Science.gov

Sample records for abundant skeletal remains

  1. Body size prediction from juvenile skeletal remains.

    PubMed

    Ruff, Christopher

    2007-05-01

    There are currently no methods for predicting body mass from juvenile skeletal remains and only a very limited number for predicting stature. In this study, stature and body mass prediction equations are generated for each year from 1 to 17 years of age using a subset of the Denver Growth Study sample, followed longitudinally (n = 20 individuals, 340 observations). Radiographic measurements of femoral distal metaphyseal and head breadth are used to predict body mass and long bone lengths are used to predict stature. In addition, pelvic bi-iliac breadth and long bone lengths are used to predict body mass in older adolescents. Relative prediction errors are equal to or smaller than those associated with similar adult estimation formulae. Body proportions change continuously throughout growth, necessitating age-specific formulae. Adult formulae overestimate stature and body mass in younger juveniles, but work well in 17-year-olds from the sample, indicating that in terms of body proportions they are representative of the general population. To illustrate use of the techniques, they are applied to the juvenile Homo erectus (ergaster) KNM-WT 15000 skeleton. New body mass and stature estimates for this specimen are similar to previous estimates derived using other methods. Body mass estimates range from 50 to 53 kg, and stature was probably slightly under 157 cm, although a precise stature estimate is difficult to determine due to differences in linear body proportions between KNM-WT 15000 and the Denver reference sample. PMID:17295297

  2. Weight references for burned human skeletal remains from Portuguese samples.

    PubMed

    Gonçalves, David; Cunha, Eugénia; Thompson, Tim J U

    2013-09-01

    Weight is often one of the few recoverable data when analyzing human cremains but references are still rare, especially for European populations. Mean weights for skeletal remains were thus documented for Portuguese modern cremations of both recently deceased individuals and dry skeletons, and the effect of age, sex, and the intensity of combustion was investigated using both multivariate and univariate statistics. The cremains from fresh cadavers were significantly heavier than the ones from dry skeletons regardless of sex and age cohort (p < 0.001 to p = 0.003). As expected, males were heavier than females and age had a powerful effect in female skeletal weight. The effect of the intensity of combustion in cremains weight was unclear. These weight references may, in some cases, help estimating the minimum number of individuals, the completeness of the skeletal assemblage, and the sex of an unknown individual. PMID:23822840

  3. Mechanical determinants of bone form: insights from skeletal remains.

    PubMed

    Ruff, C B

    2005-01-01

    Analysis of skeletal remains from humans living in the past forms an important complement to observational and experimental studies of living humans and animal models. Including earlier humans in such analyses increases the range of variation in both behavior and body size and shape that are represented, and can provide insights into the adaptive potential of the modern human skeleton. I review here a variety of studies of archaeological and paleontological remains that have investigated differences in skeletal structure from a mechanical perspective, focusing in particular on diaphyseal strength of the limb bones. Several conclusions can be drawn from these studies: 1) there has been a decline in overall skeletal strength relative to body size over the course of human evolution that has become progressively steeper in recent millennia, probably due to increased sedentism and technological advancement; 2) differences in pelvic structure and hip mechanical loadings affect femoral shape; 3) activity patterns affect overall strength and shape of both the lower and upper limb bones; and 4) responsiveness to changes in mechanical loading varies between skeletal features (e.g., articulations versus diaphyses) and by age. PMID:16172511

  4. Skeletal preservation of children's remains in the archaeological record.

    PubMed

    Manifold, B M

    2015-12-01

    Taphonomy is an important consideration in the reconstruction of past environments and events. Taphonomic alterations and processes are commonly encountered on human skeletal remains in both archaeological and forensic contexts. It is these processes that can alter the appearance of bone after death and the properties of the bones influence their reaction to these processes thus leading to differential preservation within a skeletal sample, none more so than the remains of children. This study investigates the skeletal preservation of 790 child and adolescent skeletons from six contrasting early and late medieval cemeteries from Britain in an attempt to assess whether geographical location and geology had an effect on the overall preservation of the skeletons. Skeletons were examined from six cemeteries, namely; Auldhame in Scotland, Edix Hill and Great Chesterford from Cambridgeshire; St Oswald's Priory from Gloucester and Wharram Percy from Yorkshire, and finally, the site of Llandough in Wales. The state of preservation was assessed using the anatomical preservation index (AP1), qualitative bone index (QBI) and the bone representation index (BRI). Also the presence of natural and artificial taphonomic processes was recorded for each skeleton. The results show a specific pattern of preservation and representation for non-adult remains across all sites with some differences in the states of preservation from different geographical locations and geological influences. Children under two years of age were found to be less affected by taphonomic processes than their older counterparts. PMID:26391374

  5. Osteometric sex determination of burned human skeletal remains.

    PubMed

    Gonçalves, D; Thompson, T J U; Cunha, E

    2013-10-01

    Sex determination of human burned skeletal remains is extremely hard to achieve because of heat-related fragmentation, warping and dimensional changes. In particular, the latter is impeditive of osteometric analyses that are based on references developed on unburned bones. New osteometric references were thus obtained which allow for more reliable sex determinations. The calcined remains of cremated Portuguese individuals were examined and specific standard measurements of the humerus, femur, talus and calcaneus were recorded. This allowed for the compilation of new sex discriminating osteometric references which were then tested on independent samples with good results. Both the use of simple section points and of logistic regression equations provided successful sex classification scores. These references may now be used for the sex determination of burned skeletons. Its reliability is highest for contemporary Portuguese remains but nonetheless these results have important repercussion for forensic research. More conservative use of these references may also prove valuable for other populations as well as for archaeological research. PMID:24112343

  6. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    PubMed

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. PMID:27364268

  7. A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial

    NASA Astrophysics Data System (ADS)

    Shao, C.-W.; Chiu, H.-L.; Chang, S.-K.

    2015-08-01

    Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the "colour change" of the human skeletal remains from wet to dry condition. Then, the "colure change" is used to evaluate the "real" surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The"Lingdao man No.1", is a well preserved burial of early Neolithic period (8300 B.P.) excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by step for ensuring the surface

  8. Reliability in age determination by pulp/tooth ratio in upper canines in skeletal remains.

    PubMed

    Cameriere, Roberto; Brogi, Giuseppe; Ferrante, Luigi; Mirtella, Dora; Vultaggio, Claudia; Cingolani, Mariano; Fornaciari, Gino

    2006-07-01

    Estimation of age of skeletal remains is one of the most complex questions for anthropologists. The most common macroscopic methods are based on dental wear and histological evaluation of bone remodeling. These methods are often qualitative, require great technical expertise, and have proved inexact in the estimation of ages over 50 years. Certain dental methods investigate the apposition of secondary dentine, in the study of tooth cross-sections, and X-rays to study width, height, and pulp area. The primary author previously proposed a method of estimating the age of a living person based on the pulp/tooth ratio (PTR) method in the upper canines. The aim of the present study is to verify whether the PTR method can also be used to estimate the age at death of skeletal remains. This paper investigates the study of historical samples of known age as a means to validate the proposed method. PMID:16882230

  9. Nondestructive sampling of human skeletal remains yields ancient nuclear and mitochondrial DNA.

    PubMed

    Bolnick, Deborah A; Bonine, Holly M; Mata-Míguez, Jaime; Kemp, Brian M; Snow, Meradeth H; LeBlanc, Steven A

    2012-02-01

    Museum curators and living communities are sometimes reluctant to permit ancient DNA (aDNA) studies of human skeletal remains because the extraction of aDNA usually requires the destruction of at least some skeletal material. Whether these views stem from a desire to conserve precious materials or an objection to destroying ancestral remains, they limit the potential of aDNA research. To help address concerns about destructive analysis and to minimize damage to valuable specimens, we describe a nondestructive method for extracting DNA from ancient human remains. This method can be used with both teeth and bone, but it preserves the structural integrity of teeth much more effectively than that of bone. Using this method, we demonstrate that it is possible to extract both mitochondrial and nuclear DNA from human remains dating between 300 BC and 1600 AD. Importantly, the method does not expose the remains to hazardous chemicals, allowing them to be safely returned to curators, custodians, and/or owners of the samples. We successfully amplified mitochondrial DNA from 90% of the individuals tested, and we were able to analyze 1-9 nuclear loci in 70% of individuals. We also show that repeated nondestructive extractions from the same tooth can yield amplifiable mitochondrial and nuclear DNA. The high success rate of this method and its ability to yield DNA from samples spanning a wide geographic and temporal range without destroying the structural integrity of the sampled material may make possible the genetic study of skeletal collections that are not available for destructive analysis. PMID:22183740

  10. The Neandertal type site revisited: interdisciplinary investigations of skeletal remains from the Neander Valley, Germany.

    PubMed

    Schmitz, Ralf W; Serre, David; Bonani, Georges; Feine, Susanne; Hillgruber, Felix; Krainitzki, Heike; Pääbo, Svante; Smith, Fred H

    2002-10-01

    The 1856 discovery of the Neandertal type specimen (Neandertal 1) in western Germany marked the beginning of human paleontology and initiated the longest-standing debate in the discipline: the role of Neandertals in human evolutionary history. We report excavations of cave sediments that were removed from the Feldhofer caves in 1856. These deposits have yielded over 60 human skeletal fragments, along with a large series of Paleolithic artifacts and faunal material. Our analysis of this material represents the first interdisciplinary analysis of Neandertal remains incorporating genetic, direct dating, and morphological dimensions simultaneously. Three of these skeletal fragments fit directly on Neandertal 1, whereas several others have distinctively Neandertal features. At least three individuals are represented in the skeletal sample. Radiocarbon dates for Neandertal 1, from which a mtDNA sequence was determined in 1997, and a second individual indicate an age of approximately 40,000 yr for both. mtDNA analysis on the same second individual yields a sequence that clusters with other published Neandertal sequences. PMID:12232049

  11. The Neandertal type site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany

    PubMed Central

    Schmitz, Ralf W.; Serre, David; Bonani, Georges; Feine, Susanne; Hillgruber, Felix; Krainitzki, Heike; Pääbo, Svante; Smith, Fred H.

    2002-01-01

    The 1856 discovery of the Neandertal type specimen (Neandertal 1) in western Germany marked the beginning of human paleontology and initiated the longest-standing debate in the discipline: the role of Neandertals in human evolutionary history. We report excavations of cave sediments that were removed from the Feldhofer caves in 1856. These deposits have yielded over 60 human skeletal fragments, along with a large series of Paleolithic artifacts and faunal material. Our analysis of this material represents the first interdisciplinary analysis of Neandertal remains incorporating genetic, direct dating, and morphological dimensions simultaneously. Three of these skeletal fragments fit directly on Neandertal 1, whereas several others have distinctively Neandertal features. At least three individuals are represented in the skeletal sample. Radiocarbon dates for Neandertal 1, from which a mtDNA sequence was determined in 1997, and a second individual indicate an age of ≈40,000 yr for both. mtDNA analysis on the same second individual yields a sequence that clusters with other published Neandertal sequences. PMID:12232049

  12. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework.

    PubMed

    Krishan, Kewal; Chatterjee, Preetika M; Kanchan, Tanuj; Kaur, Sandeep; Baryah, Neha; Singh, R K

    2016-04-01

    Sex estimation is considered as one of the essential parameters in forensic anthropology casework, and requires foremost consideration in the examination of skeletal remains. Forensic anthropologists frequently employ morphologic and metric methods for sex estimation of human remains. These methods are still very imperative in identification process in spite of the advent and accomplishment of molecular techniques. A constant boost in the use of imaging techniques in forensic anthropology research has facilitated to derive as well as revise the available population data. These methods however, are less reliable owing to high variance and indistinct landmark details. The present review discusses the reliability and reproducibility of various analytical approaches; morphological, metric, molecular and radiographic methods in sex estimation of skeletal remains. Numerous studies have shown a higher reliability and reproducibility of measurements taken directly on the bones and hence, such direct methods of sex estimation are considered to be more reliable than the other methods. Geometric morphometric (GM) method and Diagnose Sexuelle Probabiliste (DSP) method are emerging as valid methods and widely used techniques in forensic anthropology in terms of accuracy and reliability. Besides, the newer 3D methods are shown to exhibit specific sexual dimorphism patterns not readily revealed by traditional methods. Development of newer and better methodologies for sex estimation as well as re-evaluation of the existing ones will continue in the endeavour of forensic researchers for more accurate results. PMID:26926105

  13. Blood or spores? A cautionary note on interpreting cellular debris on human skeletal remains.

    PubMed

    Cappella, A; Stefanelli, S; Caccianiga, M; Rizzi, A; Bertoglio, B; Sforza, C; Cattaneo, C

    2015-07-01

    The identification of red blood cells on both skeletal human remains and decomposed corpses is of remarkable importance in forensic sciences, irrespective of its diagnostic value; their presence is often perplexing and difficult to interpret especially when in the context of decomposition and taphonomical variables. Some clinical research has focused on the morphological changes of red blood cells over time by scanning electron microscopy (SEM), but no research has investigated whether botanical structures can be confused for red blood cells. Since some literature has recently presumed the detection of erythrocyte-like cells on skeletal remains (even ancient) as surely erythrocytes, and most have never taken into consideration the chance of an origin different from blood, such as botanical, the present study aims at verifying the possibility of confusion between erythrocytes and botanical cells by applying SEM analysis and at highlighting the pitfalls in this particular issue through a test submitted to pathologists and natural scientists asked to discriminate between red blood cells and different vegetal structures (60 images obtained by SEM analysis). The results showed that although there are diagnostic features useful in identifying red blood cells from botanical structures, some spores resulted very similar to decaying red blood cells, which calls for attention and great caution when studying decomposed human remains. PMID:25563601

  14. Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy.

    PubMed

    Nagy, Gergely; Lorand, Tamas; Patonai, Zoltan; Montsko, Gergely; Bajnoczky, Istvan; Marcsik, Antonia; Mark, Laszlo

    2008-02-25

    In this study, we report the chemical analyses of various non-pathological, tuberculosis and syphilis infected bone samples from different burial environments by Fourier transform infrared spectroscopy (FT-IR), in the framework of a general study of diagenesis. Dating human skeletal remains is one of the most important and yet unreliable aspects of forensic anthropology. In this paper, a new method has been suggested, using the crystallinity index and carbonate-phosphate index as a means of distinction between recent and archaeological, anthropological bone samples. Pathological bone samples were analyzed with the same method to see if changes in crystallinity interfere with the process of dating. PMID:17574360

  15. An analysis of the alleged skeletal remains of Carin Göring.

    PubMed

    Kjellström, Anna; Edlund, Hanna; Lembring, Maria; Ahlgren, Viktoria; Allen, Marie

    2012-01-01

    In 1991, treasure hunters found skeletal remains in an area close to the destroyed country residence of former Nazi leader Hermann Göring in northeastern Berlin. The remains, which were believed to belong to Carin Göring, who was buried at the site, were examined to determine whether it was possible to make a positive identification. The anthropological analysis showed that the remains come from an adult woman. The DNA analysis of several bone elements showed female sex, and a reference sample from Carin's son revealed mtDNA sequences identical to the remains. The profile has one nucleotide difference from the Cambridge reference sequence (rCRS), the common variant 263G. A database search resulted in a frequency of this mtDNA sequence of about 10% out of more than 7,000 European haplotypes. The mtDNA sequence found in the ulna, the cranium and the reference sample is, thus, very common among Europeans. Therefore, nuclear DNA analysis was attempted. The remains as well as a sample from Carin's son were successfully analysed for the three nuclear markers TH01, D7S820 and D8S1179. The nuclear DNA analysis of the two samples revealed one shared allele for each of the three markers, supporting a mother and son relationship. This genetic information together with anthropological and historical files provides an additional piece of circumstantial evidence in our efforts to identify the remains of Carin Göring. PMID:23284605

  16. An Analysis of the Alleged Skeletal Remains of Carin Göring

    PubMed Central

    Kjellström, Anna; Edlund, Hanna; Lembring, Maria; Ahlgren, Viktoria; Allen, Marie

    2012-01-01

    In 1991, treasure hunters found skeletal remains in an area close to the destroyed country residence of former Nazi leader Hermann Göring in northeastern Berlin. The remains, which were believed to belong to Carin Göring, who was buried at the site, were examined to determine whether it was possible to make a positive identification. The anthropological analysis showed that the remains come from an adult woman. The DNA analysis of several bone elements showed female sex, and a reference sample from Carin's son revealed mtDNA sequences identical to the remains. The profile has one nucleotide difference from the Cambridge reference sequence (rCRS), the common variant 263G. A database search resulted in a frequency of this mtDNA sequence of about 10% out of more than 7,000 European haplotypes. The mtDNA sequence found in the ulna, the cranium and the reference sample is, thus, very common among Europeans. Therefore, nuclear DNA analysis was attempted. The remains as well as a sample from Carin's son were successfully analysed for the three nuclear markers TH01, D7S820 and D8S1179. The nuclear DNA analysis of the two samples revealed one shared allele for each of the three markers, supporting a mother and son relationship. This genetic information together with anthropological and historical files provides an additional piece of circumstantial evidence in our efforts to identify the remains of Carin Göring. PMID:23284605

  17. Skeletal remains from Punic Carthage do not support systematic sacrifice of infants.

    PubMed

    Schwartz, Jeffrey H; Houghton, Frank; Macchiarelli, Roberto; Bondioli, Luca

    2010-01-01

    Two types of cemeteries occur at Punic Carthage and other Carthaginian settlements: one centrally situated housing the remains of older children through adults, and another at the periphery of the settlement (the "Tophet") yielding small urns containing the cremated skeletal remains of very young animals and humans, sometimes comingled. Although the absence of the youngest humans at the primary cemeteries is unusual and worthy of discussion, debate has focused on the significance of Tophets, especially at Carthage, as burial grounds for the young. One interpretation, based on two supposed eye-witness reports of large-scale Carthaginian infant sacrifice [Kleitarchos (3(rd) c. BCE) and Diodorus Siculus (1(st) c. BCE)], a particular translation of inscriptions on some burial monuments, and the argument that if the animals had been sacrificed so too were the humans, is that Tophets represent burial grounds reserved for sacrificial victims. An alternative hypothesis acknowledges that while the Carthaginians may have occasionally sacrificed humans, as did their contemporaries, the extreme youth of Tophet individuals suggests these cemeteries were not only for the sacrificed, but also for the very young, however they died. Here we present the first rigorous analysis of the largest sample of cremated human skeletal remains (348 burial urns, N = 540 individuals) from the Carthaginian Tophet based on tooth formation, enamel histology, cranial and postcranial metrics, and the potential effects of heat-induced bone shrinkage. Most of the sample fell within the period prenatal to 5-to-6 postnatal months, with a significant presence of prenates. Rather than indicating sacrifice as the agent of death, this age distribution is consistent with modern-day data on perinatal mortality, which at Carthage would also have been exacerbated by numerous diseases common in other major cities, such as Rome and Pompeii. Our diverse approaches to analyzing the cremated human remains from

  18. Bone mineral density of skeletal remains: Discordant results between chemical analysis and DXA method.

    PubMed

    Sutlovic, Davorka; Boric, Igor; Sliskovic, Livia; Popovic, Marijana; Knezovic, Zlatka; Nikolic, Ivana; Vucinovic, Ana; Vucinovic, Zoran

    2016-05-01

    Dual-energy X-ray absorptiometry (DXA) scanning is a gold standard for bone mineral density measurement and diagnosis of primary and secondary osteoporosis in living persons. DXA is becoming widespread when analysing archaeological material, and is considered to provide an accurate diagnosis of osteoporosis in skeletal samples. The aim of this study was to explain the differences in results between bone mineral density (obtained with DXA) and chemical determination of calcium and phosphorus concentrations in skeletal remains. We examined bone mineral density (BMD) and mineral content of femoral bone samples exhumed from mass graves of the Second World War. BMD was determined by Hologic QDR 4500 C (S/N 48034) Bone Densitometer. Concentrations of calcium and phosphorus were determined with AAS (Atomic absorption spectroscopy) and UV/VIS (Ultraviolet-visible) spectroscopy. The results obtained in this study do not support the hypothesis according to which BMD measured by DXA scan has positive correlation with chemically determined concentrations of calcium and phosphorus in bones, especially in acidic soils where there was significant impact of diagenesis observed. PMID:27161916

  19. Brief communication: a proposed osteological method for the estimation of pubertal stage in human skeletal remains.

    PubMed

    Shapland, Fiona; Lewis, Mary E

    2013-06-01

    Puberty forms an important threshold between childhood and adulthood, but this subject has received little attention in bioarchaeology. The new application of clinical methods to assess pubertal stage in adolescent skeletal remains is explored, concentrating on the development of the mandibular canine, hamate, hand phalanges, iliac crest and distal radius. Initial results from the medieval cemetery of St. Peter's Church, Barton-upon-Humber, England suggest that application of these methods may provide insights into aspects of adolescent development. This analysis indicates that adolescents from this medieval site were entering the pubertal growth spurt at a similar age to their modern counterparts, but that the later stages of pubertal maturation were being significantly delayed, perhaps due to environmental stress. Continued testing and refinement of these methods on living adolescents is still necessary to improve our understanding of their significance and accuracy in predicting pubertal stages. PMID:23588889

  20. Assessing the Utility of Soil DNA Extraction Kits for Increasing DNA Yields and Eliminating PCR Inhibitors from Buried Skeletal Remains.

    PubMed

    Hebda, Lisa M; Foran, David R

    2015-09-01

    DNA identification of human remains is often necessary when decedents are skeletonized; however, poor DNA recovery and polymerase chain reaction (PCR) inhibition are frequently encountered, a situation exacerbated by burial. In this research, the utility of integrating soil DNA isolation kits into buried skeletal DNA analysis was evaluated and compared to a standard human DNA extraction kit and organic extraction. The soil kits successfully extracted skeletal DNA at quantities similar to standard methods, although the two kits tested, which differ mechanistically, were not equivalent. Further, the PCR inhibitors calcium and humic acid were effectively removed using the soil kits, whereas collagen was less so. Finally, concordant control region sequences were obtained from human skeletal remains using all four methods. Based on these comparisons, soil DNA isolation kits, which quickened the extraction process, proved to be a viable extraction technique for skeletal remains that resulted in positive identification of a decedent. PMID:26258388

  1. Skeletal Remains from Punic Carthage Do Not Support Systematic Sacrifice of Infants

    PubMed Central

    Schwartz, Jeffrey H.; Houghton, Frank; Macchiarelli, Roberto; Bondioli, Luca

    2010-01-01

    Two types of cemeteries occur at Punic Carthage and other Carthaginian settlements: one centrally situated housing the remains of older children through adults, and another at the periphery of the settlement (the “Tophet”) yielding small urns containing the cremated skeletal remains of very young animals and humans, sometimes comingled. Although the absence of the youngest humans at the primary cemeteries is unusual and worthy of discussion, debate has focused on the significance of Tophets, especially at Carthage, as burial grounds for the young. One interpretation, based on two supposed eye-witness reports of large-scale Carthaginian infant sacrifice [Kleitarchos (3rd c. BCE) and Diodorus Siculus (1st c. BCE)], a particular translation of inscriptions on some burial monuments, and the argument that if the animals had been sacrificed so too were the humans, is that Tophets represent burial grounds reserved for sacrificial victims. An alternative hypothesis acknowledges that while the Carthaginians may have occasionally sacrificed humans, as did their contemporaries, the extreme youth of Tophet individuals suggests these cemeteries were not only for the sacrificed, but also for the very young, however they died. Here we present the first rigorous analysis of the largest sample of cremated human skeletal remains (348 burial urns, N = 540 individuals) from the Carthaginian Tophet based on tooth formation, enamel histology, cranial and postcranial metrics, and the potential effects of heat-induced bone shrinkage. Most of the sample fell within the period prenatal to 5-to-6 postnatal months, with a significant presence of prenates. Rather than indicating sacrifice as the agent of death, this age distribution is consistent with modern-day data on perinatal mortality, which at Carthage would also have been exacerbated by numerous diseases common in other major cities, such as Rome and Pompeii. Our diverse approaches to analyzing the cremated human remains from

  2. Application of novel "mini-amplicon" STR multiplexes to high volume casework on degraded skeletal remains.

    PubMed

    Parsons, Thomas J; Huel, Rene; Davoren, Jon; Katzmarzyk, Cheryl; Milos, Ana; Selmanović, Arijana; Smajlović, Lejla; Coble, Michael D; Rizvić, Adnan

    2007-06-01

    The International Commission on Missing Persons (ICMP) conducts high throughput STR profiling on degraded skeletal remains, primarily recovered from mass graves relating to conflicts from 1992 to 1999 in the former Yugoslavia. To date, over 11,000 individuals have been identified through comparison of bone profiles to a large database of profiles from family members of the missing. To increase success rates in STR recovery, three short amplicon STR multiplexes (a 7-plex, a 6-plex, and a 5-plex) have been devised and implemented. These target loci from large commercial multiplexes, with an average decrease in amplicon size of 144 bp. The ICMP "miniplexes" have proven to provide substantially greater recovery of DNA data from a certain subset of difficult samples. However, the circumstances under which miniplexes provide additional data are restricted, and their advantages do not outweigh those of large commercial multiplexes for a majority of cases. The miniplexes, however, also have a very powerful use in DNA testing to support large scale reassociation of commingled, partial skeletons recovered from secondary mass graves. PMID:19083751

  3. The reliability of osteometric techniques for the sex determination of burned human skeletal remains.

    PubMed

    Gonçalves, David

    2011-10-01

    The influence of heat-induced shrinkage on the osteometric sexual dimorphism of human skeletons is still poorly known. In order to investigate this issue, a sample composed of 84 Portuguese individuals cremated at a modern crematorium was examined using standard measurements from the femur, the talus and the calcaneus. In addition, sex determination of the sample was attempted by using osteometric standards developed from the Coimbra collection of identified skeletons. This was carried out to assess the extent of the effect of heat-induced shrinkage on the correct classification of known-sex skeletons while using standards developed on unburned skeletons. Results demonstrated that sexual dimorphism was still observable in the sample of calcined bones despite shrinkage. However, the application of conventional osteometric standards was unsuccessful. As expected, shrinkage caused most females to be correctly classified according to sex, but the sex allocation of males was very poor for all standard measurements. The results were obtained on a small sample but suggest that univariate metric techniques specifically developed for calcined bones may be valuable for sex determination. This would bring new methodological possibilities for biological anthropology and would enlarge the set of techniques regarding sex determination of burned skeletal remains. PMID:21899836

  4. Mitochondrial DNA analysis of Yayoi period human skeletal remains from the Doigahama site.

    PubMed

    Igawa, Kazunari; Manabe, Yoshitaka; Oyamada, Joichi; Kitagawa, Yoshikazu; Kato, Katsutomo; Ikematsu, Kazuya; Nakasono, Ichiro; Matsushita, Takayuki; Rokutanda, Atsushi

    2009-10-01

    We analyzed the mitochondrial DNA extracted from 14 human skeletal remains from the Doigahama site in Japan to clarify the genetic structure of the Doigahama Yayoi population and the relationship between burial style and kinship among individuals. The sequence types obtained in this study were compared with those of the modern Japanese, northern Kyushu Yayoi and ancient Chinese populations. We found that the northern Kyushu Yayoi populations belonged to the groups that include most of the modern Japanese population. In contrast, most of the Doigahama Yayoi population belonged to the group that includes a small number of the modern Japanese population. These results suggest that the Doigahama Yayoi population might have contributed less to the formation of the modern Japanese population than the northern Kyushu Yayoi populations. Moreover, when we examined the kinship between individuals in the Doigahama site, we found that the vicinal burial of adult skeletons indicated a maternal kinship, although that of juvenile skeletons did not. The vicinal burial style might have been influenced by many factors, such as paternal lineages, periods and geographical regions, as well as maternal lineages. In addition, skeletons considered to be those of shamans or leaders had the same sequence types. Their crucial social roles may have been inherited through maternal lineage. PMID:19696790

  5. Human remains sold to the highest bidder! A snapshot of the buying and selling of human skeletal remains on eBay, an Internet auction site.

    PubMed

    Huxley, Angie K; Finnegan, Michael

    2004-01-01

    Internet auction sites have become increasingly popular, with diverse items up for sale to the public worldwide. The purposes of this paper are to inform the forensic community that human skeletal remains, old and new, are for sale on the eBay internet auction site, and to advise forensic scientists that eBay does not use a forensic anthropologist to assess photographs of these materials. Over the last few years, this website was "surfed," with numerous auctions during this period. After contacting eBay by email, representatives responded that they adhere to Native American Grave Protection and Repatriation Act (NAGPRA) and that their website indicates that auctions must state that sale of human remains is for instructional purposes only. Based on the photographs, the remains appear to be of prehistoric and modern origin. An unfortunate consequence of such sale may generate interest in stealing remains from graves, mortuaries, hospitals, or county morgues worldwide. PMID:14979339

  6. Genetic characterization and assessment of authenticity of ancient Korean skeletal remains.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Kim, Chong-Youl; Shin, Kyoung-Jin

    2008-06-01

    To study the maternal lineage history of Korea, we extracted DNA from the skeletal remains of 35 museum samples (some dating back to the Paleolithic Age) excavated from 11 local burial sites scattered throughout southern Korea. Mitochondrial DNA (mtDNA) control region sequences (HV1, HV2, and HV3) were successfully determined for 11 samples with no sharing of the control region polymorphisms with individuals involved in the laboratory analyses. Each of the 11 mtDNAs was assigned to the appropriate East Asian mtDNA haplogroup according to the haplogroup-specific control region mutation motif and diagnostic coding region single nucleotide polymorphism. The successful mtDNA haplogroup determination for each ancient Korean mtDNA and the confirmation of the absence of abnormal mutations based on the haplogroup-directed database comparisons indicates that there is no mosaic structure from cross-contamination or sample mix-up or other errors in our mtDNA sequences. The presence of haplogroups B, D, and G in the prehistoric age is consistent with the hypothesis that the early Korean population has a common origin in the northern regions of the Altai Mountains and Lake Baikal of southeastern Siberia. In addition, the modern Korean population, which possesses lineages from both southern and northern haplogroups, suggests additional gene flow from southern Asian haplogroups in recent times, but many more ancient samples need to be analyzed to directly tell whether there was regional continuity or replacement of early lineages by other lineages in ancient Korea. PMID:19130795

  7. Sr Isotopes and human skeletal remains, improving a methodological approach in migration studies

    NASA Astrophysics Data System (ADS)

    Solis Pichardo, G.; Schaaf, P. E.; Hernandez, T.; Horn, P.; Manzanilla, L. R.

    2013-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. Sr isotopes are widely used in anthropological sciences to trace human migration histories from ancient burials. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Until now, tooth enamel was considered to be less sensitive to secondary Sr contamination due to its higher crystallinity and larger sizes of the biogenic apatites in comparison to that in bone and dentine. In the past, enamel as well as bone material was powdered, dissolved and analyzed by thermal ionization mass spectrometry (TIMS). In this contribution we show, however, that simple dissolution of enamel frequently yields erroneous results. Tooth enamel is often affected by secondary strontium contamination processes such as caries or diagenetic and environmental input, which can change the original isotopic composition. To avoid these problems we introduced a pre-treatment and three-step leaching procedure in enamel samples. Leaching is carried out with acetic acid of different concentrations, yielding two leachates and one residue of each sample. Frequently the 87Sr/86Sr results of the three leachates display different values confirming that secondary contamination did occur. Several examples from Teotihuacan, central Mexico demonstrate that enamel 87Sr/86Sr without leaching can show correct biogenic values, but there is also a considerable probability for these values to represent a mixture of original and secondary Sr without significance for migration reconstructions. Only the residue value is interpreted by us as the representative ratio for

  8. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    PubMed Central

    2013-01-01

    Background DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person’s externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Methods Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Results Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Conclusions Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including

  9. Monitoring DNA Contamination in Handled vs. Directly Excavated Ancient Human Skeletal Remains

    PubMed Central

    Pilli, Elena; Modi, Alessandra; Serpico, Ciro; Achilli, Alessandro; Lancioni, Hovirag; Lippi, Barbara; Bertoldi, Francesca; Gelichi, Sauro; Lari, Martina; Caramelli, David

    2013-01-01

    Bones, teeth and hair are often the only physical evidence of human or animal presence at an archaeological site; they are also the most widely used sources of samples for ancient DNA (aDNA) analysis. Unfortunately, the DNA extracted from ancient samples, already scarce and highly degraded, is widely susceptible to exogenous contaminations that can affect the reliability of aDNA studies. We evaluated the molecular effects of sample handling on five human skeletons freshly excavated from a cemetery dated between the 11 to the 14th century. We collected specimens from several skeletal areas (teeth, ribs, femurs and ulnas) from each individual burial. We then divided the samples into two different sets: one labeled as “virgin samples” (i.e. samples that were taken by archaeologists under contamination-controlled conditions and then immediately sent to the laboratory for genetic analyses), and the second called “lab samples”(i.e. samples that were handled without any particular precautions and subject to normal washing, handling and measuring procedures in the osteological lab). Our results show that genetic profiles from “lab samples” are incomplete or ambiguous in the different skeletal areas while a different outcome is observed in the “virgin samples” set. Generally, all specimens from different skeletal areas in the exception of teeth present incongruent results between “lab” and “virgin” samples. Therefore teeth are less prone to contamination than the other skeletal areas we analyzed and may be considered a material of choice for classical aDNA studies. In addition, we showed that bones can also be a good candidate for human aDNA analysis if they come directly from the excavation site and are accompanied by a clear taphonomic history. PMID:23372650

  10. Detection of Mycobacterium leprae DNA from Archaeological Skeletal Remains in Japan Using Whole Genome Amplification and Polymerase Chain Reaction

    PubMed Central

    Suzuki, Koichi; Takigawa, Wataru; Tanigawa, Kazunari; Nakamura, Kazuaki; Ishido, Yuko; Kawashima, Akira; Wu, Huhehasi; Akama, Takeshi; Sue, Mariko; Yoshihara, Aya; Mori, Shuichi; Ishii, Norihisa

    2010-01-01

    Background Identification of pathogen DNA from archaeological human remains is a powerful tool in demonstrating that the infectious disease existed in the past. However, it is very difficult to detect trace amounts of DNA remnants attached to the human skeleton, especially from those buried in a humid atmosphere with a relatively high environmental temperature such as in Asia. Methodology/Principal Findings Here we demonstrate Mycobacterium leprae DNA from archaeological skeletal remains in Japan by polymerase chain reaction, DNA sequencing and single nucleotide polymorphism (SNP) analysis. In addition, we have established a highly sensitive method of detecting DNA using a combination of whole genome amplification and polymerase chain reaction, or WGA-PCR, which provides superior sensitivity and specificity in detecting DNA from trace amounts of skeletal materials. Conclusion/Significance We have detected M. leprae DNA in archaeological skeletal remains for the first time in the Far East. Its SNP genotype corresponded to type 1; the first detected case worldwide of ancient M. leprae DNA. We also developed a highly sensitive method to detect ancient DNA by utilizing whole genome amplification. PMID:20865042

  11. Brief communication: a proposed method for the assessment of pubertal stage in human skeletal remains using cervical vertebrae maturation.

    PubMed

    Shapland, Fiona; Lewis, Mary E

    2014-01-01

    The assessment of age-at-death in non-adult skeletal remains is under constant review. However, in many past societies an individual's physical maturation may have been more important in social terms than their exact age, particularly during the period of adolescence. In a recent article (Shapland and Lewis: Am J Phys Anthropol 151 (2013) 302-310) highlighted a set of dental and skeletal indicators that may be useful in mapping the progress of the pubertal growth spurt. This article presents a further skeletal indicator of adolescent development commonly used by modern clinicians: cervical vertebrae maturation (CVM). This method is applied to a collection of 594 adolescents from the medieval cemetery of St. Mary Spital, London. Analysis reveals a potential delay in ages of attainment of the later CVM stages compared with modern adolescents, presumably reflecting negative environmental conditions for growth and development. The data gathered on CVM is compared to other skeletal indicators of pubertal maturity and long bone growth from this site to ascertain the usefulness of this method on archaeological collections. PMID:24318949

  12. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles.

    PubMed

    Yin, H D; Li, D Y; Zhang, L; Yang, M Y; Zhao, X L; Wang, Y; Liu, Y P; Zhu, Q

    2014-06-01

    Paired box (Pax) proteins 3 and 7 are associated with activation of muscle satellite cells and play a major role in hyperplastic and hypertrophic growth in postnatal skeletal muscle fibers. The objective of this study was to evaluate the effect of housing system on abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. At 42 d, 1,200 chickens with similar BW were randomly assigned to cage, pen, and free-range group. The mRNA abundance was measured in pectoralis major and thigh muscle at d 56, 70, and 84, and the protein expression was quantified at d 84. Increases in mRNA abundance of PAX3 and PAX7 with age were less pronounced in caged system chickens than in pen and free-range chickens from d 56 to 84, and free-range chickens showed a more pronounced increase in gene expression with age compared with penned chickens. At d 84, quantities of PAX3 and PAX7 mRNA and protein were highest in both pectoralis major and thigh muscle of chickens raised in the free-range group, lowest in penned chickens, and intermediate in caged chickens (P < 0.05). These data indicate that housing system may influence muscle fiber muscle accretion by coordinating the expression of Pax3 and Pax7 in adult chicken skeletal muscles. PMID:24879683

  13. Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle

    PubMed Central

    Tachtsis, Bill; Smiles, William J.; Lane, Steven C.; Hawley, John A.; Camera, Donny M.

    2016-01-01

    Purpose: The tumor suppressor protein p53 may have regulatory roles in exercise response-adaptation processes such as mitochondrial biogenesis and autophagy, although its cellular location largely governs its biological role. We investigated the subcellular localization of p53 and selected signaling targets in human skeletal muscle following a single bout of endurance exercise. Methods: Sixteen, untrained individuals were pair-matched for aerobic capacity (VO2peak) and allocated to either an exercise (EX, n = 8) or control (CON, n = 8) group. After a resting muscle biopsy, EX performed 60 min continuous cycling at ~70% of VO2peak during which time CON subjects rested. A further biopsy was obtained from both groups 3 h post-exercise (EX) or 4 h after the first biopsy (CON). Results: Nuclear p53 increased after 3 h recovery with EX only (~48%, p < 0.05) but was unchanged in the mitochondrial or cytoplasmic fractions in either group. Autophagy protein 5 (Atg-5) decreased in the mitochondrial protein fraction 3 h post-EX (~69%, P < 0.05) but remained unchanged in CON. There was an increase in cytoplasmic levels of the mitophagy marker PINK1 following 3 h of rest in CON only (~23%, P < 0.05). There were no changes in mitochondrial, nuclear, or cytoplasmic levels of PGC-1α post-exercise in either group. Conclusions: The selective increase in nuclear p53 abundance following endurance exercise suggests a potential pro-autophagy response to remove damaged proteins and organelles prior to initiating mitochondrial biogenesis and remodeling responses in untrained individuals. PMID:27199762

  14. Sex Assessment Using the Femur and Tibia in Medieval Skeletal Remains from Ireland: Discriminant Function Analysis.

    PubMed

    Novak, Mario

    2016-04-01

    Sex determination based on discriminant function analysis of skeletal measurements is probably the most effective method for assessment of sex in archaeological and contemporary populations due to various reasons, but it also suffers from limitations such as population specificity. In this paper standards for sex assessment from the femur and tibia in the medieval Irish population are presented. Six femoral and six tibial measurements obtained from 56 male and 45 female skeletons were subjected to discriminant function analysis. Average accuracies obtained by this study range between 87.1 and 97%. The highest level of accuracy (97%) was achieved when using combined variables of the femur and tibia (maximum diameter of femoral head and circumference at tibial nutrient foramen), as well as two variables of the tibia (proximal epiphyseal breadth and circumference at nutrient foramen). Discriminant functions using a single variable provided accuracies between 87.1 and 96% with the circumference at the level of the tibial nutrient foramen providing the best separation. High accuracy rates obtained by this research correspond to the data recorded in other studies thus confirming the importance of discriminant function analysis in assessment of sex in both archaeological and forensic contexts. PMID:27301232

  15. Tuberculosis in Late Neolithic-Early Copper Age human skeletal remains from Hungary.

    PubMed

    Pósa, Annamária; Maixner, Frank; Mende, Balázs Gusztáv; Köhler, Kitti; Osztás, Anett; Sola, Christophe; Dutour, Olivier; Masson, Muriel; Molnár, Erika; Pálfi, György; Zink, Albert

    2015-06-01

    Alsónyék-Bátaszék in Southern Hungary is one of the largest late Neolithic settlements and cemeteries excavated in Central Europe. In total, 2359 burials from the Late Neolithic - Early Copper Age Lengyel culture were found between 2006 and 2009 [1]. Anthropological investigations previously carried out on individuals from this site revealed an interesting paleopathological case of tuberculosis in the form of Pott's disease dated to the early 5(th) millennium BC. In this study, selected specimens from this osteoarcheological series were subjected to paleomicrobiological analysis to establish the presence of MTBC bacteria. As all individuals showing clear osteological signs of TB infection belonged to a single grave group, 38 individuals from this grave group were analysed. The sample included the case of Pott's disease as well as individuals both with and without osseous TB manifestations. The detection of TB DNA in the individual with Pott's disease provided further evidence for the occurrence of TB in Neolithic populations of Europe. Moreover, our molecular analysis indicated that several other individuals of the same grave group were also infected with TB, opening the possibility for further analyses of this unique Neolithic skeletal series. PMID:25857937

  16. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle

    PubMed Central

    Castorena, Carlos M.; Arias, Edward B.; Sharma, Naveen; Bogan, Jonathan S.

    2014-01-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[3H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake. PMID:25491725

  17. Early human cultural and skeletal remains from guitarrero cave, northern peru.

    PubMed

    Lynch, T F; Kennedy, K A

    1970-09-25

    An early man site in highland Peru yielded a rich cultural assemblage in stratigraphic association with faunal remains, botanical remains, and campfire remnants that furnished secure radiocarbon dates. A human mandible and teeth, showing interesting patterns of occlusal wear, were found in a stratum dated by a charcoal sample to 10,610 B.C., the oldest such date in South America. PMID:17772515

  18. Indoor wet screening of exhumed skeletal remains: a suggested procedure for the preparation of fragile evidence for anthropological analysis.

    PubMed

    Bunch, Ann W

    2010-07-01

    The 2007 exhumation of three children's graves, located in rural upstate New York and dating to 1979 and 1980, was warranted as their mother had come under suspicion for the death of a child she had been babysitting in late 2006. The local March weather conditions had been wet, and heavy rains fell during the 2-day process of casket removal. The extremely wet soil and the poor preservation of two wooden caskets increased the likelihood of damage to evidence. After remains' transport to the forensic center, an indoor wet-screening station was established so that skeletal elements could be (i) separated from soil matrix and (ii) preserved carefully for analysis. Not only were the remains relatively small and fragile in comparison with those of an adult, but two of the three remains were known to be fire damaged, thus the use of special laboratory preparation techniques was crucial. PMID:20412368

  19. Morphological likeness of the skeletal remains in a Central European family from 17th to 19th century.

    PubMed

    Veleminský, P; Dobisíková, M

    2005-01-01

    In spite of a recent preferential application of molecular genetic methods to kinship determination of anonymous human skeletal remains, the classical anthropological methods cannot be rejected as they are simple, quick and give access to a large part of a genome. This paper deals with the extent of morphological skeletal similarity in persons of known genealogical relationship. The skeletal remains of eight individuals from the family tomb of the Swéerts-Sporck's noble family in castle Kuks, East Bohemia, Czech Republic were analysed. Basic personal details, as well as data on their genealogical relationship, were available. Individuals were compared according to 173 anatomical variants--epigenetic traits, 90 of which were located on the skull and 83 on the postcranial skeleton. For each trait the percentile coincidence and/or difference were calculated. We observed the highest coincidence between the father and his son. These two individuals showed both closest correlation in the presence and the least difference in the occurrence of anatomical variants, as well as a high value of paternal probability. Clear kinship was also detected among cousins of the same or opposite sex. However, kinship between brother and sister was not so evident. The greatest difference was observed amongst biologically unrelated family members such as women who married into the family. The individuals under investigation showed a significantly higher occurrence of three among four traits of the sella turcica (ponticulus carotico-clinoideus, ponticulus interclinoideus, taenia interclinoidea; 99% confidence). A significantly higher occurrence of the ponticuli basales ossis sphenoidalis, palatine torus and the costal articular surface on the body of 7th cervical vertebrae was also found (95% confidence). Our results, therefore, suggest that these morphological variants might be considered as family-specific traits. PMID:16130840

  20. The Effect of Time on Bone Fluorescence: Implications for Using Alternate Light Sources to Search for Skeletal Remains.

    PubMed

    Swaraldahab, Mohamed A H; Christensen, Angi M

    2016-03-01

    Bones fluoresce when exposed to certain wavelengths of shortwave light, and this property can be useful in locating and sorting skeletal remains in forensic contexts. The proteins in bone collagen are largely responsible for its fluorescent properties, but these proteins degrade and denature over time. This study examined the fluorescence of bones from four temporal groups (recent, semi-recent, ancient, and historic) ranging from 0 to 1064 years before present. Specimens were photographed under 490 nm wavelength light, and fluorescence was quantified by converting intensity to a gray scale value based on the RGB color model using ImageJ(®) software. Significant (p < 0.05) differences were found in mean fluorescence between all four temporal groups, and a 0.324 coefficient of correlation indicates a significant (inverse) relationship between fluorescence and time. Bone fluorescence decreases with time, but some fluorescence is retained even in older samples. Fluorescence can therefore be reliably used in many modern skeletal remains searches. PMID:27404617

  1. Modified DOP-PCR for improved STR typing of degraded DNA from human skeletal remains and bloodstains.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; Gill-King, Harrell; King, Jonathan; Sajantila, Antti; Budowle, Bruce

    2016-01-01

    Forensic and ancient DNA samples often are damaged and in limited quantity as a result of exposure to harsh environments and the passage of time. Several strategies have been proposed to address the challenges posed by degraded and low copy templates, including a PCR based whole genome amplification method called degenerate oligonucleotide-primed PCR (DOP-PCR). This study assessed the efficacy of four modified versions of the original DOP-PCR primer that retain at least a portion of the 5' defined sequence and alter the number of bases on the 3' end. The use of each of the four modified primers resulted in improved STR profiles from environmentally-damaged bloodstains, contemporary human skeletal remains, American Civil War era bone samples, and skeletal remains of WWII soldiers over those obtained by previously described DOP-PCR methods and routine STR typing. Additionally, the modified DOP-PCR procedure allows for a larger volume of DNA extract to be used, reducing the need to concentrate the sample and thus mitigating the effects of concurrent concentration of inhibitors. PMID:26832369

  2. Skeletal remains of a diminutive primate from the Paleocene of Germany

    NASA Astrophysics Data System (ADS)

    Storch, Gerhard

    2008-10-01

    Most living mammal orders, including our own, started their career during the first 10 million years of the Cenozoic, the Age of Mammals. The fossil record documents that early Paleogene adaptive radiations of various clades included tiny species of the size of living shrews. Remains of particularly diminutive limb bones are described from the late Paleocene site of Walbeck, Sachsen-Anhalt. Discovered in 1939, it has remained the only known Paleocene mammal-bearing locality from Germany. The remains are referred to the family Adapisoriculidae, which is considered on the basis of the present postcranial evidence to represent plesiadapiform primates rather than alleged lipotyphlan insectivores as previously proposed. The Walbeck fossils compete with the Early Eocene species Toliapina vinealis from Europe and Picromomys petersonorum from North America for the status of the smallest known primate, fossil and living. Their estimated body weights are as small as 10 g. The limb bones show features related to enhanced flexion at the elbow and hip joint, suggesting arboreal habits and environments such as terminal branches. The diminutive size and tooth morphology suggest feeding on small insects and other invertebrates. Postcranials are important to assess early radiations, such tiny specimens as the present ones are extremely scarce in the fossil record, however.

