Science.gov

Sample records for abundant surface water

  1. The High Plains Groundwater Availability Study: Abundant Groundwater Doesn't Necessarily Mean Abundant Surface Water

    NASA Astrophysics Data System (ADS)

    Peterson, S. M.; Stanton, J. S.; Flynn, A. T.

    2013-12-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability to gain a clearer understanding of the status of the Nation's groundwater resources and the natural and human factors that can affect those resources. Additional goals are to better estimate availability and suitability of those resources in the future for various uses. The High Plains aquifer is a nationally important water resource that underlies about 174,000 square miles in parts of eight western states. The aquifer serves as a primary source of drinking water for approximately 2.3 million people and also sustains more than one quarter of the Nation's agricultural production. In 2000, total water withdrawals of 17.5 billion gallons per day from the aquifer accounted for 20 percent of all groundwater withdrawn in the United States, making it the most intensively pumped aquifer in the Nation. In the Central and Southern High Plains, the aquifer historically had less saturated thickness, and current resource management issues are focused on the availability of water, and reduced ability to irrigate as water levels and well productivity have declined. In contrast, the Northern High Plains aquifer includes the thickest part of the aquifer and a larger saturated thickness than the other parts of the aquifer, and current water resource management issues are related to the interaction of groundwater with surface water and resource management triggered primarily by the availability of surface water. The presentation will cover major components of the High Plains Groundwater Availability Study, including estimating water budget components for the entire High Plains aquifer, building a refined groundwater model for the Northern High Plains aquifer, and using that model to better understand surface- and groundwater interaction and characterize water availability.

  2. Spectroscopic Variation of Water Ice Abundance Across Mimas and Tethys' Surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Paul

    2014-11-01

    We present results from our ongoing work mapping the variation of the main water ice absorption bands across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). Mimas and Tethys are Enceladus’ orbital neighbours, lying inside and outside Enceladus’ orbit respectively. It is therefore likely that Mimas and Tethys surfaces interact with icy particles from the E-ring, resulting in a spectral, color modification. For all pixels in the selected VIMS cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak, whose value relates to grain size. To characterize the global variation of water-ice band depths across Mimas and Tethys, we divided the surface into a 1°x1° grid and then averaged the band depths and peak values inside each square cell. The most prominent feature on Mimas surface is the crater Herschel with a diameter of 130 km, one-third of the satellite's one. Mimas has the most uniform surface among Saturn's principal satellites, with its trailing side just 10% brighter and redder than the leading one. The uniformity of Mimas extends on spectral appearance too. The 1.52 and 2.02 μm H2O-ice absorption bands are ˜10% deeper on trailing hemisphere.On Tethys' leading hemisphere a 400 km in diameter crater, Odysseus, is present. Its dimension represents ˜40% of Tethys diameter.For both moons we find that large geologic features, such as the Odysseus and Herschel impact basin, do not correlate with water ice’s abundance variation.For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas the selected dataset covers just the leading hemisphere and a portion of the trailing side. From the analysis, the two hemispheres appear to be quite similar in water ice abundance, the trailing

  3. The Water Vapor Abundance Near the Surface of Venus from Venus Express / VIRTIS Observations

    NASA Astrophysics Data System (ADS)

    Bezard, Bruno; Tsang, C. C. C.; Carlson, R. W.; Piccioni, G.; Marcq, E.; Drossart, P.; VIRTIS/Venus Express Team

    2008-09-01

    We present an analysis of Venus Express/VIRTIS observations of the 1.18-μm window on Venus' night side. We used the infrared M-channel of the VIRTIS instrument, an imaging spectrometer for the range 1-5 μm with a resolution of about 17 nm. The 1.18-μm window probes down to the surface and allows us to map and monitor the water abundance in the lowest scale height of the atmosphere. Besides CO2 and H2O molecular bands, an additional "continuum" source of absorption exists in the window, likely due to CO2 collision-induced bands and extreme far wings of strong CO2 bands. From the variation of the emission with surface elevation, we determined this absorption to be 1.1 ± 0.2 × 10-9 cm-1 amagat-2. From the best fit of the 1.18-micron window in various areas of Venus' southern hemisphere, we derived a H2O mole fraction of 32 ± 7 ppm in the altitude range 0-15 km. This result agrees with previous ground-based and Galileo/NIMS determinations (Taylor et al. 1997, in Venus II, pp. 325-351) but has significantly lower error bars. The derived mole fraction is similar to that inferred at higher altitudes from the 2.3- and 1.74-μm windows, suggesting a constant-with-height water profile from the surface up to 40 km. We also searched for spatial variations of the H2O near-surface abundance using various VIRTIS-M observational sequences and did not detect any latitudinal variations to within 1.5% (i.e. ± 0.5 ppm) in the range 60°S - 20°N.

  4. Surface abundances of OC supergiants

    NASA Astrophysics Data System (ADS)

    Martins, F.; Foschino, S.; Bouret, J.-C.; Barbá, R.; Howarth, I.

    2016-04-01

    Context. Some O and B stars show unusually strong or weak lines of carbon and/or nitrogen. These objects are classified as OBN or OBC stars. It has recently been shown that nitrogen enrichment and carbon depletion are the most likely explanations for the existence of the ON class. Aims: We investigate OC stars (all being supergiants) to check that surface abundances are responsible for the observed anomalous line strengths. Methods: We perform a spectroscopic analysis of three OC supergiants using atmosphere models. A fourth star was previously studied by us. Our sample thus comprises all OC stars known to date in the Galaxy. We determine the stellar parameters and He, C, N, and O surface abundances. Results: We show that all stars have effective temperatures and surface gravities fully consistent with morphologically normal O supergiants. However, OC stars show little, if any, nitrogen enrichment and carbon surface abundances consistent with the initial composition. OC supergiants are thus barely chemically evolved, unlike morphologically normal O supergiants. Based on observations obtained at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 089.D-0975.

  5. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  6. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American

  7. Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: Implications for the TEX86 paleothermometer

    NASA Astrophysics Data System (ADS)

    Lengger, Sabine K.; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2014-10-01

    The TEX86 is a widely used paleotemperature proxy based on isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) produced by Thaumarchaeota. Archaeal membranes are composed of GDGTs with polar head groups (IPL-GDGTs), most of which are expected to be degraded completely or transformed into more recalcitrant core lipid (CL)-GDGTs upon cell lysis. Here, we examined the differences in concentration and distribution of core lipid (CL)- and intact polar lipid (IPL)-GDGTs in surface sediments at different deposition depths, and different oxygen bottom water concentrations (<3-83 μmol L-1). Surface sediments were sampled from 900 to 3000 m depth on a seamount (Murray Ridge), whose summit protrudes into the oxygen minimum zone of the Arabian Sea. Concentrations of organic carbon, IPL- and CL-GDGTs decreased linearly with increasing maximum residence time in the oxic zone of the sediment (tOZ), suggesting increasing sedimentary degradation of organic matter and GDGTs. IPL-GDGT-0 was the only exception and increased with tOZ, indicating that this GDGT was probably produced in situ in the surface sediment. Concentrations of crenarchaeol with glycosidic headgroups decreased with increasing tOZ, while crenarchaeol with a hexose, phosphohexose head (HPH) group, in contrast, showed an increase with increasing tOZ, indicating that the concentration of HPH crenarchaeol was primarily determined by in situ production in surficial sediments. TEX86 values of both IPL-derived GDGTs and CL-GDGTs decreased by ∼0.08 units with increasing water depth, in spite of the sea surface temperatures being identical for the restricted area studied. In situ production in sediments could be excluded as the main cause, due to the slow production rates of GDGTs in sediments, and previous observations of the same trends in TEX86 in sediment trap material. Instead, the incorporation of GDGTs produced in the oxygen minimum zone (with high TEX86 values) and their preferential degradation during

  8. Microbial abundance in surface ice on the Greenland Ice Sheet

    PubMed Central

    Stibal, Marek; Gözdereliler, Erkin; Cameron, Karen A.; Box, Jason E.; Stevens, Ian T.; Gokul, Jarishma K.; Schostag, Morten; Zarsky, Jakub D.; Edwards, Arwyn; Irvine-Fynn, Tristram D. L.; Jacobsen, Carsten S.

    2015-01-01

    Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS. PMID:25852678

  9. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    PubMed

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine. PMID:19848183

  10. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided. PMID:27330895

  11. The abundance and isotopic composition of water in eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; TartèSe, R.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-05-01

    Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of -34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H-isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.

  12. The abundance and isotopic composition of water in eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; TartèSe, R.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-06-01

    Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of -34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H-isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.

  13. Surface-water surveillance

    SciTech Connect

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  14. Oxygen abundances in low surface-brightness galaxies

    NASA Technical Reports Server (NTRS)

    Roennback, Jari

    1993-01-01

    Recent theories predict that some protogalaxies, in low-density environments of the field, are contracting and interacting so slowly that global star formation can be delayed until today. These systems should be gas rich and have low surface-brightness. Blue compact galaxies (BCG's) and other compact HII region galaxies currently experiencing a burst of star formation are good candidates of truly young galaxies (in the sense that global star formation recently has been initiated). If they really are young, they ought to have a recent phase when their brightness was much lower than in the bursting phase. No claims of observations of such proto-BCG's exist. Observations of galaxies in their juvenile phases would undoubtedly be of great interest, e.g. the determination of the primordial helium abundance would improve. A proper place to search for young nearby galaxies could be among blue low surface-brightness galaxies (BLSBG's) in the local field. The study of low surface-brightness galaxies (LSBG's) as a group began relatively recently. They are galaxies with extraordinary properties both as individuals and as a group. A few years ago we started an optical study of a sample of BLSBG's selected from the ESO/Uppsala catalogue. Results of spectroscopic observations obtained on a subsample - 8 galaxies - of our selection are reported. The HII region oxygen chemical abundances and its relation to the blue absolute magnitude and surface-brightness is investigated.

  15. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  16. Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.

    2013-12-01

    The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3

  17. On the abundance of planetary water and exo-life after Kepler

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2015-08-01

    Combining the recent results of the Kepler mission on the abundance of small planets within the Habitable Zone with a Drake-equation formalism I derive the space density of planets with surface water and biotic planets as a function of the yet unknown probabilities for the evolution of an Earthlike atmosphere and biosphere, respectively. I describe how these probabilities may be estimated by future spectral observations of exoplanet biomarkers such as atmospheric oxygen and water. I find that planets with surface liquid water may be expected within 10 light years and biotic planets within 10 -- 100 light years from Earth. ArXiv 1412.1302.

  18. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter; Lunine, Jonathan; Mousis, Olivier

    2014-11-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We aim to improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of eddy diffusion coefficient. The new formulation predicts a smooth transition from slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraintprovided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other one constrains the water enrichment between 7 and 23. This difference calls for a better assessment of CO kinetic models.

  19. New insights on Jupiter's deep water abundance from disequilibrium species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter J.; Lunine, Jonathan I.; Mousis, Olivier

    2015-04-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the water enrichment between 3 and 11.

  20. SURFACE WATER EMAP PROJECT

    EPA Science Inventory

    The surface water component of the EPA Environmental Monitoring and Assessment Program (EMAP) Western Pilot is a five-year effort to assess the ecological condition of rivers and streams across 12 states in the western United States. EMAP is designed to monitor indicators of poll...

  1. Definition and characteristics of the water abundant season in Korea

    NASA Astrophysics Data System (ADS)

    Park, So-Ra; Oh, Su-Bin; Byun, Hi-Ryong

    2015-04-01

    In contrast to the normal seasons that are classified by the distribution of temperature and precipitation, this study defines a new concept of the water abundant season (WAS) when water is more abundant than in other seasons. We investigated its characteristics on 60 stations in Korea, and compared it with Changma (the rainy season). In this study, Available Water Resources Index (AWRI), which is a summed daily precipitation accumulated for more than 365 days with a time-dependent reduction function and reflects the current water condition, was used to quantify the water amount. In addition, the median value of 30 year's daily AWRI was used as the criterion value dividing WAS from other seasons. The results show that the terminologies on water resources have changed from qualitative concepts such as abundance, deficit, and continuous rainfall, to quantitative values using AWRI. In detail, it was known that the WAS in Korea starts on 2 July and ends on 25 December, lasting for 176 days. The onset date of WAS in Korea is getting earlier, with a trend of 2.9 days/decade. The end date does later with a delay of 7.5 days/decade, and the duration is increasing at 10.4 days/decade. We looked at the WAS by stations and saw, on average, that 14 June was the earliest onset date in Seogwipo and 29 July was the latest one in Sokcho, representing a difference of 45 days. The earliest end date was in Tongyeong at 5 December and the latest one is in Uljin at 16 January of the following year, a difference of 41 days. Tongyeong had the shortest (166 days) WAS duration and Uljin had the longest (207 days) on average. The big spatial differences of the criterion values per station were detected and quantified. The largest criterion value for WAS were recorded in Seongsan with 270.7 mm, which is almost double of the smallest value, which was recorded in Uiseong (135.9 mm). Comparing WAS with the Changma (the rainy season in Korea) showed that the onset date of WAS is close to that of

  2. The role of carrion supply in the abundance of deep-water fish off California.

    PubMed

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  3. The Role of Carrion Supply in the Abundance of Deep-Water Fish off California

    PubMed Central

    Drazen, Jeffrey C.; Bailey, David M.; Ruhl, Henry A.; Smith, Kenneth L.

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  4. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  5. Abundance and novel lineages of thraustochytrids in Hawaiian waters.

    PubMed

    Li, Qian; Wang, Xin; Liu, Xianhua; Jiao, Nianzhi; Wang, Guangyi

    2013-11-01

    Thraustochydrids has been known for their ubiquitous distribution in the ocean. However, a few efforts have been made to investigate their ecology. In this study, we have applied molecular method, acriflavine direct detection, and classical oceanographic methods to investigate the abundance and diversity of thraustochytrids in the North Pacific subtropical gyre. Our results revealed interesting temporal and spatial variations of their population. Out of three seasons (spring, summer, and fall), cruise Hawaii Ocean Time-series (HOT)-216 during November 2009 obtained the highest abundance of thraustochytrids ranging from 1,890 (Station S1C1, 45 m) to 630,000 (Station S2C12, 100 m) cells L(-1) of seawater, which accounted for a 0.79 to 281.0 % biomass ratio to that of bacteria in terms of gram carbon per liter. A patchy distribution of these organisms was widely observed in the water column and they were somehow related to the maximum chlorophyll layers. A total of 25 operational taxonomic units (OTUs) from cruise HOT-216 formed four phylogroups in the specific labyrinthulomycetes 18S rRNA-based phylogenetic tree, with the largest group of 20 OTUs fell into the Aplanochytrium cluster and the others aligned with uncultured clones or none, thus appeared to be undescribed. This study indicates the presence of new thraustochytrids lineages and their quantitative importance in the marine water column. PMID:23942794

  6. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    NASA Technical Reports Server (NTRS)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  7. On the Abundance of Water in Extrasolar Planetary Systems as a Function of Stellar Metallicity

    NASA Astrophysics Data System (ADS)

    Dominguez, Gerardo

    2016-06-01

    The discovery, to date, of several hundred confirmed extra solar planets and a statistical analysis of their properties has revealed intriguing patterns in the abundance and types of extrasolar planets. The metallicity of the host star appears to be a driver in determining extrasolar planetary system characteristics, although a mechanistic understanding of these relationships is not currently available. Understanding the broad relationship(s) between the characteristics of extrasolar planets and stellar metallicity thus appears timely.Recent work examining the timescales for water production in protoplanetary disks suggest that ionizing radiation required to drive surface chemistry in protoplanetary disks is insufficient and production timescales too slow to account for a significant amount of water in protoplanetary disks. Here we focus on the timescales for water production in cold molecular clouds and examine the relationship of this timescale as a function of molecular cloud metallicity. To do this, we consider the distribution of surface area concentration (dA/dV) in molecular clouds as a function of their metallicity and various MRN-like dust grain size distributions. We find that molecular cloud metallicity is a significant factor in determining upper-limits to the availability of water in molecular clouds and by extension, protoplanetary disks. The spectral index of the MRN distribution affects the upper-limits to H2O abundance, but the effect is not as significant as metallicity. We find that the ratio of H2O/SiO2 produced in a molecular cloud of solar metallicity can easily account for Earth’s present day ratio , supporting the “wet” hypothesis for the origins of Earth’s water. Future studies will focus on the retention of water on interstellar dust grain surfaces in protoplanetary disk environments inside the water line, the abundance of other volatile species, more detailed estimates of H2O destruction timescales in molecular clouds, and

  8. Internal Surface Water Flows

    USGS Publications Warehouse

    Murray, Mitchell H.

    1999-01-01

    Introduction The South Florida Ecosystem Restoration Program is an intergovernmental effort to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making.The U.S. Geological Survey (USGS) provides scientitic information as part of the South Florida Ecosystem Restoration Program. The USGS began its own project, called the South Florida Ecosystem Project in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. Historical changes in water-management practices to accommodate a large and rapidly growing urban population along the Atlantic coast, as well as intensive agricultural activities, have resulted in a highly managed hydrologic system with canals, levees, and pumping stations. These structures have altered the hydology of the Everglades ecosystem on both coastal and interior lands. Surface-water flows in a direction south of Lake Okeechobee have been regulated by an extensive canal network, begun in the 1940's, to provide for drainage, flood control, saltwater intrusion control, agricultural requirements, and various environmental needs. Much of the development and subsequent monitoring of canal and river discharge south of Lake Okeechobee has traditionally emphasized the eastern coastal areas of Florida. Recently, more emphasis has been placed on providing a more accurate water budget for internal canal flows.

  9. Tin Nitride as an Earth Abundant Photoanode for Water Splitting

    NASA Astrophysics Data System (ADS)

    Caskey, Christopher; Ma, Ming; Stephanovic, Vladan; Laney, Stephan; Ginley, David; Richards, Ryan; Smith, Wilson; Zakutayev, Andriy

    2014-03-01

    Photoelectrochemical (PEC) water splitting-the conversion of water to hydrogen and oxygen using light-is an attractive route to the chemical storage of solar energy. We demonstrate that spinel tin nitride (Sn3N4) has conduction and valence bands that straddle the redox potentials of water and we study it as a photoannode material. Sn3N4 thin films have been grown on glass at ambient temperature by reactive sputtering of tin in a nitrogen atmosphere. The resulting materials were n-type semiconductors. Carrier concentration, carrier mobility, work function, and optical properties were measured. Results indicate that tin nitride has a band gap of ~ 1.7 eV aligned around water's redox potentials. GW-corrected DFT-surface calculations that take into account water surface dipole interactions are consistent with experiment. Early PEC devices were made from Sn3N4 on fluorinated tin oxide with cobalt oxide catalysts and show a small but promising photoresponse (~ 0.1 mA/cm2 at 1.23 V vs. RHE) under AM 1.5 illumination in 0.1 M potassium phosphate (pH= 7.25). Further work will focus on increasing the photocurrent in tin nitride devices by increasing film quality and identifying the proper catalyst. This work is supported by the U.S. Department of Energy and the Netherlands Organization for Scientific Research (NWO), VENI scheme.

  10. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  11. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  12. Quantitative abundance estimates from bidirectional reflectance measurements. [for planetary surfaces

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Pieters, Carle M.

    1987-01-01

    A simplified approach for estimating mineral abundances in mineral mixtures from bidirectional reflectance measurements is presented. Fundamental to this approach is a priori information concerning reflectance spectra of the individual minerals and an estimate of the particle sizes of the components. Simplified equations for bidirectional reflectance are used to linearize the systematics of spectral mixing. The method was used to determine the relative proportions of olivine, magnetite, enstatite, and anorthite in a mixture; the mass fractions of mixture components were calculated on the basis of known particle diameters. The results indicate that for materials without strongly adsorbing components, the accuracy of abundance determinations is better than 5 percent.

  13. High frequency (hourly) variation in vertical distribution and abundance of meroplanktonic larvae in nearshore waters during strong internal tidal forcing

    NASA Astrophysics Data System (ADS)

    Liévana MacTavish, A.; Ladah, L. B.; Lavín, M. F.; Filonov, A.; Tapia, Fabian J.; Leichter, J.

    2016-04-01

    We related the vertical distribution and abundance of nearshore meroplankton at hourly time scales with internal tidal wave events. We proposed that significant changes in plankter abundance would occur across internal tidal fronts, and that surface and bottom strata would respond in opposite fashions. First-mode internal tidal bores propagating in the alongshore direction were detected in water-column currents and baroclinic temperature changes. Surface and bottom currents always flowed in opposite directions, and abrupt flow reversals coincided with large temperature changes during arrival of bores. Crab zoeae and barnacle cyprids were more abundant in the bottom strata, whereas barnacle nauplii showed the opposite pattern. Significant changes in vertical distribution and abundance of target meroplankters occurred across internal tidal fronts, especially for crabs at depth, with surface and bottom organisms responding in opposite fashions. Changes in plankter abundance were significantly correlated with current flows in the strata where they were most abundant. The manner in which plankters were affected (increasing or decreasing abundance) appeared to be modulated by their vertical position within the water column. The significant differences found at the high frequencies of this study, maintained across sampling days, suggest that nearshore meroplankton populations may have greater and more consistent temporal and vertical variability than previously considered.

  14. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  15. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  16. Measurements of Water Surface Snow Lines in Classical Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Blevins, Sandra M.; Pontoppidan, Klaus M.; Banzatti, Andrea; Zhang, Ke; Najita, Joan R.; Carr, John S.; Salyk, Colette; Blake, Geoffrey A.

    2016-02-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1 to 100 au using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model composed of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of ˜3-11 au, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abundance is not solely due to the local gas-solid balance, but may also be driven by the deactivation of gas-phase chemical pathways to water below 300 K. Assuming a canonical gas-to-dust ratio of 100, as well as coupled gas and dust temperatures Tgas = Tdust, the best-fit inner water abundances become implausibly high (0.01-1.0 {{{{H}}}2}-1). Conversely, a model in which the gas and dust temperatures are decoupled leads to canonical inner-disk water abundances of ˜ {10}-4 {{{H}}}2-1, while retaining gas-to-dust ratios of 100. That is, the evidence for gas-dust decoupling in disk surfaces is stronger than for enhanced gas-to-dust ratios.

  17. Surface Water Records of Colorado

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1962-01-01

    The surface-water records for the 1962 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of J. W. Odell, district engineer, Surface Water Branch.

  18. SURFACE WATER INTAKES

    EPA Science Inventory

    The Safe Drinking Water Information System (SDWIS) GIS layer represents the locations of public water system (PWS) facilities in NY and NJ; every PWS has one or more facilities. Data for this layer came from the Safe Drinking Water Information System/Federal version (SDWIS/FED)...

  19. CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

  20. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  1. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  2. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    SciTech Connect

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  3. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE PAGESBeta

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  4. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  5. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    PubMed Central

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  6. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  7. Dependence of Mercurian Atmospheric Column Abundance Estimations on Surface-Reflectance Modeling

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Sprague, Ann L.; Hunten, Donald M.

    1997-01-01

    Column abundance estimates of sodium, and analogously, potassium, in Mercury's exosphere are strongly correlated to the surface reflection model used to calibrate the spectral data and the surface reflection model incorporated into the atmospheric radiative transfer solution. Depending on the surface reflection model parameters used, there can be differences in calibration factors of up to +/- 30% and differences in estimated column abundance of up to +/- 35%. Although the surface reflectance may not be used in the calibration of spacecraft measurements, the interaction between the reflected surface light and the atmospheric brightness remains important.

  8. Measuring Surface Water From Space

    NASA Astrophysics Data System (ADS)

    Partsch, J.; Alsdorf, D.; Rodriguez, E.; Lettenmaier, D.; Mognard, N.; Participants, T.

    2006-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface fresh water discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in-situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (dh/dx), and temporal change (dh/dt). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge, but are successful only when in-situ data are available for calibration and fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multi-decadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing fresh water bodies. However, altimeters are profiling tools which, because of their orbital spacings, miss too many fresh water bodies to be useful hydrologically. High spatial resolution images of dh/dt have been observed with interferometric synthetic aperture radar (SAR), but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model the

  9. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    SciTech Connect

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y. E-mail: grebel@ari.uni-heidelberg.de E-mail: akniazev@saao.ac.za

    2014-12-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R{sub 25}) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the

  10. Distribution and abundance of larval fish in the nearshore waters of western Lake Huron

    USGS Publications Warehouse

    O'Gorman, Robert

    1983-01-01

    Ichthyoplankton was collected at 17 nearshore (bottom depth ≥5 m but ≤10 m) sites in western Lake Huron during 1973–75 with a 0.5-m net of 351-micron mesh towed at 99 m/min. Larvae of rainbow smelt (Osmerus mordax) dominated late spring and early summer catches and larvae of alewives (Alosa pseudoharengus) the midsummer catches. Larval yellow perch (Perca flavescens) were caught in early summer but were rarely the dominant species. The time of spawning and hatching, and thus occurrence of larvae, differed between areas but was less variable for alewives than for yellow perch. The appearance of larvae in Saginaw Bay was followed successively by their appearance in southern, central, and northern Lake Huron. Rainbow smelt were most abundant in northern Lake Huron and yellow perch and alewives in inner Saginaw Bay. Densities of either rainbow smelt or alewives occasionally exceeded 1/m3, whereas those of yellow perch never exceeded 0.1/m3. Abundance of alewives was usually highest 1 to 3 m beneath the surface and that of rainbow smelt 2 to at least 6 m beneath the surface. Important nursery areas of rainbow smelt were in bays and off irregular coastlines and those of yellow perch were in bays. All nearshore waters seemed equally important as nursery areas of alewives.

  11. Measuring surface water from space

    NASA Astrophysics Data System (ADS)

    Alsdorf, Douglas E.; RodríGuez, Ernesto; Lettenmaier, Dennis P.

    2007-06-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface freshwater discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (∂h/∂x), and temporal change (∂h/∂t). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge but are successful only when in situ data are available for calibration; they fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multidecadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing freshwater bodies. However, altimeters are profiling tools, which, because of their orbital spacings, miss too many freshwater bodies to be useful hydrologically. High spatial resolution images of ∂h/∂t have been observed with interferometric synthetic aperture radar, but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model

  12. Abundance distributions over the surfaces of magnetic ApBp stars: theoretical predictions

    NASA Astrophysics Data System (ADS)

    Alecian, G.

    2015-12-01

    Recently published empirical abundance maps, obtained through (Zeeman) Doppler mapping, do not currently agree with the abundance structures predicted by means of numerical models of atomic diffusion in magnetic atmospheres of ApBp stars. In a first step towards the resolution of these discrepancies, we present a state of the art grid of equilibrium abundance stratifications in the atmosphere of a magnetic Ap star with Teff = 10 000 K and log g = 4.0. A description of the behaviour of 16 chemical elements including predictions concerning the over- and/or underabundances over the stellar surface is followed by a discussion of the possible influence of presently neglected physical processes.

  13. Pacific Mole Crab (Emerita analoga) Abundance in Correlation with Waste Water Effluence

    NASA Astrophysics Data System (ADS)

    Sun, L.; Dangerfield, L.; Minor, D.; Subedar, R.

    2012-12-01

    Previous studies have shown that pollutants such as ammonia and copper have had negative effects on marine invertebrate lifecycles. Along the Pacific Coast of California, a filter feeding invertebrate, the Pacific mole crab, Emerita analoga, is exposed to such pollutants regularly. In San Francisco, habitats for populations of Pacific mole crabs are located near the Oceanside Water Pollution Control Plant, which dumps waste water 4.5 miles off the coast. Due to this disturbance at the south end of Ocean Beach, we hypothesize that there is a negative correlation between the abundance of mole crabs and the levels of copper, zinc and ammonia in sewage released from the Oceanside plant each year. By analyzing four years of Pacific mole crab abundance data and utilizing yearly waste water discharge figures, we found that there is a slight negative correlation (-0.67057) between mole crab abundances and the total amount of waste water being released annually. The amount of copper released from 2007-2010 and the abundance of E. analoga also has a slight negative correlation (-0.6714). The correlation between Pacific mole crab abundance and the total amount of zinc is also a slightly negative (-0.48434). However, the correlation between the abundance of mole crabs and total amount of ammonia released is positive (0.4497). Further data are needed to ascertain the relationship between the abundance of the Pacific mole crab and the amount of pollutants released from nearby waste water treatment plants.

  14. The abundance and distribution of water vapor in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon L.; Larson, Harold P.; Kunde, Virgil G.

    1986-01-01

    The atmospheric transmission window between 1800 and 2250 cm(-1) in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory (KAO) and by the infrared spectrometer (IRIS) on Voyager. The vertical distribution of H2O was derived for the 1 to 6 bar portion of Jupiter's troposphere. The spatial variation of H2O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts, the Equatorial Zone, and for an average of the North and South Tropical Zones. The H2O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amagat. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 to 40 deg latitude, the H2O mole fraction, qH2O, is saturated for P less than 2 bars, qH2O = 4x10 to the -6 in the 2 to 4 bar range and it increases to 3x10 to the -5 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H2O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. The massive H2O cloud at 5 bars, T = 273 K, proposed in solar composition models, is inconsistent with the observations. Instead, a thin H2O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H2O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the Sun. The implications for the origin of Jupiter of globally depleted O/H, but enhanced C/H and N/H, are discussed.

  15. Abundance and distribution of water vapor in Jupiter's atmosphere

    SciTech Connect

    Bjoraker, G.L.; Larson, H.P.; Kunde, V.G.

    1986-09-01

    The atmospheric transmission window between 1800 and 2250 cm(-1) in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory (KAO) and by the infrared spectrometer (IRIS) on Voyager. The vertical distribution of H/sub 2/O was derived for the 1 to 6 bar portion of Jupiter's troposphere. The spatial variation of H/sub 2/O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts, the Equatorial Zone, and for an average of the North and South Tropical Zones. The H/sub 2/O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amagat. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 to 40 deg latitude, the H/sub 2/O mole fraction, qH/sub 2/O, is saturated for P less than 2 bars, qH/sub 2/O = 4x10 to the -6 in the 2 to 4 bar range and it increases to 3x10 to the -5 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H/sub 2/O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. The massive H/sub 2/O cloud at 5 bars, T = 273 K, proposed in solar composition models, is inconsistent with the observations. Instead, a thin H/sub 2/O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H/sub 2/O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the Sun. The implications for the origin of Jupiter of globally depleted O/H, but enhanced C/H and N/H, are discussed.

  16. Martian atmospheric chemistry during the time of low water abundance

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Yung, Yuk L.; Clancy, R. Todd

    1992-01-01

    The importance of odd hydrogen (or HO(x)) radicals in the catalytic recombination of carbon monoxide and oxygen in the Martian atmosphere is a well known fact. The inclusion of recent chemical kinetics data, specifically temperature-dependent CO2 absorption cross sections, into our one dimensional photochemical model shows that HO(x) is too efficient in this regard. The absorption cross sections of CO2 are smaller than previously assumed; this leads to a reduction in the photolysis rate of CO2 while the photolysis rate of H2O has increased. As a consequence the predicted mixing ratio of CO in our models is substantially less than the observed value of 6.5(10)(exp -4). Simultaneous measurements of water, ozone, and carbon monoxide were obtained in the Martian atmosphere in early Dec. 1990 (L(sub s) for Mars was 344 deg.).

  17. Correlation of the Abundance of Betaproteobacteria on Mineral Surfaces with Mineral Weathering in Forest Soils

    PubMed Central

    Lepleux, C.; Turpault, M. P.; Oger, P.; Frey-Klett, P.

    2012-01-01

    Pyrosequencing-based analysis of 16S rRNA gene sequences revealed a significant correlation between apatite dissolution and the abundance of betaproteobacteria on apatite surfaces, suggesting a role for the bacteria belonging to this phylum in mineral weathering. Notably, the cultivation-dependent approach demonstrated that the most efficient mineral-weathering bacteria belonged to the betaproteobacterial genus Burhkolderia. PMID:22798365

  18. Reconciling LCROSS and Orbital Neutron Water Abundance Estimates in Cabeus Crater

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Teodoro, Luis F.; Eke, Vincent R.; Paige, David A.; Siegler, Matthew A.; Colaprete, Anthony

    2011-01-01

    The Lunar Prospector Neutron Spectrometer (LPNS) first revealed Cabeus crater (84.9 deg S, 35.5degW) as having the highest inferred hydrogen on the Moon. Because of the broad LPNS footprint (approximately 40 km FWHM), the apparent peak water-equivalent hydrogen (WEH) concentration is only approximately 0.25 wt%, but could be much higher in smaller areas than the spectrometer footprint. Earlier image reconstruction work suggested that areas within permanent shadow have abundances approximately 1 wt% WEH. However, the LCROSS impact yielded total water estimates, ice plus vapor, of between 3 and 10 wt%. The large disagreement between LCROSS and apparent orbital values imply that either the ice is buried, by perhaps as much as 50 to 100 cm; or the ice distribution within Cabeus is spatially inhomogeneous, or both. Modeling reveals that the areal extent of a "shallow permafrost zone" is far greater than the area of permanent shadow. Ice can be virtually stable for billions of years within a few tens of centimeters of the surface in these areas. However, the LCROSS impact took place in an area of permanent shadow. If stably-trapped volatiles can be found in locales that receive occasional, oblique sunlight, landed missions may target these sites and eventual resource exploitation may be done more easily. Are orbital neutron data consistent with areally-extensive, volatile-rich cold traps? Orbital epithermal neutron data over the northern half of Cabeus (near the LCROSS impact site) are consistent with 0.2 wt% WEH or less in the "permafrost zone" near the crater. On the other hand, pixon reconstructions that confine the hydrogen enhancements to permanent shadow result in higher abundance estimates -- around 1 wt% if homogeneously mixed. But if the PSR abundance is increased to 10 wt%, consistent with the sum of all H-bearing compounds seen by LCROSS, a much larger-than-observed reduction in neutron count rate would be seen from orbit. It is likely that volatiles are

  19. Viral Abundance, Decay, and Diversity in the Meso- and Bathypelagic Waters of the North Atlantic▿

    PubMed Central

    Parada, Verónica; Sintes, Eva; van Aken, Hendrik M.; Weinbauer, Markus G.; Herndl, Gerhard J.

    2007-01-01

    To elucidate the potential importance of deep-water viruses in controlling the meso- and bathypelagic picoplankton community, the abundance, decay rate, and diversity of the virioplankton community were determined in the meso- and bathypelagic water masses of the eastern part of the subtropical North Atlantic. Viral abundance averaged 1.4 × 106 ml−1 at around 100 m of depth and decreased only by a factor of 2 at 3,000 to 4,000 m of depth. In contrast, picoplankton abundance decreased by 1 order of magnitude to the Lower Deep Water (LDW; 3,500- to 5,000-m depth). The virus-to-picoplankton ratio increased from 9 at about 100 m of depth to 110 in the LDW. Mean viral decay rates were 3.5 × 10−3 h−1 between 900 m and 2,750 m and 1.1 × 10−3 h−1 at 4,000 m of depth, corresponding to viral turnover times of 11 and 39 days, respectively. Pulsed-field gel electrophoresis fingerprints obtained from the viral community between 2,400 m and 4,000 m of depth revealed a maximum of only four bands from 4,000 m of depth. Based on the high viral abundance and the low picoplankton production determined via leucine incorporation, we conclude that the viral production calculated from the viral decay is insufficient to maintain the high viral abundance in the deep North Atlantic. Rather, we propose that substantial allochthonous viral input or lysogenic or pseudolysogenic production is required to maintain the high viral abundance detected in the meso- and bathypelagic North Atlantic. Consequently, deep-water prokaryotes are apparently far less controlled in their abundance and taxon richness by lytic prokaryotic phages than the high viral abundance and the virus-to-picoplankton ratio would suggest. PMID:17496133

  20. Abundance of epiphytic dinoflagellates from coastal waters off Jeju Island, Korea During Autumn 2009

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Seop; Yih, Wonho; Kim, Jong Hyeok; Myung, Geumog; Jeong, Hae Jin

    2011-09-01

    The occurrence of harmful epiphytic dinoflagellates is of concern to scientists, the aquaculture industry, and government due to their toxicity not only to marine organisms but also to humans. There have been no studies on the abundance of the epiphytic dinoflagellates in Korean waters. We explored the presence of epiphytic dinoflagellates in the coastal waters off Jeju Island, southwestern Korea. Furthermore, we measured the abundance of epiphytic dinoflagellates on the thalli of 24 different macroalgae, collected from five different locations in October 2009. Five epiphytic dinoflagellate genera Amphidinium, Coolia, Gambierdiscus, Ostreopsis, and Prorocentrum were found. These five genera were observed on the thalli of the macroalgae Chordaria flagelliformis, Martensia sp., Padina arborescens, and Sargassum sp., while none were observed exceptionally on Codium fragile. The abundance of Ostreopsis spp. was highest on Derbesia sp. (8,660 cells/g wet weight), while that of Gambierdiscus spp. was highest on Martensia sp. (4,870 cells/g-ww). The maximum abundances of Amphidinium spp., Coolia spp., and Prorocentrum spp. were 410, 710, and 300 cells/g-ww, respectively. The maximum abundance of Coolia spp., Gambierdiscus spp., and Ostreopsis spp. obtained in the present study was lower than for other locations reported in literature. The results of the present study suggest that the presence and abundance of epiphytic dinoflagellates may be related to the macroalgal species of the coastal waters of Jeju Island.

