize potential resource conflicts between ROWs for proposed solar and...

  9. Renewable energy alternatives - a growing opportunity for engineering & technology education

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hallmark of the United States’ economic growth is an ever-increasing demand for energy, which has traditionally been met primarily by combusting the hydrocarbons found in fossil fuels. As national security and environmental concerns grow, renewable energy resources are gaining increased attention...

  10. 77 FR 22799 - Royalty Policy Committee (RPC) Notice of Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... the management of Federal and Indian mineral leases and revenues under the laws governing the Department of the Interior. The Committee will also review and comment on revenue management and other... Royalty Policy Committee (RPC) Notice of Renewal AGENCY: Office of Natural Resources Revenue,...

  11. Renewable Electricity Policy in Germany, 1974 to 2005

    ERIC Educational Resources Information Center

    Lauber, Volkmar; Mez, Lutz

    2006-01-01

    Of the large industrial countries, Germany is clearly leading with regard to new renewable energy sources, occupying first rank in terms of installed capacity for wind energy and second for photovoltaics. This is not because of an exceptional natural resource base but because of public policy in this area, despite the fact that this policy was…

  12. Planning and Partnerships for the Renewal of Urban Neighborhoods

    ERIC Educational Resources Information Center

    Sterrett, Stephen A.

    2009-01-01

    Urban universities are a key resource for municipal government, businesses, community organizations, and citizens to foster partnerships for successful renewal of distressed urban neighborhoods. From its experience over the past decade, the Ohio State University has created a successful model for engagement with its neighborhoods and the City of…

  13. Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations

    SciTech Connect

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

    2010-08-30

    Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to which this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNL’s established renewable resource assessment methodology.

  14. 78 FR 37876 - Establishment of Regional Energy Resource Council and Solicitation of Nominations for Membership

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ..., including fossil-fueled power plants, nuclear plants, hydroelectric dams, and renewable resources; the... Establishment of Regional Energy Resource Council and Solicitation of Nominations for Membership AGENCY: Tennessee Valley Authority (TVA). ACTION: Notice of Establishment of the Regional Energy Resource...

  15. Robust Abundance Estimation in Animal Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  16. Modelling of Integrated Renewable Energy System

    NASA Astrophysics Data System (ADS)

    Akella, A. K.; Saini, R. P.; Sharma, M. P.

    2007-10-01

    Energy is supplied in the form of electricity, heat or fuels and an energy supply system must guarantee sufficient production and distribution of energy. An energy supply system based on renewable energy can be utilized as integrated renewable energy system (IRES), which can satisfy the energy needs of an area in appropriate & sustainable manner. Given the key role of renewable energy in rural electrification of remote rural areas, the IRES for a given area can be modeled & optimized for meeting the energy needs. In the present paper, Jaunpur block of Uttaranchal state of India has been selected as remote area. Based upon the data collected, the resource potential and energy demand has been calculated & presented. The model on the basis of unit cost of the energy has been optimized using LINDO software 6.10 version. The results indicated that the optimized model has been found to the best choice for meeting the energy needs of the area. The results further indicated that for the above area, either an IRES consisting of the above sources can provide a feasible solution in terms of energy fulfillments in the range of EPDF from 1.0 to 0.75.

  17. Renewable Energy Planning: Multiparametric Cost Optimization; Preprint

    SciTech Connect

    Walker, A.

    2008-05-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  18. Comprehensive energy resources plan

    NASA Astrophysics Data System (ADS)

    Historical trends, current status, and projections of sources and uses of energy in Maine are presented. An overview of conservation opportunities and current programs in four broad categories; residential, commercial/institutional, industrial, and transportation is provided. Cogeneration and district heating are discussed. The potentials and limits for the development of each of Maine's major renewable energy resources and some of the current government programs relating to them are discussed. Some of the most significant factors and issues regarding use of nonrenewable energy resources in Maine are described. The potential for energy exchange with Canada is briefly discussed.

  19. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report

    SciTech Connect

    Key, Thomas S; Hadley, Stanton W; Deb, Rajat

    2010-02-01

    Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

  20. NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.