  3. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers. PMID:19415315

  4. Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia

    PubMed Central

    Gornjak Pogorelc, Barbara; Balažic, Jože

    2010-01-01

    This paper describes molecular genetic identification of one third of the skeletal remains of 88 victims of postwar (June 1945) killings found in the Konfin I mass grave in Slovenia. Living relatives were traced for 36 victims. We analyzed 84 right femurs and compared their genetic profiles to the genetic material of living relatives. We cleaned the bones, removed surface contamination, and ground the bones into powder. Prior to DNA isolation using Biorobot EZ1 (Qiagen), the powder was decalcified. The nuclear DNA of the samples was quantified using the real-time polymerase chain reaction method. We extracted 0.8 to 100 ng DNA/g of bone powder from 82 bones. Autosomal genetic profiles and Y-chromosome haplotypes were obtained from 98% of the bones, and mitochondrial DNA (mtDNA) haplotypes from 95% of the bones for the HVI region and from 98% of the bones for the HVII region. Genetic profiles of the nuclear and mtDNA were determined for reference persons. For traceability in the event of contamination, we created an elimination database including genetic profiles of the nuclear and mtDNA of all persons that had been in contact with the skeletal remains. When comparing genetic profiles, we matched 28 of the 84 bones analyzed with living relatives (brothers, sisters, sons, daughters, nephews, or cousins). The statistical analyses showed a high confidence of correct identification for all 28 victims in the Konfin I mass grave (posterior probability ranged from 99.9% to more than 99.999999%). PMID:20217112

  5. Stature in 19th and early 20th century Copenhagen. A comparative study based on skeletal remains.

    PubMed

    Jørkov, Marie Louise S

    2015-12-01

    Individual stature depends on multifactorial causes and is often used as a proxy for investigating the biological standard of living. While the majority of European studies on 19th and 20th century populations are based on conscript heights, stature derived from skeletal remains are scarce. For the first time in Denmark this study makes a comparison between skeletal stature and contemporary Danish conscript heights and investigates stature of males and females temporally and between socially distinct individuals and populations in 19th and early 20th century Copenhagen. A total of 357 individuals (181 males, 176 females) excavated at the Assistens cemetery in Copenhagen is analyzed. Two stature regression formulae (Trotter, 1970; Boldsen, 1990) are applied using femur measurements and evaluated compared to conscript heights. The results indicate that mean male stature using Boldsen follows a similar trend as the Danish conscript heights and that Trotter overestimate stature by ca. 6cm over Boldsen. At an inter population level statistically significant differences in male stature are observed between first and second half of the 19th century towards a slight stature decrease and larger variation while there are no significant changes observed in female stature. There are insignificant differences in stature between middle and high class individuals, but male stature differs statistically between cemeteries (p=0.000) representing middle/high class, paupers and navy employees, respectively. Female stature had no significant wealth gradient (p=0.516). This study provides new evidence of stature among males and females during the 19th century and suggests that males may have been more sensitive to changes in environmental living and nutrition than females. PMID:26256129

  6. Age estimation of immature human skeletal remains from the diaphyseal length of the long bones in the postnatal period.

    PubMed

    Cardoso, Hugo F V; Abrantes, Joana; Humphrey, Louise T

    2014-09-01

    Age at death in immature human skeletal remains has been estimated from the diaphyseal length of the long bones, but few studies have actually been designed specifically for the purpose of age estimation and those which have, show important caveats. This study uses regression and classical calibration to model the relationship between age and diaphyseal length of the six long bones, in a sample of 184 known sex and age individuals (72 females and 112 males), younger than 13 years of age, selected from Portuguese and English skeletal collections. Age estimation models based on classical calibration were obtained for each of the six long bones, and separately for each sex and for the sexes combined, and also for the entire sample and when it is subdivided into two subsamples at the age of 2 years. Comparisons between inverse and classical calibration show there is a systematic bias in age estimations obtained from inverse calibration. In the classical calibration models, the length of the femur provides the most accurate estimates of age. Age estimates are more accurate for the male subsample and for individuals under the age of 2 years. These results and a test of previously published methods caution against inverse calibration as a technique for developing age estimation methods even from the immature skeleton. Age estimation methods developed using cemetery collections of identified human skeletons should not be uncritically applied to present-day populations from the same region since many populations have experienced dramatic secular trends in growth and adult height over the last century. PMID:24126574

  7. The applicability of the Lamendin method to skeletal remains buried for a 16-year period: a cautionary note.

    PubMed

    De Angelis, Danilo; Mele, Elia; Gibelli, Daniele; Merelli, Vera; Spagnoli, Laura; Cattaneo, Cristina

    2015-01-01

    The Lamendin method is widely reported as one of the most reliable means of age estimation of skeletal remains, but very little is known concerning the influence of burial in soil. This study aimed at verifying the reliability of the Lamendin method on corpses buried for 16 years in a cemetery. The Lamendin and the Prince and Ubelaker methods were applied. In all age groups except the 40- to 49-year-olds, the error was higher in the buried sample. The age-at-death error ranged between 10.7 and 36.8 years for the Lamendin method (vs. the reported 7.3-18.9 years) and 9.5 and 35.7 for the Prince and Ubelaker one (vs. the original 5.2-32.6 years); in all age groups, the error is closer to that found on archeological populations. These results suggest caution in applying the Lamendin method to forensic cases of human remains buried even for a brief period under soil. PMID:25413353

  8. Dating human skeletal remains using a radiometric method: biogenic versus diagenetic 90Sr and 210Pb in vertebrae.

    PubMed

    Schrag, Bettina; Uldin, Tanya; Mangin, Patrice; Froidevaux, Pascal

    2012-07-10

    In forensic science, there is a strong interest in determining the post-mortem interval (PMI) of human skeletal remains up to 50 years after death. Currently, there are no reliable methods to resolve PMI, the determination of which relies almost exclusively on the experience of the investigating expert. Here we measured (90)Sr and (210)Pb ((210)Po) incorporated into bones through a biogenic process as indicators of the time elapsed since death. We hypothesised that the activity of radionuclides incorporated into trabecular bone will more accurately match the activity in the environment and the food chain at the time of death than the activity in cortical bone because of a higher remodelling rate. We found that determining (90)Sr can yield reliable PMI estimates as long as a calibration curve exists for (90)Sr covering the studied area and the last 50 years. We also found that adding the activity of (210)Po, a proxy for naturally occurring (210)Pb incorporated through ingestion, to the (90)Sr dating increases the reliability of the PMI value. Our results also show that trabecular bone is subject to both (90)Sr and (210)Po diagenesis. Accordingly, we used a solubility profile method to determine the biogenic radionuclide only, and we are proposing a new method of bone decontamination to be used prior to (90)Sr and (210)Pb dating. PMID:22497702

  9. Additional approaches to DNA typing of skeletal remains: the search for "missing" persons killed during the last dictatorship in Argentina.

    PubMed

    Corach, D; Sala, A; Penacino, G; Iannucci, N; Bernardi, P; Doretti, M; Fondebrider, L; Ginarte, A; Inchaurregui, A; Somigliana, C; Turner, S; Hagelberg, E

    1997-08-01

    DNA typing techniques are among the most advanced tools for human identification and can contribute to the identification of poorly preserved skeletal remains. Ten thousand people are thought to have been killed during the last dictatorship in Argentina (1976-1983) and there are few official records on the identity of the victims or the location of burials. A mass grave containing 340 skeletons was excavated using archeological methods. A small number of individuals was identified by traditional forensic methods and one family group by mitochondrial DNA (mtDNA) analysis. Due to the lack of antemortem physical information on many of the victims, the application of molecular methods is imperative to speed up the identification process. We have tested two molecular screening methods, Y chromosome-specific short tandem repeats (DYS19, DYS385, DYS389 I, DYS389 II, DYS390, DYS391, DYS392, DYS393) and amplification of autosomal microsatellites using nested primers. These methods can complement solely matrilineal mtDNA sequence data in the identification of "missing" persons. PMID:9378130

  10. Accuracy of developing tooth length as an estimate of age in human skeletal remains: the deciduous dentition.

    PubMed

    Cardoso, Hugo F V

    2007-10-01

    Dental age assessments are widely used to estimate age of immature skeletal remains. Most methods have relied on fractional stages of tooth emergence and formation, particularly of the permanent dentition, for predicting the age of infants and very young children. In this study, the accuracy of regression equations of developing deciduous tooth length for age estimation (Liversidge et al.) is tested on a sample of 30 Portuguese subadult skeletons of known age at death. Overall the method shows high accuracy and the average difference between estimated and chronological age is between 0.20 and -0.14 years when using single teeth, and 0.06 years, when using all available teeth. However, there is a tendency for the deciduous molars to provide overestimates of chronological age. Results show that age estimates can be obtained within +/-0.10 years with a 95% confidence interval when several teeth are used. Overall between-tooth agreement in age estimates decreases with increasing age but there is less variability of estimates with more teeth contributing to overall mean age. One seemingly limitation of this method may be the fact that it was developed by combining the maxillary and mandibular teeth. The other is related to the accuracy with which radiographic tooth length can be used as a valid surrogate for actual tooth length. Nevertheless, the advantages of this metric method surpass the limitations of chronologies based on stages of dental development. PMID:17174050

  11. Skeletal Muscle Protein Breakdown Remains Elevated in Pediatric Burn Survivors up to One-Year Post-Injury.

    PubMed

    Chao, Tony; Herndon, David N; Porter, Craig; Chondronikola, Maria; Chaidemenou, Anastasia; Abdelrahman, Doaa Reda; Bohanon, Fredrick J; Andersen, Clark; Sidossis, Labros S

    2015-11-01

    Acute alterations in skeletal muscle protein metabolism are a well-established event associated with the stress response to burns. Nevertheless, the long-lasting effects of burn injury on skeletal muscle protein turnover are incompletely understood. This study was undertaken to investigate fractional synthesis (FSR) and breakdown (FBR) rates of protein in skeletal muscle of pediatric burn patients (n  =  42, >30% total body surface area burns) for up to 1 year after injury. Skeletal muscle protein kinetics were measured in the post-prandial state following bolus injections of C6 and N phenylalanine stable isotopes. Plasma and muscle phenylalanine enrichments were quantified using gas chromatography-mass spectrometry. We found that the FSR in burn patients was 2- to 3-fold higher than values from healthy men previously reported in the literature (P ≤ 0.05). The FBR was 4- to 6-fold higher than healthy values (P  <  0.01). Therefore, net protein balance was lower in burn patients compared with healthy men from 2 weeks to 12 months post-injury (P  <  0.05). These findings show that skeletal muscle protein turnover stays elevated for up to 1 year after burn, an effect attributable to simultaneous increases in FBR and FSR. Muscle FBR exceeds FSR during this time, producing a persistent negative net protein balance, even in the post-prandial state, which likely contributes to the prolonged cachexia seen in burned victims. PMID:26263438

  12. A Reappraisal of Developing Permanent Tooth Length as an Estimate of Age in Human Immature Skeletal Remains.

    PubMed

    Cardoso, Hugo F V; Spake, Laure; Liversidge, Helen M

    2016-09-01

    This study expands on existing juvenile age prediction models from tooth length by increasing sample size and using classical calibration. A sample of 178 individuals from two European known sex and age skeletal samples was used to calculate prediction formulae for each tooth for each sex separately and combined. Prediction errors, residuals, and percentage of individuals whose real age fell within the 95% prediction interval were calculated. An ANCOVA was used to test sex and sample differences. Tooth length for age does not differ between the samples except for the canine and second premolar, and no statistically significant sex differences were detected. The least prediction error was found in the incisors and the first molar, and the highest prediction error was found in the third molar. Age prediction formulae provided here can be easily used in a variety of contexts where tooth length is measured from any isolated tooth. PMID:27320642

  13. The contributions of anthropology and mitochondrial DNA analysis to the identification of the human skeletal remains of the Australian outlaw Edward 'Ned' Kelly.

    PubMed

    Blau, S; Catelli, L; Garrone, F; Hartman, D; Romanini, C; Romero, M; Vullo, C

    2014-07-01

    This paper details the anthropological and genetic analyses that contributed to the identification of the notorious Australian outlaw ('bushranger') Edward ('Ned') Kelly. In 1880 at the age of 25, Kelly was hanged and buried at the former Melbourne Gaol in Victoria, Australia. In 1929, the remains of executed prisoners (including those of Kelly) were haphazardly disinterred following the demolition of parts of the Melbourne Gaol and haphazardly reinterred in three distinct "pits" at the Pentridge Prison. In 1999 the Pentridge Prison was sold for commercial development and subsequently in 2008 and 2009 the human remains of prisoners were recovered. A total of 41 cases of unidentified human skeletal remains from Pentridge were examined using traditional anthropological techniques. At least one representative sample from each of the remains (mostly clavicles) from all three pits was selected for DNA analysis. Comparative ante-mortem reference samples were also located. Given the antiquity and condition of remains recovered from Pentridge, and the 130 years that had passed since Kelly's execution, mitochondrial DNA analysis was chosen as a suitable DNA analysis tool to examine the Pentridge cases to assist in the inclusion or exclusion of remains as being those of Ned Kelly. Only one of the Pentridge cases (Pen14) matched the HV1/HV2 mitochondrial DNA haplotype of the reference sample. Additional anthropological analyses indicated a number of pathological features that provided support that the remains of Pen14 are those of Edward ("Ned") Kelly. PMID:24796642

  14. The value of radiocarbon analysis in determining the forensic interest of human skeletal remains found in unusual circumstances.

    PubMed

    Cardoso, Hugo F V; Puentes, Katerina; Soares, António Monge; Santos, Agostinho; Magalhães, Teresa

    2012-02-01

    The case under analysis refers to the remains of a young adult female found in a shallow grave during the construction work of a hospital in Northern Portugal. The forensic interest of the finding could not be ruled out since distinguishing features pointing to an archaeological grave were lacking. For example, absence of archaeological artefacts could not establish its forensic significance with certainty, together with the absence of modern objects, such as remnants of clothing or personal objects. In addition, although the remains were badly preserved, the condition may not have resulted from a long post-depositional period, but instead could be explained by the geology of the site and the presence of plant roots. The radiocarbon analysis of the remains was meant to establish the death of the individual to before or after the mid-1950s, from comparison with bomb-curve content values. A value of 0.9789 ± 0.0044 for F(14)C (pmC = 97.19 ± 0.44% Modern or Δ(14)C = -28.1 ± 4.4‰) was obtained, which placed the death of the individual in the pre-mod-1950s period. This report illustrates the use of radiocarbon analysis in establishing whether the human remains are contemporary or not and describes evidence for what appears to be an historic clandestine grave. PMID:22281219

  15. A probable case of gigantism/acromegaly in skeletal remains from the Jewish necropolis of "Ronda Sur" (Lucena, Córdoba, Spain; VIII-XII centuries CE).

    PubMed

    Viciano, Joan; De Luca, Stefano; López-Lázaro, Sandra; Botella, Daniel; Diéguez-Ramírez, Juan Pablo

    2015-01-01

    Pituitary gigantism is a rare endocrine disorder caused by hypersecretion of growth hormone during growing period. Individuals with this disorder have an enormous growth in height and associated degenerative changes. The continued hypersecretion of growth hormone during adulthood leads to acromegaly, a condition related to the disproportionate bone growth of the skull, hands and feet. The skeletal remains studied belong to a young adult male from the Jewish necropolis of "Ronda Sur" in Lucena (Córdoba, Spain, VIII-XII centuries CE). The individual shows a very large and thick neurocranium, pronounced supraorbital ridges, an extremely prominent occipital protuberance, and an extremely large and massive mandible. Additional pathologies include enlargement of the vertebral bodies with degenerative changes, thickened ribs, and a slight increased length of the diaphysis with an increased cortical bone thickness of lower limbs. Comparative metric analysis of the mandible with other individuals from the same population and a contemporary Mediterranean population shows a trend toward acromegalic morphology. This case is an important contribution in paleopathological literature because it is a rare condition that has not been widely documented in ancient skeletal remains. PMID:25776010

  16. The detection of morphine and codeine in human teeth: an aid in the identification and study of human skeletal remains.

    PubMed

    Cattaneo, C; Gigli, F; Lodi, F; Grandi, M

    2003-06-01

    When studying unidentified putrefied or skeletonised human remains it may be difficult to obtain information on drug habits which may prove important for the construction of a biological profile or lead to hypotheses on the manner of death. The detection of morphine and codeine in teeth from human remains may prove crucial in obtaining such information and thus give forensic odontology and anthropology a further tool for identification. Because teeth can be an important deposit of exogenous substances accumulated both in the pulp and in the calcified tissues, they are an invaluable source of data from a toxicological point of view. The authors therefore tested 3 groups of teeth for morphine and codeine: the first group consisted of artificially aged teeth from individuals known to have died of heroin overdose; the second, of teeth from individuals with no history of drug abuse; the third, of teeth from cases of burnt, putrefied and skeletonised remains found in conditions strongly suggestive of a drug-related death. Results showed that in groups 1 and 3 morphine and codeine could still be identified in the teeth, proving that these tissues may be a reliable source for toxicological information concerning the history of the individual. Further studies are needed to verify whether the substances detected reflect drugs in circulation in an acute phase (and therefore present in blood vessels in the pulp) or whether they represent drugs which have percolated and been stored in dentine and enamel and thus denote a history of drug abuse. Nonetheless this study shows that teeth may be an important source of toxicological information in the forensic scenario. PMID:12793124

  17. Estimation of stature by cephalometric facial dimensions in skeletonized bodies: study from a sample modern Colombians skeletal remains.

    PubMed

    González-Colmenares, Gretel; Medina, César Sanabria; Báez, Liliana Carolina

    2016-01-01

    Estimation of stature is an important factor in the identification of the deceased from unknown fragmentary and dismembered remains. The skull sometimes is the only remain available for identification. The aim of the present study was to estimate the stature of an individual from cephalo-facial dimensions. The study was carried out on 54 males and 16 females from the bone collection of the contemporary Colombian population that belongs to the National Institute of Legal Medicine. Ten cephalo-facial measurements were also made on each subject. The stature of each individual in centimeters was taken from the registration and/or from the autopsy document. The results indicate that the measurements N-M (p<0.001) and G-Op, Ba-N, Ma-SN (p<0.05) are correlated with stature for males. The correlation between these measures with stature for females was not significant. However, the formulae obtained from univariate linear regression analysis using cephalo-facial measurements showed a greater degree of reliability for estimation of stature in males and females. PMID:26631845

  18. Complexities in the Use of Bomb-Curve Radiocarbon to Determine Time Since Death of Human Skeletal Remains

    SciTech Connect

    Ubelaker, D H; Buchholz, B A

    2005-04-26

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the level of radiocarbon ({sup 14}C) in the atmosphere. From the peak in 1963, the level of {sup 14}CO{sub 2} has decreased exponentially with a mean life of about 16 years, not due to radioactive decay, but due to mixing with large marine and terrestrial carbon reservoirs. Since radiocarbon is incorporated into all living things, the bomb-pulse is an isotopic chronometer of the past half century. The absence of bomb radiocarbon in skeletonized human remains generally indicates a date of death before 1950. Comparison of the radiocarbon values with the post 1950 bomb-curve may also help elucidate when in the post 1950 era, the individual was still alive. Such interpretation however, must consider the age at death of the individual and the type of tissue sampled.

  19. Sexual dimorphism of the lateral angle of the internal auditory canal and its potential for sex estimation of burned human skeletal remains.

    PubMed

    Gonçalves, David; Thompson, Tim J U; Cunha, Eugénia

    2015-09-01

    The potential of the petrous bone for sex estimation has been recurrently investigated in the past because it is very resilient and therefore tends to preserve rather well. The sexual dimorphism of the lateral angle of the internal auditory canal was investigated in two samples of cremated Portuguese individuals in order to assess its usefulness for sex estimation in burned remains. These comprised the cremated petrous bones from fleshed cadavers (N = 54) and from dry and disarticulated bones (N = 36). Although differences between males and females were more patent in the sample of skeletons, none presented a very significant sexual dimorphism, thus precluding any attempt of sex estimation. This may have been the result of a difficult application of the method and of a differential impact of heat-induced warping which is known to be less frequent in cremains from dry skeletons. Results suggest that the lateral angle method cannot be applied to burned human skeletal remains. PMID:25649669

  20. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping

    PubMed Central

    Hatzer-Grubwieser, P.; Bauer, C.; Parson, W.; Unterberger, S. H.; Kuhn, V.; Pemberger, N.; Pallua, Anton K.; Recheis, W.; Lackner, R.; Stalder, R.; Pallua, J. D.

    2015-01-01

    In this study different state-of-the-art visualization methods such as micro-computed tomography (micro-CT), mid-infrared (MIR) microscopic imaging and energy dispersive X-ray (EDS) mapping were evaluated to study human skeletal remains for the determination of the post-mortem interval (PMI). PMI specific features were identified and visualized by overlaying molecular imaging data and morphological tissue structures generated by radiological techniques and microscopic images gained from confocal microscopy (Infinite Focus (IFM)). In this way, a more distinct picture concerning processes during the PMI as well as a more realistic approximation of the PMI were achieved. It could be demonstrated that the gained result in combination with multivariate data analysis can be used to predict the Ca/C ratio and bone volume (BV) over total volume (TV) for PMI estimation. Statistical limitation of this study is the small sample size, and future work will be based on more specimens to develop a screening tool for PMI based on the outcome of this multidimensional approach. PMID:25878731

  1. A test of the differential accuracy of the maxillary versus the mandibular dentition in age estimations of immature skeletal remains based on developing tooth length.

    PubMed

    Cardoso, Hugo F V

    2007-03-01

    Liversidge and colleagues developed a method for predicting the age of immature skeletal remains based on the length of developing teeth. This quantitative method combines dental data from both jaws, except for the permanent lateral incisor, and because there are reasons to suspect that these two types of data are not identical and should not be combined, it raises concerns regarding the accuracy of the technique when applied differently to each jaw. In this study, the differential accuracy of the method was test when applied to the maxillary and mandibular dentition. The test sample is comprised of 57 Portuguese subadult skeletons of known age at death. Results suggest an overall high consistency between estimates obtained from both jaws, but for the permanent dentition only. In the deciduous dentition the age estimates obtained from the maxillary teeth tend to be greater than the age estimates obtained from the mandibular pair, and the differences are significant for the incisors and canine. Additionally, ages obtained from the maxillary deciduous canine also differ significantly from true chronological age. In the permanent dentition there were no differences between the ages provided by both jaws but both the maxillary and mandibular second molars show a significant tendency to underestimate true chronological age. Although this study cannot validate completely the method presented by Liversidge and colleagues, it does provide an important test to its accuracy and calls for further research into its overall performance, particularly with respect to the results obtained from both jaws. PMID:17316246

  2. Pilot study to establish a nasal tip prediction method from unknown human skeletal remains for facial reconstruction and skull photo superimposition as applied to a Japanese male populations.

    PubMed

    Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Kibayashi, Kazuhiko; Sakurada, Koichi; Uemura, Koichi

    2016-02-01

    Skull-photo superimposition is a technique used to identify the relationship between the skull and a photograph of a target person: and facial reconstruction reproduces antemortem facial features from an unknown human skull, or identifies the facial features of unknown human skeletal remains. These techniques are based on soft tissue thickness and the relationships between soft tissue and the skull, i.e., the position of the ear and external acoustic meatus, pupil and orbit, nose and nasal aperture, and lips and teeth. However, the ear and nose region are relatively difficult to identify because of their structure, as the soft tissues of these regions are lined with cartilage. We attempted to establish a more accurate method to determine the position of the nasal tip from the skull. We measured the height of the maxilla and mid-lower facial region in 55 Japanese men and generated a regression equation from the collected data. We obtained a result that was 2.0±0.99mm (mean±SD) distant from the true nasal tip, when applied to a validation set consisting of another 12 Japanese men. PMID:26724561

  3. Increased Reactive Oxygen Species Production and Lower Abundance of Complex I Subunits and Carnitine Palmitoyltransferase 1B Protein Despite Normal Mitochondrial Respiration in Insulin-Resistant Human Skeletal Muscle

    PubMed Central

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin; Willis, Wayne T.; Bailowitz, Zachary; De Filippis, Elena A.; Brophy, Colleen; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J.

    2010-01-01

    OBJECTIVE The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein abundance present in insulin-resistant muscle. RESEARCH DESIGN AND METHODS Mitochondria were isolated from vastus lateralis muscle from lean and insulin-sensitive individuals and from obese and insulin-resistant individuals who were otherwise healthy. Respiration and reactive oxygen species (ROS) production rates were measured in vitro. Relative abundances of proteins detected by mass spectrometry were determined using a normalized spectral abundance factor method. RESULTS NADH- and FADH2-linked maximal respiration rates were similar between lean and obese individuals. Rates of pyruvate and palmitoyl-dl-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine palmitoyltransferase 1B). CONCLUSIONS We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance. PMID:20682693

  4. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dam...

  5. Activity, abundance and expression of Ca²⁺-activated proteases in skeletal muscle of the aestivating frog, Cyclorana alboguttata.

    PubMed

    Reilly, Beau D; Cramp, Rebecca L; Franklin, Craig E

    2015-02-01

    In most mammals, prolonged muscle disuse (e.g. bed-rest, limb casting or spaceflight) results in atrophy of muscle fibres which is largely due to unregulated proteolysis. Although numerous proteolytic pathways are known to participate in muscle disuse atrophy, recent evidence suggests that activation of Ca²⁺-dependent cysteine proteases (calpains) is required for disuse atrophy in limb skeletal muscles. In contrast to typical models of muscle disuse (humans and rodents), animals that experience natural bouts of chronic muscle inactivity, such as hibernating mammals and aestivating frogs, consistently exhibit limited or no change in skeletal muscle size. In the current study, we examined enzyme activity, protein abundance and gene expression levels of calpain isoforms in gastrocnemius muscle of the aestivating frog, Cyclorana alboguttata. We predicted that in aestivating C. alboguttata there would be a downregulation of the abundance, activity and gene expression of calpain 1 and calpain 2. In contrast to our hypothesis, there was no significant decrease in the enzyme activity levels or the relative protein abundances of calpain 1 and calpain 2. Similarly, gene expression assays (both qRT-PCR and RNA Seq data) indicated that calpains were unaffected by aestivation. Western blotting of 'muscle-specific' calpain 3, which is consistently downregulated during atrophic conditions, indicated that this isoform is present in C. alboguttata muscle where it appears to be in its autolysed state. The absence of any increase in enzyme activity, protein and mRNA abundance of calpains in aestivators is consistent with the protection of gastrocnemius muscle against uncontrolled proteolysis throughout aestivation. PMID:25502658

  6. Accentuated lines in the enamel of primary incisors from skeletal remains: A contribution to the explanation of early childhood mortality in a medieval population from Poland.

    PubMed

    Żądzińska, Elżbieta; Lorkiewicz, Wiesław; Kurek, Marta; Borowska-Strugińska, Beata

    2015-07-01

    Physiological disruptions resulting from an impoverished environment during the first years of life are of key importance for the health and biological status of individuals and populations. Studies of growth processes in archaeological populations point to the fact that the main causes of childhood mortality in the past are to be sought among extrinsic factors. Based on this assumption, one would expect random mortality of children, with the deceased individuals representing the entire subadult population. The purpose of this study is to explore whether differences in early childhood survival are reflected in differences in deciduous tooth enamel, which can provide an insight into the development of an individual during prenatal and perinatal ontogeny. Deciduous incisors were taken from 83 individuals aged 2.0-6.5 years from a medieval inhumation cemetery dated AD 1300-1600. Prenatal and postnatal enamel formation time, neonatal line width, and the number of accentuated lines were measured using an optical microscope. The significantly wider neonatal line and the higher frequency of accentuated lines in the enamel of the incisors of children who died at the age of 2-3 years suggest the occurrence of stronger or more frequent stress events in this group. These results indicate that in skeletal populations mortality was not exclusively determined by random external factors. Individuals predisposed by an unfavorable course of prenatal and perinatal growth were more likely to die in early childhood. PMID:25711723

  7. The local expression and abundance of insulin-like growth factor (IGF) binding proteins in skeletal muscle are regulated by age and gender but not local IGF-I in vivo.

    PubMed

    Oliver, William T; Rosenberger, Judy; Lopez, Rusmely; Gomez, Adam; Cummings, Kathleen K; Fiorotto, Marta L

    2005-12-01

    We wished to determine whether sustained IGF-I production in skeletal muscle increases local IGF binding protein (IGFBP) abundance, thereby mitigating the long-term stimulation of muscle growth by IGF-I. Muscle growth of transgenic mice that overexpress IGF-I in muscle (SIS2) and of wild-type (Wt) mice was compared. At 3, 5, 10, and 20 wk of age, hind-limb muscle weights and IGFBP-3, -4, -5, and -6 mRNA and protein abundances were quantified. Additional mice were injected with IGF-I or LR3-IGF-I, and phosphorylation of the type 1 IGF receptor (IGF-1R) was compared. Muscle mass was 20% greater in SIS2 compared with Wt mice by 10 wk of age (P < 0.01), and this difference was maintained to 20 wk. IGFBP mRNA and protein abundances were unaffected by genotype. IGFBP-4 and -5 protein abundances increased with age, whereas for IGFBP-3 and -6, there was a sexual dimorphic response (P < 0.01); after 5 wk of age, IGFBP-3 decreased in males but increased in females, whereas IGFBP-6 decreased in females and remained unchanged in males. These protein expression patterns resulted from differences at both the transcriptional and posttranscriptional levels. LR3-IGF-I stimulated IGF-1R phosphorylation to a greater extent than IGF-I at both 5 and 10 wk of age (P < 0.01), regardless of gender or genotype (P > 0.21). Thus, variations in local IGF-I levels do not appear to regulate muscle IGFBP expression. The age- and gender-specific differences in muscle IGFBP expression are not sufficient to alter the response of the muscle to the IGFs but may impact the IGF-independent effects of these IGFBPs. PMID:16166219

  8. Insulin increases mRNA abundance of the amino acid transporter SLC7A5/LAT1 via an mTORC1‐dependent mechanism in skeletal muscle cells

    PubMed Central

    Walker, Dillon K.; Drummond, Micah J.; Dickinson, Jared M.; Borack, Michael S.; Jennings, Kristofer; Volpi, Elena; Rasmussen, Blake B.

    2014-01-01

    Abstract Amino acid transporters (AATs) provide a link between amino acid availability and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) activation although the direct relationship remains unclear. Previous studies in various cell types have used high insulin concentrations to determine the role of insulin on mTORC1 signaling and AAT mRNA abundance. However, this approach may limit applicability to human physiology. Therefore, we sought to determine the effect of insulin on mTORC1 signaling and whether lower insulin concentrations stimulate AAT mRNA abundance in muscle cells. We hypothesized that lower insulin concentrations would increase mRNA abundance of select AAT via an mTORC1‐dependent mechanism in C2C12 myotubes. Insulin (0.5 nmol/L) significantly increased phosphorylation of the mTORC1 downstream effectors p70 ribosomal protein S6 kinase 1 (S6K1) and ribosomal protein S6 (S6). A low rapamycin dose (2.5 nmol/L) significantly reduced the insulin‐(0.5 nmol/L) stimulated S6K1 and S6 phosphorylation. A high rapamycin dose (50 nmol/L) further reduced the insulin‐(0.5 nmol/L) stimulated phosphorylation of S6K1 and S6. Insulin (0.5 nmol/L) increased mRNA abundance of SLC38A2/SNAT2 (P ≤ 0.043) and SLC7A5/LAT1 (P ≤ 0.021) at 240 min and SLC36A1/PAT1 (P = 0.039) at 30 min. High rapamycin prevented an increase in SLC38A2/SNAT2 (P = 0.075) and SLC36A1/PAT1 (P ≥ 0.06) mRNA abundance whereas both rapamycin doses prevented an increase in SLC7A5/LAT1 (P ≥ 0.902) mRNA abundance. We conclude that a low insulin concentration increases SLC7A5/LAT1 mRNA abundance in an mTORC1‐dependent manner in skeletal muscle cells. PMID:24760501

  9. THE LOCAL EXPRESSION AND ABUNDANCE OF INSULIN-LIKE GROWTH FACTOR (IGF) BINDING PROTEINS IN SKELETAL MUSCLE ARE REGULATED BY AGE AND GENDER BUT NOT LOCAL IGF-I "IN VIVO"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We wished to determine whether sustained IGF-I production in skeletal muscle increases local IGF binding protein (IGFBP) abundance, thereby mitigating the long-term stimulation of muscle growth by IGF-I. Muscle growth of transgenic mice that overexpress IGF-I in muscle (SIS2) and of wild-type (Wt) m...

  10. Identification of Skeletal Remains of Communist Armed Forces Victims During and After World War II: Combined Y-chromosome Short Tandem Repeat (STR) and MiniSTR Approach

    PubMed Central

    Marjanović, Damir; Durmić-Pašić, Adaleta; Kovačević, Lejla; Avdić, Jasna; Džehverović, Mirela; Haverić, Sanin; Ramić, Jasmin; Kalamujić, Belma; Bilela, Lada Lukić; Škaro, Vedrana; Projić, Petar; Bajrović, Kasim; Drobnič, Katja; Davoren, Jon; Primorac, Dragan

    2009-01-01

    Aim To report on the use of STR, Y-STRs, and miniSTRs typing methods in the identification of victims of revolutionary violence and crimes against humanity committed by the Communist Armed Forces during and after World War II in which bodies were exhumed from mass and individual graves in Slovenia. Methods Bone fragments and teeth were removed from human remains found in several small and closely located hidden mass graves in the Škofja Loka area (Lovrenska Grapa and Žolšče) and 2 individual graves in the Ljubljana area (Podlipoglav), Slovenia. DNA was isolated using the Qiagen DNA extraction procedure optimized for bone and teeth. Some DNA extracts required additional purification, such as N-buthanol treatment. The QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. Initially, PowerPlex 16 kit was used to simultaneously analyze 15 short tandem repeat (STR) loci. The PowerPlex S5 miniSTR kit and AmpFℓSTR® MiniFiler PCR Amplification Kit was used for additional analysis if preliminary analysis yielded weak partial or no profiles at all. In 2 cases, when the PowerPlex 16 profiles indicated possible relatedness of the remains with reference samples, but there were insufficient probabilities to call the match to possible male paternal relatives, we resorted to an additional analysis of Y-STR markers. PowerPlex® Y System was used to simultaneously amplify 12 Y-STR loci. Fragment analysis was performed on an ABI PRISM 310 genetic analyzer. Matching probabilities were estimated using the DNA-View software. Results Following the Y-STR analysis, 1 of the “weak matches” previously obtained based on autosomal loci, was confirmed while the other 1 was not. Combined standard STR and miniSTR approach applied to bone samples from 2 individual graves resulted in positive identifications. Finally, using the same approach on 11 bone samples from hidden mass grave Žološče, we were able to obtain 6 useful DNA profiles. Conclusion The results of

  11. [PALEOPATHOLOGY OF HUMAN REMAINS].

    PubMed

    Minozzi, Simona; Fornaciari, Gino

    2015-01-01

    Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population. PMID:27348992

  12. Skeletal stem cells.

    PubMed

    Bianco, Paolo; Robey, Pamela G

    2015-03-15

    Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored. PMID:25758217

  13. Shotgun microbial profiling of fossil remains.

    PubMed

    Der Sarkissian, C; Ermini, L; Jónsson, H; Alekseev, A N; Crubezy, E; Shapiro, B; Orlando, L

    2014-04-01

    Millions to billions of DNA sequences can now be generated from ancient skeletal remains thanks to the massive throughput of next-generation sequencing platforms. Except in cases of exceptional endogenous DNA preservation, most of the sequences isolated from fossil material do not originate from the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200- to 13 000-year-old horse bones collected from northern Siberia. We use a robust, taxonomy-based assignment approach to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial community profiling of the seven specimens revealed site-specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using a shotgun sequencing approach. In future, it may be possible to correlate, for example, the accumulation of postmortem DNA damage with the presence and/or abundance of particular microbes. PMID:24612293

  14. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  15. Genetic variability of transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism

    PubMed Central

    2011-01-01

    Background The genetics of transcript-level variation is an exciting field that has recently given rise to many studies. Genetical genomics studies have mainly focused on cell lines, blood cells or adipose tissues, from human clinical samples or mice inbred lines. Few eQTL studies have focused on animal tissues sampled from outbred populations to reflect natural genetic variation of gene expression levels in animals. In this work, we analyzed gene expression in a whole tissue, pig skeletal muscle sampled from individuals from a half sib F2 family shortly after slaughtering. Results QTL detection on transcriptome measurements was performed on a family structured population. The analysis identified 335 eQTLs affecting the expression of 272 transcripts. The ontologic annotation of these eQTLs revealed an over-representation of genes encoding proteins involved in processes that are expected to be induced during muscle development and metabolism, cell morphology, assembly and organization and also in stress response and apoptosis. A gene functional network approach was used to evidence existing biological relationships between all the genes whose expression levels are influenced by eQTLs. eQTLs localization revealed a significant clustered organization of about half the genes located on segments of chromosome 1, 2, 10, 13, 16, and 18. Finally, the combined expression and genetic approaches pointed to putative cis-drivers of gene expression programs in skeletal muscle as COQ4 (SSC1), LOC100513192 (SSC18) where both the gene transcription unit and the eQTL affecting its expression level were shown to be localized in the same genomic region. This suggests cis-causing genetic polymorphims affecting gene expression levels, with (e.g. COQ4) or without (e.g. LOC100513192) potential pleiotropic effects that affect the expression of other genes (cluster of trans-eQTLs). Conclusion Genetic analysis of transcription levels revealed dependence among molecular phenotypes as being

  16. Developmental regulation of the activation of signaling components leading to translation initiation in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid growth of neonates is driven by high rates of skeletal muscle protein synthesis. This high rate of protein synthesis, which is induced by feeding, declines with development. Overnight-fasted 7- and 26-day-old pigs either remained fasted or were refed, and the abundance and phosphorylation ...

  17. Skeletal radiology

    SciTech Connect

    Bowerman, J.W.

    1982-01-01

    The main emphasis of the chapter on skeletal radiology is CAT scanning and its use in the diagnosis of neoplasms. Other topics that are discussed include infections, arthritis, trauma, and metabolic and endocrine diseases as they relate to skeletal radiology. (KRM)

  18. Skeletal Dysplasias

    PubMed Central

    Krakow, Deborah

    2015-01-01

    Synoposis The skeletal dysplasias are a group of more than 450 heritable disorders of bone. They frequently present in the newborn period with disproportion, radiographic abnormalities, and occasionally other organ system abnormalities. For improved clinical care it is important to determine a precise diagnosis to aid in management, familial recurrence and identify those disorders highly associated with mortality. Long-term management of these disorders is predicated on an understanding of the associated skeletal system abnormalities and these children are best served by a team approach to health care surveillance. PMID:26042906

  19. Skeletal dysplasias.

    PubMed

    Krakow, Deborah

    2015-06-01

    The skeletal dysplasias are a group of more than 450 heritable disorders of bone. They frequently present in the newborn period with disproportion, radiographic abnormalities, and occasionally other organ system abnormalities. For improved clinical care, it is important to determine a precise diagnosis to aid in management, familial recurrence, and identify those disorders highly associated with mortality. Long-term management of these disorders is predicated on an understanding of the associated skeletal system abnormalities, and these children are best served by a team approach to health care surveillance. PMID:26042906

  20. Where do those remains come from?

    PubMed

    Nociarová, Dominika; Adserias, M Jose; Malgosa, Assumpció; Galtés, Ignasi

    2014-12-01

    Part of the study of skeletal remains or corpses in advance decay located in the field involves determining their origin. They may be the result of criminal activity, accident, unearthed because of erosion, or they may also have originated from a cemetery. The discovery site, condition of the remains, and the associated artifacts, are factors that could be helpful for the forensic anthropologist to identify the origin of the remains. In order to contribute to this recognition, an analysis was made of the exhumations of 168 unclaimed human remains from the cemetery of Terrassa (Catalonia, Spain). This investigation presents a description of artifacts and conditions of remains that could indicate that the human remains may have originated from a cemetery. PMID:25459276

  1. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  2. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.

    PubMed

    Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas; Heppelmann, Carrie J Holtz; Bergen, H Robert; Dasari, Surendra; Nair, K Sreekumaran

    2016-03-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  3. Taphonomy of the Tianyuandong human skeleton and faunal remains.

    PubMed

    Fernández-Jalvo, Yolanda; Andrews, Peter; Tong, HaoWen

    2015-06-01

    Tianyuan Cave is an Upper Palaeolithic site, 6 km from the core area of the Zhoukoudian Site Complex. Tianyuandong (or Tianyuan Cave) yielded one ancient (though not the earliest) fossil skeleton of Homo sapiens in China (42-39 ka cal BP). Together with the human skeleton, abundant animal remains were found, but no stone tools were recovered. The animal fossil remains are extremely fragmentary, in contrast to human skeletal elements that are, for the most part, complete. We undertook a taphonomic study to investigate the circumstances of preservation of the human skeleton in Tianyuan Cave, and in course of this we considered four hypotheses: funerary ritual, cannibalism, carnivore activity or natural death. Taphonomic results characterize the role of human action in the site and how these agents acted in the past. Because of disturbance of the human skeleton during its initial excavation, it is not known if it was in a grave cut or if there was any funerary ritual. No evidence was found for cannibalism or carnivore activity in relation to the human skeleton, suggesting natural death as the most reasonable possibility. PMID:25929706

  4. TWEAK promotes exercise intolerance by decreasing skeletal muscle oxidative phosphorylation capacity

    PubMed Central

    2013-01-01

    Background Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are the major regulators of skeletal muscle mass in many catabolic conditions. However, their role in muscle metabolism remains largely unknown. In the present study, we investigated the role of TWEAK on exercise capacity and skeletal muscle mitochondrial content and oxidative metabolism. Methods We employed wild-type and TWEAK-knockout (KO) mice and primary myotube cultures and performed biochemical, bioenergetics, and morphometric assays to evaluate the effects of TWEAK on exercise tolerance and muscle mitochondrial function and angiogenesis. Results TWEAK-KO mice showed improved exercise tolerance compared to wild-type mice. Electron microscopy analysis showed that the abundance of subsarcolemmal and intermyofibrillar mitochondria is significantly increased in skeletal muscle of TWEAK-KO mice compared to wild-type mice. Furthermore, age-related loss in skeletal muscle oxidative capacity was rescued in TWEAK-KO mice. Expression of a key transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and several other molecules involved in oxidative metabolism were significantly higher in skeletal muscle of TWEAK-KO mice. Moreover, treatment of primary myotubes with soluble TWEAK inhibited the expression of PGC-1α and mitochondrial genes and decreased mitochondrial respiratory capacity. Deletion of TWEAK also improved angiogenesis and transcript levels of vascular endothelial growth factor in skeletal muscle of mice. Conclusions These results demonstrate that TWEAK decreases mitochondrial content and oxidative phosphorylation and inhibits angiogenesis in skeletal muscle. Neutralization of TWEAK is a potential approach for improving exercise capacity and oxidative metabolism in skeletal muscle. PMID:23835416

  5. Propellant-remaining modeling

    NASA Technical Reports Server (NTRS)

    Torgovitsky, S.

    1991-01-01

    A successful satellite mission is predicted upon the proper maintenance of the spacecraft's orbit and attitude. One requirement for planning and predicting the orbit and attitude is the accurate estimation of the propellant remaining onboard the spacecraft. Focuss is on the three methods that were developed for calculating the propellant budget: the errors associated with each method and the uncertainties in the variables required to determine the propellant remaining that contribute to these errors. Based on these findings, a strategy is developed for improved propellant-remaining estimation. The first method is based on Boyle's law, which related the values of pressure, volume, and temperature (PVT) of an ideal gas. The PVT method is used for the monopropellant and the bipropellant engines. The second method is based on the engine performance tests, which provide data that relate thrust and specific impulse associated with a propellant tank to that tank's pressure. Two curves representing thrust and specific impulse as functions of pressure are then generated using a polynomial fit on the engine performance data. The third method involves a computer simulation of the propellant system. The propellant flow is modeled by creating a conceptual model of the propulsion system configuration, taking into account such factors as the propellant and pressurant tank characteristics, thruster functionality, and piping layout. Finally, a thrust calibration technique is presented that uses differential correction with the computer simulation method of propellant-remaining modeling. Thrust calibration provides a better assessment of thruster performance and therefore enables a more accurate estimation of propellant consumed during a given maneuver.

  6. Field contamination of skeletonized human remains with exogenous DNA.

    PubMed

    Edson, Suni M; Christensen, Alexander F

    2013-01-01

    The Armed Forces DNA Identification Laboratory reports the mitochondrial DNA (mtDNA) sequences of over 800 skeletal samples a year for the Joint POW/MIA Accounting Command-Central Identification Laboratory. These sequences are generated from degraded skeletal remains that are presumed to belong to U.S. service members missing from past military conflicts. In the laboratory, it is possible to control for contamination of remains; however, in the field, it can be difficult to prevent modern DNA from being transferred to skeletal elements and being carried forward through the analysis process. Four such cases are described here along with the controls in place in the laboratory to eliminate the possibility of the exogenous DNA being reported as authentic. In each case, the controls implemented by the laboratories prevented the false reporting of contaminant exogenous DNA from remains that were either faunal or human, but lacked endogenous DNA. PMID:22994903

  7. Skeletal anomalies.

    PubMed

    Dugoff, L; Thieme, G; Hobbins, J C

    2000-12-01

    It is possible to identify many types of skeletal dysplasias and conditions involving limb deformities prenatally using ultrasound. It is likely that in the future, with the advancing technology and discoveries in molecular genetics, specific mutation analysis will become available for many of these conditions. This will make first trimester diagnosis an option in many cases. Because of the complex nature of many of these cases, it may be helpful to use a multidisciplinary approach involving a radiologist and a geneticist at times. In utero radiographs may help clarify a diagnosis. In lethal cases where a specific diagnosis has not been confirmed, it may be helpful postpartum to obtain an autopsy; photographs; complete body radiographs; karyotypic analysis; and specimens of bone, cartilage, and fetal blood for further analysis. PMID:11816496

  8. Skeletal Scintigraphy

    PubMed Central

    McDougall, I. Ross

    1979-01-01

    Skeletal scintigraphy, using phosphates or diphosphonates labeled with technetium 99m, is a sensitive method of detecting bone abnormalities. The most important and most frequent role of bone scanning is evaluating the skeletal areas in patients who have a primary cancer, especially a malignant condition that has a tendency to spread to bone areas. The bone scan is superior to bone radiographs in diagnosing these abnormalities; 15 percent to 25 percent of patients with breast, prostate or lung cancer, who have normal roentgenograms, also have abnormal scintigrams due to metastases. The majority of bone metastases appear as hot spots on the scan and are easily recognized. The incidence of abnormal bone scans in patients with early stages (I and II) of breast cancer varies from 6 percent to 26 percent, but almost invariably those patients with scan abnormalities have a poor prognosis and should be considered for additional therapies. Progression or regression of bony lesions can be defined through scanning, and abnormal areas can be identified for biopsy. The incidence of metastases in solitary scan lesions in patients with known primary tumors varies from 20 percent to 64 percent. Bone scintigraphy shows positive uptake in 95 percent of cases with acute osteomyelitis. Stress fractures and trauma suspected in battered babies can be diagnosed by scanning before there is radiological evidence. The procedure is free from acute or long-term side effects and, except in cases of very young patients, sedation is seldom necessary. Although the test is sensitive, it is not specific and therefore it is difficult to overemphasize the importance of clinical, radiographic, biochemical and scanning correlation in each patient. ImagesFigure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9.Figure 10. PMID:390886

  9. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  10. Reversibility of skeletal fluorosis.

    PubMed Central

    Grandjean, P; Thomsen, G

    1983-01-01

    At two x ray examinations in 1957 and 1967, 17 cases of skeletal fluorosis were identified among long term cryolite workers in Copenhagen. In 1982 four of these patients were alive, eight to 15 years after exposure had ended. Radiographs were obtained, and the urinary fluoride excretion was measured. A similar picture emerged in all four cases: extensive fading of the sclerosis of trabecular bone in ribs, vertebral bodies, and pelvis, whereas cortical bone thickening and calcification of muscle insertions and ligaments remained virtually unchanged. The fluoride excretion was increased in three cases (with the shortest exposure free period). These findings indicate that with continuous remodelling of bone tissue trabecular sclerosis is slowly reversible and the excess fluoride is excreted in the urine. Images PMID:6626475

  11. Reversibility of skeletal fluorosis.

    PubMed

    Grandjean, P; Thomsen, G

    1983-11-01

    At two x ray examinations in 1957 and 1967, 17 cases of skeletal fluorosis were identified among long term cryolite workers in Copenhagen. In 1982 four of these patients were alive, eight to 15 years after exposure had ended. Radiographs were obtained, and the urinary fluoride excretion was measured. A similar picture emerged in all four cases: extensive fading of the sclerosis of trabecular bone in ribs, vertebral bodies, and pelvis, whereas cortical bone thickening and calcification of muscle insertions and ligaments remained virtually unchanged. The fluoride excretion was increased in three cases (with the shortest exposure free period). These findings indicate that with continuous remodelling of bone tissue trabecular sclerosis is slowly reversible and the excess fluoride is excreted in the urine. PMID:6626475

  12. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.