  1. Visible Light Driven Photoelectrodes Made of Earth Abundant Elements for Water Photoelectrolysis

    NASA Astrophysics Data System (ADS)

    Huang, Qiang

    the bare Cu2O photocathode suffered from a significant photo-induced reductive decomposition. By modifying the surface of the Cu2O nanowires with protecting layers of CuO and TiO2, direct contact of Cu2O with the electrolyte was avoided, and the Cu2O/CuO/TiO2 coaxial nanocable structures were found to gain 74% higher photocurrent and 4.5 times higher stability. Furthermore, the co-catalysts were also used to modify the photoelectrode surface to reduce the water splitting overpotentials by facilitating the transfer of the photo-induced carriers to the electrolyte. Cobalt based co-catalysts, both the Co2+ and Co3O4 thin film, enhanced the stability of the intrinsic n-CdS photoanode. The Pt modification of CdS:Cu, effectively eliminating the large transient photocurrent, enhanced the photocurrent and stability and positively shifted the onset potential of the cathodic photocurrent by 90 mV, and the hydrogen evolution from the p-type CdS:Cu/Pt photocathode was observed for the first time. This thesis not only studied the water photoelectrolysis potentials of CdS and Cu2O, but also presented general methods to prevent photocorrosion and enhance photo-activity, which could be also applied to other visible light responsive and earth abundant materials to enlarge the range of material choice for solar water splitting

  2. The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT Herschel Key Program

    NASA Astrophysics Data System (ADS)

    Min, M.; Bouwman, J.; Dominik, C.; Waters, L. B. F. M.; Pontoppidan, K. M.; Hony, S.; Mulders, G. D.; Henning, Th.; van Dishoeck, E. F.; Woitke, P.; Evans, Neal J., II; Digit Team

    2016-08-01

    Context. The presence or absence of ice in protoplanetary disks is of great importance to the formation of planets. By enhancing solid surface density and increasing sticking efficiency, ice catalyzes the rapid formation of planetesimals and decreases the timescale of giant planet core accretion. Aims: In this paper, we analyze the composition of the outer disk around the Herbig star HD 142527. We focus on the composition of water ice, but also analyze the abundances of previously proposed minerals. Methods: We present new Herschel far-infrared spectra and a re-reduction of archival data from the Infrared Space Observatory (ISO). We modeled the disk using full 3D radiative transfer to obtain the disk structure. Also, we used an optically thin analysis of the outer disk spectrum to obtain firm constraints on the composition of the dust component. Results: The water ice in the disk around HD 142527 contains a large reservoir of crystalline water ice. We determine the local abundance of water ice in the outer disk (i.e., beyond 130 AU). The re-reduced ISO spectrum differs significantly from that previously published, but matches the new Herschel spectrum at their common wavelength range. In particular, we do not detect any significant contribution from carbonates or hydrous silicates, in contrast to earlier claims. Conclusions: The amount of water ice detected in the outer disk requires ~80% of oxygen atoms. This is comparable to the water ice abundance in the outer solar system, comets, and dense interstellar clouds. The water ice is highly crystalline while the temperatures where we detect it are too low to crystallize the water on relevant timescales. We discuss the implications of this finding.

  3. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    SciTech Connect

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B.; Désert, Jean-Michel; Line, Michael R.; Fortney, Jonathan J.; Madhusudhan, Nikku; Showman, Adam P.; Kataria, Tiffany; Charbonneau, David; McCullough, Peter R.; Seager, Sara; Burrows, Adam; Henry, Gregory W.; Williamson, Michael; Homeier, Derek

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  4. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  5. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    PubMed

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality. PMID:26364354

  6. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  7. Survey of cyanomyovirus abundance in Shantou coastal waters by g20

    NASA Astrophysics Data System (ADS)

    Li, Chuanbiao; Ding, Jun; Zhou, Lizhen; Zhang, Zhao; Li, Shengkang; Liu, Wenhua; Wen, Xiaobo

    2015-05-01

    To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phylogeny of natural cyanomyovirus communities. The abundance of total viruses, heterotrophic bacteria, and picophytoplankton in the coastal waters was monitored with flow cytometry. Hydrological parameters (NO{3/-}, NO{2/-}, NH3, soluble reactive phosphorus, total dissolved nitrogen, total dissolved phosphorus, dissolved oxygen, chemical oxygen demand, temperature, salinity, and chlorophyll a concentration) and microbial abundance (total viruses, total bacteria, Prochlorococcus, Synechococcus, and eukaryotes) were measured in the upper and lower layers at four sampling sites in the research area. In the direct viral counts, cyanomyoviruses accounted for 1.92% to >10% of the total viral community. A phylogenetic analysis showed that the g20 sequences in the Shantou coastal waters were very diverse, distributed in eight distinct operational taxonomic units, including the newly formed Cluster W. The g20 gene copies inferred from real time PCR assay indicated that cyanomyoviruses were correlated significantly with the heterotrophic bacteria numbers and the nitrate and chlorophyll a concentrations. These results suggest that cyanomyoviruses are ubiquitous and are an abundant component of the virioplankton in Shantou coastal waters.

  8. Limitations to postfire seedling establishment: the role of seeding technology, water availability, and invasive plant abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abund...

  9. ORTHO-TO-PARA ABUNDANCE RATIO OF WATER ION IN COMET C/2001 Q4 (NEAT): IMPLICATION FOR ORTHO-TO-PARA ABUNDANCE RATIO OF WATER

    SciTech Connect

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Boice, Daniel C.; Martinez, Susan E.

    2012-04-20

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by other molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).

  10. Water abundance in four of the brightest water sources in the southern sky

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Ru; Qian, Lei; Li, Di; Pan, Zhi-Chen

    2016-03-01

    We estimated the ortho-H2O abundances of G267.9-1.1, G268.4-0.9, G333.1-0.4 and G336.5-1.5, four of the brightest ortho-H2O sources in the southern sky observed by the Submillimeter Wave Astronomy Satellite (ortho-H2O 110 - 101 line, 556.936 GHz). The typical molecular clumps in our sample have H2 column densities of 1022 to 1023 cm-2 and ortho-H2O abundances of 10-10. Compared with previous studies, the ortho-H2O abundances are at a low level, which can be caused by the low temperatures of these clumps. To estimate the ortho-H2O abundances, we used the CS J = 2 → 1 line (97.98095 GHz) and CS J = 5 → 4 (244.93556 GHz) line observed by the Swedish-ESO 15m Submillimeter Telescope (SEST) to calculate the temperatures of the clumps and the 350 μm dust continuum observed by the Caltech Submillimeter Observatory (CSO) telescope to estimate the H2 column densities. The observations of N2H+ (J = 1 → 0) for these clumps were also acquired by SEST and the corresponding abundances were estimated. The N2H+ abundance in each clump shows a common decreasing trend toward the center and a typical abundance range from 10-11 to 10-9.

  11. Wave Turbulence on Water Surface

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey; Lukaschuk, Sergei

    2016-03-01

    We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.

  12. Surface water discharges from onshore stripper wells.

    SciTech Connect

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  13. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region.

    PubMed

    Chae, Doo-Hyeon; Kim, In-Sung; Kim, Seung-Kyu; Song, Young Kyoung; Shim, Won Joon

    2015-10-01

    Microplastics in marine environments are of emerging concern due to their widespread distribution, their ingestion by various marine organisms, and their roles as a source and transfer vector of toxic chemicals. However, our understanding of their abundance and distribution characteristics in surface seawater (SSW) remains limited. We investigated microplastics in the surface microlayer (SML) and the SSW at 12 stations near-shore and offshore of the Korean west coast, Incheon/Kyeonggi region. Variation between stations, sampling media, and sampling methods were compared based on abundances, size distribution, and composition profiles of microsized synthetic polymer particles. The abundance of microplastics was greater in the SML (152,688 ± 92,384 particles/m(3)) than in SSW and showed a significant difference based on the sampling method for SSWs collected using a hand net (1602 ± 1274 particles/m(3)) and a zooplankton trawl net (0.19 ± 0.14 particles/m(3)). Ship paint particles (mostly alkyd resin polymer) accounted for the majority of microplastics detected in both SML and SSWs, and increased levels were observed around the voyage routes of large vessels. This indicates that polymers with marine-based origins become an important contributor to microplastics in coastal SSWs of this coastal region. PMID:26135299

  14. Relation between rainfall intensity and savanna tree abundance explained by water use strategies.

    PubMed

    Xu, Xiangtao; Medvigy, David; Rodriguez-Iturbe, Ignacio

    2015-10-20

    Tree abundance in tropical savannas exhibits large and unexplained spatial variability. Here, we propose that differentiated tree and grass water use strategies can explain the observed negative relation between maximum tree abundance and rainfall intensity (defined as the characteristic rainfall depth on rainy days), and we present a biophysical tree-grass competition model to test this idea. The model is founded on a premise that has been well established in empirical studies, namely, that the relative growth rate of grasses is much higher compared with trees in wet conditions but that grasses are more susceptible to water stress and lose biomass more quickly in dry conditions. The model is coupled with a stochastic rainfall generator and then calibrated and tested using field observations from several African savanna sites. We show that the observed negative relation between maximum tree abundance and rainfall intensity can be explained only when differentiated water use strategies are accounted for. Numerical experiments reveal that this effect is more significant than the effect of root niche separation. Our results emphasize the importance of vegetation physiology in determining the responses of tree abundance to climate variations in tropical savannas and suggest that projected increases in rainfall intensity may lead to an increase in grass in this biome. PMID:26438847

  15. Mapping impervious surface type and sub-pixel abundance using hyperion hyperspectral imagery

    USGS Publications Warehouse

    Falcone, J.A.; Gomez, R.

    2005-01-01

    Impervious surfaces have been identified as an important and quantifiable indicator of environmental degradation in urban settings. A number of research efforts have been directed at mapping impervious surface type using multispectral imagery. To date, however, no studies have compared equivalent techniques using multispectral and hyperspectral imagery to that end. In this study, data from NASA's 220-channel Hyperion instrument were used to: a) delineate three types of impervious surface, and b) map sub-pixel percent abundance for a study site near Washington, D.C., USA. The results were compared with the results of similar methods using same-spatial-resolution Landsat ETM+ data for mapping impervious surface type, and with the results of the U.S. Geological Survey's National Land Cover Data (NLCD) 2001 impervious surface data layer, which is derived from Landsat and high-resolution Ikonos data. The accuracy of discriminating impervious surface type using Hyperion data was assessed at 88% versus Landsat at 59%. The sub-pixel percent impervious map corresponded well with the NLCD 2001; impervious surface in the study area was calculated at 29.3% for NLCD 2001 and 28.4% for the Hyperion-derived layer. The results suggest that fairly simple techniques using hyperspectral data are effective for quantifying impervious surface type, and that high-spectral- resolution imagery may be a good alternative to high-spatial-resolution data.

  16. Meridional Martian water abundance profiles during the 1988-1989 season

    SciTech Connect

    Rizk, B.; Wells, W.K.; Hunten, D.M.; Stoker, C.R.; Freedman, R.S.; Roush, T.; Pollack, J.B.; Haberle, R.M. NASA, Ames Research Center, Moffett Field, CA )

    1991-04-01

    The Martian southern hemisphere atmospheric water vapor column abundance measurements reported agree with Viking Orbiter atmospheric water detectors during early southern spring and southern autumnal equinox; profiles obtained in southern mid- and late summer, however, indicate the presence of twice as much water both in the southern hemisphere and planetwide. This discrepancy is accounted for by the high optical depths created by two global dust storms during the Viking year, while the present observations were obtained in the case of the relatively dust-free atmosphere of the 1988-1989 opposition. 29 refs.

  17. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    PubMed Central

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  18. Macro-invertebrate decline in surface water polluted with imidacloprid.

    PubMed

    Van Dijk, Tessa C; Van Staalduinen, Marja A; Van der Sluijs, Jeroen P

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  19. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGESBeta

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  20. Temporal variations in abundance and composition of intact polar lipids in North Sea coastal marine water

    NASA Astrophysics Data System (ADS)

    Brandsma, J.; Hopmans, E. C.; Philippart, C. J. M.; Veldhuis, M. J. W.; Schouten, S.; Sinninghe Damsté, J. S.

    2011-09-01

    Temporal variations in the abundance and composition of intact polar lipids (IPLs) in North Sea coastal marine water were assessed over a one-year seasonal cycle, and compared with environmental parameters and the microbial community composition. Sulfoquinovosyldiacylglycerol (SQDG) was the most abundant IPL class, followed by phosphatidylcholine (PC), phosphatidylglycerol (PG) and diacylglyceryl-(N,N,N)-trimethylhomoserine (DGTS) in roughly equal concentrations, and smaller amounts of phosphatidylethanolamine (PE). Although the total concentrations of these IPL classes varied substantially throughout the year, the composition of the IPL pool remained remarkably constant. Statistical analysis yielded negative correlations between IPL concentrations and dissolved inorganic nutrient concentrations, but possible phosphorous limitation during the spring bloom did not result in changes in the overall planktonic IPL composition. Significant correlations between SQDG, PC, PG and DGTS concentrations and chlorophyll-a concentrations and algal abundances indicated that eukaryotic primary producers were the predominant source of IPLs at this site. However, whilst IPL concentrations in the water were closely tied to total algal abundances, the rapid succession of different algal groups blooming throughout the year did not result in major shifts in IPL composition. This shows that the most commonly occurring IPLs have limited chemotaxonomic potential, and highlights the need to use targeted assays of more specific biomarker IPLs.

  1. Variations in the abundance of iron on Mercury's surface from MESSENGER X-Ray Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Weider, Shoshana Z.; Nittler, Larry R.; Starr, Richard D.; McCoy, Timothy J.; Solomon, Sean C.

    2014-06-01

    We present measurements of Mercury's surface composition from the analysis of MESSENGER X-Ray Spectrometer data acquired during 55 large solar flares, which each provide a statistically significant detection of Fe X-ray fluorescence. The Fe/Si data display a clear dependence on phase angle, for which the results are empirically corrected. Mercury's surface has a low total abundance of Fe, with a mean Fe/Si ratio of ˜0.06 (equivalent to ˜1.5 wt% Fe). The absolute Fe/Si values are subject to a number of systematic uncertainties, including the phase-angle correction and possible mineral mixing effects. Individual Fe/Si measurements have an intrinsic error of ˜10%. Observed Fe/Si values display small variations (significant at two standard deviations) from the planetary average value across large regions in Mercury's southern hemisphere. Larger differences are observed between measured Fe/Si values from more spatially resolved footprints on volcanic smooth plains deposits in the northern hemisphere and from those in surrounding terrains. Fe is most likely contained as a minor component in sulfide phases (e.g., troilite, niningerite, daubréelite) and as Fe metal, rather than within mafic silicates. Variations in surface reflectance (i.e., differences in overall reflectance and spectral slope) across Mercury are unlikely to be caused by variations in the abundance of Fe.

  2. Water surface capturing by image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  3. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts

    SciTech Connect

    Reece, SY; Hamel, JA; Sung, K; Jarvi, TD; Esswein, AJ; Pijpers, JJH; Nocera, DG

    2011-11-03

    We describe the development of solar water-splitting cells comprising earth-abundant elements that operate in near-neutral pH conditions, both with and without connecting wires. The cells consist of a triple junction, amorphous silicon photovoltaic interfaced to hydrogen- and oxygen-evolving catalysts made from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices described here carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun (100 milliwatts per square centimeter) of air mass 1.5 simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a leaf.

  4. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  5. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  6. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  7. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  8. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor

  9. Measuring Jupiter's water abundance by Juno: the link between interior and formation models

    NASA Astrophysics Data System (ADS)

    Helled, Ravit; Lunine, Jonathan

    2014-07-01

    The Juno mission to Jupiter is planned to measure the water abundance in Jupiter's atmosphere below the cloud layer. This measurement is important because it can be used to reveal valuable information on Jupiter's origin and its composition. In this paper, we discuss the importance of this measurement, the challenges in its interpretation, and address how it can be connected to interior and formation models of Jupiter.

  10. Species composition and seasonal abundance of Chaetognatha in the subtropical coastal waters of Hong Kong

    NASA Astrophysics Data System (ADS)

    Tse, P.; Hui, S. Y.; Wong, C. K.

    2007-06-01

    Species composition, species diversity and seasonal abundance of chaetognaths were studied in Tolo Harbour and the coastal waters of eastern Hong Kong. Tolo Harbour is a semi-enclosed and poorly flushed bay with a long history of eutrophication. It opens into the eastern coast of Hong Kong which is fully exposed to water currents from the South China Sea. Zooplankton samples were collected monthly from July 2003 to July 2005 at six stations. Twenty species of chaetognaths were identified. They included six species of the genus Aidanosagitta ( Aidanosagitta neglecta, Aidanosagitta delicata, Aidanosagitta johorensis, Aidanosagitta regularis, Aidanosagitta bedfordii and Aidanosagitta crassa), four species of the genus Zonosagitta ( Zonosagitta nagae, Zonosagitta bedoti, Zonosagitta bruuni and Zonosagitta pulchra), three species of the genus Ferosagitta ( Ferosagitta ferox, Ferosagitta tokiokai and Ferosagitta robusta) and one species each from the genera Serratosagitta ( Serratosagitta pacifica), Decipisagitta ( Decipisagitta decipiens), Flaccisagitta ( Flaccisagitta enflata), Krohnitta ( Krohnitta pacifica), Mesosagitta ( Mesosagitta minima), Pterosagitta ( Pterosagitta draco) and Sagitta ( Sagitta bipunctata). The most abundant species were Flaccisagitta enflata, A. neglecta and A. delicata. Averaged over the entire study period, the densities of Flaccisagitta enflata, A. neglecta and A. delicata were 9.3, 6.6 and 5.2 ind. m -3, respectively. Overall, these species constituted 39.7%, 28.2% and 22.0% of all chaetognaths collected in the study. Averaged over the entire study, the density of most of the low abundance species was <0.6 ind. m -3. Flaccisagitta enflata occurred throughout the year at all sampling stations. Aidanosagitta neglecta occurred at all sampling stations, but was most common in summer. Aidanosagitta delicata was most common in Tolo Harbour during summer. Tolo Harbour supported larger populations, but fewer species of chaetognaths than the

  11. Surface water records of Colorado, 1961

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1961-01-01

    The surface-water records for the 1961 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. T. Miller, district engineer, Surface Water Branch, succeeded by J. W. Odell.

  12. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management. PMID:25423586

  13. Abundance of Iron on Mercury's Surface from MESSENGER X-Ray Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Weider, S. Z.; Nittler, L. R.; Starr, R. D.; Evans, L. G.; McCoy, T. J.; Solomon, S. C.

    2012-12-01

    Early orbital results from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) X-Ray Spectrometer (XRS) revealed that Mercury's surface has a low Fe content. The reported Fe/Si ratios (~0.03 to 0.15) gave an upper limit of ~4 wt% Fe. This limit is consistent with the bulk estimate provided by the Gamma-Ray Spectrometer (Fe/Si: ~0.12) and the upper limit of ~6 wt % FeO in silicate minerals that is constrained by reflectance spectroscopy. Reliable Fe abundance estimates are difficult to obtain from XRS data for several reasons, including: (i) strong solar flares are required to excite Fe X-ray fluorescence, and such flares occur rarely; and (ii) energetic particle events often accompany the strongest solar flares, causing fluorescence of the instrument's Cu collimators and spectral contamination close to the Fe K lines at 6.4-7 keV. Forward modeling of XRS data from more than 30 flares during the first year of MESSENGER's orbit reveal that Fe is ubiquitously lower on Mercury (Fe/Si ranging from 0.02 to 0.18, with a peak in the distribution at ~0.06, or ~1.5 wt% Fe) than on other terrestrial planets. Although the abundance of Mg across the surface of Mercury is known to vary according to geological terrain, our data indicate that this variation is not a result of Fe substitution for Mg in mafic silicates. A correlation between Ca and S (and to a lesser extent between Mg and S) has previously been reported from the XRS data. Mercury's high S contents likely reflect the presence of abundant sulfide minerals, such as oldhamite (Ca,Mg,Fe)S. Our data reveal further correlations between Fe and Ca, and between Fe and Mg, suggesting that sulfides (most likely troilite, FeS, and/or oldhamite) are a major carrier of Fe on Mercury's surface. The low Fe content of Mercury's surface supports the very low FeO contents that are predicted from both melting experiments on enstatite chondrites and from thermodynamic modeling. However, even the few wt% Fe on

  14. Implications of the MESSENGER Discovery of High Sulfur Abundance on the Surface of Mercury

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.; Sprague, A. L.; Nittler, L. R.; Weider, S. Z.; Starr, R. D.; Evans, L. G.; Boynton, W. V.; Goldsten, J. O.; Hauck, S. A.; Solomon, S. C.

    2011-12-01

    The unusually high S content detected in Mercury's surface materials with the MESSENGER X-ray Spectrometer (XRS) constrains surface mineralogy, petrology, and the redox state of magmas and rocks. This discovery along with the low FeO content in surface silicates indicates a low oxygen fugacity (fO2) in corresponding melts and the occurrence of S in sulfides, which could be abundant in surface rocks. The detected high S content could reflect anomalously high (up to 8-10 wt%) solubility of sulfide S in extremely reduced magmas. The high bulk S/Fe ratio also suggests the presence of S in sulfides of Mg, Ca, Mn, and Cr, which occur in enstatite chondrites. Although the presence of some troilite (FeS) is possible, niningerite, (Mg, Fe, Mn)S, could be the most abundant sulfide. Niningerite could be partially responsible for Mercury's low surface albedo, its unusual reflectance spectrum at visible and near-infrared wavelengths, and the relatively high neutron absorption, because Mn is a strong neutron absorber. The presence of abundant niningerite would also imply a lower Mg/Si ratio in silicates than in bulk surface materials. It follows that Mg-rich mafic lavas could be present instead of, or in addition to, ultramafic lavas (komatiites). The occurrence of Mg-silicates (enstatite and forsterite) in Mercury's regolith as inferred from mid-infrared spectroscopy, together with the postulated presence of niningerite, helps characterize fO2 and fS2 in corresponding melts. If fS2 is controlled by the Fe-metal-Fe-sulfide equilibrium, the silicate-sulfide equilibria set fO2 values. For temperature less than 1700 K the evaluated values are less than 5.5 log fO2 units below the iron-wüstite buffer (IW-5.5). Lower temperatures and analogous considerations for Ca and Mn silicate-sulfide equilibria lead to lower fO2 values. For Fe-metal-saturated melts at 1700 K the fO2 value is IW-5.5 and corresponds to ~0.1 mol % FeO, which could be considered as an upper limit in magmas and

  15. Evidence for the abundance of water on Mars now and in the past

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.; Greeley, Ronald; Haberle, Robert M.

    1989-01-01

    This paper discusses evidence for the abundance of water on Mars early in its history, based on the analysis of the Viking 1 and 2 images and the Martian-atmosphere water measurements. It is argued that integrated networks of small valleys in the ancient cratered terrain of Mars may indicate that the planet once possessed a warmer climate. It is pointed out that most Martian outflow channels originate from the regions of collapsed and disrupted terrain, suggesting that they were formed by a catastrophic release of groundwater. The question of the fate of Martian water is discussed, and arguments are presented suggesting that the Martian crust may retain significant porosity to a depth of 10 km and may possess a total pore volume sufficient to store a global layer of water 0.5-1.5 km deep.

  16. Evidence for the abundance of water on Mars now and in the past

    SciTech Connect

    Clifford, S.M.; Greeley, R.; Haberle, R.M.; Arizona State Univ., Tempe; NASA, Ames Research Center, Moffett Field, CA )

    1989-02-01

    This paper discusses evidence for the abundance of water on Mars early in its history, based on the analysis of the Viking 1 and 2 images and the Martian-atmosphere water measurements. It is argued that integrated networks of small valleys in the ancient cratered terrain of Mars may indicate that the planet once possessed a warmer climate. It is pointed out that most Martian outflow channels originate from the regions of collapsed and disrupted terrain, suggesting that they were formed by a catastrophic release of groundwater. The question of the fate of Martian water is discussed, and arguments are presented suggesting that the Martian crust may retain significant porosity to a depth of 10 km and may possess a total pore volume sufficient to store a global layer of water 0.5-1.5 km deep.

  17. Water abundance retrieval from the near-infrared spectrum of κ And b

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen O.; Line, Michael R.; Pineda, Jaime; Meyer, Michael; Quanz, Sascha; Hinkley, Sasha; Fortney, Jonathan

    2015-12-01

    Spectral retrieval is a powerful tool for constraining the chemical and physical properties of exoplanet atmospheres from observed spectra, for both transiting objects and for directly imaged substellar companions. However, this approach has been applied to only about a dozen targets, because obtaining an information-rich, high-signal-to-noise exoplanet spectrum is challenging. Determining the chemical composition of the atmosphere of a planet is important, since it has implications on its formation and evolution. We present a spectral retrieval analysis of the near-infrared spectrum of κ And b, observed by Hinkley et al. 2013. κ And b is a massive substellar companion discovered via direct imaging around a young B9 star. We fit our simplified and hence fast atmospheric emission model to the observed spectra using a Markov Chain Monte Carlo algorithm. We estimate the abundance of water and place upper limits on the abundances of carbon dioxide and methane in the atmosphere of the object. We then compare our results to the water abundances of other substellar companions determined using a similar approach.

  18. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    SciTech Connect

    Mousis, Olivier; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  19. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting.

    PubMed

    Ran, Jingrun; Zhang, Jun; Yu, Jiaguo; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-11-21

    Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research. PMID:24429542

  20. Facilely Tuning Porous NiCo2 O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting.

    PubMed

    Zhu, Chengzhou; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-03-14

    Great efforts in developing clean electrochemical water splitting technology leads to the rational design and synthesis of highly efficient oxygen evolution reaction (OER) catalysts with low overpotential and fast reaction kinetics. Herein, we focus on the role that morphology and composition play in the OER performance to rationally design freestanding 3D porous NiCo2O4 nanosheets with metal valence states alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting. Besides metal valence-state alteration, surface modification regarding the evolution of oxygen vacancies is facilely realized upon the sodium borohydride treatment, which is beneficial for the enhanced OER performance. Taking advantage of the porous nanostructures and abundant surface activity sites with high reactivity, the resultant nanostructures exhibit excellent OER activity and stability in alkaline electrolytes that outperform that of pristine NiCo2O4 and commercial RuO2, thus holding great potential for the water splitting. PMID:26845062

  1. Modeling Anisothermality in LRO Diviner Observations to Assess Surface Roughness and Rock Abundance

    NASA Astrophysics Data System (ADS)

    Williams, J.; Paige, D. A.; Hayne, P. O.; Vasavada, A. R.; Bandfield, J. L.

    2013-12-01

    The Diviner Lunar Radiometer Experiment on NASA's Lunar Reconnaissance Orbiter (LRO) observes radiance in 7 infrared spectral channels from which brightness temperatures of the lunar surface are derived [1]. Multiple temperatures in the instrument's field of view result in variations in brightness temperature in the individual channels, anisothermality, due to the non-linear nature of Planck radiance with respect to wavelength; the warmer temperatures have an increased proportional influence on brightness temperatures at shorter wavelengths. In general, Diviner's surface footprint contains small scale variations in temperature due to surface roughness and rocks. Anisothermality in Diviner nighttime brightness temperatures has been successfully exploited to map rock abundances on the Moon as rocks cool more slowly than the regolith, and therefore are generally warmer at night [2]. A three-dimensional thermal diffusion model that balances incident solar radiation with infrared emission and conduction into the subsurface is employed to model Diviner observations resulting from surface roughness and rocks at multiple length-scales and illumination conditions. The model includes ray tracing of illumination so that slope effects and shadowing at different solar incidence angles can be explored for arbitrary surface geometries. We find that surface roughness and rocks with length scales as small as 5 cm can generate anisothermality in the Diviner thermal channels in both daytime and nighttime observations. At smaller scales, lateral conduction should become important. The length-scale dependence of anisothermality will be explored further in this study. [1] Paige et al. (2010) Space Sci. Rev., 150: 125-160. [2] Bandfield et al. (2011), JGR, 116.

  2. [Effects of Corbicula fluminea bioturbation on the community composition and abundance of ammonia-oxidizing archaea and bacteria in surface sediments].

    PubMed

    Wang, Xue; Zhao, Da-Yong; Zeng, Jin; Yu, Duo-Wei; Wu, Qing-Long

    2014-06-01

    To better understand the effects of Corbicula fluminea bioturbation on the ammonia-oxidizing microorganisms in the surface sediment, sediment-water microcosms with different densities of Corbicula fluminea were constructed. Clone libraries and real-time qPCR were applied to analyze the community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. The results obtained indicated that the bioturbation of Corbicula fluminea accelerated the release of nitrogen from the surface sediment. In the amoA gene clone libraries, the identified AOA amoA gene sequences affiliated with the two known clusters (marine and soil clusters). The identified AOB amoA gene sequences mostly belonged to the Nitrosomonas of beta-Proteobacteria. The abundance of the bacterial amoA gene was higher than that of the archaeal amoA gene in all treatments. With increasing density of Corbicula fluminea, decreased abundances of the bacterial amoA gene were observed. At the same time, the diversity of AOA and AOB reduced in the Corbicula fluminea containing microcosms. In conclusion, the bioturbation of Corbicula fluminea could affected the community composition and abundance of ammonia-oxidizing microorganisms in surface sediments. PMID:25158512

  3. Geochemistry of surface waters of Vojvodina, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Berry Lyons, W.; Lent, Robert M.; Djukic, Nada; Maletin, Steven; Pujin, Vlasta; Carey, Anne E.

    1992-08-01

    Major elements data are presented for a number of surface water samples from the Vojvodina region of Yugoslavia. These include samples from the Danube and Tisa Rivers as well as from three lakes in the Pannonian Plain. The data indicate that surface waters evolved to two major water types: Na-CO 3-SO 4-Cl and Na-Cl. The chemical composition of the surface water from this region has been strongly affected by anthropogenic activities including irrigation and the direct introduction of various chemical species, especially Na and Cl. It appears that the major element chemistry of a number of lakes in this region has changed since the 1950s.

  4. Gray solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons. PMID:24580162

  5. Gray solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, A.; Kimmoun, O.; Branger, H.; Kharif, C.; Hoffmann, N.; Onorato, M.; Akhmediev, N.

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.

  6. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW).

    PubMed

    Chen, Yuchao; Li, Sixing; Gu, Yeyi; Li, Peng; Ding, Xiaoyun; Wang, Lin; McCoy, J Philip; Levine, Stewart J; Huang, Tony Jun

    2014-03-01

    Cell enrichment is a powerful tool in a variety of cellular studies, especially in applications with low-abundance cell types. In this work, we developed a standing surface acoustic wave (SSAW) based microfluidic device for non-contact, continuous cell enrichment. With a pair of parallel interdigital transducers (IDT) deposited on a piezoelectric substrate, a one-dimensional SSAW field was established along disposable micro-tubing channels, generating numerous pressure nodes (and thus numerous cell-enrichment regions). Our method is able to concentrate highly diluted blood cells by more than 100 fold with a recovery efficiency of up to 99%. Such highly effective cell enrichment was achieved without using sheath flow. The SSAW-based technique presented here is simple, bio-compatible, label-free, and sheath-flow-free. With these advantages, it could be valuable for many biomedical applications. PMID:24413889

  7. Pesticide mitigation strategies for surface water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

  8. IDENTIFYING VULNERABLE SURFACE WATER UTILITIES

    EPA Science Inventory

    This study was conducted to provide a mechanism and framework with which utility managers could analyze the effects of upstream discharges on source waters. Specific components of the project included selection, implementation, and demonstration of a microcomputer-based commerci...

  9. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  10. Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests

    PubMed Central

    Marzinelli, Ezequiel M.; Williams, Stefan B.; Babcock, Russell C.; Barrett, Neville S.; Johnson, Craig R.; Jordan, Alan; Kendrick, Gary A.; Pizarro, Oscar R.; Smale, Dan A.; Steinberg, Peter D.

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  11. MODELING TOOLS FOR GROUND WATER-SURFACE WATER INTERACTIONS

    EPA Science Inventory

    This project develops algorithms for simulating the dynamic interactions between surface water and ground water in rivers and riparian streams. The algorithms rely on physically based linear response functions which describe the exchange rates and volumes of water between the str...

  12. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  13. Moist convection and the vertical structure and water abundance of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Mcgrattan, Kevin B.

    1990-01-01

    The cumulative effects of an ensemble of moist convective plumes on a conditionally unstable atmosphere are predicted by a model of moist convection on Jupiter in which the heating/cooling and drying/moistening of the environment occur through (1) compensating subsidence, (2) detrainment of updraft air at cloud tops, and (3) the evaporation and melting of falling condensate. Parahydrogen is transported as a passive tracer. Pure moist convective, mixed moist-dry convective, and primarily dry convective regimes are possible, depending on the assumed deep-water abundance, efficiency of condensate evaporation, and initial temperature profile.

  14. Water Mites (Acari: Hydrachnida) of Ozark Streams - Abundance, Species Richness, and Potential as Environmental Indicators

    NASA Astrophysics Data System (ADS)

    Radwell, A. J.; Brown, A. V.

    2005-05-01

    Because water mites are tightly linked to other stream metazoans through parasitism and predation, they are potentially effective indicators of environmental quality. Meiofauna (80 μm to 1 mm) were sampled from headwater riffles of 11 Ozark streams to determine relative abundance and densities of major meiofauna taxa. Water mites comprised 15.3% of the organisms collected exceeded only by chironomids (50.2%) and oligochaetes (17.8%), and mean water mite density among the 11 streams was 265 organisms per liter. The two streams that differed the most in environmental quality were sampled using techniques suitable for identification of species. An estimated 32 species from 20 genera and 13 families were found in the least disturbed stream; an estimated 19 species from 13 genera and 8 families were found in the most disturbed stream. This preliminary finding supports the notion that water mite species richness declines in response to environmental disturbance. Many species could only be identified as morphospecies of particular genera, but the ongoing taxonomic revision of Hydrachnida is expected to provide needed information. A collaborative effort between those interested in taxonomy/systematics of water mites and ecologists interested in the significance of water mites in aquatic communities could prove mutually beneficial.

  15. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  16. Water and Surfaces: a Linkage Unexpectedly Profound

    NASA Astrophysics Data System (ADS)

    Pollack, Gerald H.

    The impact of surfaces on the contiguous water is thought to project no more than a few molecular layers from the surface. On the contrary, we have found that solutes are profoundly excluded from a several-hundred-micrometer-wide zone next to various hydrophilic surfaces, including gels. Such large “exclusion zones” appear to be quite general. Recent studies have shown that the underlying basis is a reorganization of interfacial water molecules into a liquid crystalline array, which then excludes solutes. The impact of this “fourth phase” of water appears to be broad, especially in biology.