    PubMed

    Rahman, M Azizur

    2016-01-01

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432

  13. Skeletal myoblasts for cardiac repair

    PubMed Central

    Durrani, Shazia; Konoplyannikov, Mikhail; Ashraf, Muhammad; Haider, Khawaja Husnain

    2011-01-01

    Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed. PMID:21082891

  14. Remembrance of things past: modelling the relationship between species' abundances in living communities and death assemblages.

    PubMed

    Olszewski, Thomas D

    2012-02-23

    Accumulations of dead skeletal material are a valuable archive of past ecological conditions. However, such assemblages are not equivalent to living communities because they mix the remains of multiple generations and are altered by post-mortem processes. The abundance of a species in a death assemblage can be quantitatively modelled by successively integrating the product of an influx time series and a post-mortem loss function (a decay function with a constant half-life). In such a model, temporal mixing increases expected absolute dead abundance relative to average influx as a linear function of half-life and increases variation in absolute dead abundance values as a square-root function of half-life. Because typical abundance distributions of ecological communities are logarithmically distributed, species' differences in preservational half-life would have to be very large to substantially alter species' abundance ranks (i.e. make rare species common or vice-versa). In addition, expected dead abundances increase at a faster rate than their range of variation with increased time averaging, predicting greater consistency in the relative abundance structure of death assemblages than their parent living community. PMID:21653564

  15. Regenerating skeletal muscle in the face of aging and disease.

    PubMed

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review. PMID:24879554

  16. Dissecting Human Skeletal Muscle Troponin Proteoforms by Top-down Mass Spectrometry

    PubMed Central

    Chen, Yi-Chen; Sumandea, Marius P.; Larsson, Lars; Moss, Richard L.; Ge, Ying

    2015-01-01

    Skeletal muscles are the most abundant tissues in the human body. They are composed of a heterogeneous collection of muscle fibers that perform various functions. Skeletal muscle troponin (sTn) regulates skeletal muscle contraction and relaxation. sTn consists of 3 subunits, troponin I (TnI), troponin T (TnT), and troponin C (TnC). TnI inhibits the actomyosin Mg2+-ATPase, TnC binds Ca2+, and TnT is the tropomyosin (Tm)-binding subunit. The cardiac and skeletal isoforms of Tn share many similarities but the roles of modifications of Tn in the two muscles may differ. The modifications of cardiac Tn are known to alter muscle contractility and have been well-characterized. However, the modification status of sTn remains unclear. Here, we have employed top-down mass spectrometry (MS) to decipher the modifications of human sTnT and sTnI. We have extensively characterized sTnT and sTnI proteoforms, including alternatively spliced isoforms and post-translationally modified forms, found in human skeletal muscle with high mass accuracy and comprehensive sequence coverage. Moreover, we have localized the phosphorylation site of slow sTnT isoform III to Ser1 by tandem MS with electron capture dissociation. This is the first study to comprehensively characterize human sTn and also the first to identify the basal phosphorylation site for human sTnT by top-down MS. PMID:25613324

  17. Skeletal muscle functions around the clock.

    PubMed

    Mayeuf-Louchart, A; Staels, B; Duez, H

    2015-09-01

    In mammals, the central clock localized in the central nervous system imposes a circadian rhythmicity to all organs. This is achieved thanks to a well-conserved molecular clockwork, involving interactions between several transcription factors, whose pace is conveyed to peripheral tissues through neuronal and humoral signals. The molecular clock plays a key role in the control of numerous physiological processes and takes part in the regulation of metabolism and energy balance. Skeletal muscle is one of the peripheral organs whose function is under the control of the molecular clock. However, although skeletal muscle metabolism and performances display circadian rhythmicity, the role of the molecular clock in the skeletal muscle has remained unappreciated for years. Peripheral organs such as skeletal muscle, and the liver, among others, can be desynchronized from the central clock by external stimuli, such as feeding or exercise, which impose a new rhythm at the organism level. In this review, we discuss our current understanding of the clock in skeletal muscle circadian physiology, focusing on the control of myogenesis and skeletal muscle metabolism. PMID:26332967

  18. Content and Access Remain Key

    ERIC Educational Resources Information Center

    Johnson, Linda B.

    2007-01-01

    It is impossible to review the year's outstanding government publication landscape without acknowledging that change remains paramount. Just as striking, however, is that these changes go hand in hand with some familiar constants. Within this shifting environment, there are the consistency and dependability of government information itself,…

  19. The taphonomy of human remains in a glacial environment.

    PubMed

    Pilloud, Marin A; Megyesi, Mary S; Truffer, Martin; Congram, Derek

    2016-04-01

    A glacial environment is a unique setting that can alter human remains in characteristic ways. This study describes glacial dynamics and how glaciers can be understood as taphonomic agents. Using a case study of human remains recovered from Colony Glacier, Alaska, a glacial taphonomic signature is outlined that includes: (1) movement of remains, (2) dispersal of remains, (3) altered bone margins, (4) splitting of skeletal elements, and (5) extensive soft tissue preservation and adipocere formation. As global glacier area is declining in the current climate, there is the potential for more materials of archaeological and medicolegal significance to be exposed. It is therefore important for the forensic anthropologist to have an idea of the taphonomy in this setting and to be able to differentiate glacial effects from other taphonomic agents. PMID:26917542

  20. Endemic skeletal fluorosis

    PubMed Central

    Teotia, M.; Teotia, S. P. S.; Kunwar, K. B.

    1971-01-01

    Endemic skeletal fluorosis is described in 6 children aged 11 or over. Four cases were crippled with severe deformities in the spine, hips, and knees. All showed positive phosphorus, magnesium, and nitrogen balances and excessively positive calcium balances. The skeletal x-rays, histology, and chemical composition of the bones revealed diagnostic changes in each case. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:5118057

  1. Extraction of DNA from Human Skeletal Material.

    PubMed

    Pajnič, Irena Zupanič

    2016-01-01

    In recent years the recovery and analysis of DNA from skeletal remains has been applied to several contexts ranging from disaster victim identification to the identification of the victims of conflict. Here are described procedures for processing the bone and tooth samples including mechanical and chemical cleaning, cutting and powdering in the presence of liquid nitrogen, complete demineralization of bone and tooth powder, DNA extraction, DNA purification using magnetic beads, and the precautions and strategies implemented to avoid and detect contamination. It has proven highly successful in the analysis of bones and teeth from Second World War victims' skeletal remains that have been excavated from mass graves in Slovenia and is also suitable for genetic identification of relatively fresh human remains. PMID:27259733

  2. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation.

    PubMed

    Yamashita, Atsushi; Hatazawa, Yukino; Hirose, Yuma; Ono, Yusuke; Kamei, Yasutomi

    2016-08-01

    Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading. PMID:27010781

  3. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  4. Silicon photonics: some remaining challenges

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  5. Na+/K+-ATPase α-subunit (nkaα) Isoforms and Their mRNA Expression Levels, Overall Nkaα Protein Abundance, and Kinetic Properties of Nka in the Skeletal Muscle and Three Electric Organs of the Electric Eel, Electrophorus electricus

    PubMed Central

    Hiong, Kum C.; Boo, Mel V.; Choo, Celine Y. L.; Wong, Wai P.; Chew, Shit F.; Ip, Yuen K.

    2015-01-01

    This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter’s EO and the Sach’s EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter’s EOs and weakly in the Sach’s EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter’s EO have high densities of Na+ channels and produce high voltage discharges while the Sach’s EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest Vmax of Nka were detected in the main EO and the Sach’s EO, respectively, with the Hunter’s EO having a Vmax value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge. PMID:25793901

  6. [Muscle-skeletal pain].

    PubMed

    Vygonskaya, M V; Filatova, E G

    2016-01-01

    The paper is devoted to the most complicated aspects of low back pain. The differences between specific and nonspecific low back pain using the "red flags" system is highlighted. The authors consider the causes of pain chronification (the "yellow flags" system) and the necessity of using a biopsychosocial model. Main pathogenetic mechanisms of chronic muscle/skeletal pain are considered and the possible involvement of several mechanism in the pathogenesis of chronic pain as well as the use of complex therapy is discussed. The high efficacy and safety of ketorolac in treatment of nonspecific muscle/skeletal pain is demonstrated. PMID:27042717

  7. Headspace constituents of the tree remain of Cinnamomum camphora.

    PubMed

    Miyazawa, M; Hashimoto, Y; Taniguchi, Y; Kubota, K

    2001-01-01

    The volatile ingredients isolated from a fresh tree of Cinnamomum camphora (camphor tree) and from a tree remain of C. camphora were collected by using headspace techniques and analyzed by means of gas chromatography/mass spectrometry (GC/MS). 99.77% of the constituents consisting 23 components from the fresh tree, 98.68% of the constituents consisting 24 components from the tree remain were identified. Of these ingredients, camphor was obtained as the most abundant component. PMID:11547425

  8. A method for defleshing human remains using household bleach.

    PubMed

    Mann, Robert W; Berryman, Hugh E

    2012-03-01

    Medical examiners and forensic anthropologists are often faced with the difficult task of removing soft tissue from the human skeleton without damaging the bones, teeth and, in some cases, cartilage. While there are a number of acceptable methods that can be used to remove soft tissue including macerating in water, simmering or boiling, soaking in ammonia, removing with scissors, knife, scalpel or stiff brush, and dermestid beetles, each has its drawback in time, safety, or potential to damage bone. This technical report using the chest plate of a stabbing victim presents a safe and effective alternative method for removing soft tissue from human remains, in particular the chest plate, following autopsy, without damaging or separating the ribs, sternum, and costal cartilage. This method can be used to reveal subtle blunt force trauma to bone, slicing and stabbing injuries, and other forms of trauma obscured by overlying soft tissue. Despite the published cautionary notes, when done properly household bleach (3-6% sodium hypochlorite) is a quick, safe, and effective method for examining cartilage and exposing skeletal trauma by removing soft tissue from human skeletal remains. PMID:22150429

  9. Structure of Skeletal Muscle

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue ... nerves. This is directly related to the primary function of skeletal muscle, ... an impulse from a nerve cell. Generally, an artery and at least one vein ...

  10. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    PubMed

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. PMID:27358404

  11. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  12. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  13. MicroRNA transcriptome profiles during swine skeletal muscle development

    PubMed Central

    McDaneld, Tara G; Smith, Timothy PL; Doumit, Matthew E; Miles, Jeremy R; Coutinho, Luiz L; Sonstegard, Tad S; Matukumalli, Lakshmi K; Nonneman, Dan J; Wiedmann, Ralph T

    2009-01-01

    Background MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus) and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth. PMID:19208255

  14. Skeletal muscle and hepatic insulin signaling is maintained in heat-stressed lactating Holstein cows.

    PubMed

    Xie, G; Cole, L C; Zhao, L D; Skrzypek, M V; Sanders, S R; Rhoads, M L; Baumgard, L H; Rhoads, R P

    2016-05-01

    Multiparous cows (n=12; parity=2; 136±8 d in milk, 560±32kg of body weight) housed in climate-controlled chambers were fed a total mixed ration (TMR) consisting primarily of alfalfa hay and steam-flaked corn. During the first experimental period (P1), all 12 cows were housed in thermoneutral conditions (18°C, 20% humidity) with ad libitum intake for 9 d. During the second experimental period (P2), half of the cows were fed for ad libitum intake and subjected to heat-stress conditions [WFHS, n=6; cyclical temperature 31.1 to 38.9°C, 20% humidity: minimum temperature humidity index (THI)=73, maximum THI=80.5], and half of the cows were pair-fed to match the intake of WFHS cows in thermal neutral conditions (TNPF, n=6) for 9 d. Rectal temperature and respiration rate were measured thrice daily at 0430, 1200, and 1630 h. To evaluate muscle and liver insulin responsiveness, biopsies were obtained immediately before and after an insulin tolerance test on the last day of each period. Insulin receptor (IR), insulin receptor substrate 1 (IRS-1), AKT/protein kinase B (AKT), and phosphorylated AKT (p-AKT) were measured by Western blot analyses for both tissues. During P2, WFHS increased rectal temperature and respiration rate by 1.48°C and 2.4-fold, respectively. Heat stress reduced dry matter intake by 8kg/d and, by design, TNPF cows had similar intake reductions. Milk yield was decreased similarly (30%) in WFHS and TNPF cows, and both groups entered into a similar (-4.5 Mcal/d) calculated negative energy balance during P2. Insulin infusion caused a less rapid glucose disposal in P2 compared with P1, but glucose clearance did not differ between environments in P2. In liver, insulin increased p-AKT protein content in each period. Phosphorylation ratio of AKT increased 120% in each period after insulin infusion. In skeletal muscle, protein abundance of the IR, IRS, and AKT remained stable between periods and environment. Insulin increased skeletal muscle p-AKT in each

  15. Nosology and Classification of Genetic Skeletal Disorders: 2010 Revision

    PubMed Central

    Warman, Matthew L; Cormier-Daire, Valerie; Hall, Christine; Krakow, Deborah; Lachman, Ralph; LeMerrer, Martine; Mortier, Geert; Mundlos, Stefan; Nishimura, Gen; Rimoin, David L; Robertson, Stephen; Savarirayan, Ravi; Sillence, David; Spranger, Juergen; Unger, Sheila; Zabel, Bernhard; Superti-Furga, Andrea

    2011-01-01

    Genetic disorders involving the skeletal system arise through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their variety. The Nosology and Classification of Genetic Skeletal Disorders provides an overview of recognized diagnostic entities and groups them by clinical and radiographic features and molecular pathogenesis. The aim is to provide the Genetics, Pediatrics and Radiology community with a list of recognized genetic skeletal disorders that can be of help in the diagnosis of individual cases, in the delineation of novel disorders, and in building bridges between clinicians and scientists interested in skeletal biology. In the 2010 revision, 456 conditions were included and placed in 40 groups defined by molecular, biochemical, and/or radiographic criteria. Of these conditions, 316 were associated with mutations in one or more of 226 different genes, ranging from common, recurrent mutations to “private” found in single families or individuals. Thus, the Nosology is a hybrid between a list of clinically defined disorders, waiting for molecular clarification, and an annotated database documenting the phenotypic spectrum produced by mutations in a given gene. The Nosology should be useful for the diagnosis of patients with genetic skeletal diseases, particularly in view of the information flood expected with the novel sequencing technologies; in the delineation of clinical entities and novel disorders, by providing an overview of established nosologic entities; and for scientists looking for the clinical correlates of genes, proteins and pathways involved in skeletal biology. © 2011 Wiley-Liss, Inc. PMID:21438135

  16. Skeletal remains of mummified foetus for 36 years in mother's abdomen

    PubMed Central

    Gedam, B.S.; Shah, Yunus; Deshmukh, Shahaji; Bansod, Prasad Y.

    2014-01-01

    Lithopedion is a rare event that occurs in 0.0054% of all gestations.1 According to one report there are only about 330 known cases of stone baby in the world (Gang sung, Min Lee et al., 2010). About 1.5–1.8% of the abdominal babies develop into lithopedion. We report a 60-year-old female with pain and lump in lower abdomen since 2 months. Possibility of tumour was on evaluation. Eventually a mass containing foetal skeleton was found in her abdomen which was traced to her pregnancy 36 years back. PMID:25647606

  17. Quantifying Inter-Laboratory Variability in Stable Isotope Analysis of Ancient Skeletal Remains

    PubMed Central

    Pestle, William J.; Crowley, Brooke E.; Weirauch, Matthew T.

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application. PMID:25061843

  18. Comparison of two methods for isolating DNA from human skeletal remains for STR analysis.

    PubMed

    Rucinski, Cynthia; Malaver, Ayda L; Yunis, Emilio J; Yunis, Juan J

    2012-05-01

    The quality and efficiency of a standard organic DNA isolation method and a silica-based method using the QIAGEN Blood Maxi Kit were compared to obtain human DNA and short tandem repeats (STRs) profiles from 39 exhumed bone samples for paternity testing. DNA samples were quantified by real-time PCR, and STR profiles were obtained using the AmpFlSTR(®) Identifiler(®) PCR amplification kit. Overall, the silica-based method recovered less DNA ranging from 0 to 147.7 ng/g (average 7.57 ng/g, median = 1.3 ng/g) than did the organic method ranging from 0 to 605 ng/g (average 44.27 ng/g, median = 5.8 ng/g). Complete profiles (16/16 loci tested) were obtained from 37/39 samples (95%) using the organic method and from 9/39 samples (23%) with the silica-based method. Compared with a standard organic DNA isolation method, our results indicate that the published silica-based method does not improve neither the quality nor the quantity of DNA for STR profiling. PMID:22212010

  19. Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.

    1981-01-01

    Uranium series analyses of human bone samples from the Del Mar and Sunnyvale sites indicate ages of 11,000 and 8,300 years, respectively. The dates are supported by internal concordancy between thorium-230 and protactinium-231 decay systems. These ages are significantly younger than the estimates of 48,000 and 70,000 years based on amino acid racemization, and indicate that the individuals could derive from the population waves that came across the Bering Strait during the last sea-level low. Copyright ?? 1981 AAAS.

  20. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    PubMed

    Pestle, William J; Crowley, Brooke E; Weirauch, Matthew T

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application. PMID:25061843

  1. Examination of Sarmatian age human skeletal remains from the Madaras graves.

    PubMed

    Antónia, Marcsik; Lãszló, Paja

    2009-01-01

    The Madaras cemetery is the only one totally excavated Sarmatian site on the Great Hungarian Plain. The cemetery contained 623 graves from the Sarmatian period (from the second century till the middle of the fifth century AD). The preservation of the skeletons are very poor and fragmentary. The ratio of males is 30%, the ratio of skeletons belongig to females is 41%, while the children took 29%. Among pathological cases severe coxarthritis and in one case a metastatic carcinoma of a skull were found. At four individuals artificial deformation of the skull was diagnosed. On the basis of the metric and taxonomic analysis the Madaras population was heterogeneous, wich can be explained by the fact, that this population was diverse or mixed. PMID:20063665

  2. Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California

    SciTech Connect

    Bischoff, J.L.; Rosenbauer, R.J.

    1981-08-28

    Uranium series analyses of human bone samples from the Del Mar and Sunnyvale sites indicate ages of 11,000 and 8300 years, respectively. The dates are supported by internal concordancy between thorium-230 and protactinium-231 decay systems. These ages are significantly younger than the estimates of 48,000 and 70,000 years based on amino acid racemization, and indicate that the individuals could derive from the population waves that came across the Bering Strait during the last sea-level low.

  3. Uranium series dating of human skeletal remains from the del mar and sunnyvale sites, california.

    PubMed

    Bischoff, J L; Rosenbauer, R J

    1981-08-28

    Uranium series analyses of human bone samples from the Del Mar and Sunnyvale sites indicate ages of 11,000 and 8,300 years, respectively. The dates are supported by internal concordancy between thorium-230 and protactinium-231 decay systems. These ages are significantly younger than the estimates of 48,000 and 70,000 years based on amino acid racemization, and indicate that the individuals could derive from the population waves that came across the Bering Strait during the last sea-level low. PMID:17789030

  4. Identification of the remains of King Richard III.

    PubMed

    King, Turi E; Fortes, Gloria Gonzalez; Balaresque, Patricia; Thomas, Mark G; Balding, David; Maisano Delser, Pierpaolo; Neumann, Rita; Parson, Walther; Knapp, Michael; Walsh, Susan; Tonasso, Laure; Holt, John; Kayser, Manfred; Appleby, Jo; Forster, Peter; Ekserdjian, David; Hofreiter, Michael; Schürer, Kevin

    2014-01-01

    In 2012, a skeleton was excavated at the presumed site of the Grey Friars friary in Leicester, the last-known resting place of King Richard III. Archaeological, osteological and radiocarbon dating data were consistent with these being his remains. Here we report DNA analyses of both the skeletal remains and living relatives of Richard III. We find a perfect mitochondrial DNA match between the sequence obtained from the remains and one living relative, and a single-base substitution when compared with a second relative. Y-chromosome haplotypes from male-line relatives and the remains do not match, which could be attributed to a false-paternity event occurring in any of the intervening generations. DNA-predicted hair and eye colour are consistent with Richard's appearance in an early portrait. We calculate likelihood ratios for the non-genetic and genetic data separately, and combined, and conclude that the evidence for the remains being those of Richard III is overwhelming. PMID:25463651

  5. Identification of the remains of King Richard III

    PubMed Central

    King, Turi E.; Fortes, Gloria Gonzalez; Balaresque, Patricia; Thomas, Mark G.; Balding, David; Delser, Pierpaolo Maisano; Neumann, Rita; Parson, Walther; Knapp, Michael; Walsh, Susan; Tonasso, Laure; Holt, John; Kayser, Manfred; Appleby, Jo; Forster, Peter; Ekserdjian, David; Hofreiter, Michael; Schürer, Kevin

    2014-01-01

    In 2012, a skeleton was excavated at the presumed site of the Grey Friars friary in Leicester, the last-known resting place of King Richard III. Archaeological, osteological and radiocarbon dating data were consistent with these being his remains. Here we report DNA analyses of both the skeletal remains and living relatives of Richard III. We find a perfect mitochondrial DNA match between the sequence obtained from the remains and one living relative, and a single-base substitution when compared with a second relative. Y-chromosome haplotypes from male-line relatives and the remains do not match, which could be attributed to a false-paternity event occurring in any of the intervening generations. DNA-predicted hair and eye colour are consistent with Richard’s appearance in an early portrait. We calculate likelihood ratios for the non-genetic and genetic data separately, and combined, and conclude that the evidence for the remains being those of Richard III is overwhelming. PMID:25463651

  6. EXPRESSION OF THE TGF-BETA FAMILY OF LIGANDS IS DEVELOPMENTALLY REGULATED IN SKELETAL MUSCLE OF NEONATAL RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To dissect the possible role of the transforming growth factor-beta (TGF-beta) family in the regulation of skeletal muscle growth during the early postnatal period, the protein abundances of the TGF-beta family and their correlation with protein synthesis were determined in skeletal muscle of neonat...

  7. Truncated CASK does not alter skeletal muscle or protein interactors.

    PubMed

    Sanford, Jamie L; Mays, Tessily A; Varian, Kenneth D; Wilson, Joanna B; Janssen, Paul M L; Rafael-Fortney, Jill A

    2008-09-01

    CASK (Ca2+, calmodulin-associated serine/threonine kinase) is an essential mammalian cell junction protein and is also crucial at Drosophila neuromuscular synapses. We have shown that CASK is present in mammalian skeletal muscle at the postsynaptic membrane of the neuromuscular junction. CASK interacts biochemically with channels at central synapses, and studies in cultured cells have led to proposed functions for CASK. However, in vivo functions of CASK in skeletal muscle remain unknown. To test hypotheses of CASK functions, we generated two lines of transgenic mice, which overexpress full-length and truncated CASK protein in skeletal muscle. Extensive analyses showed that overexpression of CASK protein did not affect the morphology or physiology of skeletal muscle, the morphology of the neuromuscular junction, or the levels or distribution of protein interactors. These results contrast with previous cell culture experiments and emphasize the importance of in vivo analysis of protein function. PMID:18642383

  8. PET and PET/CT imaging of skeletal metastases

    PubMed Central

    2010-01-01

    Abstract Bone scintigraphy augmented with radiographs or cross-sectional imaging, such as computed tomography (CT) or magnetic resonance imaging (MRI), has remained the commonest method to diagnose and follow up skeletal metastases. However, bone scintigraphy is associated with relatively poor spatial resolution, limited diagnostic specificity and reduced sensitivity for bone marrow disease. It also shows limited diagnostic accuracy in assessing response to therapy in a clinically useful time period. With the advent of hybrid positron emission tomography (PET)/CT scanners there has been an increasing interest in using various PET tracers to evaluate skeletal disease including [18F]fluoride (NaF) as a bone-specific tracer and [18F]fluorodeoxyglucose and [18F]choline as tumour-specific tracers. There is also early work exploring the receptor status of skeletal metastases with somatostatin receptor analogues. This review describes the potential utility of these tracers in the assessment of skeletal metastases. PMID:20663736

  9. Skeletal indicators of pregnancy and parturition: a historical review.

    PubMed

    Ubelaker, Douglas H; De La Paz, Jade S

    2012-07-01

    Over a century of scientific literature has documented the research and analysis relating to the possible skeletal evidence of pregnancy, parturition, and childcare, yet today, there still exists variation in methodology and interpretation. Historical perspective facilitates understanding of the growth and development of the theories and research currently available to the forensic science community. Review of the relevant literature clearly indicates that specific skeletal alterations are not exclusively connected to obstetrical events. Although parturition and related events have been shown to leave various alterations on bone, the research record also demonstrates that other factors can contribute to the same or similar changes. Additionally, such alterations can often be found in nulliparous women and men and are frequently absent in parous and multiparous women. This literature review calls for the continued exploration of skeletal alterations for determining parity status in human skeletal remains. PMID:22372612

  10. Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders

    PubMed Central

    Dang, Lei; Liu, Jin; Li, Fangfei; Wang, Luyao; Li, Defang; Guo, Baosheng; He, Xiaojuan; Jiang, Feng; Liang, Chao; Liu, Biao; Badshah, Shaikh Atik; He, Bing; Lu, Jun; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation. PMID:27011176

  11. Smad Signaling in Skeletal Development and Regeneration

    PubMed Central

    Song, Buer; Estrada, Kristine D.; Lyons, Karen M.

    2009-01-01

    Smad proteins are intracellular molecules that mediate the canonical signaling cascade of TGFβ superfamily growth factors. The TGFβ superfamily comprises two groups of growth factors, BMPs and TGFβs. Both groups can be further divided into several sub-groups based on sequence homologies and functional similarities. Ligands of the TGFβ superfamily bind to cell surface receptors to activate Smad proteins in the cytoplasm; then the activated Smad proteins translocate into the nucleus to activate or repress specific target gene transcription. Both groups of growth factors play important roles in skeletal development and regeneration. However, whether these effects reflect signaling through canonical Smad pathways, or other non-canonical signaling pathways in vivo remains a mystery. Moreover, the mechanisms utilized by Smad proteins to initiate nuclear events and their interactions with cytoplasmic proteins are still under intensive investigation. This review will discuss the most recent progress understanding Smad signaling in the context of skeletal development and regeneration. PMID:19926329

  12. Skeletal adaptation in altered gravity environments

    NASA Technical Reports Server (NTRS)

    Keller, Tony S.; Strauss, Alvin M.

    1990-01-01

    It is generally agreed that the single factor that most limits human survivability in non Earth environments is the phenomenon of bone demineralization and the medical problems induced by the subsequent imbalance in the calcium metabolism. Alterations of skeletal properties occur as a result of disturbances in the normal mechanical loading environment of bone. These alterations or adaptations obey physical laws, but the precise mathematical relationship remains to be determined. Principles governing unloading and overloading of bone are gaining more attention as a consequence of the planning of manned space stations, Moon and Mars bases and spaceflights of long duration. A mathematical framework which allows for the prediction of skeletal adaptation on Earth and in non Earth gravity environments by power law relationships is presented.

  13. Parathyroid Hormone (PTH)/PTH-related Peptide Type 1 Receptor (PPR) Signaling in Osteocytes Regulates Anabolic and Catabolic Skeletal Responses to PTH*

    PubMed Central

    Saini, Vaibhav; Marengi, Dean A.; Barry, Kevin J.; Fulzele, Keertik S.; Heiden, Erica; Liu, Xiaolong; Dedic, Christopher; Maeda, Akira; Lotinun, Sutada; Baron, Roland; Pajevic, Paola Divieti

    2013-01-01

    Parathyroid hormone (PTH) is the only Food and Drug Administration-approved anabolic agent to treat osteoporosis; however, the cellular targets of PTH action in bone remain controversial. PTH modulates bone turnover by binding to the PTH/PTH-related peptide (PTHrP) type 1 receptor (PPR), a G-protein-coupled receptor highly expressed in bone and kidneys. Osteocytes, the most abundant cells in adult bone, also express PPR. However, the physiological relevance of PPR signaling in osteocytes remains to be elucidated. Toward this goal, we generated mice with PPR deletion in osteocytes (Ocy-PPRKO). Skeletal analysis of these mice revealed a significant increase in bone mineral density and trabecular and cortical bone parameters. Osteoblast activities were reduced in these animals, as demonstrated by decreased collagen type I α1 mRNA and receptor activator of NF-κB ligand (RANKL) expression. Importantly, when subjected to an anabolic or catabolic PTH regimen, Ocy-PPRKO animals demonstrated blunted skeletal responses. PTH failed to suppress SOST/Sclerostin or induce RANKL expression in Ocy-PPRKO animals compared with controls. In vitro, osteoclastogenesis was significantly impaired in Ocy-PPRKO upon PTH administration, indicating that osteocytes control osteoclast formation through a PPR-mediated mechanism. Taken together, these data indicate that PPR signaling in osteocytes is required for bone remodeling, and receptor signaling in osteocytes is needed for anabolic and catabolic skeletal responses. PMID:23729679

  14. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    PubMed

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  15. Long-term skeletal muscle mitochondrial dysfunction is associated with hypermetabolism in severely burned children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, we determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to two years post-injury. Biopsies were collected from the m. vastus lateralis...

  16. Changes in skeletal muscle gene expression following clenbuterol administration

    PubMed Central

    Spurlock, Diane M; McDaneld, Tara G; McIntyre, Lauren M

    2006-01-01

    Background Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P < 0.01) and increased body weight gain (P < 0.05) 24 hours or 10 days, respectively, after initiation of clenbuterol treatment. A total of 22,605 probesets were evaluated with 52 probesets defined as differentially expressed based on a false discovery rate of 10%. Differential mRNA abundance of four of these genes was validated in an independent experiment by quantitative PCR. Functional characterization of differentially expressed genes revealed several categories that participate in biological processes important to skeletal muscle growth, including regulators of transcription and translation, mediators of cell-signalling pathways, and genes involved in polyamine metabolism. Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally

  17. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    PubMed Central

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  18. Modulation of the skeletal muscle sodium channel alpha-subunit by the beta 1-subunit.

    PubMed

    Wallner, M; Weigl, L; Meera, P; Lotan, I

    1993-12-28

    Co-expression of cloned sodium channel beta 1-subunit with the rat skeletal muscle-subunit (alpha microI) accelerated the macroscopic current decay, enhanced the current amplitude, shifted the steady state inactivation curve to more negative potentials and decreased the time required for complete recovery from inactivation. Sodium channels expressed from skeletal muscle mRNA showed a similar behaviour to that observed from alpha microI/beta 1, indicating that beta 1 restores 'physiological' behaviour. Northern blot analysis revealed that the Na+ channel beta 1-subunit is present in high abundance (about 0.1%) in rat heart, brain and skeletal muscle, and the hybridization with untranslated region of the 'brain' beta 1 cDNA to skeletal muscle and heart mRNA indicated that the different Na+ channel alpha-subunits in brain, skeletal muscle and heart may share a common beta 1-subunit. PMID:8282123

  19. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    PubMed

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  20. Radiology of skeletal trauma

    SciTech Connect

    Rogers, L.F.

    1982-01-01

    This 1000-page book contains over 1700 illustrations, is presented in two volumes and subdivided into 23 chapters. After brief chapters of Introduction and General Anatomy, a section on Skeletal Biomechanics is presented. The Epidemiology of Fractures chapter examines, among other things, the effects of age on the frequency and distribution of fractures. In the chapter on Classifications of Fractures, the author describes the character of traumatic forces such as angulating, torsional, avulsive, and compressive, and then relates these to the resultant fracture configurations. The Fracture Treatment chapter presents an overview of treatment principles. Other chapters deal with specific problems in pediatric trauma, fracture healing and nonhealing, and fracture complications.

  1. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  2. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension

    PubMed Central

    Eash, John; Olsen, Aaron; Breur, Gert; Gerrard, Dave; Hannon, Kevin

    2007-01-01

    Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight. PMID:17425786

  3. Antenatal diagnosis of lethal skeletal dysplasias.

    PubMed

    Tretter, A E; Saunders, R C; Meyers, C M; Dungan, J S; Grumbach, K; Sun, C C; Campbell, A B; Wulfsberg, E A

    1998-02-17

    Lethal skeletal dysplasias (LSD) are a heterogeneous group of rare but important genetic disorders characterized by abnormal growth and development of bone and cartilage. We describe the diagnosis and outcome of 29 cases of lethal skeletal dysplasias evaluated between January 1989 and December 1996 at the University of Maryland Medical Center and the Ultrasound Institute of Baltimore. Two cases presented at delivery with no prenatal care while the remaining 27 cases were identified by antenatal sonography. Final diagnoses included thanatophoric dysplasia (14), osteogenesis imperfecta, type II (6), achondrogenesis (2), short rib syndromes (3), campomelic syndrome (2), atelosteogenesis (1), and no evidence of a skeletal dysplasia (1). Twenty out of 27 pregnancies were terminated with an average at detection of 21.6 weeks. The other 7 pregnancies that went on to deliver had an average age at detection of 29.2 weeks. Fetal abnormalities in the terminated pregnancies were identified at a significantly earlier gestational age (P = 0.0016) than the pregnancies that continued. While the identification of LSD by sonography was excellent (26/27), only 13/27 (48%) were given an accurate specific antenatal diagnosis. In 8/14 (57%) cases with an inaccurate or nonspecific diagnosis there was a significant or crucial change in the genetic counseling. Thus, while antenatal sonography is an excellent method for discovering LSD, clinical examination, radiographs, and autopsy are mandatory for making a specific diagnosis. PMID:9489797

  4. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  5. Hypoxia-related gene expression in porcine skeletal muscle tissues at different altitude.

    PubMed

    Zhang, J; Chen, L; Long, K R; Mu, Z P

    2015-01-01

    Hypoxia influences many physiological processes, such as respiration, cardiovascular, neurophysiology, and digestion. Skeletal muscle is an important motor organ, which relies on oxygen of oxidation; however, the study of hypoxia in skeletal muscle is lacking. In order to understand the effect of hypoxia on skeletal muscle, we determined the expression level of four hypoxia-related genes (ADAM17, ARG2, MMP, and HIF1A) in two distinct skeletal muscle tissues from Tibetan pigs that live at different altitudes (500 and 3650 m). Consistent with the well-characterized role of four hypoxia-related genes in the adaptation to high altitude, we found that, compared with the plain pigs, the plateau pigs had higher mRNA abundances of the four genes and lower myofiber ratio in skeletal muscle. The negative correlation between the myofiber ratio and mRNA abundance of the four hypoxia-related genes highlights their critical roles in skeletal muscle. These findings may be important for understanding skeletal muscle adaptation to high altitude and hypoxia-related muscle diseases in humans. PMID:26436399

  6. [Skeletal nuclear medicine].

    PubMed

    Yamamoto, I

    1995-05-01

    Bone scintigraphy with 99mTc-phosphate compounds is the most popular examination in clinical nuclear medicine. This was developed more than 20 years ago and its roles in various skeletal disorders are well established. Furthermore, improvement of imaging apparatus and application of SPECT strengthened its value extensively. From scintigram alone, in many cases, differentiation between bone metastasis and other "benign" disorders is easily capable. Further improvement in resolution of scinticamera should strengthen its value more. Other recent developments in skeletal nuclear medicine are those in bone densitometry and in measurement of metabolic bone markers. Bone densitometry using DXA is applied on diagnosis and monitoring of therapeutic effects in various metabolic bone diseases, especially, in osteoporosis. Bone mass measurement combined with assessments of specific bone markers such as bone specific alkaline phosphatase and collagen cross-link metabolites might replace the bone biopsy in evaluating bone metabolism. Treatment of bone metastasis in patients with prostate cancer by administering radiolabeled bone seeking substances is another topics in this field and awaits for more extensive clinical evaluation. PMID:7596073

  7. International Skeletal Society outreach 2013: Rwanda.

    PubMed

    Teh, James; Taljanovic, Mihra S; Monu, Johnny

    2014-05-01

    It has been almost 20 years since the horrific events of the Rwandan genocide. Since that time, the country has made a remarkable recovery owing to good government and a great deal of aid. Health-care services are well organized, but remain short of resources and expertise. Musculoskeletal imaging (and treatment) is in its infancy. Given the huge strides that have been made in social order and stability, there is great hope for the future. It is proposed that future International Skeletal Society (ISS) outreach programs plan to make a meaningful commitment to developing expertise in specific hospitals. PMID:24496585

  8. Solar abundance of osmium

    PubMed Central

    Jacoby, George; Aller, Lawrence H.

    1976-01-01

    The abundance parameter, log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance (by numbers of atoms with respect to hydrogen), has been derived for three lines of osmium by a method of spectrum synthesis. An apparent discordance of the derived abundance with that found from the carbonaceous chondrites is probably to be attributed primarily to errors in the f-values, and blending with unknown contributors. PMID:16592314

  9. Engineering skeletal muscle repair.

    PubMed

    Juhas, Mark; Bursac, Nenad

    2013-10-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaired. In this article, we will describe current approaches to restore the function of diseased or injured muscle through combined use of myogenic stem cells, biomaterials, and functional tissue-engineered muscle. Furthermore, we will discuss possibilities for expanding the future use of human cell sources toward the development of cell-based clinical therapies and in vitro models of human muscle disease. PMID:23711735

  10. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  11. A partial skeletal proteome of the brittle star Ophiocoma wendtii

    NASA Astrophysics Data System (ADS)

    Seaver, Ryan W.

    The formation of mineralized tissue was critical to the evolution and diversification of metazoans and remains functionally significant in most animal lineages. Of special importance is the protein found occluded within the mineral matrix, which facilitates the process of biomineralization and modulates the final mineral structure. These skeletal matrix proteins have well been described in several species, including the sea urchin Stronglyocentrotus purpuratus, an important model organism. Biomineralization research is limited in other echinoderm classes. This research encompasses the first description of mineral matrix proteins in a member of the echinoderm class Ophiuroidea. This work describes the skeletal matrix proteins of the brittle star Ophiocoma wendtii using bioinformatic and proteomic techniques. General characteristics of matrix protein are described and a number of candidate biomineralization related genes have been identified, cloned, and sequenced. The unique evolutionary and biochemical properties of brittle star skeletal matrix proteins are also described.

  12. [Key regulators of skeletal myogenesis].

    PubMed

    Kopantseva, E E; Belyavsky, A V

    2016-01-01

    Skeletal myogenesis has been extensively studied at both morphological and molecular levels. This review considers the main stages of embryonic skeletal myogenesis and myogenic factors that trigger their initiation, focusing on specific protein interactions involved in somitic myogenesis, head myogenesis, and limb myogenesis. The second part of the review describes the role of noncoding RNAs (microRNAs and long noncoding RNAs) in myogenesis. This information is of particular interest, because regulation of cell processes by noncoding RNAs is an actively developing field of molecular biology. Knowledge of mechanisms of skeletal myogenesis is of applied significance. Various transcription factors, noncoding RNAs, and other myogenic regulators can be employed in the induction of myogenic reprogramming in stem cells and differentiated somatic cells. Current trends and strategies in the field of skeletal myogenic reprogramming are discussed in the last part of the review. PMID:27239841

  13. Exercise, Hormones, and Skeletal Adaptations During Childhood and Adolescence

    PubMed Central

    Farr, Joshua N.; Laddu, Deepika R.; Going, Scott B.

    2015-01-01

    Although primarily considered a disorder of the elderly, emerging evidence suggests the antecedents of osteoporosis are established during childhood and adolescence. A complex interplay of genetic, environmental, hormonal and behavioral factors determines skeletal development, and a greater effort is needed to identify the most critical factors that establish peak bone strength. Indeed, knowledge of modifiable factors that determine skeletal development may permit optimization of skeletal health during growth and could potentially offset reductions in bone strength with aging. The peripubertal years represent a unique period when the skeleton is particularly responsive to loading exercises, and there is now overwhelming evidence that exercise can optimize skeletal development. While this is not controversial, the most effective exercise prescription and how much investment in this prescription is needed to significantly impact bone health continues to be debated. Despite considerable progress, these issues are not easy to address, and important questions remain unresolved. This review focuses on the key determinants of skeletal development, whether exercise during childhood and adolescence should be advocated as a safe and effective strategy for optimizing peak bone strength, and whether investment in exercise early in life protects against the development of osteoporosis and fractures later in life. PMID:25372373

  14. The effects of obesity on skeletal muscle regeneration

    PubMed Central

    Akhmedov, Dmitry; Berdeaux, Rebecca

    2013-01-01

    Obesity and metabolic disorders such as type 2 diabetes mellitus are accompanied by increased lipid deposition in adipose and non-adipose tissues including liver, pancreas, heart and skeletal muscle. Recent publications report impaired regenerative capacity of skeletal muscle following injury in obese mice. Although muscle regeneration has not been thoroughly studied in obese and type 2 diabetic humans and mechanisms leading to decreased muscle regeneration in obesity remain elusive, the initial findings point to the possibility that muscle satellite cell function is compromised under conditions of lipid overload. Elevated toxic lipid metabolites and increased pro-inflammatory cytokines as well as insulin and leptin resistance that occur in obese animals may contribute to decreased regenerative capacity of skeletal muscle. In addition, obesity-associated alterations in the metabolic state of skeletal muscle fibers and satellite cells may directly impair the potential for satellite cell-mediated repair. Here we discuss recent studies that expand our understanding of how obesity negatively impacts skeletal muscle maintenance and regeneration. PMID:24381559

  15. Effects in skeletal muscle.

    PubMed

    Young, Andrew

    2005-01-01

    The first biological action of amylin to be described was the inhibition of insulin-stimulated incorporation of radiolabeled glucose into glycogen in the isolated soleus muscle of the rat. This antagonism of insulin action in muscle was non-competitive, occurring with equal potency and efficacy at all insulin concentrations. Amylin inhibited activation of glycogen synthase, partially accounting for the inhibition of radiolabeled glucose incorporation. However, this did not account for a low rate of labeling at higher amylin concentrations, wherein the radioglycogen accumulation was even less than in incubations where insulin was absent. The principal action of amylin accounting for reduction of insulin-stimulated accumulation of glycogen was activation of glycogen phosphorylase via a cyclic AMP-, protein kinase C-dependent signaling pathway to cause glycogenolysis (glycogen breakdown). At physiological concentrations, amylin activated glycogen phosphorylase at its ED50, but because glycogen phosphorylase is present in such high activity, the resulting flux out of glycogen was estimated to be similar to insulin-mediated flux of glucosyl moieties into glycogen. Thus, in the rat, endogenous amylin secreted in response to meals appeared to mobilize carbon from skeletal muscle. Amylin-induced glycogenolysis resulted in intramuscular accumulation of glucose-6-phosphate and release of lactate from tissue beds that included muscle. When muscle glycogen was pre-labeled with tritium in the three position, amylin could be shown to evoke the release of free glucose. This is made possible by glucosyl moieties cleaved at the branch points in glycogen being released as free glucose, rather than being phosphorylated, as occurs with the bulk of the glycogen glucosyls. Free glucose is free to exit cells via facilitated transport, down a concentration gradient that might exist under such circumstances. When measured by a sensitive technique utilizing efflux of labeled glucose, amylin

  16. The neurobiology of skeletal pain.

    PubMed

    Mantyh, Patrick W

    2014-02-01

    Disorders of the skeleton are one of the most common causes of chronic pain and long-term physical disability in the world. Chronic skeletal pain is caused by a remarkably diverse group of conditions including trauma-induced fracture, osteoarthritis, osteoporosis, low back pain, orthopedic procedures, celiac disease, sickle cell disease and bone cancer. While these disorders are diverse, what they share in common is that when chronic skeletal pain occurs in these disorders, there are currently few therapies that can fully control the pain without significant unwanted side effects. In this review we focus on recent advances in our knowledge concerning the unique population of primary afferent sensory nerve fibers that innervate the skeleton, the nociceptive and neuropathic mechanisms that are involved in driving skeletal pain, and the neurochemical and structural changes that can occur in sensory and sympathetic nerve fibers and the CNS in chronic skeletal pain. We also discuss therapies targeting nerve growth factor or sclerostin for treating skeletal pain. These therapies have provided unique insight into the factors that drive skeletal pain and the structural decline that occurs in the aging skeleton. We conclude by discussing how these advances have changed our understanding and potentially the therapeutic options for treating and/or preventing chronic pain in the injured, diseased and aged skeleton. PMID:24494689

  17. In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism

    PubMed Central

    Beauchamp, Brittany; Harper, Mary-Ellen

    2016-01-01

    In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease. PMID:26779032

  18. Glycosylation of Skeletal Calsequestrin

    PubMed Central

    Sanchez, Emiliano J.; Lewis, Kevin M.; Munske, Gerhard R.; Nissen, Mark S.; Kang, ChulHee

    2012-01-01

    Calsequestrin (CASQ) serves as a major Ca2+ storage/buffer protein in the sarcoplasmic reticulum (SR). When purified from skeletal muscle, CASQ1 is obtained in its glycosylated form. Here, we have confirmed the specific site and degree of glycosylation of native rabbit CASQ1 and have investigated its effect on critical properties of CASQ by comparison with the non-glycosylated recombinant form. Based on our comparative approach utilizing crystal structures, Ca2+ binding capacities, analytical ultracentrifugation, and light-scattering profiles of the native and recombinant rabbit CASQ1, we propose a novel and dynamic role for glycosylation in CASQ. CASQ undergoes a unique degree of mannose trimming as it is trafficked from the proximal endoplasmic reticulum to the SR. The major glycoform of CASQ (GlcNAc2Man9) found in the proximal endoplasmic reticulum can severely hinder formation of the back-to-back interface, potentially preventing premature Ca2+-dependent polymerization of CASQ and ensuring its continuous mobility to the SR. Only trimmed glycans can stabilize both front-to-front and the back-to-back interfaces of CASQ through extensive hydrogen bonding and electrostatic interactions. Therefore, the mature glycoform of CASQ (GlcNAc2Man1–4) within the SR can be retained upon establishing a functional high capacity Ca2+ binding polymer. In addition, based on the high resolution structures, we propose a molecular mechanism for the catecholaminergic polymorphic ventricular tachycardia (CPVT2) mutation, K206N. PMID:22170046

  19. Aneuploidy and Skeletal Health

    PubMed Central

    Kamalakar, Archana; Harris, John R.; McKelvey, Kent D.; Suva, Larry J.

    2014-01-01

    The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment, and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down’s syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health and quality of life of people with Down syndrome will be discussed. PMID:24980541

  20. Paleopathological Study of Dwarfism-Related Skeletal Dysplasia in a Late Joseon Dynasty (South Korean) Population

    PubMed Central

    Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon

    2015-01-01

    Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias. PMID:26488291

  1. Paleopathological Study of Dwarfism-Related Skeletal Dysplasia in a Late Joseon Dynasty (South Korean) Population.

    PubMed

    Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon

    2015-01-01

    Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias. PMID:26488291

  2. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster

    PubMed Central

    Inoue, Takeshi; Yamada, Shigehito

    2015-01-01

    Abstract Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.

  3. Atomic data for stellar spectroscopy: recent successes and remaining needs

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Lawler, James E.; Wood, Michael P.; Den Hartog, Elizabeth A.; Cowan, John J.

    2014-11-01

    Stellar chemical composition analyses provide vital insights into galactic nucleosynthesis. Atomic line data are critical inputs to stellar abundance computations. Recent lab studies have made significant progress in refining and extending knowledge of transition probabilities, isotopic wavelength shifts, and hyperfine substructure patterns for the absorption lines that are of most interest to stellar spectroscopists. The observable neutron-capture (n-capture) element species (Z \\gt 30) have been scrutinized in lab studies by several groups. For many species the uncertainties in experimental oscillator strengths are ≤slant 10%, which permits detailed assessment of rapid and slow n-capture nucleosynthesis contributions. In this review, extreme examples of r-process-enriched stars in the galactic halo will be shown, which suggest that the description of observable n-capture abundances in these stars is nearly complete. Unfortunately, there are serious remaining concerns about the reliability of observed abundances of lighter elements. In particular, it is not clear that line formation in real stellar atmospheres is being modeled correctly. But for many elements with Z \\lt 30 the atomic transition data are not yet settled. Highlights will be given of some recent large improvements, with suggestions for the most important needs for the near future.

  4. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  5. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults

    PubMed Central

    Herndon, David N.; Børsheim, Elisabet; Chao, Tony; Reidy, Paul T.; Borack, Michael S.; Rasmussen, Blake B.; Chondronikola, Maria; Saraf, Manish K.; Sidossis, Labros S.

    2014-01-01

    Elevated metabolic rate is a hallmark of the stress response to severe burn injury. This response is mediated in part by adrenergic stress and is responsive to changes in ambient temperature. We hypothesize that uncoupling of oxidative phosphorylation in skeletal muscle mitochondria contributes to increased metabolic rate in burn survivors. Here, we determined skeletal muscle mitochondrial function in healthy and severely burned adults. Indirect calorimetry was used to estimate metabolic rate in burn patients. Quadriceps muscle biopsies were collected on two separate occasions (11 ± 5 and 21 ± 8 days postinjury) from six severely burned adults (68 ± 19% of total body surface area burned) and 12 healthy adults. Leak, coupled, and uncoupled mitochondrial respiration was determined in permeabilized myofiber bundles. Metabolic rate was significantly greater than predicted values for burn patients at both time points (P < 0.05). Skeletal muscle oxidative capacity, citrate synthase activity, a marker of mitochondrial abundance, and mitochondrial sensitivity to oligomycin were all lower in burn patients vs. controls at both time points (P < 0.05). A greater proportion of maximal mitochondrial respiration was linked to thermogenesis in burn patients compared with controls (P < 0.05). Increased metabolic rate in severely burned adults is accompanied by derangements in skeletal muscle mitochondrial function. Skeletal muscle mitochondria from burn victims are more uncoupled, indicating greater heat production within skeletal muscle. Our findings suggest that skeletal muscle mitochondrial dysfunction contributes to increased metabolic rate in burn victims. PMID:25074988

  6. Toys Remain Viral Playground for 24 Hours

    MedlinePlus

    ... a toy's surface at typical indoor temperatures and humidity levels. Specifically, they tested the ability of so- ... East Respiratory Syndrome (MERS). At 60 percent relative humidity, 1 percent of the virus remained infectious on ...

  7. Taphonomic Patterning of Cemetery Remains Received at the Office of the Chief Medical Examiner, Boston, Massachusetts.

    PubMed

    Pokines, James T; Zinni, Debra Prince; Crowley, Kate

    2016-01-01

    A sample of 49 cases of cemetery remains received at the Office of the Chief Medical Examiner, Massachusetts (OCME-MA), in Boston was compared with published taphonomic profiles of cemetery remains. The present sample is composed of a cross section of typical cases in this region that ultimately are derived from modern to historical coffin burials and get turned over to or seized by law enforcement. The present sample was composed of a large portion of isolated remains, and most were completely skeletonized. The most prevalent taphonomic characteristics included uniform staining (77.6%), coffin wear (46.9%), and cortical Exfoliation (49.0%). Other taphonomic changes occurring due to later surface exposure of cemetery remains included subaerial weathering, animal gnawing, algae formation, and excavation marks. A case of one set of skeletal remains associated with coffin artifacts and cemetery offerings that was recovered from transported cemetery fill is also presented. PMID:26260865

  8. Mummified remains from the Archaeological Museum in Zagreb, Croatia - Reviewing peculiarities and limitations of human and non-human radiological identification and analysis in mummified remains.

    PubMed

    Petaros, Anja; Janković, Ivor; Cavalli, Fabio; Ivanac, Gordana; Brkljačić, Boris; Čavka, Mislav

    2015-10-01

    Forensic protocols and medico-legal techniques are increasingly being employed in investigations of museological material. The final findings of such investigations may reveal interesting facts on historical figures, customs and habits, as well as provide meaningful data for forensic use. Herein we present a case review where forensic experts were requested to identify taxonomic affinities, stage of preservation and provide skeletal analysis of mummified non-human archaeological remains, and verify whether two mummified hands are human or not. The manuscript offers a short review on the process and particularities of radiological species identification, the impact of post-mortem changes in the analysis and imaging of mummified remains as well as the macroscopical interpretation of trauma, pathology and authenticity in mummified remains, which can all turn useful when dealing with forensic cases. PMID:26344461

  9. Skeletal muscle involvement in cardiomyopathies.

    PubMed

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  10. Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects.

    PubMed

    Kostovski, Emil; Boon, Hanneke; Hjeltnes, Nils; Lundell, Leonidas S; Ahlsén, Maria; Chibalin, Alexander V; Krook, Anna; Iversen, Per Ole; Widegren, Ulrika

    2013-11-01

    AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal cord injury represents an extreme form of physical inactivity, with concomitant changes in skeletal muscle metabolism. We assessed the influence of longstanding and recent spinal cord injury on protein abundance of AMPK isoforms in human skeletal muscle. We also determined muscle fiber type as a marker of glycolytic or oxidative metabolism. In subjects with longstanding complete injury, protein abundance of the AMPKγ3 subunit, as well as myosin heavy chain (MHC) IIa and IIx, were increased, whereas abundance of the AMPKγ1 subunit and MHC I were decreased. Similarly, abundance of AMPKγ3 and MHC IIa proteins were increased, whereas AMPKα2, -β1, and -γ1 subunits and MHC I abundance was decreased during the first year following injury, reflecting a more glycolytic phenotype of the skeletal muscle. However, in incomplete cervical lesions, partial recovery of muscle function attenuated the changes in the isoform profile of AMPK and MHC. Furthermore, exercise training (electrically stimulated leg cycling) partly normalized mRNA expression of AMPK isoforms. Thus, physical activity affects the relative expression of AMPK isoforms. In conclusion, skeletal muscle abundance of AMPK isoforms is related to physical activity and/or muscle fiber type. Thus, physical/neuromuscular activity is an important determinant of isoform abundance of AMPK and MCH. This further underscores the need for physical activity as part of a treatment regimen after spinal cord injury to maintain skeletal muscle metabolism. PMID:24022865

  11. Myonase is localized in skeletal muscle myofibrils.

    PubMed

    Hori, Shinichiro; Yamada, Makoto; Ohtani, Sachiko; Hori, Chiyo; Yokomizo, Tadahiro; Webb, Timothy; Shimokawa, Teruhiko

    2002-09-01

    A novel chymotrypsin-like proteinase termed myonase was previously purified from MDX-mouse skeletal muscle [Hori et al. (1998) J. Biochem. 123, 650-658]. Western blots and immunohistochemical analyses showed that myonase was present within myocytes of both MDX-mouse and control mouse, and subcellular fractionation showed that it was associated with myofibrils. No significant difference was observed on Western blots between the amounts of myonase in myofibrils of MDX-mouse and control mouse, but the amount of myonase recoverable as a pure protein was 5-10-fold more when MDX-mouse was the source of the skeletal muscle. Myofibrils also possessed an endogenous inhibitor of myonase, whose inhibitory activity at physiological pH (pH 7.4) depended on salt concentration, stronger inhibition being observed at a low salt concentration. Inhibition at alkaline pH (pH 9) was weak and independent of salt concentration. Myonase in myofibrils was partially released at neutral pH by a high salt concentration (>0.6 M NaCl). However, even at 4 M NaCl, more than 80% of myonase remained within the myofibrils. Under alkaline conditions, release of myonase from myofibril was more extensive. At pH 12, myonase was almost completely present in the soluble fraction. Release of myonase under these conditions coincided with the solubilization of other myofibrillar proteins. PMID:12204111

  12. FAK-Mediated Mechanotransduction in Skeletal Regeneration

    PubMed Central

    Currey, Jennifer A.; Brunski, John; Helms, Jill A.

    2007-01-01

    The majority of cells are equipped to detect and decipher physical stimuli, and then react to these stimuli in a cell type-specific manner. Ultimately, these cellular behaviors are synchronized to produce a tissue response, but how this is achieved remains enigmatic. Here, we investigated the genetic basis for mechanotransduction using the bone marrow as a model system. We found that physical stimuli produced a pattern of principal strain that precisely corresponded to the site-specific expression of sox9 and runx2, two transcription factors required for the commitment of stem cells to a skeletogenic lineage, and the arrangement and orientation of newly deposited type I collagen fibrils. To gain insights into the genetic basis for skeletal mechanotransduction we conditionally inactivated focal adhesion kinase (FAK), an intracellular component of the integrin signaling pathway. By doing so we abolished the mechanically induced osteogenic response and thus identified a critical genetic component of the molecular machinery required for mechanotransduction. Our data provide a new framework in which to consider how physical forces and molecular signals are synchronized during the program of skeletal regeneration. PMID:17460757

  13. Multiple Sclerosis Affects Skeletal Muscle Characteristics

    PubMed Central

    Wens, Inez; Dalgas, Ulrik; Vandenabeele, Frank; Krekels, Maartje; Grevendonk, Lotte; Eijnde, Bert O.

    2014-01-01

    Background The impact of multiple sclerosis (MS) on skeletal muscle characteristics, such as muscle fiber cross sectional area (CSA), fiber type proportion, muscle strength and whole muscle mass, remains conflicting. Methods In this cross sectional study, body composition and muscle strength of the quadriceps were assessed in 34 MS (EDSS: 2.5±0.19) patients and 18 matched healthy controls (HC). Hereafter a muscle biopsy (m.vastus lateralis) was taken. Results Compared to HC, mean muscle fiber CSA of all fibers, as well as CSA of type I, II and IIa fibers were smaller and muscle strength of the quadriceps was lower in MS patients. Whole body composition was comparable between groups. However, compared to HC, the biopsied leg tended to have a higher fat percentage (p = 0.1) and a lower lean mass (p = 0.06) in MS patients. Conclusion MS seems to negatively influence skeletal muscle fiber CSA, muscle strength and muscle mass of the lower limbs of mildly affected MS patients. This emphasises the need for rehabilitation programs focusing on muscle preservation of the lower limb. Trial Registration ClinicalTrials.gov NCT01845896 PMID:25264868

  14. Skeletal complications of eating disorders.

    PubMed

    Donaldson, Abigail A; Gordon, Catherine M

    2015-09-01

    Anorexia nervosa (AN) is a psychiatric illness with profound medical consequences. Among the many adverse physical sequelae of AN, bone health is impacted by starvation and can be permanently impaired over the course of the illness. In this review of skeletal complications associated with eating disorders, we discuss the epidemiology, neuroendocrine changes, adolescent vs. adult skeletal considerations, orthopedic concerns, assessment of bone health, and treatment options for individuals with AN. The focus of the review is the skeletal sequelae associated with anorexia nervosa, but we also briefly consider other eating disorders that may afflict adolescents and young adults. The review presents updates to the field of bone health in AN, and also suggests knowledge gaps and areas for future investigation. PMID:26166318

  15. Skeletal Complications of Eating Disorders

    PubMed Central

    Donaldson, Abigail A.; Gordon, Catherine M.

    2015-01-01

    Anorexia Nervosa (AN) is a psychiatric illness with profound medical consequences. Among the many adverse physical sequelae of AN, bone health is impacted by starvation and can be permanently impaired over the course of the illness. In this review of skeletal complications associated with eating disorders, we discuss the epidemiology, neuroendocrine changes, adolescent vs. adult skeletal considerations, orthopedic concerns, assessment of bone health, and treatment options for individuals with AN. The focus of the review is the skeletal sequelae associated with anorexia nervosa, but we also briefly consider other eating disorders that may afflict adolescents and young adults. The review presents updates to the field of bone health in AN, and also suggests knowledge gaps and areas for future investigation. PMID:26166318

  16. Monitoring Butterfly Abundance: Beyond Pollard Walks

    PubMed Central

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly reflect population sizes and trends. This study compares capture-mark-recapture (absolute abundance) and count-index (relative abundance) monitoring methods in three species (Maculinea nausithous and Iolana iolas: Lycaenidae; Minois dryas: Satyridae) in contrasted habitat types. We demonstrate that intraspecific variability in individual detectability under standard monitoring conditions is probably the rule rather than the exception, which questions the reliability of count-based indices to estimate and compare specific population abundance. Our results suggest that the accuracy of count-based methods depends heavily on the ecology and behavior of the target species, as well as on the type of habitat in which surveys take place. Monitoring programs designed to assess the abundance and trends in butterfly populations should incorporate a measure of detectability. We discuss the relative advantages and inconveniences of current monitoring methods and analytical approaches with respect to the characteristics of the species under scrutiny and resources availability. PMID:22859980

  17. Skeletal muscle gender dimorphism from proteomics.

    PubMed

    Dimova, Kalina; Metskas, Lauren Ann; Kulp, Mohini; Scordilis, Stylianos P

    2011-01-01

    Gross contraction in skeletal muscle is primarily determined by a relatively small number of contractile proteins, however this tissue is also remarkably adaptable to environmental factors such as hypertrophy by resistance exercise and atrophy by disuse. It thereby exhibits remodeling and adaptations to stressors (heat, ischemia, heavy metals, etc.). Damage can occur to muscle by a muscle exerting force while lengthening, the so-called eccentric contraction. The contractile proteins can be damaged in such exertions and need to be repaired, degraded and/or resynthesized; these functions are not part of the contractile proteins, but of other much less abundant proteins in the cell. To determine what subset of proteins is involved in the amelioration of this type of damage, a global proteome must be established prior to exercise and then followed subsequent to the exercise to determine the differential protein expression and thereby highlight candidate proteins in the adaptations to damage and its repair. Furthermore, most studies of skeletal muscle have been conducted on the male of the species and hence may not be representative of female muscle. In this article we present a method for extracting proteins reproducibly from male and female muscles, and separating them by two-dimensional gel electrophoresis followed by high resolution digital imaging. This provides a protocol for spots (and subsequently identified proteins) that show a statistically significant (p < 0.05) two-fold increase or decrease, appear or disappear from the control state. These are then excised, digested with trypsin and separated by high-pressure liquid chromatography coupled to a mass spectrometer (LC/MS) for protein identification (LC/MS/MS). This methodology (Figure 1) can be used on many tissues with little to no modification (liver, brain, heart etc.). PMID:22215112

  18. In Abundance: Networked Participatory Practices as Scholarship

    ERIC Educational Resources Information Center

    Stewart, Bonnie E.

    2015-01-01

    In an era of knowledge abundance, scholars have the capacity to distribute and share ideas and artifacts via digital networks, yet networked scholarship often remains unrecognized within institutional spheres of influence. Using ethnographic methods including participant observation, interviews, and document analysis, this study investigates…

  19. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  20. Catholic Identity Remains a Public Relations Asset

    ERIC Educational Resources Information Center

    Wirth, Eileen

    2004-01-01

    The massive sex scandal that rocked the Roman Catholic Church raises a question as to whether Catholic identity remains an asset that the nation's 8,000 Catholic schools should continue to promote. This case study found that continuing to promote Catholic identity has had no adverse effect on recruitment and enrollment at four Omaha, Nebraska,…

  1. Essential Qualities of Math Teaching Remain Unknown

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    According to a new federal report, the qualities of an effective mathematics teacher remain frustratingly elusive. The report of the National Mathematics Advisory Panel does not show what college math content and coursework are most essential for teachers. While the report offered numerous conclusions about math curriculum, cognition, and…

  2. Juveniles' Motivations for Remaining in Prostitution

    ERIC Educational Resources Information Center

    Hwang, Shu-Ling; Bedford, Olwen

    2004-01-01

    Qualitative data from in-depth interviews were collected in 1990-1991, 1992, and 2000 with 49 prostituted juveniles remanded to two rehabilitation centers in Taiwan. These data are analyzed to explore Taiwanese prostituted juveniles' feelings about themselves and their work, their motivations for remaining in prostitution, and their difficulties…

  3. Predicting the remaining service life of concrete

    SciTech Connect

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  4. Odor analysis of decomposing buried human remains

    SciTech Connect

    Vass, Arpad Alexander; Smith, Rob R; Thompson, Cyril V; Burnett, Michael N; Dulgerian, Nishan; Eckenrode, Brian A

    2008-01-01

    This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the 'odor signatures' unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.

  5. A modern, documented human skeletal collection from Greece.

    PubMed

    Eliopoulos, C; Lagia, A; Manolis, S

    2007-01-01

    The University of Athens Human Skeletal Reference Collection has been created recently and consists of 225 skeletons. The Athens Collection is housed at the Department of Animal and Human Physiology, at the University of Athens, Greece. Documentation that includes age, sex, occupation, and cause of death exists for almost all of the remains in the collection. The remains belong to individuals who lived mainly in the second half of the twentieth century and come from cemeteries in the area of Athens. The demographic composition of the collection, and a description of the documentary and supporting data are presented. This recently established modern collection is of high value for palaeopathologists, skeletal biologists and forensic anthropologists. The importance of such collections for teaching and research is discussed. PMID:17574249

  6. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  7. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis.

    PubMed

    Tierney, Matthew T; Sacco, Alessandra

    2016-06-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity. PMID:26948993

  8. Stellar Oxygen Abundances

    NASA Astrophysics Data System (ADS)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al

  9. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  10. Ovarian function in mice results in abrogated skeletal muscle PPARdelta and FoxO1-mediated gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARDelta expression in vivo, and transgenic mice overexpressing mus...

  11. Mill and the right to remain uninformed.

    PubMed

    Strasser, M

    1986-08-01

    In a recent article in the Journal of Medicine and Philosophy, David Ost (1984) claims that patients do not have a right to waive their right to information. He argues that patients cannot make informed rational decisions without full information and thus, a right to waive information would involve a right to avoid one's responsibility to act as an autonomous moral agent. In support of his position, Ost cites a passage from Mill. Yet, a correct interpretation of the passage in question would support one's right to remain uninformed in certain situations. If the information would hurt one's chances for survival or hurt one's ability to make calm, rational decisions, then one not only does not have a duty to find out the information, but one's exercising one's right to remain uninformed may be the only rational course of action to take. PMID:3540171

  12. Explosives remain preferred methods for platform abandonment

    SciTech Connect

    Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III

    1996-05-06

    Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp`s Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains.

  13. Predicting the dynamics of protein abundance.

    PubMed

    Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael

    2014-05-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency

  14. Predicting the Dynamics of Protein Abundance

    PubMed Central

    Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael

    2014-01-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation

  15. Remains of Comet-Shoemaker/Levy

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration of the Comet-Shoemaker/Levy collision shows the first piece of the remains of the comet crashing into Jupiter. This event occurred in 1994 after tidal forces from Jupiter caused the comet to break up into 21 separate pieces. Although on a very different scale, the physical mechanism for the breakup of Shoemaker/Levy also caused the tidal disruption of the star in RX J1242-11. (Illustration: SEDS/D. Seal (edited by CXC/M. Weiss)

  16. Direct Dating of Hominids Remains In Eurasia

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Falguères, C.

    When archaeological sites are associated with human remains, it is relevant to be able to date those valuable remains for different reasons. The main one is that it avoids the stratigraphical problems which can be due to intrusive burials in the sequence. The other reason consists in the fact that human bones may be encountered out of established stratigraphical context. On the other hand, the majority of dating methods currently used are destructive and can not be applied on these precious samples particularly when they are older than 40,000 years and can not be dated by radiocarbon. Since several years, we have developped a completely non-destructive method which consists in the measurement of human remains using the gamma -ray spectrometry. This technique has been used recently by other laboratories. We present here two important cases for the knowledge of human evolution in Eurasia. The first example is Qafzeh site in Israel where many human skeletons have been unearthed from burials associated with fauna and lithic artefacts. This site has been dated by several independent radiometric methods. So, it was possible to compare our gamma results with the other results yielded by the different methods. The second case concerns the most evolved Homo erectus found in Java, Indonesia, at Ngandong site, close to the Solo river. A recent debate has been focused on the age of these fossils and their direct dating is of outmost importance for the knowledge of settlement of Modern Humans in South-East Asia.

  17. Atlas of fetal skeletal radiology

    SciTech Connect

    Ornov, A.; Borochowitz, Z.; Lachman, R.; Rimoin, D.L.

    1987-01-01

    This atlas presents anterior, posterior and lateral views of normal but spontaneously aborted fetuses from 10 weeks through 27 weeks of gestation. The series of radiographs exhibits a wide array of skeletal dysplasia, and a chapter on the normal chondroosseous development - the formation of cartilage and bone and ossification of individual bones is included for further clarification.

  18. Choosing a skeletal muscle relaxant.

    PubMed

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  19. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    PubMed

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise. PMID:26779264

  20. Coal's role in electrical power generation: Will it remain competitive?

    SciTech Connect

    Vogel, C.

    1999-07-01

    Coal is the most abundant worldwide fossil fuel. In the US, coal represents 95% of fossil energy reserves. The US coal resources represent more energy than either proven oil or natural gas reserves and can be expected to last more than 250 years at current consumption rates. Coal fired power plants currently produce 56% of electrical generation in the US and 36% worldwide, and forecasts show coal use to increase. Impressive statistics such as these, along with the direct correlation between electrical growth and GDP should indicate that coal has a bright future. There are some clouds on the horizon, however, that could dim this seemingly rosy picture. Potentially, the greatest challenge to coal's future is CO2 emission restrictions to address global climate change. Realistically, coal has to be a part of the generation mix of developing nations, particularly those with abundant coal resources such as China and India. If electrification of these countries and corresponding economic growth is to take place, there are not presently a lot of cost effective alternatives. This paper presents a discussion of what the coal industry is doing to remain competitive. It looks at environmental and competitive issues facing coal use.

  1. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    PubMed Central

    Brandauer, Josef; Vienberg, Sara G; Andersen, Marianne A; Ringholm, Stine; Risis, Steve; Larsen, Per S; Kristensen, Jonas M; Frøsig, Christian; Leick, Lotte; Fentz, Joachim; Jørgensen, Sebastian; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; Zierath, Juleen R; Goodyear, Laurie J; Pilegaard, Henriette; Treebak, Jonas T

    2013-01-01

    Deacetylases such as sirtuins (SIRTs) convert NAD to nicotinamide (NAM). Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme in the NAD salvage pathway responsible for converting NAM to NAD to maintain cellular redox state. Activation of AMP-activated protein kinase (AMPK) increases SIRT activity by elevating NAD levels. As NAM directly inhibits SIRTs, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependent. One-legged knee-extensor exercise training in humans increased Nampt protein by 16% (P < 0.05) in the trained, but not the untrained leg. Moreover, increases in Nampt mRNA following acute exercise or AICAR treatment (P < 0.05 for both) were maintained in mouse skeletal muscle lacking a functional AMPK α2 subunit. Nampt protein was reduced in skeletal muscle of sedentary AMPK α2 kinase dead (KD), but 6.5 weeks of endurance exercise training increased skeletal muscle Nampt protein to a similar extent in both wild-type (WT) (24%) and AMPK α2 KD (18%) mice. In contrast, 4 weeks of daily AICAR treatment increased Nampt protein in skeletal muscle in WT mice (27%), but this effect did not occur in AMPK α2 KD mice. In conclusion, functional α2-containing AMPK heterotrimers are required for elevation of skeletal muscle Nampt protein, but not mRNA induction. These findings suggest AMPK plays a post-translational role in the regulation of skeletal muscle Nampt protein abundance, and further indicate that the regulation of cellular energy charge and nutrient sensing is mechanistically related. PMID:23918774

  2. Why Do Some Cores Remain Starless?

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.

    2016-08-01

    Prestellar cores, by definition, are gravitationally bound but starless pockets of dense gas. Physical conditions that could render a core starless (in the local Universe) is the subject of investigation in this work. To this end, we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. We demonstrate: (i) cores contracted in quasistatic manner over a timescale on the order of ~ 105 yr. Those that remained starless briefly acquired a centrally concentrated density configuration that mimicked the profile of a unstable BonnorEbert sphere before rebounding, (ii) three cores viz. L694-2, L1689-SMM16, and L1521F remained starless despite becoming thermally super-critical. By contrast, B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other starless cores viz. B68, L694-2, L1517B, and L1689 could also be similarly induced to collapse. The temperature-profile of starless cores and those that collapsed was found to be radically different. While in the former type, only very close to the centre of a core was there any evidence of decline in gas temperature, by contrast, a core of the latter type developed a more uniformly cold interior. Our principle conclusions are: (a) thermal super-criticality of a core is insufficient to ensure it will become protostellar, (b) potential star-forming cores (the VeLLO L1521F here), could be experiencing dust-coagulation that must enhance gasdust coupling and in turn lower gas temperature, thereby assisting collapse. This also suggests, mere gravitational/virial boundedness of a core is insufficient to ensure it will form stars.

  3. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    PubMed Central

    Mavalli, Mahendra D.; DiGirolamo, Douglas J.; Fan, Yong; Riddle, Ryan C.; Campbell, Kenneth S.; van Groen, Thomas; Frank, Stuart J.; Sperling, Mark A.; Esser, Karyn A.; Bamman, Marcas M.; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions in myofiber number and area as well as accompanying deficiencies in functional performance. Defective skeletal muscle development, in both GHR and IGF-1R mutants, was attributable to diminished myoblast fusion and associated with compromised nuclear factor of activated T cells import and activity. Strikingly, mice lacking GHR developed metabolic features that were not observed in the IGF-1R mutants, including marked peripheral adiposity, insulin resistance, and glucose intolerance. Insulin resistance in GHR-deficient myotubes derived from reduced IR protein abundance and increased inhibitory phosphorylation of IRS-1 on Ser 1101. These results identify distinct signaling pathways through which GHR regulates skeletal muscle development and modulates nutrient metabolism. PMID:20921627

  4. A Novel Glycerophosphodiester Phosphodiesterase, GDE5, Controls Skeletal Muscle Development via a Non-enzymatic Mechanism*

    PubMed Central

    Okazaki, Yuri; Ohshima, Noriyasu; Yoshizawa, Ikumi; Kamei, Yasutomi; Mariggiò, Stefania; Okamoto, Keiko; Maeda, Masahiro; Nogusa, Yoshihito; Fujioka, Yuichiro; Izumi, Takashi; Ogawa, Yoshihiro; Shiro, Yoshitsugu; Wada, Masanobu; Kato, Norihisa; Corda, Daniela; Yanaka, Noriyuki

    2010-01-01

    Mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) have been identified recently and shown to be implicated in several physiological functions. This study isolated a novel GP-PDE, GDE5, and showed that GDE5 selectively hydrolyzes glycerophosphocholine (GroPCho) and controls skeletal muscle development. We show that GDE5 expression was reduced in atrophied skeletal muscles in mice and that decreasing GDE5 abundance promoted myoblastic differentiation, suggesting that decreased GDE5 expression has a counter-regulatory effect on the progression of skeletal muscle atrophy. Forced expression of full-length GDE5 in cultured myoblasts suppressed myogenic differentiation. Unexpectedly, a truncated GDE5 construct (GDE5ΔC471), which contained a GP-PDE sequence identified in other GP-PDEs but lacked GroPCho phosphodiesterase activity, showed a similar inhibitory effect. Furthermore, transgenic mice specifically expressing GDE5ΔC471 in skeletal muscle showed less skeletal muscle mass, especially type II fiber-rich muscle. These results indicate that GDE5 negatively regulates skeletal muscle development even without GroPCho phosphodiesterase activity, providing novel insight into the biological significance of mammalian GP-PDE function in a non-enzymatic mechanism. PMID:20576599

  5. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue.

    PubMed

    Hilse, Karolina E; Kalinovich, Anastasia V; Rupprecht, Anne; Smorodchenko, Alina; Zeitz, Ute; Staniek, Katrin; Erben, Reinhold G; Pohl, Elena E

    2016-01-01

    UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT. PMID:26518386

  6. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  7. Element abundances of classical novae

    NASA Astrophysics Data System (ADS)

    Andrea, J.; Drechsel, H.; Starrfield, S.

    1994-11-01

    Physical conditions and element abundances in the optically thin shells of 11 classical novae with outbursts between 1978 and 1989 were determined from an analysis of UV and optical spectra obtained during the nebular stage. Eight novae were studied on the basis of new optical and UV spectra. The accuracy of the element abundances depends on whether or not simultaneous UV spectra were available to determine individual ionization stage dependent gas temperatures. Generally, slightly higher than solar abundances of helium and pronounced overabundances of the heavier elements were found. QU Vul turned out to be an ONeMg nova, while the other objects belong to the class of CO novae. The nature of V2214 Oph could not be completely clarified. The novae V1668 Cyg (1978), V693 CrA (1981), and V1370 Aql (1982), for which published element abundances exist, were reanalyzed to check the consistency of our spectral analysis approach. Satisfactory agreement of the results was found. Photoionization calculations were carried out for PW Vul using the code of Aldrovandi, Pequignot, and Stasinska. A synthetic spectrum was generated for the parameters derived from the analysis of the UV and optical spectra, which is in very good agreement with the observations. The spectral analysis technique was then applied to the model spectrum and reproduced the model parameters well. Electron temperatures for the C(2+) and C(3+) ions between 7 500 and 12,000 K and for N(4+) betwen 12,000 and 16,000 K were derived. For PW Vul these temperatures remained relatively constant over several months. The decline in density of the ejected shells with time could be investigated for V842 Cen, QV Vul, V977 Sco, and V443 Sct, and was found to deviate from the relation Ne proportional to t-2 for free expansion of a shell in a different way for each object. A possible explanation may be the complex density structure of the shells. This suspicion is supported by high resolution spectra (ESO 3.6m telescope

  8. The identification of submerged skeletonized remains.

    PubMed

    Byard, Roger W; Both, Katrin; Simpson, Ellie

    2008-03-01

    Examination was undertaken of skeletonized remains contained within 2 rubber boots dredged by a fishing boat from a depth of 145 m, approximately 185 km off the southern Australian coast in the Great Australian Bight. The boots had been manufactured in Australia in July 1993 and were of a type commonly used by local fishermen. Examination of the lower legs and feet revealed well-preserved bones with arthritic changes in keeping with an older male. DNA analyses using reference samples taken from relatives of fishermen who had disappeared in the area resulted in the identification of the victim as a 52-year-old prawn fisherman who had been swept off a boat over a decade earlier. DNA stability had been maintained by the low light, cold temperatures, and alkaline pH of the ocean floor. Integration of pathologic, anthropologic, and biologic analyses with police investigations enabled a positive identification to be made despite the unusual nature of the location of the remains and the time lapse since the disappearance of the victim. PMID:19749621

  9. Decomposition Technique for Remaining Useful Life Prediction

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor); Saxena, Abhinav (Inventor); Celaya, Jose R. (Inventor)

    2014-01-01

    The prognostic tool disclosed here decomposes the problem of estimating the remaining useful life (RUL) of a component or sub-system into two separate regression problems: the feature-to-damage mapping and the operational conditions-to-damage-rate mapping. These maps are initially generated in off-line mode. One or more regression algorithms are used to generate each of these maps from measurements (and features derived from these), operational conditions, and ground truth information. This decomposition technique allows for the explicit quantification and management of different sources of uncertainty present in the process. Next, the maps are used in an on-line mode where run-time data (sensor measurements and operational conditions) are used in conjunction with the maps generated in off-line mode to estimate both current damage state as well as future damage accumulation. Remaining life is computed by subtracting the instance when the extrapolated damage reaches the failure threshold from the instance when the prediction is made.

  10. So close: remaining challenges to eradicating polio.

    PubMed

    Toole, Michael J

    2016-01-01

    The Global Polio Eradication Initiative, launched in 1988, is close to achieving its goal. In 2015, reported cases of wild poliovirus were limited to just two countries - Afghanistan and Pakistan. Africa has been polio-free for more than 18 months. Remaining barriers to global eradication include insecurity in areas such as Northwest Pakistan and Eastern and Southern Afghanistan, where polio cases continue to be reported. Hostility to vaccination is either based on extreme ideologies, such as in Pakistan, vaccination fatigue by parents whose children have received more than 15 doses, and misunderstandings about the vaccine's safety and effectiveness such as in Ukraine. A further challenge is continued circulation of vaccine-derived poliovirus in populations with low immunity, with 28 cases reported in 2015 in countries as diverse as Madagascar, Ukraine, Laos, and Myanmar. This paper summarizes the current epidemiology of wild and vaccine-derived poliovirus, and describes the remaining challenges to eradication and innovative approaches being taken to overcome them. PMID:26971523

  11. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats

    PubMed Central

    Waters-Banker, Christine; Dupont-Versteegden, Esther E.

    2013-01-01

    Massage is an ancient manual therapy widely utilized by individuals seeking relief from various musculoskeletal maladies. Despite its popularity, the majority of evidence associated with massage benefits is anecdotal. Recent investigations have uncovered physiological evidence supporting its beneficial use following muscle injury; however, the effects of massage on healthy, unperturbed skeletal muscle are unknown. Utilizing a custom-fabricated massage mimetic device, the purpose of this investigation was to elucidate the effects of various loading magnitudes on healthy skeletal muscle with particular interest in the gene expression profile and modulation of key immune cells involved in the inflammatory response. Twenty-four male Wistar rats (200 g) were subjected to cyclic compressive loading (CCL) over the right tibialis anterior muscle for 30 min, once a day, for 4 consecutive days using four loading conditions: control (0N), low load (1.4N), moderate load (4.5N), and high load (11N). Microarray analysis showed that genes involved with the immune response were the most significantly affected by application of CCL. Load-dependent changes in cellular abundance were seen in the CCL limb for CD68+ cells, CD163+ cells, and CD43+cells. Surprisingly, load-independent changes were also discovered in the non-CCL contralateral limb, suggesting a systemic response. These results show that massage in the form of CCL exerts an immunomodulatory response to uninjured skeletal muscle, which is dependent upon the applied load. PMID:24201707

  12. Regulation of skeletal muscle capillary growth in exercise and disease.

    PubMed

    Haas, Tara L; Nwadozi, Emmanuel

    2015-12-01

    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations. PMID:26554747

  13. Relationship of skeletal muscle inflammation with obesity and obesity-associated hyperinsulinemia in horses.

    PubMed

    Banse, Heidi E; Holbrook, Todd C; Frank, Nicholas; McFarlane, Dianne

    2016-07-01

    Local (skeletal muscle and adipose) and systemic inflammation are implicated in the development of obesity-associated insulin resistance in humans. In horses, obesity is neither strongly nor consistently associated with systemic inflammation. The role of skeletal muscle inflammation in the development of insulin dysregulation (insulin resistance or hyperinsulinemia) remains to be determined. We hypothesized that skeletal muscle inflammation is related to obesity-associated hyperinsulinemia in horses. Thirty-five light-breed horses with body condition scores (BCSs) of 3/9 to 9/9 were studied, including 7 obese, normoinsulinemic (BCS ≥ 7, resting serum insulin < 30 μIU/mL) and 6 obese, hyperinsulinemic (resting serum insulin ≥ 30 μIU/mL) horses. Inflammatory biomarkers were evaluated in skeletal muscle biopsies and plasma. Relationships between markers of inflammation and BCS were evaluated. To assess the role of inflammation in obesity-associated hyperinsulinemia, markers of inflammation were compared among lean or ideal, normoinsulinemic (L-NI); obese, normoinsulinemic (O-NI); and obese, hyperinsulinemic (O-HI) horses. Skeletal muscle and plasma tumor necrosis factor alpha (TNFα) concentrations were negatively correlated with BCS. When comparing inflammatory markers among groups, skeletal muscle TNFα was lower in the O-HI group than in the O-NI or L-NI groups. In horses, neither skeletal muscle nor systemic inflammation appears to be positively related to obesity or obesity-associated hyperinsulinemia. PMID:27408335

  14. Vital effects in coral skeletal composition display strict three-dimensional control

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Yurimoto, Hiyayoshi; Cuif, Jean-Pierre; Domart-Coulon, Isabelle; Houlbreque, Fanny; Constantz, Brent; Dauphin, Yannicke; Tambutté, E.; Tambutté, Sylvie; Allemand, Denis; Wooden, Joseph; Dunbar, Robert

    2006-06-01

    Biological control over coral skeletal composition is poorly understood but critically important to paleo-environmental reconstructions. We present micro-analytical measurements of trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate coral Colpophyllia sp. Our data show that centers of calcification (COC) have higher trace element concentrations and distinctly lighter isotopic compositions than the fibrous components of the skeleton. These observations necessitate that COC and the fibrous skeleton are precipitated by different mechanisms, which are controlled by specialized domains of the calicoblastic cell-layer. Biological processes control the composition of the skeleton even at the ultra-structure level.

  15. Tularemia vaccines: recent developments and remaining hurdles.

    PubMed

    Conlan, J Wayne

    2011-04-01

    Francisella tularensis subsp. tularensis is a facultative intracellular bacterial pathogen of humans and other mammals. Its inhaled infectious dose is very low and can result in very high mortality. Historically, subsp. tularensis was developed as a biological weapon and there are now concerns about its abuse as such by terrorists. A live attenuated vaccine developed pragmatically more than half a century ago from the less virulent holarctica subsp. is the sole prophylactic available, but it remains unlicensed. In recent years several other potential live, killed and subunit vaccine candidates have been developed and tested in mice for their efficacy against respiratory challenge with subsp. tularensis. This article will review these vaccine candidates and the development hurdles they face. PMID:21526941

  16. Some remaining problems in HCDA analysis. [LMFBR

    SciTech Connect

    Chang, Y.W.

    1981-01-01

    The safety assessment and licensing of liquid-metal fast breeder reactors (LMFBRs) requires an analysis on the capability of the reactor primary system to sustain the consequences of a hypothetical core-disruptive accident (HCDA). Although computational methods and computer programs developed for HCDA analyses can predict reasonably well the response of the primary containment system, and follow up the phenomena of HCDA from the start of excursion to the time of dynamic equilibrium in the system, there remain areas in the HCDA analysis that merit further analytical and experimental studies. These are the analysis of fluid impact on reactor cover, three-dimensional analysis, the treatment of the perforated plates, material properties under high strain rates and under high temperatures, the treatment of multifield flows, and the treatment of prestressed concrete reactor vessels. The purpose of this paper is to discuss the structural mechanics of HCDA analysis in these areas where improvements are needed.

  17. Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains a review

    NASA Astrophysics Data System (ADS)

    Sweetman, Jon N.; Smol, John P.

    2006-08-01

    Fish are an important component of many lakes, and a valuable resource in many countries, yet knowledge of how fish populations have fluctuated in the past is very limited. One potential source of information on fisheries dynamics is paleolimnology. This paper reviews the use of the sedimentary remains of the dipteran insect Chaoborus (commonly referred to as the phantom midge) in reconstructing past presence or absence of fish populations. We provide a brief overview of the ecology of Chaoborus larvae, and review the factors believed to be important in determining their distribution and abundance. In particular, we outline the important role fish have in structuring chaoborid assemblages. We highlight several recent studies utilizing Chaoborus remains in reconstructing past fish dynamics, including their use in determining the effects of acidification and piscicide additions on fish populations, and to tracing fish introductions into previously fishless lakes. We conclude by discussing the potential applications of other aquatic invertebrates, such as the Cladocera and Chironomidae, to infer changes in fish populations, and suggest that by integrating the information provided by these different proxies, we may further improve our ability to infer changes in past fish populations.

  18. Control of Vertebrate Skeletal Mineralization by Polyphosphates

    PubMed Central

    Omelon, Sidney; Georgiou, John; Henneman, Zachary J.; Wise, Lisa M.; Sukhu, Balram; Hunt, Tanya; Wynnyckyj, Chrystia; Holmyard, Douglas; Bielecki, Ryszard; Grynpas, Marc D.

    2009-01-01

    Background Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3−)n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. Principal Findings/Methodology The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO43−) concentration while permitting the accumulation of a high total PO43− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO43− and free

  19. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  20. Skeletal fluorosis in immobilized extremities.

    PubMed

    Rosenquist, J B

    1975-11-01

    The effect of immobilization on skeletal fluorosis was studied in growing rabbits. One hind leg was immobilized by an external fixation device extending below the wrist joint and above the knee joint, the extremity being in a straight position after severance of the sciatic nerve. The animals, aged 7 weeks at the beginning of the experiment, were given 10 mg of fluoride per kg body weight and day during 12 weeks. In the tibiae, development of the skeletal fluorosis was more irregular than that observed in previous studies of normally active animals, being most excessive in the mobile bone. The immobilization effect was most profound in the femora as the cortical thickness and the femur score were significantly higher than those in the mobile femora. It was suggested that an altered muscular activity was the reason for the observed changes. PMID:1189918

  1. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  2. Rare-earth abundances in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Hamilton, P. J.; Onions, R. K.

    1978-01-01

    Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.

  3. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  4. The complexities of skeletal biology

    NASA Technical Reports Server (NTRS)

    Karsenty, Gerard

    2003-01-01

    For a long time, the skeleton was seen as an amorphous tissue of little biological interest. But such a view ignored the large number of genetic and degenerative diseases affecting this organ. Over the past 15 years, molecular and genetic studies have modified our understanding of skeletal biology. By so doing this progress has affected our understanding of diseases and suggested in many instances new therapeutic opportunities.

  5. Chandra Reveals Remains of Giant Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.

  6. Diffuse idiopathic skeletal hyperostosis in ancient clergymen

    PubMed Central

    Oner, F. C.; Maat, G. J. R.

    2007-01-01

    Diffuse idiopathic skeletal hyperostosis (DISH) is a common but often unrecognized systemic disorder observed mainly in the elderly. DISH is diagnosed when the anterior longitudinal ligament of the spine is ossified on at least four contiguous spinal levels or when multiple peripheral enthesopathies are present. The etiology of DISH is unknown but previous studies have shown a strong association with obesity and insulin-independent diabetes mellitus. DISH can lead to back pain, dysphagia, myelopathy, musculoskeletal impairment and grossly unstable spine fractures after minor trauma. In archeological studies a high prevalence of DISH has been demonstrated in ancient clergymen. The present study describes the pathological changes of human remains excavated from the abbey court (Pandhof) in the city of Maastricht, The Netherlands. Human remains of 51 individuals buried between 275 and 1795 ce were excavated and examined. The remains were investigated according to a standardized physical anthropological report and individuals demonstrating ossification of spinal ligaments and/or multiple peripheral enthesopathies were included in the study group. The authors reviewed all available material and after reaching consensus, each abnormality found was given a diagnosis and subsequently recorded. After examination, 28 individuals were considered to be adult males; 11 adult females; three adults of indeterminate sex and nine individuals were of sub adult age. The mean age at death for adults was 36.8 years. Seventeen adult individuals (40.4% of all adults), displayed ossifications of at least four contiguous spinal levels and/or multiple enthesopathies of the appendicular skeleton and were therefore, assigned the diagnosis DISH. The mean age of these individuals was 49.5 ± 13.0 years. In at least three of these individuals, DISH had led to extensive ossification and subsequent ankylosis of axial and peripheral skeletal structures. In this population of (presumably

  7. Alteration of Notch signaling in skeletal development and disease

    PubMed Central

    Tao, Jianning; Chen, Shan; Lee, Brendan

    2010-01-01

    Notch signaling is an evolutionarily conserved mechanism for specifying and regulating organogenesis and tissue renewal. Human and mouse genetic studies have demonstrated mutations in many components of the Notch signaling pathway that cause skeletal patterning defects. More recently, the in vivo effects of Notch signaling on osteoblast specification, proliferation, and differentiation have been demonstrated, in addition to its regulation of osteoclast activity. However, while our understanding of canonical Notch signaling in skeletal biology is rapidly evolving, the role of non-canonical Notch signaling is still poorly understood. In a pathological context, aberration of Notch signaling is also associated with osteosarcoma. These studies raise the question of how Notch may interact with other signaling pathways like Wnt. Finally, manipulation of Notch signaling for bone-related diseases remains complex because of the temporal and context dependent nature of Notch signaling during mesenchymal stem cell and osteoblast differentiation. PMID:20392245

  8. Schools Of Up to A Dozen Animal Skeletons, Each In Form of the Ellipitcal Letter "O", Ranging in Height From 4 Inches to Over 1 Ft. and Body Thickness of 1/2-3/4 Inches, Have Been Found Embedded in Top 1 of Only 2 Extruded Limestone Streambeds That Run Across West Face of Grandeur Pk., Wasatch Range and Then Turn East, Going Upstream, to Church Fork (or Park), Millcreek Canyon, Remaining Separated. Lower Streambed Was Not Examined Beyond West Face. Various Other Skeletal Structures Exist and Strata of Seashells Have Previously Been Shown(1), Esp. in Antitributary Streams.

    NASA Astrophysics Data System (ADS)

    McDonald, Keith L.; McDonald, Russell T.

    2004-05-01

    Walking s. along dirt road that lies above residential area at about Lake Bonneville shoreline (5,200 ft.) and viewing e. at the 8,299 ft. Gradeur Pk., we count e-w running subridges from Parleys Canyon and recognize that 4th such ridge is that which descends from Grandeur Pk. About 300 ft. below the peak (no surveyor's instruments are employed), the upper limestone streambed passes thru 4th subridge, where the streambed reaches its highest elevation on w. face, running due n. and then this white limestone streambed to its present main ravine, turns 90 degrees to w., down towards Salt Lake Valley and remains, closely, the former main drainage ravine. Intersection of this 4th subridge with upper limestone streambed locates about 1 dozen "0"-shaped skeletons. However, it is clear that at some period, upper stream turned 90 degrees to w. at this intersection, running down present 4th ridgecrest and then turned to n.w., 50-100 ft. later to travel a few hundred meters to intercept the former main revine. Some seashells and "0" skeletons are located in this 50-100 ft. distance but immed. beyond, on 4th subridge, we could find no evidence of streamflow, altho observations were too hasty and we could have gone further w. We Rocky Mts. were formed this 1st and smallest n.w. streambed was forced out of ground and is very appar. when viewed from S. L. Valley, but small. The lower extruded streambed, above, is probably younger than the above highest one, which is more rich in limestone over w. face of Grandeur Pk. and lies perhaps 300 ft below 1st streambed and connects to 4th subridge high up on it's s. side, near ridge crest, in a broad and spread out manner. It probably supplied all water for the extruded large 2nd, smaller 3rd, large 4th, n.w. oriented streambeds that each make a 45 degree angle with 4th subridge and terminate in above drainage ravine. These skeletal forms demonstrate early life that existed 1/4 - 1/3 billion years ago (permocarboniferous ice age) and

  9. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  10. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle

    PubMed Central

    Montilla, Sandra I Rosado; Johnson, Theresa P; Pearce, Sarah C; Gardan-Salmon, Delphine; Gabler, Nicholas K; Ross, Jason W; Rhoads, Robert P; Baumgard, Lance H; Lonergan, Steven M; Selsby, Joshua T

    2014-01-01

    Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5–6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress.

  11. Ghost Remains After Black Hole Eruption

    NASA Astrophysics Data System (ADS)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  12. Ghost Remains After Black Hole Eruption

    NASA Astrophysics Data System (ADS)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  13. Myogenic regulatory factor (MRF) expression is affected by exercise in postnatal chicken skeletal muscles.

    PubMed

    Yin, Huadong; Li, Diyan; Wang, Yan; Zhao, Xiaoling; Liu, Yiping; Yang, Zhiqin; Zhu, Qing

    2015-05-01

    The MyoD1, MyoG, Myf5, and Mrf4 proteins belong to the family of muscle regulatory factors (MRFs) and play important roles in skeletal muscle hyperplasia and hypertrophy. We hypothesized that exercise would affect MRF mRNA and protein abundance in postnatal chicken skeletal muscle driving molecular changes that could ultimately lead to increased muscle fiber diameter. At day (d) 43, twelve hundred chickens with similar body weight were randomly assigned to cage, pen, and free-range groups. The MRF mRNA abundance was measured in the pectoralis major and thigh muscle at d56, d70, and d84, and the protein levels of MRFs were determined from the thigh muscle at d84. The results showed no significant difference in mRNA of the MRFs among the three groups at d56 (P>0.05). At d84, chicken in the pen and free-range group showed higher MyoD1, MyoG, Myf5, and Mrf4 mRNA abundance compared to the caged chickens (P<0.05). Free-range chickens had higher Mrf4 and MyoG expression than those in penned ones (P<0.05). Protein abundances of all four factors were lowest in the caged group, and Mrf4 and MyoG protein quantities were greatest in free-range chickens (P<0.05), but Myf5 and MyoD1 protein abundance did not differ between penned and caged groups. The results suggested that exercise up-regulated MRF expression in the postnatal skeletal muscles, which led to an increase in muscle fiber diameter, and eventually affected the meat quality of the skeletal muscles in adult chickens. PMID:25701607

  14. Protection benefits desert tortoise (Gopherus agassizii) abundance: the influence of three management strategies on a threatened species

    USGS Publications Warehouse

    Berry, Kristin H.; Lyren, Lisa M.; Yee, Julie L.; Bailey, Tracy Y.