  17. Chemical abundances in low surface brightness galaxies: Implications for their evolution

    NASA Technical Reports Server (NTRS)

    Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    Low Surface Brightness (LSB) galaxies are an important but often neglected part of the galaxy content of the universe. Their importance stems both from the selection effects which cause them to be under-represented in galaxy catalogs, and from what they can tell us about the physical processes of galaxy evolution that has resulted in something other than the traditional Hubble sequence of spirals. An important constraint for any evolutionary model is the present day chemical abundances of LSB disks. Towards this end, spectra for a sample of 75 H 2 regions distributed in 20 LSB disks galaxies were obtained. Structurally, this sample is defined as having B(0) fainter than 23.0 mag arcsec(sup -2) and scale lengths that cluster either around 3 kpc or 10 kpc. In fact, structurally, these galaxies are very similar to the high surface brightness spirals which define the Hubble sequence. Thus, our sample galaxies are not dwarf galaxies but instead have masses comparable to or in excess of the Milky Way. The basic results from these observations are summarized.

  18. Barium Surface Abundances of Blue Stragglers in the Open Cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Milliman, Katelyn E.; Mathieu, Robert D.; Schuler, Simon C.

    2015-09-01

    We present a barium surface abundance of 12 blue stragglers (BSs) and 18 main-sequence (MS) stars in the intermediate-age open cluster NGC 6819 (2.5 Gyr) based on spectra obtained from the Hydra Multi-object Spectrograph on the WIYN 3.5 m telescope. For the MS stars we find [Fe/H] = +0.05 ± 0.04 and [Ba/Fe] = -0.01 ± 0.10. The majority of the BS stars are consistent with these values. We identify five BSs with significant barium enhancement. These stars most likely formed through mass transfer from an asymptotic giant branch star that polluted the surface of the BS with the nucleosynthesis products generated during thermal pulsations. This conclusion aligns with the results from the substantial work done on the BSs in old open cluster NGC 188 that identifies mass transfer as the dominant mechanism for BS formation in that open cluster. However, four of the BSs with enhanced barium show no radial-velocity evidence for a companion. The one star that is in a binary is a double-lined system, meaning the companion is not a white dwarf and not the remnant of a prior AGB star. In this paper we attempt to develop a consistent scenario to explain the origin of these five BSs.

  19. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  20. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  1. Evolutionary implications of a steady-state water abundance on Venus

    NASA Technical Reports Server (NTRS)

    Grinspoon, David H.

    1993-01-01

    In 1987, Grinspoon proposed that the data on hydrogen abundance, isotopic composition, and escape rate were consistent with the hypothesis that water on Venus might be in steady-state rather than monotonic decline since the dawn of time. This conclusion was partially based on a derived water lifetime against nonthermal escape of approximately 10(exp 8) years. Others have questioned this conclusion. De Bergh et al. found H2O lifetimes of greater than 10(exp 9) years. Donahue and Hodges derived H2O lifetimes of 0.4 - 5 x 10(exp 9) years. The most sophisticated analysis to date of near-IR radiation from Venus' nightside reveals a water mixing ratio of approximately 30 ppm. Recent re-analysis of Pioneer Venus Mass Spectrometer Data are consistent with a water abundance of 30 ppm. Hodges and Tinsley found an escape flux due to charge exchange with hot H(+) of 2.8 x 10(exp 7) cm(exp -2) s(exp -1). Gurwell and Yung estimated an escape flux of 3.5 x 10(exp 6) cm(exp -2) s(exp -1) from collisions with hot O produced by dissociative recombination of O2(+). Brace et al. estimated an escape flux of 5 x 10(exp 6) cm(exp -2) s(exp -1) from ion escape from the ionotail of Venus. The combined estimated escape flux from all of these processes is 3.7 x 10(exp 7) cm(exp -2) s(exp -1), suggesting a lifetime against escape for water of less than 10(exp 8) years. A recent estimate of H escape flux employing a different ionospheric model and using Pioneer Venus reentry data to estimate the response of the escape flux to the solar cycle finds a somewhat lower escape flux of 1.4 x 10(exp 7) cm(exp -2) s(exp -1), suggesting a water lifetime closer to 2 x 10(exp 8) years, significantly less than the age of the planet. Large uncertainties remain in these quantities, yet the data suggest that a source of water more recent than primordial sources is required and that a steady-state is likely. To obvious candidates for this source water are cometary impact and volcanic outgassing. Other aspects

  2. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  3. A New Model for Water Vapor/Ice Abundance in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    Water is a unique substance in the protoplanetary nebula since both solid and gaseous phases coexist in large quantities. Quantitative estimates of their relative abundances are important parameters regarding the physical state of the nebula and planet formation processes. This new model is based on computing the chemical evolution of water molecules until its partial pressure is sufficient to pierce the vapor pressure curve for water. The point at which this occurs relative to its steady state values determines final gas/ice ratios. The wide range of temperatures and densities in typical protoplanetary disks result in a range of gadice ratios. It is found that although ice dominates the mid and far nebula, water vapor is predominant in the centerplane region of the near nebula and above the disk photosphere. An interesting near nebula effect is the appearance of a cloud of water ice at the temperature inversion elevation surrounded by vapor above and below. This work is partially supported by the NASA Astrobiology Institute.

  4. Abundance of broad bacterial taxa in the sargasso sea explained by environmental conditions but not water mass.

    PubMed

    Sjöstedt, Johanna; Martiny, Jennifer B H; Munk, Peter; Riemann, Lasse

    2014-05-01

    To explore the potential linkage between distribution of marine bacterioplankton groups, environmental conditions, and water mass, we investigated the factors determining the abundance of bacterial taxa across the hydrographically complex Subtropical Convergence Zone in the Sargasso Sea. Based on information from 16S rRNA gene clone libraries from various locations and two depths, abundances of the predominant taxa (eubacteria, Archaea, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and the Roseobacter, SAR11, and SAR86 clades) were quantified by real-time PCR. In addition, the abundances of Synechococcus, Prochlorococcus, and picoalgae were determined by flow cytometry. Linear multiple-regression models determining the relative effects of eight environmental variables and of water mass explained 35 to 86% of the variation in abundance of the quantified taxa, even though only one to three variables were significantly related to any particular taxon's abundance. Most of the variation in abundance was explained by depth and chlorophyll a. The predominant phototrophs, Prochlorococcus and picoalgae, were negatively correlated with phosphate, whereas eubacteria, heterotrophic bacteria, and SAR86 were negatively correlated with nitrite. Water mass showed limited importance for explaining the abundance of the taxonomical groups (significant only for Roseobacter, explaining 14% of the variation). The results suggest the potential for predicting the abundance of broad bacterioplankton groups throughout the Sargasso Sea using only a few environmental parameters. PMID:24561593

  5. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  6. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.

    PubMed

    Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2016-05-17

    Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2. PMID:27140621

  7. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples

    USGS Publications Warehouse

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results from traditional field methods with eDNA methods for two amphibians in 13 streams in central Idaho, USA. We also evaluated three water collection protocols and the influence of sampling location, time of day, and distance from animals on eDNA concentration in the water. We found no difference in detection or amount of eDNA among water collection protocols. eDNA methods had slightly higher detection rates than traditional field methods, particularly when species occurred at low densities. eDNA concentration was positively related to field-measured density, biomass, and proportion of transects occupied. Precision of eDNA-based abundance estimates increased with the amount of eDNA in the water and the number of replicate subsamples collected. eDNA concentration did not vary significantly with sample location in the stream, time of day, or distance downstream from animals. Our results further advance the implementation of eDNA methods for monitoring aquatic vertebrates in stream habitats.

  8. Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir

    PubMed Central

    Gao, Peike; Tian, Huimei; Li, Guoqiang; Sun, Hongwen; Ma, Ting

    2015-01-01

    Microbial populations associated with microbial enhanced oil recovery (MEOR) and their abundance in the Xinjiang Luliang water-flooding petroleum reservoir were investigated using 16S rRNA, nitrate reductases, dissimilatory sulfate reductase, and methyl coenzyme-M reductase-encoded genes to provide ecological information for the potential application of MEOR. 16S rRNA gene miseq sequencing revealed that this reservoir harbored large amounts of taxa, including 155 bacterial and 7 archeal genera. Among them, Arcobacter, Halomonas, Marinobacterium, Marinobacter, Sphingomonas, Rhodococcus, Pseudomonas, Dietzia, Ochrobactrum, Hyphomonas, Acinetobacter, and Shewanella were dominant, and have the potential to grow using hydrocarbons as carbon sources. Metabolic gene clone libraries indicated that the nitrate-reducing bacteria (NRB) mainly belonged to Pseudomonas, Azospirillum, Bradyrhizobium, Thauera, Magnetospirillum, Sinorhizobium, Azoarcus, and Rhodobacter; the sulfate-reducing bacteria (SRB) were Desulfarculus, Desulfomonile, Desulfosarcina, Desulfotignum, Desulfacinum, Desulfatibacillum, Desulfatibacillum, Desulfomicrobium, and Desulfovibrio; while the methanogens were archaea and belonged to Methanomethylovorans, Methanosaeta, Methanococcus, Methanolobus, and Methanobacterium. Real-time quantitative PCR analysis indicated that the number of bacterial 16S rRNA reached 106 copies/mL, while the metabolic genes of NRB, SRB, and methanogens reached 104 copies/mL. These results show that the Luliang reservoir has abundant microbial populations associated with oil recovery, suggesting that the reservoir has potential for MEOR. PMID:25641701

  9. Evidence for water structuring forces between surfaces

    PubMed Central

    Stanley, Christopher

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement of water as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate common features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water. PMID:22125414

  10. Stable water layers on solid surfaces.

    PubMed

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems. PMID:26856872

  11. Rapid changes in diatom silica surface charge density, silanol abundance, and oxygen isotope values elucidate silica maturation processes in biogenic silica

    NASA Astrophysics Data System (ADS)

    Wiedenheft, W.; Dodd, J. P.; Sunderlin, L.

    2014-12-01

    Oxygen isotope values of biogenic silica are increasingly used as proxies of paleoenvironmental conditions. Numerous studies have demonstrated a strong relationship between the diatom silica and the temperature/oxygen isotope value of the formation water; however, some studies have indicated that early diagenesis of biogenic silica may alter the oxygen isotope values by several permil. Quantification of the maturation process has proven difficult since the mechanisms that drive post-mortem changes in the silica oxygen isotope values have not been well characterized. New silica maturation data from marine diatoms, Stephanopyxis turris, cultured in a controlled laboratory experiment demonstrate rapid post-mortem decline in silica reactivity. A decrease in relative abundance of surface silanol groups coincides with a decrease in the surface charge density (excess proton concentration) of freshly harvested frustules. Over a maturation period of 20 days at 85ºC, S. turris samples in a 0.7 M NaCl solution at a pH of 8.0 demonstrate a rapid decrease in the surface charge density from -380 μmoles/g to -16 μmoles/g (Figure 1). FTIR analyses reveal a decrease in the abundance of silanol groups (Si-OH) in the diatom frustules occurs over the same time period. It is important to note that the surface charge density and silanol relative abundance appear to have an asymptotic change through time, indicating that further alteration/reactivity is greatly reduced. Preliminary data indicate that post-mortem increases in the oxygen isotope values of diatom silica observed here and in other studies are coincident with a reduction in the surface charge density and silanol abundance. These experiments demonstrate that rapid post-mortem alteration of biogenic silica is occurring and provide a possible mechanism for alteration of oxygen isotope values in biogenic silica.

  12. Abundance and Speciation of Water and Sulfate at Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Clark, B. C.; Klingelhoefer, G.; Gellert, R.; Rodionov, D.; Schroeder, C.; deSouza, P.; Yen, A.

    2005-01-01

    A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).

  13. Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method

    NASA Technical Reports Server (NTRS)

    Horvitz, M. A.; Schoeller, D. A.

    2001-01-01

    The doubly labeled water method for measuring total energy expenditure is subject to error from natural variations in the background 2H and 18O in body water. There is disagreement as to whether the variations in background abundances of the two stable isotopes covary and what relative doses of 2H and 18O minimize the impact of variation on the precision of the method. We have performed two studies to investigate the amount and covariance of the background variations. These were a study of urine collected weekly from eight subjects who remained in the Madison, WI locale for 6 wk and frequent urine samples from 14 subjects during round-trip travel to a locale > or = 500 miles from Madison, WI. Background variation in excess of analytical error was detected in six of the eight nontravelers, and covariance was demonstrated in four subjects. Background variation was detected in all 14 travelers, and covariance was demonstrated in 11 subjects. The median slopes of the regression lines of delta2H vs. delta18O were 6 and 7, respectively. Modeling indicated that 2H and 18O doses yielding a 6:1 ratio of final enrichments should minimize this error introduced to the doubly labeled water method.

  14. Early life history of deep-water gorgonian corals may limit their abundance.

    PubMed

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200-1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions. PMID:23762358

  15. Early Life History of Deep-Water Gorgonian Corals May Limit Their Abundance

    PubMed Central

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions. PMID:23762358

  16. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    NASA Astrophysics Data System (ADS)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root

  17. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  18. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. PMID:24920838

  19. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  20. Episodic fresh surface waters in the Eocene Arctic Ocean.

    PubMed

    Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E; Sluijs, Appy; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Cronin, Thomas M; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P; Stein, Ruediger; van der Burgh, Johan; Eldrett, James S; Harding, Ian C; Lotter, André F; Sangiorgi, Francesca; van Konijnenburg-van Cittert, Han; de Leeuw, Jan W; Matthiessen, Jens; Backman, Jan; Moran, Kathryn

    2006-06-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (approximately 50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an approximately 800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from approximately 10 degrees C to 13 degrees C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. PMID:16752440

  1. Episodic fresh surface waters in the Eocene Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E.; Sluijs, Appy; Damsté, Jaap S. Sinninghe; Dickens, Gerald R.; Huber, Matthew; Cronin, Thomas M.; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P.; Stein, Ruediger; van der Burgh, Johan; Eldrett, James S.; Harding, Ian C.; Lotter, André F.; Sangiorgi, Francesca; Cittert, Han Van Konijnenburg-Van; de Leeuw, Jan W.; Matthiessen, Jens; Backman, Jan; Moran, Kathryn; Expedition 302 Scientists

    2006-06-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (~50Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ~800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ~10°C to 13°C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.

  2. Episodic fresh surface waters in the Eocene Arctic Ocean

    USGS Publications Warehouse

    Brinkhuis, H.; Schouten, S.; Collinson, M.E.; Sluijs, A.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Cronin, T. M.; Onodera, J.; Takahashi, K.; Bujak, J.P.; Stein, R.; Van Der Burgh, J.; Eldrett, J.S.; Harding, I.C.; Lotter, A.F.; Sangiorgi, F.; Cittert, H.V.K.V.; De Leeuw, J. W.; Matthiessen, J.; Backman, J.; Moran, K.

    2006-01-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (???50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ???800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ???10??C to 13??C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. ?? 2006 Nature Publishing Group.

  3. Coupled surface-water and ground-water model

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  4. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    PubMed Central

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  5. A database of marine phytoplankton abundance, biomass and species composition in Australian waters.

    PubMed

    Davies, Claire H; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W; Uribe-Palomino, Julian; Waite, Anya M; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  6. Microhabitat and shrimp abundance within a Norwegian cold-water coral ecosystem

    NASA Astrophysics Data System (ADS)

    Purser, A.; Ontrup, J.; Schoening, T.; Thomsen, L.; Tong, R.; Unnithan, V.; Nattkemper, T. W.

    2013-02-01

    Cold-water coral reefs are highly heterogeneous ecosystems comprising of a range of diverse microhabitats. In a typical European cold-water coral reef various biogenic habitats (live colonies of locally common coral species such as Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, dead coral structure, coral rubble) may be surrounded and intermixed with non-biogenic habitats (soft sediment, hardground, gravel/pebbles, steep walls). To date, studies of distribution of sessile fauna across these microhabitats have been more numerous than those investigating mobile fauna distribution. In this study we quantified shrimp densities associated with key CWC habitat categories at the Røst reef, Norway, by analysing image data collected by towed video sled. We also investigated shrimp distribution patterns on the local scale (<40 cm) and how these may vary with habitat. We found shrimp abundances at the Røst reef to be on average an order of magnitude greater in biogenic reef habitats than in non-biogenic habitats. Greatest shrimp densities were observed in association with live Paragorgia arborea habitats (43 shrimp m-2, SD = 35.5), live Primnoa resedaeformis habitats (41.6 shrimp m-2, SD = 26.1) and live Lophelia pertusa habitats (24.4 shrimp m-2, SD = 18.6). In non-biogenic habitats shrimp densities were <2 shrimp m-2. We conclude that CWC reef habitats clearly support greater shrimp densities than the surrounding non-biogenic habitats on the Norwegian margin.

  7. Water molecule conformation outside a metal surface

    NASA Astrophysics Data System (ADS)

    Flores, F.; Gabbay, I.; March, N. H.

    1981-05-01

    The effect of a metal surface on the conformation of a water molecule has been analyzed by discussing two independent effects: (i) the screening of the proton-proton repulsion, (ii) the interaction of the lone-pair orbitals with the surface. Both effects tend to increase the HOH angle. However, the interaction between the lone-pairs with the surface is the dominant effect for a water molecule approaching the surface. In particular, for a chemisorbed state this interaction is responsible for the major part of the molecule deformation. We have estimated that for H 2O chemisorbed on Ru, the HOH angle must increase from the free molecule value of 104.5° by 3.1 ± 0.5° in good agreement with the experimental evidence.

  8. Beryllium in the Galactic halo - Surface abundances from standard, diffusive, and rotational stellar evolution, and implications

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, Marc H.

    1990-01-01

    The recently observed upper limits to the beryllium abundances in population II stars are much lower than population I detections. This difference reflects an intrinsic difference in the initial abundances and is not caused by different degrees of depletion driven by stellar evolution processes from similar initial abundances. Evolutionary sequences of models from the early premain sequence to beyond the turnoff that correspond to halo dwarfs with Fe/H abundances of -1.3, -2.3, and -3.3 are constructed, and standard, diffusive, and rotational mechanisms are used to estimate a maximal possible beryllium depletion. Halo star models in the T(eff) range 6000 to 5000 K might be rotationally depleted by a factor of 1.5-2, and the total depletion should be no more than (conservatively) a factor of 3. Implications for cosmology, cosmic-ray theory, and Galactic chemical evolution are discussed.

  9. Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon: report from a high resolution mapping study.

    PubMed

    Fertouna-Bellakhal, Mouna; Dhib, Amel; Béjaoui, Béchir; Turki, Souad; Aleya, Lotfi

    2014-07-15

    Species composition and abundance of dinocysts in relation to environmental factors were studied at 123 stations of surface sediment in Bizerte Lagoon. Forty-eight dinocyst types were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pseudogonyaulax, Alexandrium catenella, and Lingulodinum machaerophorum along with many round brown cysts and spiny round brown cysts. Cysts ranged from 1276 to 20126 cysts g(-1)dry weight sediment. Significant differences in cyst distribution pattern were recorded among the zones, with a higher cyst abundance occurring in the lagoon's inner areas. Redundancy analyses showed two distinct associations of dinocysts according to location and environmental variables. Ballast water discharges are potential introducers of non-indigenous species, especially harmful ones such as A. catenella and Polysphaeridium zoharyi, with currents playing a pivotal role in cyst distribution. Findings concerning harmful cyst species indicate potential seedbeds for initiation of future blooms and outbreaks of potentially toxic species in the lagoon. PMID:24841716

  10. Massive stars at low metallicity. Evolution and surface abundances of O dwarfs in the SMC

    NASA Astrophysics Data System (ADS)

    Bouret, J.-C.; Lanz, T.; Martins, F.; Marcolino, W. L. F.; Hillier, D. J.; Depagne, E.; Hubeny, I.

    2013-07-01

    Aims: We aim to study the properties of massive stars at low metallicity, with an emphasis on their evolution, rotation, and surface abundances. We focus on O-type dwarfs in the Small Magellanic Cloud. These stars are expected to have weak winds that do not remove significant amounts of their initial angular momentum. Methods: We analyzed the UV and optical spectra of twenty-three objects using the NLTE stellar atmosphere code cmfgen and derived photospheric and wind properties. Results: The observed binary fraction of the sample is ≈26%, which is consistent with more systematic studies if one considers that the actual binary fraction is potentially larger owing to low-luminosity companions and that the sample was biased because it excluded obvious spectroscopic binaries. The location of the fastest rotators in the Hertzsprung-Russell (H-R) diagram built with fast-rotating evolutionary models and isochrones indicates that these could be several Myr old. The offset in the position of these fast rotators compared with the other stars confirms the predictions of evolutionary models that fast-rotating stars tend to evolve more vertically in the H-R diagram. Only one star of luminosity class Vz, expected to best characterize extreme youth, is located on the zero-age main sequence, the other two stars are more evolved. We found that the distribution of O and B stars in the ɛ(N) - vsin i diagram is the same, which suggests that the mechanisms responsible for the chemical enrichment of slowly rotating massive stars depend only weakly on the star's mass. We furthermore confirm that the group of slowly rotating N-rich stars is not reproduced by the evolutionary tracks. Even for more massive stars and faster rotators, our results call for stronger mixing in the models to explain the range of observed N abundances. All stars have an N/C ratio as a function of stellar luminosity that match the predictions of the stellar evolution models well. More massive stars have a higher

  11. Pollution of surface water in Europe

    PubMed Central

    Key, A.

    1956-01-01

    This paper discusses pollution of surface water in 18 European countries. For each an account is given of its physical character, population, industries, and present condition of water supplies; the legal, administrative, and technical means of controlling pollution are then described, and an outline is given of current research on the difficulties peculiar to each country. A general discussion of various aspects common to the European problem of water pollution follows; standards of quality are suggested; some difficulties likely to arise in the near future are indicated, and international collaboration, primarily by the exchange of information, is recommended to check or forestall these trends. PMID:13374532

  12. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. PMID:25368345

  13. Temporal changes in euphausiid distribution and abundance in North Atlantic cold-core rings in relation to the surrounding waters

    NASA Astrophysics Data System (ADS)

    Endo, Yoshinari; Wiebe, Peter H.

    2007-02-01

    The species composition of euphausiids was investigated in relationship to the hydrographic conditions in the North Atlantic cold-core rings (CCR) and adjacent waters to elucidate species succession in evolving water masses. Using data, dating back to the 1970s, from as many CCRs as possible and selecting typical cases where no major physical perturbations occurred, a general pattern of euphausiid succession and change in vertical distribution in rings with time was obtained. This pattern was related to the general distribution of euphausiids in the northwestern North Atlantic Ocean, aiming at providing basic information on probable response of North Atlantic marine ecosystem to global warming. Of the 34 euphausiid species identified, 5 were cold-water species, 17 were warm-water species, 6 were wide-ranging warm-water species, 1 was transitional, 4 were cosmopolitan and the remaining was Thysanoessa parva. Among cold-water species, Euphausia krohni and Nematoscelis megalops were dominant in CCRs. E. krohni became rare in rings older than 6 months, whereas N. megalops survived longer, being abundant in some rings of 9 months or older, by staying within its preferred temperature range as the CCR elevated isotherms sank to depths where they are normally found in the Sargasso Sea and because it is an omnivore-carnivore. Among warm-water species, epipelagic species appeared first in rings, corresponding to the physical change occurring most rapidly in the surface layers. Mesopelagic species appeared later. Cold-water species made up 65-85% of the total euphausiid population in number in younger rings (1-5 months old), while warm-water species contributed only 2-7%. Wide-ranging warm-water species made up about up to one fourth of the total in rings 5 and 7 months old. Warm-water species, mainly E. brevis, increased in older rings (9 months old or older) and made up 50% of the total in the oldest ring. The contribution of cold-water species decreased to 14% in older

  14. Global modelling of Cryptosporidium in surface water

    NASA Astrophysics Data System (ADS)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  15. Global modeling of fresh surface water temperature

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

    2011-12-01

    Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF

  16. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  17. Observing Global Surface Water Flood Dynamics

    NASA Astrophysics Data System (ADS)

    Bates, Paul D.; Neal, Jefferey C.; Alsdorf, Douglas; Schumann, Guy J.-P.

    2014-05-01

    Flood waves moving along river systems are both a key determinant of globally important biogeochemical and ecological processes and, at particular times and particular places, a major environmental hazard. In developed countries, sophisticated observing networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with which to understand and model floods. However, at global scales, satellite data currently provide the only means of undertaking such studies. At present, there is no satellite mission dedicated to observing surface water dynamics and, therefore, surface water scientists make use of a range of sensors developed for other purposes that are distinctly sub-optimal for the task in hand. Nevertheless, by careful combination of the data available from topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in understanding some of the world's major river, floodplain and wetland systems can be made. This paper reviews the surface water data sets available to hydrologists on a global scale and the recent progress made in the field. Further, the paper looks forward to the proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for the first time provide an instrument that meets the needs of the hydrology community.

  18. The impact of surface dynamo magnetic fields on the chemical abundance determination

    NASA Astrophysics Data System (ADS)

    Shchukina, Nataliya G.; Sukhorukov, Andrii V.; Bueno, Javier Trujillo

    2015-10-01

    The solar abundances of Fe and of the CNO elements play an important role in addressing a number of important issues such as the formation, structure, and evolution of the Sun and the solar system, the origin of the chemical elements, and the evolution of stars and galaxies. Despite the large number of papers published on this issue, debates about the solar abundances of these elements continue. The aim of the present investigation is to quantify the impact of photospheric magnetic fields on the determination of the solar chemical abundances. To this end, we used two 3D snapshot models of the quiet solar photosphere with a different magnetization taken from recent magneto-convection simulations with small-scale dynamo action. Using such 3D models we have carried out spectral synthesis for a large set of Fei, Ci, Ni, and Oi lines, in order to derive abundance corrections caused by the magnetic, Zeeman broadening of the intensity profiles and the magnetically induced changes of the photospheric temperature structure. We find that if the magnetism of the quiet solar photosphere is mainly produced by a small-scale dynamo, then its impact on the determination of the abundances of iron, carbon, nitrogen and oxygen is negligible.

  19. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  20. Surface Water and Ocean Topography (SWOT) mission

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Lindstrom, Eric J.; Vaze, Parag V.; Fu, Lee-Lueng

    2012-09-01

    The Surface Water Ocean Topography (SWOT) mission was recommended in 2007 by the National Research Council's Decadal Survey, "Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond", for implementation by NASA. The SWOT mission is a partnership between two communities, the physical oceanography and the hydrology, to share high vertical accuracy and high spatial resolution topography data produced by the science payload, principally a Ka-band radar Interferometer (KaRIn). The SWOT payload also includes a precision orbit determination system consisting of GPS and DORIS receivers, a Laser Retro-reflector Assembly (LRA), a Jason-class nadir radar altimeter, and a JASON-class radiometer for tropospheric path delay corrections. The SWOT mission will provide large-scale data sets of ocean sea-surface height resolving scales of 15km and larger, allowing the characterization of ocean mesoscale and submesoscale circulation. The SWOT mission will also provide measurements of water storage changes in terrestrial surface water bodies and estimates of discharge in large (wider than 100m) rivers globally. The SWOT measurements will provide a key complement to other NASA spaceborne global measurements of the water cycle measurements by directly measuring the surface water (lakes, reservoirs, rivers, and wetlands) component of the water cycle. The SWOT mission is an international partnership between NASA and the Centre National d'Etudes Spatiales (CNES). The Canadian Space Agency (CSA) is also expected to contribute to the mission. SWOT is currently nearing entry to Formulation (Phase A). Its launch is targeted for October 2020.

  1. Political ecology of groundwater: the contrasting case of water-abundant West Bengal and water-scarce Gujarat, India

    NASA Astrophysics Data System (ADS)

    Mukherji, Aditi

    2006-03-01

    Three apparently disparate themes (groundwater, farmers and politics) interweave in this account of how groundwater-related policies in India have very little to do with the scarcity, depletion or quality of groundwater, and more to do with rural politics manifested, among other things, in terms of the presence or absence of farmer lobbies. Examples from two states of India, the water-abundant state of West Bengal and water-scarce state of Gujarat, were investigated using readily available data, analysis of the literature, interviews and fieldwork. In the case of West Bengal, although there is no pressing groundwater crisis, the government of West Bengal (GOWB) was able to successfully implement strict groundwater regulations along with a drastic increase in electricity tariff. More importantly, GOWB was able to implement these without any form of visible farmer protest, though these measures negatively affected farmer incomes. On the other hand, in Gujarat, where there is a real and grave groundwater crisis, the government of Gujarat has neither been able to implement strict groundwater regulations, nor has it been able to increase electricity tariff substantially. Thus, through the lens of ‘political ecology’ the contrasting case of these two Indian states is explained.

  2. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    NASA Astrophysics Data System (ADS)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  3. Microhabitat and shrimp abundance within a Norwegian cold-water coral ecosystem

    NASA Astrophysics Data System (ADS)

    Purser, A.; Ontrup, J.; Schoening, T.; Thomsen, L.; Tong, R.; Unnithan, V.; Nattkemper, T. W.

    2013-09-01

    Cold-water coral (CWC) reefs are heterogeneous ecosystems comprising numerous microhabitats. A typical European CWC reef provides various biogenic microhabitats (within, on and surrounding colonies of coral species such as Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, or formed by their remains after death). These microhabitats may be surrounded and intermixed with non-biogenic microhabitats (soft sediment, hard ground, gravel/pebbles, steep walls). To date, studies of distribution of sessile fauna across CWC reefs have been more numerous than those investigating mobile fauna distribution. In this study we quantified shrimp densities associated with key CWC microhabitat categories at the Røst Reef, Norway, by analysing image data collected by towed video sled in June 2007. We also investigated shrimp distribution patterns on the local scale (<40 cm) and how these may vary with microhabitat. Shrimp abundances at the Røst Reef were on average an order of magnitude greater in biogenic reef microhabitats than in non-biogenic microhabitats. Greatest shrimp densities were observed in association with live Paragorgia arborea microhabitat (43 shrimp m-2, SD = 35.5), live Primnoa resedaeformis microhabitat (41.6 shrimp m-2, SD = 26.1) and live Lophelia pertusa microhabitat (24.4 shrimp m-2, SD = 18.6). In non-biogenic microhabitat, shrimp densities were <2 shrimp m-2. CWC reef microhabitats appear to support greater shrimp densities than the surrounding non-biogenic microhabitats at the Røst Reef, at least at the time of survey.

  4. Silver speciation in wastewater effluent, surface waters, and pore waters

    SciTech Connect

    Adams, N.W.H.; Kramer, J.R.

    1999-12-01

    Silver, inorganic sulfide, and thiol compounds were measured in municipal wastewater effluent, receiving waters, and pore waters from an anoxic lake sediment in order to predict silver speciation in these systems. The authors found submicromolar concentrations of inorganic sulfide even in fully oxic surface water. This inorganic sulfide is likely to exist in the form of colloidal metal sulfides, which have been shown to be stable under oxidizing conditions for periods of several hours. Inorganic sulfide in both the wastewater effluent and receiving waters was found to be 200 to 300 times in excess of silver concentrations, whereas inorganic sulfide in pore waters was 1,000 to 15,000 times in excess of silver concentrations. With sulfide in excess of silver, the authors predict silver sulfide complexes to dominate silver speciation. Thiols were present at low nanomolar levels in pore waters but were not detectable in wastewater effluent or receiving waters. Thiols do not appear to be important to silver speciation in these freshwater systems. Partitioning of silver into particular, colloidal, and dissolved size fractions showed that a significant proportion of silver is in the colloidal and dissolved phases. Dissolved phase concentrations were relatively constant in the treatment plant effluent and receiving waters, suggesting that silver in the <10-kDa size fraction is strongly complexed by ligands that are not significantly affected by aggregation or sorption processes.

  5. The impact of surface dynamo magnetic fields on the solar iron abundance

    NASA Astrophysics Data System (ADS)

    Shchukina, N.; Trujillo Bueno, J.

    2015-07-01

    Most chemical abundance determinations ignore that the solar photosphere is significantly magnetized by the ubiquitous presence of a small-scale magnetic field. A recent investigation has suggested that there should be a significant impact on the derived iron abundance, owing to the magnetically induced changes on the photospheric temperature and density structure (indirect effect). The three-dimensional (3D) photospheric models used in that investigation have non-zero net magnetic flux values and stem from magneto-convection simulations without small-scale dynamo action. Here we address the same problem by instead using 3D models of the quiet solar photosphere that result from a state-of-the-art magneto-convection simulation with small-scale dynamo action, where the net magnetic flux is zero. One of these 3D models has negligible magnetization, while the other is characterized by a mean field strength of 160 Gauss in the low photosphere. With such 3D models we carried out spectral synthesis for a large set of Fe i lines to derive abundance corrections, taking the above-mentioned indirect effect and the Zeeman broadening of the intensity profiles (direct effect) into account. We conclude that if the magnetism of the quiet solar photosphere is mainly produced by a small-scale dynamo, then its impact on the determination of the solar iron abundance is negligible. Table 1 is available in electronic form at http://www.aanda.org

  6. Water droplet impact on elastic superhydrophobic surfaces.

    PubMed

    Weisensee, Patricia B; Tian, Junjiao; Miljkovic, Nenad; King, William P

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics. PMID:27461899

  7. Water droplet impact on elastic superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Weisensee, Patricia B.; Tian, Junjiao; Miljkovic, Nenad; King, William P.

    2016-07-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5–7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

  8. Laser induced surface stress on water droplets.

    PubMed

    Wang, Neng; Lin, Zhifang; Ng, Jack

    2014-10-01

    Laser induced stress on spherical water droplets is studied. At mechanical equilibrium, the body stress vanishes therefore we consider only the surface stress. The surface stress on sub-wavelength droplets is slightly weaker along the light propagation direction. For larger droplets, due to their light focusing effect, the forward stress is significantly enhanced. For a particle roughly 3 micron in radius, when it is excited at whispering gallery mode with Q ∼ 10⁴ by a 1 Watt Gaussian beam, the stress can be enhanced by two orders of magnitude, and can be comparable with the Laplace pressure. PMID:25321955

  9. Copepod communities from surface and ground waters in the everglades, south Florida

    USGS Publications Warehouse

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  10. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    SciTech Connect

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.

  11. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%. PMID:23238782

  12. Dynamics of the abundance of some bivalve species in Russian waters of the Sea of Japan and its prognosis

    NASA Astrophysics Data System (ADS)

    Gabaev, D. D.

    2009-04-01

    The abundance dynamics of several species of bivalve mollusks spats were studied on scallop collectors situated in Minonosok bay of Pos’eta Gulf for 27 years and for 4 years in Kit bay of the Sea of Japan (Russia). A significant positive relation was found between the species having similar thermopathy: the Japanese scallop Mizuhopecten yessoensis and Swift’s scallop Swiftopecten swifti, as well as between the wrinkled rock borer Hiatella arctica and Swift’s scallop Swiftopecten swifti. A significant reverse relation was found between the bay mussel Mytilus trossulus and the Northern Pacific seastar Asterias amurensis. Some of the studied mollusks of Minonosok bay and the remote Kit bay display a significant reversed interrelation in their abundance dynamics caused by the precipitation regime. The one-way dispersion analysis a revealed significant influence of the water temperature in June and the precipitation abundance in the summer on Swift’s scallop’s dynamic abundance. The two-way dispersion analysis showed a significant influence of the ice period duration and the solar activity expressed in Wolf’s numbers on the Japanese scallop abundance dynamics. The uneven years in the period from 1977 to 1984 were usually productive for M. yessoensis and S. swifti spat. After 1985, the even years became more productive (there was asynchronicity in the abundance dynamics compared with 1977-1984). Such asynchronicity appeared with the advent of the new 22-year solar cycle, which caused a change in the magnet polarity in 1986.

  13. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  14. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  15. Optical Triangulation on Instationary Water Surfaces

    NASA Astrophysics Data System (ADS)

    Mulsow, C.; Maas, H.-G.; Hentschel, B.

    2016-06-01

    The measurement of water surfaces is a key task in the field of experimental hydromechanics. Established techniques are usually gauge-based and often come with a large instrumental effort and a limited spatial resolution. The paper shows a photogrammetric alternative based on the well-known laser light sheet projection technique. While the original approach is limited to surfaces with diffuse reflection properties, the developed technique is capable of measuring dynamically on reflecting instationary surfaces. Contrary to the traditional way, the laser line is not observed on the object. Instead, using the properties of water, the laser light is reflected on to a set of staggered vertical planes. The resulting laser line is observed by a camera and measured by subpixel operators. A calibration based on known still water levels provides the parameters for the translation of image space measurements into water level and gradient determination in dynamic experiments. As a side-effect of the principle of measuring the reflected laser line rather than the projected one, the accuracy can be improved by almost a factor two. In experiments a standard deviation of 0.03 mm for water level changes could be achieved. The measuring rate corresponds to the frame rate of the camera. A complete measuring system is currently under development for the Federal Waterways Engineering and Research Institute (BAW). This article shows the basic principle, potential and limitations of the method. Furthermore, several system variants optimised for different requirements are presented. Besides the geometrical models of different levels of complexity, system calibration procedures are described too. The applicability of the techniques and their accuracy potential are shown in several practical tests.

  16. Near-infrared Photometry of Y Dwarfs: Low Ammonia Abundance and the Onset of Water Clouds

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Morley, Caroline V.; Marley, M. S.; Saumon, D.

    2015-01-01

    We present new near-infrared photometry for seven late-type T dwarfs and nine Y-type dwarfs, and lower limit magnitudes for a tenth Y dwarf, obtained at Gemini Observatory. We also present a reanalysis of H-band imaging data from the Keck Observatory Archive, for an 11th Y dwarf. These data are combined with earlier MKO-system photometry, Spitzer and WISE mid-infrared photometry, and available trigonometric parallaxes, to create a sample of late-type brown dwarfs that includes 10 T9-T9.5 dwarfs or dwarf systems, and 16 Y dwarfs. We compare the data to our models, which include updated H2 and NH3 opacity, as well as low-temperature condensate clouds. The models qualitatively reproduce the trends seen in the observed colors; however, there are discrepancies of around a factor of two in flux for the Y0-Y1 dwarfs, with T eff ≈ 350-400 K. At T eff ~ 400 K, the problems could be addressed by significantly reducing the NH3 absorption, for example by halving the abundance of NH3 possibly by vertical mixing. At T eff ~ 350 K, the discrepancy may be resolved by incorporating thick water clouds. The onset of these clouds might occur over a narrow range in T eff, as indicated by the observed small change in 5 μm flux over a large change in J - W2 color. Of the known Y dwarfs, the reddest in J -W2 are WISEP J182831.08+265037.8 and WISE J085510.83-071442.5. We interpret the former as a pair of identical 300-350 K dwarfs, and the latter as a 250 K dwarf. If these objects are ~3 Gyr old, their masses are ~10 and ~5 Jupiter-masses, respectively.

  17. How Water Advances on Superhydrophobic Surfaces.

    PubMed

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis. PMID:26991185

  18. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  19. The surface nitrogen abundance of a massive star in relation to its oscillations, rotation, and magnetic field

    SciTech Connect

    Aerts, C.; Molenberghs, G.; Kenward, M. G.; Neiner, C.

    2014-02-01

    We have composed a sample of 68 massive stars in our galaxy whose projected rotational velocity, effective temperature, and gravity are available from high-precision spectroscopic measurements. The additional seven observed variables considered here are their surface nitrogen abundance, rotational frequency, magnetic field strength, and the amplitude and frequency of their dominant acoustic and gravity modes of oscillation. A multiple linear regression to estimate the nitrogen abundance combined with principal component analysis, after addressing the incomplete and truncated nature of the data, reveals that the effective temperature and the frequency of the dominant acoustic oscillation mode are the only two significant predictors for the nitrogen abundance, while the projected rotational velocity and the rotational frequency have no predictive power. The dominant gravity mode and the magnetic field strength are correlated with the effective temperature but have no predictive power for the nitrogen abundance. Our findings are completely based on observations and their proper statistical treatment and call for a new strategy in evaluating the outcome of stellar evolution computations.

  20. Assessing nitrogen pressures on European surface water

    NASA Astrophysics Data System (ADS)

    Grizzetti, B.; Bouraoui, F.; de Marsily, G.

    2008-12-01

    The European environmental legislation on water, in particular the 2000 Water Framework Directive, requires the evaluation of nutrient pressures and the assessment of mitigation measures at the river basin scale. Models have been identified as tools that can contribute to fulfill these requirements. The objective of this research was the implementation of a modeling approach (Geospatial Regression Equation for European Nutrient losses (GREEN)) to assess the actual nitrogen pressures on surface water quality at medium and large basin scale (European scale) using readily available data. In particular the aim was to estimate diffuse nitrogen emissions into surface waters, contributions by different sources (point and diffuse) to the nitrate load in rivers, and nitrogen retention in river systems. A comprehensive database including nutrient sources and physical watershed characteristics was built at the European scale. The modeling partially or entirely covered some of the larger and more populated European river basins, including the Danube, Rhine, Elbe, Weser, and Ems in Germany, the Seine and Rhone in France, and the Meuse basin shared by France and Belgium. The model calibration was satisfactory for all basins. The source contribution to the in-stream nitrogen load, together with the diffuse nitrogen emissions and river nitrogen retention were estimated and were found to be in the range of values reported in the literature. Finally, the model results were extrapolated to estimate the diffuse nitrogen emission and source apportionment at the European scale.

  1. Effects of Nereis diversicolor O. F. Muller abundance on the dissolved phosphate exchange between sediment and overlying water in Palmones River estuary (southern Spain)

    NASA Astrophysics Data System (ADS)

    Clavero, V.; Niell, F. X.; Fernandez, J. A.

    1991-08-01

    Annual variations in dissolved phosphate gradient, sediment porosity, abundance of Nereis diversicolor and phosphate flux were measured in order to determine the pattern of phosphate exchange between the sediment and overlying water in an estuarine system. N. diversicolor abundance is inversely related to the dissolved phosphate gradient while the ratio, measured flux/calculated diffusion flux, increases as does N. diversicolor abundance.

  2. Constraining Martian Water Abundance via Combination of MONS and CRISM data

    NASA Astrophysics Data System (ADS)

    Teodoro, L. A.; Eke, V. R.; Elphic, R. C.; Roush, T. L.; Marzo, G.; Brown, A. J.; Feldman, W. C.

    2010-12-01

    The Mars Odyssey Mission carries a collection of three instruments whose main aim is to determine the elemental composition of the top layers of the martian surface materials. Among them, the Neutron Spectrometer has produced a wealth of data that has allowed a comprehensive study of the overall distribution of hydrogen on the surface of Mars [1]. In brief, deposits ranging between 20% and 100% Water-Equivalent Hydrogen (WEH) by mass are found pole-ward of 55 deg. latitude, and less rich, but still significant, deposits are found at near-equatorial latitudes. However, the Mars Odyssey Neutron Spectrometer (MONS) has a spatial resolution with FWHM of ~550 km. Hence, if one wants to associate WEH with geologic features and with mineralogy observed independently, then this must address the MONS instrumental smearing needs to be properly understood and removed. Usually, in the presence of noise, this is an ill posed problem that requires the use of a statistical approach [2]. Teodoro et al [3] have carried out a study of the martian polar regions applying such a methodology to Martian epithermal neutrons. An exciting prospect is to obtain more accurate WEH estimates from MONS polar data that incorporates independent knowledge/estimates of WEH from other data. The Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) has identified numerous locations on Mars where certain locales where hydrous minerals have been identified (e.g. [4]). This independent information can, perhaps, help to impose additional constraints to the statistical evaluation of the MONS data. In turn the combined data can provide more robust estimates of the real extent or the original volume of surface water needed to create evaporated deposits or other sedimentary units. This work will present the results of applying a Pixon image reconstruction approach to the Mars Odyssey polar epithermal neutron data coupled with information regarding the distribution of

  3. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick

    2016-05-01

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. PMID:26874432

  4. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  5. [Prevalence of Aeromonas spp. in surface water].

    PubMed

    Hernández, P; Rodríguez de García, R

    1997-03-01

    Some Aeromonas strains are well recognized enteropathogens according to microbiological, clinical, immunological and epidemiological evidence. The main source of infection seems to be untreated water, these microorganisms can be found in virtually all aquatic environments. Additionally, some Aeromonas, which include enterotoxigenic strains, are capable of rapid growth at 5 degrees C and even of producing toxins. Vegetable products irrigated with contaminated water may reach critical Aeromonas levels after being kept under refrigeration, this could represent a public health risk when they are consumed as uncooked salads. This study was pursued to evaluate such risk. Surface water samples were streaked on starch ampicillin and inositol-brilliant green-bile salts agar dishes. In addition, 100 ml of each sample were filtered through a 0.45 micron Millipore membrane filter. The filters were incubated on alkaline peptone water as enrichment media during 24 h at 35 degrees C. Enrichment broth was then streaked on the selective agars above mentioned. Isolates from both tests were identified using the API 20 E System. The prevalence of Aeromonas strains in the analyzed samples was 17.8%. A higher isolation rate was observed after the enrichment technique. Starch ampicillin agar showed a higher recuperation rate. A Veronii biotype sobria (formerly A. sobria) was isolated with higher frequency. Since this species has been associated with the greatest virulence, the use of contaminated water to irrigate vegetable products that are to be kept under refrigeration and consumed without ulterior cooking may represent a risk to the public health. PMID:9429640

  6. Spatial and Seasonal Dynamic of Abundance and Distribution of Guanaco and Livestock: Insights from Using Density Surface and Null Models

    PubMed Central

    Schroeder, Natalia M.; Matteucci, Silvia D.; Moreno, Pablo G.; Gregorio, Pablo; Ovejero, Ramiro; Taraborelli, Paula; Carmanchahi, Pablo D.

    2014-01-01

    Monitoring species abundance and distribution is a prerequisite when assessing species status and population viability, a difficult task to achieve for large herbivores at ecologically meaningful scales. Co-occurrence patterns can be used to infer mechanisms of community organization (such as biotic interactions), although it has been traditionally applied to binary presence/absence data. Here, we combine density surface and null models of abundance data as a novel approach to analyze the spatial and seasonal dynamics of abundance and distribution of guanacos (Lama guanicoe) and domestic herbivores in northern Patagonia, in order to visually and analytically compare the dispersion and co-occurrence pattern of ungulates. We found a marked seasonal pattern in abundance and spatial distribution of L. guanicoe. The guanaco population reached its maximum annual size and spatial dispersion in spring-summer, decreasing up to 6.5 times in size and occupying few sites of the study area in fall-winter. These results are evidence of the seasonal migration process of guanaco populations, an increasingly rare event for terrestrial mammals worldwide. The maximum number of guanacos estimated for spring (25951) is higher than the total population size (10000) 20 years ago, probably due to both counting methodology and population growth. Livestock were mostly distributed near human settlements, as expected by the sedentary management practiced by local people. Herbivore distribution was non-random; i.e., guanaco and livestock abundances co-varied negatively in all seasons, more than expected by chance. Segregation degree of guanaco and small-livestock (goats and sheep) was comparatively stronger than that of guanaco and large-livestock, suggesting a competition mechanism between ecologically similar herbivores, although various environmental factors could also contribute to habitat segregation. The new and compelling combination of methods used here is highly useful for researchers

  7. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance

    USGS Publications Warehouse

    Blum, A.E.; Eberl, D.D.

    2004-01-01

    A new method has been developed for quantifying smectite abundance by sorbing polyvinylpyrrolidone (PVP) on smectite particles dispersed in aqueous solution. The sorption density of PVP-55K on a wide range of smectites, illites and kaolinites is ???0.99 mg/m2, which corresponds to ???0.72 g of PVP-55K per gram of montmorillonite. Polyvinylpyrrolidone sorption on smectites is independent of layer charge and solution pH. PVP sorption on Si02, Fe 2O3 and ZnO normalized to the BET surface area is similar to the sorption densities on smectites. ??-Al 2O3, amorphous Al(OH)3 and gibbsite have no PVP sorption over a wide range of pH, and sorption of PVP by organics is minimal. The insensitivity of PVP sorption densities to mineral layer charge, solution pH and mineral surface charge indicates that PVP sorption is not localized at charged sites, but is controlled by more broadly distributed sorption mechanisms such as Van der Waals' interactions and/or hydrogen bonding. Smectites have very large surface areas when dispersed as single unit-cell-thick particles (???725 m2/g) and usually dominate the total surface areas of natural samples in which smectites are present. In this case, smectite abundance is directly proportional to PVP sorption. In some cases, however, the accurate quantification of smectite abundance by PVP sorption may require minor corrections for PVP uptake by other phases, principally illite and kaolinite. Quantitative XRD can be combined with PVP uptake measurements to uniquely determine the smectite concentration in such sample. ?? 2004, The Clay Minerals Society.

  8. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  9. The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited Highland Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Stryker, J.; Bomblies, A.

    2012-12-01

    Changes in land use and climate are expected to alter risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically-based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  10. NEAR-INFRARED PHOTOMETRY OF Y DWARFS: LOW AMMONIA ABUNDANCE AND THE ONSET OF WATER CLOUDS

    SciTech Connect

    Leggett, S. K.; Morley, Caroline V.; Marley, M. S.; Saumon, D.

    2015-01-20

    We present new near-infrared photometry for seven late-type T dwarfs and nine Y-type dwarfs, and lower limit magnitudes for a tenth Y dwarf, obtained at Gemini Observatory. We also present a reanalysis of H-band imaging data from the Keck Observatory Archive, for an 11th Y dwarf. These data are combined with earlier MKO-system photometry, Spitzer and WISE mid-infrared photometry, and available trigonometric parallaxes, to create a sample of late-type brown dwarfs that includes 10 T9-T9.5 dwarfs or dwarf systems, and 16 Y dwarfs. We compare the data to our models, which include updated H{sub 2} and NH{sub 3} opacity, as well as low-temperature condensate clouds. The models qualitatively reproduce the trends seen in the observed colors; however, there are discrepancies of around a factor of two in flux for the Y0-Y1 dwarfs, with T {sub eff} ≈ 350-400 K. At T {sub eff} ∼ 400 K, the problems could be addressed by significantly reducing the NH{sub 3} absorption, for example by halving the abundance of NH{sub 3} possibly by vertical mixing. At T {sub eff} ∼ 350 K, the discrepancy may be resolved by incorporating thick water clouds. The onset of these clouds might occur over a narrow range in T {sub eff}, as indicated by the observed small change in 5 μm flux over a large change in J – W2 color. Of the known Y dwarfs, the reddest in J –W2 are WISEP J182831.08+265037.8 and WISE J085510.83–071442.5. We interpret the former as a pair of identical 300-350 K dwarfs, and the latter as a 250 K dwarf. If these objects are ∼3 Gyr old, their masses are ∼10 and ∼5 Jupiter-masses, respectively.

  11. Surface Crystallization of Supercooled Water in Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well-understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing, initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 C, the reported volume-based freezing rates of ice in supercooled water vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 C.

  12. Surface crystallization of supercooled water in clouds

    PubMed Central

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at −33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near −40°C. PMID:12456877

  13. Protonation and Deprotonation on Water's Surface

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Stewart, L.; Hoffmann, M. R.

    2010-12-01

    How the acidity of bulk water (pHbulk) regulates the degree of protonation of Brönsted acids and bases on water surfaces facing hydrophobic media is a key unresolved issue in chemistry and biology. We addressed experimentally the important case of the air/water interface and report the strikingly dissimilar pHbulk-dependences of the protonation/deprotonation of aqueous versus gaseous n-hexanoic acid (HxOH) determined on the surface of aqueous microjets by online electrospray mass spectrometry. We confirm that HxOH(aq) is deprotonated at pHbulk > pKa(HxOH) = 4.8, but find that the deprotonation of HxOH(g) into interfacial HxO-(s) displays two equivalence points at pHbulk ~ 2.5 and ~ 10.0. The weak base HxOH(aq) (pKa(HxOH2+) < - 4) is barely protonated at pHbulk > 1, whereas HxOH(g) is significantly protonated to HxOH2+(s) on pHbulk < 4 water, as expected from the proton affinities PA(HxOH) > PA(H2O) of gas-phase species. The exceptionally large kinetic isotope effect for the protonation of HxOH(g) on D2O/H2O: KIE = HxOH2+/HxODH+ ~ 100, is ascribed to a desolvated transition state. Since ion creation at the interface via proton transfer between H2O itself and neutral species is thermodynamically disallowed i.e., HxOH(g) is actually deprotonated by interfacial OH-(s), whereas Me3N(g) is hardly protonated by H3O+(s) on pHbulk ~ 4 - 8 water (Enami et al., J. Phys. Chem. Lett. 2010, 1, 1599) we conclude that [OH-(s)] > [H3O+(s)] above pHbulk ~ 4, at variance with inferences drawn from spectroscopic signatures or model calculations of water’s surface.

  14. Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes.

    PubMed

    van Lieverloo, J Hein M; Hoogenboezem, Wim; Veenendaal, Gerrit; van der Kooij, Dick

    2012-10-15

    A survey of invertebrates in drinking water from treatment works, internal taps and hydrants on mains was carried out by almost all water companies in the Netherlands from September 1993 to August 1995. Aquatic sow bugs (Asellidae, 1-12 mm) and oligochaeta worms (Oligochaeta, 1-100 mm), both known to have caused rare though embarrassing consumer complaints, were found to form 98% of the mean biomass in water flushed from mains. Their numbers in the mains water ranged up to 1500 (mean 37) Asellidae m(-3) and up to 9900 (mean 135) Oligochaeta m(-3). Smaller crustaceans (0.5-2 mm) dominated the numbers in water from mains. e.g. water fleas (Cladocera and Copepoda up to 14,000 m(-3)). Common invertebrates in treated water and in tap water were Rotifera (<1 mm) and nematode worms (Nematoda, <2 mm). No Asellidae, large Oligochaeta (>5 mm) or other large invertebrates were found in 1560 samples of 200 l treated water or tap water. Large variations in invertebrate abundance were found within and between distribution systems. Of the variability of mean biomass in mains per system, 55%, 60% and 63% could statistically be explained by differences in the Biofilm Formation Rate, non-particulate organic matter and the permanganate index of the treated water of the treatment works respectively. A similar correlation was found between mean invertebrate biomass and mean sediment volumes in the distribution systems (R(2) = 52%). PMID:22840474

  15. Effects of abundance and water temperature on recruitment and growth of alewife (Alosa pseudoharengus) near South Bay, Lake Huron, 1954-82

    USGS Publications Warehouse

    Henderson, Bryan A.; Brown, Edward H., Jr.

    1985-01-01

    Analysis of catches in pound nets provided indices of population size (ages 2–6) and of recruitment (ages 4–6) for alewives (Alosa pseudoharengus) spawning in South Bay (1954–82). Four hypotheses concerning the effects of stock size and water temperature on growth and recruitment were tested statistically. The number of recruits per spawner was not a function of parental stock size, but was dependent on surface-water temperatures in June and July. Although the size of both males and females at age 3 yr was positively related to surface-water temperatures in the three preceding summers, growth rates were only a function of water temperatures during the second year of growth (age 1). However, growth rates during the first, second, and third years of growth were all related to year-class strength. Thus, population abundance, through recruitment, was determined by an abiotic factor (water temperature), but growth was mostly affected by intraspecific competition for, presumably, food.

  16. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters

    NASA Astrophysics Data System (ADS)

    Dalla Rosa, Luciano; Ford, John K. B.; Trites, Andrew W.

    2012-03-01

    Humpback whales are common in feeding areas off British Columbia (BC) from spring to fall, and are widely distributed along the coast. Climate change and the increase in population size of North Pacific humpback whales may lead to increased anthropogenic impact and require a better understanding of species-habitat relationships. We investigated the distribution and relative abundance of humpback whales in relation to environmental variables and processes in BC waters using GIS and generalized additive models (GAMs). Six non-systematic cetacean surveys were conducted between 2004 and 2006. Whale encounter rates and environmental variables (oceanographic and remote sensing data) were recorded along transects divided into 4 km segments. A combined 3-year model and individual year models (two surveys each) were fitted with the mgcv R package. Model selection was based primarily on GCV scores. The explained deviance of our models ranged from 39% for the 3-year model to 76% for the 2004 model. Humpback whales were strongly associated with latitude and bathymetric features, including depth, slope and distance to the 100-m isobath. Distance to sea-surface-temperature fronts and salinity (climatology) were also constantly selected by the models. The shapes of smooth functions estimated for variables based on chlorophyll concentration or net primary productivity with different temporal resolutions and time lags were not consistent, even though higher numbers of whales seemed to be associated with higher primary productivity for some models. These and other selected explanatory variables may reflect areas of higher biological productivity that favor top predators. Our study confirms the presence of at least three important regions for humpback whales along the BC coast: south Dixon Entrance, middle and southwestern Hecate Strait and the area between La Perouse Bank and the southern edge of Juan de Fuca Canyon.

  17. Water and cheese from the lunar desert: Abundances and accessibility of H, C, and N on the Moon

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.

    1992-01-01

    The Moon has been underrated as a source of H, N, C, and other elements essential to support life and to provide fuel for rockets. There is enough of these elements in each cubic meter of typical lunar soil to provide a substantial lunch for two, if converted to edible forms. The average amount of C per square meter of the lunar surface to a depth of 2 m is some 35 percent of the average amount per square meter tied up in living organisms on Earth. The water equivalent of H in the upper 2 m of the regolith averages at least 1.3 million liters per square kilometer. Mining of H from a small fraction of the regolith would provide all the rocket fuel needed for thousands of years. These elements can be removed from the soil by heating it to high temperature. Some favor the unproven resources of Phobos, Deimos, or near-Earth asteroids instead of the Moon as a source of extraterrestrial material for use in space, or Mars over the Moon as a site for habitation, partly on the basis that the chemical elements needed for life support and propellant are readily abundant on those bodies, but not on the Moon. Well, the Moon is not as barren of H, C, and N as is commonly perceived. In fact, the elements needed for life support and for rocket fuel are plentiful there, although the ore grades are low. Furthermore, the proximity of the Moon and consequent lower cost of transportation and shorter trip and communication times favor that body as the logical site for early acquisition of resources and extraterrestrial living.

  18. Relaxations and Interfacial Water Ordering at the Corundum (110) Surface

    SciTech Connect

    Catalano, Jeffrey G.

    2010-09-17

    In situ high resolution specular X-ray reflectivity measurements were used to examine relaxations and interfacial water ordering occurring at the corundum (110)-water interface. Sample preparation affected the resulting surface structure. Annealing in air at 1373 K produced a reconstructed surface formed through an apparently ordered aluminum vacancy. The effect of the reconstruction on in-plane periodicity was not determined. The remaining aluminum sites on the surface maintain full coordination by oxygen and the surface was coated with a layer of physically adsorbed water. Ordering of water further from the surface was not observed. Acid etching of this surface and preparing a surface through annealing at 723 K both produced an unreconstructed surface with identical relaxations and water ordering. Relaxations were confined primarily to the top {approx}4 {angstrom} of the surface and were dominated by an increased distribution width of the fully occupied surface aluminum site and outward relaxation of the oxygen surface functional groups. A layer of adsorbed water fully coated the surface and occurred in two distinct sites. Water above this showed signs of layering and indicated that water ordering extended 7-10 {angstrom} from the surface. Relaxations and the arrangement of interfacial water were nearly identical on both the unreconstructed corundum and isostructural hematite (110) surfaces. Comparison to corundum and hematite (012) suggests that the arrangement of interfacial water is primarily controlled by mineral surface structure.

  19. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water.

    PubMed

    Cui, Henglin; Yang, Kun; Pagaling, Eulyn; Yan, Tao

    2013-06-01

    Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand. PMID:23563940

  20. Bacterioplankton in antarctic ocean waters during late austral winter: abundance, frequency of dividing cells, and estimates of production.

    PubMed

    Hanson, R B; Shafer, D; Ryan, T; Pope, D H; Lowery, H K

    1983-05-01

    Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (mu) is best described by the regression equation ln mu = 0.081 FDC - 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 x 10 to 3.5 x 10 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 x 10 to 2 x 10 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 x 10 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 x 10 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h. Using estimates of potential mu and measured standing stocks, we estimated productivity to range from 0.62 mug of C per liter . day in the eastern South Pacific Ocean to 17.1 mug of C per liter . day in the Drake Passage near the sea ice. PMID:16346297

  1. The Abundance and Isotopic Composition of Water in Howardite-Eucrite-Diogenite Meteorites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Tartèse, R.; Anand, M.; Franchi, I. A.; Grady, M. M.; Greenwood, R. C.; Charlier, B. L. A.

    2014-09-01

    Using SIMs techniques we measure OH abundances and D/H ratios in apatite grains from two Eucrites (DaG 945, DaG 844).The average δD values of these two samples are also similar to carbonaceous chondrites, the Earth and the Moon.

  2. Mathematical aspects of surface water waves

    NASA Astrophysics Data System (ADS)

    Craig, Walter; Wayne, Clarence E.

    2007-06-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged `macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important rôle in the future development of the area.

  3. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae.

    PubMed

    Stibal, Marek; Sabacká, Marie; Kastovská, Klára

    2006-11-01

    Microbial communities occurring in three types of supraglacial habitats--cryoconite holes, medial moraines, and supraglacial kames--at several glaciers in the Arctic archipelago of Svalbard were investigated. Abundance, biovolume, and community structure were evaluated by using epifluorescence microscopy and culturing methods. Particular emphasis was laid on distinctions in the chemical and physical properties of the supraglacial habitats and their relation to the microbial communities, and quantitative multivariate analyses were used to assess potential relationships. Varying pH (4.8 in cryoconite; 8.5 in a moraine) and texture (the proportion of coarse fraction 2% of dry weight in cryoconite; 99% dw in a kame) were found, and rather low concentrations of organic matter (0.3% of dry weight in a kame; 22% dw in cryoconite) and nutrients (nitrogen up to 0.4% dw, phosphorus up to 0.8% dw) were determined in the samples. In cryoconite sediment, the highest numbers of bacteria, cyanobacteria, and algae were found, whereas relatively low microbial abundances were recorded in moraines and kames. Cyanobacterial cells were significantly more abundant than microalgal ones in cryoconite and supraglacial kames. Different species of the cyanobacterial genus Leptolyngbya were by far the most represented in all samples, and cyanobacteria of the genera Phormidium and Nostoc prevailed in cultures isolated from cryoconite samples. These species are considered opportunistic organisms with wide ecological valency and strong colonizing potential rather than glacial specialists. Statistical analyses suggest that fine sediment with higher water content is the most suitable condition for bacteria, cyanobacteria, and algae. Also, a positive impact of lower pH on microbial growth was found. The fate of a microbial cell deposited on the glacier surface seems therefore predetermined by the physical and chemical factors such as texture of sediment and water content rather than spatial factors

  4. The surface abundance and stratigraphy of lunar rocks from data about their albedo

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.

    1977-01-01

    The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.

  5. Chapter 5: Surface water quality sampling in streams and canals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  6. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  7. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut

  8. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    PubMed

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  9. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    PubMed Central

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  10. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    NASA Technical Reports Server (NTRS)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  11. Historic and modern abundance of wild lean lake trout in Michigan waters of Lake Superior: Implications for restoration goals

    USGS Publications Warehouse

    Wilberg, Michael J.; Hansen, Michael J.; Bronte, Charles R.

    2003-01-01

    Populations of lake trout Salvelinus namaycush in Lake Superior collapsed in the late 1950s due to overfishing and predation by sea lampreys Petromyzon marinus. A binational effort to restore the lean morphotype of lake trout began with the stocking of hatchery-reared fish followed by the chemical control of sea lampreys and closure of the commercial fishery. Previous comparisons of the contemporary abundance of wild lean lake trout with that from historic commercial fishery statistics indicate that abundance was higher historically. However, this conclusion may be biased because several factors—the inclusion of siscowet (the “fat” morphotype of lake trout) in the catch statistics, the soak time of nets, seasonal effects on catch per effort, and the confounding effects of effort targeted at lake whitefish Coregonus clupeaformis—were not accounted for. We developed new indices of historic lean lake trout abundance that correct for these biases and compared them with the assessment data from 1984 to 1998 in Michigan waters of Lake Superior. The modern (1984–1998) abundance of wild lean lake trout is at least as high as that during 1929–1943 in six of eight management areas but lower in one area. Measures to promote and protect naturally reproducing populations have been more successful than previously realized.

  12. Emission of dimers from a free surface of heated water

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-09-01

    The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

  13. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean

    PubMed Central

    Payet, Jérôme P.; McMinds, Ryan; Burkepile, Deron E.; Vega Thurber, Rebecca L.

    2014-01-01

    Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse microbes; as major agents of microbial mortality, viruses are likely to influence microbial processes in these ecosystems. However, little is known about marine viruses in these rapidly changing ecosystems. Here we examined spatial and short-term temporal variability in marine viral abundance (VA) and viral lytic activity across various reef habitats surrounding Moorea Island (French Polynesia) in the South Pacific. Water samples were collected along four regional cross-reef transects and during a time-series in Opunohu Bay. Results revealed high VA (range: 5.6 × 106–3.6 × 107 viruses ml-1) and lytic viral production (range: 1.5 × 109–9.2 × 1010 viruses l-1 d-1). Flow cytometry revealed that viral assemblages were composed of three subsets that each displayed distinct spatiotemporal relationships with nutrient concentrations and autotrophic and heterotrophic microbial abundances. The results highlight dynamic shifts in viral community structure and imply that each of these three subsets is ecologically important and likely to infect distinct microbial hosts in reef waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible for the removal of ca. 24–367% of bacterial standing stock d-1 and the release of ca. 1.0–62 μg of organic carbon l-1 d-1 in reef waters. Overall, this work demonstrates the highly dynamic distribution of viruses and their critical roles in controlling microbial mortality and nutrient cycling in coral reef water ecosystems. PMID:25295032

  14. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean.

    PubMed

    Payet, Jérôme P; McMinds, Ryan; Burkepile, Deron E; Vega Thurber, Rebecca L

    2014-01-01

    Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse microbes; as major agents of microbial mortality, viruses are likely to influence microbial processes in these ecosystems. However, little is known about marine viruses in these rapidly changing ecosystems. Here we examined spatial and short-term temporal variability in marine viral abundance (VA) and viral lytic activity across various reef habitats surrounding Moorea Island (French Polynesia) in the South Pacific. Water samples were collected along four regional cross-reef transects and during a time-series in Opunohu Bay. Results revealed high VA (range: 5.6 × 10(6)-3.6 × 10(7) viruses ml(-1)) and lytic viral production (range: 1.5 × 10(9)-9.2 × 10(10) viruses l(-1) d(-1)). Flow cytometry revealed that viral assemblages were composed of three subsets that each displayed distinct spatiotemporal relationships with nutrient concentrations and autotrophic and heterotrophic microbial abundances. The results highlight dynamic shifts in viral community structure and imply that each of these three subsets is ecologically important and likely to infect distinct microbial hosts in reef waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible for the removal of ca. 24-367% of bacterial standing stock d(-1) and the release of ca. 1.0-62 μg of organic carbon l(-1) d(-1) in reef waters. Overall, this work demonstrates the highly dynamic distribution of viruses and their critical roles in controlling microbial mortality and nutrient cycling in coral reef water ecosystems. PMID:25295032

  15. Water Properties Influencing the Abundance and Diversity of Denitrifiers on Eichhornia crassipes Roots: A Comparative Study from Different Effluents around Dianchi Lake, China

    PubMed Central

    Yi, Neng; Gao, Yan; Zhang, Zhenhua; Shao, Hongbo; Yan, Shaohua

    2015-01-01

    To evaluate effects of environmental conditions on the abundance and communities of three denitrifying genes coding for nitrite (nirK, nirS) reductase and nitrous oxide (nosZ) reductase on the roots of Eichhornia crassipes from 11 rivers flowing into the northern part of Dianchi Lake. The results showed that the abundance and community composition of denitrifying genes on E. crassipes root varied with different rivers. The nirK gene copies abundance was always greater than that of nirS gene on the roots of E. crassipes, suggesting that the surface of E. crassipes roots growth in Dianchi Lake was more suitable for the growth of nirK-type denitrifying bacteria. The DGGE results showed significant differences in diversity of denitrifying genes on the roots of E. crassipes among the 11 rivers. Using redundancy analysis (RDA), the correlations of denitrifying microbial community compositions with environmental factors revealed that water temperature (T), dissolved oxygen (DO), and pH were relatively important environmental factors to modifying the community structure of the denitrifying genes attached to the root of E. crassipes. The results indicated that the specific environmental conditions related to different source of rivers would have a stronger impact on the development of denitrifier communities on E. crassipes roots. PMID:26495277

  16. Water resources data, Florida, water year 2005. Volume 3A: Southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.; Dickman, Mark

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains records for continuous or daily discharge for 113 streams, periodic discharge for 4 streams, continuous or daily stage for 80 streams, periodic stage for 2 stream, peak stage and discharge for 8 streams, continuous or daily elevations for 3 lakes, continous or daily elevations for 3 lakes, and quality of water for 75 surface water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Water resources data, Florida, water year 2004, volume 3A: southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 104 streams, periodic discharge for 6 streams, continuous or daily stage for 36 streams, periodic stage for 14 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 3 lakes, and quality-of-water data for 58 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  18. Solar wind H-3 and C-14 abundances and solar surface processes. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; Defelice, J.; Damico, J.

    1976-01-01

    Tritium is measured as a function of depth in a Surveyor 3 sample. The upper limit for solar-wind-implanted tritium gives an H-3/H-1 limit for the solar wind of 10 to the -11th power. The temperature-release patterns of C-14 from lunar soils are measured. The C-14 release pattern from surface soils differs from a trench-bottom soil and gives positive evidence for the presence of C-14 in the solar wind with a C-14/H-1 ratio of approximately 6 by 10 to the -11th power. This C-14 content fixes a minimal magnitude for nuclear processes on the solar surface averaged over the past 10,000 yr. The H-3 and C-14 contents combine to require that either the mixing rate above the photosphere be rapid or that the H-3 produced by nuclear reactions be destroyed by secondary nuclear reactions before escaping in the solar wind.

  19. The Influence of Heavy Metals and Water Parameters on the Composition and Abundance of Water Bugs (Insecta: Hemiptera) in the Kerian River Basin, Perak, Malaysia.

    PubMed

    Ishadi, Nur Adibah Mohd; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Abdul, Nurul Huda

    2014-12-01

    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ (2) = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H' and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin. PMID:27073600

  20. The Influence of Heavy Metals and Water Parameters on the Composition and Abundance of Water Bugs (Insecta: Hemiptera) in the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Ishadi, Nur Adibah Mohd; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Abdul, Nurul Huda

    2014-01-01

    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ 2 = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H’ and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin. PMID:27073600

  1. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    PubMed

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. PMID:24330580

  2. Global lake surface water temperatures from ATSR

    NASA Astrophysics Data System (ADS)

    MacCallum, Stuart; Merchant, Christopher J.; Layden, Aisling

    2013-04-01

    The ATSR Reprocessing for Climate - Lake (ARC-Lake) project applies optimal estimation (OE) retrievals and probabilistic cloud screening methods to provide lake surface water temperature (LSWT) estimates from the series of (Advanced) Along-Track Scanning Radiometers. This methodology is generic (i.e. applicable to all lakes) as variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. In the initial phases of ARC-Lake, LSWTs were obtained for 258 of Earth's largest lakes. In the final phase of the project, the dataset is extended by applying the OE methodology to smaller lakes, providing LSWT data from 1991 to 2012 for approximately 1000 lakes. In this presentation we will provide an overview of the ARC-Lake project, its publically available data products and some applications of these products.

  3. Surface-water availability, Tuscaloosa County, Alabama

    USGS Publications Warehouse

    Knight, Alfred L.; Davis, Marvin E.

    1975-01-01

    The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.