    2014-01-01

    We surveyed an area of ∼260 km2 in the western Mojave Desert to evaluate relationships between condition of Agassiz's Desert Tortoise populations (Gopherus agassizii) and habitat on lands that have experienced three different levels of management and protection. We established 240 1-ha plots using random sampling, with 80 plots on each of the three types of managed lands. We conducted surveys in spring 2011 and collected data on live tortoises, shell-skeletal remains, other signs of tortoises, perennial vegetation, predators, and evidence of human use. Throughout the study area and regardless of management area, tortoise abundance was positively associated with one of the more diverse associations of perennial vegetation. The management area with the longest history of protection, a fence, and legal exclusion of livestock and vehicles had significantly more live tortoises and lower death rates than the other two areas. Tortoise presence and abundance in this protected area had no significant positive or negative associations with predators or human-related impacts. In contrast, the management area with a more recent exclusion of livestock, limited vehicular traffic, and with a recent, partial fence had lower tortoise densities and high death rates. Tortoise abundance here was negatively associated with vehicle tracks and positively associated with mammalian predators and debris from firearms. The management area with the least protection—unfenced, with uncontrolled vehicle use, sheep grazing, and high trash counts—also had low tortoise densities and high death rates. Tortoise abundance was negatively associated with sheep grazing and positively associated with trash and mammalian predator scat.cat.

  15. Why is Trichodesmium abundant in the Kuroshio?

    NASA Astrophysics Data System (ADS)

    Shiozaki, T.; Takeda, S.; Itoh, S.; Kodama, T.; Liu, X.; Hashihama, F.; Furuya, K.

    2015-12-01

    The genus Trichodesmium is recognized as an abundant and major diazotroph in the Kuroshio, but the reason for this remains unclear. The present study investigated the abundance of Trichodesmium spp. and nitrogen fixation together with concentrations of dissolved iron and phosphate in the Kuroshio and its marginal seas. We performed the observations near the Miyako Islands, which form part of the Ryukyu Islands, situated along the Kuroshio, since our satellite analysis suggested that material transport could occur from the islands to the Kuroshio. Trichodesmium spp. bloomed (> 20 000 filaments L-1) near the Miyako Islands, abundance was high in the Kuroshio and the Kuroshio bifurcation region of the East China Sea, but was low in the Philippine Sea. The abundance of Trichodesmium spp. was significantly correlated with the total nitrogen fixation activity. The surface concentrations of dissolved iron (0.19-0.89 nM) and phosphate (< 3-36 nM) were similar for all of the study areas, indicating that the nutrient distribution could not explain the spatial differences in Trichodesmium spp. abundance and nitrogen fixation. Numerical particle-tracking experiments simulated the transportation of water around the Ryukyu Islands to the Kuroshio. Our results indicate that Trichodesmium growing around the Ryukyu Islands could be advected into the Kuroshio.

  16. Ciguatera: recent advances but the risk remains.

    PubMed

    Lehane, L; Lewis, R J

    2000-11-01

    Ciguatera is an important form of human poisoning caused by the consumption of seafood. The disease is characterised by gastrointestinal, neurological and cardiovascular disturbances. In cases of severe toxicity, paralysis, coma and death may occur. There is no immunity, and the toxins are cumulative. Symptoms may persist for months or years, or recur periodically. The epidemiology of ciguatera is complex and of central importance to the management and future use of marine resources. Ciguatera is an important medical entity in tropical and subtropical Pacific and Indian Ocean regions, and in the tropical Caribbean. As reef fish are increasingly exported to other areas, it has become a world health problem. The disease is under-reported and often misdiagnosed. Lipid-soluble, polyether toxins known as ciguatoxins accumulated in the muscles of certain subtropical and tropical marine finfish cause ciguatera. Ciguatoxins arise from biotransformation in the fish of less polar ciguatoxins (gambiertoxins) produced by Gambierdiscus toxicus, a marine dinoflagellate that lives on macroalgae, usually attached to dead coral. The toxins and their metabolites are concentrated in the food chain when carnivorous fish prey on smaller herbivorous fish. Humans are exposed at the end of the food chain. More than 400 species of fish can be vectors of ciguatoxins, but generally only a relatively small number of species are regularly incriminated in ciguatera. Ciguateric fish look, taste and smell normal, and detection of toxins in fish remains a problem. More than 20 precursor gambiertoxins and ciguatoxins have been identified in G. toxicus and in herbivorous and carnivorous fish. The toxins become more polar as they undergo oxidative metabolism and pass up the food chain. The main Pacific ciguatoxin (P-CTX-1) causes ciguatera at levels=0.1 microg/kg in the flesh of carnivorous fish. The main Caribbean ciguatoxin (C-CTX-1) is less polar and 10-fold less toxic than P-CTX-1. Ciguatoxins

  17. Column abundance measurements of atmospheric hydroxyl at 45 deg S

    NASA Technical Reports Server (NTRS)

    Wood, S. W.; Keep, D. J.; Burnett, C. R.; Burnett, E. B.

    1994-01-01

    The first Southern Hemisphere measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been obtained at Lauder, New Zealand (45 deg S) with a PEPSIOS instrument measuring the absorption of sunlight at 308 nm. The variation of column OH with solar zenith angle is similar to that measured at other sites. However average annual abundances of OH are about 20% higher than those found by similar measurements at 40 deg N. Minimum OH abundances about 10% less than average levels at 40 deg N, are observed during austral spring. The OH abundance abruptly increases by 30% in early summer and remains at the elevated level until late the following winter.

  18. Origin of Stellar Abundances in the early Galaxy

    SciTech Connect

    Montes, F.; Beers, T. C.; Cowan, J.; Elliot, T.; Schatz, H.; Farouqi, K.; Gallino, R.; Heil, M.; Kratz, K.-L.; Pfeiffer, B.; Pignatari, M.

    2007-10-26

    Observations of metal-poor stars in the last decade have revealed an abundance pattern that have recently been explained as the result of two nucleosynthesis processes, a strong r-process that creates most of the Z{>=}56 and some 38{<=}Z{<=}47 abundances and a light element primary process (LEPP) responsible for creating the remaining 38{<=}Z{<=}47 abundances and some small contribution to heavier elements. We review some of the current literature on the LEPP and show a derived abundance pattern as a function of mass number.

  19. The 90-kDa junctional sarcoplasmic reticulum protein forms an integral part of a supramolecular triad complex in skeletal muscle.

    PubMed

    Froemming, G R; Pette, D; Ohlendieck, K

    1999-08-11

    Although it is well established that voltage-sensing of the alpha(1)-dihydropyridine receptor triggers Ca(2+)-release via the ryanodine receptor during excitation-contraction coupling in skeletal muscle fibers, it remains to be determined which junctional components are responsible for the assembly, maintenance, and stabilization of triads. Here, we analyzed the expression pattern and neighborhood relationship of a novel 90-kDa sarcoplasmic reticulum protein. This protein is highly enriched in the triad fraction and is predominantly expressed in fast-twitching muscle fibers. Chronic low-frequency electro-stimulation induced a drastic decrease in the relative abundance of this protein. Chemical crosslinking showed a potential overlap between the 90-kDa junctional face membrane protein and the ryanodine receptor Ca(2+)-release channel, suggesting tight protein-protein interactions between these two triad components. Hence, Ca(2+)-regulatory muscle proteins have a strong tendency to oligomerize and the triad region of skeletal muscle fibers forms supramolecular membrane complexes involved in the regulation of Ca(2+)-homeostasis and signal transduction. PMID:10441473

  20. Oxygen abundance and convection

    NASA Astrophysics Data System (ADS)

    Van't Veer, C.; Cayrel, R.

    The triplet IR lines of O I near 777 nm are computed with the Kurucz's code, modified to accept several convection models. The program has been run with the MLT algorithm, with l/H = 1.25 and 0.5, and with the Canuto-Mazzitelli and Canuto-Goldman-Mazzitelli approaches, on a metal-poor turnoff-star model atmosphere with Teff=6200 K, log g = 4.3, [Fe/H]= -1.5. The results show that the differences in equivalent widths for the 4 cases do not exceed 2 per cent (0.3 mA). The convection treatment is therefore not an issue for the oxygen abundance derived from the permitted lines.

  1. In what ways can human skeletal remains be used to understand health and disease from the past?

    PubMed Central

    Metcalfe, Neil H

    2007-01-01

    Disease and illness in previous generations can be investigated using palaeopathology. This article describes the commonly used techniques in palaeopathology, includes examples of how such techniques are able to formulate data on a variety of health issues that occurred in the past and suggests how these data can be relevant today. PMID:17403958

  2. Sex determination in skeletal remains from the medieval Eastern Adriatic coast – discriminant function analysis of humeri

    PubMed Central

    Bašić, Željana; Anterić, Ivana; Vilović, Katarina; Petaros, Anja; Bosnar, Alan; Madžar, Tomislav; Polašek, Ozren; Anđelinović, Šimun

    2013-01-01

    Aim To investigate the usefulness of humerus measurement for sex determination in a sample of medieval skeletons from the Eastern Adriatic Coast. Additional aim was to compare the results with contemporary female population. Methods Five humerus measurements (maximum length, epicondylar width, maximum vertical diameter of the head, maximum and minimum diameter of the humerus at midshaft) for 80 male and 35 female medieval and 19 female contemporary humeri were recorded. Only sufficiently preserved skeletons and those with no obvious pathological or traumatic changes that could affect the measurements were included. For ten samples, analysis of DNA was performed in order to determine sex using amelogenin. Results The initial comparison of men and women indicated significant differences in all five measures (P < 0.001). Discriminant function for sex determination indicated that as much as 85% of cases could be properly categorized, with better results in men (86%) than women (80%). Furthermore, the comparison of the medieval and contemporary women did not show significant difference in any of the measured features. Sex results obtained by anthropological and DNA analysis matched in all 10 cases. Conclusion The results indicate that humerus measurement in Croatian medieval population may be sufficient to determine the sex of the skeleton. Furthermore, it seems that secular changes have not substantially affected contemporary population, suggesting that the results of this study are transferable to contemporary population as well. PMID:23771758

  3. Proteomic analysis of rat skeletal muscle submitted to one bout of incremental exercise.

    PubMed

    Gandra, P G; Valente, R H; Perales, J; Pacheco, A G; Macedo, D V

    2012-04-01

    Exercise can alter gene transcriptional and protein translational rates leading to changes in protein abundance toward adaptation to exercise. We investigated the alterations in protein abundance in skeletal muscle after one bout of an exhaustive exercise through proteomic analysis. Gastrocnemius muscles were sampled from non-exercised control rats and from rats exercised on a treadmill with incremental increases in speed until exhaustion (approximately 30 min). Rats were sacrificed 3 and 24 h after exercise cessation. Two-dimensional gel electrophoresis was performed and spots with a significant alteration in relative volume were identified by mass spectrometry. Six spots presented statistically significant altered abundances after exercise. The spots identified as the metabolic related proteins triosephosphate isomerase 1, glyceraldehyde-3-phosphate dehydrogenase, the β subunit of pyruvate dehydrogenase E(1) and carnitine palmitoyltransferase 2 were all more abundant after exercise. One spot identified as heat shock cognate 70 was also more abundant after exercise. One spot demonstrated a decreased abundance after exercise and was identified as α-actin. These results suggest that a single session of exhaustive incremental exercise in untrained muscle can alter thin filaments synthesis/degradation rate and enhance cytosolic and mitochondrial proteins synthesis. The identified proteins may be important to a general preconditioning of skeletal muscle for subsequent exercise sessions. PMID:20973830

  4. Exclusive skeletal muscle correction does not modulate dystrophic heart disease in the aged mdx model of Duchenne cardiomyopathy

    PubMed Central

    Wasala, Nalinda B.; Bostick, Brian; Yue, Yongping; Duan, Dongsheng

    2013-01-01

    Duchenne muscular dystrophy (DMD) is characterized by severe degeneration and necrosis of both skeletal and cardiac muscle. While many experimental therapies have shown great promise in treating skeletal muscle disease, an effective therapy for Duchenne cardiomyopathy remains a challenge in large animal models and human patients. The current views on cardiac consequences of skeletal muscle-centered therapy are controversial. Studies performed in young adult mdx mice (a mild DMD mouse model) have yielded opposing results. Since mdx mice do not develop dystrophic cardiomyopathy until ≥21 months of age, we reasoned that old mdx mice may represent a better model to assess the impact of skeletal muscle rescue on dystrophic heart disease. Here, we aged skeletal muscle-specific micro-dystrophin transgenic mdx mice to 23 months and examined the cardiac phenotype. As expected, transgenic mdx mice had minimal skeletal muscle disease and they also outperformed original mdx mice on treadmill running. On cardiac examination, the dystrophin-null heart of transgenic mdx mice displayed severe cardiomyopathy matching that of non-transgenic mdx mice. Specifically, both the strains showed similar heart fibrosis and cardiac function deterioration in systole and diastole. Cardiac output and ejection fraction were also equally compromised. Our results suggest that skeletal muscle rescue neither aggravates nor alleviates cardiomyopathy in aged mdx mice. These findings underscore the importance of treating both skeletal and cardiac muscles in DMD therapy. PMID:23459935

  5. "Recent" macrofossil remains from the Lomonosov Ridge, central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Le Duc, Cynthia; de Vernal, Anne; Archambault, Philippe; Brice, Camille; Roberge, Philippe

    2016-04-01

    The examination of surface sediment samples collected from 17 sites along the Lomonosov Ridge at water depths ranging from 737 to 3339 meters during Polarstern Expedition PS87 in 2014 (Stein, 2015), indicates a rich biogenic content almost exclusively dominated by calcareous remains. Amongst biogenic remains, microfossils (planktic and benthic foraminifers, pteropods, ostracods, etc.) dominate but millimetric to centrimetric macrofossils occurred frequently at the surface of the sediment. The macrofossil remains consist of a large variety of taxa, including gastropods, bivalvia, polychaete tubes, scaphopods, echinoderm plates and spines, and fish otoliths. Among the Bivalvia, the most abundant taxa are Portlandia arctica, Hyalopecten frigidus, Cuspidaria glacilis, Policordia densicostata, Bathyarca spp., and Yoldiella spp. Whereas a few specimens are well preserved and apparently pristine, most mollusk shells displayed extensive alteration features. Moreover, most shells were covered by millimeter scale tubes of the serpulid polychaete Spirorbis sp. suggesting transport from low intertidal or subtidal zone. Both the ecological affinity and known geographic distribution of identified bivalvia as named above support the hypothesis of transportation rather than local development. In addition to mollusk shells, more than a hundred fish otoliths were recovered in surface sediments. The otoliths mostly belong to the Gadidae family. Most of them are well preserved and without serpulid tubes attached to their surface, suggesting a local/regional origin, unlike the shell remains. Although recovered at the surface, the macrofaunal assemblages of the Lomonosov Ridge do not necessarily represent the "modern" environments as they may result from reworking and because their occurrence at the surface of the sediment may also be due to winnowing of finer particles. Although the shells were not dated, we suspect that their actual ages may range from modern to several thousands of

  6. Proteogenomic Analysis of a Hibernating Mammal Indicates Contribution of Skeletal Muscle Physiology to the Hibernation Phenotype.

    PubMed

    Anderson, Kyle J; Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2016-04-01

    Mammalian hibernation is a strategy employed by many species to survive fluctuations in resource availability and environmental conditions. Hibernating mammals endure conditions of dramatically depressed heart rate, body temperature, and oxygen consumption yet do not show the typical pathological response. Because of the high abundance and metabolic cost of skeletal muscle, not only must it adjust to the constraints of hibernation, but also it is positioned to play a more active role in the initiation and maintenance of the hibernation phenotype. In this study, MS/MS proteomic data from thirteen-lined ground squirrel skeletal muscles were searched against a custom database of transcriptomic and genomic protein predictions built using the platform Galaxy-P. This proteogenomic approach allows for a thorough investigation of skeletal muscle protein abundance throughout their circannual cycle. Of the 1563 proteins identified by these methods, 232 were differentially expressed. These data support previously reported physiological transitions, while also offering new insight into specific mechanisms of how their muscles might be reducing nitrogenous waste, preserving mass and function, and signaling to other tissues. Additionally, the combination of proteomic and transcriptomic data provides unique opportunities for estimating post-transcriptional regulation in skeletal muscle throughout the year and improving genomic annotation for this nonmodel organism. PMID:26903422

  7. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  8. On the abundance and activity pattern of zoobenthos inhabiting a tropical reef area, Cebu, Philippines

    NASA Astrophysics Data System (ADS)

    Faubel, A.

    1984-12-01

    A benthic faunal study was carried out in the tidal area of Mactan Island (Cebu, Philippines). The area was subdivided along a transect from the beach to the reef according to benthic assemblages. The sediments are largely composed of calcareous skeletal remains of the indigenous biota and surrounding calcareous rocks. The content of protein and carbohydrates of the sediment was estimated, providing an approximation of organic matter in terms of feeding efficiency. Total number of zoobenthos, both as regards the sediment samples and as to the epifaunal communities associated with seaweeds, is rather uniformly distributed justifying the 95% confidence level ( P>0.05). Distinct differences are apparent in abundance values of individual taxa. Although the study area showed the expected distribution pattern, with dominance of Nematoda (39%) living in sediment and Harpacticoida (36 66%) dwelling on Thalassia and algae, Polychaeta reveal a dominant attraction to both these habitats. The reasons for this phenomenon are discussed in relation to the absolute lack of macrofaunal predators The zoobenthos adjust their distribution and activity to fluctuating conditions of the environment. Light is mainly suggested as stimulating diel migration activities of the benthic fauna, moving upwards from the sediment to the algae and Thalassia during daytime. In a field experiment the zoobenthos was investigated for digestion activity over a diurnal cycle. The results reveal that feeding activity of zoobenthos follows a diel cycle showing maximum activity during the morning and evening obviously influenced by changes of light.

  9. Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics.

    PubMed

    Jiang, Lake Q; de Castro Barbosa, Thais; Massart, Julie; Deshmukh, Atul S; Löfgren, Lars; Duque-Guimaraes, Daniella E; Ozilgen, Arda; Osler, Megan E; Chibalin, Alexander V; Zierath, Juleen R

    2016-01-01

    Decrease of AMPK-related signal transduction and insufficient lipid oxidation contributes to the pathogenesis of obesity and type 2 diabetes. Previously, we identified that diacylglycerol kinase-δ (DGKδ), an enzyme involved in triglyceride biosynthesis, is reduced in skeletal muscle from type 2 diabetic patients. Here, we tested the hypothesis that DGKδ plays a role in maintaining appropriate AMPK action in skeletal muscle and energetic aspects of contraction. Voluntary running activity was reduced in DGKδ(+/-) mice, but glycogen content and mitochondrial markers were unaltered, suggesting that DGKδ deficiency affects skeletal muscle energetics but not mitochondrial protein abundance. We next determined the role of DGKδ in AMPK-related signal transduction and lipid metabolism in isolated skeletal muscle. AMPK activation and signaling were reduced in DGKδ(+/-) mice, concomitant with impaired lipid oxidation and elevated incorporation of free fatty acids into triglycerides. Strikingly, DGKδ deficiency impaired work performance, as evident by altered force production and relaxation dynamics in response to repeated contractions. In conclusion, DGKδ deficiency impairs AMPK signaling and lipid metabolism, thereby highlighting the deleterious role of excessive lipid metabolites in the development of peripheral insulin resistance and type 2 diabetes pathogenesis. DGKδ deficiency also influences skeletal muscle energetics, which may lead to low physical activity levels in type 2 diabetes. PMID:26530149

  10. Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia

    PubMed Central

    Varricchio, David J.; Balanoff, Amy M.; Norell, Mark A.

    2015-01-01

    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record. PMID:26030147

  11. Mitochondrial isolation from skeletal muscle.

    PubMed

    Garcia-Cazarin, Mary L; Snider, Natalie N; Andrade, Francisco H

    2011-01-01

    Mitochondria are organelles controlling the life and death of the cell. They participate in key metabolic reactions, synthesize most of the ATP, and regulate a number of signaling cascades. Past and current researchers have isolated mitochondria from rat and mice tissues such as liver, brain and heart. In recent years, many researchers have focused on studying mitochondrial function from skeletal muscles. Here, we describe a method that we have used successfully for the isolation of mitochondria from skeletal muscles. Our procedure requires that all buffers and reagents are made fresh and need about 250-500 mg of skeletal muscle. We studied mitochondria isolated from rat and mouse gastrocnemius and diaphragm, and rat extraocular muscles. Mitochondrial protein concentration is measured with the Bradford assay. It is important that mitochondrial samples be kept ice-cold during preparation and that functional studies be performed within a relatively short time (~1 hr). Mitochondrial respiration is measured using polarography with a Clark-type electrode (Oxygraph system) at 37°C⁷. Calibration of the oxygen electrode is a key step in this protocol and it must be performed daily. Isolated mitochondria (150 μg) are added to 0.5 ml of experimental buffer (EB). State 2 respiration starts with addition of glutamate (5 mM) and malate (2.5 mM). Then, adenosine diphosphate (ADP) (150 μM) is added to start state 3. Oligomycin (1 μM), an ATPase synthase blocker, is used to estimate state. Lastly, carbonyl cyanide p-[trifluoromethoxy]-phenyl-hydrazone (FCCP, 0.2 μM) is added to measurestate, or uncoupled respiration. The respiratory control ratio (RCR), the ratio of state 3 to state 4, is calculated after each experiment. An RCR ≥ 4 is considered as evidence of a viable mitochondria preparation. In summary, we present a method for the isolation of viable mitochondria from skeletal muscles that can be used in biochemical (e.g., enzyme activity, immunodetection, proteomics

  12. Statin-induced Myopathy in Skeletal Muscle: the Role of Exercise.

    PubMed

    Kwak, Hyo-Bum

    2014-09-01

    Statins are widely used drugs to lower cholesterol levels and to reduce the risk of cardiovascular disease. However, it has been reported that statins are associated with adverse side effects of skeletal myopathy. Statin treatment can impair mitochondrial function and induce apoptosis in skeletal muscle in both human and animal models. Ubiquinone plays an essential role in transferring electrons in the mitochondrial electron transfer chain for oxidative phosphorylation. However, statin treatment reduces ubiquinone levels in the cholesterol synthesis pathway, which may be associated with mitochondrial dysfunction. In addition, reactive oxygen species (ROS) production and apoptosis induced by statins may provide cellular and molecular mechanisms in skeletal myopathy. Exercise is the most effective therapy to prevent metabolic and cardiovascular diseases. However, whether exercise provides a benefit to or exacerbation of statin-induced myopathy in skeletal muscle remains poorly investigated. This review will briefly provide a comprehensive summary regarding the effects of statins on skeletal myopathy, and discuss the potential mechanisms of statin-induced myopathy and the role of exercise in statin-induced myopathy in skeletal muscle. PMID:26064857

  13. Statin-induced Myopathy in Skeletal Muscle: the Role of Exercise

    PubMed Central

    Kwak, Hyo-Bum

    2014-01-01

    Statins are widely used drugs to lower cholesterol levels and to reduce the risk of cardiovascular disease. However, it has been reported that statins are associated with adverse side effects of skeletal myopathy. Statin treatment can impair mitochondrial function and induce apoptosis in skeletal muscle in both human and animal models. Ubiquinone plays an essential role in transferring electrons in the mitochondrial electron transfer chain for oxidative phosphorylation. However, statin treatment reduces ubiquinone levels in the cholesterol synthesis pathway, which may be associated with mitochondrial dysfunction. In addition, reactive oxygen species (ROS) production and apoptosis induced by statins may provide cellular and molecular mechanisms in skeletal myopathy. Exercise is the most effective therapy to prevent metabolic and cardiovascular diseases. However, whether exercise provides a benefit to or exacerbation of statin-induced myopathy in skeletal muscle remains poorly investigated. This review will briefly provide a comprehensive summary regarding the effects of statins on skeletal myopathy, and discuss the potential mechanisms of statin-induced myopathy and the role of exercise in statin-induced myopathy in skeletal muscle. PMID:26064857

  14. Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice.

    PubMed

    Tam, Bjorn T; Pei, Xiao M; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Siu, Parco M

    2015-12-01

    Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level. PMID:26228926

  15. Modular Skeletal Evolution in Sticklebacks Is Controlled by Additive and Clustered Quantitative Trait Loci

    PubMed Central

    Miller, Craig T.; Glazer, Andrew M.; Summers, Brian R.; Blackman, Benjamin K.; Norman, Andrew R.; Shapiro, Michael D.; Cole, Bonnie L.; Peichel, Catherine L.; Schluter, Dolph; Kingsley, David M.

    2014-01-01

    Understanding the genetic architecture of evolutionary change remains a long-standing goal in biology. In vertebrates, skeletal evolution has contributed greatly to adaptation in body form and function in response to changing ecological variables like diet and predation. Here we use genome-wide linkage mapping in threespine stickleback fish to investigate the genetic architecture of evolved changes in many armor and trophic traits. We identify >100 quantitative trait loci (QTL) controlling the pattern of serially repeating skeletal elements, including gill rakers, teeth, branchial bones, jaws, median fin spines, and vertebrae. We use this large collection of QTL to address long-standing questions about the anatomical specificity, genetic dominance, and genomic clustering of loci controlling skeletal differences in evolving populations. We find that most QTL (76%) that influence serially repeating skeletal elements have anatomically regional effects. In addition, most QTL (71%) have at least partially additive effects, regardless of whether the QTL controls evolved loss or gain of skeletal elements. Finally, many QTL with high LOD scores cluster on chromosomes 4, 20, and 21. These results identify a modular system that can control highly specific aspects of skeletal form. Because of the general additivity and genomic clustering of major QTL, concerted changes in both protective armor and trophic traits may occur when sticklebacks inherit either marine or freshwater alleles at linked or possible “supergene” regions of the stickleback genome. Further study of these regions will help identify the molecular basis of both modular and coordinated changes in the vertebrate skeleton. PMID:24652999

  16. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  17. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci.

    PubMed

    Miller, Craig T; Glazer, Andrew M; Summers, Brian R; Blackman, Benjamin K; Norman, Andrew R; Shapiro, Michael D; Cole, Bonnie L; Peichel, Catherine L; Schluter, Dolph; Kingsley, David M

    2014-05-01

    Understanding the genetic architecture of evolutionary change remains a long-standing goal in biology. In vertebrates, skeletal evolution has contributed greatly to adaptation in body form and function in response to changing ecological variables like diet and predation. Here we use genome-wide linkage mapping in threespine stickleback fish to investigate the genetic architecture of evolved changes in many armor and trophic traits. We identify >100 quantitative trait loci (QTL) controlling the pattern of serially repeating skeletal elements, including gill rakers, teeth, branchial bones, jaws, median fin spines, and vertebrae. We use this large collection of QTL to address long-standing questions about the anatomical specificity, genetic dominance, and genomic clustering of loci controlling skeletal differences in evolving populations. We find that most QTL (76%) that influence serially repeating skeletal elements have anatomically regional effects. In addition, most QTL (71%) have at least partially additive effects, regardless of whether the QTL controls evolved loss or gain of skeletal elements. Finally, many QTL with high LOD scores cluster on chromosomes 4, 20, and 21. These results identify a modular system that can control highly specific aspects of skeletal form. Because of the general additivity and genomic clustering of major QTL, concerted changes in both protective armor and trophic traits may occur when sticklebacks inherit either marine or freshwater alleles at linked or possible "supergene" regions of the stickleback genome. Further study of these regions will help identify the molecular basis of both modular and coordinated changes in the vertebrate skeleton. PMID:24652999

  18. The Role of Mitochondria in the Pathophysiology of Skeletal Muscle Insulin Resistance

    PubMed Central

    Pagel-Langenickel, Ines; Bao, Jianjun; Pang, Liyan; Sack, Michael N.

    2010-01-01

    Multiple organs contribute to the development of peripheral insulin resistance, with the major contributors being skeletal muscle, liver, and adipose tissue. Because insulin resistance usually precedes the development of type 2 diabetes mellitus (T2DM) by many years, understanding the pathophysiology of insulin resistance should enable development of therapeutic strategies to prevent disease progression. Some subjects with mitochondrial genomic variants/defects and a subset of lean individuals with hereditary predisposition to T2DM exhibit skeletal muscle mitochondrial dysfunction early in the course of insulin resistance. In contrast, in the majority of subjects with T2DM the plurality of evidence implicates skeletal muscle mitochondrial dysfunction as a consequence of perturbations associated with T2DM, and these mitochondrial deficits then contribute to subsequent disease progression. We review the affirmative and contrarian data regarding skeletal muscle mitochondrial biology in the pathogenesis of insulin resistance and explore potential therapeutic options to intrinsically modulate mitochondria as a strategy to combat insulin resistance. Furthermore, an overview of restricted molecular manipulations of skeletal muscle metabolic and mitochondrial biology offers insight into the mitochondrial role in metabolic substrate partitioning and in promoting innate adaptive and maladaptive responses that collectively regulate peripheral insulin sensitivity. We conclude that skeletal muscle mitochondrial dysfunction is not generally a major initiator of the pathophysiology of insulin resistance, although its dysfunction is integral to this pathophysiology and it remains an intriguing target to reverse/delay the progressive perturbations synonymous with T2DM. PMID:19861693

  19. Capella: Structure and Abundances

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S.

    1999-01-01

    This grant covers the analysis of EUVE spectra of the cool star binary system Capella. This project has also required the analysis of simultaneous Advanced Satellite for Cosmology and Astrophysics (ASCA) data. The ASCA spectrum of Capella could not be fit with standard models; by imposing models based on strong lines observed with EUVE, a problem wavelength region was identified. Correcting the problem required calculations of atomic collision strengths of higher principal quantum number than had ever been calculated. With these new models applied to the ASCA spectrum, better fits were obtained. Findings are that: (1) ASCA and EUVE spectra are both dominated by a region at 6 x 10(exp 6) K. (2) The high energy cut-off of the ASCA spectrum is consistent with emission from the highest ionization stages of EUVE, namely Fe XXIV. (3) EUVE requires a continuous emission measure distribution with more than two temperatures. (4) The ASCA spectra are of such high statistical significance that systematic uncertainties dominate, including atomic physics issues and calibration issues. (5) While the ASCA spectral fits achieve lower Chi(exp 2 with two-temperature fits, the EUVE-derived emission measure distribution models are also consistent with the spectra. (6) The Fe/H ratio obtained from the ASCA fit is within 20 % of the Fe/H abundance obtained from the summed spectra of Capella over 5 EUVE pointings, as well as the 1996 EUVE data. This result confirms our claims that quasi-continua composed of weak emission lines in the short wavelength spectrometer of EUVE are not major contributors to the measured Capella continuum. Other abundance ratios are also determined from the ASCA data, using models derived with EUVE. Si, Si, and Mg appear to be close to solar photospheric values, while the ratio of Ne/Fe is three to four times lower than solar photospheric values. Whether there is a general First Ionization Potential (FIP) effect or a specific neon anomaly cannot be determined

  20. Remains of Homo erectus from Bouri, Middle Awash, Ethiopia.

    PubMed

    Asfaw, Berhane; Gilbert, W Henry; Beyene, Yonas; Hart, William K; Renne, Paul R; WoldeGabriel, Giday; Vrba, Elisabeth S; White, Tim D

    2002-03-21

    The genesis, evolution and fate of Homo erectus have been explored palaeontologically since the taxon's recognition in the late nineteenth century. Current debate is focused on whether early representatives from Kenya and Georgia should be classified as a separate ancestral species ('H. ergaster'), and whether H. erectus was an exclusively Asian species lineage that went extinct. Lack of resolution of these issues has obscured the place of H. erectus in human evolution. A hominid calvaria and postcranial remains recently recovered from the Dakanihylo Member of the Bouri Formation, Middle Awash, Ethiopia, bear directly on these issues. These approximately 1.0-million-year (Myr)-old Pleistocene sediments contain abundant early Acheulean stone tools and a diverse vertebrate fauna that indicates a predominantly savannah environment. Here we report that the 'Daka' calvaria's metric and morphological attributes centre it firmly within H. erectus. Daka's resemblance to Asian counterparts indicates that the early African and Eurasian fossil hominids represent demes of a widespread palaeospecies. Daka's anatomical intermediacy between earlier and later African fossils provides evidence of evolutionary change. Its temporal and geographic position indicates that African H. erectus was the ancestor of Homo sapiens. PMID:11907576

  1. Skeletal morphology of two controversial Poecilosclerid genera (Porifera, Demospongiae): Discorhabdella and Crambe

    NASA Astrophysics Data System (ADS)

    Maldonado, M.; Uriz, M. J.

    1996-09-01

    The genera Discorhabdella and Crambe are characterized by bearing uncommon spicule types, i.e. pseudoastrose acanthostyles and sphaeroclones, respectively. They have traditionally been considered to be unrelated taxa, but the present reexamination made evident that an important amount of skeletal features are shared by both. Some of these morphological features, such as the ornamentation on the point of the ectosomal subtylostyles, are reported for the first time. The study also revealed that a tuberose nature of the tyles of the main choanosomal megascleres could be a common ancestral condition in both genera. The morphology of the multi-toothed anchorate chelae showed a gradual transition across the species, suggesting that the morphological diversity in chelae was generated in these genera through a “palmate-anchorate-arcuate” evolutionary sequence. However, the forward or backward direction of this sequence remained unclear from the available evidence. Important levels of skeletal variability were found to affect many of the skeletal characters, especially in the genus Crambe. In some cases, this variability transgressed the limits theoretically defining a species, making evident that the traditional procedure just based on comparison of the skeletons becomes unreliable when tackling the taxonomy of these genera. Most of the skeletal variability seemed to correspond to genetic polymorphisms, except in the case of C. acuata. In this taxon, the skeletal variability could be a result of the existence of a cryptic species, originated by a misconceived synonymy between C. acuata and C. chelastra. Besides the skeletal variability, the obscure taxonomic meaning of many skeletal features favored the existence of conflicting taxonomic proposals for the suprageneric location of these genera, depending on the author’s criteria. This study made evident that any subsequent attempt of phylogenetic inference should be based on an unweighted analysis of the available

  2. Effect of hemiplegia on skeletal maturation.

    PubMed

    Roberts, C D; Vogtle, L; Stevenson, R D

    1994-11-01

    Children with cerebral palsy have been reported to have poor growth and delayed skeletal maturation, but it is unclear whether these effects are related to the underlying brain injury or to concomitant malnutrition. This study was designed to evaluate the effects of hemiplegic cerebral palsy on skeletal maturation and growth, with the unaffected side used as each subject's control. Bilateral hand-wrist radiographs were obtained for 19 children with spastic hemiplegia. Skeletal maturation was determined in a blinded fashion with the Fels method. The skeletal age of the affected (hemiplegic) side was less than that of the unaffected (control) side in all 19 subjects; the mean difference in skeletal age was 7.3 months (p < 0.001). The delay in skeletal maturation of the affected side correlated linearly with age and upper extremity function. These findings show that brain injury results in delayed skeletal maturation independent of malnutrition. This effect on skeletal maturation may explain, in part, the reason that some children with cerebral palsy grow poorly. PMID:7965443

  3. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle.

    PubMed

    Ganesan, Shanthi; Reynolds, Carmen; Hollinger, Katrin; Pearce, Sarah C; Gabler, Nicholas K; Baumgard, Lance H; Rhoads, Robert P; Selsby, Joshua T

    2016-06-01

    Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle. PMID:27009052

  4. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  5. Capella: Structure and Abundances

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S.

    1999-01-01

    This grant covers the analysis of ASCA spectra of the cool star binary system Capella. This project has also required the analysis of simultaneous EUVE data. The ASCA spectrum of Capella could not be fit with standard models; by imposing models based on strong lines observed with EUVE, a problem wavelength region was identified. Correcting the problem required calculations of atomic collision strengths of higher principal quantum number than had ever been calculated, resulting in a paper in process by Liedahl and Brickhouse. With these new models applied to the ASCA spectrum, better fits were obtained. While solar abundance ratios are generally consistent with the ASCA data, the ratio of Ne/Fe is three to four times lower than solar photospheric values. Whether there is a general First Ionization Potential (FIP) effect or a specific neon anomaly cannot be determined from these data. Detailed discussion has been provided to NASA in the most recent annual report (1997). Two poster presentations have been made regarding modeling requirements. A substantial paper is in the final revision form, following review by six co-authors. The results of this work have wide implications, since the newly calculated emission lines almost certainly contribute to other problems in fitting not only other stellar spectra, but also composite supernova remnants, galaxies, and cooling flow clusters of galaxies. Furthermore, Liedahl and Brickhouse have identified other species for which lines of a similar nature (high principal quantum number) will contribute significant flux. For moderate resolution X-ray spectra, lines left out of the models in relatively isolated bands, will be attributed to continuum flux by spectral fitting engines, causing errors in line-to-continuum ratios. Thus addressing the general theoretical problem is of crucial importance.

  6. Effect of limb immobilization on skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  7. Radiology of postnatal skeletal development. Pt. 7

    SciTech Connect

    Ogden, J.A.; Phillips, S.B.

    1983-02-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence.

  8. Can we create ethnically diverse skeletal collection from donated bodies?

    PubMed

    Weiss, Elizabeth

    2015-01-01

    Understanding bone health is least invasively and most effectively done through studying skeletal remains that reflect the living populations who will benefit from the knowledge produced through research. Donated body collections that accurately represent modern populations are needed for osteological insights to be applied to clinical practices. However, even though the US is growing increasingly diverse, donated body collections still suffer from a lack of ethnic diversity. Most individuals who donate their whole-bodies after death are European-American. Reasons for a lack of ethnic diversity stem from past injustices and present religious norms. Increasing body donation among minorities in the US and abroad may be difficult. PMID:25775919

  9. Abundances in dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1986-01-01

    The results of abundance studies of dwarf irregular galaxies and similar objects are reviewed with special attention to variations in the CNO element group. Observations of the forbidden N II and semiforbidden C III lines in the most metal-poor galaxy known, IZw 18, are presented for the first time and CNO abundances are derived via a photoionization model and discussed in the context of the abundances found in other metal-poor H II regions and galaxies.

  10. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain.

    PubMed

    Guedon, Jean-Marc G; Longo, Geraldine; Majuta, Lisa A; Thomspon, Michelle L; Fealk, Michelle N; Mantyh, Patrick W

    2016-06-01

    Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy were then measured on days 21, 28, and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hind paw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors, whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that although bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive end points for clinical trials. PMID:27186713

  11. The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle

    SciTech Connect

    Tajrishi, Marjan M.; Sato, Shuichi; Shin, Jonghyun; Zheng, Timothy S.; Burkly, Linda C.; Kumar, Ashok

    2014-04-18

    Highlights: • The levels of TWEAK receptor Fn14 are increased in skeletal muscle during aging. • Deletion of Fn14 attenuates age-associated skeletal muscle fiber atrophy. • Deletion of Fn14 inhibits proteolysis in skeletal muscle during aging. • TWEAK–Fn14 signaling activates transcription factor NF-κB in aging skeletal muscle. • TWEAK–Fn14 dyad is involved in age-associated fibrosis in skeletal muscle. - Abstract: Progressive loss of skeletal muscle mass and strength (sarcopenia) is a major clinical problem in the elderly. Recently, proinflammatory cytokine TWEAK and its receptor Fn14 were identified as key mediators of muscle wasting in various catabolic states. However, the role of the TWEAK–Fn14 pathway in pathological changes in skeletal muscle during aging remains unknown. In this study, we demonstrate that the levels of Fn14 are increased in skeletal muscle of 18-month old (aged) mice compared with adult mice. Genetic ablation of Fn14 significantly increased the levels of specific muscle proteins and blunted the age-associated fiber atrophy in mice. While gene expression of two prominent muscle-specific E3 ubiquitin ligases MAFBx and MuRF1 remained comparable, levels of ubiquitinated proteins and the expression of autophagy-related molecule Atg12 were significantly reduced in Fn14-knockout (KO) mice compared with wild-type mice during aging. Ablation of Fn14 significantly diminished the DNA-binding activity of transcription factor nuclear factor-kappa B (NF-κB), gene expression of various inflammatory molecules, and interstitial fibrosis in skeletal muscle of aged mice. Collectively, our study suggests that the TWEAK–Fn14 signaling axis contributes to age-associated muscle atrophy and fibrosis potentially through its local activation of proteolytic systems and inflammatory pathways.

  12. Abundance coefficients, a new method for measuring microorganism relative abundance

    USGS Publications Warehouse

    Forester, R.M.

    1977-01-01

    A new method of measuring the relative abundance of microorganisms by using a set of interrelated coefficients, termed 'abundance coefficients' or 'AC', is proposed. These coefficients provide a means of recording abundance for geometric density categories, and each density measurement represents an approximation of the Poisson parameter ??t. The AC is the natural logarithm of a 'characteristic value,' which is a particular number for each geometric density category. The 'characteristic values' are based upon a probabilistic error statement derived from the Poisson formula, and they present evidence for separation of the geometric category boundaries by e = 2.71828. The proposed AC provide a means for recording species abundance in a manner suitable for arithmetic manipulation, for population structure studies, and for the determination of practical limits for defining the presence or absence of a species. Further, these coefficients provide for both intrasample and intersample abundance comparisons. ?? 1977 Plenum Publishing Corporation.

  13. MicroRNA expression profiles of porcine skeletal muscle.

    PubMed

    Zhou, B; Liu, H L; Shi, F X; Wang, J Y

    2010-10-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs of ∼22 nucleotides in length that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. To evaluate the roles of miRNA in porcine skeletal muscle, miRNA expression profiles were investigated using longissimus muscle tissue from pigs at embryonic day 90 (E90) and postpartum day 120 (PD120). First, we used previously known miRNA sequences from humans and mice to perform blast searches against the porcine expressed sequence tag (EST) database; 98 new miRNA candidates were identified according to a range of filtering criteria. These miRNA candidates and 73 known miRNAs (miRBase 13.0) from pigs were chosen for porcine miRNA microarray analysis. A total of 16 newly identified miRNAs and 31 previously known miRNAs were detected in porcine skeletal muscle tissues. During later foetal development at E90, miR-1826, miR-26a, miR-199b and let-7 were highly expressed, whilst miR-1a, miR-133a, miR-26a and miR-1826 showed highest abundance during the fast growing stage at PD120. Using the 47 miRNAs detected by the microarray assay, we performed further investigations using the publicly available porcine mRNA database from NCBI and computed potential target hits using the software rnahybrid. This study identified 16 new miRNA candidates, computed potential target hits for 18 miRNA families and determined the miRNA expression profiles in porcine skeletal muscle tissues at different developmental stages. These results provide a valuable resource for investigators interested in post-transcriptional gene regulation in pigs and related animals. PMID:20331612

  14. Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA

    PubMed Central

    Horner, John R.; Goodwin, Mark B.; Myhrvold, Nathan

    2011-01-01

    Background A dinosaur census recorded during the Hell Creek Project (1999–2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Methodology/Principal Findings Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Conclusions/Significance Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained

  15. Engineered skeletal muscle tissue networks with controllable architecture

    PubMed Central

    Bian, Weining; Bursac, Nenad

    2009-01-01

    The engineering of functional skeletal muscle tissue substitutes holds promise for the treatment of various muscular diseases and injuries. However, no tissue fabrication technology currently exists for the generation of a relatively large and thick bioartificial muscle made of densely packed, uniformly aligned, and differentiated myofibers. In this study, we describe a versatile cell/hydrogel micromolding approach where polydimethylsiloxane (PDMS) molds containing an array of elongated posts were used to fabricate relatively large neonatal rat skeletal muscle tissue networks with reproducible and controllable architecture. By combining cell-mediated fibrin gel compaction and precise microfabrication of mold dimensions including the length and height of the PDMS posts, we were able to simultaneously support high cell viability, guide cell alignment along the microfabricated tissue pores, and reproducibly control the overall tissue porosity, size, and thickness. The interconnected muscle bundles within the porous tissue networks were composed of densely packed, aligned, and highly differentiated myofibers. The formed myofibers expressed myogenin, developed abundant cross-striations, and generated spontaneous tissue contractions at the macroscopic spatial scale. The proliferation of non-muscle cells was significantly reduced compared to monolayer cultures. The more complex muscle tissue architectures were fabricated by controlling the spatial distribution and direction of the PDMS posts. PMID:19070360

  16. Emerging tools to study proteoglycan function during skeletal development.

    PubMed

    Brown, D S; Eames, B F

    2016-01-01

    In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes. PMID:27312503

  17. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    PubMed

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. PMID:26603903

  18. Erratum: Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, U. J.; Meyer, D. M.

    2001-09-01

    In the Letter ``Interstellar Abundance Standards Revisited'' by U. J. Sofia and D. M. Meyer (ApJ, 554, L221 [2001]), Table 2 and its footnotes contain several typographical errors. The corrected table is shown below. We note that the solar reference standard now implies a positive abundance of nitrogen in halo dust.

  19. Variability in training-induced skeletal muscle adaptation

    PubMed Central

    2011-01-01

    When human skeletal muscle is exposed to exercise training, the outcomes, in terms of physiological adaptation, are unpredictable. The significance of this fact has long been underappreciated, and only recently has progress been made in identifying some of the molecular bases for the heterogeneous response to exercise training. It is not only of great medical importance that some individuals do not substantially physiologically adapt to exercise training, but the study of the heterogeneity itself provides a powerful opportunity to dissect out the genetic and environmental factors that limit adaptation, directly in humans. In the following review I will discuss new developments linking genetic and transcript abundance variability to an individual's potential to improve their aerobic capacity or endurance performance or induce muscle hypertrophy. I will also comment on the idea that certain gene networks may be associated with muscle “adaptability” regardless the stimulus provided. PMID:21030666

  20. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  1. Exercise Promotes Healthy Aging of Skeletal Muscle.

    PubMed

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. PMID:27304505

  2. Multifocal skeletal tuberculosis: A case report

    PubMed Central

    ZHANG, LIANG; WANG, JINGCHENG; FENG, XINMIN; TAO, YUPING; YANG, JIANDONG; ZHANG, SHENFEI; CAI, JUN

    2016-01-01

    Tuberculosis (TB) of the musculoskeletal system is a rare clinical condition. Multifocal bone involvement is extremely rare and difficult to recognize. Thus, due to the diverse and atypical clinical manifestations of multifocal skeletal TB, the disease is easy to misdiagnose. In the present study, a rare case of atypical disseminated multifocal skeletal TB was reported, which exhibited uncommon findings in radiological images that were more suggestive of a hematological malignancy or metastatic disease. In conclusion, the diagnosis of this condition by conventional diagnostic methods is challenging. The importance of CT-guided needle biopsy and open biopsy in the diagnosis of skeletal TB was emphasized. PMID:27073438

  3. Deciphering skeletal patterning: clues from the limb.

    PubMed

    Mariani, Francesca V; Martin, Gail R

    2003-05-15

    Even young children can distinguish a Tyrannosaurus rex from a Brontosaurus by observing differences in bone size, shape, number and arrangement, that is, skeletal pattern. But despite our extensive knowledge about cartilage and bone formation per se, it is still largely a mystery how skeletal pattern is established. Much of what we do know has been learned from studying limb development in chicken and mouse embryos. Based on the data from such studies, models for how limb skeletal pattern is established have been proposed and continue to be hotly debated. PMID:12748649

  4. Bone deformities and skeletal malformations in the Roman Imperial Age.

    PubMed

    Minozzi, Simona; Catalano, Paola; Pantano, Walter; Caldarini, Carla; Fornaciari, Gino

    2014-01-01

    This paper describes some cases of individuals affected by skeletal deformities resulting in "freak" appearance. The skeletal remains were found during large archaeological excavations in the Roman territory, carried out by the Special Superintendence to the Archeological Heritage of Rome in the last years, dated back to the Imperial Age. The first cases reported are referred to two growth disorders with opposite effects: a case of dwarfism and another of gigantism. The former concerns a young man from the Collatina necropolis with very short and malformed limbs, which allowed a diagnosis of acondroplasic dwarfism, a rare congenital disorder that limits height below 130 cm. The latter case comes from the necropolis of Torre Serpentana in Fidenae, and is instead referred to a young person of very high stature, about 204 cm, suffering from Gigantism, a rare condition which in this case seems to have been linked to a hormonal dysfunction due to a pituitary adenoma. A third case regards a joint disease affecting the vertebral column and causing severe deformities. The skeleton was found in the Collatina necropolis and belongs to an old woman, suffering from ankylosing spondylitis. Finally, the last and very peculiar case is related to an individual recovered in the necropolis of Castel Malnome. The skeletal remains belong to an adult man with a complete fusion of the temporo-mandibular joint, which compromised mastication and caused severe deformation of the maxillofacial complex. These cases are described in detail together with the possible implications that these deformities could have on in the social context. PMID:25702379

  5. The impact of skeletal unloading on bone formation

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.

    2003-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.

  6. 43 CFR 4730.2 - Disposal of remains.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HORSES AND BURROS Destruction of Wild Horses or Burros and Disposal of Remains § 4730.2 Disposal of remains. Remains of wild horses or burros that die after capture shall be disposed of in accordance...