  4. Surface water quality-assurance plan, U.S. Geological Survey, Kentucky Water Science Center, water year 2006

    USGS Publications Warehouse

    Griffin, Michael S.

    2006-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kentucky Water Science Center for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  5. Metolachlor and atrazine fate in surface water systems

    SciTech Connect

    Rice, P.J.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  6. Nitrogen line spectroscopy of O-stars. II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Rivero González, J. G.; Puls, J.; Najarro, F.; Brott, I.

    2012-01-01

    Context. Nitrogen is a key element for testing the impact of rotational mixing on evolutionary models of massive stars. Recent studies of the nitrogen surface abundance in B-type stars within the VLT-FLAMES survey of massive stars have challenged part of the corresponding predictions. To obtain a more complete picture of massive star evolution, and to allow for additional constraints, these studies need to be extended to O-stars. Aims: This is the second paper in a series aiming at the analysis of nitrogen abundances in O-type stars, to establish tighter constraints on the early evolution of massive stars. In this paper, we investigate the N ivλ4058 emission line formation, provide nitrogen abundances for a substantial O-star sample in the Large Magellanic Cloud, and compare our (preliminary) findings with recent predictions from stellar evolutionary models. Methods: Stellar and wind parameters of our sample stars were determined by line profile fitting of hydrogen, helium and nitrogen lines, exploiting the corresponding ionization equilibria. Synthetic spectra were calculated by means of the NLTE atmosphere/spectrum synthesis code fastwind, using a new nitrogen model atom. We derived nitrogen abundances for 20 O- and 5 B-stars by analyzing all nitrogen lines (from different ionization stages) present in the available optical spectra. Results: The dominating process responsible for emission at N ivλ4058 in O-stars is the strong depopulation of the lower level of the transition, which increases as a function of Ṁ. Unlike the N iii triplet emission, resonance lines do not play a role for typical mass-loss rates and below. We find (almost) no problem in fitting the nitrogen lines, in particular the "f" features. Only for some objects, where lines from N iii/N iv/N v are visible in parallel, we need to opt for a compromise solution. For five objects in the early B-/late O-star domain that have been previously analyzed by different methods and model atmospheres, we

  7. Biodegradation of aniline and abundance of potential degraders in river waters

    SciTech Connect

    Goonewardena, N.; Nasu, M.; Okuda, A.; Tani, K.; Takubo, Y.; Kondo, M. )

    1992-03-01

    Total dissolved organic carbon (TOC), number of colony forming units (CFU), and total direct count (TDC) were compared to the biodegradation of aniline and the number of potential degraders in water samples from head waters to down stream of the Ina River and several other sites of rivers traversing Osaka city. The results indicate that aniline degrading populations of these various microbial communities exhibit different activities probably depending on the extent of adaptation to pollutants to which the microbes are exposed. The number of aniline degraders found in river water samples was in agreement with other parameters which were used to demonstrate the degree of pollution in river water even though higher biodegradability was evident in waters which show comparatively low TOC and CFU. These results suggest that biodegradation of aniline and enumeration of its potential degraders may serve as valuable indicators for the assessment of pollution in river waters.

  8. Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island

    PubMed Central

    2012-01-01

    Background Microzooplankton consisting of protists and metazoa <200 μm. It displays unique feeding mechanisms and behaviours that allow them to graze cells up to five times their own volume. They can grow at rates which equal or exceed prey growth and can serve as a viable food source for metazoans. Moreover, they are individually inconspicuous, their recognition as significant consumers of oceanic primary production. The microzooplankton can be the dominant consumers of phytoplankton production in both oligo- and eutrophic regions of the ocean and are capable of consuming >100% of primary production. Results The microzooplankton of the South Andaman Sea were investigated during September 2011 to January 2012. A total of 44 species belong to 19 genera were recorded in this study. Tintinnids made larger contribution to the total abundance (34%) followed in order by dinoflagellates (24%), ciliates (20%) and copepod nauplii (18%). Foraminifera were numerically less (4%). Tintinnids were represented by 20 species belong to 13 genera, Heterotrophic dinoflagellates were represented by 17 species belong to 3 genera and Ciliates comprised 5 species belong to 3 genera. Eutintinus tineus, Tintinnopsis cylindrical, T. incertum, Protoperidinium divergens, Lomaniella oviformes, Strombidium minimum were the most prevalent microzooplankton. Standing stock of tintinnids ranged from 30–80 cells.L-1 and showed a reverse distribution with the distribution of chlorophyll a relatively higher species diversity and equitability was found in polluted harbour areas. Conclusions The change of environmental variability affects the species composition and abundance of microzooplankton varied spatially and temporarily. The observations clearly demonstrated that the harbor area differed considerably from other area in terms of species present and phytoplankton biomass. Further, the phytoplankton abundance is showed to be strongly influenced by tintinnid with respect to the relationship of

  9. Water organization between oppositely charged surfaces: Implications for protein sliding along DNA a)

    NASA Astrophysics Data System (ADS)

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-01

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.

  10. Water organization between oppositely charged surfaces: implications for protein sliding along DNA.

    PubMed

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-28

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein. PMID:25725757

  11. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces.

    PubMed

    Nakahashi-Oda, Chigusa; Udayanga, Kankanam Gamage Sanath; Nakamura, Yoshiyuki; Nakazawa, Yuta; Totsuka, Naoya; Miki, Haruka; Iino, Shuichi; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2016-04-01

    Epithelial tissues continually undergo apoptosis. Commensal organisms that inhabit the epithelium influence tissue homeostasis, in which regulatory T cells (Treg cells) have a central role. However, the physiological importance of epithelial cell apoptosis and how the number of Treg cells is regulated are both incompletely understood. Here we found that apoptotic epithelial cells negatively regulated the commensal-stimulated proliferation of Treg cells. Gut commensals stimulated CX3CR1(+)CD103(-)CD11b(+) dendritic cells (DCs) to produce interferon-β (IFN-β), which augmented the proliferation of Treg cells in the intestine. Conversely, phosphatidylserine exposed on apoptotic epithelial cells suppressed IFN-β production by the DCs via inhibitory signaling mediated by the cell-surface glycoprotein CD300a and thus suppressed Treg cell proliferation. Our findings reveal a regulatory role for apoptotic epithelial cells in maintaining the number of Treg cell and tissue homeostasis. PMID:26855029

  12. Surface water and groundwater interaction on a hill island

    NASA Astrophysics Data System (ADS)

    Rumph Frederiksen, Rasmus; Rømer Rasmussen, Keld; Christensen, Steen

    2014-05-01

    A number of recent studies have indicated that the hydrological system in stream valleys is often complex and exchange of water takes place through semi-permeable contacts and flow paths may be quite diverse. Yet, surface water and groundwater interaction in one of the major Danish landscapes - the hill islands - is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field observations, and existing geological and geophysical data, we have investigated the surface water and groundwater interaction in the Abild Stream catchment (<70 km2) on Skovbjerg hill island in the western part of Denmark. Existing discharge data are limited but the hydrographs downstream Abild Stream appear to be strongly influenced by event flow indicating that shallow control by low permeable sediments is important. Nevertheless irrigation is intensive which indicates that the soil and shallow sediments are permeable. Since July 2014 we have measured stream flow during quarterly campaigns at 11 stations along the stream representing different spatial scales and using Acoustic Doppler techniques (ADCP) as well as current-meters. Furthermore we have mapped topography, soil types, geomorphology, ditches, drains and land use through field observations and digital maps. The shallow subsurface geology has been mapped using abundant well described geological data (boreholes) and geophysical data (airborne TEM). Our stream flow measurements show that the tributaries from west and north dry out during the summer period. Significant drained areas in the NW- and SW-part of the catchment have been observed from old topographical maps as well as in the field. The geological data indicate shallow low permeable sediments primarily on the western side of Abild stream, and the geophysical

  13. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets—Implications for the Solar System's Formation

    NASA Astrophysics Data System (ADS)

    Simões, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Béghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; Martin, Steven; Rowland, Douglas; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  14. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; Martin, Steven; Rowland, Douglas; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  15. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    SciTech Connect

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Takahashi, Yukihiro; Yair, Yoav

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  16. Photochemical Transformation Processes in Sunlit Surface Waters

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  17. Earth--abundant water--splitting catalysts coupled to silicon solar cells for solar--to--fuels conversion

    NASA Astrophysics Data System (ADS)

    Cox, Casandra R.

    Direct solar--to--fuels conversion can be achieved by coupling semiconductors with water--splitting catalysts. A 10% or higher solar to fuels conversion is minimally necessary for the realization of a robust future technology. Many water--splitting devices have been proposed but due to expensive designs and/or materials, none have demonstrated the necessary efficiency at low--cost that is a requisite for large--scale implementation. In this thesis, a modular approach is used to couple water--splitting catalysts with crystalline silicon (c--Si) photovoltaics, with ultimate goal of demonstrating a stand--alone and direct solar-to-fuels water--splitting device comprising all non--precious, technology ready, materials. Since the oxygen evolution reaction is the key efficiency--limiting step for water--splitting, we first focus on directly interfacing oxygen evolution catalysts with c--Si photovoltaics. Due to the instability of silicon under oxidizing conditions, a protective interface between the PV and OER catalyst is required. This coupling of catalyst to Si semiconductor thus requires optimization of two interfaces: the silicon|protective layer interface; and, the protective layer|catalyst interface. A modular approach allows for the independent optimization and analysis of these two interfaces. A stand--alone water--splitting device based on c--Si is created by connecting multiple single junction c-Si solar cells in series. Steady--state equivalent circuit analysis allows for a targeted solar--to--fuels efficiency to be designed within a predictive framework for a series--connected c--Si solar cells and earth--abundant water--splitting catalysts operating at neutral pH. Guided by simulation and modeling, a completely modular, stand--alone water--splitting device possessing a 10% SFE is demonstrated. Importantly, the modular approach enables facile characterization and trouble--shooting for each component of the solar water--splitting device. Finally, as direct

  18. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.

    PubMed

    Xu, Kewei; Tang, Yuping; Ren, Chun; Zhao, Kebin; Wang, Wanmeng; Sun, Yongge

    2013-09-01

    Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community. PMID:23090054

  19. Free-Nematodes in the NW Black Sea meiobenthos - diversity, abundance, distribution and importance as indicator of hypoxic waters

    NASA Astrophysics Data System (ADS)

    Muresan, M.; Gomoiu, M.-T.

    2012-04-01

    The aim of this study performed within EU FP7 Hypox Project was to get deeper knowledge about species of nematodes that could be indicators for stressful biotic conditions as low oxygen concentration due to phenomena of seasonal hypoxia. The Nematodes come from meiobenthos sampling (using a multi corer with 4 tubes, Mark II type, lowered into the sea from R/V "Mare Nigrum" board) performed in May and September 2010 and April 2011 along four transects crossing the Romanian continental shelf from where 87 meiobenthos samples were collected. In the studied area 96 species of nematodes were found. The authors analyzed the nematodes populations' distribution on four profiles: Sf. Gheorghe, Portita, Constanta and Mangalia. The qualitative and quantitative structure of nematodes populations was compared. 41 species were found on Mangalia profile, 47 species on Portita profile, 48 species on Constanta profile and 85 species on Sf. Gheorghe profile. The greatest densities were found on Constanta profile with an average of 369.607indvs/m-2. The most frequent and abundant species were: Sabatieria pulchra, Sabatieria abyssalis, Terschellingia longicaudata, Viscosia cobbi, Axonolaimus ponticus. The species assemblages were assessed for depth gradient distribution, 7 depth intervals being set from 20 to 210 m. The greatest diversity was noted in 61-100 m depth interval, while the lowest between 0-20 m. On the contrary, in terms of density of individuals (indvs/m-2), highest densities were obtained in shallow waters between 21-30 m. As far as the depth increases, the species assemblages change, becoming more favorable to species like Halalaimus ponticus, Metachromadora macrouthera, Halanonchus bullatus, Linhomoneidae species. However, on the first place still remained Sabatieria abyssalis. The vertical distribution of nematodes in sediments was analyzed for the surface layer 0-5 cm and sub-surface layer 5-10 cm, the dominant species in both layers being: Sabatieria pulchra, S

  20. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  1. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  2. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  3. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  4. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  5. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  6. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  7. Instructions for measuring the rate of evaporation from water surfaces

    USGS Publications Warehouse

    U.S. Geological Survey

    1898-01-01

    The ·rate of evaporation from water surfaces varies with the temperature of the water, the velocity of the wind at the water surface, and the dryness of the air. Consequently, the rate of evaporation from rivers, lakes, canals, or reservoirs varies widely in different localities and for the same locality in different seasons.

  8. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  9. Floating Vegetated Mats For Improving Surface Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  10. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  11. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  12. HDO in the Martian atmosphere: implications for the abundance of crustal water.

    PubMed

    Yung, Y L; Wen, J S; Pinto, J P; Allen, M; Pierce, K K; Paulson, S

    1988-01-01

    The physical and chemical processes that lead to the preferential escape of hydrogen over deuterium in the Martian atmosphere are studied in detail using a one-dimensional photochemical model. Comparison of our theory with recent observations of HDO suggests that, averaged over the planet, Mars contains 0.2 m of crustal water that is exchangeable with the atmosphere. Our estimate is considerably lower than recent estimates of subsurface water on Mars based on geomorphological analysis of Viking images. The estimate can be reconciled if only a small fraction of crustal water can exchange with the atmosphere. PMID:11538666

  13. HDO in the Martian atmosphere - implications for the abundance of crustal water

    SciTech Connect

    Yung, Y.L.; Wen, J.S.; Pinto, J.P.; Pierce, K.K.; Allen, M.

    1988-10-01

    A one-dimensional photochemical model is presently used to ascertain the nature of those chemical and physical processes of the Martian atmosphere responsible for the preferential escape of hydrogen over deuterium. A comparison of the present theoretical considerations with recent HDO observations indicates that Mars contains 0.2 m of (globally averaged) crustal water that is exchangeable with the atmosphere. This estimate, which is substantially lower than those obtained for Martian subsurface water on the basis of Viking image-derived geomorphological analyses, can be reconciled only if a small fration of the crustal water is exchangeable with the atmosphere. 67 references.

  14. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars.

    PubMed

    Mitrofanov, I G; Zuber, M T; Litvak, M L; Boynton, W V; Smith, D E; Drake, D; Hamara, D; Kozyrev, A S; Sanin, A B; Shinohara, C; Saunders, R S; Tretyakov, V

    2003-06-27

    Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south. PMID:12829779

  15. Adsorption structure of water molecules on the Be(0001) surface

    SciTech Connect

    Yang, Yu; Li, Yanfang; Wang, Shuangxi; Zhang, Ping

    2014-06-07

    By using density functional theory calculations, we systematically investigate the adsorption of water molecules at different coverages on the Be(0001) surface. The coverage dependence of the prototype water structures and energetics for water adlayer growth are systematically studied. The structures, energetics, and electronic properties are calculated and compared with other available studies. Through our systematic investigations, we find that water molecules form clusters or chains on the Be(0001) surface at low coverages. When increasing the water coverage, water molecules tend to form a 2 × 2 hexagonal network on the Be(0001) surface.

  16. Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites

    NASA Astrophysics Data System (ADS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2012-12-01

    Volatile elements have influenced the differentiation and eruptive behavior of Martian magmas and played an important role in the evolution of Martian climate and near-surface environments. However, the abundances of volatiles, and in particular the amount of water in the Martian interior, are disputed. A record of volatile reservoirs is contained in primitive Martian basalts (shergottites). Olivine-hosted melt inclusions from a geochemically depleted shergottite (Yamato 980459, representing a very primitive Martian melt) possess undegassed water with a chondritic and Earth-like D/H ratio (δD≤275‰). Based on volatile measurements in these inclusions, the water content of the depleted shergottite mantle is calculated to be 15-47 ppm, which is consistent with the dry mantle hypothesis. In contrast to D/H in the depleted shergottite, melt from an enriched shergottite (Larkman Nunatak 06319), which either formed by melting of an enriched mantle or by assimilation of crust, exhibits an extreme δD of ˜5000‰, indicative of a surface reservoir (e.g., the Martian atmosphere or crustal hydrosphere). These data provide strong evidence that the Martian mantle had retained the primordial low-δD component until at least the time of shergottite formation, and that young Martian basalts assimilated old Martian crust.

  17. The Water Abundance of the Directly Imaged Substellar Companion κ And b Retrieved from a Near Infrared Spectrum

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen O.; Line, Michael R.; Pineda, Jaime E.; Meyer, Michael R.; Quanz, Sascha P.; Hinkley, Sasha; Fortney, Jonathan J.

    2016-05-01

    Spectral retrieval has proven to be a powerful tool for constraining the physical properties and atmospheric compositions of extrasolar planet atmospheres based on observed spectra, primarily for transiting objects but also for directly imaged planets and brown dwarfs. Despite its strengths, this approach has been applied to only about a dozen targets. Determining the abundances of the main carbon- and oxygen-bearing compounds in a planetary atmosphere can lead to the C/O ratio of the object, which is crucial for understanding its formation and migration history. We present a retrieval analysis of the published near-infrared spectrum of κ \\quad {Andromedae} b, a directly imaged substellar companion to a young B9 star. We fit the emission spectrum model utilizing a Markov Chain Monte Carlo algorithm. We estimate the abundance of water vapor, and its uncertainty, in the atmosphere of the object. In addition, we place an upper limit on the abundance of CH4. We qualitatively compare our results with studies that have applied model retrieval on multiband photometry and emission spectroscopy of hot Jupiters (extrasolar giant planets with orbital periods of several days) and the directly imaged giant planet HR 8799b.

  18. First-principles study of water desorption from montmorillonite surface.

    PubMed

    Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli

    2016-05-01

    Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process. PMID:27083565

  19. Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn

    NASA Astrophysics Data System (ADS)

    Mielck, F.; Bartsch, I.; Hass, H. C.; Wölfl, A.-C.; Bürk, D.; Betzler, C.

    2014-04-01

    Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not

  20. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  1. Spatial heterogeneity of zooplankton abundance and diversity in the Saudi coastal waters of the Southern Red Sea

    NASA Astrophysics Data System (ADS)

    Al-Aidaroos, Ali; El-Sherbiny, Mohsen; Mantha, Gopikrishna

    2013-04-01

    The horizontal distribution, abundance and diversity of zooplankton has been studied at 50 stations along the Saudi coastal waters of the southern Red Sea (27 stations around Farasan archipelago, 9 around Al-Qunfodah and 14 around Al-Lith) during March-April 2011 using a plankton net of 150 µm. The zooplankton standing crop fluctuated between 1058 and 25787 individuals/m3 with an average of 5231 individuals/m3. Zooplankton was dominated by holoplanktonic forms that representing 80.26 % of total zooplankton, while meroplanktonic constituting 19.74% and dominated by mollusc larvae. Copepods appeared to be the predominant component, formed an average of 69.69 % of the total zooplankton count followed by chaetognaths and urochordates (4.5 and 4.1% of total zooplankton respectively). A total of 100 copepods species in addition to several species of other planktonic groups (cladocerans, chaetognaths, urochordates) were recorded in the study area. The copepod diversity decreased northward (94, 69 and 62 species at Farasan, Al-Qunfodah and Al-Lith respectively). In general, adult cyclopoid copepods dominated the zooplankton community in term of abundance and species number (19.55 %, 65 species) with dominance of Oncaea media, Oithona similis and Farranula carinata followed by adult calanoid copepods (19.38%, 35 species) with dominance of Paracalanus aculeatus, Clausocalanus minor, Acartia (Acanthacartia) fossae and Centropages orsinii. Harapacticoids densities were low in abundance, represented only by 5 species and dominated mainly by Euterpina acutifronis. Some copepod species decreased northward: Acartia amboinensis, Canthocalanus pauper, Labidocera acuta, Corycaeus flaccus, C. typicus, C. agilis, C. catus, C. giesbrechti, C. latus, C. furcifer and Euterpina acutifronis, while others increased northward (Acartia fossae, Undinula vulgaris and Centropages orsinii). Among copepod orders, Monstrilloida and Siphonostomatoida were observed only in southern area (Farasan

  2. Physical factors affecting the abundance and species richness of fishes in the shallow waters of the southern Bothnian Sea (Sweden)

    NASA Astrophysics Data System (ADS)

    Thorman, Staffan

    1986-03-01

    The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.

  3. Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    D'Onghia, G.; Maiorano, P.; Sion, L.; Giove, A.; Capezzuto, F.; Carlucci, R.; Tursi, A.

    2010-03-01

    The Santa Maria di Leuca (SML) coral banks represent a rare example of living Lophelia-Madrepora-bearing coral mounds in the Mediterranean Sea. They are located between 350 and 1100 m in depth, in the northern Ionian Sea (eastern-central Mediterranean). Using a multi-beam echo sounder, side-scan sonar, high-resolution seismics and underwater video, the zones were identified for the sampling demersal fauna without damaging the coral colonies. During September-October 2005 experimental samplings were carried out with longlines and trawl nets inside the coral habitat and outside, where fishery exploitation occurs. No significant differences were shown between the abundance of fish recorded using longlines in the coral and non-coral habitat even though some selachians and teleosts were more abundant in the former than in the latter. Large specimens of rockfish ( Helicolenus dactylopterus) and blackspot seabream ( Pagellus bogaraveo) were commonly caught using longlines in the coral habitat. Data from trawling revealed refuge effects in the coral habitat and fishing effects outside. Significant differences were detected between the recorded abundances in the two study areas. Greater densities and biomasses were obtained inside the coral area, and fish size spectra and size distributions indicate a greater abundance of large fish inside the coral habitat. The SML coral habitat is a spawning area for H. dactylopterus. The remarkable density of the young-of-the-year of the deep-water shark Etmopterus spinax as well as of Merluccius merluccius, Micromesistius poutassou, Phycis blennoides and H. dactylopterus, indicates that the coral habitat also acts as nursery area for these demersal species, which are exploited outside. Considering the evidence of the negative impact of bottom trawling and, to a lesser extent, of longlining, the coral banks can provide a refuge for the conservation of unique species and habitats as well as in providing benefit to adjacent fisheries

  4. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover.

    PubMed

    Stegen, James C; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Danczak, Robert E; Fansler, Sarah J; Kennedy, David W; Resch, Charles T; Tfaily, Malak

    2016-01-01

    Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662

  5. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

    PubMed Central

    Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Danczak, Robert E.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak

    2016-01-01

    Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662

  6. Spreading of Cholera through Surface Water

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  7. Factors affecting response of surface waters to acidic deposition

    SciTech Connect

    Turner, R.S.; Johnson, D.W.; Elwood, J.W.; Van Winkle, W.; Clapp, R.B.; Reuss, J.O.

    1986-04-01

    Knowledge of watershed hydrology and of the biogeochemical reactions and elemental pools and fluxes occurring in watersheds can be used to classify the response of watersheds and surface waters to acidic deposition. A conceptual mosel is presented for classifying watersheds into those for which (1) surface water chemistry will change rapidly with deposition quality (direct response) (2) surface water chemistry will change only slowly over time (delayed response), and (3) surface water chemistry will not change significantly, even with continued acidic deposition (capacity-protected). Techniques and data available for classification of all watersheds in a region into these categories are discussed.

  8. Effect of surface hydrophilicity on the confined water film

    NASA Astrophysics Data System (ADS)

    Liu, Shuhai; Ma, Liran; Zhang, Chenhui; Lu, Xinchun

    2007-12-01

    The effect of surface hydrophilicity on the water film confined within a nanogap between a smooth plate and a highly polished steel ball has been investigated. It was found that the confined water film formed the thicker lubricate film than the prediction of elastic-isoviscous lubrication theory. Experimental results indicated that the hydrophobic surface induced the thicker water film than the hydrophilic one. It is thought that the "structured" interfacial water layer is formed between the solid surfaces and the hydrophobic group induces the more ordered hydrogen-bonding network of clathrate cages which forms the thicker water film than hydrophilic one.

  9. Structure of water adsorbed on a mica surface

    SciTech Connect

    Park, Sung-Ho; Sposito, Garrison

    2002-01-29

    Monte Carlo simulations of hydration water on the mica (001) surface under ambient conditions revealed water molecules bound closely to the ditrigonal cavities in the surface, with a lateral distribution of approximately one per cavity, and water molecules interposed between K{sup +} counter ions in a layer situated about 2.5 {angstrom} from a surface O along a direction normal to the (001) plane. The calculated water O density profile was in quantitative agreement with recent X-ray reflectivity measurements indicating strong lateral ordering of the hydration water but liquid-like disorder otherwise.

  10. Hemispheric asymmetry in martian seasonal surface water ice from MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Bandfield, Joshua L.; Wood, Stephen E.

    2015-11-01

    The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured planetary broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. We examine TES daytime albedo, temperature, and atmospheric opacity data to map the latitudinal and temporal occurrence of seasonal surface water frost on Mars. We expand on previous work by looking at the behavior of water frost over the entire martian year, made possible with comprehensive, multi-year data. Interpretations of frost are based on albedo changes and the corresponding daytime temperature range. Data is considered consistent with water frost when there are significant albedo increases (>0.05 relative to frost-free seasons) and the observed temperatures are ∼170-200 K. We argue the presence of extensive water frost in the northern hemisphere, extending from the pole to ∼40°N, following seasonal temperature trends. In the north, water frost first appears near the pole at Ls = ∼160° and is last observed at Ls = ∼90°. Extensive water frost is less evident in southern hemisphere data, though both hemispheres show data that are consistent with the presence of a water ice annulus during seasonal cap retreat. Hemispherical asymmetry in the occurrence of seasonal water frost is due in part to the lower (∼40%) atmospheric water vapor abundances observed in the southern hemisphere. Our results are consistent with net transport of water vapor to the northern hemisphere. The deposition and sublimation of seasonal water frost may significantly increase the near-surface water vapor density that could

  11. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  12. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction.

    PubMed

    Jackson, Robert B; Vengosh, Avner; Darrah, Thomas H; Warner, Nathaniel R; Down, Adrian; Poreda, Robert J; Osborn, Stephen G; Zhao, Kaiguang; Karr, Jonathan D

    2013-07-01

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes <1 km from natural gas wells (P = 0.0006). Ethane was 23 times higher in homes <1 km from gas wells (P = 0.0013); propane was detected in 10 water wells, all within approximately 1 km distance (P = 0.01). Of three factors previously proposed to influence gas concentrations in shallow groundwater (distances to gas wells, valley bottoms, and the Appalachian Structural Front, a proxy for tectonic deformation), distance to gas wells was highly significant for methane concentrations (P = 0.007; multiple regression), whereas distances to valley bottoms and the Appalachian Structural Front were not significant (P = 0.27 and P = 0.11, respectively). Distance to gas wells was also the most significant factor for Pearson and Spearman correlation analyses (P < 0.01). For ethane concentrations, distance to gas wells was the only statistically significant factor (P < 0.005). Isotopic signatures (δ(13)C-CH4, δ(13)C-C2H6, and δ(2)H-CH4), hydrocarbon ratios (methane to ethane and propane), and the ratio of the noble gas (4)He to CH4 in groundwater were characteristic of a thermally postmature Marcellus-like source in some cases. Overall, our data suggest that some homeowners living <1 km from gas wells have drinking water contaminated with stray gases. PMID:23798404

  13. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction

    PubMed Central

    Jackson, Robert B.; Vengosh, Avner; Darrah, Thomas H.; Warner, Nathaniel R.; Down, Adrian; Poreda, Robert J.; Osborn, Stephen G.; Zhao, Kaiguang; Karr, Jonathan D.

    2013-01-01

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes <1 km from natural gas wells (P = 0.0006). Ethane was 23 times higher in homes <1 km from gas wells (P = 0.0013); propane was detected in 10 water wells, all within approximately 1 km distance (P = 0.01). Of three factors previously proposed to influence gas concentrations in shallow groundwater (distances to gas wells, valley bottoms, and the Appalachian Structural Front, a proxy for tectonic deformation), distance to gas wells was highly significant for methane concentrations (P = 0.007; multiple regression), whereas distances to valley bottoms and the Appalachian Structural Front were not significant (P = 0.27 and P = 0.11, respectively). Distance to gas wells was also the most significant factor for Pearson and Spearman correlation analyses (P < 0.01). For ethane concentrations, distance to gas wells was the only statistically significant factor (P < 0.005). Isotopic signatures (δ13C-CH4, δ13C-C2H6, and δ2H-CH4), hydrocarbon ratios (methane to ethane and propane), and the ratio of the noble gas 4He to CH4 in groundwater were characteristic of a thermally postmature Marcellus-like source in some cases. Overall, our data suggest that some homeowners living <1 km from gas wells have drinking water contaminated with stray gases. PMID:23798404

  14. Microcystins (cyanobacterial toxins) in surface waters of rural Bangladesh: pilot study.

    PubMed

    Welker, Martin; Khan, Saleha; Haque, Md Mahfuzul; Islam, Sirajul; Khan, Nurul Huda; Chorus, Ingrid; Fastner, Jutta

    2005-12-01

    In Bangladesh the exposure of millions of inhabitants to water from (shallow) tube wells contaminated with high geogenic loads of arsenic is a major concern. As an alternative to the costly drilling of deep wells, the return to the use of surface water as a source of drinking water is considered. In addition to the well-known hazards of water borne infectious diseases associated with the use of surface water, recently the potential public health implications of toxic cyanobacteria have been recognized. As a first step towards a risk assessment for cyanotoxins in Bangladesh surface waters, seston samples of 79 ponds were analysed in late summer 2002 for the presence of cyanobacteria and microcystins (MCYST), the most frequently detected cyanobacterial toxins worldwide. Microcystins could be detected in 39 ponds, mostly together with varying abundance of potentially microcystin-producing genera such as Microcystis, Planktothrix and Anabaena. Total microcystin concentrations ranged between <0.1 and > 1,000 microg l(-1), and more than half of the positive samples contained high concentrations of more than 10 microg l(-1). The results clearly show that concentrations of microcystins well above the provisional WHO guideline value of 1 microg l(-1) MCYST-LR can be frequently detected in Bangladesh ponds. Thus, an increasing use of surface water for human consumption introduces a risk of replacing one health hazard by another and therefore needs to be accompanied by cyanotoxin hazard assessments. PMID:16459839

  15. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  16. The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD 184927

    NASA Astrophysics Data System (ADS)

    Yakunin, I.; Wade, G.; Bohlender, D.; Kochukhov, O.; Marcolino, W.; Shultz, M.; Monin, D.; Grunhut, J.; Sitnova, T.; Tsymbal, V.; MiMeS Collaboration

    2015-02-01

    A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars Large Program with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the International Ultraviolet Explorer (IUE) archive to infer the stellar physical parameters. Using magnetic field measurements, we derive an improved rotational period of 9.531 02 ± 0.0007 d. We infer the longitudinal magnetic field from lines of H, He, and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly non-uniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance distributions in combination with a surface magnetic field that is comprised of dipolar and quadrupolar components. We have reanalysed IUE high-resolution spectra, confirming strong modulation of wind-sensitive C IV and S IV resonance lines. However, we are unable to detect any modulation of the Hα profile attributable to a stellar magnetosphere. We conclude that HD 184927 hosts a centrifugal magnetosphere (η _*˜ 2.4^{+22}_{-1.1}× 104), albeit one that is undetectable at optical wavelengths. The magnetic braking time-scale of HD 184927 is computed to be τJ = 0.96 or 5.8 Myr. These values are consistent with the slow rotation and estimated age of the star.

  17. Structure and properties of water film adsorbed on mica surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  18. Partitioning of Habitat and Prey by Abundant and Similar-sized Species of the Triglidae and Pempherididae (Teleostei) in coastal waters

    NASA Astrophysics Data System (ADS)

    Platell, M. E.; Potter, I. C.

    1999-02-01

    The aim of this study was to determine whether certain co-occurring and abundant species of the teleost families Triglidae and Pempherididae are segregated spatially and/or by diet, and are thus less likely to be susceptible to competition for resources. Nocturnal otter trawling in shallow (5-15 m) and deeper (20-35 m) waters in four regions along ˜200 km of the south-western Australian coastline collected large numbers of a wide size range of the triglids Lepidotrigla modestaand Lepidotrigla papilioand the pempheridids Pempheris klunzingeriand Parapriacanthus elongatus. Although these four species frequently co-occurred at several sites, each species attained its highest density at different sites, thereby representing a partial segregation of these species by habitat. This even occurred with the congeneric triglid species, with L. modestabeing most abundant in the four deep, offshore sites, while L. papiliowas most numerous at three sites which varied in depth and distance from shore. Although triglids and pempheridids both consumed substantial amounts of amphipods and mysids, only the members of the latter family ingested a large amount of errant polychaetes. The latter difference is assumed to reflect the fact that, in comparison with triglids, pempheridids can swim faster, have a mouth adapted for feeding upwards in the water column and feed at night when errant polychaetes emerge from the substratum. Although the dietary compositions of L. modestaand L. papiliodid not differ significantly when analyses were based on dietary data for all sites, they did differ significantly when analyses were restricted to dietary data obtained when both species were abundant and co-occurred. The likelihood of competition for food is thus reduced in the latter circumstances. In comparison with P. klunzingeri, P. elongatusconsumed a relatively larger volume of amphipods and a relatively smaller volume of mysids, which are more mobile, implying that P. elongatusfeeds to a

  19. Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution.

    PubMed

    Chen, Hung-Cheng; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2016-06-01

    Very photostable tetrachloro-metalloporphyrins were developed as sensitizers for visible-light-driven water oxidation coupled to cobalt based water-oxidation catalysts in concentrated (0.1 M) phosphate buffer solution. Potassium persulfate (K2S2O8) acts as a sacrificial electron acceptor to oxidize the metalloporphyrin photosensitizers in their excited states. The radical cations thus produced drive the cobalt based water-oxidation catalysts: Co4O4-cubane and Co(NO3)2 as pre-catalyst for cobalt-oxide (CoOx) nanoparticles. Two different metalloporphyrins (Cu(ii) and Ni(ii)) both showed very high photostability in the photocatalytic reaction, as compared to non-halogenated analogues. This indicates that photostability primarily depends on the substitution of the porphyrin macrocycle, not on the central metal. Furthermore, our molecular design strategy not only positively increases the electrochemical potential by 120-140 mV but also extends the absorption spectrum up to ∼600 nm. As a result, the solar photon capturing abilities of halogenated metalloporphyrins (Cu(ii) and Ni(ii)) are comparable to that of the natural photosynthetic pigment, chlorophyll a. We successfully demonstrate long-term (>3 h) visible-light-driven water oxidation using our molecular system based on earth-abundant (first-row transition) metals in concentrated phosphate buffer solution. PMID:27197873

  20. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. PMID:24937356

  1. Shockingly low water abundances in Herschel/PACS observations of low-mass protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Karska, A.; Kristensen, L. E.; van Dishoeck, E. F.; Drozdovskaya, M. N.; Mottram, J. C.; Herczeg, G. J.; Bruderer, S.; Cabrit, S.; Evans, N. J.; Fedele, D.; Gusdorf, A.; Jørgensen, J. K.; Kaufman, M. J.; Melnick, G. J.; Neufeld, D. A.; Nisini, B.; Santangelo, G.; Tafalla, M.; Wampfler, S. F.

    2014-12-01

    Context. Protostars interact with their surroundings through jets and winds impinging on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Aims: Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects (YSOs) in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Methods: Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the William Herschel Line Legacy (WILL) survey. Line emission from H2O, CO, and OH is tested against shock models from the literature. Results: Observed line ratios are remarkably similar and do not show variations with physical parameters of the sources (luminosity, envelope mass). Most ratios are also comparable to those found at off-source outflow positions. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H2O lines provide a particularly good diagnostic of pre-shock gas densities, nH ~ 105 cm-3, in agreement with typical densities obtained from observations of the post-shock gas when a compression factor on the order of 10 is applied (for non-dissociative shocks). The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km s-1. However, the observations consistently show H2O-to-CO and H2O-to-OH line ratios that are one to two orders of magnitude lower than predicted by the existing shock models. Conclusions: The overestimated model H2O fluxes are most likely caused by an overabundance of H2O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H2O abundances and reconcile the models with observations. Detections of hot H2O and strong OH

  2. Venus cloud structure and water vapor abundance from Mariner 10 observations

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.

    1976-01-01

    Observations of the Venus atmosphere with the infrared radiometer on Mariner 10 have been analyzed by Taylor (1975) in terms of the vertical distribution of opacity at wavelengths near 11 microns and 45 microns in the thermal infrared. In this paper, we discuss models of the Venus atmosphere which are consistent with the inferred opacity structure. Either a two-layer cloud structure, or a single cloud deck overlaid by a layer containing approximately 40 precipitable microns of water vapor, would have the required limb-darkening characteristics at the wavelengths of observation.

  3. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  4. Estimating population abundance and mapping distribution of wintering sea ducks in coastal waters of the mid-Atlantic

    USGS Publications Warehouse

    Koneff, M.D.; Royle, J. Andrew; Forsell, D.J.; Wortham, J.S.; Boomer, G.S.; Perry, M.C.

    2005-01-01

    Survey design for wintering scoters (Melanitta sp.) and other sea ducks that occur in offshore waters is challenging because these species have large ranges, are subject to distributional shifts among years and within a season, and can occur in aggregations. Interest in winter sea duck population abundance surveys has grown in recent years. This interest stems from concern over the population status of some sea ducks, limitations of extant breeding waterfowl survey programs in North America and logistical challenges and costs of conducting surveys in northern breeding regions, high winter area philopatry in some species and potential conservation implications, and increasing concern over offshore development and other threats to sea duck wintering habitats. The efficiency and practicality of statistically-rigorous monitoring strategies for mobile, aggregated wintering sea duck populations have not been sufficiently investigated. This study evaluated a 2-phase adaptive stratified strip transect sampling plan to estimate wintering population size of scoters, long-tailed ducks (Clangua hyemalis), and other sea ducks and provide information on distribution. The sampling plan results in an optimal allocation of a fixed sampling effort among offshore strata in the U.S. mid-Atlantic coast region. Phase I transect selection probabilities were based on historic distribution and abundance data, while Phase 2 selection probabilities were based on observations made during Phase 1 flights. Distance sampling methods were used to estimate detection rates. Environmental variables thought to affect detection rates were recorded during the survey and post-stratification and covariate modeling were investigated to reduce the effect of heterogeneity on detection estimation. We assessed cost-precision tradeoffs under a number of fixed-cost sampling scenarios using Monte Carlo simulation. We discuss advantages and limitations of this sampling design for estimating wintering sea duck

  5. Biogeochemistry of DMS in Surface Waters

    NASA Technical Reports Server (NTRS)

    Dacey, J. W. H.

    1997-01-01

    Dimethylsulfide (DMS) is important in influencing the formation of aerosols in the troposphere over large areas of the world's oceans. Understanding the dynamics of aerosols is important to understanding the earth's radiation balance. In evaluating the factors controlling DMS in the troposphere it is vital to understand the dynamics of DMS in the surface ocean. The biogeochemical processes controlling DMS concentration in seawater are myriad; modeling and theoretical estimation are problematic. At the beginning of this project we believed that we were on the verge of simplifying the ship-track measurement of DMS, and we proposed to deploy such a system to develop a database relating high frequency DMS measurements to biological and physicochemical and optical properties of surface water that can be quantified by remote sensing techniques. We designed a system to measure DMS concomitantly with other basic chemical and biological data in a flow-through system. The project was collaborative between Woods Hole Oceanographic Institution (WHOI) and Bermuda Biological Station for Research (BBSR). The project on which we are reporting was budgeted for only one year with a one year no-cost extension. At WHOI our effort was directed towards designing traps which would be used to concentrate DMS from seawater and allow storage for subsequent analysis. At that time, GC systems were too large for easy long-term deployment on a research vessel like R/V Weatherbird, so we focused on simplifying the shipboard sampling procedure. Initial studies of sample recovery with high levels of DMS suggested that Carboxen 1000, a relatively new carbon molecular sieve, could be used as a stable storage medium. The affinity of Carboxen for DMS is several orders of magnitude higher than gold wool (another adsorbent used for DMS collection) on a weight or volume basis. Furthermore, Carboxen's affinity for DMS is also far less susceptible to humidity than gold wool. Unfortunately, further

  6. Occurrence of Diatoms in Lakeside Wells in Northern New Jersey as an Indicator of the Effect of Surface Water on Ground-Water Quality

    USGS Publications Warehouse

    Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.

    2006-01-01

    In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.

  7. Models of Fate and Transport of Pollutants in Surface Waters

    ERIC Educational Resources Information Center

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  8. TOTAL ALKALINITY OF SURFACE WATERS OF THE US

    EPA Science Inventory

    This map provides a synoptic illustration of the national patterns of surface water alkalinity in the conterminous United States. Alkalinity is the most readily available measure of the acid-neutralizing capacity of surface waters and provides a reasonable estimate o...

  9. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  10. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  11. Effect of Surface Energy on Freezing Temperature of Water.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Bekele, Selemon; Dhinojwala, Ali

    2016-07-13

    Previous studies have found that superhydrophobic surfaces are effective in delaying freezing of water droplets. However, the freezing process of water droplets on superhydrophobic surfaces depends on factors such as droplet size, surface area, roughness, and cooling rate. The role of surface energy, independent of any other parameters, in delaying freezing of water is not understood. Here, we have used infrared-visible sum frequency generation spectroscopy (SFG) to study the freezing of water next to solid substrates with water contact angles varying from 5° to 110°. We find that the freezing temperature of water decreases with increasing surface hydrophobicity only when the sample volume is small (∼10 μL). For a larger volume of water (∼300 μL), the freezing temperature is independent of surface energy. For water next to the surfaces with contact angle ≥54°, we observe a strong SFG peak associated with highly coordinated water. This research sheds new light on understanding the key factors in designing new anti-icing coatings. PMID:27314147

  12. Dynamic behavior of interfacila water at the silica surface

    SciTech Connect

    Argyris, Dr. Dimitrios; Cole, David R; Striolo, Alberto

    2009-01-01

    Molecular dynamics simulations were employed to study the dynamics properties of water at the silica-liquid interface at ambient temperature. Three different degrees of hydroxylation of a crystalline silica surface were used. To assess the water dynamic properties we calculated the residence probability and in-plane mean square displacement as a function of distance from the surface. The data indicate that water molecules at the fully hydroxylated surface remain longer, on average, in the interfacial region than in the other cases. By assessing the dynamics of molecular dipole moment and hydrogen-hydrogen vector an anisotropic reorientation was discovered for interfacial water in contact with any of the surfaces considered. However, the features of the anisotropic reorientation observed for water molecules depend strongly on the relative orientation of interfacial water molecules and their interactions with surface hydroxyl groups. On the partially hydroxylated surface, where water molecules with hydrogen-down and hydrogen-up orientation are both found, those water molecules associated with surface hydroxyl groups remain at the adsorbed locations longer and reorient slower than the other water molecules. A number of equilibrium properties, including density profiles, hydrogen bond networks, charge densities, and dipole moment densities are also reported to explain the dynamics results.

  13. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  14. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  15. Occurrence and abundance of anisakid nematode larvae in five species of fish from southern Australian waters.

    PubMed

    Shamsi, Shokoofeh; Eisenbarth, Albert; Saptarshi, Shruti; Beveridge, Ian; Gasser, Robin B; Lopata, Andreas L

    2011-04-01

    The aim of the present study was to conduct, in southern Australian waters, a preliminary epidemiological survey of five commercially significant species of fish (yellow-eye mullet, tiger flathead, sand flathead, pilchard and king fish) for infections with anisakid nematodes larvae using a combined morphological-molecular approach. With the exception of king fish, which was farmed and fed commercial pellets, all other species were infected with at least one species of anisakid nematode, with each individual tiger flathead examined being infected. Five morphotypes, including Anisakis, Contracaecum type I and II and Hysterothylacium type IV and VIII, were defined genetically using mutation scanning and targeted sequencing of the second internal transcribed spacer of nuclear ribosomal DNA. The findings of the present study provide a basis for future investigations of the genetic composition of anisakid populations in a wide range of fish hosts in Australia and for assessing their public health significance. PMID:21057811

  16. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  17. Arsenic and major cation hydrogeochemistry of the Central Victorian (Australia) surface waters.

    PubMed

    Sultan, Khawar; Dowling, Kim

    2006-01-01

    This paper reports on the major cations (Ca, Mg, Na and K) and arsenic (As) compositions of surface waters collected from major creeks, rivers and lakes in Central Victoria (Australia). The surface waters were found to be neutral to alkaline (pH 6.7-9.4), oxidised (average redox potential (Eh) about 130 mV) and showed variable concentrations of dissolved ions (EC, about 51-4386 microS/cm). The concentrations of dissolved major cations in surface waters were found to be in the order of Na>Mg>Ca>K and in soils the contents of metals followed an order of abundance as: Ca>Mg>K>Na. While Na was the least abundant in soils, it registered the highest dissolved cation in surface waters. Of the four major cations, the average concentration of Na (98.7 mg/L) was attributed to the weathering of feldspars and atmospheric input. Relatively highly dissolved concentrations of Na and Mg compared with the world average values of rivers reflected the weathering of rock and soil minerals within the catchments. The As soil level is naturally high (linked to lithology) as reflected by high background soil values and mining operations are also considered to be a contributory factor. Under relatively alkaline-oxidative conditions low mobility of dissolved As (average about 7.9 microg/L) was observed in most of the surface waters with a few higher values (> 15 microg/L) around a sewage disposal site and mine tailings. Arsenic in soils is slowly released into water under alkaline and/or lower Eh conditions. The efficient sink of Fe, Al and Mn oxides acts as a barrier against the As release under near neutral-oxidising conditions. High As content (average about 28.3 mg/kg) in soils was found to be associated with Fe-hydroxides as revealed by XRD and SEM analysis. The dissolved As concentration was found to be below the recommended maximum levels for recreational water in all surface waters (lakes and rivers) in the study area. Catchment lithology exerted the fundamental control on surface

  18. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  19. Water adsorption on the LaMnO3 surface

    NASA Astrophysics Data System (ADS)

    Billman, Chris R.; Wang, Yan; Cheng, Hai-Ping

    2016-02-01

    Studying the adsorption of water on the metallic LaMnO3 surface can provide insight into this complicated surface-adsorbate interaction. Using density functional theory, we investigated the adsorption of a water monomer, dimer, trimer, and a monolayer on the surface. The electronic structure of ground state configurations is explored using analysis of density of states, charge density, and crystal orbital overlap populations. We found that the interaction between the surface and water molecules is stronger than hydrogen bonding between molecules, which facilitates wetting of the surface. Adsorbed water molecules form very strong hydrogen bonds, with substantially shifted OH stretch modes. For the monolayer of adsorbed water, a hint of a bilayer is observed with a height separation of only 0.2 A˚. However, simulated scanning tunneling microscopy images and vibrational spectra suggest a significant difference between the two layers due to intermolecular bonding and interaction with the substrate.

  20. Water Adsorption on the LaMnO3 Surface

    NASA Astrophysics Data System (ADS)

    Billman, Chris; Wang, Yan; Cheng, Hai-Ping

    Studying the adsorption of water on the metallic LaMnO3 surface can provide insight into this complicated surface-adsorbate interaction. Using density functional theory, we investigated the adsorption of a water monomer, dimer, trimer and a monolayer on the surface. The electronic structure of ground state configurations is explored using analysis of density of states, charge density, and crystal orbital overlap populations. We found that the interaction between the surface and water molecules is stronger than hydrogen bonding between molecules, which facilitates wetting of the surface. Adsorbed water molecules form very strong hydrogen bonds, with substantially shifted OH stretch modes. For the monolayer of adsorbed water, a hint of a bilayer is observed with a height separation of only 0.2 Å. However, simulated scanning tunneling microscopy (STM) images and vibrational spectra suggest a significant difference between the two layers due to intermolecular bonding and interaction with the substrate.

  1. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    PubMed

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces. PMID:27487420

  2. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  3. Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes.

    PubMed Central

    Mora, S; Monden, I; Zorzano, A; Keller, K

    1997-01-01

    To evaluate the role of the small rab GTP-binding proteins in glucose transporter trafficking, we have heterologously co-expressed rab4 or rab5 and GLUT4 or GLUT1 glucose transporters in Xenopus oocytes. Co-injection of rab4 and GLUT4 cRNAs resulted in a dose-dependent decrease in glucose transport; this effect was specific for rab4, since co-injection of an inactive rab4 mutant or rab5 cRNA did not have any effect on glucose transport. The effect of rab4 was selective for GLUT4, since no effect was detected in GLUT1-expressing oocytes. The inhibitory effect of rab4 on GLUT4-induced glucose transport was not the result of a change in overall cellular levels of GLUT4 glucose transporters. However, rab4 expression caused a marked decrease in the abundance of GLUT4 transporters present at the cell surface. Finally, rab4 and inhibitors of PtdIns 3-kinase showed additive effects in decreasing glucose transport in GLUT4-expressing oocytes. We conclude that rab4 plays an important role in the regulation of the intracellular GLUT4 trafficking pathway, by contributing to the intracellular retention of GLUT4 through a PtdIns 3-kinase-independent mechanism. PMID:9182703

  4. Water adsorbate influence on the Cu(110) surface optical response

    NASA Astrophysics Data System (ADS)

    Baghbanpourasl, Amirreza; Schmidt, Wolf Gero; Denk, Mariella; Cobet, Christoph; Hohage, Michael; Zeppenfeld, Peter; Hingerl, Kurt

    2015-11-01

    Surface reflectance anisotropy may be utilized for characterizing surfaces, interfaces, and adsorption structures. Here, the reflectance anisotropy and surface dielectric functions of the thermodynamically most favored water adsorbate structures on the Cu(110) surface (i.e. hexagonal bilayers, pentagonal chains, and partially dissociated water structures) are calculated from density-functional theory and compared with recent experimental data. It is shown that the water overlayer structures modify in a geometry-specific way the optical anisotropy of the bare surface which can be exploited for in situ determination of the adsorption structures. For hexagonal bilayer overlayer geometries, strong features in the vacuum ultraviolet region are predicted. The theoretical analysis shows a noticeable influence of intraband transitions also for higher photon energies and rather slight influences of the van der Waals interaction on the spectral signatures. Water induced strain effects on the surface optical response are found to be negligible.

  5. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption. PMID:21584320

  6. Expression of CD36 by Olfactory Receptor Cells and Its Abundance on the Epithelial Surface in Mice

    PubMed Central

    Tsuzuki, Satoshi; Matsumura, Shigenobu; Inoue, Kazuo; Iwanaga, Toshihiko; Masuda, Daisaku; Yamashita, Shizuya; Fushiki, Tohru

    2015-01-01

    CD36 is a transmembrane protein that is involved in the recognition of certain amphiphilic molecules such as polar lipids in various tissues and body fluids. So far, CD36 homologues in insects have been demonstrated to be present on the surface of olfactory dendrites and to participate in the perception of exogenous compounds. However, little is known about the relationship between CD36 and mammalian olfaction. Indeed, the detection of only CD36 mRNA in the mouse olfactory epithelium has been reported to date. In the present study, to provide potential pieces of evidence for the involvement of CD36 in mammalian olfactory perception, we extensively investigated the localisation of this protein in the mouse olfactory mucosa. In situ hybridisation analysis using antisense oligonucleotides to CD36 mRNA detected aggregated signals within the deeper epithelial layer of olfactory mucosa. The mRNA signals were also detected consistently in the superficial layer of the olfactory epithelium, which is occupied by supporting cells. Immunostaining with an anti-CD36 polyclonal antibody revealed that CD36 localises in the somata and dendrites of distinct olfactory receptor cells and that it occurs abundantly on the olfactory epithelial surface. However, immunoreactive CD36 was rarely detectable in the nerve bundles running in the lamina propria of olfactory mucosa, the axons forming the olfactory nerve layer in the outermost layer of the bulb and axon terminals in the glomeruli. We also obtained electron microscopic evidence for the association of CD36 protein with olfactory cilia. Altogether, we suggest that CD36 plays a role in the mammalian olfaction. In addition, signals for CD36 protein were also detected on or around the microvilli of olfactory supporting cells and the cilia of nasal respiratory epithelium, suggesting a role for this protein other than olfaction in the nasal cavity. PMID:26186589

  7. Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79-81°N)

    NASA Astrophysics Data System (ADS)

    Blachowiak-Samolyk, Katarzyna; Søreide, Janne E.; Kwasniewski, Slawek; Sundfjord, Arild; Hop, Haakon; Falk-Petersen, Stig; Nøst Hegseth, Else

    2008-10-01

    The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM m -2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind. m -3) in August. Algal bloom stage, chlorophyll- a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus ( Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological "hot-spots" were associated with Arctic communities.

  8. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  9. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-01-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g. surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs preserved in Lake Schreventeich sediments record summer surface water temperatures. As N2-fixing

  10. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  11. Interfacial thermodynamics of confined water near molecularly rough surfaces

    PubMed Central

    Mittal, Jeetain; Hummer, Gerhard

    2012-01-01

    We study the effects of nanoscopic roughness on the interfacial free energy of water confined between solid surfaces. SPC/E water is simulated in confinement between two infinite planar surfaces that differ in their physical topology: one is smooth and the other one is physically rough on a nanometer length scale. The two thermodynamic ensembles considered, with constant pressure either normal or parallel to the walls, correspond to different experimental conditions. We find that molecular-scale surface roughness significantly increases the solid-liquid interfacial free energy compared to the smooth surface. For our surfaces with a water-wall interaction energy minimum of −1.2 kcal/mol, we observe a transition from a hydrophilic surface to a hydrophobic surface at a roughness amplitude of about 3 Å and a wave length of 11.6 Å, with the interfacial free energy changing sign from negative to positive. In agreement with previous studies of water near hydrophobic surfaces, we find an increase in the isothermal compressibility of water with increasing surface roughness. Interestingly, average measures of the water density and hydrogen-bond number do not contain distinct signatures of increased hydrophobicity. In contrast, a local analysis indicates transient dewetting of water in the valleys of the rough surface, together with a significant loss of hydrogen bonds, and a change in the dipole orientation toward the surface. These microscopic changes in the density, hydrogen bonding, and water orientation contribute to the large increase in the interfacial free energy, and the change from a hydrophilic to a hydrophobic character of the surface. PMID:21043431

  12. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    PubMed

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  13. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    PubMed Central

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  14. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  15. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  16. SURFACE AND SUBSURFACE WATER QUALITY HYDROLOGY IN SURFACE MINED WATERSHEDS. PART I: TEXT

    EPA Science Inventory

    Surface mining disturbs the natural sequence of geologic strata, and, therefore, potentially modifies the quantity and quality of water on a watershed disturbed by surface mining. Such a watershed disturbed by surface mining was monitored in Colorado. In addition, surface runoff,...

  17. Crocodylus niloticus (Crocodilia) is highly sensitive to water surface waves.

    PubMed

    Grap, Nadja J; Monzel, Anna S; Kohl, Tobias; Bleckmann, Horst

    2015-10-01

    Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude. PMID:26153334

  18. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    PubMed

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements. PMID:27569518

  19. Occurrence and significance of polychlorinated biphenyls in water, sediment pore water and surface sediments of Umgeni River, KwaZulu-Natal, South Africa.

    PubMed

    Gakuba, Emmanuel; Moodley, Brenda; Ndungu, Patrick; Birungi, Grace

    2015-09-01

    The Umgeni River is one of the main sources of water in KwaZulu-Natal, South Africa; however; there is currently a lack of information on the presence and distribution of polychlorinated biphenyls (PCBs) in its sediment, sediment pore water and surface water. This study aims to determine the occurrence and significance of selected PCBs in the surface water, sediment pore water and surface sediment samples from the Umgeni River. Liquid-liquid and soxhlet extractions were used for water or pore water, and sediments, respectively. Extracts were cleaned up using a florisil column and analysed by gas chromatography-mass spectrometry. The total concentrations of eight polychlorinated biphenyls were 6.91-21.69 ng/mL, 40.67-252.30 ng/mL and 102.60-427.80 ng/g (dry weight), in unfiltered surface water, unfiltered sediment pore water and surface sediments, respectively. The percentage contributions of various matrices were 4, 36 and 60 % for unfiltered surface water, unfiltered pore water and sediment, respectively. The highest concentrations of PCBs were found in water, pore water and sediment collected from sampling sites close to the Northern Wastewater Treatment Works. The highest chlorinated biphenyl, PCB 180, was the most abundant at almost all sampling sites. To our knowledge, this is the first report on occurrence of polychlorinated biphenyls in the Umgeni River water, pore water and sediment system and our results provide valuable information regarding the partitioning of the PCBs between the water and sediment systems as well as the organic chemical quality of the water. PMID:26266899

  20. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Huabiao; Xu, Baiqing; Li, Zhen; Wang, Mo; Li, Jiule; Zhang, Xiaolong

    2016-04-01

    Climatic significance of ice core stable isotope record in the Himalayas and southern Tibetan Plateau (TP), where the climate is alternately influenced by Indian summer monsoon and mid-latitude westerlies, is still debated. A newly drilled Zuoqiupu ice core from a temperate maritime glacier on the southeastern TP covering 1942-2011 is investigated in terms of the relationships between δ18O and climate parameters. Distinct seasonal variation of δ18O is observed due to high precipitation amount in this area. Thus the monsoon (June to September) and non-monsoon (October to May) δ18O records are reconstructed, respectively. The temperature effect is identified in the annual δ18O record, which is predominantly contributed by temperature control on the non-monsoon precipitation δ18O record. Conversely, the negative correlation between annual δ18O record and precipitation amount over part of Northeast India is mostly contributed by the monsoon precipitation δ18O record. The variation of monsoon δ18O record is greatly impacted by the Indian summer monsoon strength, while that of non-monsoon δ18O record is potentially associated with the mid-latitude westerly activity. The relationship between Zuoqiupu δ18O record and Sea Surface Temperature (SST) is found to be inconsistent before and after the climate shift of 1976/1977. In summer monsoon season, the role of SST in the monsoon δ18O record is more important in eastern equatorial Pacific Ocean and tropical Indian Ocean before and after the shift, respectively. In non-monsoon season, however, the Atlantic Multidecadal Oscillation has a negative impact before but positive impact after the climate shift on the non-monsoon δ18O record.

  1. Interaction of surface and subsurface waters in the system

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Bychinski, Valerii; Sandimirov, Sergey

    2010-05-01

    Purpose of the study - to assess the influence of the Khibiny massif on the formation of the chemical composition of surface and subsurface waters, generated within its boundaries using physical-chemical modeling ("Selector" software package). Objects of monitoring - rivers with sources in the upper reaches of the Khibiny massif (surface waters), and boreholes, located in these rivers' valleys (subsurface waters) have been chosen as objects of monitoring. Processes of formation of surface and subsurface waters, generated within the boundaries of the Khibiny massif, have been considered within the framework of a unified system "water-rock-atmosphere-carbon". The initial data of the model: chemical compositions of the Khibiny massif rocks and chemical analyses of atmospheric and surface waters. Besides, there have been considered Clarke concentrations S, Cl, F, C, their influence on the formation of chemical composition of water solutions; geochemical mobility of chemical elements. The previously developed model has been improved with the purpose of assessment of the influence of organic substance, either liquid or solid, on the formation of the chemical composition of water. The record of the base model of the multisystem includes 24 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e), 872 dependent components, including, in a water solution - 295, in a gas phase - 76, liquid hydrocarbons - 111, solid phases, organic and mineral substances - 390. The record of solid phases of multisystem is made with consideration of the mineral composition of the Khibiny massif. Using the created model, the physical-chemical modeling of surface and subsurface water generation has been carried out: 1. The system "water-rock-atmosphere" has been studied, depending on the interaction degree (ksi) of rock with water. A model like this allowed investigating the interactions of surface waters (rivers and lakes) with rocks that form the Khibiny massif. 2

  2. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  3. Organic nature of colloidal actinides transported in surface water environments.

    PubMed

    Santschi, Peter H; Roberts, Kimberly A; Guo, Laodong

    2002-09-01

    Elevated levels of (239,240)Pu and 241Am have been present in surficial soils of the Rocky Flats Environmental Technology Site (RFETS), CO, since the 1960s, when soils were locally contaminated in the 1960s by leaking drums stored on the 903 Pad. Further dispersion of contaminated soil particles was by wind and water. From 1998 until 2001, we examined actinide ((239,240)Pu and 241Am) concentrations and phase speciation in the surface environment at RFETS through field studies and laboratory experiments. Measurements of total (239,240)Pu and 241Am concentrations in storm runoff and pond discharge samples, collected during spring and summer times in 1998-2000, demonstrate that most of the (239,240)Pu and 241Am transported from contaminated soils to streams occurred in the particulate (> or = 0.45 microm; 40-90%) and colloidal (approximately 2 nm or 3 kDa to 0.45 microm; 10-60%) phases. Controlled laboratory investigations of soil resuspension, which simulated storm and erosion events, confirmed that most of the Pu in the 0.45 microm filter-passing phase was in the colloidal phase (> or = 80%) and that remobilization of colloid-bound Pu during soil erosion events can be greatly enhanced by humic and fulvic acids present in these soils. Most importantly, isoelectric focusing experiments of radiolabeled colloidal matter extracted from RFETS soils revealed that colloidal Pu is in the four-valent state and is mostly associated with a negatively charged organic macromolecule with a pH(IEP) of 3.1 and a molecular weight of 10-15 kDa, rather than with the more abundant inorganic (iron oxide and clay) colloids. This finding has important ramifications for possible remediation, erosion controls, and land-management strategies. PMID:12322742

  4. Compton Scattering from Bulk and Surface of Water

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-03-01

    Elastic and Compton scattering at grazing angle X-ray incidence from water show distinct behaviors below and above the critical angle for total reflections suggesting surface restructuring of the water surface. Using X-ray synchrotron radiation in reflectivity mode, we collect the Thomson and Compton scattering signals with energy dispersive detector at various angles near the normal to surface as a function of the angle of incidence. Analysis of the ratio between the Thomson and Compton intensity above the critical angle (which mainly probes bulk water) is a constant as expected from incoherent scattering from single water molecule, whereas the signal from the surface shows strong angular dependence on the incident angle. Although we do not fully understand the phenomena, we attribute the observation to more organized water at the interface. Ames Laboratory, DOE under contract No. DE-AC02-07CH11358 and Advanced Photon Source, DOE under contract No. DE-AC02-06CH11357.

  5. Interaction Of Water Molecules With SiC(001) Surfaces

    SciTech Connect

    Cicero, G; Catellani, A; Galli, G

    2004-08-10

    We have investigated the interaction of water molecules with the polar Si- and C- terminated surfaces of cubic Silicon Carbide by means of ab initio molecular dynamics simulations at finite temperature. Different water coverages were considered, from {1/4} to a complete monolayer. Irrespective of coverage, we find that water dissociates on the silicon terminated surfaces, leading to important changes in both its structural and electronic properties. On the contrary, the carbon terminated surface remains inert when exposed to water. We propose experiments to reveal the ionic and electronic structure of wet Si-terminated surfaces predicted by our calculations, which at full coverage are notably different from those of hydrated Si(001) substrates. Finally, we discuss the implications of our results for SiC surface functionalization.

  6. Interaction between water cluster ions and mica surface

    SciTech Connect

    Ryuto, Hiromichi Ohmura, Yuki; Nakagawa, Minoru; Takeuchi, Mitsuaki; Takaoka, Gikan H.

    2014-03-15

    Water cluster ion beams were irradiated on mica surfaces to investigate the interaction between molecular cluster ions and a mica surface. The contact angle of the mica surface increased with increasing dose of the water cluster ion beam, but the increase in the contact angle was smaller than that induced by an ethanol cluster ion beam. The surface roughness also increased with increasing dose of the water cluster ion beam, whereas the intensity of K 2p x-ray photoelectron spectroscopy peaks decreased with increasing dose of the water cluster ion beam. The decrease in the number of potassium atoms together with the increase in the surface roughness may be the causes of the increase in the contact angle.

  7. Behavior of severely supercooled water drops impacting on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Antonini, Carlo; Tiwari, Manish K.; Mularczyk, Adrian; Imeri, Zulkufli; Schoch, Philippe; Poulikakos, Dimos

    2014-11-01

    Surface icing, commonplace in nature and technology, has broad implications to daily life. To prevent surface icing, superhydrophobic surfaces/coatings with rationally controlled roughness features (both at micro and nano-scale) are considered to be a promising candidate. However, to fabricate/synthesize a high performance icephobic surface or coating, understanding the dynamic interaction between water and the surface during water drop impact in supercooled state is necessary. In this work, we investigate the water/substrate interaction using drop impact experiments down to -17°C. It is found that the resulting increased viscous effect of water at low temperature significantly affects all stages of drop dynamics such as maximum spreading, contact time and meniscus penetration into the superhydrophobic texture. Most interestingly, the viscous effect on the meniscus penetration into roughness feature leads to clear change in the velocity threshold for rebounding to sticking transition by 25% of supercooled drops. Swiss National Science Foundation (SNF) Grant 200021_135479.

  8. Liquid water can slip on a hydrophilic surface

    PubMed Central

    Ho, Tuan Anh; Papavassiliou, Dimitrios V.; Lee, Lloyd L.; Striolo, Alberto

    2011-01-01

    Understanding and predicting the behavior of water, especially in contact with various surfaces, is a scientific challenge. Molecular-level understanding of hydrophobic effects and their macroscopic consequences, in particular, is critical to many applications. Macroscopically, a surface is classified as hydrophilic or hydrophobic depending on the contact angle formed by a water droplet. Because hydrophobic surfaces tend to cause water slip whereas hydrophilic ones do not, the former surfaces can yield self-cleaning garments and ice-repellent materials whereas the latter cannot. The results presented herein suggest that this dichotomy might be purely coincidental. Our simulation results demonstrate that hydrophilic surfaces can show features typically associated with hydrophobicity, namely liquid water slip. Further analysis provides details on the molecular mechanism responsible for this surprising result. PMID:21911406

  9. Carbon evasion from surface waters in Alaska

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Stackpoole, S. M.; Clow, D. W.; Striegl, R. G.; Verdin, K. L.

    2014-12-01

    Gaseous evasion of carbon dioxide and methane from freshwater surfaces has been shown to be upwards of 50% of the total freshwater carbon flux. In many cases, surface efflux is the dominant removal pathway for carbon, however large-scale estimates remain poorly constrained. As part of the ongoing efforts to quantify the carbon sequestration potential of natural ecosystems in the US by the USGS LandCarbon Program, we present the results of a synthesis of available CO2 in streams and rivers, and CO2 and CH4 measurements in lakes across Alaska. For stream carbon, we performed modifications to a synthetic streamline dataset derived from the Elevation Derivatives for National Applications (EDNA) to reflect more recent and accurate climate. Stream and river surface areas only account for 0.54% of the total area of Alaska while preliminary data suggests lakes account for nearly 3.4%. Preliminary analysis suggests 24 Tg-C yr-1 is evaded from fluvial surfaces, with the highest fluxes located in the southeastern region of the state driven by longer periods above freezing, high annual precipitation, and steep topography. We are currently quantifying the uncertainties in these estimates as well as analyzing a new dataset on CO2 and CH4 concentrations in Alaskan lakes. We will present the first estimate for the total freshwater surface carbon flux for Alaska.

  10. Is the Oxygen-Rich White Dwarf SDSS J1242+5226 Accreting Water-Abundant Debris?

    NASA Astrophysics Data System (ADS)

    Raddi, R.; Gänsicke, B. T.; Koester, D.; Farihi, J.; Hermes, J. J.; Scaringi, S.; Breedt, E.; Girven, J.; EGAPS Consortium

    2015-06-01

    We identified a new strongly metal polluted white dwarf, and report the determination of hydrogen and traces of O, Na, Mg, Si, Ca, Ti, Cr, and Fe in a helium-dominated atmosphere. The four most common rock-forming elements, i.e. O, Mg, Si, and Fe embody almost entirely the 1024 g of metals that are mixed in the convection zone. Oxygen is the most abundant of these four elements and we estimate that about 50-60% of it is in excess with respect to the amount expected from the accretion of mineral oxides. We suggest that the parent body that of the planetary debris detected in this white dwarf was composed by 28-48% water. We also note that a handful of other known debris-polluted white dwarfs, like GD 61, GD 16, and GD 362 may be the actively accreting examples of a larger number of stars that previously accreted water-rich debris. We speculate that the hydrogen content of DBA and DZ white dwarfs could have a similar origin.

  11. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  12. Distribution, abundance, and transport of larval sciaenids collected during winter and early spring from the continental shelf waters off west Louisiana

    SciTech Connect

    Cowan, J.H. Jr.; Shaw, R.F.

    1988-01-01

    The larvae of six species of Sciaenidae were collected in continental shelf waters off west Louisiana on five midmonthly ichthyoplankton cruises from December 1981 to April 1982. Ranked in order of abundance these species were sand sea trout, Cynoscion arenarius; Atlantic croacker, Micropogonias undulatus; spot, Leiostomus xanthurus; black drum, Pogonias cromis; southern kingfish, Menticirrhus americanus; and banded drum, Larimus fasciatus. Total larva density was highest in April, and the high densities were associated with the coastal boundary layer, a horizontal density front caused by an intrusion of fresher water onto the inner shelf that probably issued from the Atchafalaya River east of the study area. Spawning by sand sea trout began in January, two months earlier than previously reported, and first occurred offshore of midshelf but moved shoreward as the season progressed. Analysis of length-frequency data suggest that spot probably began to spawn in November, one month earlier than once thought. Both sand sea trout and Atlantic croaker larvae were captured at higher rates at night than during the daytime. Sand sea trout larvae appear to be somewhat surface oriented while spot may undergo vertical migration. Interpretation of the sciaenid data support a previously developed transport hypothesis involving gulf menhaden larvae and west-northwest alongshore advection within and just outside of a horizontally stratified coastal boundary layer.

  13. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    PubMed

    Boily, Jean-François; Yeşilbaş, Merve; Uddin, Munshi Md Musleh; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-01

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic

  14. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-12-01

    We investigate the effect of helium abundance and α-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of α-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  15. LANDSCAPE INDICATORS OF SURFACE WATER CONDITIONS

    EPA Science Inventory

    This task comprises three inter-related projects: 1) impervious surface mapping and evaluation of its impact ; 2) detection of BMPs and estimation of their ability to reduce nutrient input into streams, and; 3) detection of isolated wetlands. Each substask addresses critical is...

  16. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  17. Abundance and diversity of bacteria in oxygen minimum drinking water reservoir sediments studied by quantitative PCR and pyrosequencing.

    PubMed

    Zhang, Hai-han; Huang, Ting-lin; Chen, Sheng-nan; Yang, Xiao; Lv, Kai; Sekar, Raju

    2015-04-01

    Reservoir sediment is one of the most stressful environments for microorganisms due to periodically oxygen minimum conditions. In this study, the abundance and composition of bacteria associated with sediments from three drinking water reservoirs (Zhoucun, ZCR; Shibianyu, SBYR; and Jinpen, JPR) were investigated by quantitative polymerase chain reaction and 16S rRNA-based 454 pyrosequencing. The results of physico-chemical analysis of sediments showed that the organic matter and total nitrogen were significantly higher in ZCR as compared to JPR (P < 0.01). The bacterial abundance was 9.13 × 10(6), 1.14 × 10(7), and 6.35 × 10(6) copies/ng DNA in sediments of SBYR, ZCR, and JPR, respectively (P < 0.01). The pyrosequencing revealed a total of 9,673 operational taxonomic units, which were affiliated with 17 phyla. The dominant phylum was Firmicutes (56.83%) in JPR; whereas, the dominance of Proteobacteria was observed in SBYR with 40.38% and ZCR with 39.56%. The Shannon-Wiener diversity (H') was high in ZCR; whereas, Chao 1 richness was high in SBYR. The dominant genera were Clostridium with 42.15% and Bacillus with 20.44% in JPR. Meanwhile, Dechloromonas with 14.80% and Smithella with 7.20% were dominated in ZCR, and Bacillus with 45.45% and Acinetobacter with 5.15% in SBYR. The heat map profiles and redundancy analysis indicated substantial differences in sediment bacterial community composition among three reservoirs. Moreover, it appears from the results that physico-chemical variables of sediments including pH, organic matter, total nitrogen, and available phosphorous played key roles in shaping the bacterial community diversity. The results obtained from this study will broaden our understanding on the bacterial community structure of sediments in oxygen minimum and stressful freshwater environments. PMID:25502074

  18. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  19. Assessment of information on ground-water/surface-water interactions in the northern midcontinent

    USGS Publications Warehouse

    Strobel, Michael L.