  7. 43 CFR 4730.2 - Disposal of remains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HORSES AND BURROS Destruction of Wild Horses or Burros and Disposal of Remains § 4730.2 Disposal of remains. Remains of wild horses or burros that die after capture shall be disposed of in accordance...

  8. 43 CFR 4730.2 - Disposal of remains.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HORSES AND BURROS Destruction of Wild Horses or Burros and Disposal of Remains § 4730.2 Disposal of remains. Remains of wild horses or burros that die after capture shall be disposed of in accordance...

  9. 43 CFR 4730.2 - Disposal of remains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HORSES AND BURROS Destruction of Wild Horses or Burros and Disposal of Remains § 4730.2 Disposal of remains. Remains of wild horses or burros that die after capture shall be disposed of in accordance...

  10. Dust formation in a galaxy with primitive abundances.

    PubMed

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe. PMID:19150838

  11. SNAT2 and LAT1 transporter abundance is developmentally regulated in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we demonstrated that the insulin and amino acid–induced activation of the mammalian target of rapamycin complex 1 (mTORC1), is developmentally regulated in neonatal pigs. Recent studies have indicated an important role of the System A transporters (SNAT2 and SLC1A5) and the L transporter...

  12. The role of PET/CT in the evaluation of skeletal metastases.

    PubMed

    Kannivelu, Anbalagan; Loke, Kelvin S H; Kok, Tian Yue; Osmany, Saabry Yusof; Ali, Syed Zama; Suat-Jin, Lu; Ng, David Chee-Eng

    2014-04-01

    Osseous metastatic disease from malignancy is a common occurrence with significant patient morbidity and mortality as well as increasing health care expenditures. Patient management plans frequently change with the identification of skeletal metastasis and the upstaging of disease status. Bone scintigraphy remains the current mainstay of diagnostic imaging procedures in nuclear medicine for the early detection of skeletal metastasis owing to their high sensitivity. Emerging positron tracers and the increasing use and availability of hybrid single-photon emission computed tomography and positron emission tomography (PET)/computed tomography machines enable physicians to diagnose metastatic disease in bones with superior accuracy. This review introduces the basics of PET and the commonly used positron tracers used to evaluate skeletal metastases. PMID:24715447

  13. Proteomic profiling of skeletal muscle plasticity

    PubMed Central

    Ohlendieck, Kay

    2011-01-01

    Summary One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined. PMID:23738259

  14. Redox regulation of autophagy in skeletal muscle.

    PubMed

    Rodney, George G; Pal, Rituraj; Abo-Zahrah, Reem

    2016-09-01

    Autophagy is a cellular degradative pathway that involves the delivery of cytoplasmic components, including proteins and organelles, to the lysosome for degradation. Autophagy is implicated in the maintenance of skeletal muscle; increased autophagy leads to muscle atrophy while decreased autophagy leads to degeneration and weakness. A growing body of work suggests that reactive oxygen species (ROS) are important cellular signal transducers controlling autophagy. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria are major sources of ROS generation in skeletal muscle that are likely regulating autophagy through different signaling cascades based on localization of the ROS signals. This review aims to provide insight into the redox control of autophagy in skeletal muscle. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for skeletal muscle diseases. PMID:27184957

  15. Proteomic profiling of skeletal muscle plasticity.

    PubMed

    Ohlendieck, Kay

    2011-10-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined. PMID:23738259

  16. Cremated human remains: is measurement of the lateral angle of the meatus acusticus internus a reliable method of sex determination?

    PubMed

    Masotti, Sabrina; Succi-Leonelli, Elisa; Gualdi-Russo, Emanuela

    2013-09-01

    The purpose of this study was to evaluate the lateral angle (LA) method-based on the measurement of the angle at which the internal acoustic canal opens up to the surface of the petrous bone-for sex determination in cremated skeletal remains of Italians. The sample consisted of 160 adult individuals of known age and sex who had recently died and were cremated in the crematorium of Ferrara (northern Italy). Several studies have demonstrated that the petrous portion of the temporal bone may be a valuable tool for sex diagnosis in unburned skeletal remains. Since petrous bones are usually preserved after cremation, this method could be of particular interest in the case of burned skeletal remains. The repeatability of intra- and inter-observer measurements was good. The results indicated that male and female lateral angles were significantly different but that the values did not differ among age-groups. There was no bilateral difference in LA. However, neither the 45° angle, proposed in earlier studies as the sectioning point for this variable from male and female data distributions, nor another angular value allowed satisfactory discrimination between the sexes in our sample. The influence of the "age" factor (about 82 % of females were of ≥ 75 years of age) on the results is critically discussed. The results of this study suggest that the LA method is not sufficiently reliable to assess the sex of elderly Italian individuals from their burned remains and thus should only be used in conjunction with other sexing techniques. PMID:23344564

  17. Role of Akirin in Skeletal Myogenesis

    PubMed Central

    Chen, Xiaoling; Huang, Zhiqing; Wang, Huan; Jia, Gang; Liu, Guangmang; Guo, Xiulan; Tang, Renyong; Long, Dingbiao

    2013-01-01

    Akirin is a recently discovered nuclear factor that plays an important role in innate immune responses. Beyond its role in innate immune responses, Akirin has recently been shown to play an important role in skeletal myogenesis. In this article, we will briefly review the structure and tissue distribution of Akirin and discuss recent advances in our understanding of its role and signal pathway in skeletal myogenesis. PMID:23396110

  18. Cardiac assistance from skeletal muscle: a reappraisal.

    PubMed

    Salmons, Stanley

    2009-02-01

    Cardiac assistance from skeletal muscle offers an attractive surgical solution to the problem of end-stage heart failure, yet it is widely regarded as a failed approach. I argue here that this is an outdated assessment. Systematic progress has been made over the last 25 years in understanding the relevant basic science. In the light of these advances we should be reconsidering the place of skeletal muscle assist in the surgical armamentarium. PMID:18954996

  19. Increased skeletal muscle capillarization enhances insulin sensitivity.

    PubMed

    Akerstrom, Thorbjorn; Laub, Lasse; Vedel, Kenneth; Brand, Christian Lehn; Pedersen, Bente Klarlund; Lindqvist, Anna Kaufmann; Wojtaszewski, Jørgen F P; Hellsten, Ylva

    2014-12-15

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. Therefore, we investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle-specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist prazosin to the drinking water of Sprague-Dawley rats (n = 33), whereas 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-wk prazosin treatment, which ensured that prazosin was cleared from the blood stream. Whole body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue-specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]glucose during the plateau phase of the clamp. Whole body insulin sensitivity increased by ∼24%, and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]glucose disposal increased by ∼30% concomitant with an ∼20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point toward the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes. PMID:25352432

  20. Role of akirin in skeletal myogenesis.

    PubMed

    Chen, Xiaoling; Huang, Zhiqing; Wang, Huan; Jia, Gang; Liu, Guangmang; Guo, Xiulan; Tang, Renyong; Long, Dingbiao

    2013-01-01

    Akirin is a recently discovered nuclear factor that plays an important role in innate immune responses. Beyond its role in innate immune responses, Akirin has recently been shown to play an important role in skeletal myogenesis. In this article, we will briefly review the structure and tissue distribution of Akirin and discuss recent advances in our understanding of its role and signal pathway in skeletal myogenesis. PMID:23396110

  1. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females.

    PubMed

    Ribas, Vicent; Drew, Brian G; Zhou, Zhenqi; Phun, Jennifer; Kalajian, Nareg Y; Soleymani, Teo; Daraei, Pedram; Widjaja, Kevin; Wanagat, Jonathan; de Aguiar Vallim, Thomas Q; Fluitt, Amy H; Bensinger, Steven; Le, Thuc; Radu, Caius; Whitelegge, Julian P; Beaven, Simon W; Tontonoz, Peter; Lusis, Aldons J; Parks, Brian W; Vergnes, Laurent; Reue, Karen; Singh, Harpreet; Bopassa, Jean C; Toro, Ligia; Stefani, Enrico; Watt, Matthew J; Schenk, Simon; Akerstrom, Thorbjorn; Kelly, Meghan; Pedersen, Bente K; Hewitt, Sylvia C; Korach, Kenneth S; Hevener, Andrea L

    2016-04-13

    Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women. PMID:27075628

  2. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females

    PubMed Central

    Ribas, Vicent; Drew, Brian G.; Zhou, Zhenqi; Phun, Jennifer; Kalajian, Nareg Y.; Soleymani, Teo; Daraei, Pedram; Widjaja, Kevin; Wanagat, Jonathan; de Aguiar Vallim, Thomas Q.; Fluitt, Amy H.; Bensinger, Steven; Le, Thuc; Radu, Caius; Whitelegge, Julian P.; Beaven, Simon W.; Tontonoz, Peter; Lusis, Aldons J.; Parks, Brian W.; Vergnes, Laurent; Reue, Karen; Singh, Harpreet; Bopassa, Jean C.; Toro, Ligia; Stefani, Enrico; Watt, Matthew J.; Schenk, Simon; Akerstrom, Thorbjorn; Kelly, Meghan; Pedersen, Bente K.; Hewitt, Sylvia C.; Korach, Kenneth S.; Hevener, Andrea L.

    2016-01-01

    Impaired estrogen receptor α(ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERαexpression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERαknockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A–regulator of calcineurin 1–calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERαdeficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERαin the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women. PMID:27075628

  3. Skeleton Genetics: a comprehensive database for genes and mutations related to genetic skeletal disorders

    PubMed Central

    Chen, Chong; Jiang, Yi; Xu, Chenyang; Liu, Xinting; Hu, Lin; Xiang, Yanbao; Chen, Qingshuang; Chen, Denghui; Li, Huanzheng; Xu, Xueqin; Tang, Shaohua

    2016-01-01

    Genetic skeletal disorders (GSD) involving the skeletal system arises through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their clinical heterogeneity and genetic variety. Over the past decades, tremendous effort platforms have been made to explore the complex heterogeneity, and massive new genes and mutations have been identified in different GSD, but the information supplied by literature is still limited and it is hard to meet the further needs of scientists and clinicians. In this study, combined with Nosology and Classification of genetic skeletal disorders, we developed the first comprehensive and annotated genetic skeletal disorders database, named ‘SkeletonGenetics’, which contains information about all GSD-related knowledge including 8225 mutations in 357 genes, with detailed information associated with 481 clinical diseases (2260 clinical phenotype) classified in 42 groups defined by molecular, biochemical and/or radiographic criteria from 1698 publications. Further annotations were performed to each entry including Gene Ontology, pathways analysis, protein–protein interaction, mutation annotations, disease–disease clustering and gene–disease networking. Furthermore, using concise search methods, intuitive graphical displays, convenient browsing functions and constantly updatable features, ‘SkeletonGenetics’ could serve as a central and integrative database for unveiling the genetic and pathways pre-dispositions of GSD. Database URL: http://101.200.211.232/skeletongenetics/ PMID:27580923

  4. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.

    PubMed

    Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun

    2016-07-01

    Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. PMID:27207521

  5. Skeleton Genetics: a comprehensive database for genes and mutations related to genetic skeletal disorders.

    PubMed

    Chen, Chong; Jiang, Yi; Xu, Chenyang; Liu, Xinting; Hu, Lin; Xiang, Yanbao; Chen, Qingshuang; Chen, Denghui; Li, Huanzheng; Xu, Xueqin; Tang, Shaohua

    2016-01-01

    Genetic skeletal disorders (GSD) involving the skeletal system arises through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their clinical heterogeneity and genetic variety. Over the past decades, tremendous effort platforms have been made to explore the complex heterogeneity, and massive new genes and mutations have been identified in different GSD, but the information supplied by literature is still limited and it is hard to meet the further needs of scientists and clinicians. In this study, combined with Nosology and Classification of genetic skeletal disorders, we developed the first comprehensive and annotated genetic skeletal disorders database, named 'SkeletonGenetics', which contains information about all GSD-related knowledge including 8225 mutations in 357 genes, with detailed information associated with 481 clinical diseases (2260 clinical phenotype) classified in 42 groups defined by molecular, biochemical and/or radiographic criteria from 1698 publications. Further annotations were performed to each entry including Gene Ontology, pathways analysis, protein-protein interaction, mutation annotations, disease-disease clustering and gene-disease networking. Furthermore, using concise search methods, intuitive graphical displays, convenient browsing functions and constantly updatable features, 'SkeletonGenetics' could serve as a central and integrative database for unveiling the genetic and pathways pre-dispositions of GSD.Database URL: http://101.200.211.232/skeletongenetics/. PMID:27580923

  6. Skeletal Lesions in Human Tuberculosis May Sometimes Heal: An Aid to Palaeopathological Diagnoses

    PubMed Central

    Holloway, Kara L.; Link, Karl; Rühli, Frank; Henneberg, Maciej

    2013-01-01

    In three to five percent of active cases of tuberculosis, skeletal lesions develop. Typically, these occur on the vertebrae and are destructive in nature. In this paper, we examined cases of skeletal tuberculosis from a skeletal collection (Galler Collection) with focus on the manifestation of bony changes due to tuberculosis in various body regions in association with antibiotic introduction. This skeletal collection was created in 1925–1977 by a pathologist at the University Hospital in Zürich, Ernst Galler. It includes the remains of 2426 individuals with documented clinical histories as well as autopsies. It contained 29 cases of skeletal tuberculosis lesions. We observed natural healing of vertebral lesions through several processes including fusion of vertebrae, bone deposition and fusion of posterior elements. In these cases, we observed a higher frequency and proportion of bone deposition and fusion of posterior vertebral elements where pharmacological agents were used. There were also four cases of artificial healing through surgically induced posterior spinal fusion. With the introduction of pharmaceutical treatments, the number of individuals with multiple tuberculous foci decreased from 80% to 25% when compared to individuals who did not receive any drug therapy. Investigation of comorbidities showed that pneumonia, pleuritis and being underweight were consistently present, even with pharmaceutical treatment. Our results have applications in palaeopathological diagnoses where healing and consequent bone deposition may complicate differential diagnoses. PMID:23638146

  7. Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences

    PubMed Central

    Bacurau, Aline V.; Cunha, Telma F.; Souza, Rodrigo W.; Voltarelli, Vanessa A.; Gabriel-Costa, Daniele; Brum, Patricia C.

    2016-01-01

    Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF. PMID:26904163

  8. The Indispensable Role of Cyclin-Dependent Kinase 1 in Skeletal Development

    PubMed Central

    Saito, Masanori; Mulati, Mieradili; Talib, S. Zakiah A.; Kaldis, Philipp; Takeda, Shu; Okawa, Atsushi; Inose, Hiroyuki

    2016-01-01

    Skeletal development is tightly regulated through the processes of chondrocyte proliferation and differentiation. Although the involvement of transcription and growth factors on the regulation of skeletal development has been extensively studied, the role of cell cycle regulatory proteins in this process remains elusive. To date, through cell-specific loss-of-function experiments in vivo, no cell cycle regulatory proteins have yet been conclusively shown to regulate skeletal development. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) regulates skeletal development based on chondrocyte-specific loss-of-function experiments performed in a mouse model. Cdk1 is highly expressed in columnar proliferative chondrocytes and is greatly downregulated upon differentiation into hypertrophic chondrocytes. Cdk1 is essential for proper chondrocyte proliferation and deletion of Cdk1 resulted in accelerated differentiation of chondrocytes. In vitro and ex vivo analyses revealed that Cdk1 is an essential cell cycle regulatory protein for parathyroid hormone-related peptide (PTHrP) signaling pathway, which is critical to chondrocyte proliferation and differentiation. These results demonstrate that Cdk1 functions as a molecular switch from proliferation to hypertrophic differentiation of chondrocytes and thus is indispensable for skeletal development. Given the availability of inhibitors of Cdk1 activity, our results could provide insight for the treatment of diseases involving abnormal chondrocyte proliferation, such as osteoarthritis. PMID:26860366

  9. Micromorphological Aspects of Forensic Geopedology: can vivianite be a marker of human remains permanence in soil?

    NASA Astrophysics Data System (ADS)

    Ern, Stephania Irmgard Elena; Trombino, Luca; Cattaneo, Cristina

    2010-05-01

    The number of death cases of forensic interest grows up every year. When decomposed or skeletal remains come out from the soil, the bones become of anthropological competence and the scene of crime become of soil specialists competence. The present study concerns real cases of buried/hidden remains in clandestine graves which have been studied in order to prove the permanence in soil even if the soil particles have been washed away or the body is no more buried. One hypothesis has been taken in account, related to the evidences of vivianite crystallization on the bones. The vivianite is an iron hydrate phosphate (Fe3(PO4)2·8(H2O)) that usually forms in anoxic, reducing and rich in organic matter conditions. In these conditions the iron in the soil is in reduced form (Fe2+) and associates with the phosphorous, present in the environment, as attested in archaeological contexts. Going back to the cases of buried/hidden remains, it is possible to state that the soil can be source of iron, while the bones can supply phosphorous and the decomposition process induces the anoxic/reducing conditions in the burial area. In this light, the presence of vivianite crystallizations on the bones could be a method to discriminate burial (i.e. permanence in soil) even if the remains are found in a different context than a clandestine grave. Analyses have been performed using petrographic microscope and scanning electron microscope microanalysis (SEM-EDS) on bones, and point out the presence of vivianite crystallizations on the bones. This evidence, thanks to the significance of vivianite in the archaeological context, can be regarded as a marker of the permanence of the human remains into the soil, like a ‘buried evidence' testimonial; on the contrary the absence of vivianite is not indicative of a ‘non buried status'. Further studies and new experiments are in progress in order to clarify the pathways of vivianite crystallization on different skeletal districts, in different

  10. Redox control of skeletal muscle atrophy.

    PubMed

    Powers, Scott K; Morton, Aaron B; Ahn, Bumsoo; Smuder, Ashley J

    2016-09-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown. PMID:26912035

  11. Skeletal disorders in the fowl: a review.

    PubMed

    Thorp, B H

    1994-06-01

    Selection pressure for production traits in modern lines of poultry has placed increasing demands on skeletal integrity. Disruption of the normal process of skeletal growth and homeostasis results in bone diseases that are manifest throughout the modern poultry industry. Bone conditions in poultry can be grouped under three headings based on the age and type of fowls affected, and are indicative of the genetic and production stresses applied to the skeleton. In broilers during growth it is primarily pathologies of the growth plate that lead to most skeletal disorders. In broiler and turkey breeding stock the progressive degeneration of the articular cartilage results in osteoarthrosis, lameness and a consequential loss of reproductive performance. In laying hens bone fragility is most frequently the result of osteoporosis. Before attempting to determine the aetiology of a skeletal disorder an accurate diagnosis must be made. Only then can short- and long-term strategies be developed for the prevention and control of skeletal disorders. Diagnosis requires gross and histological examination, and also dietary, environmental and management analyses. The pathology often reflects lesions initiated when the bird was considerably younger and analyses must extend to assessing the factors prevalent during the initiation of lesions. Current studies are furthering the understanding of the aetiopathogenesis of avian skeletal disorders. For example, structural bone loss at the onset of follicular activity before egg-laying is pivotal to the development of osteoporosis in layers and deficiencies in growth factor expression are integral to the development of tibial dyschondroplasia. PMID:18671088

  12. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  13. Male ironman triathletes lose skeletal muscle mass.

    PubMed

    Knechtle, Beat; Baumann, Barbara; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2010-01-01

    We investigated whether male triathletes in an Ironman triathlon lose body mass in the form of fat mass or skeletal muscle mass in a field study at the Ironman Switzerland in 27 male Caucasian non-professional Ironman triathletes. Pre- and post-race body mass, fat mass and skeletal muscle mass were determined. In addition, total body water, hematological and urinary parameters were measured in order to quantify hydration status. Body mass decreased by 1.8 kg (p< 0.05), skeletal muscle decreased by 1.0 kg (p< 0.05) whereas fat mass showed no changes. Urinary specific gravity, plasma urea and plasma volume increased (p< 0.05). Pre- to post-race change (Delta) in body mass was not associated with ? skeletal muscle mass. Additionally, there was no association between Delta plasma urea and Delta skeletal muscle mass; Delta plasma volume was not associated with Delta total body water (p< 0.05). We concluded that male triathletes in an Ironman triathlon lose 1.8 kg of body mass and 1 kg of skeletal muscle mass, presumably due to a depletion of intramyocellular stored glycogen and lipids. PMID:20199992

  14. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    SciTech Connect

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela E-mail: Paul.Barklem@physics.uu.se E-mail: N.Christlieb@lsw.uni-heidelberg.de E-mail: jen@mso.anu.edu.au E-mail: inoue@tap.scphys.kyoto-u.ac.jp

    2009-06-20

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of H{alpha} and H{beta}. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 {approx}< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  15. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  16. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Honghui; Chang, Jintao; Ma, Hui

    2016-03-01

    Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.

  17. Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development

    PubMed Central

    Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin

    2013-01-01

    Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761

  18. A fast and safe non-bleaching method for forensic skeletal preparation.

    PubMed

    Fenton, Todd W; Birkby, Walter H; Cornelison, Jered

    2003-03-01

    Over the last three decades, forensic anthropologists increasingly have consulted on fleshed human remains cases in which the examination of skeletal elements is critical in answering questions of identification and the circumstances of death. This was certainly the case at the Human Identification Laboratory in Tucson, Arizona. As the caseload increased, it became clear that a method for defleshing human remains was needed in order to expeditiously expose the osseous surfaces for analysis, yet at the same time, preserving the evidentiary nature of the material. As a result, a fast, safe and economical method for defleshing human remains and producing high quality, degreased skeletal elements was developed. This non-bleaching cooking method utilizes chemicals that are easily obtained and inexpensive standard household ingredients that can be purchased at most grocery stores. PMID:12664982

  19. Adaptation of the Skeletal System during Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence

    2008-01-01

    exceeds spaceflight exposure but for which the restoration of whole bone strength remains an open issue and may involve structural alteration; and 4. Display risk factors for bone loss -- such as the negative calcium balance and down-regulated calcium-regulating hormones in response to bone atrophy -- that can be compounded by the constraints of conducting mission operations (inability to provide essential nutrients and vitamins). The full characterization of the skeletal response to mechanical unloading in space is not complete. In particular, countermeasures used to date have been inadequate and it is not yet known whether more appropriate countermeasures can prevent the changes in bone that have been found in previous flights, knowledge gaps related to the effects of prolonged (greater than or equal to 6 months) space exposure and to partial gravity environments are substantial, and longitudinal measurements on crew members after spaceflight are required to assess the full impact on skeletal recovery.

  20. Aspects of skeletal muscle modelling.

    PubMed Central

    Epstein, Marcelo; Herzog, Walter

    2003-01-01

    The modelling of skeletal muscle raises a number of philosophical questions, particularly in the realm of the relationship between different possible levels of representation and explanation. After a brief incursion into this area, a list of desiderata is proposed as a guiding principle for the construction of a viable model, including: comprehensiveness, soundness, experimental consistency, predictive ability and refinability. Each of these principles is illustrated by means of simple examples. The presence of internal constraints, such as incompressibility, may lead to counterintuitive results. A one-panel example is exploited to advocate the use of the principle of virtual work as the ideal tool to deal with these situations. The question of stability in the descending limb of the force-length relation is addressed and a purely mechanical analogue is suggested. New experimental results confirm the assumption that fibre stiffness is positive even in the descending limb. The indeterminacy of the force-sharing problem is traditionally resolved by optimizing a, presumably, physically meaningful target function. After presenting some new results in this area, based on a separation theorem, it is suggested that a more fundamental approach to the problem is the abandoning of optimization criteria in favour of an explicit implementation of activation criteria. PMID:14561335

  1. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  2. Chemical abundance analysis of 19 barium stars

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  3. Dysregulation of skeletal muscle protein metabolism by alcohol.

    PubMed

    Steiner, Jennifer L; Lang, Charles H

    2015-05-01

    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time produces muscle wasting and weakness. The preponderance of data suggest that alcohol primarily impairs global protein synthesis, under basal conditions as well as in response to several anabolic stimuli including growth factors, nutrients, and muscle contraction. This inhibitory effect of alcohol is mediated, at least in part, by a reduction in mTOR kinase activity via a mechanism that remains poorly defined but likely involves altered protein-protein interactions within mTOR complex 1. Furthermore, alcohol can exacerbate the decrement in mTOR and/or muscle protein synthesis present in other catabolic states. In contrast, alcohol-induced changes in muscle protein degradation, either global or via specific modulation of the ubiquitin-proteasome or autophagy pathways, are relatively inconsistent and may be model dependent. Herein, changes produced by acute intoxication versus chronic ingestion are contrasted in relation to skeletal muscle metabolism, and limitations as well as opportunities for future research are discussed. As the proportion of more economically developed countries ages and chronic illness becomes more prevalent, a better understanding of the etiology of biomedical consequences of alcohol use disorders is warranted. PMID:25759394

  4. Dysregulation of skeletal muscle protein metabolism by alcohol

    PubMed Central

    Steiner, Jennifer L.

    2015-01-01

    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time produces muscle wasting and weakness. The preponderance of data suggest that alcohol primarily impairs global protein synthesis, under basal conditions as well as in response to several anabolic stimuli including growth factors, nutrients, and muscle contraction. This inhibitory effect of alcohol is mediated, at least in part, by a reduction in mTOR kinase activity via a mechanism that remains poorly defined but likely involves altered protein-protein interactions within mTOR complex 1. Furthermore, alcohol can exacerbate the decrement in mTOR and/or muscle protein synthesis present in other catabolic states. In contrast, alcohol-induced changes in muscle protein degradation, either global or via specific modulation of the ubiquitin-proteasome or autophagy pathways, are relatively inconsistent and may be model dependent. Herein, changes produced by acute intoxication versus chronic ingestion are contrasted in relation to skeletal muscle metabolism, and limitations as well as opportunities for future research are discussed. As the proportion of more economically developed countries ages and chronic illness becomes more prevalent, a better understanding of the etiology of biomedical consequences of alcohol use disorders is warranted. PMID:25759394

  5. Differential response of rat cardiac and skeletal muscle glycogen to glucocorticoids.

    PubMed

    Poland, J L; Poland, J W; Honey, R N

    1982-05-01

    Though glucocorticoids were previously implicated in the support of myocardial glycogen supercompensation after exercise, it was unclear why skeletal muscle glycogen did not simultaneously supercompensate since it was also exposed to the exercise-induced glucocorticoid increases. The current study shows that glucocorticoids differentially affect cardiac and skeletal muscle glycogen. Following dexamethasone administration (400 micrograms i.p.) myocardial glycogen peaked at 6 h while glycogen in the soleus, red vastus lateralis, and white vastus lateralis increased more slowly and reached the highest values 17 h postinjection. Concurrently, blood glucose, insulin, and glucagon remained at control levels. Liver glycogen increased within 2 h and continued to rise with a peak value at 17 h. Plasma free fatty acid (FFA) levels increased and remained high throughout the 26-h experimental period. High FFA levels inhibit glycogenolysis and thus could be partially responsible for glucocorticoid-induced glycogen increases. It is postulated that glycogen supercompensation does not readily occur in skeletal muscles after exercise because of the brevity of the corticosterone and FFA increases and the slowness of the skeletal muscle glycogen response to glucocorticoids. PMID:7104851

  6. Skeletal Muscle an Active Compartment in the Sequestering and Metabolism of Doxorubicin Chemotherapy

    PubMed Central

    Fabris, Sergio; MacLean, David A.

    2015-01-01

    Doxorubicin remains one of the most widely used chemotherapeutic agents however its effect on healthy tissue, such as skeletal muscle, remains poorly understood. The purpose of the current study was to examine the accumulation of doxorubicin (DOX) and its metabolite doxorubicinol (DOXol) in skeletal muscle of the rat up to 8 days after the administration of a 1.5 or 4.5 mg kg-1 i.p. dose. Subsequent to either dose, DOX and DOXol were observed in skeletal muscle throughout the length of the experiment. Interestingly an efflux of DOX was examined after 96 hours, followed by an apparent re-uptake of the drug which coincided with a spike and rapid decrease of plasma DOX concentrations. The interstitial space within the muscle did not appear to play a significant rate limiting compartment for the uptake or release of DOX or DOXol from the tissue to the circulation. Furthermore, there was no evidence that DOX preferentially accumulated in a specific muscle group with either dose. It appears that the sequestering of drug in skeletal muscle plays an acute and important role in the systemic availability and metabolism of DOX which may have a greater impact on the clinical outcome than previously considered. PMID:26401619

  7. La Ferrassie 8 Neandertal child reloaded: New remains and re-assessment of the original collection.

    PubMed

    Gómez-Olivencia, Asier; Crevecoeur, Isabelle; Balzeau, Antoine

    2015-05-01

    The first evidence of the partial infant Neandertal skeleton La Ferrassie 8 (LF8) was discovered in 1970, although most of the remains were found in 1973 as part of the 1968-1973 work at the site by H. Delporte. This individual and the other Neandertal children from La Ferrassie were published in the early 1980s by J.-L. Heim, and since then LF8 has been regarded as coming from a poorly documented excavation. The recent rediscovery of the box that contained the hominin bones given by Delporte to Heim in the Muséum national d'Histoire naturelle (MNHN) collection provided new fossils and helped to locate LF8 in the site: level M2 in square 1. Two visits to the Musée d'Archéologie nationale et Domaine national de Saint-Germain-en-Laye (MAN) yielded additional fossil remains from both the 1970 and 1973 excavations and resulted in the discovery of all of the notes from the excavation of H. Delporte between 1968 and 1973. Here the new fossil remains (47 after performing all possible refits), representing significant portions of the cranium, mandible, and vertebral column together with fragmentary hand and costal remains, are described. Unsurprisingly, the morphology of the bony labyrinth and of a complete stapes from the nearly complete left temporal show clear Neandertal affinities. Additionally, a complete reassessment of the original LF8 collection has resulted in the identification of several errors in the anatomical determination. Despite the significant increase in the anatomical representation of LF8, the skeletal remains are still limited to the head, thorax, pelvis, and four hand phalanges, with some very fragile elements relatively well preserved. Different hypotheses are proposed to explain this anatomical representation, which can be tested during future fieldwork. PMID:25805043

  8. Genetic identification of putative remains of the famous astronomer Nicolaus Copernicus.

    PubMed

    Bogdanowicz, Wiesław; Allen, Marie; Branicki, Wojciech; Lembring, Maria; Gajewska, Marta; Kupiec, Tomasz

    2009-07-28

    We report the results of mitochondrial and nuclear DNA analyses of skeletal remains exhumed in 2005 at Frombork Cathedral in Poland, that are thought to be those of Nicolaus Copernicus (1473-1543). The analyzed bone remains were found close to the altar Nicolaus Copernicus was responsible for during his tenure as priest. The mitochondrial DNA (mtDNA) profiles from 3 upper molars and the femurs were identical, suggesting that the remains originate from the same individual. Identical mtDNA profiles were also determined in 2 hairs discovered in a calendar now exhibited at Museum Gustavianum in Uppsala, Sweden. This calendar was the property of Nicolaus Copernicus for much of his life. These findings, together with anthropological data, support the identification of the human remains found in Frombork Cathedral as those of Nicolaus Copernicus. Up-to-now the particular mtDNA haplotype has been observed only 3 times in Germany and once in Denmark. Moreover, Y-chromosomal and autosomal short tandem repeat markers were analyzed in one of the tooth samples, that was much better preserved than other parts of the skeleton. Molecular sex determination revealed that the skeleton is from a male individual, and this result is consistent with morphological investigations. The minimal Y-chromosomal haplotype determined in the putative remains of Nicolaus Copernicus has been observed previously in many countries, including Austria, Germany, Poland, and the Czech Republic. Finally, an analysis of the SNP located in the HERC2 gene revealed the C/C genotype that is predominant in blue-eyed humans, suggesting that Copernicus may have had a light iris color. PMID:19584252

  9. How sex hormones promote skeletal muscle regeneration.

    PubMed

    Velders, Martina; Diel, Patrick

    2013-11-01

    Skeletal muscle regeneration efficiency declines with age for both men and women. This decline impacts on functional capabilities in the elderly and limits their ability to engage in regular physical activity and to maintain independence. Aging is associated with a decline in sex hormone production. Therefore, elucidating the effects of sex hormone substitution on skeletal muscle homeostasis and regeneration after injury or disuse is highly relevant for the aging population, where sarcopenia affects more than 30 % of individuals over 60 years of age. While the anabolic effects of androgens are well known, the effects of estrogens on skeletal muscle anabolism have only been uncovered in recent times. Hence, the purpose of this review is to provide a mechanistic insight into the regulation of skeletal muscle regenerative processes by both androgens and estrogens. Animal studies using estrogen receptor (ER) antagonists and receptor subtype selective agonists have revealed that estrogens act through both genomic and non-genomic pathways to reduce leukocyte invasion and increase satellite cell numbers in regenerating skeletal muscle tissue. Although animal studies have been more conclusive than human studies in establishing a role for sex hormones in the attenuation of muscle damage, data from a number of recent well controlled human studies is presented to support the notion that hormonal therapies and exercise induce added positive effects on functional measures and lean tissue mass. Based on the fact that aging human skeletal muscle retains the ability to adapt to exercise with enhanced satellite cell activation, combining sex hormone therapies with exercise may induce additive effects on satellite cell accretion. There is evidence to suggest that there is a 'window of opportunity' after the onset of a hypogonadal state such as menopause, to initiate a hormonal therapy in order to achieve maximal benefits for skeletal muscle health. Novel receptor subtype selective

  10. Lip prints: The barcode of skeletal malocclusion

    PubMed Central

    Raghav, Pradeep; Kumar, Naveen; Shingh, Shishir; Ahuja, N.K.; Ghalaut, Priyanka

    2013-01-01

    Introduction: In orthodontics, apart from essential diagnostic aids, there are so many soft tissue analyses in which lips are major part of concern. However, lip prints have never been used in orthodontics as diagnostic aid or forensic tool. Therefore, this study was designed to explore the possible association of lip prints with skeletal malocclusion. Materials and Methods: A sample of 114 subjects in the age group of 18-30 years, from North Indian adult population were selected on the basis of skeletal class I, class II and class III malocclusion, each comprising of 38 subjects with equal number of males and females. Lip prints of all the individuals were recorded and digital soft copies of lateral cephalograms were taken. Lip prints were compared between different skeletal malocclusions. Results: It was found that branched lip pattern was most common in North Indian adult population with no sexual dimorphism. The Z-test for proportion showed that the prevalence of vertical lip pattern was significantly higher in subjects having skeletal class III malocclusion. Conclusion: A definite co-relation of vertical lip patterns with skeletal class III malocclusion was revealed. PMID:24255559

  11. Notch signaling in skeletal health and disease.

    PubMed

    Zanotti, Stefano; Canalis, Ernesto

    2013-06-01

    Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells, and dysregulation of Notch signaling is associated with human diseases affecting the skeleton. Inherited or sporadic mutations in components of the Notch signaling pathway are associated with spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases characterized by skeletal patterning defects. Inactivating mutations of the Notch ligand JAG1 or of NOTCH2 are associated with Alagille syndrome, and activating mutations in NOTCH2 are associated with Hajdu-Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important skeletal diseases. PMID:23554451

  12. Solar and stellar photospheric abundances

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos

    2016-07-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  13. 7 CFR 160.29 - Containers to remain intact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Containers to remain intact. 160.29 Section 160.29... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.29 Containers to remain intact... the containers holding such naval stores remain intact as sampled until the analysis,...

  14. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  15. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems. PMID:26646867

  16. Model reduction for stochastic chemical systems with abundant species

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  17. Model reduction for stochastic chemical systems with abundant species

    SciTech Connect

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  18. Molecular Factors Underlying the Deposition of Intramuscular Fat and Collagen in Skeletal Muscle of Nellore and Angus Cattle

    PubMed Central

    Martins, Taiane S.; Sanglard, Letícia M. P.; Silva, Walmir; Chizzotti, Mário L.; Rennó, Luciana N.; Serão, Nick V. L.; Silva, Fabyano F.; Guimarães, Simone E. F.; Ladeira, Márcio M.; Dodson, Michael V.; Du, Min; Duarte, Marcio S.

    2015-01-01

    Studies have shown that intramuscular adipogenesis and fibrogenesis may concomitantly occur in skeletal muscle of beef cattle. Thus, we hypothesized that the discrepancy of intramuscular fat content in beef from Nellore and Angus was associated with differences in intramuscular adipogenesis and fibrogenesis during the finishing phase. To test our hypothesis, longissimus muscle samples of Nellore (n = 6; BW = 372.5 ± 37.3 kg) and Angus (n = 6; BW = 382.8 ± 23.9 kg) cattle were collected for analysis of gene and protein expression, and quantification of intramuscular fat and collagen. Least-squares means were estimated for the effect of Breed and differences were considered at P ≤ 0.05. A greater intramuscular fat content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). No differences were observed for mRNA expression of lipogenic and lipolytic markers ACC, FAS, FABP4, SERBP–1, CPT–2, LPL, and ACOX (P > 0.05) in skeletal muscle of Nellore and Angus cattle. Similarly, no differences were observed in mRNA expression of adipogenic markers Zfp423, PPARγ, and C/EBPα (P>0.05) However, a greater PPARγ protein content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). A greater abundance of adipo/fibrogenic cells, evaluated by the PDGFRα content, was observed in skeletal muscle of Angus than Nellore cattle (P≤0.05). No differences in fibrogenesis were observed in skeletal muscle of Angus and Nellore cattle, which is in accordance with the lack of differences in intramuscular collagen content in beef from both breeds (P>0.05). These findings demonstrate that difference in intramuscular fat content is associated with a slightly enhanced adipogenesis in skeletal muscle of Angus compared to Nellore cattle, while no difference in fibrogenesis. PMID:26436893

  19. Regulation of gene expression in vertebrate skeletal muscle

    SciTech Connect

    Carvajal, Jaime J. Rigby, Peter W.J.

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  20. Dysspondyloenchondromatosis: Another COL2A1-Related Skeletal Dysplasia?

    PubMed Central

    Nakane, T.; Tando, T.; Aoyagi, K.; Hatakeyama, K.; Nishimura, G.; Coucke, I.P.J.; Mortier, G.; Sugita, K.

    2011-01-01

    Dysspondyloenchondromatosis (DSC) is a rare skeletal dysplasia that has currently been classified into the group of spondylometaphyseal dysplasias. To date, only 12 affected individuals have been reported. All cases are sporadic, and the etiology remains unknown. Distinctive features of DSC are anisospondyly and enchondroma-like lesions in the metaphyseal and diaphyseal portions of the long tubular bones. Affected individuals usually develop kyphoscoliosis and asymmetric limb shortening at an early age. Interestingly, some of the skeletal changes overlap with spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, a rare type II collagen disorder. Based on this resemblance we postulated that DSC may be allelic to SEMD Strudwick type and therefore performed a COL2A1 analysis in an affected boy who was diagnosed as having DSC at the age of 3 years. The identification of a novel heterozygous COL2A1 missense mutation (p.Gly753Asp) in the proband confirms our hypothesis and suggests that DSC may be another type II collagen disorder. PMID:22570642

  1. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue. PMID:24798447

  2. Thyrostimulin Regulates Osteoblastic Bone Formation During Early Skeletal Development.

    PubMed

    Bassett, J H Duncan; van der Spek, Anne; Logan, John G; Gogakos, Apostolos; Bagchi-Chakraborty, Jayashree; Murphy, Elaine; van Zeijl, Clementine; Down, Jenny; Croucher, Peter I; Boyde, Alan; Boelen, Anita; Williams, Graham R

    2015-09-01

    The ancestral glycoprotein hormone thyrostimulin is a heterodimer of unique glycoprotein hormone subunit alpha (GPA)2 and glycoprotein hormone subunit beta (GPB)5 subunits with high affinity for the TSH receptor. Transgenic overexpression of GPB5 in mice results in cranial abnormalities, but the role of thyrostimulin in bone remains unknown. We hypothesized that thyrostimulin exerts paracrine actions in bone and determined: 1) GPA2 and GPB5 expression in osteoblasts and osteoclasts, 2) the skeletal consequences of thyrostimulin deficiency in GPB5 knockout (KO) mice, and 3) osteoblast and osteoclast responses to thyrostimulin treatment. Gpa2 and Gpb5 expression was identified in the newborn skeleton but declined rapidly thereafter. GPA2 and GPB5 mRNAs were also expressed in primary osteoblasts and osteoclasts at varying concentrations. Juvenile thyrostimulin-deficient mice had increased bone volume and mineralization as a result of increased osteoblastic bone formation. However, thyrostimulin failed to induce a canonical cAMP response or activate the noncanonical Akt, ERK, or mitogen-activated protein kinase (P38) signaling pathways in primary calvarial or bone marrow stromal cell-derived osteoblasts. Furthermore, thyrostimulin did not directly inhibit osteoblast proliferation, differentiation or mineralization in vitro. These studies identify thyrostimulin as a negative but indirect regulator of osteoblastic bone formation during skeletal development. PMID:26018249

  3. Metformin Protects Skeletal Muscle from Cardiotoxin Induced Degeneration

    PubMed Central

    Langone, Francesca; Cannata, Stefano; Fuoco, Claudia; Lettieri Barbato, Daniele; Testa, Stefano; Nardozza, Aurelio Pio; Ciriolo, Maria Rosa; Castagnoli, Luisa; Gargioli, Cesare; Cesareni, Gianni

    2014-01-01

    The skeletal muscle tissue has a remarkable capacity to regenerate upon injury. Recent studies have suggested that this regenerative process is improved when AMPK is activated. In the muscle of young and old mice a low calorie diet, which activates AMPK, markedly enhances muscle regeneration. Remarkably, intraperitoneal injection of AICAR, an AMPK agonist, improves the structural integrity of muscles of dystrophin-deficient mdx mice. Building on these observations we asked whether metformin, a powerful anti-hyperglycemic drug, which indirectly activates AMPK, affects the response of skeletal muscle to damage. In our conditions, metformin treatment did not significantly influence muscle regeneration. On the other hand we observed that the muscles of metformin treated mice are more resilient to cardiotoxin injury displaying lesser muscle damage. Accordingly myotubes, originated in vitro from differentiated C2C12 myoblast cell line, become more resistant to cardiotoxin damage after pre-incubation with metformin. Our results indicate that metformin limits cardiotoxin damage by protecting myotubes from necrosis. Although the details of the molecular mechanisms underlying the protective effect remain to be elucidated, we report a correlation between the ability of metformin to promote resistance to damage and its capacity to counteract the increment of intracellular calcium levels induced by cardiotoxin treatment. Since increased cytoplasmic calcium concentrations characterize additional muscle pathological conditions, including dystrophies, metformin treatment could prove a valuable strategy to ameliorate the conditions of patients affected by dystrophies. PMID:25461598

  4. Functional heterogeneity of side population cells in skeletal muscle

    SciTech Connect

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi . E-mail: takeda@ncnp.go.jp

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.

  5. Fractures in late medieval skeletal populations from Serbia.

    PubMed

    Djurić, Marija P; Roberts, Charlotte A; Rakocević, Zoran B; Djonić, Danijela D; Lesić, Aleksandar R

    2006-06-01

    Bone fractures were analyzed from skeletal remains of 861 adult individuals from six cemeteries dating to the Late Medieval period in Serbia. Results of the study were compared to other cemetery populations (635 individual skeletons) of the same date and region in an attempt to understand fracture patterns. The association of types of fractures and their prevalence with sex, age at death, cemetery site, and information deriving from historical sources are discussed. Results showed that the long bone fracture frequency was 0.7%, and the majority of the fractures were the result of direct force. This rate is similar to some studies of contemporary British skeletal samples. However, it is much lower than for some other Old World sites. Cranial vault fractures had a rate of 6.7%, and of the facial skeleton, 1.3%; the frontal bone was the most affected of bones of the cranial vault. Injuries were more common on the upper extremities (0.8%) compared to the lower (0.6%). However, the fibula was the most fractured bone (2.8%), followed by the ulna (2.4%). This pattern is similar to three of six Late Medieval urban sites in Britain. These findings suggest that this rural community was exposed to a low risk of trauma, probably related mostly to accidents sustained during farming, and rarely to interpersonal violence. PMID:16365855

  6. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised.

    PubMed

    Warskulat, Ulrich; Flögel, Ulrich; Jacoby, Christoph; Hartwig, Hans-Georg; Thewissen, Michael; Merx, Marc W; Molojavyi, Andrej; Heller-Stilb, Birgit; Schrader, Jürgen; Häussinger, Dieter

    2004-03-01

    Taurine is the most abundant free amino acid in heart and skeletal muscle. In the present study, the effects of hereditary taurine deficiency on muscle function were examined in taurine transporter knockout (taut-/-) mice. These mice show an almost complete depletion of heart and skeletal muscle taurine levels. Treadmill experiments demonstrated that total exercise capacity of taut-/- mice was reduced by >80% compared with wild-type controls. The decreased performance of taut-/- mice correlated with increased lactate levels in serum during exercise. Surprisingly, cardiac function of taut-/- mice as assessed by magnetic resonance imaging, echocardiography, and isolated heart studies showed a largely normal phenotype under both control and stimulated conditions. However, analysis of taut-/- skeletal muscle revealed electromyographic abnormalities. (1)H nuclear magnetic resonance spectroscopy of tissue extracts showed that in the heart of taut-/- mice the lack of taurine was compensated by the up-regulation of various organic solutes. In contrast, a deficit of >10 mM in total organic osmolyte concentration was found in skeletal muscle. The present study identifies taurine transport as a crucial factor for the maintenance of skeletal muscle function and total exercise capacity, while cardiac muscle apparently can compensate for the loss of taurine. PMID:14734644

  7. Molecular characterization and expression patterns of emerin (EMD) gene in skeletal muscle between Meishan and Large White pigs.

    PubMed

    Wang, Yan; Xiao, Xia; Wang, Linjie

    2016-03-15

    The emerin protein is a nuclear membrane protein and has important functions in muscle development, regeneration, and cell signal transduction. However, knowledge regarding emerin in the domestic animal is limited. In this study, we cloned and characterized the pig emerin (EMD) gene. Semi-quantitative RT-PCR analysis revealed that the EMD gene was expressed at the highest level in the heart and fat at 120d. However, the fetal skeletal muscles displayed a greater abundance of EMD mRNA than that in skeletal muscles at postnatal development stages. In addition, the expression level of EMD at 60 day was significantly higher (p<0.05) in Meishan than Large White pigs. Pig EMD protein displayed the sarcolemma and perinuclear distribution in skeletal muscle sections, and there was no distribution change of EMD in skeletal muscle sections between Large White and Meishan pigs. These studies provide useful information for further research on the functions of pig EMD gene in skeletal muscle. PMID:26743124

  8. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1995-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on the Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred during the period of 15 April 1994 to 15 April 1995.

  9. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  10. Chemical Abundances of Symbiotic Giants

    NASA Astrophysics Data System (ADS)

    Gałan, C.; Mikołajewska, J.; Hinkle, K. H.; Joyce, R. R.

    2015-12-01

    High resolution (R ˜ 50000), near-IR spectra were used to measure photospheric abundances of CNO and elements around the iron peak for 24 symbiotic giants. Spectrum synthesis was employed using local thermal equilibrium and hydrostatic model atmospheres. The metallicities are distributed in a wide range with maximum around [Fe/H] ˜-0.4 - - 0.3 dex. Enrichment in 14N indicates that all the sample giants have experienced the first dredge-up. The relative abundance of [Ti/Fe] is generally large in red symbiotic systems.

  11. Coronal Abundances and Their Variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1996-01-01

    This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.

  12. SOLAR MODELS WITH REVISED ABUNDANCE

    SciTech Connect

    Bi, S. L.; Li, T. D.; Yang, W. M.; Li, L. H.

    2011-04-20

    We present new solar models in which we use the latest low abundances and further include the effects of rotation, magnetic fields, and extra-mixing processes. We assume that the extra-element mixing can be treated as a diffusion process, with the diffusion coefficient depending mainly on the solar internal configuration of rotation and magnetic fields. We find that such models can well reproduce the observed solar rotation profile in the radiative region. Furthermore, the proposed models can match the seismic constraints better than the standard solar models, also when these include the latest abundances, but neglect the effects of rotation and magnetic fields.