    1995-01-01

    Ground-water/surface-water interactions are important to the hydrology of shallow aquifers, streams, lakes, and wetlands. Information on ground-water/surface-water interactions in the northern midcontinent was assessed. The ground-water/surface-water interactions in physiographic and climatic areas that contain many wetlands differed from the interactions in areas that consisted predominantly of alluvial aquifers along large streams. In both types of areas, however, the interactions are complex. The distribution of shallow ground-water observation wells in the northern midcontinent and the frequency of measurement were evaluated. Most shallow wells are located adjacent to major streams, especially in areas where wetlands are not a dominant surface-water feature. The frequency of measurement was inconsistent between states.

  20. Bacterial community in the biofilm of granular activated carbon (GAC) PreBiofilter in bench-scale pilot plants for surface water pretreatment.

    PubMed

    Wu, Tiehang; Fu, George Yuzhu; Sabula, Michael; Brown, Tommy

    2014-12-01

    Biofilters of granular activated carbon (GAC) are responsible for the removal of organic matters in drinking water treatments. PreBiofilters, which operate as the first unit in a surface water treatment train, are a cost-effective pretreatment for conventional surface water treatment and provide more consistent downstream water quality. This study investigated bacterial communities from the samples of raw surface water, biofilm on the PreBiofilter, and filtrates for surface water pretreatment. A bench-scale pilot plant of PreBiofilter was constructed to pretreat surface water from the Canoochee River, GA, USA. PreBiofilter exhibited a significant reduction of total organic carbon and dissolved organic carbon. The evenness and Shannon diversity of bacterial operational taxonomic units (OTUs) were significantly higher on the biofilm of PreBiofilter than in raw water and filtrates. Similar bacteria communities were observed in the raw water and filtrates using relative abundance of bacterial OTUs. However, the bacterial communities in the filtrates became relatively similar to those in the biofilm using presence/absence of bacterial OTUs. GAC biofilm or raw water and filtrates greatly contributed to the abundance of bacteria; whereas, bacteria sheared from colonized biofilm and entered filtrates. Evenly distributed, diverse and unique bacteria in the biofilm played an important role to remove organic matters from surface water for conventional surface water pretreatment. PMID:25267475

  1. Coherent structures in liquid water close to hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Del Giudice, Emilio; Tedeschi, Alberto; Vitiello, Giuseppe; Voeikov, Vladimir

    2013-06-01

    Quantum Electrodynamics (QED) predicts the occurrence of a number of coherent dynamical phenomena in liquid water. In the present paper we focus our attention on the joint coherent oscillation of the almost free electrons produced by the coherent oscillation of the electron clouds of water molecules, which has been described in previous publications, and of the negative electric charges lying on the solid surfaces wet by water. This joint coherent oscillation gives rise to a number of phenomenological consequences which are found to exist in the physical reality and coincide with the layers of Exclusion Zone (EZ) water experimentally observed close to hydrophilic surfaces.

  2. Effects of subinhibitory ciprofloxacin concentrations on the abundance of qnrS and composition of bacterial communities from water supply reservoirs.

    PubMed

    Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Balcázar, Jose Luis; Marcé, Rafael

    2016-10-01

    We used a short-term microcosm approach to investigate the influence of two different subinhibitory concentrations of ciprofloxacin (0.01 and 0.1 μg/ml) on both the abundance of a plasmid-mediated quinolone resistance determinant (qnrS) and the structure and composition of bacterial communities from impaired and pristine water supply reservoirs. The results showed that the abundance of the qnrS gene increases in water samples exposed to both subinhibitory concentrations of ciprofloxacin, especially in water samples from La Llosa del Cavall, which represents the pristine system. Subinhibitory ciprofloxacin concentrations also induced changes in bacterial community composition as indicated by the relative abundances of each operational taxonomic unit (OTU) across treatments. Therefore, our findings may be of significant importance because subinhibitory ciprofloxacin concentrations may promote antibiotic resistance and affect bacterial community composition in environmental settings. PMID:27459158

  3. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  4. Turbulent flow over an interactive alternating land-water surface

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  5. Phosphorus removal with membrane filtration for surface water treatment.

    PubMed

    Dietze, A; Gnirss, R; Wiesmann, U

    2002-01-01

    Surface waters are often burdened with inflows of low quality water, so that drinking-water production, swimming or ground water charging must be restricted. To ensure the long-term use of such surface water it is necessary to treat the influents or the water used for ground water charging. The current treatment process for phosphorus and turbidity removal is a process combination called floc filtration. By using this conventional method it is possible to reduce the dissolved ortho-phosphate and the turbidity (particulate phosphorus) as well as the amounts of algae and pathogenic organisms to very low concentrations. The high degree of reduction is only achieved by a relatively high dosage of chemicals. A comparison will be made between this process, which represents the state-of-the-art, and the combination of precipitation/coagulation with micro-/ultrafiltration in dead-end filtration mode. PMID:12361018

  6. Summary of I-129 measurements in ground and surface waters

    SciTech Connect

    Kantelo, M.V.

    1987-11-17

    The iodine-129 content of groundwater and surface water at on-plant (Savannah River Plant) and off-plant locations has been determined at irregular intervals since 1970 using neutron activation analysis. I-129 was detected in groundwater near the Burial Ground and near the seepage basins of the Separations areas. For reference, I-129 concentrations in the groundwater can be compared to the EPA drinking water standard. At a few locations the concentrations exceeded both the existing and pending EPA drinking water standard. In surface water, Four Mile Creek was the only SRP stream found to transport significant I-129 to the Savannah River. Dilution by C-Reactor discharge and the Savannah River reduced the off-plant I-129 concentrations in river water to less than 1% of the existing EPA drinking water standard and less than 0.01% of the pending EPA drinking water standard.

  7. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    USGS Publications Warehouse

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  8. Two-dimensional percolation at the free water surface and its relation with the surface tension anomaly of water.

    PubMed

    Sega, Marcello; Horvai, George; Jedlovszky, Pál

    2014-08-01

    The percolation temperature of the lateral hydrogen bonding network of the molecules at the free water surface is determined by means of molecular dynamics computer simulation and identification of the truly interfacial molecules analysis for six different water models, including three, four, and five site ones. The results reveal that the lateral percolation temperature coincides with the point where the temperature derivative of the surface tension has a minimum. Hence, the anomalous temperature dependence of the water surface tension is explained by this percolation transition. It is also found that the hydrogen bonding structure of the water surface is largely model-independent at the percolation threshold; the molecules have, on average, 1.90 ± 0.07 hydrogen bonded surface neighbors. The distribution of the molecules according to the number of their hydrogen bonded neighbors at the percolation threshold also agrees very well for all the water models considered. Hydrogen bonding at the water surface can be well described in terms of the random bond percolation model, namely, by the assumptions that (i) every surface water molecule can form up to 3 hydrogen bonds with its lateral neighbors and (ii) the formation of these hydrogen bonds occurs independently from each other. PMID:25106600

  9. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  10. Formation of Water on a Warm Amorphous Silicate Surface

    NASA Astrophysics Data System (ADS)

    Vidali, Gianfranco; He, Jiao

    2014-06-01

    It is well established that reactions on interstellar dust grain surfaces are indispensable for water formation in space. Among all the intermediate products that lead to water formation, the OH radical is especially important because is a product of all the three main water formation surface routes, i.e., the hydrogenation of O, O2, and O3, and it also connects these three routes. The desorption energy of OH from dust grain surfaces, along with dust grain temperature, determines the availability OH for grain surface versus gas-phase reactions. We experimentally investigated water formation on the surface of a warm amorphous silicate via H+O3→OH+O2. The surface temperature was kept at 50 K so as to exclude the interference of O2. It is found that OH has a significant residence time at 50 K. The OH desorption energy from amorphous silicate surface is calculated to be at least 1680 K, and possibly as high as 4760 K. Water is formed efficiently via OH+H and OH+H2, and the product H2O stays on the surface upon formation. Deuterium has also been used in place of hydrogen to check isotopic effects. This work is supported by NSF, Astronomy & Astrophysics Division (Grants No. 0908108 and 1311958) and NASA (Grant No. NNX12AF38G). We thank Dr. J.Brucato of the Astrophysical Observatory of Arcetri for providing the samples used in these experiments.

  11. Surface Propensities of the Self-Ions of Water

    PubMed Central

    2016-01-01

    The surface charge of water, which is important in a wide range of chemical, biological, material, and environmental contexts, has been a subject of lengthy and heated debate. Recently, it has been shown that the highly efficient LEWIS force field, in which semiclassical, independently mobile valence electron pairs capture the amphiproticity, polarizability and H-bonding of water, provides an excellent description of the solvation and dynamics of hydroxide and hydronium in bulk water. Here we turn our attention to slabs, cylinders, and droplets. In extended simulations with 1000 molecules, we find that hydroxide consistently prefers the surface, hydronium consistently avoids the surface, and the two together form an electrical double layer until neutralization occurs. The behavior of hydroxide can largely be accounted for by the observation that hydroxide moving to the surface loses fewer hydrogen bonds than are gained by the water molecule that it displaces from the surface. At the same time, since the orientation of the hydroxide increases the ratio of dangling hydrogens to dangling lone pairs, the proton activity of the exposed surface may be increased, rather than decreased. Hydroxide also moves more rapidly in the surface than in the bulk, likely because the proton donating propensity of neighboring water molecules is focused on the one hydrogen that is not dangling from the surface. PMID:27163053

  12. Surface Propensities of the Self-Ions of Water.

    PubMed

    Bai, Chen; Herzfeld, Judith

    2016-04-27

    The surface charge of water, which is important in a wide range of chemical, biological, material, and environmental contexts, has been a subject of lengthy and heated debate. Recently, it has been shown that the highly efficient LEWIS force field, in which semiclassical, independently mobile valence electron pairs capture the amphiproticity, polarizability and H-bonding of water, provides an excellent description of the solvation and dynamics of hydroxide and hydronium in bulk water. Here we turn our attention to slabs, cylinders, and droplets. In extended simulations with 1000 molecules, we find that hydroxide consistently prefers the surface, hydronium consistently avoids the surface, and the two together form an electrical double layer until neutralization occurs. The behavior of hydroxide can largely be accounted for by the observation that hydroxide moving to the surface loses fewer hydrogen bonds than are gained by the water molecule that it displaces from the surface. At the same time, since the orientation of the hydroxide increases the ratio of dangling hydrogens to dangling lone pairs, the proton activity of the exposed surface may be increased, rather than decreased. Hydroxide also moves more rapidly in the surface than in the bulk, likely because the proton donating propensity of neighboring water molecules is focused on the one hydrogen that is not dangling from the surface. PMID:27163053

  13. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Chen, Jin-Ming; Kuo, Rong-Rong; Lin, Ta-Sen; Wu, Chu-Fu

    2005-02-01

    Various rough surfaces coated with titanium oxide nanoparticles and perfluoroalkyl methacrylic copolymer were conducted to explore the influence of surface roughness on the performance of water- and oil-repellence. Surface characteristics determined from nitrogen physisorption at -196 °C showed that the surface area and pore volume increased significantly with the extent of nanoparticle ratio, indicating an increase of surface roughness. Due to the surface nano-coating, the maximum contact angles of water and ethylene glycol (EG) droplets increased up to 56 and 48%, respectively, e.g. from 105° to 164° for water droplets and from 96° to 144° for EG droplets. The excellent water- and oil-repellence of the prepared surfaces was ascribed to this increase of surface roughness and fluorinated-contained surface. Compared with Wenzel model, the Cassie model yielded a fairly good fit to the simulation of contact angle with surface roughness. However, a derivation of 3°-10° at higher roughness still existed. This phenomenon was very likely due to the surface heterogeneity with different pore size distributions of the fractal surfaces. In this case, it was unfavorable for super repellency from rough surface with larger mesopore fraction because of its capillary condensation, reflecting that micropore provided more air resistance against wettability.

  14. Interaction between neritic and warm water tintinnids in surface waters of East China Sea

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhao, Y.; Chen, X.; Zhang, W.; Xu, J.; Li, J.; Xiao, T.

    2016-02-01

    Tintinnid are important microzooplankton in marine pelagic habitats. In the temperate shelf area, tintinnid could be divided into neritic, warm-water and cosmopolitan biogeographical types. Up to now, there is no understanding in the interaction between neritic and warm-water genera in shelf waters. Here we studied the interaction of neritic and warm-water tintinnids in East China Sea during three cruises (May, August and October) in 2013. Our hypothesis were (1) that the factors influencing the expansion of neritic and warm-water genera were different and (2) that different genera within each biogeographical type had different adaptation abilities in the process of expansion. Totally 94 species in 36 genera were identified in three cruises. According to the distribution of each tintinnid genus in the three cruises, tintinnid genera were divided into three biogeographical types: neritic, warm-water and cosmopolitan. The data confirmed our hypothesis. The factor influencing neritic tintinnid species richness and abundance was water depth while salinity was the factor influencing species richness and abundance of warm-water tintinnids. According to the difference in their expansion ability, neritic and warm-water genera could be divided into core genera and pioneer genera. In the case of neritic genera, core and pioneer neritic genera stayed together in May and August while pioneer neritic genera expanded a lot out to the oceanic water in October. In the case of warm-water genera, the pioneer genera always expanded a lot out to the coast in all three cruises. In May and August, the pioneers of neritic and warm-water genera did not meet. However, in October, the cores of neritic and warm-water genera collided. Our data clearly showed that the core and pioneer of both neritic and warm-water genera interacted in different modes in different months. Whether the cores of neritic and warm-water genera will further mixed in winter is an open question.

  15. Bull Trout Distribution and Abundance in the Waters on and Bordering the Warm Springs Reservation : 2002 Annual Report.

    SciTech Connect

    Brun, Christopher V.; Dodson, Rebekah

    2003-03-01

    The range of bull trout (Salvelinus confluentus) in the Deschutes River basin has decreased from historic levels due to many factors including dam construction, habitat degradation, brook trout introduction and eradication efforts. While the bull trout population appears to be healthy in the Metolius River-Lake Billy Chinook system they have been largely extirpated from the upper Deschutes River (Buchanan et al. 1997). Little was known about bull trout in the lower Deschutes basin until BPA funded project No.9405400 began during 1998. In this progress report we describe the findings to date from this multi-year study aimed at determining the life history, habitat needs and limiting factors of bull trout in the lower Deschutes subbasin. Juvenile bull trout and brook trout (Salvelinus fontinalis) relative abundance has been assessed in the Warm Springs River and Shitike Creek since 1999. In the Warm Springs R. the relative densities of juvenile bull trout and brook trout were .003 fish/m{sup 2} and .001 fish/m{sup 2} respectively during 2002. These densities were the lowest recorded in the Warm Springs River during the period of study. In Shitike Cr. the relative densities of juvenile bull trout and brook trout were .025 fish/m{sup 2} and .01 fish/m{sup 2} respectively during 2002. The utility of using index reaches to monitor trends in juvenile bull trout and brook trout relative abundance in the Warm Springs R. has been assessed since 1999. During 2002 the mean relative densities of juvenile bull trout within the 2.4 km study area was higher than what was observed in four index reaches. However, the mean relative densities of brook trout was slightly higher in the index reaches than what was observed in the 2.4 km study area. Habitat use by both juvenile bull trout and brook trout was determined in the Warm Springs R. Juvenile bull trout and brook trout were most abundant in pools and glides. However pools and glides comprised less than 20% of the available habitat

  16. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold

  17. ICESat-derived inland water surface spot heights

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra E.; Neal, Jeffrey; Yamazaki, Dai; Bates, Paul D.

    2016-04-01

    Accurate measurement of water surface height is key to many fields in hydrology and limnology. Satellite radar and laser altimetry have been shown to be useful means of obtaining such data where no ground gauging stations exist, and the accuracy of different satellite instruments is now reasonably well understood. Past validation studies have shown water surface height data from the ICESat instrument to have the highest vertical accuracy (mean absolute errors of ˜10 cm for ICESat, compared, for example, with ˜28 cm from Envisat), yet no freely available source of processed ICESat data currently exists for inland water bodies. Here we present a database of processed and quality checked ICESat-derived inland water surface heights (IWSH) for water bodies greater than 3 arc sec (˜92 m at the equator) in width. Four automated methods for removing spurious observations or outliers were investigated, along with the impact of using different water masks. We find that the best performing method ensures that observations used are completely surrounded by water in the SRTM Water Body data. Using this method for removing spurious observations, we estimate transect-averaged water surface heights at 587,292 unique locations from 2003 to 2009, with the number of locations proportional to the size of the river.

  18. Wave-Generated Flows on the Water Surface

    NASA Astrophysics Data System (ADS)

    Shats, Michael; Punzmann, Horst; Francois, Nicolas; Xia, Hua

    2016-06-01

    Predicting trajectories of fluid parcels on the water surface perturbed by waves is a difficult mathematical and theoretical problem. It is even harder to model flows generated on the water surface due to complex three-dimensional wave fields, which commonly result from the modulation instability of planar waves. We have recently shown that quasi-standing, or Faraday, waves are capable of generating horizontal fluid motions on the water surface whose statistical properties are very close to those in two-dimensional turbulence. This occurs due to the generation of horizontal vortices. Here we show that progressing waves generated by a localized source are also capable of creating horizontal vortices. The interaction between such vortices can be controlled and used to create stationary surface flows of desired topology. These results offer new methods of surface flow generation, which allow engineering inward and outward surface jets, large-scale vortices and other complex flows. The new principles can be also be used to manipulate floaters on the water surface and to form well-controlled Lagrangian coherent structures on the surface. The resulting flows are localized in a narrow layer near the surface, whose thickness is less than one wavelength.

  19. The biological impact of landfill leachate on nearby surface water

    SciTech Connect

    Geis, S.W.

    1994-12-31

    Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

  20. Intermolecular Casimir-Polder forces in water and near surfaces

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  1. Reassigning the most stable surface of hydroxyapatite to the water resistant hydroxyl terminated (010) surface

    NASA Astrophysics Data System (ADS)

    Zeglinski, Jacek; Nolan, Michael; Thompson, Damien; Tofail, Syed A. M.

    2014-05-01

    Understanding the surface stability and crystal growth morphology of hydroxyapatite is important to comprehend bone growth and repair processes and to engineer protein adsorption, cellular adhesion and biomineralization on calcium phosphate based bone grafts and implant coatings. It has generally been assumed from electronic structure calculations that the most stable hydroxyapatite surface is the (001) surface, terminated just above hydroxyl ions perpendicular to the {001} crystal plane. However, this is inconsistent with the known preferential growth direction of hydroxyapatite crystals and previous experimental work which indicates that, contrary to currently accepted theoretical predictions, it is actually the (010) surface that is preferentially exposed. The surface structure of the (010) face is still debated and needs reconciliation. In this work, we use a large set of density functional theory calculations to model the interaction of water with hydroxyapatite surfaces and probe the surface stability and resistance to hydrolytic remodeling of a range of surface faces including the (001) surface and the phosphate-exposed, calcium-exposed, and hydroxyl-exposed terminations of the (010) surface. For the (001) surface and the phosphate-exposed (010) surface, dissociative water adsorption is favorable. In contrast, the hydroxyl-terminated (010) surface will not split water and only molecular adsorption of water is possible. Our calculations show, overall, that the hydroxyl-terminated (010) surface is the most stable and thus should be the predominant form of the hydroxyapatite surface exposed in experiments. This finding reconciles discrepancies between the currently proposed surface terminations of hydroxyapatite and the experimentally observed crystal growth direction and surface stability, which may aid efforts to accelerate biomineralization and better control bone-repair processes on hydroxyapatite surfaces.

  2. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  3. Occurrence of deeethylatrazine and deisopropylatrazine in surface and ground water

    SciTech Connect

    Thurman, E.M.; Goolsby, D.A.

    1996-10-01

    Field-disappearance studies and a regional study of nine rivers in the Midwest show that deethylatrazine (DEA) and deisopropylatrazine (DIA) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine and cyanazine. The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 mg/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations giving a {open_quotes}second flush{close_quotes} of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4{plus_minus}0.1 when atrazine is the major triazine present to 0.6{plus_minus}0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  4. Landfill disposal of unused medicines reduces surface water releases.

    PubMed

    Tischler, Lial; Buzby, Mary; Finan, Douglas S; Cunningham, Virginia L

    2013-01-01

    The pharmaceutical industry is conducting research to evaluate the pathways and fate of active pharmaceutical ingredients from the consumer to surface waters. One potential pathway identified by the researchers is the disposal of unused pharmaceutical products that are discarded by consumers in household trash and disposed of in municipal solid waste landfills. This study was designed to evaluate relative amounts of surface water exposures through the landfill disposal pathway compared to patient use and flushing of unused medicine pathways. The estimated releases to surface water of 24 example active pharmaceutical ingredients (APIs) in landfill leachate were calculated for 3 assumed disposal scenarios: 5%, 10%, and 15% of the total annual quantity of API sold is discarded and unused. The estimated releases from landfills to surface waters, after treatment of the leachate, were compared to the total amount of each example API that would be released to surface waters from publicly owned treatment works, generated by patient use and excretion. This study indicates that the disposal of unused medications in municipal solid waste landfills effectively eliminates the unused medicine contribution of APIs to surface waters; greater than 99.9% of APIs disposed of in a landfill are permanently retained. PMID:22556107

  5. Surface solvation for an ion in a water cluster.

    PubMed

    Herce, David H; Perera, Lalith; Darden, Thomas A; Sagui, Celeste

    2005-01-01

    We have used molecular dynamics simulations to study the structural, dynamical, and thermodynamical properties of ions in water clusters. Careful evaluations of the free energy, internal energy, and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following. (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodinelike ion in a polarizable water cluster, but not in a nonpolarizable water cluster. PMID:15638604

  6. CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION

    EPA Science Inventory

    Field data from various utilities were studied with the object of identifying a set of characteristics of a surface water that might allow it to be successfully treated by disinfection alone, thus avoiding the need to filter. It was found possible to define water quality standard...

  7. SURFACE WATER QUALITY PARAMETERS FOR MONITORING OIL SHALE DEVELOPMENT

    EPA Science Inventory

    This report develops and recommends prioritized listings of chemical, physical, and biological parameters which can be used to assess the environmental impact of oil shale development on surface water resources. Each of the potential water-related problems is addressed in the con...

  8. Modeling groundwater-surface water interaction in cross-cutting alluvial fan system

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sager, J. C.; Fogg, G. E.

    2011-12-01

    In the classic interpretation, a deep water table can cause hydraulic 'disconnection' between a river and an underlying aquifer, with the lack of a saturated zone connection between them. Previous research indicates that in such cases heterogeneity may create localized saturated connections between the river and a deep water table. The dynamics of groundwater and surface water interaction under such circumstances has not been adequately investigated. This basin- scale modeling study of the Cosumnes River and American River groundwater systems of the Central Valley of California, which includes both high-resolution (200m×200m×0.5m) modeling of the hydro-facies (~18 million nodes) and variably saturated flow modeling with the parallel computing code ParFlow, investigates how the textual heterogeneity (e.g., connected channels and abundant aquitard facies) affects interplay between the groundwater and surface water, including possible mechanisms for enhancing both stream base flow and recharge through surface spreading. The possible influence of perched aquifers created by low permeability layers on river base flow is also investigated. Optimal locations of floodplain and flooding time frames are being examined. Results of this study will enhance our understanding of the mechanism of water dynamics in the variably saturated zone coupling with heterogeneity. Ultimately, the results will also help restore or better manage the stream base flow and the ecosystem that depends on it.

  9. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O  -  17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately  -140 μK to  +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H  =  673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k  =  1, or 1σ).

  10. Dark solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2014-05-01

    The nonlinear Schrödinger equation (NLS) models the evolution dynamics in time and space of weakly nonlinear water wave trains in finite or infinite depth. In the defocusing regime (finite depth), the NLS admits a family of soliton solutions, which describe the strong depression of wave envelopes. These solitons are referred to dark solitons and have been already observed in optics and in Bose-Einstein condensates. We present experimental results on gray and black solitons, propagating in a wave flume. Furthermore, we analyze the data and discuss the discrepancies observed with respect to theoretical predictions. The results prove that in the case of weak-nonlinearity of the waves, the NLS describes well the dynamics of nonlinear wave packets in finite depth.

  11. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications. PMID:22235939

  12. An Ontology Design Pattern for Surface Water Features

    SciTech Connect

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  13. Using water isotopes in the evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Risi, Camille; Ottlé, Catherine; Bastrikov, Vladislav; Valdayskikh, Victor; Cattani, Olivier; Jouzel, Jean; Gribanov, Konstantin; Nekrasova, Olga; Zacharov, Vyacheslav; Ogée, Jérôme; Wingate, Lisa; Raz-Yaseef, Naama

    2013-04-01

    Several studies show that uncertainties in the representation of land surface processes contribute significantly to the spread in projections for the hydrological cycle. Improvements in the evaluation of land surface models would therefore translate into more reliable predictions of future changes. The isotopic composition of water is affected by phase transitions and, for this reason, is a good tracer for the hydrological cycle. Particularly relevant for the assessment of land surface processes is the fact that bare soil evaporation and transpiration bear different isotopic signatures. Water isotopic measurement could thus be employed in the evaluation of the land surface hydrological budget. With this objective, isotopes have been implemented in the most recent version of the land surface model ORCHIDEE. This model has undergone considerable development in the past few years. In particular, a newly discretised (11 layers) hydrology aims at a more realistic representation of the soil water budget. In addition, biogeophysical processes, as, for instance, the dynamics of permafrost and of its interaction with snow and vegetation, have been included. This model version will allow us to better resolve vertical profiles of soil water isotopic composition and to more realistically simulate the land surface hydrological and isotopic budget in a broader range of climate zones. Model results have been evaluated against temperature profiles and isotopes measurements in soil and stem water at sites located in semi-arid (Yatir), temperate (Le Bray) and boreal (Labytnangi) regions. Seasonal cycles are reasonably well reproduced. Furthermore, a sensitivity analysis investigates to what extent water isotopic measurements in soil water can help constrain the representation of land surface processes, with a focus on the partitioning between evaporation and transpiration. In turn, improvements in the description of this partitioning may help reduce the uncertainties in the land

  14. A Model of Surface Energy Budget over Water, Snow and Ice Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, J.; Bras, R. L.

    2012-12-01

    The recently developed maximum entropy production (MEP) model of turbulent and conductive heat fluxes over land surfaces is generalized to water/snow/ice surfaces. Analogous to the case of land surfaces, an analytical solution of latent, sensible and surface water/snow/ice heat flux is derived as a function of surface temperature (e.g. sea surface temperature) and surface net short- and long wave radiation. Compared to the classical bulk transfer equations based models, the MEP model does not need wind speed, near-surface air temperature and roughness lengths as input. The model is parameter parsimonious. A test of the MEP model against observations from several field experiments has suggested its usefulness and potential for predicting conductive and turbulent fluxes over water/snow/ice surfaces. The model is a suitable tool for remote sensing of the surface energy balance over oceans, snow covered Antarctica and sea ice. The model can also be incorporated into regional and global atmospheric models as an alternative algorithm for surface energy/water balance.

  15. Probing the water on chemically heterogeneous surface: interfacial-structural analysis for surface charge distribution

    NASA Astrophysics Data System (ADS)

    Shin, Sucheol; Willard, Adam

    We introduce the novel method for predicting the charge distribution of chemically heterogeneous surface, but reconstructed from the perspective of the interfacial water molecules. Our approach is to analyze the response of water to a disordered surface and infer from that response the heterogeneous distribution of surface charge. We accomplish this using a framework that is based on a probabilistic description of water's interfacial molecular structure and maximum likelihood estimation. This framework allows to deduce the apparent charge that is most congruently represented by the set of water configurations over the particular region of a surface. We demonstrate that the estimated charge distribution is consistent to the actual distribution for a static model substrate and hence that our method can be applied to investigate a dynamic fluctuating substrate such as the surface of a hydrated protein. This novel technique provides the useful information that can reflect the influence of fluctuations in the structure of biomolecule.

  16. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  17. A GIS water balance approach to support surface water flood risk management

    NASA Astrophysics Data System (ADS)

    Diaz-Nieto, J.

    Concern has arisen as to whether the lack of appropriate consideration to surface water in urban spatial planning is reducing our capacity to manage surface water flood risk. Appropriate tools are required that allow spatial planners to explore opportunities and solutions for surface after flooding at large spatial scales. An urban surface water balance model has been developed that screens large urban areas to identify flooded areas and which allows solutions to be explored. The model hypothesis is that key hydrological characteristics; storage volume and location, flow paths and surface water generation capture the key processes responsible for surface water flooding> The model uses a LiDAR DEM (Light Detection and Ranging Digital Elevation Model) as the basis for determining surface water accumulation in a catchment and has been developed so that it requires minimal inputs and computational resources. The urban surface water balance approach is applied to Keighley in West Yorkshire where several instances of surface water flooding have been reported. This research used a postal questionnaire, followed up with site visits to collect data on surface water flooding locations in Keighley. A qualitative analysis based on field visits revealed that the degree of interaction with the sewer network varies spatially, and as the importance of the interaction of the sewer system increase, the accuracy of the model results are lowered. It also highlighted that local detail not present in the DEM, the presence of urban drainage assets and the performance of the sewer system which are not be represented in the model, can determine the accuracy of model results. Model results were used as a basis to develop solutions to surface water flooding. A least cost path methodology was developed to identify managed flood routes as a solution. These were translated into model inputs in the form a modified DEM.

  18. Profile of the Interface between a Hydrophobic Surface and Water

    NASA Astrophysics Data System (ADS)

    Perez-Salas, Ursula; Stalgren, Johan; Majkrzak, Charles; Heinrich, Frank; Toney, Michael; Vanderah, David

    2008-03-01

    Aqueous interfaces are ubiquitous and play a fundamental role in biology, chemistry, and geology. The structure of water near interfaces is of the utmost importance, including chemical reactivity and macromolecular function. Theoretical work by Chandler et al. on polar-apolar interfaces predicts that a water depletion layer exists between a hydrophobic surface and bulk water for hydrophobes larger than ˜20nm2 (a ˜4A in radius apolar molecule). Until now, what the interface really looks like remains in dispute since recent experiments give conflicting results: from complete wetting (no water depletion layer) to a water depletion layer. Those experiments that have found a water depletion layer report 40-70% water in the depletion zone: 40 -70% and a width of ˜3A. However, an alternative interpretation to the profiles exists where no depletion layer is required. By studying hydrophobic SAM surfaces against several water mixtures we obtained the hydrophobic/water profile by phase sensitive neutron reflectivity. With this model independent technique we observe a 2 times wider and drier depletion water layer: 6A thick and 0-25% water. Given the level of disagreement, I will review the topic of immiscible interfaces and show how phase sensitive reflectometry is unique in obtaining nm resolution profiles without fitting bias.

  19. Occurrence of Giardia and Cryptosporidium spp. in surface water supplies.

    PubMed Central

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-01-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency. PMID:1822675

  20. Nucleate boiling of water from plain and structured surfaces

    SciTech Connect

    Das, A.K.; Das, P.K.; Saha, P.

    2007-08-15

    Heat transfer from plain surface and from surfaces with distinct nucleation sites has been investigated under saturated pool boiling condition. Surfaces have been prepared with regular array of discrete nucleation sites formed by micro-drilling. Distilled water has been used as the boiling liquid. Out of various available correlations, Rohsenow correlation [W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME 74 (1952) 969-976] gives best agreement with the experimental data from plain surface at low degree of superheat. A mechanistic model also provides a good trend matching with the same experimental data. With the introduction of artificial nucleation sites substantial augmentation in heat transfer for distilled water compared to the plane surface has been noted. Continuous increase in nucleation site density increases the rate of heat transfer with a diminishing trend of enhancement. A correlation similar to that of Yamagata et al. [K. Yamagata, F. Hirano, K. Nishiwaka, H. Matsouka, Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Eng. Kyushu 15 (1955) 98] has been developed to fit the experimental data of plane surface. Modification of the same correlation to take care of the nucleation site density has been developed and used to predict the experimental data from augmented surfaces. (author)

  1. Asphaltene surface activity at oil/water interfaces

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.

    1995-11-01

    Small angle neutron scattering (SANS) dynamic surface tension (DST), dynamic interfacial tension (DIFT), and zero shear viscosity were used to study the surface activity of Ratawi asphaltenes in organic solvents, in the asphaltene/water/toluene emulsions and at the toluene/aqueous solution interfaces. In organic solvents, the kinetic process of micellization and the micellar structure are characterized. Their dependence on asphaltene concentration was investigated. The emulsion droplet structure and their capability in water uptake was tested. Also, the enhancement of surface activity of asphaltenes and its potential applications are briefly discussed.

  2. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces.

    PubMed

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-01-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field. PMID:24149467

  3. Rupture and dewetting of water films on solid surfaces.

    PubMed

    Mulji, Neil; Chandra, Sanjeev

    2010-12-01

    An experimental study was conducted to observe rupture and dewetting of water films, 0.5-2mm thick, on solid surfaces. The effects of surface roughness, wettability, protrusions on surfaces, and air entrapment between films and surfaces were studied. Film thickness measurements were made and film rupture and surface dewetting photographed. Experiments showed that liquid films ruptured first along the highest edges of test surfaces. Placing a protrusion on the surface had no effect-the liquid film continued to rupture along the edges. A thermodynamic model was developed to show that protrusions lower the surface energy of the system and promote wetting. Increasing surface roughness therefore increases film stability by resisting rupture and dewetting. Water films could be punctured by introducing an air bubble that burst and created a hole. The hole would close if the film was thick and the solid-liquid contact angle was either small or large; the hole would grow larger if the film was thin and the contact angle was in the mid-range (∼80°). An analytical model that calculates the difference between the surface energies of the two states can be used to predict whether a hole would lead to surface dewetting or not. PMID:20817200

  4. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    PubMed Central

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  5. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples.

    PubMed

    Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  6. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    NASA Astrophysics Data System (ADS)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  7. Tensile testing of ultra-thin films on water surface

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

    2013-10-01

    The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

  8. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  9. Surface nanobubble nucleation dynamics during water-ethanol exchange

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.

  10. Circumnutation on the water surface: female flowers of Vallisneria.

    PubMed

    Kosuge, Keiko; Iida, Satoko; Katou, Kiyoshi; Mimura, Tetsuro

    2013-01-01

    Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds of tape grass (Vallisneria asiatica var. biwaensis) circumnutate on the water surface. Our observations and experiments with an artificial model indicated that gravitropism is barely involved in circumnutation. Instead, we show that helical intercalary growth at the base of peduncle plays the primary role in all movements in Vallisneria. This growth pattern produces torsional bud rotation, and gravity and buoyancy forces have a physical effect on the direction of peduncle elongation, resulting in bud circumnutation on the water surface. In contrast to other water-pollinated hydrophilous plants, circumnutation in Vallisneria enables female flowers to actively collect male flowers from a larger surface area of water. PMID:23355948

  11. [Current status of surface water acidification in Northeast China].

    PubMed

    Xu, Guang-yi; Kang, Rong-hua; Luo, Yao; Duan, Lei

    2013-05-01

    In order to evaluate the status of surface water acidification in Northeast China, chemical composition of 33 small streams was investigated in August, 2011. It was found that only a few waters located in Changbai Mountain had pH of lower than 6.0, and all waters had acid neutralizing capacity (ANC) of higher than 0.2 meq x L(-1). This indicated that surface water acidification was not a regional environmental issue in Northeast China. HCO3- was the major anion, with SO4(2-) concentration mostly below 150 microeq x L(-1) and even much lower NO3- concentration. Low concentration of SO4(2-) and NO3- means no serious acid deposition in this area. However, the distribution of acidic forest soils, with low base cation weathering rate, could only provide limited buffering capacity for surface water to acidification in Northeast China, and the potential risk of water acidification still existed. Currently, acid deposition in Northeast Asia could hardly cause severe acidification of surface water. The neighboring countries should therefore not amplify the environmental impact by transboundary air pollutants from China. PMID:23914517

  12. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zhang, Xingwang; Lei, Lecheng

    2013-06-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  13. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  14. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public..., concerning information that may inform the regulatory review of the uncovered finished water...

  15. Surface water data at Los Alamos National Laboratory: 1996 water year. Progress report

    SciTech Connect

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.

    1996-11-01

    The principle investigators collected and computed surface water discharge data from 17 stream-gaging stations that cover most of Los Alamos National Laboratory. The data show less runoff than do data for the 1995 water year. Water chemistry data from larger storm events occurring at some stations are also published here.

  16. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  17. MONITORING OXIDATION-REDUCTION PROCESS DURING GROUND WATER-SURFACE WATER INTERACTIONS AT THE CHICKASAW NRA

    EPA Science Inventory

    Mineralized ground waters at the Chickasaw National Recreational Area contain hydrogen sulfide, i.e., sulfur in the -2 valence state. As these mineralized ground waters discharge at the surface and mix with oxygen-rich waters a series of abiotic and biotic reactions occur that c...

  18. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    NASA Astrophysics Data System (ADS)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  19. Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode.

    PubMed

    Liu, Bin; Li, Jian; Wu, Hao-Lin; Liu, Wen-Qiang; Jiang, Xin; Li, Zhi-Jun; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-07-20

    An earth-abundant, low-cost cobalt porphyrin complex (CoTCPP) is designed as a molecular catalyst to work on three-dimensional BiVO4 film electrode for water oxidation for the first time. Under illumination of a 100 mW cm(-2) Xe lamp, the CoTCPP-functionalized BiVO4 photoanode exhibits a 2-fold enhancement in photocurrent density at 1.23 V vs RHE and nearly a 450 mV cathodic shift at 0.5 mA cm(-2) photocurrent density relative to bare BiVO4 in 0.1 M Na2SO4 (pH = 6.8). Simultaneously, stoichiometric oxygen and hydrogen are generated with a faradic efficiency of 80% over 4 h. The activity and stability of the BiVO4 photoanode are dramatically increased by molecular CoTCPP, giving rise to higher performance than previously reported noble metal ruthenium complex-modified BiVO4 photoanode. By using hydrogen peroxide as the hole scavenger, we demonstrate that molecular CoTCPP catalyst greatly suppresses the hole-electron recombination on the surface of BiVO4 semiconductor, which offers a promising route toward high efficiency, low cost, practical solar fuel generation device. PMID:27359374

  20. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  1. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-01

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354737

  2. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  3. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  4. A global view on near-surface deuterated water vapour - First results from SCIAMACHY onboard ENVISAT

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; Aben, I.; Butz, A.; Griffith, D.; Hase, F.; Schneider, M.; Schrijver, H.; Warneke, T.; Roeckmann, T.

    2008-12-01

    Water vapour is by far the most important greenhouse gas in the atmosphere and an accurate knowledge of hydrological cycles and their feedback mechanisms is therefore indispensable for reliable climate predictions. The relative abundance of HDO provides a deeper insight into hydrological cycles as evaporation and condensation processes deplete heavy water in the gas phase. Only recently, global measurements of HDO depletions in the middle to lower troposphere were performed by the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft. Global measurements of the isotopic composition of near-surface water vapor are so far missing. The SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument aboard the European Space Agency (ESA)'s environmental research satellite ENVISAT records the intensity of solar radiation, reflected from the Earth surface or the atmosphere, at moderate spectral resolution between 240 and 2390 nm. Its potential to simultaneously retrieve HDO and H2O total columns with high sensitivity toward the surface has so far not been exploited. Here, we present first retrievals of the near-global relative deuterated water vapor distribution from SCIAMACHY. Large scale features such as the latitudinal effect or continental gradients in North-America can be nicely observed. Even small scale features such as relatively high HDO abundances above the Red Sea can be observed. Comparisons with ground-based Fourier Transform measurements (FTS) indicate that also retrievals at high latitude sites such as Ny Alesund (79deg N) are feasible. We will present near-global measurements from SCIAMACHY, including long-term means showing pronounced large-scale as well as small-scale features. Further, we report on large seasonal variations, being higher than those observed by TES. For selected stations in tropical, mid and high-latitude sites, we show comparisons with ground-based direct sun FTS measurements.

  5. [Distribution of arsenic in surface water in Tibet].

    PubMed

    Wang, Ming-Guo; Li, She-Hong; Wang, Hui; Xiao, Tang-Fu; Zheng, Bao-Shan

    2012-10-01

    This research was aimed on studying the arsenic distribution of water in Yarlung Zangbo and Singe Zangbo basins in Tibet. Results showed that arsenic concentrations were different in different types of the water. The sequence of arsenic concentration from high to low was hot spring water (4920 microg x L(-1) +/- 1520 microg x L(-1), n =2), salt lake water (2180 microg x L(-1) +/- 3840 microg x L(-1), n =7), well water (194 microg x L(-1), n = 1), freshwater lake water (163 microg x L(-1) +/- 202 microg x L(-1), n =2) and stream water (35.5 microg x L(-1) +/- 57.0 microg x L(-1), n=74). The high arsenic concentration in surface water in Singe Zangbo and the upstream of Yarlung Zangbo were found. The average concentration of arsenic in water from Singe Zangbo (58.4 microg x L(-1) +/- 69.9 microg x L(-1), n = 39) was significantly higher than that from Yarlung Zangbo (10.8 microg x L(-1) +/- 16.9 microg x L(-1), n = 30). Arsenic concentration in 43.2% of stream water samples and all of the hot springs, saline lakes and well water were higher than 10 microg x L(-1). Yarlung Zangbo and Singe Zangbo are important sources of drinking water for the local people. There is a high risk for the local people who may suffer from chronic arsenic poisoning. PMID:23233967

  6. A Mechanism for Near-Surface Water Ice on Mars

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  7. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  8. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely

  9. Causes of endocrine disrupting potencies in surface water in East China.

    PubMed

    Shi, Wei; Deng, Dongyang; Wang, Yuting; Hu, Guanjiu; Guo, Jing; Zhang, Xiaowei; Wang, Xinru; Giesy, John P; Yu, Hongxia; Wang, Ziheng

    2016-02-01

    Surface water is essential for human health and ecological diversity, but some endocrine disrupting chemicals are detectable. Both thyroid receptor (TR) and androgen receptor (AR) agonistic/antagonistic potencies in grade II surface water in East China were investigated using reporter gene assays. While none of the water exhibited agonistic potency, significant AR and TR antagonistic potencies were detectable. TR antagonistic equivalents (TR-AntEQ) and AR antagonistic equivalents (AR-AntEQ) ranged from 3.6 to 76.1 μg dibutyl phthalate/L and from 2.3 to 242.6 μg flutamide/L, respectively. The TR and AR antagonistic potencies in the Yangtze River watershed were highlighted, with equivalents greater than the lowest observable effect concentration (LOEC) of dibutyl phthalate and flutamide, respectively. Phthalate esters (PAEs) being the most abundant explained most of the TR antagonistic potency, contributing more than 65% of the TR-AntEQ and diisobutyl phthalate (DiBP) was the major contributor. In most surface waters studied, PAEs contributed little of the AR-AntEQ, but the frequently detected octylphenol, nonylphenol and benzo[a]pyrene might be responsible. PMID:26495828

  10. Model for outgassing of water from metal surfaces

    SciTech Connect

    Li, Minxu; Dylla, Fred

    1993-06-01

    Numerous measurements of outgassing from metal surfaces show that the outgassing obeys a power law of the form Q=Q{sub 10}t{sup -alpha}, where alpha is typically near unity. For unbaked systems, outgassing is dominated by water. This work demonstrates that alpha is a function of the water vapor exposure during venting of the system, and the physical properties of the passivation oxide layer on the surface. An analytic expression for the outgassing rate is derived based on the assumption that the rate of water diffusing through the passivation oxide layer to the surface governs the rate of its release into the vacuum. The source distribution function for the desorbing water is assumed to be a combination of a Gaussian distribution centered at the interior surface driven by atmospheric exposure, and a uniform concentration throughout the bulk. We have measured the outgassing rate from a clean stainless-steel (type 304) chamber as a function of water exposure to the chamber surface from <1 to 600 monolayers. The measured outgassing rate data show that alpha tends to 0.5 for low H{sub 2}O exposures and tends to 1.5 for high H{sub 2}O exposures as predicted by the model.

  11. Integrated Land Surface Water State Indicators for Climate Assessment

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; McDonald, K. C.; Steiner, N.; Azarderakhsh, M.; Schroeder, R.

    2014-12-01

    Accurate characterization of seasonal freeze/thaw transition timing coupled with accompanying characterization of snowpack water content, surface inundation, and radiation balance give the potential for an unambiguous indication of climate change. Earth remote sensing data sources have demonstrated utility for determining these surface and radiation balance state variables. NASA's Climate Indicators Team seeks to develop and test potential climate indicators that employ NASA capabilities to support the National Climate Assessemnt and are useful to decision makers. We present development of a set of climate indicators built upon remote sensing measures of surface water state variables: Landscape freeze/thaw (FT), Snow Water Equivalent (SWE), Surface inundation fraction (Fw), and radiative flux. Indicators based on and derived from these parameters may be assembled from integrated remote sensing datasets and provide key information in assessment of climate state. Combined, these state variables provide unique insight into linkages and feedbacks in terrestrial energy, water and carbon cycles and allow examination to the response of the integrated system to climate drivers. Assembled from existing remote sensing datasets, these deliverables will represent the first broad-scale observationally-based, comprehensive measures of surface water state and distribution coupled to atmospheric radiation for use in climate change assessment.

  12. Properties of water surface discharge at different pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Ruma, Hosseini, S. H. R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, P.; Akiyama, H.

    2014-09-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H2O2) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H2O2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  13. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  14. Hydrated goethite (alpha-FeOOH) (100) interface structure: Ordered water and surface functional groups.

    SciTech Connect

    Ghose, S.K.; Waychunas, G.A.; Trainor, T.P.; Eng, P.J.

    2009-12-15

    Goethite({alpha}-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous stud-ies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite(100) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the(100) cleavage faces. The proposed interface stoichiometry is ((H{sub 2}O)-(H{sub 2}O)-OH{sub 2}-OH-Fe-O-O-Fe-R) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe{sup 3+} ions) and OH{sub 2} type (monodentate hydroxyl with oxygen tied to only one Fe{sup 3+}). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface

  15. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  16. Surface water pesticide modelling for decision support in drinking water production

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  17. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  18. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  19. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  20. Spatial development of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  1. Influence of building resolution on surface water inundation outputs

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  2. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  3. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  4. Modeling studies of geothermal systems with a free water surface

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.

    1983-12-01

    A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

  5. Occurrence of illicit drugs in surface waters in China.

    PubMed

    Li, Kaiyang; Du, Peng; Xu, Zeqiong; Gao, Tingting; Li, Xiqing

    2016-06-01

    Illicit drugs have been recognized as a group of emerging contaminants. In this work, occurrence of common illicit drugs and their metabolites in Chinese surface waters was examined by collecting samples from 49 lakes and 4 major rivers across the country. Among the drugs examined, methamphetamine and ketamine were detected with highest frequencies and concentration levels, consistent with the fact that these are primary drugs of abuse in China. Detection frequencies and concentrations of other drugs were much lower than in European lakes and rivers reported in the literature. In most Chinese surface waters methamphetamine and ketamine were detected at concentrations of several ng L(-1) or less, but in some southern lakes and rivers, these two drugs were detected at much higher concentrations (up to several tens ng L(-1)). Greater occurrence of methamphetamine and ketamine in southern surface waters was attributed to greater abuse and more clandestine production of the two drugs in southern China. PMID:26942687

  6. A tentative detection of the 183-GHz water vapor line in the martian atmosphere: Constraints upon the H2O abundance and vertical distribution

    NASA Technical Reports Server (NTRS)

    Encrenaz, TH.; Lellouch, E.; Cernicharo, J.; Paubert, G.; Gulkis, S.

    1995-01-01

    The 183-GHz water vapor line was tentatively detected on Mars in January 1991, with the IRAM 30-m millimeter antenna, under extremely dry atmospheric conditions. The measurement refers to the whole disk. The spectral line, although marginally detected, can be fit with a constant H2O mixing ratio of 1.0 x 10(exp -5), which corresponds to a water abundance of 1 pr-microns; in any case, an upper limit of 3 pr-microns is inferred. This value is comparable to the very small abundances measured by Clancy (1992) 5 weeks before our observation and seems to imply both seasonal and long-term variations in the martian water cycle.

  7. Apple Snail: a Bio Cleaner of the Water Free Surface.

    NASA Astrophysics Data System (ADS)

    Bassiri, Golnaz

    2005-11-01

    Oil spills from tankers represent a threat for shorelines and marine life. Despite continuing research, there has been little change in the fundamental technology for dealing with oil spills. An experimental investigation of the feeding strategy of Apple snails from the water free surface, called surface film feeding, is being studied motivated by the need to develop new techniques to recover oil spills. To feed on floating food (usually a thin layer of microorganisms), the apple snail forms a funnel with its foot and pulls the free surface toward the funnel. High speed imaging and particle image velocimetry were used in the present investigation to measure the free surface motion and to investigate the mechanism used by the apple snails to pull the free surface. The results suggest that the snail pulls the free surface via the wavy motion of the muscles in its funnel.

  8. Radar image sequence analysis of inhomogeneous water surfaces

    NASA Astrophysics Data System (ADS)

    Seemann, Joerg; Senet, Christian M.; Dankert, Heiko; Hatten, Helge; Ziemer, Friedwart

    1999-10-01

    The radar backscatter from the ocean surface, called sea clutter, is modulated by the surface wave field. A method was developed to estimate the near-surface current, the water depth and calibrated surface wave spectra from nautical radar image sequences. The algorithm is based on the three- dimensional Fast Fourier Transformation (FFT) of the spatio- temporal sea clutter pattern in the wavenumber-frequency domain. The dispersion relation is used to define a filter to separate the spectral signal of the imaged waves from the background noise component caused by speckle noise. The signal-to-noise ratio (SNR) contains information about the significant wave height. The method has been proved to be reliable for the analysis of homogeneous water surfaces in offshore installations. Radar images are inhomogeneous because of the dependency of the image transfer function (ITF) on the azimuth angle between the wave propagation and the antenna viewing direction. The inhomogeneity of radar imaging is analyzed using image sequences of a homogeneous deep-water surface sampled by a ship-borne radar. Changing water depths in shallow-water regions induce horizontal gradients of the tidal current. Wave refraction occurs due to the spatial variability of the current and water depth. These areas cannot be investigated with the standard method. A new method, based on local wavenumber estimation with the multiple-signal classification (MUSIC) algorithm, is outlined. The MUSIC algorithm provides superior wavenumber resolution on local spatial scales. First results, retrieved from a radar image sequence taken from an installation at a coastal site, are presented.

  9. The effect of surface water and wetting on gecko adhesion.

    PubMed

    Stark, Alyssa Y; Sullivan, Timothy W; Niewiarowski, Peter H

    2012-09-01

    Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments. PMID:22875772

  10. Improved simulation of groundwater - surface water interaction in catchment models

    NASA Astrophysics Data System (ADS)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  11. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    PubMed

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface. PMID:23663033

  12. Salmonellae as an Index of Pollution of Surface Waters

    PubMed Central

    Cherry, William B.; Hanks, John B.; Thomason, Berenice M.; Murlin, Alma M.; Biddle, James W.; Croom, John M.

    1972-01-01

    Screening enrichments of surface water specimens by means of a polyvalent fluorescent antibody reagent for the salmonellae yielded approximately 60% more positive specimens than was obtained by cultural procedures. It is not known what fraction of the excess of fluorescent antibody-positive over culturally positive specimens represents staining of non-salmonellae or non-arizonae as opposed to the staining of non-cultivatable organisms of these two genera. Cotton gauze and rayon-polypropylene fiber swabs were equally sensitive for collecting salmonellae from the streams examined. Tetrathionate enrichment incubated at 41.5 C appeared to be superior to selenite-cystine for isolation of salmonellae from surface waters. Twenty-eight serotypes of Salmonella and two serotypes of Arizona were identified in the 121 positive specimens. In water rated moderately polluted, 65% of all specimens tested were positive; in minimally polluted waters, 38% were positive; and in unpolluted streams, 44% were positive. PMID:4562473

  13. Microcystins in potable surface waters: toxic effects and removal strategies.

    PubMed

    Roegner, Amber F; Brena, Beatriz; González-Sapienza, Gualberto; Puschner, Birgit

    2014-05-01

    In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities. PMID:24038121

  14. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  15. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  16. Nanostructuring of metal surfaces by corrosion for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Lee, Jooyoung; Lim, Guh-Hwan; Lim, Byungkwon

    2016-01-01

    We show that simply by corroding Ni foam in an aqueous solution, it is possible to produce nanostructured surfaces. When Ni foam was corroded in water or an aqueous solution containing NaCl, a dense array of Ni(OH)2 nanosheets was produced on the surface of the foam. When corroded in the presence of RuCl3, the nanostructured surface composed of Ni(OH)2 nanosheets decorated with ultrasmall RuO2 nanoparticles was obtained. At an applied voltage of 1.7 V, the combination of these two nanostructured surfaces yielded a water-splitting current density more than three times that obtained on the commercial Pt wire electrodes.

  17. A NEW SOURCE OF CO{sub 2} IN THE UNIVERSE: A PHOTOACTIVATED ELEY-RIDEAL SURFACE REACTION ON WATER ICES

    SciTech Connect

    Yuan, Chunqing; Cooke, Ilsa R.; Yates, John T. Jr.

    2014-08-20

    CO{sub 2} is one of the most abundant components of ices in the interstellar medium; however, its formation mechanism has not been clearly identified. Here we report an experimental observation of an Eley-Rideal-type reaction on a water ice surface, where CO gas molecules react by direct collisions with surface OH radicals, made by photodissociation of H{sub 2}O molecules, to produce CO{sub 2} ice on the surface. The discovery of this source of CO{sub 2} provides a new mechanism to explain the high relative abundance of CO{sub 2} ice in space.

  18. The use of radar imagery for surface water investigations

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1981-01-01

    The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.

  19. Heterogeneous Nucleation of Naphthalene Vapor on Water Surface

    PubMed

    Smolík; Schwarz

    1997-01-15

    The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces. PMID:9028892

  20. Parametrically excited water surface ripples as ensembles of oscillons.

    PubMed

    Shats, M; Xia, H; Punzmann, H

    2012-01-20

    We show that ripples on the surface of deep water which are driven parametrically by monochromatic vertical vibration represent ensembles of oscillating solitons, or quasiparticles, rather than waves. The horizontal mobility of oscillons determines the broadening of spectral lines and transitions from chaos to regular patterns. It is found that microscopic additions of proteins to water dramatically affect the oscillon mobility and drive transitions from chaos to order. The shape of the oscillons in physical space determines the shape of the frequency spectra of the surface ripple. PMID:22400746

  1. [Simultaneous Analysis of 18 Glucocorticoids in Surface Water].

    PubMed

    Guo, Wen-jing; Chang, Hong; Sun, De-zhi; Wu, Feng-chang; Yang, Hao

    2015-07-01

    A method of ultra-performance liquid chomatography tandam mass spectrometry(UPLC-MS/MS) combined with solid-phase extraction (SPE) has been developed for simultaneous analysis of 18 glucocorticoids in surface water. The analytes were first enriched and purified through a HLB cartridge, and eluted with acetonitrile/ethyl acetate (1:1, V/V), then detected by UPLC-MS/MS. The detection used gradient elution process with methanol and 0. 1% formic acid/water (V/V) as the mobile phase to achieve baseline separations of these 18 analytes. The linear range was 1. 0-1 000 µg.L-1. The method detection limits (MDLs) were 0. 10-1. 0 ng.L-1 except for cortisone acetate and cortisol acetate(10 ng.L-1) with overall mean recoveries of 65% - 108% in surface water. Application of this method for 5 surface waters from Beijing area showed that 8 glucocorticoids were detected with the concentration range of 0. 20-476 ng.L-1. Triamcinolone, triamcinolone acetonide, cortisol acetate and clobetasol propionate were detected for the first time in surface water samples, suggesting that this method is efficient for real sample analysis. PMID:26489346

  2. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  3. Insight into water molecules bonding on 4d metal surfaces

    NASA Astrophysics Data System (ADS)

    Carrasco, Javier; Michaelides, Angelos; Scheffler, Matthias

    2008-03-01

    Water-metal interactions are of capital importance to a wide variety of phenomena in materials science, catalysis, corrosion, electrochemistry, etc. Here we address the nature of the bond between water molecules and metal surfaces through a careful systematic study. Specifically, the bonding of isolated water molecules to a series of close-packed transition metal surfaces - Ru(0001), Rh(111), Pd(111) and Ag(111) - has been examined in detail with density functional theory (DFT). Aiming to understand the origin behind energetic and structural trends along the 4d series we employ a range of analysis tools, such as decomposition of the density of states, electron density differences, electronic reactivity function and inspection of individual Kohn-Sham orbitals. The results obtained allow us to rationalize the bonding between water and transition metal surfaces as a balance of covalent and electrostatic interactions. A frontier orbital scheme based on so-called two-center four-electron interactions between molecular orbitals of water and d band states of the surface proves incisive in understanding these systems.

  4. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  5. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGESBeta

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  6. Surface-Heating Algorithm for Water at Nanoscale.

    PubMed

    Y D, Sumith; Maroo, Shalabh C

    2015-09-17

    A novel surface-heating algorithm for water is developed for molecular dynamics simulations. The validated algorithm can simulate the transient behavior of the evaporation of water when heated from a surface, which has been lacking in the literature. In this work, the algorithm is used to study the evaporation of water droplets on a platinum surface at different temperatures. The resulting contact angles of the droplets are compared to existing theoretical, numerical, and experimental studies. The evaporation profile along the droplet's radius and height is deduced along with the temperature gradient within the drop, and the evaporation behavior conforms to the Kelvin-Clapeyron theory. The algorithm captures the realistic differential thermal gradient in water heated at the surface and is promising for studying various heating/cooling problems, such as thin film evaporation, Leidenfrost effect, and so forth. The simplicity of the algorithm allows it to be easily extended to other surfaces and integrated into various molecular simulation software and user codes. PMID:26722754

  7. Computer programs for modeling flow and water quality of surface water systems

    USGS Publications Warehouse

    Lorens, J.A.

    1982-01-01

    A selection of available computer programs for modeling flow and water quality in surface water systems is described. The models include programs developed as part of the U.S. Geological Survey Water Resources Division hydrologic research activities and others developed by other agencies, universities, and consulting firms. Each model description includes a statement of program use; data requirements; computer costs; availability of documentation and reference material; and a contact person for additional information. The report is intended to assist the researcher by presenting a very brief description of the surface-water models which are readily available for project use. (USGS)

  8. Formation and Retention of Hydroxyl and Water on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Clark, R. N.; Combe, J.; Noble, S. K.

    2012-12-01

    Spectral reflectance observations by the Moon Mineralogy Mapper (M3) showed that both hydroxyl and (molecular) water (hereafter referred to collectively as H/OH) vary spatially as a function of solar illumination geometry. At low solar incidence angles, the observed strengths of the H/OH spectral features are stronger than at higher angles, suggesting that the abundance varies with the diurnal cycle. This is also demonstrated in the increasing abundances with increasing latitude, such that above ~60 degrees there is little reduction in the depth of the water-related spectral absorption bands. It was immediately recognized that the wide-spread occurrence of H/OH across the lunar surface was the result of solar wind-induced hydroxylation, a phenomenon that was predicted almost 50 years ago. The lunar soil has a finite capacity to retain implanted hydrogen, and over time, the surface reaches a steady state, or background H/OH abundance, which is manifested in spectra of the mature soil. In addition to maturity, the retention of H/OH is a function of composition and texture (i.e., crystallinity and surface/volume). There are two hypotheses for how solar wind-implanted H/OH is retained in the soil: 1) H/OH adsorbs onto active surface sites on fresh soil particles. 2) H/OH is trapped in vesicles in agglutinates and amorphous coatings on soil grains created by space weathering. Undoubtedly both of these mechanisms occur, but one process is ultimately responsible for the observed steady state mature soil abundance, and this can be studied by measuring the strength of the H/OH spectral feature from soils as a function of variable composition, texture, and maturity. Space weathering is capable of both activating and neutralizing grain surfaces. Micrometeorite and larger impacts can activate mineral surfaces through mechanical forces, such as crushing and shattering of minerals, which creates fresh surfaces with partially unsatisfied chemical bonds. The freshly fractured

  9. Estimation of water surface elevations for the Everglades, Florida

    NASA Astrophysics Data System (ADS)

    Palaseanu, Monica; Pearlstine, Leonard

    2008-07-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000-present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades. This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  10. Surface-water and climatological data, Salt Lake County, Utah, water year 1980

    USGS Publications Warehouse

    Pyper, G.E.; Christensen, R.C.; Stephens, D.W.; McCormack, H.F.; Conroy, L.S.

    1981-01-01

    This report presents streamflow, water-quality, precipitation, and storm-runoff data collected in Salt Lake County, Utah, during the 1980 water year and certain water-quality data for the 1979 water year which were included for comparative purposes. Surface-water data consist of daily mean values of flow at 33 sites on natural streams, canals, and conduits. Water-quality data consist of chemical, biologic, and sediment analyses at 30 sites. Precipitation data consist of daily and monthly total at nine sites. Storm-runoff data consist of 5 and 15-minute interval discharge data for storms of July 1-2, August 19, and August 25, 1980, for most surface-water sites. (USGS)

  11. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. PMID:26228144

  12. Diversity And Abundance Of Deep-Water Coral Mounds In The Straits Of Florida: A Result of Adaptability To Local Environments?

    NASA Astrophysics Data System (ADS)

    Correa, T. B.; Grasmueck, M.; Eberli, G.; Viggiano, D. A.; Rosenberg, A.; Reed, J. K.

    2007-12-01

    is lessened. Corals in these raised locations also benefit from increased exposure to nutrient-rich tidal currents, supporting a denser live coral coverage. Sub-bottom profiles of the MT site show undulating coral ridges developed on top of a relatively flat sub-surface, indicating that antecedent topography is not the only factor determining mound distribution. The integrated AUV data suggest that variable environmental factors, such as sedimentation and current patterns, contribute to the high diversity between coral mound sites of the Straits of Florida. Environmental conditions change over distances of only a few kilometers creating localized and diverse deep-water coral habitats. The deepwater fauna adapts to the local oceanographic and geological conditions. This results in an unexpectedly high abundance of deep-water coral communities with diverse expressions.

  13. Improving SNMR data sensitivity to infiltrating water in the presence of large bodies of surface water

    NASA Astrophysics Data System (ADS)

    Falzone, S.; Keating, K.; Grunewald, E. D.; Walsh, D. O.

    2014-12-01

    Surface nuclear magnetic resonance (SNMR) is a geophysical method used to image water content with depth. Recently SNMR has been used to monitor infiltration events in the vadose zone; however, this application can be complicated by the presence of large signals associated with the ponded surface water. In this study, we develop algorithms to reduce this surface water signal for improved sensitivity to the infiltrated groundwater. Using synthetic models, we examine the accuracy of these algorithms. We then assess our approach using a field dataset collected from a five-week SNMR survey conducted during an infiltration event at the South Aura Valley Storage and Recovery Project (SAVSARP) site in Tucson, AZ. Three different algorithms were developed to remove the surface water from the SNMR data: (1) late time mono-exponential subtraction, in which signal from late in the measurement is used to model surface water signal; (2) model subtraction, in which the Earth's magnetic field subsurface conductive structure, and water layer thickness are used to model the surface water signal; and (3) late time inversion correction, in which model parameters in the relaxation time distributions corresponding to slower relaxation times are zeroed. We used two readily available SNMR inversion codes to verify the three approaches: the GMR Inversion software and the MRS Matlab toolkit. Synthetic models were recovered using both inversion codes by applying the late time mono-exponential subtraction and the model subtraction algorithms, while the late time inversion correction algorithm produced poorly resolved relaxation time distribution models. The corrected dataset from the start of the SAVSARP survey contained features in the relaxation time distribution and water content versus depth models that were consistent with observed features present in other datasets from the survey. We conclude that either the late time mono-exponential subtraction or the model subtraction algorithm are

  14. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    NASA Astrophysics Data System (ADS)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  15. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  16. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters.

    PubMed

    Koskey, Amber M; Fisher, Jenny C; Eren, A Murat; Ponce-Terashima, Rafael; Reis, Mitermayer G; Blanton, Ronald E; McLellan, Sandra L

    2014-12-01

    Untreated sewage discharges and limited agricultural manure management practices contribute to fecal pollution in rural Brazilian waterways. Most microbial source tracking studies have focused on Bacteroidales, and few have tested host-specific indicators in underdeveloped regions. Sequencing of sewage and human and animal feces with Illumina HiSeq revealed Prevotellaceae as the most abundant family in humans, with Lachnospiraceae and Ruminococcaceae also comprising a large proportion of the microbiome. These same families were also dominant in animals. Bacteroides, the genus containing the most commonly utilized human-specific marker in the United States was present in very low abundance. We used oligotyping to identify Prevotella and Blautia sequences that can distinguish human fecal contamination. Thirty-five of 61 Blautia oligotypes and 13 of 108 Prevotella oligotypes in humans were host-specific or highly abundant (i.e. host-preferred) compared to pig, dog, horse and cow sources. Certain human Prevotella and Blautia oligotypes increased more than an order of magnitude along a polluted river transect in rural Brazil, but traditional fecal indicator levels followed a steady or even decreasing trend. While both Prevotella and Blautia oligotypes distinguished human and animal fecal pollution in Brazil surface waters, Blautia appears to contain more discriminatory and globally applicable markers for tracking sources of fecal pollution. PMID:25360571

  17. Holocene Millennial-scale Surface and Bottom Water Variability, Feni Drift, NE Atlantic Ocean: Foraminiferal Assemblages

    NASA Astrophysics Data System (ADS)

    Lassen, S. J.; Richter, T. O.; de Stigter, H. C.; van Weering, T. C. E.; de Haas, H.

    A high-resolution sediment core from Feni Drift (ENAM9606, 56N 14W, 2543 m wa- ter depth) was investigated for planktonic and benthic foraminiferal assemblages dur- ing the last 12,000 years. During the Preboreal, peak abundances of T.quinqueloba indicate the passage of the Arctic front over the core site. Holocene planktonic foraminiferal assemblages indicate a gradual warming trend of surface water masses punctuated by a major cooling (8,200ky event s.l.), and possibly a slight cooling dur- ing the last 3,000 years. The interval from 10 to 5kyrs shows higher and fluctuating abundances of T.quinqueloba and G.bulloides, which suggest proximity of the subarc- tic front and enhanced spring blooms compared to the upper Holocene. Abundance peaks of N.pachyderma(s) and/or T.quinqueloba indicate a series of millennial-scale cooling events during the entire Holocene, which can be correlated to similar episodes previously described from other locations in the North Atlantic and Norwegian- Greenland Sea. Benthic foraminiferal assemblages indicate a gradual transition from seasonal, spring-bloom related food supply in the Lower Holocene (dominance of the phytodetritus species E.exigua) to possibly lower, but more sustained food supply in the Upper Holocene (dominance of C.obtusa and C.laevigata).

  18. Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    SciTech Connect

    Schoenfeld, Michael P.; Anghaie, Samim

    2008-01-21

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

  19. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.

    PubMed

    Zandi, Omid; Hamann, Thomas W

    2014-05-01

    Hematite (α-Fe2O3) thin film electrodes prepared by atomic layer deposition (ALD) were employed to photocatalytically oxidize water under 1 sun illumination. It was shown that annealing at 800 °C substantially improves the water oxidation efficiency of the ultrathin film hematite electrodes. The effect of high temperature treatment is shown to remove one of two surface states identified, which reduces recombination and Fermi level pinning. Further modification with Co-Pi water oxidation catalyst resulted in unprecedented photocurrent onset potential of ∼0.6 V versus reversible hydrogen electrode (RHE; slightly positive of the flat band potential). PMID:26270090

  20. Distribution of tritium in precipitation and surface water in California

    NASA Astrophysics Data System (ADS)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  1. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  2. Metals content in surface waters of an upwelling system of the northern Humboldt Current (Mejillones Bay, Chile)

    NASA Astrophysics Data System (ADS)

    Valdés, Jorge; Román, Domingo; Alvarez, Gabriel; Ortlieb, Luc; Guiñez, Marcos

    Physical-chemical parameters (temperature, salinity, dissolved oxygen, nutrients, and chlorophyll concentration) of surface waters were used to evaluate the influence of biological and physical processes over the metal concentrations (Cd, Ni, V, Mo, Mn, and Fe) in different periods of a normal annual cycle (June 2002 and April 2003), in Mejillones Bay (23° S), one of northern Chile's strongest upwelling cells. Two points were sampled every 2 months, but statistical analysis of these parameters did not show any spatial differences in surface water composition (annual average) in this bay. The order of total and dissolved metals by abundance (annual mean) in the Mejillones Bay surface waters during the sampling period was Cd < Ni < Mn < Fe < V < Mo. The surface concentration of metals does not appear to be explained by anthropogenic inputs (at least not during the year of this work), and variability observed in this study appears to be natural. The lack of correlation between physical-chemical parameters and metals could indicate a more complex combination of factors acting on surface concentrations. Moreover, the mixture of water masses and the Oxygen Minimum Zone which characterizes the Mejillones bay should have an important influence on surface distribution of trace metals and can explain the high temporal variability observed in most of the metals analyzed in this work. A two-box conceptual model is proposed to suggest possible influences on metals in surface waters of this coastal ecosystem.

  3. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  4. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring.

    PubMed

    Supowit, Samuel D; Roll, Isaac B; Dang, Viet D; Kroll, Kevin J; Denslow, Nancy D; Halden, Rolf U

    2016-01-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction. PMID:26905924

  5. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  6. Active Sampling Device for Determining Pollutants in Surface and Pore Water – the In Situ Sampler for Biphasic Water Monitoring

    PubMed Central

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-01-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction. PMID:26905924

  7. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  8. Bulk and Surface Interactions of Hydrophilic Polyacrylates with Water

    NASA Astrophysics Data System (ADS)

    Chen, Wan-Lin; Shull, Kenneth R.

    1998-03-01

    The adsorption of water by a series of hydrophilic acrylic coatings has been investigated in controlled humidity environments using a quartz crystal microbalance. The amounts of water adsorption are strongly dependent on the lengths of the polyethylene glycol (PEG) side chains of the acrylic polymers. We have also studied the properties of block copolymers which have a PEG-acrylate block coupled to hydrophobic poly(methyl methacrylate) (PMMA) or polystyrene (PS) blocks. The dynamic wetting behavior of water on these polymeric surfaces has been monitored by video microscopy during spreading of water drops on polymer thin films. The swelling and spreading rate data provide a useful characterization of the interactions of these materials with water.

  9. The Apollo lunar surface water vapor event revisited

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.; Hills, H. K.

    1991-01-01

    On March 7, 1971, the first sunrise following the Apollo 14 mission, the Suprathermal Ion Detector Experiment (SIDE) deployed at the Apollo 14 site reported an intense flux of ions whose mass per charge was consistent with water vapor. The amount of water is examined, and the various acceleration processes, responsible for accelerating ions into the SIDE, are discussed. It is concluded that during most of the event the observed water vapor ions were accelerated by the negative lunar surface electric potential and, secondly, that this event was probably the result of mission associated water vapor, either from the LM ascent and descent stage rockets or from residual water in the descent stage tanks.