  13. In vivo Phosphoproteome of Human Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    PubMed Central

    Højlund, Kurt; Bowen, Benjamin P.; Hwang, Hyonson; Flynn, Charles R.; Madireddy, Lohith; Thangiah, Geetha; Langlais, Paul; Meyer, Christian; Mandarino, Lawrence J.; Yi, Zhengping

    2009-01-01

    Protein phosphorylation plays an essential role in signal transduction pathways that regulate substrate and energy metabolism, contractile function, and muscle mass in human skeletal muscle. Abnormal phosphorylation of signaling enzymes has been identified in insulin resistant muscle using phosphoepitope-specific antibodies, but its role in other skeletal muscle disorders remains largely unknown. This may be in part due to insufficient knowledge of relevant targets. Here, we therefore present the first large-scale in vivo phosphoproteomic study of human skeletal muscle from 3 lean, healthy volunteers. Trypsin digestion of 3-5 mg human skeletal muscle protein was followed by phosphopeptide enrichment using SCX and TiO2. The resulting phosphopeptides were analyzed by HPLC-ESI-MS/MS. Using this unbiased approach, we identified 306 distinct in vivo phosphorylation sites in 127 proteins, including 240 phosphoserines, 53 phosphothreonines and 13 phosphotyrosines in at least 2 out of 3 subjects. In addition, 61 ambiguous phosphorylation sites were identified in at least 2 out of 3 subjects. The majority of phosphoproteins detected are involved in sarcomeric function, excitation-contraction coupling (the Ca2+-cycle), glycolysis and glycogen metabolism. Of particular interest, we identified multiple novel phosphorylation sites on several sarcomeric Z-disc proteins known to be involved in signaling and muscle disorders. These results provide numerous new targets for the investigation of human skeletal muscle phosphoproteins in health and disease and demonstrate feasibility of phosphoproteomics research of human skeletal muscle in vivo. PMID:19764811

  14. MyoD control of SKIP expression during pig skeletal muscle development.

    PubMed

    Xiong, Q; Chai, J; Zhang, P P; Wu, J; Jiang, S W; Zheng, R; Deng, C Y

    2011-01-01

    Skeletal muscle and kidney enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5)P3 to PI(3,4)P2 that negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, we obtained a 1575-bp mRNA sequence of porcine SKIP that included the full coding region encoding a protein of 450 amino acids. With the use of comparative mapping, we mapped this gene to SSC12 q1.3, where many QTLs affect Backfat thickness at 10th rib, carcass yield, the number of muscle fibers, and ham weight traits. As a candidate gene for growth and carcass traits, a novel single nucleotide polymorphism in exon 12 (G>A) was detected by PCR-RFLP. The results showed that the GG genotype had higher skin percentage (SP), carcass length to first spondyle (CL1), carcass length to first rib (CL2), but lower intramuscular fat (IMF) as compared with genotype AG (P<0.05), and allele G seemed to be associated with an increase in the growth trait. Porcine SKIP was expressed abundantly in skeletal muscle tissue and was transcriptionally upregulated during skeletal muscle differentiation. Analysis of the porcine SKIP promoter sequence demonstrated that MyoD was involved in regulating SKIP mRNA expression in myotubes, partly via the cis-acting elements in SKIP promoter. In summary, we suggested that SKIP might play a role in the regulation of skeletal muscle development in pigs. PMID:20336382

  15. CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer.

    PubMed

    Wu, Andy C; He, Yaowu; Broomfield, Amy; Paatan, Nicoll J; Harrington, Brittney S; Tseng, Hsu-Wen; Beaven, Elizabeth A; Kiernan, Deirdre M; Swindle, Peter; Clubb, Adrian B; Levesque, Jean-Pierre; Winkler, Ingrid G; Ling, Ming-Tat; Srinivasan, Bhuvana; Hooper, John D; Pettit, Allison R

    2016-06-01

    Skeletal metastases present a major clinical challenge for prostate cancer patient care, inflicting distinctive mixed osteoblastic and osteolytic lesions that cause morbidity and refractory skeletal complications. Macrophages are abundant in bone and bone marrow and can influence both osteoblast and osteoclast function in physiology and pathology. Herein, we examined the role of macrophages in prostate cancer bone lesions, particularly the osteoblastic response. First, macrophage and lymphocyte distributions were qualitatively assessed in patient's prostate cancer skeletal lesions by immunohistochemistry. Second, macrophage functional contributions to prostate tumour growth in bone were explored using an immune-competent mouse model combined with two independent approaches to achieve in vivo macrophage depletion: liposome encapsulated clodronate that depletes phagocytic cells (including macrophages and osteoclasts); and targeted depletion of CD169(+) macrophages using a suicide gene knock-in model. Immunohistochemistry and histomorphometric analysis were performed to quantitatively assess cancer-induced bone changes. In human bone metastasis specimens, CD68(+) macrophages were consistently located within the tumour mass. Osteal macrophages (osteomacs) were associated with pathological woven bone within the metastatic lesions. In contrast, lymphocytes were inconsistently present in prostate cancer skeletal lesions and when detected, had varied distributions. In the immune-competent mouse model, CD169(+) macrophage ablation significantly inhibited prostate cancer-induced woven bone formation, suggesting that CD169(+) macrophages within pathological woven bone are integral to tumour-induced bone formation. In contrast, pan-phagocytic cell, but not targeted CD169(+) macrophage depletion resulted in increased tumour mass, indicating that CD169(-) macrophage subset(s) and/or osteoclasts influenced tumour growth. In summary, these observations indicate a prominent role

  16. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms

    PubMed Central

    Zhu, Jingui; Sun, Yongqiao; Zhao, Fa-Qing; Yu, Jun; Craig, Roger; Hu, Songnian

    2009-01-01

    Background Tarantula has been used as a model system for studying skeletal muscle structure and function, yet data on the genes expressed in tarantula muscle are lacking. Results We constructed a cDNA library from Aphonopelma sp. (Tarantula) skeletal muscle and got 2507 high-quality 5'ESTs (expressed sequence tags) from randomly picked clones. EST analysis showed 305 unigenes, among which 81 had more than 2 ESTs. Twenty abundant unigenes had matches to skeletal muscle-related genes including actin, myosin, tropomyosin, troponin-I, T and C, paramyosin, muscle LIM protein, muscle protein 20, a-actinin and tandem Ig/Fn motifs (found in giant sarcomere-related proteins). Matches to myosin light chain kinase and calponin were also identified. These results support the existence of both actin-linked and myosin-linked regulation in tarantula skeletal muscle. We have predicted full-length as well as partial cDNA sequences both experimentally and computationally for myosin heavy and light chains, actin, tropomyosin, and troponin-I, T and C, and have deduced the putative peptides. A preliminary analysis of the structural and functional properties was also carried out. Sequence similarities suggested multiple isoforms of most myofibrillar proteins, supporting the generality of multiple isoforms known from previous muscle sequence studies. This may be related to a mix of muscle fiber types. Conclusion The present study serves as a basis for defining the transcriptome of tarantula skeletal muscle, for future in vitro expression of tarantula proteins, and for interpreting structural and functional observations in this model species. PMID:19298669

  17. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    PubMed Central

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  18. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.

    PubMed

    Vermillion, Katie L; Anderson, Kyle J; Hampton, Marshall; Andrews, Matthew T

    2015-03-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  19. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    PubMed Central

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH. PMID:27327080

  20. Myoglobinuria and Skeletal Muscle Phosphorylase Deficiency

    PubMed Central

    Nixon, J. C.; Hobbs, W. K.; Greenblatt, J.

    1966-01-01

    Investigation of a patient complaining of exercise-induced dark urine, pain, stiffness and tenderness of skeletal muscle revealed findings characteristic of McArdle's disease. The dark urine was attributable to the excretion of myoglobin, and an ischemic exercise test failed to demonstrate the usual rise and fall in blood lactate and pyruvate. Enzyme assays of skeletal muscle showed an absence of phosphorylase, a slight increase in phosphorylase b kinase and a slight decrease in phosphoglucomutase. Chemical and histochemical analyses demonstrated an increase in the skeletal muscle glycogen content and an enlargement of the muscle cells. No abnormality of liver glycogen metabolism was found. In the absence of specific therapy, an effective and practical form of treatment is reduction of exercise below the threshold of symptoms. ImagesFig. 1Fig. 2Fig. 6Fig. 7Fig. 8 PMID:4952390

  1. Birth prevalence rates of skeletal dysplasias.

    PubMed

    Stoll, C; Dott, B; Roth, M P; Alembik, Y

    1989-02-01

    This study establishes the prevalence rates at birth of the skeletal dysplasias which can be diagnosed in the perinatal period or during pregnancy. Using a population-based register of congenital anomalies, a prevalence rate of 3.22 0/000 was observed. The most frequent types of skeletal dysplasia were achondroplasia and osteogenesis imperfecta (0.64 0/000, 1/15,000 births), thanatophoric dysplasia and achondrogenesis (0.28 0/000). The mutation rate for achondroplasia was higher in our material than in the other studies: 3.3 x 10(-5) per gamete per generation. Our study demonstrates that prenatal diagnosis by ultrasound is possible in some skeletal dysplasias. PMID:2785882

  2. Skeletal cryptococcosis from 1977 to 2013

    PubMed Central

    Zhou, Heng-Xing; Lu, Lu; Chu, Tianci; Wang, Tianyi; Cao, Daigui; Li, Fuyuan; Ning, Guangzhi; Feng, Shiqing

    2015-01-01

    Skeletal cryptococcosis, an aspect of disseminated cryptococcal disease or isolated skeletal cryptococcal infection, is a rare but treatable disease. However, limited information is available regarding its clinical features, treatment, and prognosis. This systematic review examined all cases published between April 1977 and May 2013 with regard to the factors associated with this disease, including patient sex, age, and epidemiological history; affected sites; clinical symptoms; underlying diseases; laboratory tests; radiological manifestations; and delays in diagnosis, treatment, follow-up assessments, and outcomes. We found that immune abnormality is a risk factor but does not predict mortality; these observations are due to recent Cryptococcus neoformans var gattii (CNVG) outbreaks (Chaturvedi and Chaturvedi, 2011). Dissemination was irrespective of immune status and required combination therapy, and dissemination carried a worse prognosis. Therefore, a database of skeletal cryptococcosis cases should be created. PMID:25642211

  3. Skeletal Muscle Autophagy: A New Metabolic Regulator

    PubMed Central

    Neel, Brian A.; Lin, Yuxi; Pessin, Jeffrey E.

    2013-01-01

    Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that control autophagy in skeletal muscle have only just begun to emerge. Here, we review recent literature on the molecular pathways controlling skeletal muscle autophagy, and discuss how they connect autophagy to metabolic regulation. We also focus on the implications these studies hold for understanding metabolic and muscle wasting diseases. PMID:24182456

  4. Remaining Useful Life Estimation in Prognosis: An Uncertainty Propagation Problem

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2013-01-01

    The estimation of remaining useful life is significant in the context of prognostics and health monitoring, and the prediction of remaining useful life is essential for online operations and decision-making. However, it is challenging to accurately predict the remaining useful life in practical aerospace applications due to the presence of various uncertainties that affect prognostic calculations, and in turn, render the remaining useful life prediction uncertain. It is challenging to identify and characterize the various sources of uncertainty in prognosis, understand how each of these sources of uncertainty affect the uncertainty in the remaining useful life prediction, and thereby compute the overall uncertainty in the remaining useful life prediction. In order to achieve these goals, this paper proposes that the task of estimating the remaining useful life must be approached as an uncertainty propagation problem. In this context, uncertainty propagation methods which are available in the literature are reviewed, and their applicability to prognostics and health monitoring are discussed.

  5. High‐throughput collagen fingerprinting of intact microfaunal remains; a low‐cost method for distinguishing between murine rodent bones

    PubMed Central

    Gu, Muxin; Shameer, Sanu; Patel, Soyab; Chamberlain, Andrew T.

    2016-01-01

    Rationale Microfaunal skeletal remains can be sensitive indicators of the contemporary ecosystem in which they are sampled and are often recovered in owl pellets in large numbers. Species identification of these remains can be obtained using a range of morphological criteria established for particular skeletal elements, but typically dominated by a reliance on cranial characters. However, this can induce biases under different environmental and taphonomic conditions. The aim of this research was to develop a high‐throughput method of objectively identifying rodent remains from archaeological deposits using collagen fingerprinting, most notably the identification of rats from other myomorph rodents as a means to identify disturbances in the archaeofauna through the presence of invasive taxa not contemporary with the archaeological deposits. Methods Collagen was extracted from complete microfaunal skeletal remains in such a manner as to leave the bones morphologically intact (i.e., weaker concentration of acid than previously used over shorter length of time). Acid‐soluble collagen was then ultrafiltered into ammonium bicarbonate and digested with trypsin prior to dilution in the MALDI matrix and acquisition of peptide mass fingerprints using a matrix‐assisted laser desorption/ionisation time‐of‐flight (MALDI‐TOF) mass spectrometer. Results Collagen fingerprinting was able to distinguish between Rattus, Mus, Apodemus and Micromys at the genus level; at the species level, R. rattus and R. norvegicus could be separated whereas A. flavicollis and A. sylvaticus could not. A total of 12,317 archaeological microvertebrate samples were screened for myomorph signatures but none were found to be invasive rats (Rattus) or mice (Mus). Of the contemporary murine fauna, no harvest mice (Micromys) were identified and only 24 field mouse (Apodemus) discovered. Conclusions As a result, no evidence of recent bioturbation could be inferred from the faunal remains of these

  6. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  7. PDLIM7 is a novel target of the ubiquitin ligase Nedd4-1 in skeletal muscle.

    PubMed

    D'Cruz, Robert; Plant, Pamela J; Pablo, Lesley A; Lin, Shouzhe; Chackowicz, Joshua; Correa, Judy; Bain, James; Batt, Jane

    2016-02-01

    Skeletal muscle atrophy remains a complication occurring both as a natural response to muscle disuse and as a pathophysiological response to illness such as diabetes mellitus and nerve injury, such as traumatic muscle denervation. The ubiquitin-proteasome system (UPS) is the predominant proteolytic machinery responsible for atrophy of skeletal muscle, and Nedd4-1 (neural precursor cell-expressed developmentally down-regulated 4-1) is one of a series of E3 ubiquitin ligases identified to mediate inactivity-induced muscle wasting. Targets of Nedd4-1 mediated ubiquitination in skeletal muscle remain poorly understood. In the present study, we identified PDLIM7 (PDZ and LIM domain 7, Enigma), a member of the PDZ-LIM family of proteins, as a novel target of Nedd4-1 in skeletal muscle. The PDZ-LIM family of proteins is known to regulate muscle development and function. We show that Nedd4-1 expression in muscle atrophied by denervation is co-incident with a decrease in PDLIM7 and that PDLIM7 protein levels are stabilized in denervated muscle of Nedd4-1 skeletal muscle-specific knockout mice (SMS-KO). Exogenous PDLIM7 and Nedd4-1 transfected into human embryonic kidney (HEK)293 cells co-immunoprecipitate through binding between the PY motif of PDLIM7 and the second and third WW domains of Nedd4-1 and endogenous PDLIM7 and Nedd4-1 interact in the cytoplasm of differentiated C2C12 myotubes, leading to PDLIM7 ubiquitination. These results identify PDLIM7 as a bona fide skeletal muscle substrate of Nedd4-1 and suggest that this interaction may underlie the progression of skeletal muscle atrophy. This offers a novel therapeutic target that could be potentially used to attenuate muscle atrophy. PMID:26556890

  8. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  9. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    SciTech Connect

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S. )

    1989-02-07

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar.

  10. Inflicted Skeletal Trauma: The Relationship of Perpetrators to Their Victims

    ERIC Educational Resources Information Center

    Starling, Suzanne P.; Sirotnak, Andrew P.; Heisler, Kurt W.; Barnes-Eley, Myra L.

    2007-01-01

    Objective: Although inflicted skeletal trauma is a very common presentation of child abuse, little is known about the perpetrators of inflicted skeletal injuries. Studies exist describing perpetrators of inflicted traumatic brain injury, but no study has examined characteristics of perpetrators of inflicted skeletal trauma. Methods: All cases of…

  11. Clearing skeletal muscle with CLARITY for light microscopy imaging.

    PubMed

    Milgroom, Andrew; Ralston, Evelyn

    2016-04-01

    Viewing subcellular details over large tissue volumes is becoming an essential condition of the success of large-scale projects aimed at visualizing cell connections in whole organs or tissues. However, tissue opacity remains an obstacle to deep tissue imaging. This situation has brought renewed interest for techniques of tissue clearing; new protocols, such as CLARITY (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ hybridization-compatible Tissue-hYdrogel), have recently been developed. So far, most of the tests of these techniques have been applied to brain or other soft tissues. Here we show that CLARITY clears mouse hindlimb skeletal muscles and maintains the basic structural features of muscle and its fibers. However, tagging with fluorescent markers was not successful. PMID:26732743

  12. Effect of space flight on sodium, copper, manganese and magnesium content in the skeletal bones

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Taitsev, V. P.; Shakhunov, B. A.; Zhizhina, V. A.; Kolesnik, A. G.; Komissarova, N. A.

    1979-01-01

    Sodium content decreased in the human skeletal bones and rose in the rat bones following space flight. In man copper content rose in the femoral bone and decreased in the vertebral body and the sternum, but was unchanged in the rest of the bones. Magnesium content was decreased in the femoral bone and the sternum, and in the vertebrae, but remained unchanged in the rest of the bones. Possible mechanisms of the changes detected are discussed.

  13. DEVELOPMENTAL REGULATION OF THE ACTIVATION OF SIGNALING COMPONENTS LEADING TO TRANSLATION INITIATION IN SKELETAL MUSCLE OF NEONATAL PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neonatal period is characterized by rapid growth driven by high rates of skeletal muscle protein synthesis. This high rate of protein synthesis declines with development. In this study, overnight fasted, 7- and 26-d-old pigs either remained fasting or were refed and the activation of growth fa...

  14. Maxillary protraction using skeletal anchorage and intermaxillary elastics in Skeletal Class III patients

    PubMed Central

    Ağlarcı, Cahide; Albayrak, Gayem Eroğlu; Fındık, Yavuz

    2015-01-01

    The aim of this case report is to describe the treatment of a patient with skeletal Class III malocclusion with maxillary retrognathia using skeletal anchorage devices and intermaxillary elastics. Miniplates were inserted between the mandibular lateral incisor and canine teeth on both sides in a male patient aged 14 years 5 months. Self-drilling mini-implants (1.6 mm diameter, 10 mm length) were installed between the maxillary second premolar and molar teeth, and Class III elastics were used between the miniplates and miniscrews. On treatment completion, an increase in the projection of the maxilla relative to the cranial base (2.7 mm) and significant improvement of the facial profile were observed. Slight maxillary counterclockwise (1°) and mandibular clockwise (3.3°) rotations were also observed. Maxillary protraction with skeletal anchorage and intermaxillary elastics was effective in correcting a case of Skeletal Class III malocclusion without dentoalveolar side effects. PMID:25798416

  15. Advances and challenges in skeletal muscle angiogenesis

    PubMed Central

    Baum, Oliver; Hellsten, Ylva; Egginton, Stuart

    2015-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338

  16. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  17. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  18. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  19. Sexual selection on skeletal shape in Carnivora.

    PubMed

    Morris, Jeremy S; Carrier, David R

    2016-04-01

    Lifetime reproductive success of males is often dependent upon the ability to physically compete for mates. However, species variation in social structure leads to differences in the relative importance of intraspecific aggression. Here, we present a large comparative dataset on sexual dimorphism in skeletal shape in Carnivora to test the hypotheses that carnivorans exhibit sexual dimorphism in skeletal anatomy that is reflective of greater specialization for physical aggression in males relative to females and that this dimorphism is associated with the intensity of sexual selection. We tested these hypotheses using a set of functional indices predicted to improve aggressive performance. Our results indicate that skeletal shape dimorphism is widespread within our sample. Functional traits thought to enhance aggressive performance are more pronounced in males. Phylogenetic model selection suggests that the evolution of this dimorphism is driven by sexual selection, with the best-fitting model indicating greater dimorphism in polygynous versus nonpolygynous species. Skeletal shape dimorphism is correlated with body size dimorphism, a common indicator of the intensity of male-male competition, but not with mean body size. These results represent the first evidence of sexual dimorphism in the primary locomotor system of a large sample of mammals. PMID:26969835

  20. Skeletal muscle pathology in Huntington's disease

    PubMed Central

    Zielonka, Daniel; Piotrowska, Izabela; Marcinkowski, Jerzy T.; Mielcarek, Michal

    2014-01-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a polyglutamine stretch within the huntingtin protein (HTT). The neurological symptoms, that involve motor, cognitive and psychiatric disturbances, are caused by neurodegeneration that is particularly widespread in the basal ganglia and cereberal cortex. HTT is ubiquitously expressed and in recent years it has become apparent that HD patients experience a wide array of peripheral organ dysfunction including severe metabolic phenotype, weight loss, HD-related cardiomyopathy and skeletal muscle wasting. Although skeletal muscles pathology became a hallmark of HD, the mechanisms underlying muscular atrophy in this disorder are unknown. Skeletal muscles account for approximately 40% of body mass and are highly adaptive to physiological and pathological conditions that may result in muscle hypertrophy (due to increased mechanical load) or atrophy (inactivity, chronic disease states). The atrophy is caused by degeneration of myofibers and their replacement by fibrotic tissue is the major pathological feature in many genetic muscle disorders. Under normal physiological conditions the muscle function is orchestrated by a network of intrinsic hypertrophic and atrophic signals linked to the functional properties of the motor units that are likely to be imbalanced in HD. In this article, we highlight the emerging field of research with particular focus on the recent studies of the skeletal muscle pathology and the identification of new disease-modifying treatments. PMID:25339908

  1. Advances and challenges in skeletal muscle angiogenesis.

    PubMed

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva; Egginton, Stuart

    2016-02-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338

  2. IQ Measurement in Children with Skeletal Dysplasia.

    ERIC Educational Resources Information Center

    Rogers, John G.; And Others

    1979-01-01

    IQ studies on 68 children (5 months-15 years) with skeletal dysplasia (dwarfism) were reviewed to provide counseling to parents of newborn affected children. Results of the study show that this population performs intellectually in the same range as other children. Journal availability: see EC 115 198. (PHR)

  3. Triadin Deletion Induces Impaired Skeletal Muscle Function*

    PubMed Central

    Oddoux, Sarah; Brocard, Julie; Schweitzer, Annie; Szentesi, Peter; Giannesini, Benoit; Brocard, Jacques; Fauré, Julien; Pernet-Gallay, Karine; Bendahan, David; Lunardi, Joël; Csernoch, Laszlo; Marty, Isabelle

    2009-01-01

    Triadin is a multiple proteins family, some isoforms being involved in muscle excitation-contraction coupling, and some having still unknown functions. To obtain clues on triadin functions, we engineered a triadin knock-out mouse line and characterized the physiological effect of triadin ablation on skeletal muscle function. These mice presented a reduced muscle strength, which seemed not to alter their survival and has been characterized in the present work. We first checked in these mice the expression level of the different proteins involved in calcium homeostasis and observed in fast muscles an increase in expression of dihydropyridine receptor, with a large reduction in calsequestrin expression. Electron microscopy analysis of KO muscles morphology demonstrated the presence of triads in abnormal orientation and a reduction in the sarcoplasmic reticulum terminal cisternae volume. Using calcium imaging on cultured myotubes, we observed a reduction in the total amount of calcium stored in the sarcoplasmic reticulum. Physiological studies have been performed to evaluate the influence of triadin deletion on skeletal muscle function. Muscle strength has been measured both on the whole animal model, using hang test or electrical stimulation combined with NMR analysis and strength measurement, or on isolated muscle using electrical stimulation. All the results obtained demonstrate an important reduction in muscle strength, indicating that triadin plays an essential role in skeletal muscle function and in skeletal muscle structure. These results indicate that triadin alteration leads to the development of a myopathy, which could be studied using this new animal model. PMID:19843516

  4. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    The two major goals for this project is to (1) examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter; and (2) examine skeletal muscle.

  5. The cerebro-oculo-facio-skeletal syndrome.

    PubMed

    Grizzard, W S; O'Donnell, J J; Carey, J C

    1980-02-01

    A 3 1/2-month-old boy with the cerebro-oculo-facio-skeletal syndrome had low birth weight, microcephaly, microphthalmia, cataracts, blepharophimosis, high nasal bridge, micrognathia, kyphosis, rocker-bottom feet, and a longitudinal foot groove. The product of a consanguineous parentage, he showed marked developmental retardation, suggesting abnormal recessive inheritance. PMID:7355980

  6. Skeletal Muscle Loading Changes its Regenerative Capacity.

    PubMed

    Teixeira, Eduardo; Duarte, José Alberto

    2016-06-01

    Whenever skeletal muscle insults occur, both by functional impositions or other injury forms, skeletal muscle repair (SMR) follows. The SMR succeeds when proper skeletal muscle regeneration and limited fibrosis ensue. Muscle fiber replenishment by fibrosis negatively affects the tissue quality and functionality and, furthermore, represents the worst post-injury phenotypic adaptation. Acute muscle injury treatment commonly follows the RICE method-rest, ice, compression, and elevation. This immediate immobilization seems to be beneficial to preserving the tissue structure and avoiding further destruction; however, if these interventions are delayed, the risk of muscle atrophy and its deleterious-related effects increase, with resultant impaired SMR. Moreover, a growing body of evidence shows positive skeletal muscle loading (SML) effects during SMR since it seems to effectively increase satellite cells (SCs) in their activation, proliferation, self-renewal, and differentiation capacities. Additionally, recent data show that SML may also influence the functions of other participants in SMR, compelling SMR to achieve less fibrotic accretion and accelerated muscle mass recovery. Moreover, given the SML effects on SCs, it is plausible to consider that these can increase the myofibers' basal myogenic potential. Thus, it seems relevant to scrutinize the possible acute and chronic SML therapeutic and prophylactic effects regarding the SMR process. PMID:26838984

  7. miRNAs Related to Skeletal Diseases.

    PubMed

    Seeliger, Claudine; Balmayor, Elizabeth R; van Griensven, Martijn

    2016-09-01

    miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations. PMID:27418331

  8. New Skeletal-Space-Filling Models

    ERIC Educational Resources Information Center

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  9. Connexins in skeletal muscle development and disease.

    PubMed

    Merrifield, Peter A; Laird, Dale W

    2016-02-01

    Gap junctions consist of clusters of intercellular channels composed of connexins that connect adjacent cells and allow the exchange of small molecules. While the 21 member multi-gene family of connexins are ubiquitously found in humans, only Cx39, Cx40, Cx43 and Cx45 have been documented in developing myoblasts and injured adult skeletal muscle while healthy adult skeletal muscle is devoid of connexins. The use of gap junctional blockers and cultured myoblast cell lines have suggested that these connexins play a critical role in myotube formation and muscle regeneration. More recent genetically-modified mouse models where Cx43 function is greatly compromized or ablated have further supported a role for Cx43 in regulating skeletal muscle development. In the last decade, we have become aware of a cohort of patients that have a development disorder known as oculodentodigital dysplasia (ODDD). These patients harbor either gain or loss of Cx43 function gene mutations that result in many organ anomalies raising questions as to whether they suffer from defects in skeletal muscle formation or regeneration upon injury. Interesting, some ODDD patients report muscle weakness and loss of limb control but it is not clear if this is neurogenic or myogenic in origin. This review will focus on the role connexins play in muscle development and repair and discuss the impact of Cx43 mutants on muscle function. PMID:26688333

  10. [Effects of lycopene on the skeletal system].

    PubMed

    Sołtysiak, Patrycja; Folwarczna, Joanna

    2015-01-01

    Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system. PMID:25720611

  11. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  12. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.

    PubMed

    Dutt, Vikas; Gupta, Sanjeev; Dabur, Rajesh; Injeti, Elisha; Mittal, Ashwani

    2015-09-01

    Over the last two decades, new insights into the etiology of skeletal muscle wasting/atrophy under diverse clinical settings including denervation, AIDS, cancer, diabetes, and chronic heart failure have been reported in the literature. However, the treatment of skeletal muscle wasting remains an unresolved challenge to this day. About nineteen potential drugs that can regulate loss of muscle mass have been reported in the literature. This paper reviews the mechanisms of action of all these drugs by broadly classifying them into six different categories. Mechanistic data of these drugs illustrate that they regulate skeletal muscle loss either by down-regulating myostatin, cyclooxygenase2, pro-inflammatory cytokines mediated catabolic wasting or by up-regulating cyclic AMP, peroxisome proliferator-activated receptor gamma coactivator-1α, growth hormone/insulin-like growth factor1, phosphatidylinositide 3-kinases/protein kinase B(Akt) mediated anabolic pathways. So far, five major proteolytic systems that regulate loss of muscle mass have been identified, but the majority of these drugs control only two or three proteolytic systems. In addition to their beneficial effect on restoring the muscle loss, many of these drugs show some level of toxicity and unwanted side effects such as dizziness, hypertension, and constipation. Therefore, further research is needed to understand and develop treatment strategies for muscle wasting. For successful management of skeletal muscle wasting either therapeutic agent which regulates all five known proteolytic systems or new molecular targets/proteolytic systems must be identified. PMID:26048279

  13. Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Bowerman, Melissa; Salsac, Céline; Coque, Emmanuelle; Eiselt, Émilie; Deschaumes, Roman G; Brodovitch, Alexandre; Burkly, Linda C; Scamps, Frédérique; Raoul, Cédric

    2015-06-15

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that primarily affects motoneurons in the brain and spinal cord. Astrocyte and microglia activation as well as skeletal muscle atrophy are also typical hallmarks of the disease. However, the functional relationship between astrocytes, microglia and skeletal muscle in the pathogenic process remains unclear. Here, we report that the tumor necrosis factor-like weak inducer of apoptosis (Tweak) and its receptor Fn14 are aberrantly expressed in spinal astrocytes and skeletal muscle of SOD1(G93A) mice. We show that Tweak induces motoneuron death, stimulates astrocytic interleukin-6 release and astrocytic proliferation in vitro. The genetic ablation of Tweak in SOD1(G93A) mice significantly reduces astrocytosis, microgliosis and ameliorates skeletal muscle atrophy. The peripheral neutralization of Tweak through antagonistic anti-Tweak antibody ameliorates muscle pathology and notably, decreases microglial activation in SOD1(G93A) mice. Unexpectedly, none of these approaches improved motor function, lifespan and motoneuron survival. Our work emphasizes the multi-systemic aspect of ALS, and suggests that a combinatorial therapy targeting multiple cell types will be instrumental to halt the neurodegenerative process. PMID:25765661

  14. The role of nNOS and PGC-1α in skeletal muscle cells.

    PubMed

    Baldelli, Sara; Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria Rosa

    2014-11-15

    Neuronal nitric oxide synthase (nNOS) and peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) are two fundamental factors involved in the regulation of skeletal muscle cell metabolism. nNOS exists as several alternatively spliced variants, each having a specific pattern of subcellular localisation. Nitric oxide (NO) functions as a second messenger in signal transduction pathways that lead to the expression of metabolic genes involved in oxidative metabolism, vasodilatation and skeletal muscle contraction. PGC-1α is a transcriptional coactivator and represents a master regulator of mitochondrial biogenesis by promoting the transcription of mitochondrial genes. PGC-1α can be induced during physical exercise, and it plays a key role in coordinating the oxidation of intracellular fatty acids with mitochondrial remodelling. Several lines of evidence demonstrate that NO could act as a key regulator of PGC-1α expression; however, the link between nNOS and PGC-1α in skeletal muscle remains only poorly understood. In this Commentary, we review important metabolic pathways that are governed by nNOS and PGC-1α, and aim to highlight how they might intersect and cooperatively regulate skeletal muscle mitochondrial and lipid energetic metabolism and contraction. PMID:25217629

  15. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    PubMed

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  16. Regulation of blood flow distribution in skeletal muscle: role of erythrocyte-released ATP

    PubMed Central

    Ellsworth, Mary L; Sprague, Randy S

    2012-01-01

    The maintenance of adequate tissue O2 levels in skeletal muscle is vital for normal physiology and requires a well regulated and appropriately distributed convective O2 supply. Inherent in this fundamental physiological process is the requirement for a mechanism which both senses tissue O2 need and locally adjusts flow to appropriately meet that need. Over the past several years we and others have suggested that, in skeletal muscle, O2 carrying erythrocytes participate in the regulation of total blood flow and its distribution by releasing ATP. Importantly, the release of this vasoactive molecule must be both rapid and well controlled if it is to serve an important physiological role. Here we provide insights into three distinct regulated signalling pathways within the erythrocyte that are activated by exposure to reduced O2 tension or in response to binding of agonists to the prostacyclin or β-adrenergic receptors. Although much has been learned about the role of the erythrocyte in perfusion of skeletal muscle, much remains to be understood. However, what is clear is that the long established passive carrier of O2 also contributes to the regulation of the distribution of microvascular perfusion in skeletal muscle by virtue of its capacity to release ATP. PMID:22586223

  17. HDAC4-Myogenin Axis As an Important Marker of HD-Related Skeletal Muscle Atrophy

    PubMed Central

    Smeets, Cleo J. L. M.; Franklin, Sophie A.; Bondulich, Marie K.; Jolinon, Nelly; Muller, Thomas; Ahmed, Mhoriam; Dick, James R. T.; Piotrowska, Izabela; Greensmith, Linda; Smolenski, Ryszard T.; Bates, Gillian P.

    2015-01-01

    Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of Huntington’s disease (HD). While HD has been described primarily as a neurological disease, HD patients’ exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD. PMID:25748626

  18. MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures.

    PubMed

    Klein, Oliver; Strohschein, Kristin; Nebrich, Grit; Oetjen, Janina; Trede, Dennis; Thiele, Herbert; Alexandrov, Theodore; Giavalisco, Patrick; Duda, Georg N; von Roth, Philipp; Geissler, Sven; Klose, Joachim; Winkler, Tobias

    2014-10-01

    Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle. PMID:25056804

  19. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  20. A Challenge for School Leaders: Gender Equity Issues Remain

    ERIC Educational Resources Information Center

    Ragland, Joyce C.; Hatcher, Denise L.; Thomas, Jerald A., Jr.

    2005-01-01

    Gender roles in North American education remain a pertinent and dynamic source of discourse. Many questions concerning gender bias remain. This study attempts to characterize a nine-year period of college students' recall of episodes of gender bias from their pre-college experiences. The survey instrument used in this research consisted of a nine…

  1. 49 CFR 845.51 - Investigation to remain open.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Investigation to remain open. 845.51 Section 845.51 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION... § 845.51 Investigation to remain open. Accident investigations are never officially closed but are...

  2. Observational case series: an algorithm incorporating multidetector computed tomography in the medicolegal investigation of human remains after a natural disaster.

    PubMed

    Berran, Philip J; Mazuchowski, Edward L; Marzouk, Abubakr; Harcke, H Theodore

    2014-07-01

    An algorithm incorporating multidetector computed tomography (MDCT), digital radiographs, and external examination was used to triage cases for noninvasive or complete autopsy after a natural disaster. The algorithm was applied to 27 individuals who died during or soon after the earthquake that struck the Republic of Haiti on January 12, 2010. Of the 27 cases reviewed, 7 (26%) required a complete autopsy to determine cause and manner of death. In the remaining 20 (74%), cause and manner of death were determined with a reasonable degree of medical certainty after review of circumstances, an external examination, and postmortem imaging by MDCT and digital radiography (noninvasive autopsy). MDCT was particularly useful in detecting skeletal fractures caused by blunt force injury which were not evident on digital radiographs. The algorithm incorporating postmortem MDCT can be useful in the triage of human remains for autopsy after a natural disaster. PMID:24684535

  3. The solar abundance of thulium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    Consideration of one relatively unblended line of the solar spectrum, namely, the 3131.258-A line of Tm II, which yields a thulium abundance of 0.80 plus or minus 0.10 with the Corliss and Bozman (1962) f-value. The uncertainty of this figure is discussed in conjunction with the contradictory findings of some other investigators. The need for further detailed study of the lanthanides by the method of spectrum synthesis is pointed out.

  4. The skeletal endocannabinoid system: clinical and experimental insights.

    PubMed

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed. PMID:26457774

  5. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  6. Surface abundances of OC supergiants

    NASA Astrophysics Data System (ADS)

    Martins, F.; Foschino, S.; Bouret, J.-C.; Barbá, R.; Howarth, I.

    2016-04-01

    Context. Some O and B stars show unusually strong or weak lines of carbon and/or nitrogen. These objects are classified as OBN or OBC stars. It has recently been shown that nitrogen enrichment and carbon depletion are the most likely explanations for the existence of the ON class. Aims: We investigate OC stars (all being supergiants) to check that surface abundances are responsible for the observed anomalous line strengths. Methods: We perform a spectroscopic analysis of three OC supergiants using atmosphere models. A fourth star was previously studied by us. Our sample thus comprises all OC stars known to date in the Galaxy. We determine the stellar parameters and He, C, N, and O surface abundances. Results: We show that all stars have effective temperatures and surface gravities fully consistent with morphologically normal O supergiants. However, OC stars show little, if any, nitrogen enrichment and carbon surface abundances consistent with the initial composition. OC supergiants are thus barely chemically evolved, unlike morphologically normal O supergiants. Based on observations obtained at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 089.D-0975.

  7. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  8. Gene Regions Responding to Skeletal Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Booth, Frank W.

    1997-01-01

    Our stated specific aims for this project were: 1) Identify the region(s) of the mouse IIb myosin heavy chain (MHC) promoter necessary for in vivo expression in mouse fast-twitch muscle, and 2) Identify the region(s) of the mouse IIb MHC promoter responsive to immobilization in mouse slow-twitch muscle in vivo. We sought to address these specific aims by introducing various MHC IIb promoter/reporter gene constructs directly into the tibialis anterior and gastrocnemius muscles of living mice. Although the method of somatic gene transfer into skeletal muscle by direct injection has been successfully used in our laboratory to study the regulation of the skeletal alpha actin gene in chicken skeletal muscle, we had many difficulties utilizing this procedure in the mouse. Because of the small size of the mouse soleus and the difficulty in obtaining consistent results, we elected not to study this muscle as first proposed. Rather, our MHC IIb promoter deletion experiments were performed in the gastrocnemius. Further, we decided to use hindlimb unloading via tail suspension to induce an upregulation of the MHC IIb gene, rather than immobilization of the hindlimbs via plaster casts. This change was made because tail suspension more closely mimics spaceflight, and this procedure in our lab results in a smaller loss of overall body mass than the mouse hindlimb immobilization procedure. This suggests that the stress level during tail suspension is less than during immobilization. This research has provided an important beginning point towards understanding the molecular regulation of the MHC lIb gene in response to unweighting of skeletal muscle Future work will focus on the regulation of MHC IIb mRNA stability in response to altered loading of skeletal muscle

  9. Estimation of the pre-burning condition of human remains in forensic contexts.

    PubMed

    Gonçalves, D; Cunha, E; Thompson, T J U

    2015-09-01

    The determination of the original condition of human remains prior to burning is critical since it may facilitate the reconstruction of circumstances surrounding death in forensic cases. Although the use of heat-induced bone changes is not a completely reliable proxy for determining pre-burning conditions, it is not completely devoid of potential, as we can observe a clear difference in the occurrence of such features between the fleshed and dry bones. In order to quantify this difference and determine its true value for forensic research, the frequencies of heat-induced warping and thumbnail fractures were documented on modern cremations of cadavers from recently deceased individuals and from the cremations of skeletons previously inhumed. The effect of age, sex, time span from death to cremation, duration and temperature of combustion on those frequencies was statistically investigated. Results demonstrated that the heat-induced features were significantly more frequent in the sample of cadavers. In addition, warping was determined to be the most useful indicator of the pre-burning condition of human remains. Temperature of combustion was the only variable having a significant effect on the frequency of both features, suggesting that fluctuation of temperature, along with collagen preservation and recrystallization of the inorganic phase, is paramount for their occurrence. Both warping and thumbnail fractures may eventually be used for the estimation of the pre-burning condition of human remains in lack of other indicators, but their reliability is far from absolute. Ideally, such inference must be supported by other data such as skeletal representation, objects or defleshing marks on the bones. PMID:24878617

  10. Identification of Bacterial Isolates Obtained from Intestinal Contents Associated with 12,000-Year-Old Mastodon Remains

    PubMed Central

    Rhodes, A. N.; Urbance, J. W.; Youga, H.; Corlew-Newman, H.; Reddy, C. A.; Klug, M. J.; Tiedje, J. M.; Fisher, D. C.

    1998-01-01

    Mastodon (Mammut americanum) remains unearthed during excavation of ancient sediments usually consist only of skeletal material, due to postmortem decomposition of soft tissues by microorganisms. Two recent excavations of skeletal remains in anoxic sediments in Ohio and Michigan, however, have uncovered organic masses which appear to be remnants of the small and large intestines, respectively. Macrobotanical examinations of the composition of these masses revealed assemblages of plant material radiocarbon dated to approximately 11,500 years before the present and thought to be incompletely digested food remains from this extinct mammal. We attempted to cultivate and identify bacteria from the intestinal contents, bone-associated sediments, and sediments not in proximity to the remains using a variety of general and selective media. In all, 295 isolates were cultivated, and 38 individual taxa were identified by fatty acid-methyl ester (FAME) profiles and biochemical characteristics (API-20E). The taxonomic positions of selected enteric and obligately anaerobic bacteria were confirmed by 16S ribosomal DNA (rDNA) sequencing. Results indicate that the intestinal and bone-associated samples contained the greatest diversity of bacterial taxa and that members of the family Enterobacteriaceae represented 41% of all isolates and were predominant in the intestinal masses and sediments in proximity to the skeleton but were uncommon in the background sediments. Enterobacter cloacae was the most commonly identified isolate, and partial rDNA sequencing revealed that Rahnella aquatilis was the correct identity of strains suggested by FAME profiles to be Yersinia enterocolitica. No Bacteroides spp. or expected intestinal anaerobes were recovered. The only obligate anaerobes recovered were clostridia, and these were not recovered from the small intestinal masses. Microbiological evidence from this study supports other, macrobotanical data indicating the intestinal origin of these

  11. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    SciTech Connect

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup −6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.

  12. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  13. Persistence of identifiable remains of white sturgeon juveniles in digestive tracts of northern pikeminnow

    USGS Publications Warehouse

    Gadomski, D.M.; Frost, C.N.

    2004-01-01

    Juvenile white sturgeon, Acipenser transmontanus, have not been commonly identified as prey items in digestive tracts of fishes collected in the wild. In particular, the diet of northern pikeminnow, Ptychocheilus oregonensis, an abundant Pacific Northwest freshwater predator which has been widely studied, has not included juvenile white sturgeon. To aid in interpreting these results and help in planning future feeding studies, we determined the persistence of identifiable remains of white sturgeon juveniles in this predator's digestive tract. Northern pikeminnow (mean total length = 476 mm), were force-fed meals of 2 or 3 juvenile white sturgeon (mean total length = 91 mm). After digestive periods of 4, 8, 16, 24, 28, and 32h at a water temperature of about 17 ??C, fish were sacrificed, digestive tracts removed, and contents examined. Our results indicate that juvenile white sturgeon would be readily discernable in digestive tracts of northern pikeminnow at least a day after feeding, with scutes remaining undigested and identifiable for 28 h.

  14. Diagenetic signals from ancient human remains - bioarchaeological applications

    NASA Astrophysics Data System (ADS)

    Szostek, Krzysztof; Stepańczak, Beata; Szczepanek, Anita; Kępa, Małgorzata; Głąb, Henryk; Jarosz, Paweł; Włodarczak, Piotr; Tunia, Krzysztof; Pawlyta, Jacek; Paluszkiewicz, Czesława; Tylko, Grzegorz

    2011-01-01

    This preliminary study examines the potential effects of diagenetic processes on the oxygen-isotope ratios of bone and tooth phosphate (δ18O) from skeletal material of individuals representing the Corded Ware Culture (2500-2400 BC) discovered in Malżyce (Southern Poland). Intra-individual variability of Ca/P, CI, C/P, collagen content (%) and oxygen isotopes was observed through analysis of enamel, dentin and postcranial bones. Using a variety of analytical techniques, it was found that, despite the lack of differences in soil acidity, not all the parts of a skeleton on a given site had been equally exposed to diagenetic post mortem changes. In a few cases, qualitative changes in the FTIR spectrum of analysed bones were observed. The data suggest that apart from quantitative analyses, i.e., the calculation of Ca/P, CI, C/P and collagen content, qualitative analyses such as examination of the absorbance line are recommended. The degree to which a sample is, contaminated on the basis of any additional, non-biogenic peaks, deemed to be contaminated should also be specified.

  15. Detail of roofline with view of remaining cupola in background; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of roofline with view of remaining cupola in background; camera facing southwest. - Mare Island Naval Shipyard, Old Administrative Offices, Eighth Street, north side between Railroad Avenue & Walnut Avenue, Vallejo, Solano County, CA

  16. 53. INTERIOR VIEW LOOKING NORTH NORTHEAST SHOWING THE REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. INTERIOR VIEW LOOKING NORTH NORTHEAST SHOWING THE REMAINS OF A WOODEN SETTLING BOX IN THE BACKGROUND RIGHT. AMALGAMATING PANS IN THE FOREGROUND. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  17. 7. REMAINS OF PLANK WALL WITHIN CANAL CONSTRUCTED TO PROTECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. REMAINS OF PLANK WALL WITHIN CANAL CONSTRUCTED TO PROTECT OUTSIDE CANAL BANK, LOOKING SOUTHWEST. NOTE CROSS SUPPORT POLES EXTENDING TO HILLSIDE. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  18. 6. REMAINS OF PLANK WALL NAILED TO POSTS WITHIN CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. REMAINS OF PLANK WALL NAILED TO POSTS WITHIN CANAL CONSTRUCTED TO PROTECT OUTSIDE CANAL BANK. VIEW IS TO THE WEST. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  19. 25. CAFETERIA Note remains of tile floor in foreground. Food ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CAFETERIA Note remains of tile floor in foreground. Food cooked on the stove was served to workers in the eating area to the left of the counter (off picture). - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  20. 11. DOUBLE CURVED RACK. UPPER PORTION ROTATES; LOWER PORTION REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DOUBLE CURVED RACK. UPPER PORTION ROTATES; LOWER PORTION REMAINS STATIONARY. DISCARDED ROLLER NEAR CENTER OF FRAME. - Chicago, Milwaukee & St. Paul Railway, Bridge No. Z-6, Spanning North Branch of Chicago River, South of Cortland Street, Chicago, Cook County, IL

  1. View of Feature 1, the remains of and administration building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 1, the remains of and administration building, view to the southwest - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  2. View of Feature 1, the remains of and administration building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 1, the remains of and administration building, view to the west-northwest - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  3. View of Feature 1, the remains of and administration building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 1, the remains of and administration building, view to the south - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  4. View of remains of Feature 17, a cottage, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of remains of Feature 17, a cottage, view to the northwest - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  5. View of Feature 1, the remains of and administration building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 1, the remains of and administration building, view to the north - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  6. View of the remains of Feature 19, a cottage, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the remains of Feature 19, a cottage, view to the west-northwest - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  7. View of Feature 3, the remains of an administration building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Feature 3, the remains of an administration building, view to the south - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ

  8. 7. Detail view: east side of north end, showing remains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view: east side of north end, showing remains of Fort San Antonio - Puente Guillermo Esteves, Spanning San Antonio Channel at PR-25 (Juan Ponce de Leon Avenue), San Juan, San Juan Municipio, PR

  9. Cellar: Detail of paired relieving arch and remains of herringbone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cellar: Detail of paired relieving arch and remains of herringbone brick pattern from earlier cooking fireplace at back, southeast wall looking southeast - Kingston-Upon-Hill, Kitts Hummock Road, Dover, Kent County, DE

  10. 4. Band Wheel and Walking Beam Mechanism, Including Remains of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Band Wheel and Walking Beam Mechanism, Including Remains of Frame Belt House, Looking Southeast - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA

  11. 32. Interior view, encased fireplace and remains of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Interior view, encased - fireplace and remains of the hearth against the north wall, with scale l(note: hole punched through plaster allows access to the flues) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA

  12. 3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS OF THE TURBINE FLUMES. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  13. View of submerged remains of Read Sawmill, with floor boards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of submerged remains of Read Sawmill, with floor boards removed, showing cross beams, foundation sill and mortises, and horizontal wall boards. - Silas C. Read Sawmill, Outlet of Maxwell Lake near North Range Road, Fort Gordon, Richmond County, GA

  14. View of submerged remains of Read Sawmill, showing floor boards, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of submerged remains of Read Sawmill, showing floor boards, wall boards, tenoned uprights and mortised sill beams. - Silas C. Read Sawmill, Outlet of Maxwell Lake near North Range Road, Fort Gordon, Richmond County, GA

  15. View of submerged remains of Read Sawmill with most floorboards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of submerged remains of Read Sawmill with most floorboards removed, showing cross beams with mortises, vertical wall boards, and horizontal floor boards. - Silas C. Read Sawmill, Outlet of Maxwell Lake near North Range Road, Fort Gordon, Richmond County, GA

  16. 11. Remains of Douglasfir cordwood abandoned when kilns ceased operation, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Remains of Douglas-fir cordwood abandoned when kilns ceased operation, looking northeast. - Warren King Charcoal Kilns, 5 miles west of Idaho Highway 28, Targhee National Forest, Leadore, Lemhi County, ID

  17. View of submerged remains of Read Sawmill, showing floor boards, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of submerged remains of Read Sawmill, showing floor boards, cross beams and notches for wall post beams. - Silas C. Read Sawmill, Outlet of Maxwell Lake near North Range Road, Fort Gordon, Richmond County, GA

  18. 13. View South, showing the remaining pier footings for the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View South, showing the remaining pier footings for the steam engine water tower for the Chesapeake and Ohio Railroad. - Cotton Hill Station Bridge, Spanning New River at State Route 16, Cotton Hill, Fayette County, WV

  19. 1. VIEW SHOWING REMAINS OF CAMOUFLAGE COVERING CONCRETE FOOTING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SHOWING REMAINS OF CAMOUFLAGE COVERING CONCRETE FOOTING FOR A GENERATOR PAD - Fort Cronkhite, Anti-Aircraft Battery No. 1, Concrete Footing-Generator Pad, Wolf Road, Sausalito, Marin County, CA

  20. 13. REMAINING TOP PART OF SOUTH ELEVATION, HAMMER BUILDING, SINCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. REMAINING TOP PART OF SOUTH ELEVATION, HAMMER BUILDING, SINCE JOINED TO BUILDING 6. - Hughes Aircraft Company, Assembly & Manufacturing Building, 6775 Centinela Avenue, Los Angeles, Los Angeles County, CA

  1. 11. LOOKING SOUTH AT THE ONLY REMAINING PART OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. LOOKING SOUTH AT THE ONLY REMAINING PART OF THE NORTH SIDE OF ORIGINAL LAB, FROM COURTYARD. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  2. 7. VIEW OF VESSEL FROM PORT BON, SHOWING REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF VESSEL FROM PORT BON, SHOWING REMAINS OF MAIN CABIN. AFT CABIN STILL STANDS ON STERN IN BACKGROUND - Motorized Sailing Vessel "Fox", Beached on East Bank ofBayou Lafourche, Larose, Lafourche Parish, LA

  3. 6. VIEW SOUTHWEST, COOLING TROUGH REMAINS Imperial Carbon Black ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SOUTHWEST, COOLING TROUGH REMAINS - Imperial Carbon Black Plant (Ruin), North side of North Fork of Hughes River along Bunnell Run Road just over 0.5 mile from its intersection with State Route 16, Harrisville, Ritchie County, WV

  4. 3. VIEW NORTH, COOLING TANK REMAINS Imperial Carbon Black ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTH, COOLING TANK REMAINS - Imperial Carbon Black Plant (Ruin), North side of North Fork of Hughes River along Bunnell Run Road just over 0.5 mile from its intersection with State Route 16, Harrisville, Ritchie County, WV

  5. Skeletal muscle signature of a champion sprint runner.

    PubMed

    Trappe, Scott; Luden, Nicholas; Minchev, Kiril; Raue, Ulrika; Jemiolo, Bozena; Trappe, Todd A

    2015-06-15

    We had the unique opportunity to study the skeletal muscle characteristics, at the single fiber level, of a world champion sprint runner who is the current indoor world record holder in the 60-m hurdles (7.30 s) and former world record holder in 110-m hurdles (12.91 s). Muscle biopsies were obtained from the vastus lateralis at rest and 4 h after a high-intensity exercise challenge (4 × 7 repetitions of resistance exercise). Single muscle fiber analyses were conducted for fiber type distribution (myosin heavy chain, MHC), fiber size, contractile function (strength, speed, and power) and mRNA expression (before and after the exercise bout). The world-class sprinter's leg muscle had a high abundance (24%) of the pure MHC IIx muscle fibers with a total fast-twitch fiber population of 71%. Power output of the MHC IIx fibers (35.1 ± 1.4 W/l) was 2-fold higher than MHC IIa fibers (17.1 ± 0.5 W/l) and 14-fold greater than MHC I fibers (2.5 ± 0.1 W/l). Additionally, the MHC IIx fibers were highly responsive to intense exercise at the transcriptional level for genes involved with muscle growth and remodeling (Fn14 and myostatin). To our knowledge, the abundance of pure MHC IIx muscle fibers is the highest observed in an elite sprinter. Further, the power output of the MHC IIa and MHC IIx muscle fibers was greater than any human values reported to date. These data provide a myocellular basis for the high level of sprinting success achieved by this individual. PMID:25749440

  6. Association of the ACTN3 R557X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle

    PubMed Central

    Riedl, Isabelle; Osler, Megan E; Benziane, Boubacar; Chibalin, Alexander V; Zierath, Juleen R

    2015-01-01

    A common polymorphism (R577X) in the α-actinin (ACTN) 3 gene, which leads to complete deficiency of a functional protein in skeletal muscle, could directly influence metabolism in the context of health and disease. Therefore, we tested the hypothesis that states of glucose tolerance are associated with the ACTN3 R577X genotype. We analyzed the prevalence of the ACTN3 R577X polymorphism in people with normal glucose tolerance (NGT) and type 2 diabetes (T2D) and measured muscle-specific α-actinin 2 and 3 mRNA and protein abundance in skeletal muscle biopsies. Furthermore, we investigated the protein abundance of the myosin heavy chain isoforms and the components of the mitochondrial electron transport chain in skeletal muscle from people with NGT or T2D. mRNA of selected sarcomeric z-disk proteins was also assessed. Although the prevalence of the ACTN3 577XX genotype was higher in T2D patients, genotype distribution was unrelated to metabolic control or obesity. ACTN2 and ACTN3 mRNA expression and protein abundance was unchanged between NGT and T2D participants. Protein abundance of mitochondrial complexes II and IV was related to genotype and glucose tolerance status. Gene expression of sarcomeric z-disk proteins was increased in skeletal muscle from NGT participants with the ACTN3 577XX genotype. While genetic variation in ACTN3 does not influence metabolic control, genotype does appear to influence gene expression of other sarcomeric proteins, which could contribute to the functional properties of skeletal muscle and the fatigue-resistant phenotype associated with the R577X polymorphism. PMID:25780092

  7. Association of the ACTN3 R577X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle.

    PubMed

    Riedl, Isabelle; Osler, Megan E; Benziane, Boubacar; Chibalin, Alexander V; Zierath, Juleen R

    2015-03-01

    A common polymorphism (R577X) in the α-actinin (ACTN) 3 gene, which leads to complete deficiency of a functional protein in skeletal muscle, could directly influence metabolism in the context of health and disease. Therefore, we tested the hypothesis that states of glucose tolerance are associated with the ACTN3 R577X genotype. We analyzed the prevalence of the ACTN3 R577X polymorphism in people with normal glucose tolerance (NGT) and type 2 diabetes (T2D) and measured muscle-specific α-actinin 2 and 3 mRNA and protein abundance in skeletal muscle biopsies. Furthermore, we investigated the protein abundance of the myosin heavy chain isoforms and the components of the mitochondrial electron transport chain in skeletal muscle from people with NGT or T2D. mRNA of selected sarcomeric z-disk proteins was also assessed. Although the prevalence of the ACTN3 577XX genotype was higher in T2D patients, genotype distribution was unrelated to metabolic control or obesity. ACTN2 and ACTN3 mRNA expression and protein abundance was unchanged between NGT and T2D participants. Protein abundance of mitochondrial complexes II and IV was related to genotype and glucose tolerance status. Gene expression of sarcomeric z-disk proteins was increased in skeletal muscle from NGT participants with the ACTN3 577XX genotype. While genetic variation in ACTN3 does not influence metabolic control, genotype does appear to influence gene expression of other sarcomeric proteins, which could contribute to the functional properties of skeletal muscle and the fatigue-resistant phenotype associated with the R577X polymorphism. PMID:25780092

  8. 52. VIEW OF REMAINS OF ORIGINAL 1907 CONTROL PANEL, LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW OF REMAINS OF ORIGINAL 1907 CONTROL PANEL, LOCATED ON NORTH WALL OF EAST END OF CONTROL ROOM. PORTIONS OF THIS PANEL REMAINED IN USE UNTIL THE PLANT CLOSED. THE METERS AND CONTROLS ARE MOUNTED ON SOAPSTONE PANELS. THE INSTRUMENT IN THE LEFT CENTER OF THE PHOTOGRAPH IS A TIRRILL VOLTAGE REGULATOR. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  9. Origin of cosmic chemical abundances

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Tescari, Edoardo

    2015-11-01

    Cosmological N-body hydrodynamic computations following atomic and molecular chemistry (e-, H, H+, H-, He, He+, He++, D, D+, H2, H_2^+, HD, HeH+), gas cooling, star formation and production of heavy elements (C, N, O, Ne, Mg, Si, S, Ca, Fe, etc.) from stars covering a range of mass and metallicity are used to explore the origin of several chemical abundance patterns and to study both the metal and molecular content during simulated galaxy assembly. The resulting trends show a remarkable similarity to up-to-date observations of the most metal-poor damped Lyman α absorbers at redshift z ≳ 2. These exhibit a transient nature and represent collapsing gaseous structures captured while cooling is becoming effective in lowering the temperature below ˜ 104 K, before they are disrupted by episodes of star formation or tidal effects. Our theoretical results agree with the available data for typical elemental ratios, such as [C/O], [Si/Fe], [O/Fe], [Si/O], [Fe/H], [O/H] at redshifts z ˜ 2-7. Correlations between H I and H2 abundances show temporal and local variations and large spreads as a result of the increasing cosmic star formation activity from z ˜ 6 to 3. The scatter we find in the abundance ratios is compatible with the observational data and is explained by simultaneous enrichment by sources from different stellar phases or belonging to different stellar populations. Simulated synthetic spectra support the existence of metal-poor cold clumps with large optical depth at z ˜ 6 that could be potential Population III sites at low or intermediate redshift. The expected dust content is in line with recent determinations.

  10. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program

    PubMed Central

    Hindi, Sajedah M.; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M.; Ogura, Yuji; Yan, Zhen; Burkly, Linda C.; Zheng, Timothy S.; Kumar, Ashok

    2014-01-01

    Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.—Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S., Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. PMID:24327607

  11. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise.

    PubMed

    Holwerda, Seth W; Restaino, Robert M; Fadel, Paul J

    2015-03-01

    Blood flow to active skeletal muscle increases markedly during dynamic exercise. However, despite the massive capacity of skeletal muscle vasculature to dilate, arterial blood pressure is well maintained. Sympathetic nerve activity is elevated with increased intensity of dynamic exercise, and is essential for redistribution of cardiac output to active skeletal muscle and maintenance of arterial blood pressure. In addition, aside from the sympathetic nervous system, evidence from human studies is now emerging that supports roles for non-adrenergic vasoconstrictor pathways that become active during exercise and contribute to vasoconstriction in active skeletal muscle. Neuropeptide Y and adenosine triphosphate are neurotransmitters that are co-released with norepinephrine from sympathetic nerve terminals capable of producing vasoconstriction. Likewise, plasma concentrations of arginine vasopressin, angiotensin II (Ang II) and endothelin-1 (ET-1) increase during dynamic exercise, particularly at higher intensities. Ang II and ET-1 have both been shown to be important vasoconstrictor pathways for restraint of blood flow in active skeletal muscle and the maintenance of arterial blood pressure during exercise. Indeed, although both adrenergic and non-adrenergic vasoconstriction can be attenuated in exercising muscle with greater intensity of exercise, with the higher volume of blood flow, the active skeletal muscle vasculature remains capable of contributing importantly to the maintenance of blood pressure. In this brief review we provide an update on skeletal muscle blood flow regulation during exercise with an emphasis on adrenergic and non-adrenergic vasoconstrictor pathways and their potential capacity to offset vasodilation and aid in the regulation of blood pressure. PMID:25467222

  12. Combinatory effects of siRNA‐induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition

    PubMed Central

    Mosler, Stephanie; Relizani, Karima; Mouisel, Etienne; Amthor, Helge; Diel, Patrick

    2014-01-01

    Abstract Inhibition of myostatin (Mstn) stimulates skeletal muscle growth, reduces body fat, and induces a number of metabolic changes. However, it remains unexplored how exercise training modulates the response to Mstn inhibition. The aim of this study was to investigate how siRNA‐mediated Mstn inhibition alone but also in combination with physical activity affects body composition and skeletal muscle homeostasis. Adult mice were treated with Mstn‐targeting siRNA and subjected to a treadmill‐based exercise protocol for 4 weeks. Effects on skeletal muscle and fat tissue, expression of genes, and serum concentration of proteins involved in myostatin signaling, skeletal muscle homeostasis, and lipid metabolism were investigated and compared with Mstn−/− mice. The combination of siRNA‐mediated Mstn knockdown and exercise induced skeletal muscle hypertrophy, which was associated with an upregulation of markers for satellite cell activity. SiRNA‐mediated Mstn knockdown decreased visceral fat and modulated lipid metabolism similar to effects observed in Mstn−/− mice. Myostatin did not regulate its own expression via an autoregulatory loop, however, Mstn knockdown resulted in a decrease in the serum concentrations of myostatin propeptide, leptin, and follistatin. The ratio of these three parameters was distinct between Mstn knockdown, exercise, and their combination. Taken together, siRNA‐mediated Mstn knockdown in combination with exercise stimulated skeletal muscle hypertrophy. Each intervention or their combination induced a specific set of adaptive responses in the skeletal muscle and fat metabolism which could be identified by marker proteins in serum. PMID:24760516

  13. Abundance measurements in stellar environments

    NASA Astrophysics Data System (ADS)

    Leone, F.

    2014-05-01

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  14. Abundance measurements in stellar environments

    SciTech Connect

    Leone, F.

    2014-05-09

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  15. The solar abundance of Oxygen

    NASA Astrophysics Data System (ADS)

    Grevesse, N.

    2009-07-01

    With Martin Asplund (Max Planck Institute of Astrophysics, Garching) and Jacques Sauval (Observatoire Royal de Belgique, Brussels) I recently published detailed reviews on the solar chemical composition ({Asplund et al. 2005}, {Grevesse et al. 2007}). A new one, with Pat Scott (Stockholm University) as additional co-author, will appear in Annual Review of Astronomy and Astrophysics ({Asplund et al. 2009}). Here we briefly analyze recent works on the solar abundance of Oxygen and recommend a value of 8.70 in the usual astronomical scale.

  16. The carnivore remains from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain).

    PubMed

    García, N; Arsuaga, J L; Torres, T

    1997-01-01

    Remains of carnivores from the Sima de los Huesos site representing at least 158 adult individuals of a primitive (i.e., not very speleoid) form of Ursus deningeri Von Reichenau 1906, have been recovered through the 1995 field season. These new finds extend our knowledge of this group in the Sierra de Atapuerca Middle Pleistocene. Material previously classified as Cuoninae indet, is now assigned to Canis lupus and a third metatarsal assigned in 1987 to Panthera of gombaszoegensis, is in our opinion only attributable to Panthera sp. The family Mustelidae is added to the faunal list and includes Martes sp. and a smaller species. The presence of Panthera leo cf. fossilis, Lynx pardina spelaea and Felis silvestris, is confirmed. The presence of a not very speloid Ursus deningeri, together with the rest of the carnivore assemblage, points to a not very late Middle Pleistocene age, i.e., oxygen isotope stage 7 or older. Relative frequencies of skeletal elements for the bear and fox samples are without major biases. The age structure of the bear sample, based on dental wear stages, does not follow the typical hibernation mortality profile and resembles a catastrophic profile. The site was not a natal or refuge den. The hypothesis that the site was a natural trap is the most plausible. If the Sima de los Huesos functioned as a natural trap (without an egress out), the human accumulation cannot be attributed to carnivore: activities and must be explained differently. PMID:9300340

  17. Australia's oldest human remains: age of the Lake Mungo 3 skeleton.

    PubMed

    Thorne, A; Grün, R; Mortimer, G; Spooner, N A; Simpson, J J; McCulloch, M; Taylor, L; Curnoe, D

    1999-06-01

    We have carried out a comprehensive ESR and U-series dating study on the Lake Mungo 3 (LM3) human skeleton. The isotopic Th/U and Pa/U ratios indicate that some minor uranium mobilization may have occurred in the past. Taking such effects into account, the best age estimate for the human skeleton is obtained through the combination of U-series and ESR analyses yielding 62,000+/-6000 years. This age is in close agreement with OSL age estimates on the sediment into which the skeleton was buried of 61,000+/-2000 years. Furthermore, we obtained a U-series age of 81,000+/-21,000 years for the calcitic matrix that was precipitated on the bones after burial. All age results are considerably older than the previously assumed age of LM3 and demonstrate the necessity for directly dating hominid remains. We conclude that the Lake Mungo 3 burial documents the earliest known human presence on the Australian continent. The age implies that people who were skeletally within the range of the present Australian indigenous population colonized the continent during or before oxygen isotope stage 4 (57,000-71,000 years). PMID:10330330

  18. Leucine incorporation into mixed skeletal muscle protein in humans

    SciTech Connect

    Nair, K.S.; Halliday, D.; Griggs, R.C. Clinical Research Centre, Harrow )

    1988-02-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of ({sup 13}C)-leucine in quadriceps muscle protein during an intravenous infusion of L-(1-{sup 13}C)leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 {plus minus} 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 {plus minus} 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS.

  19. Dehydrozingerone exerts beneficial metabolic effects in high-fat diet-induced obese mice via AMPK activation in skeletal muscle.

    PubMed

    Kim, Su Jin; Kim, Hong Min; Lee, Eun Soo; Kim, Nami; Lee, Jung Ok; Lee, Hye Jeong; Park, Na Yeon; Jo, Joo Yeon; Ham, Bo Young; Han, Si Hyun; Park, Sun Hwa; Chung, Choon Hee; Kim, Hyeon Soo

    2015-03-01

    Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high-fat diet-induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP-activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen-activated protein kinase (MAPK) signalling in an AMPK-dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ-induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin-induced glucose uptake increased in DHZ-fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle. PMID:25582026

  20. Skeletal muscle glucose uptake during treadmill exercise in neuronal nitric oxide synthase-μ knockout mice.

    PubMed

    Hong, Yet Hoi; Yang, Christine; Betik, Andrew C; Lee-Young, Robert S; McConell, Glenn K

    2016-05-15

    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation. PMID:27006199

  1. Sympathetic Activation Induces Skeletal Fgf23 Expression in a Circadian Rhythm-dependent Manner*

    PubMed Central

    Kawai, Masanobu; Kinoshita, Saori; Shimba, Shigeki; Ozono, Keiichi; Michigami, Toshimi

    2014-01-01

    The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism. PMID:24302726

  2. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells

    PubMed Central

    ZHOU, YUEHUA; GU, PINGQING; SHI, WEIJIE; LI, JINGYUN; HAO, QUN; CAO, XIAOMEI; LU, QIN; ZENG, YU

    2016-01-01

    Intrauterine growth retardation (IUGR) induces metabolic syndrome, which is often characterized by insulin resistance (IR), in adults. Previous research has shown that microRNAs (miRNAs or miRs) play a role in the target genes involved in this process, but the mechanisms remain unclear. In the present study, we examined miRNA profiles using samples of skeletal muscles from both IUGR and control rat offspring whose mothers were fed either a protein-restricted diet or a diet which involved normal amounts of protein during pregnancy, respectively. miR-29a was found to be upregulated in the skeletal muscles of IUGR offspring. The luciferase reporter assay confirmed the direct interaction between miR-29a and peroxisome proliferator-activated receptor δ (PPARδ). Overexpression of miR-29a in the skeletal muscle cell line C2C12 suppressed the expression of its target gene PPARδ, which, in turn, influenced the expression of its coactivator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thus, PPARδ/PGC-1α-dependent signals together reduced insulin-dependent glucose uptake and adenosine triphosphate (ATP) production. Overexpression of miR-29a also caused a decrease in levels of glucose transporter 4 (GLUT4), the most important glucose transporter in skeletal muscle, which partially induced a decrease insulin-dependent glucose uptake. These findings provide evidence for a novel micro-RNA-mediated mechanism of PPARδ regulation, and we also noted the IR-promoting actions of miR-29a in skeletal muscles of IUGR. PMID:26936652

  3. FOXO1 Mediates Vitamin D Deficiency-induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Chen, Songcang; Villalta, Armando; Agrawal, Devendra K.

    2015-01-01

    Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. While sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2. PMID:26462119

  4. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    PubMed Central

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  5. Endoplasmic reticulum stress-mediated apoptosis contributes to a skeletal dysplasia resembling platyspondylic lethal skeletal dysplasia, Torrance type, in a novel Col2a1 mutant mouse line.

    PubMed

    Kimura, Makoto; Ichimura, Satoki; Sasaki, Kuniaki; Masuya, Hiroshi; Suzuki, Tomohiro; Wakana, Shigeharu; Ikegawa, Shiro; Furuichi, Tatsuya

    In humans, mutations in the COL2A1 gene encoding the α1(II) chain of type II collagen, create many clinical phenotypes collectively termed type II collagenopathies. However, the mechanisms generating this diversity remain to be determined. Here we identified a novel Col2a1 mutant mouse line by screening a large-scale N-ethyl-N-nitrosourea mutant mouse library. This mutant possessed a p.Tyr1391Ser missense mutation in the C-propeptide coding region, and this mutation was located in positions corresponding to the human COL2A1 mutation responsible for platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T). As expected, p.Tyr1391Ser homozygotes exhibited lethal skeletal dysplasias resembling PLSD-T, including extremely short limbs and severe dysplasia of the spine and pelvis. The secretion of the mutant proteins into the extracellular space was disrupted, accompanied by an abnormally expanded endoplasmic reticulum (ER) and the up-regulation of ER stress-related genes in chondrocytes. Chondrocyte apoptosis was severely induced in the growth plate of the homozygotes. These findings strongly suggest that ER stress-mediated apoptosis caused by the accumulated mutant proteins in ER contributes to skeletal dysplasia in Co12a1 mutant mice and PLSD-T patients. PMID:26545783

  6. Modern hunting behavior in the early Middle Paleolithic: faunal remains from Misliya Cave, Mount Carmel, Israel.

    PubMed

    Yeshurun, Reuven; Bar-Oz, Guy; Weinstein-Evron, Mina

    2007-12-01

    Understanding the behavioral adaptations and subsistence strategies of Middle Paleolithic humans is critical in the debate over the evolution and manifestations of modern human behavior. The study of faunal remains plays a central role in this context. Until now, the majority of Levantine archaeofaunal evidence was derived from late Middle Paleolithic sites. The discovery of faunal remains from Misliya Cave, Mount Carmel, Israel (>200 ka), allowed for detailed taphonomic and zooarchaeological analyses of these early Middle Paleolithic remains. The Misliya Cave faunal assemblage is overwhelmingly dominated by ungulate taxa. The most common prey species is the Mesopotamian fallow deer (Dama mesopotamica), followed closely by the mountain gazelle (Gazella gazella). Some aurochs (Bos primigenius) remains are also present. Small-game species are rare. The fallow deer mortality pattern is dominated by prime-aged individuals. A multivariate taphonomic analysis demonstrates (1) that the assemblage was created solely by humans occupying the cave and was primarily modified by their food-processing activities; and (2) that gazelle carcasses were transported complete to the site, while fallow deer carcasses underwent some field butchery. The new zooarchaeological data from Misliya Cave, particularly the abundance of meat-bearing limb bones displaying filleting cut marks and the acquisition of prime-age prey, demonstrate that early Middle Paleolithic people possessed developed hunting capabilities. Thus, modern large-game hunting, carcass transport, and meat-processing behaviors were already established in the Levant in the early Middle Paleolithic, more than 200 ka ago. PMID:17669471

  7. Targeted Metabolomics Connects Thioredoxin-interacting Protein (TXNIP) to Mitochondrial Fuel Selection and Regulation of Specific Oxidoreductase Enzymes in Skeletal Muscle*

    PubMed Central

    DeBalsi, Karen L.; Wong, Kari E.; Koves, Timothy R.; Slentz, Dorothy H.; Seiler, Sarah E.; Wittmann, April H.; Ilkayeva, Olga R.; Stevens, Robert D.; Perry, Christopher G. R.; Lark, Daniel S.; Hui, Simon T.; Szweda, Luke; Neufer, P. Darrell; Muoio, Deborah M.

    2014-01-01

    Thioredoxin-interacting protein (TXNIP) is an α-arrestin family member involved in redox sensing and metabolic control. Growing evidence links TXNIP to mitochondrial function, but the molecular nature of this relationship has remained poorly defined. Herein, we employed targeted metabolomics and comprehensive bioenergetic analyses to evaluate oxidative metabolism and respiratory kinetics in mouse models of total body (TKO) and skeletal muscle-specific (TXNIPSKM−/−) Txnip deficiency. Compared with littermate controls, both TKO and TXNIPSKM−/− mice had reduced exercise tolerance in association with muscle-specific impairments in substrate oxidation. Oxidative insufficiencies in TXNIP null muscles were not due to perturbations in mitochondrial mass, the electron transport chain, or emission of reactive oxygen species. Instead, metabolic profiling analyses led to the discovery that TXNIP deficiency causes marked deficits in enzymes required for catabolism of branched chain amino acids, ketones, and lactate, along with more modest reductions in enzymes of β-oxidation and the tricarboxylic acid cycle. The decrements in enzyme activity were accompanied by comparable deficits in protein abundance without changes in mRNA expression, implying dysregulation of protein synthesis or stability. Considering that TXNIP expression increases in response to starvation, diabetes, and exercise, these findings point to a novel role for TXNIP in coordinating mitochondrial fuel switching in response to nutrient availability. PMID:24482226

  8. Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle.

    PubMed

    Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc

    2004-07-01

    Uncoupling proteins (UCPs) present in the inner mitochondrial membrane are involved in uncoupling respiration from ATP synthesis. Five UCP isoforms have been identified but information about their presence and level of expression in the central nervous system remains incomplete. To determine the nature and proportion of UCP isoform mRNAs present in brain cortex, we developed and optimized a specific quantitative reverse-transcription polymerase chain reaction procedure. Optimal range of RNA concentrations to be used in the reverse-transcriptase reaction was determined. Primer design and concentration were optimized for each target gene while polymerase chain reaction efficiency was assessed for a range of reverse-transcriptase dilutions. Genomic contribution to the quantitative signal was evaluated for each isoform and minimized. Three reference genes were tested for normalization, and beta-actin was found to be the most stable among tissues. Results indicate that brain cortex contains significant amounts of all UCP mRNAs, with UCP5 and UCP4 being the most abundant, as opposed to brown adipose tissue and skeletal muscle, which predominantly express UCP1 and UCP3, respectively. These data provide a first quantitative assessment of UCP mRNA expression in mouse brain, showing the presence of all five isoforms with distinct proportions, thus suggesting specific roles in the central nervous system. PMID:15241186

  9. Elemental Abundances in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; Mushotzky, R. F.; George, I. M.; Gabel, J. R.

    2003-01-01

    We present Reflection Grating Spectrometer data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extremely low flux state. This observation offers a rare opportunity for a detailed study of emission from a Seyfert 1 galaxy as these are usually dominated by high nuclear continuum levels and heavy absorption. The spectrum shows numerous narrow emission lines (FWHM approximately less than 1300 kilometers per second) in the 0.3 - 2 keV range, including the H-like lines of C, N, and O and the He-like lines of N, O and Ne. The emission-line ratios and the narrow width of the radiative recombination continuum of CVI indicate that the gas is photoionized and of fairly low temperature (kT approximately less than 0.01 keV). The availability of emission lines from different elements for two iso-electronic sequences allows us to constrain the element abundances. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models we find that nitrogen is overabundant in the central regions of the galaxy, compared to carbon, oxygen and neon by at least a factor of 2.5. We suggest that this is the result of secondary production of nitrogen in intermediate mass stars, and indicative of the history of star formation in NGC 3516.

  10. Assessment of crown-of-thorns skeletal elements in surface sediment of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Henderson, R. A.

    1992-07-01

    A total of 1655 crown-of-thorns starfish skeletal elements were recovered from 237 surface sediment samples from Davies, Centipede, Myrmidon, Hope, Holbourne Island, 22 110, Gannet Cay and Lady Musgrave Island Reefs of the central and southern sectors of the Great Barrier Reef. Three categories of reef may be recognised on the incidence of Acanthaster planci skeletal elements in surface sediment from these and previously studied reefs: category A (abundant, >12 elements kg1-), category C (common, 3 8 elements kg-1) and category C (rare, 0 0.1 elements kg-1). These categories parallel estimates of crown-of-thorns populations in the period 1986 1990. “A” reefs have generally experienced high intensity outbreaks, “C” reefs less intense or perhaps less frequent outbreaks and “R” reefs have had little or no crown-of-thorns presence. The incidence of crown-of-thorns skeletal elements in surface sediment potentially provides an indication of population densities and outbreaks over a time scale of several decades. A perspective of contemporary crown-of-thorns incidence on the many reefs of the GBR lacking direct observational records may thereby be obtained. For Holbourne Island a comparison was made of element incidence in an area of known mass mortality induced by poisoning with a control area that was undisturbed. The incidence of A. planci skeletal elements is comparable in the two areas and similar to the incidence established for other reefs such as Green Island and John Brewer where high intensity outbreaks are known to have occurred. A direct relationship between high incidence of elements in surface sediment and mass mortality following outbreak events is indicated.

  11. Skeletal Implications of Chronic Obstructive Pulmonary Disease.

    PubMed

    Misof, Barbara M; Moreira, Carolina A; Klaushofer, Klaus; Roschger, Paul

    2016-04-01

    Chronic obstructive pulmonary disease (COPD) is associated with numerous comorbidities, among which osteoporosis is of high significance. Low bone mass and the occurrence of fragility fractures is a common finding in patients with COPD. Typical risk factors related directly or indirectly to these skeletal complications include systemic inflammation, tobacco smoking, vitamin D deficiency, and treatment with oral or inhaled corticosteroids. In particular, treatment with glucocorticoids appears to be a strong contributor to bone changes in COPD, but does not fully account for all skeletal complications. Additional to the effects of COPD on bone mass, there is evidence for COPD-related changes in bone microstructure and material properties. This review summarizes the clinical outcomes of low bone mass and increased fracture risk, and reports on recent observations in bone tissue and material in COPD patients. PMID:26861899

  12. Coaxing stem cells for skeletal muscle repair

    PubMed Central

    McCullagh, Karl J.A.; Perlingeiro, Rita C. R.

    2014-01-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. PMID:25049085

  13. Laminin-211 in skeletal muscle function

    PubMed Central

    Holmberg, Johan; Durbeej, Madeleine

    2013-01-01

    A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function. PMID:23154401

  14. Skeletal and body composition evaluation. Final report

    SciTech Connect

    Mazess, R.B.

    1983-03-01

    Research on radiation detectors for absorptiometry analysis of errors affecting single photon absorptiometry and development of instrumentation, analysis of errors affecting dual photon absorptiometry and development of instrumentation, comparison of skeletal measurements with other techniques, cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals, studies of postmenopausal osteoporosis, organization of scientific meetings and workshops on absorptiometric measurement, and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  15. Primary and secondary skeletal blast trauma.

    PubMed

    Christensen, Angi M; Smith, Victoria A; Ramos, Vanessa; Shegogue, Candie; Whitworth, Mark

    2012-01-01

    This study examines primary (resulting from blast wave) and secondary (resulting from disintegrated, penetrating fragments) blast trauma to the skeleton. Eleven pigs were exposed to semi-controlled blast events of varying explosive type, charge size, and distance, including some cases with shrapnel. Skeletal trauma was found to be extensive, presenting as complex, comminuted fractures with numerous small, displaced bone splinters and fragments. Traumatic amputation of the limbs and cranium was also observed. Fractures were concentrated in areas nearer the blast, but there was generally no identifiable point of impact. Fractures were more random in appearance and widespread than those typically associated with gunshot or blunt force injury events. These patterns appear to be uniquely associated with blast trauma and may therefore assist forensic anthropologists and other forensic examiners in the interpretation of skeletal trauma by enabling them to differentiate between blast trauma and trauma resulting from some other cause. PMID:21981586

  16. Bone Proteoglycan Changes During Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Uzawa, K.; Pornprasertsuk, S.; Arnaud, S.; Grindeland, R.; Grzesik, W.

    1999-01-01

    Skeletal adaptability to mechanical loads is well known since the last century. Disuse osteopenia due to the microgravity environment is one of the major concerns for space travelers. Several studies have indicated that a retardation of the mineralization process and a delay in matrix maturation occur during the space flight. Mineralizing fibrillar type I collagen possesses distinct cross-linking chemistries and their dynamic changes during mineralization correlate well with its function as a mineral organizer. Our previous studies suggested that a certain group of matrix proteoglycans in bone play an inhibitory role in the mineralization process through their interaction with collagen. Based on these studies, we hypothesized that the altered mineralization during spaceflight is due in part to changes in matrix components secreted by cells in response to microgravity. In this study, we employed hindlimb elevation (tail suspension) rat model to study the effects of skeletal unloading on matrix proteoglycans in bone.

  17. Epigenetic regulation of skeletal muscle metabolism.

    PubMed

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  18. YAP-Mediated Mechanotransduction in Skeletal Muscle

    PubMed Central

    Fischer, Martina; Rikeit, Paul; Knaus, Petra; Coirault, Catherine

    2016-01-01

    Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction. PMID:26909043

  19. Skeletal Muscle Mitochondrial Energetic Efficiency and Aging

    PubMed Central

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2015-01-01

    Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels. PMID:25970752

  20. Cytokine Signaling in Skeletal Muscle Wasting.

    PubMed

    Zhou, Jin; Liu, Bin; Liang, Chun; Li, Yangxin; Song, Yao-Hua

    2016-05-01

    Skeletal muscle wasting occurs in a variety of diseases including diabetes, cancer, Crohn's disease, chronic obstructive pulmonary disease (COPD), disuse, and denervation. Tumor necrosis factor α (TNF-α) is involved in mediating the wasting effect. To date, a causal relationship between TNF-α signaling and muscle wasting has been established in animal models. However, results from clinical trials are conflicting. This is partly due to the fact that other factors such as TNF-like weak inducer of apoptosis (TWEAK) and interleukin 6 (IL-6) are also involved in skeletal muscle wasting. Because muscle wasting is often associated with physical inactivity and reduced food intake, therapeutic interventions will be most effective when multiple approaches are used in conjunction with nutritional support and exercise. PMID:27025788

  1. Cellular Players in Skeletal Muscle Regeneration

    PubMed Central

    Ceafalan, Laura Cristina; Popescu, Bogdan Ovidiu; Hinescu, Mihail Eugen

    2014-01-01

    Skeletal muscle, a tissue endowed with remarkable endogenous regeneration potential, is still under focused experimental investigation mainly due to treatment potential for muscle trauma and muscular dystrophies. Resident satellite cells with stem cell features were enthusiastically described quite a long time ago, but activation of these cells is not yet controlled by any medical interventions. However, after thorough reports of their existence, survival, activation, and differentiation there are still many questions to be answered regarding the intimate mechanism of tissue regeneration. This review delivers an up-to-date inventory of the main known key players in skeletal muscle repair, revealed by various models of tissue injuries in mechanical trauma, toxic lesions, and muscular dystrophy. A better understanding of the spatial and temporal relationships between various cell populations, with different physical or paracrine interactions and phenotype changes induced by local or systemic signalling, might lead to a more efficient approach for future therapies. PMID:24779022

  2. Repositioning the Cobb human archive: the merger of a skeletal collection and its texts.

    PubMed

    Watkins, Rachel; Muller, Jennifer

    2015-01-01

    The W. Montague Cobb skeletal collection, mainly comprised of African Americans living in Washington, DC, before 1969, is an important collection for human biological studies of the African Diaspora. This article outlines the process of constructing an improved study sample for biocultural analysis by merging skeletal remains from the collection with their associated texts. The merging allows for the inclusion of individuals from the original series for whom we no longer have skeletons. We argue that this step is necessary to construct a data set that reflects the demographic breadth (age, ethnicity, social class) of the original collection, taking into account a substantial number of skeletons lost during storage and disuse. The mechanics of this process were informed by a critical and humanistic orientation toward human biological study built upon the following premises: (1) scientific investigation is not an objective or passive practice, nor must it be; and, (2) relevant, publically accessible human biological research requires competence with social justice issues, as well as previous and current scholarship focused on addressing those issues. This approach to sample construction engages skeletal remains as biological and social products, and enhances the social and translational implications of our research practices. PMID:25380093

  3. Favism: effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins.

    PubMed

    McMillan, D C; Bolchoz, L J; Jollow, D J

    2001-08-01

    Favism is an acute anemic crisis that can occur in susceptible individuals who ingest fava beans. The fava bean pyrimidine aglycone divicine has been identified as a hemotoxic constituent; however, its mechanism of toxicity remains unknown. We have shown recently that divicine can induce a favic-like response in rats and that divicine is directly toxic to rat red cells. In the present study, we have examined the effect of hemotoxic concentrations of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate (HMP) shunt activity, morphology, and membrane skeletal proteins. In vitro exposure of rat red cells to divicine markedly stimulated HMP shunt activity and resulted in depletion of reduced glutathione with concomitant formation of glutathione-protein mixed-disulfides. Examination of divicine-treated red cells by scanning electron microscopy revealed transformation of the cells to an extreme echinocytic morphology. SDS-PAGE and immunoblotting analysis of the membrane skeletal proteins indicated that hemotoxicity was associated with the apparent loss of skeletal protein bands 2.1, 3, and 4.2, and the appearance of membrane-bound hemoglobin. Treatment of divicine-damaged red cells with dithiothreitol reversed the protein changes, which indicated that the observed alterations were due primarily to the formation of disulfide-linked hemoglobin-skeletal protein adducts. The data suggest that oxidative modification of hemoglobin and membrane skeletal proteins by divicine may be key events in the mechanism underlying favism. PMID:11452148

  4. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function

    SciTech Connect

    Kramer, Philip A.; Duan, Jicheng; Qian, Weijun; Marcinek, David J.

    2015-11-25

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.

  5. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  6. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle.

    PubMed

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  7. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function

    PubMed Central

    Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun; Marcinek, David J.

    2015-01-01

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar, and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases. PMID:26635632

  8. Cosmological implications of light element abundances: theory.

    PubMed

    Schramm, D N

    1993-06-01

    Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics. PMID:11607387

  9. Cosmological implications of light element abundances: theory.

    PubMed Central

    Schramm, D N

    1993-01-01

    Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics. Images Fig. 2 PMID:11607387

  10. Pannexin 1 channels in skeletal muscles

    PubMed Central

    Cea, Luis A.; Riquelme, Manuel A.; Vargas, Anibal A.; Urrutia, Carolina; Sáez, Juan C.

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a “gap junction hemichannel-like” structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1−/− mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca2+ signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles. PMID:24782784

  11. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  12. Modulation of Skeletal Muscle Insulin Signaling With Chronic Caloric Restriction in Cynomolgus Monkeys

    PubMed Central

    Wang, Zhong Q.; Floyd, Z. Elizabeth; Qin, Jianhua; Liu, Xiaotuan; Yu, Yongmei; Zhang, Xian H.; Wagner, Janice D.; Cefalu, William T.

    2009-01-01

    OBJECTIVE Caloric restriction (CR) has been shown to retard aging processes, extend maximal life span, and consistently increase insulin action in experimental animals. The mechanism by which CR enhances insulin action, specifically in higher species, is not precisely known. We sought to examine insulin receptor signaling and transcriptional alterations in skeletal muscle of nonhuman primates subjected to CR over a 4-year period. RESEARCH DESIGN AND METHODS At baseline, 32 male adult cynomolgus monkeys (Macaca fascicularis) were randomized to an ad libitum (AL) diet or to 30% CR. Dietary intake, body weight, and insulin sensitivity were obtained at routine intervals over 4 years. At the end of the study, hyperinsulinemic-euglycemic clamps were performed and skeletal muscle (vastus lateralis) was obtained in the basal and insulin-stimulated states for insulin receptor signaling and gene expression profiling. RESULTS CR significantly increased whole-body insulin–mediated glucose disposal compared with AL diet and increased insulin receptor signaling, i.e., insulin receptor substrate (IRS)-1, insulin receptor phosphorylation, and IRS–associated PI 3-kinase activity in skeletal muscle (P < 0.01, P < 0.01, and P < 0.01, respectively). Gene expression for insulin signaling proteins, i.e., IRS-1 and IRS-2, were not increased with CR, although a significant increase in protein abundance was noted. Components of the ubiquitin-proteasome system, i.e., 20S and 19S proteasome subunit abundance and 20S proteasome activity, were significantly decreased by CR. CONCLUSIONS CR increases insulin sensitivity on a whole-body level and enhances insulin receptor signaling in this higher species. CR in cynomolgus monkeys may alter insulin signaling in vivo by modulating protein content of insulin receptor signaling proteins. PMID:19336678

  13. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  14. Redox Characterization of Functioning Skeletal Muscle

    PubMed Central

    Zuo, Li; Pannell, Benjamin K.

    2015-01-01

    Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS). These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease. PMID:26635624

  15. Identification of 1- and 3-methylhistidine as biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-based metabolic profiling.

    PubMed

    Aranibar, Nelly; Vassallo, Jeffrey D; Rathmacher, John; Stryker, Steve; Zhang, Yingru; Dai, Jun; Janovitz, Evan B; Robertson, Don; Reily, Michael; Lowe-Krentz, Linda; Lehman-McKeeman, Lois

    2011-03-01

    Nuclear magnetic resonance (NMR)-based metabolomic profiling identified urinary 1- and 3-methylhistidine (1- and 3-MH) as potential biomarkers of skeletal muscle toxicity in Sprague-Dawley rats following 7 and 14 daily doses of 0.5 or 1mg/kg cerivastatin. These metabolites were highly correlated to sex-, dose- and time-dependent development of cerivastatin-induced myotoxicity. Subsequently, the distribution and concentration of 1- and 3-MH were quantified in 18 tissues by gas chromatography-mass spectrometry. The methylhistidine isomers were most abundant in skeletal muscle with no fiber or sex differences observed; however, 3-MH was also present in cardiac and smooth muscle. In a second study, rats receiving 14 daily doses of 1mg/kg cerivastatin (a myotoxic dose) had 6- and 2-fold elevations in 1- and 3-MH in urine and had 11- and 3-fold increases in 1- and 3-MH in serum, respectively. Selectivity of these potential biomarkers was tested by dosing rats with the cardiotoxicant isoproterenol (0.5mg/kg), and a 2-fold decrease in urinary 1- and 3-MH was observed and attributed to the anabolic effect on skeletal muscle. These findings indicate that 1- and 3-MH may be useful urine and serum biomarkers of drug-induced skeletal muscle toxicity and hypertrophy in the rat, and further investigation into their use and limitations is warranted. PMID:21094120

  16. Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle.

    PubMed

    Koeberl, Dwight D; Luo, Xiaoyan; Sun, Baodong; McVie-Wylie, Alison; Dai, Jian; Li, Songtao; Banugaria, Suhrad G; Chen, Y-T; Bali, Deeksha S

    2011-06-01

    Enzyme replacement therapy (ERT) with acid α-glucosidase has become available for Pompe disease; however, the response of skeletal muscle, as opposed to the heart, has been attenuated. The poor response of skeletal muscle has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle compared to heart. To further understand the role of CI-MPR in Pompe disease, muscle-specific CI-MPR conditional knockout (KO) mice were crossed with GAA-KO (Pompe disease) mice. We evaluated the impact of CI-MPR-mediated uptake of GAA by evaluating ERT in CI-MPR-KO/GAA-KO (double KO) mice. The essential role of CI-MPR was emphasized by the lack of efficacy of ERT as demonstrated by markedly reduced biochemical correction of GAA deficiency and of glycogen accumulations in double KO mice, in comparison with the administration of the same therapeutic doses in GAA-KO mice. Clenbuterol, a selective β(2)-agonist, enhanced the CI-MPR expression in skeletal tissue and also increased efficacy from GAA therapy, thereby confirming the key role of CI-MPR with regard to enzyme replacement therapy in Pompe disease. Biochemical correction improved in both muscle and non-muscle tissues, indicating that therapy could be similarly enhanced in other lysosomal storage disorders. In summary, enhanced CI-MPR expression might improve the efficacy of enzyme replacement therapy in Pompe disease through enhancing receptor-mediated uptake of GAA. PMID:21397538

  17. Enhanced Efficacy of Enzyme Replacement Therapy in Pompe Disease Through Mannose-6-Phosphate Receptor Expression in Skeletal Muscle

    PubMed Central

    Koeberl, Dwight D.; Luo, Xiaoyan; Sun, Baodong; McVie-Wylie, Alison; Dai, Jian; Li, Songtao; Banugaria, Suhrad G.; Chen, Y-T; Bali, Deeksha S.

    2011-01-01

    Enzyme replacement therapy (ERT) with acid α-glucosidase has become available for Pompe disease; however, the response of skeletal muscle, as opposed to the heart, has been attenuated. The poor response of skeletal muscle has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle compared to heart. To further understand the role of CI-MPR in Pompe disease, muscle-specific CI-MPR conditional knockout (KO) mice were crossed with GAA-KO (Pompe disease) mice. We evaluated the impact of CI-MPR-mediated uptake of GAA by evaluating ERT in CI-MPR-KO/GAA-KO (double KO) mice. The essential role of CI-MPR was emphasized by the lack of efficacy of ERT as demonstrated by markedly reduced biochemical correction of GAA deficiency and of glycogen accumulations in double KO mice, in comparison with administration of the same therapeutic doses in GAA-KO mice. Clenbuterol, a selective β2-agonist, enhanced CI-MPR expression in skeletal tissue and also increased efficacy from GAA therapy, thereby confirming the key role of CI-MPR with regard to enzyme replacement therapy in Pompe disease. Biochemical correction improved in both muscle and non-muscle tissues, indicating that therapy could be similarly enhanced in other lysosomal storage disorders. In summary, enhanced CI-MPR expression might improve the efficacy of enzyme replacement therapy in Pompe disease through enhancing receptor-mediated uptake of GAA. PMID:21397538

  18. Acute Treatment of Resveratrol Alleviates Doxorubicin-Induced Myotoxicity in Aged Skeletal Muscle Through SIRT1-Dependent Mechanisms.

    PubMed

    Sin, Thomas K; Tam, Bjorn T; Yu, Angus P; Yip, Shea P; Yung, Benjamin Y; Chan, Lawrence W; Wong, Cesar S; Rudd, John A; Siu, Parco M

    2016-06-01

    Study of the exacerbating effects of chemotherapeutics, such as doxorubicin, on the impairment of insulin metabolic signaling in aged skeletal muscle is very limited. Here, we tested the hypothesis that activation of sirtuin 1 deacetylase activity by resveratrol would prevent the disruption of insulin signaling and augmentation of catabolic markers induced by doxorubicin in aged skeletal muscle. Two- and 10-month-old senescence-accelerated mice (prone 8) were randomized to receive saline, doxorubicin, doxorubicin and resveratrol, or a combination of doxorubicin, resveratrol, and sirtinol or EX527. Doxorubicin reduced the sirtuin 1 activity without affecting the phosphorylation levels of IRS1(Ser307), mTOR(Ser2481), Akt(Thr308/Ser473), membranous glucose transporter 4, protein abundance of PDK4, and enzymatic activity of pyruvate dehydrogenase in aged muscles. Intriguingly, resveratrol attenuated the doxorubicin-induced elevations of apoptotic and catabolic markers measured as Bax, caspase 3 activity, apoptotic DNA fragmentation, MuRF-1, ubiquitinated proteins, and proteasomal activity in aged muscles, whereas these beneficial effects were abolished on inhibition of sirtuin 1 by sirtinol or EX527. Markers of insulin signaling were not affected by doxorubicin or resveratrol in the senescent skeletal muscle. Nevertheless, the antiapoptotic and anticatabolic effects of resveratrol in aged skeletal muscle treated with doxorubicin were mediated in a sirtuin 1-dependent signaling manner. PMID:26450947

  19. Change in avian abundance predicted from regional forest inventory data

    USGS Publications Warehouse

    Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R., III; Uihlein, William B.; Fitzgerald, Jane A.

    2010-01-01

    An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will

  20. Urban Warming Drives Insect Pest Abundance on Street Trees

    PubMed Central

    Meineke, Emily K.; Dunn, Robert R.; Sexton, Joseph O.; Frank, Steven D.

    2013-01-01

    Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer. PMID:23544087